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Abstract

We present the latest formal security definitions for blind signature schemes and for
group signature schemes. We start by introducing theory about algorithms, probability dis-
tributions, distinguishers, protocol attacks and experiments, which is needed to understand
the definitions. In the case of blind signatures, we define blindness and non-forgeability,
and we present the blind Schnorr and Okamoto-Schnorr signature schemes and prove that
the latter is secure. For group signatures, we define full-anonymity and full-non-forgeability
(full-traceability). In the end, we sketch a secure general group signature scheme presented
by Bellare, Micciancio and Warinschi.
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Chapter 0

Introduction

David Chaum was interested in creating a digital version of regular cash, and invented in
1982 blind signatures in order to maintain the anonymity of the users of digital cash [10]. The
concept was kept alive and used in several cash systems, for example by Brands [7]. However, as
with many cryptographic primitives, it took a long time before a strict mathematical definition
appeared. It was Juels, Luby and Ostrovsky [16] who first formally defined a blind digital
signature scheme. They also identified two main security requirements (blindness and non-
forgeability) for such schemes. The definitions have later been studied and revised, for instance
by Pointcheval and Stern [22], Okamoto [20] and Hazay et al. [15]. Today, there seems to be a
strong agreement on the definition of blind signature schemes and their security requirements,
and efficient schemes have been presented and proved correct with respect to these two security
properties.

In 1991, Chaum and van Heyst invented another type of digital signature, namely the
group signature scheme [11]. Group signatures were originally constructed for generalising
identification primitives, but has later been seen useful both in digital payment and voting
systems [1]. Ateniese and Tsudik [2] revived this concept in 1999 and tried to summarise the
security requirements that seemed to apply. Later, Bellare et al. [3, 5] have studied group
signatures extensively, and they have made formal definitions, both of group signature schemes
and of their security requirements. They found that all earlier mentioned requirements can be
united into two general requirements, namely full-anonymity and full-traceability.

The purpose of this thesis is to give an overview of the recent advances within blind and
group signature schemes, and to present formal definitions of the schemes and their security
requirements.

We assume the reader has basic knowledge of algebra and cryptography, as taught in stan-
dard university courses. This includes finite groups, discrete logarithms, hash functions, and
basic encryption and signature schemes.

Since algorithms and adversaries in these courses often are rather superficially treated, Chap-
ter 1 will commence with a discussion of algorithms, giving weight on the probabilistic type. We
will then proceed to probability distributions and to distinguishers. In order to discuss security
requirements, we begin with presenting attacks and forgeries on digital signature schemes, and
we then discuss provable security, especially complexity-based proofs. We end the theory with
introducing the concept of experiments, which is a common tool to formalise adversaries.

Chapter 2 is devoted to blind signature schemes, and we provide a formal definition of such
schemes and their security requirements. We then present the blind Schnorr and Okamoto-

1



2 CHAPTER 0. INTRODUCTION

Schnorr signature schemes. We stress the similarities between the two by presenting them
together, in a format we have not seen elsewhere. We prove that they both are blind, and
sketch the proof of Pointcheval and Stern [22] of the non-forgeability of the Okamoto-Schnorr
scheme.

In Chapter 3, we treat group signature schemes in the same way, so we begin with defining
them and their security requirements. Then we mention the many other requirements that
existed earlier [2] and discuss why all of them can be incorporated into the two new requirements.
We end this thesis by sketching the general group signature scheme of Bellare, Micciancio and
Warinschi [3], which is proven to be secure under the assumption that trapdoor permutations
exist.



Chapter 1

Theory

This chapter introduces notation and concepts needed in order to formalise signatures schemes
and their security requirements.

A function f : N → R is negligible if for each c > 0, there exists an integer N , such that
for all integers n > N , f(n) < n−c. Otherwise, it is non-negligible. Likewise a function
g is overwhelming if 1 − g(n) is negligible. When dealing with security requirements of group
signatures, we need to formalise non-negligibility of two-argument functions [3]: A two-argument
function f : N × N → R is negligible if fn : N → R, fn(k) = f(k, n(k)) is negligible for every
polynomially bounded function n : N→ N.

To make the distinction clear between comparisons and assignments in the description of
algorithms and experiments, we use ’←’ for assignments and ’=’ for comparison. We write
x ← y when x is assigned the value of y, and x ← A(y) when x is assigned the output of the
algorithm A run with the input y.

Also, we write x
r← X when x is assigned with an element from the set X, uniformly

chosen, and x
µ←− X when x is sampled according to a distribution µ on X. When dealing

with algorithms, we write ppt as a short hand for probabilistic polynomial time, and dpt for
deterministic polynomial time.

1.1 Algorithms

In cryptographic models, we view all participants of the model as algorithms of some kind.
Algorithms are most often treated informally as a sequence of elementary steps that can be
performed by a machine [13].

In a more formal framework, an algorithm is a sequence of instructions that can be carried
out by a Turing machine, or more general, any Turing-complete system. The algorithm receives
input (possibly empty), and should after some time terminate with some output. In the language
of Turing machines, the machine receives the encoding of the input on its working tape, and
terminates with the encoding of the output on the same tape [17].

A probabilistic algorithm has, in addition to its input/working/output tape, access to a
random tape, which is a tape containing a random bit string, and the output of the algorithm
is in general not determined from the input alone, but is also dependent of the contents of the
random tape. On the contrary, a deterministic algorithm has no such inherent randomness, and
such an algorithm can be considered as a computable function. The running of the algorithm
with a given input determines the value of the function at this point.

3



4 CHAPTER 1. THEORY

An interactive algorithm has, in addition to its main tape (and possibly its random tape),
two communication tapes, which it can use to send and receive messages to and from another
interactive algorithm. We refer to [14], which has a thorough treatment of interactive algorithms.

The running time of an algorithm is of main interest, since the distinction between efficient
and inefficient algorithms is very decisive. An algorithm is called a polynomial time (or efficient)
algorithm if there exists a polynomial p such that for any input x, the algorithm stops within
p(|x|) steps [17], where |x| is the size, or the length, of x. Problems that are solvable by a
polynomial time algorithm are called feasible, the rest of them are called infeasible.

1.2 Distributions and distinguishers

Since most cryptographic algorithms are probabilistic, we will introduce the concept of proba-
bility distributions and discover that a probabilistic algorithm can be thought of as a probability
distribution. The definition of a distribution is standard, but we will also introduce the concepts
of induced distributions and the distance between two distributions. Most of the contents of
this section is gathered from Gjøsteen [13] and Pointcheval and Stern [22].

Definition 1.1 (Distribution, induced distribution). A distribution on a finite set S is a function
µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. Given a distribution µ0 and a function f : S0 → S1, the

distribution µ1 on S1 induced by µ0 and the function f is defined by

µ1(s) =
∑

t∈f−1(s)

µ0(t).

A deterministic algorithm is equivalent to a function, and thus a deterministic algorithm
can induce a distribution in the same way. We also generalise this definition to probabilistic
algorithms: Let A : S0 → S1 be a probabilistic algorithm, and µ0 a distribution on the input
set S0, then the distribution Aµ0 on S1 induced by µ0 and the algorithm A is defined by

Aµ0(s) = Pr[A(t) = s | t µ0←− S0] =
∑
t∈S0

Pr[A(t) = s]µ0(t).

We see that the two definitions coincide, because a deterministic algorithm has only one
possible output for any single input, and Pr[A(t) = s] = 1 exactly if t is in the preimage of
the equivalent function, and 0 otherwise. If we fix the input t of a probabilistic algorithm A,
then we can identify the algorithm with its output distribution on this input. We call this
distribution A(t), and it can for example be defined by considering the induced distribution of
µ and A, where µ(t) = 1.

Definition 1.2 (Statistically indistinguishable). The statistical distance between two distribu-
tions on the same set S is

d(µ0, µ1) =
1
2

∑
s∈S

|µ0(s)− µ1(s)|.

If d(µ0, µ1) is negligible in the size of S, then the two distributions are statistically indistin-
guishable.

Often, when breaching a cryptographic protocol, the adversary is successful in distinguishing
two probability distribution, and therefore, we have another useful definition of the distance of
distributions:
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Definition 1.3 (Distinguisher, polynomially indistinguishable). A distinguisher D is a ppt
algorithm which given a single input s answers 0 or 1. The advantage of D with respect to two
probability distributions µ0 and µ1 on S is

Advdist
(µ0,µ1),D =

∣∣∣Pr[D(s) = 1 | s µ1←− S]− Pr[D(s) = 1 | s µ0←− S]
∣∣∣ .

Two distributions µ0 and µ1 are polynomially indistinguishable if all ppt distinguishers D
has a negligible advantage (in the size of S).

The distinguisher tries to guess which distribution the random variable s came from. The
advantage is 0 if D does not guess better than an algorithm guessing at random, and the
advantage is 1 if D always guesses correctly.

Intuitively, it does not help having a good distinguisher if the distributions are very similar,
and Theorem 1.5 guarantees that the statistical distance is the best any distinguisher can get.
To prove this, we need Lemma 1.4, with proof taken from [13].

Lemma 1.4. Let A : S0 → S1 be an algorithm (not necessarily polynomially bounded), and let
µ0 and µ1 be two distributions on S0, its input. Then

d(Aµ0 ,Aµ1) ≤ d(µ0, µ1).

Proof.

2d(Aµ0 ,Aµ1) =
∑
s∈S1

|Aµ0(s)−Aµ1(s)|

=
∑
s∈S1

∣∣∣∣∣∣
∑
t∈S0

Pr[A(t) = s]µ0(t)−
∑
t∈S0

Pr[A(t) = s]µ1(t)

∣∣∣∣∣∣
≤

∑
s∈S1

∑
t∈S0

Pr[A(t) = s]|µ0(t)− µ1(t)|

=
∑
t∈S0

∑
s∈S1

Pr[A(t) = s]|µ0(t)− µ1(t)|

=
∑
t∈S0

|µ0(t)− µ1(t)|
∑
s∈S1

Pr[A(t) = s]

= 2d(µ0, µ1),

by the generalised triangle inequality, and because s in the very last sum ranges over all possible
outputs of A(t).

Theorem 1.5. If two distributions µ0 and µ1 are statistically indistinguishable, then they are
also polynomially indistinguishable.

Proof. We will show that Advdist
(µ0,µ1),D = d(Dµ0 ,Dµ1), and from the lemma above, we see that

if the statistical distance is negligible, so must also the advantage of D be.
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First note that since a distinguisher outputs either 0 or 1, we can find another expression
for the advantage:

Advdist
(µ0,µ1),D =

∣∣∣Pr[D(s) = 1 | s µ1←− S]− Pr[D(s) = 1 | s µ0←− S]
∣∣∣

=
∣∣∣(1− Pr[D(s) = 0 | s µ1←− S]

)
−

(
1− Pr[D(s) = 0 | s µ0←− S]

)∣∣∣
=

∣∣∣Pr[D(s) = 0 | s µ0←− S]− Pr[D(s) = 0 | s µ1←− S]
∣∣∣

=
∣∣∣Pr[D(s) = 0 | s µ1←− S]− Pr[D(s) = 0 | s µ0←− S]

∣∣∣ .

By combining the two expressions, and looking at the induced distributions, we see that

2Advdist
(µ0,µ1),D =

∣∣∣Pr[D(s) = 1 | s µ1←− S]− Pr[D(s) = 1 | s µ0←− S]
∣∣∣ +∣∣∣Pr[D(s) = 0 | s µ1←− S]− Pr[D(s) = 0 | s µ0←− S]
∣∣∣

= |Dµ1(1)−Dµ0(1)|+ |Dµ1(0)−Dµ0(0)|
=

∑
b=0,1

|Dµ0(b)−Dµ1(b)|

= 2d(Dµ0 ,Dµ1),

and using Lemma 1.4, d(Dµ0 ,Dµ1) ≤ d(µ1, µ0), so the theorem follows.

1.3 Protocol attacks

A main requirement for a cryptographic protocol is that it should be secure. But secure in
what sense, and at which level? And secure against what type of attackers? When dealing with
interactive protocols, we must look at one participant of the protocol, and see what can happen
if there is an attacker or adversary that deliberately disobeys the protocol and tries to learn
secrets (or parts thereof) held by the honest participant.

When constructing a protocol, one must balance between making it secure against the most
powerful attacks, and making it simple and effective. By imposing too strict requirements on a
protocol, there is a possibility that such protocols cannot exist. We discern between the tools
an adversary has at its disposal in order to carry out the attack, and at which level the protocol
is broken.

In this paper we shall deal with modified versions of digital signatures, which are assumed to
be well-known. In order to introduce the concept of attacks and forgeries on signature schemes,
we will therefore in this section discuss attacks and forgeries on regular digital signature schemes.

1.3.1 Attacks on digital signature schemes

There are many ways an adversary can try to break a regular digital signature scheme. The
different attacks are modelled by the adversary having either a predetermined set of information
available, or an oracle at his1 disposal. The oracle mainly comes from a restricted subset of

1To avoid the awkward notation “(s)he”, all participants in this thesis are referred to as male, but the reader
may substitute any appearances of “he”, “his”, “him” and “himself” with “she”, “her” and “herself”, if he1 prefers.
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the algorithms that exist in the protocol, and can thus be both interactive and non-interactive.
The adversary can query the oracle to gain knowledge, but we can monitor the queries, and he
is sometimes restricted in his choice of inputs to the oracle. The oracle also acts as a black box
to the adversary, and does not reveal any part of the computation it carries out.

Some well-known attack types are listed in Pointcheval and Stern [22] and from Stinson [25],
and they are repeated here, in increasing order of power.

Plain no-message attack In this attack, the adversary cannot interfere in any way with the
scheme, but is given a list of previously generated message-signature pairs, which he does
not take part in choosing. This attack compares to an adversary listening to an unsecure
communication channel, and can also be modelled by an oracle (running with no input)
giving out signatures of random messages. This attack is also called known-message attack
[25].

Chosen-message attack The adversary can in this attack ask the signer to sign a set of
messages, chosen by the adversary. He will then see what the resulting signatures look
like. This attack is in [22] further divided into the generic chosen-message attack (where
the adversary chooses a list of messages before meeting the signer) and the oriented chosen-
message attack (where the adversary first meets the signer and sees his public key, and
then produces a list of messages to sign). The chosen-message attack is modelled with an
oracle allowing one query with a list of messages the adversary wants to sign. The oracle
then replies with the correct signatures of these messages.

Adaptive chosen-message attack This is the most powerful attack, where an adversary asks
the oracle to sign messages that are adaptively chosen by the adversary. Adaptively
means that the adversary chooses messages one after another, after seeing the result of
the previous signing. This attack is modelled by an oracle allowing repeated queries of
messages to sign.

If the adversary is allowed to perform several queries to an interactive oracle during one at-
tack, it is also important to separate between how the oracles are to be queried, and Pointcheval
and Stern [22] and Hazay et al. [15] list the following type of attacks.

Sequential attack In a sequential attack, the adversary must complete one interaction pro-
tocol with an oracle before trying to send another query. It could be advantageous for
an adversary to be able to halt an oracle and wait for the result of another query before
continuing, but in this attack model, this is prohibited.

Parallel attack In a parallel attack, the adversary is allowed to interact in parallel, with many
copies of the oracle at the same time, but must interact with all of them simultaneously,
and cannot run one oracle copy more than one step ahead of any other.

Concurrent attack In a concurrent attack, the adversary is allowed to interact with many
oracles in an arbitrarily interleaved manner. He can decide to abort the interaction of one
oracle, or halt one oracle to wait from the results of another one before continuing. This
attack compares to a real life setting where the signer must be able to interact with many
users concurrently, without taking into consideration that some of them may be controlled
by the same user, or an adversary.
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Replay attack This attack is a very powerful attack, in which the adversary is not only allowed
to run oracles concurrently, but he is also allowed to “rewind” the oracles by tricking them
to redo some computation, often involving random choices. This way, he can make the
oracles do choices that are more favourable. Since this attack is mostly considered to be
too powerful, being easy to remedy2, it is often not taken into consideration.

Note that we do not care which attack strategies the adversary chooses, for example whether
he uses brute force, utilises the birthday paradox [25], or employs a side channel attack, as an
adversary is free to make any computation he sees fit. However, most adversaries are restricted
to polynomially many computations and oracle interactions.

1.3.2 Forgeries on digital signature schemes

There are several adversarial goals of an attack on a digital signature scheme. The most common
forgeries [22, 25] are classified here, in order from the most devastating to the less serious,
therefore also from the weakest to the strongest.

Total break From the attack, the adversary manages to discover the secret key of the signer.
In this way the adversary can in all circumstances act as the signer himself. This is the
most serious attack, and of course the hardest to accomplish.

Universal forgery Here, the adversary does not directly learn the secret key, but can by other
means construct an effective algorithm to create valid signatures on an overwhelming
majority of messages. This is in practice equivalent to a total break of the scheme.

Selective forgery In this forgery, the adversary can with non-negligible probability create a
signature on a randomly chosen message. The distinction between selective and universal
forgery is the size of the set of forgeable messages.

Existential forgery In an existential forgery, the adversary can on his own produce single
message-signature pair without querying any oracle with this particular message. The
message is chosen by the adversary, but it might be that the actual message is of no use
at all. This is the least serious attack, and by far the hardest to protect against, since it
means that no forgeable message can exist.

As we see from the lists above, the best a scheme can do is to resist an adaptive chosen-
message existential forgery, and it is well known that the plain versions of RSA and ElGamal
signature schemes fail under adaptive chosen-message existential forgery [22].

1.4 Provable security

After identifying the the types of attacks of an imaginary adversary, and what he might accom-
plish, we will now proceed with discussing how to prove that a cryptographic protocol is secure.
There are many proof techniques when inspecting the security of a protocol, and we will now
present those that seem to be the most popular [15, 16, 26].

2Using random numbers (nonces) as session identifiers.
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Figure 1.1: A guide for visualising reductions

Random oracle model Many cryptographic protocols [7, 10, 12, 22] use a hash function as
part of the scheme. The random oracle model was introduced by Bellare and Rogaway
[4], and it assumes that we are given a hash function that behaves like it is truly random
[25]. This means that the oracle represents a hash function H : X → Y , and if we call
upon H(x), the oracle samples y

r← Y and sets H(x) = y. The exception is of course
if we have asked for the value of H(x) before, because then the oracle must give us the
same y as it gave us then. However, in implementations of cryptographic protocols, we
must choose a real hash function, which realistically cannot behave exactly like a random
oracle. The security of the protocol then hinges on the proposition that the implemented
hash function cannot be distinguished from a real random oracle, which generally is very
hard to prove.

Common reference string model There is also a model called the common reference string
model, in which all participants has access to the same common reference string. This
is a generalisation of the random oracle model, and is in the context of blind and group
signature schemes treated further in respectively Fischlin [12] and Trolin [26].

Complexity-based proofs Introduced by Diffie and Hellman, complexity-based proofs give
much more general and stronger results [16], since they aim to reduce the security of a
given protocol to the underlying fundamental cryptographic problem. Thus only general
complexity assumptions like the hardness of factoring or the discrete logarithm problem
are building blocks of the proofs.

Since complexity-based proofs of security are preferable because they yield stronger results,
we will in this section continue to study reductions, as they lie at the core of complexity-based
proofs.

Definition 1.6 (Reduction, polynomial reduction). A reduction from a problem P1 to a problem
P2 is an algorithm that solves P1 when given access to an oracle that solves P2 [13, 17]. It is
important to measure the reduction in terms of time complexity and number of oracle queries.
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If both measurements are polynomial in size of the input (of problem P1), we say that it is a
polynomial reduction, and that P1 reduces to P2. This is written P1 ; P2.

If there exists a polynomial reduction from P1 to P2, we learn that the problem P2 is at least
as hard as P1 (see Figure 1.1). This is because if P1 is solvable, then P2 also is [17]. We cannot
say how much harder P2 is relative to P1, and there might also exist a reduction from P2 to P1,
in which case they are equivalent.

If we let P1 be a famous infeasible problem, and P2 be a security requirement of the protocol
we are studying, then we can make a complexity-based proof of the security of the protocol by
constructing a reduction from P1 to P2. We then see that an effective attack on the security
requirement will lead to an effective attack on the main problem itself. But P1 is assumed to
be infeasible, so the conclusion is that P2 is also infeasible, and that the security requirement
must hold.

We are then left with formalising an attacker related to the security requirement, leading to
a possible attack on the protocol. This is done by introducing experiments, or games, which we
will introduce in the next section.

1.5 Experiments

Experiments are a common method to formalise security properties [24]. An experiment is a
game which we play with the adversary. Throughout the game, the adversary is given informa-
tion, and the experiment challenges the adversary to make use of this information to produce
new information, or to distinguish between two probability distributions. If the adversary with
non-negligible probability wins the game, then we say that the adversary can carry out a success-
ful attack against the corresponding security property. We believe the notion of an experiment
is best explained by providing an example, and we have chosen to do this by formalising the
decision Diffie-Hellman assumption, inspired by Trolin [26].

Definition 1.7 (Decision Diffie-Hellman problem). The decision Diffie-Hellman problem (ddh)
in the cyclic group Gn (of order n) is to find out, given g ∈ Gn, if k ∈ Gn is the Diffie-Hellman
key gab of g1 = ga and g2 = gb.

The decision Diffie-Hellman assumption says that this problem is infeasible, or equivalent,
that it is infeasible to distinguish between the distributions µ0 and µ1 on Gn ×Gn ×Gn ×Gn,
which are induced by the uniform distribution on Zn × Zn × Zn and respectively the functions
f0 and f1, where

f0(a, b, c) = (g, ga, gb, gab), and
f1(a, b, c) = (g, ga, gb, gc),

and g is any fixed element of Gn.
In the setting of experiments we can make a formal definition:

Proposition 1.8 (Decision Diffie-Hellman assumption). Consider the experiment Expddh
Gn,Â(n),

listed in Experiment 1.1. We define the advantage of the adversary Â in this experiment as

Advddh
Gn,Â(n) =

∣∣Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0]
∣∣ .

For all ppt algorithms Â, this advantage is negligible in n.
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Experiment 1.1 Expddh
Gn,Â(n):

1. Let d
r← {0, 1}.

2. Let g
r← Gn, and a, b, c

r← Zn.

3. Define (g1, g2)← (ga, gb).

4. If d = 0, then k ← gab, else k ← gc.

5. Let d′ ← Â(guess, g, g1, g2, k).

The notation Expddh
Gn,Â(n) of Experiment 1.1 means that we are running an adversary Â

against a security property or problem ddh concerning the object Gn, and similar notation will
be used in the rest of this paper.

Experiment 1.1 is quite simple, because after some analysis, we see that before Step 5,
(g, g1, g2, k) is sampled according to the distribution µd, where d is the decision bit. We then ask
the adversary to distinguish between these two distributions by trying to guess d. Comparing
the advantage Advddh

Gn,Â to the advantage Advdist
(µ0,µ1),Â of Â appearing as a distinguisher in

Section 1.2, we see that they both are equal to d(Âµ0 , Âµ1), so this experiment comes from a
standard method of formalising a distinguisher.

Experiments can be made more complex by adding more communications with the adver-
sary. If this is the case, we implicitly assume that the adversary is allowed to maintain state
information from one call to the next.

We can also give the adversary access to more information via some oracle. For instance, let
DLGn be an oracle solving the discrete log problem (dlog) in the group Gn, that is DLGn(g, ga) =
a for all g ∈ Gn, a ∈ Zn. We can modify the experiment and give Â access to this oracle. We
specify this by replacing Step 5 with d′ ← ÂDLGn (·,·)(guess, g, g1, g2, k). We use the notation
that all oracles available to an adversary are listed as a superscript, and the dot notation shows
which inputs can be chosen freely by the adversary.

With the aid of this oracle, an adversary can readily solve ddh, because we can construct an
adversary Â presented in Algorithm 1.2, having advantage Advddh

Gn,Â(n) = 1, which is certainly
not negligible. It uses the power of the oracle to compute the discrete logarithms of its inputs.

Algorithm 1.2 ÂDLGn (g,·)(guess, g, g1, g2, k):

1. Let a← DLGn(g, g1),
b← DLGn(g, g2), and
c← DLGn(g, k).

2. If ab ≡ c (mod n− 1), then return 0, else return 1.

Note that by this discussion, we have reconstructed the well-known polynomial reduction
from the discrete log problem to the decision Diffie-Hellman problem, and have shown that
dlog ; ddh.
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Chapter 2

Blind signatures

Blind signatures were introduced by Chaum [9] in 1982, and has been an invaluable tool in
order to design digital cash systems. A blind signature is like a regular signature, in the way
that a signer is asked to create a signature on a message or a document. The difference is that
the actual message is to be kept secret from the signer. The blind signature is therefore often
compared to the user putting a message in an envelope, letting the signer print his signature on
the envelope, such that the signature is copied through to the message hidden inside.

The main properties of blind signatures is that a user can ask a signer to produce an
unforgeable signature of a document (non-forgeability), in such a way that the signer cannot
distinguish between signatures he has issued (blindness).

Because of the nature of the blindness property, the signer cannot be allowed to see the
complete document he is signing. In the different schemes that have been constructed, there are
thus different ways of making the user guarantee that the document has some specific structure,
or includes some specific information. This is an important issue, since few signers would want
to sign an arbitrary document. In the first construction by Chaum, where the blind signature
is a vital part of his on-line digital cash system [10], the signature itself (as opposed to the
document) is the valuable information, and the user can freely choose any message to use as a
coin. In the off-line variant presented in the same paper, the user creates several coin candidates,
and the signer asks him to reveal some, usually half, of them. This is called a cut-and-choose
method [22], since if the signer can verify the correctness of the opened candidates, then he can
with some given degree trust the rest of the candidates to be correct, and send his signature
back to the user. In Brands’ off-line cash system [7], a restrictive blind signature is used, where
the setup of the system guarantees that if a user chooses to generate an invalid document, he
cannot make use of the signature at all. The last method is superior to the others, because a
dishonest user cannot cheat the signer at all, and the communication between the participants
is greatly reduced. We also refer to O discussion regarding partially blind signatures [20].

We do not discuss the content of the messages further in this thesis, as many implementations
of blind signatures have shown that they are of practical use, both in payment systems and in
identification schemes [6, 7]. We will now concentrate on the formal definitions and security
requirements of blind signature schemes.

13



14 CHAPTER 2. BLIND SIGNATURES

2.1 Definition

It took a very long time from Chaum invented the concept of a blind digital signature until a
strict mathematical definition appeared. The first mathematical definition of a blind signature
scheme were proposed by Juels, Luby and Ostrovsky in 1997 [16], and in recent years, the
definition of such a scheme has more or less been agreed upon. We take the latest definitions
from Hazay et al. [15] and Buan, Gjøsteen and Kr̊akmo [8].

Definition 2.1 (Blind signature scheme). A blind signature scheme BS consists of four poly-
nomial time algorithms (Gen, S, U , Vrfy):

• The ppt key generation algorithm Gen takes 1k as input, where k is the security parameter
and 1k is a string of length k. It outputs a key pair (PK,SK) of matching public and secret
(or private) keys. The security parameter is implicit in both of these keys.

• The two interactive and ppt algorithms signer S and user U run a signing protocol to
collaboratively create a blind signature σ on a message m, chosen by U . Both are given
PK as input, and the signer is given SK as additional input. The resulting signature is
known to U only, and we write the execution of this protocol as σ ← 〈S,U(m)〉 (with
the keys as implicit input). The two algorithms stop after a polynomial (in k) number of
interactions, and S outputs either Accept or Reject, while U outputs either the signature
σ or ⊥, signalling a failure.

• The dpt verification algorithm Vrfy takes a message m, a purported signature σ and the
public key PK as input, and outputs Accept if the signature is valid, else it outputs Reject.

Some papers (for example [15]) regard the joint execution of S and U as one signing algorithm
σ = Sign(PK,SK,m), but we believe this does not clearly show the different objectives of the
involved signer and user, and the possibility for an adversary to interfere with this algorithm.

A scheme is useless without a correctness statement, which should state what we want the
scheme to achieve. In most cases, the goal of a scheme is obvious, but the correctness of a blind
signature scheme is mathematically precise from the following definition.

Definition 2.2 (Correctness). A blind signature scheme (Gen, S, U , Vrfy) is correct if for all
(PK,SK) output by Gen(1k), for all S and U following the protocol, and for all m, S outputs
Accept, U(m) outputs a signature σ 6= ⊥, and Vrfy(PK,m, 〈S,U(m)〉) = Accept.

The correctness property says that if both parties follow the instructions of the signing
protocol, then the produced signature must be valid. Note that this does not exclude trivial
signature schemes, for example in which all signatures are equal, or all signatures are valid.
But these schemes are clearly not useful, and as with all cryptographic protocols, we are more
interested in that the scheme is secure, even if one of the parties is dishonest. This is treated
in the next section.

The message, signature and key spaces are not very important. Since a message, signature
or key always can be encoded in binary, the spaces are often assumed to be subspaces of the
binary strings {0, 1}∗. There is also a note in [15] concerning the lengths of a signature, which
we will repeat and comment here.
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Definition 2.3. (Length-regular) A blind signature scheme (Gen, S, U , Vrfy) is length-regular
if there exists a polynomial p such that for all (PK,SK) output by Gen(1k), for all S and U
following the protocol, and for all m, if σ ← 〈S,U(m)〉, then |σ| ≤ p(|m|), and if |σ| > p(|m|),
then Vrfy(PK,m, σ) = Reject.

Since both S and U are polynomially bounded, they cannot produce output that are more
than polynomial in its input size, so the first property is automatically satisfied. The last
property says that all signatures that are too large must be invalid.

From now on, we assume that all blind signature schemes are both correct and length-regular.

2.2 Security requirements

There are two parties in a blind digital signature scheme, and each of them have the opportunity
to break the scheme. The user would of course want to produce valid signatures on his own,
without interacting with the signer. The signer would on his side like to mark or put information
in the signatures in such a way that he would later recognise the signature and identify the user.

The first property has been called unforgeability [15], non-forgeability [16] and one-more-
forgery [22], while the last has been presented in different forms and called both blindness
[15, 16] and untraceability [10]. It is not immediate what blindness should contain, since there
are some subtle points that must be resolved. Because of this, there has also been the notion
of unlinkability [7, 22], which says that the signer cannot link two signatures to the same (but
still anonymous) user. However, the current definition of blindness also incorporates the notion
of unlinkability, which therefore is obsolete.

The formal definitions of the security requirements of blind signature schemes were first
presented by Juels, Luby and Ostrovsky [16], and they have since remained standard, only with
slight variations.

2.2.1 Blindness

The blindness property says that the signer should not learn anything about the messages he
signs (that he did not know a priori). But referring to the discussion above, he should also
be unable to put information in the signature that would make him able to recognise it later.
The ability to recognise a signature later can be reduced to discerning between two single
signatures, so Juels, Luby and Ostrovsky [16] therefore formalised the chosen-key-and-messages
attack, which is a very strong attack, and this has become the standard definition of blindness.

In this attack, the adversary chooses a public key representing his identity, and two messages
that a user would want a signature on. The adversary then interacts with two copies of the
user, without knowing which user gets which message. When given the two signatures after
the two interactions has completed, the adversary should not have any non-negligible chance of
guessing which signature belongs to which message.

Definition 2.4 (Blindness). Consider the experiment Expblind
BS,Ŝ(k), listed in Experiment 2.1,

where Ŝ is any algorithm (the adversary). We define the advantage of Ŝ in breaking BS with
respect to blindness as

Advblind
BS,Ŝ(k) =

∣∣Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]
∣∣ ,
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Figure 2.1: The two scenarios of Experiment 2.1

where the probability is taken over all random choices done by all algorithms in the experiment.
The scheme BS is secure with respect to blindness if for all ppt algorithms Ŝ, Advblind

BS,Ŝ(k) is
negligible in k.

Experiment 2.1 Expblind
BS,Ŝ(k):

1. Let (PK,m0,m1)← Ŝ(gen, 1k). The two messages must be of equal size.

2. Let b
r← {0, 1}.

3. Let Ŝ engage in two parallel interactive protocols, the first with U0 = U(mb), and the
second with U1 = U(m1−b).

4. For i = 0, 1, let σi ← 〈Ŝ,Ui〉, but set (σ0, σ1) ← (⊥,⊥) if either U0 or U1 aborts or
outputs ⊥.

5. Let b′ ← Ŝ(guess, σ0, σ1).

We put a hat on the signer Ŝ to remember that he is an adversary that is not restricted
to follow any particular protocol. We see that the signer chooses which messages to sign, but
the (uniformly) random bit b decides which of the two instances of the user U0 and U1 gets
which message (see Figure 2.1). Also note that the adversary does not have access to the Vrfy
algorithm, or else he could just discover which message σ0 is a valid signature of by calling
Vrfy(PK,m0, σ0).

There is naturally no restriction on the behaviour of an adversary, and specifically we cannot
restrict it to obey the signing protocol, and therefore he can try to trick and confuse the signer,
such that it outputs ⊥. The special case in Step 4 concerns the case where the adversary
deliberately aborts the communication with one of the users.

We see that the adversary Ŝ tries to distinguish between the probability distributions
〈Ŝ,U〉(m0) and 〈Ŝ,U〉(m1) (abusing the notation of Section 1.2), and that the definition of ad-
vantage is equivalent to the distinguisher of ddh in Section 1.5. We can therefore conclude that
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an equivalent definition of blindness is that for all messages m0, m1, all public keys PK, and
all ppt algorithms Ŝ, the output distributions of 〈Ŝ,U(m0)〉 and 〈Ŝ,U(m1)〉 are polynomially
indistinguishable.

Buan, Gjøsteen and Kr̊akmo [8] call this particular version of blindness strong, and reserves
regular blindness for the case where the adversary is in Step 1 required to output not only the
public key, but a public and secret key pair. This might make a difference in cryptosystems
in which not all values that appear as a public key necessarily have a corresponding private
key. They also introduce a concept called weak blindness, where the adversary is restricted to
keys that are genuinely generated (by Gen). If a scheme is designed where some public keys are
weak and make the recognition of signatures easy, but the overwhelming majority of the public
keys fulfils the blindness property, then this scheme has weak, but not regular blindness. (The
adversary will in Experiment 2.1 of course pick one of the weak keys, but the Gen algorithm
will generate these keys with negligible probability.)

2.2.2 Non-forgeability

The non-forgeability property is a guarantee that the user cannot create signatures on his own.
There is no concept directly equivalent to the existential forgery of regular signatures, because
the blinding makes it difficult to check which messages the users asks for a signature of [15].
The only way we can restrict a malicious user is to set a bound on the number of executions he
is allowed to perform with the signer.

The correct way to specify the non-forgeability requirement is therefore to prohibit the user
from doing a one-more forgery. This requirement states that an adversary cannot obtain l + 1
signatures after having only l (or less) interactions with a signer [22]. In this way, we are sure
that a user of a digital cash system cannot produce valid coins by other means than contacting
the bank to get a blindly signed coin [7].

As discussed in Section 1.3 concerning multiple interactions, we must distinguish between
whether the adversary must interact with the signer in a sequential or parallel manner, or
if the adversary has the power to interact in an arbitrarily interleaved (concurrent) manner.
We would hope to provide protection against the most general attacker, and in the current
setting, it is also reasonable to assume that a signer could engage in many signing interactions
simultaneously, without making the users wait for each other. The current definition of non-
forgeability therefore concerns a concurrent, adaptive chosen-message attack in order to try to
produce a one-more forgery [8, 15].

Definition 2.5 (Non-forgeability). Consider the experiment Expnonf
BS,Û (k), listed in Experi-

ment 2.2, where Û is any algorithm. We define the advantage of Û in breaking BS with respect
to non-forgeability as

Advnonf
BS,Û (k) = Pr[j > l],

where the probability as usual is taken over all random choices done by all algorithms included.
The scheme BS is non-forgeable if for all ppt algorithms Û , Advnonf

BS,Û (k) is negligible in k.

In this experiment, the key generation algorithm generates a key pair that is used throughout
the experiment. The adversary Û is then given oracle access to the signer (with the secret key
SK implicitly given to S, but hidden from Û). He can then concurrently obtain signatures from
the signer, on any message he chooses. Again, we cannot deny the adversary trying to trick the
signer by disobeying or aborting the protocol, so we let l denote the number of signatures that
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Experiment 2.2 Expnonf
BS,Û (k):

1. Let (PK,SK)← Gen(1k).

2. Let Σ′ ← ÛS(PK), simulating that Û can engage in polynomially many (in k) arbitrarily
interleaved interactive protocols with S. Let l be the number of executions where S
outputs Accept.

Σ′ = {(m1, σ1), . . . , (mj′ , σj′)} should be a set of unique message-signature pairs of size j′.

3. Discard any invalid signatures, so let

Σ = {(mi, σi) ∈ Σ′ | Vrfy(mi, σi) = Accept},

and define j = |Σ|.

S agrees to have issued, and forget about the other interactions that might have been started,
but were aborted or otherwise deemed invalid by the signer.

After the user is satisfied with his achieved signatures, he is asked to output a list of message-
signature pairs. We must of course exclude invalid and duplicate signatures, so in Step 4, we
filter the pairs. By the discussion above, the blind nature of the signature makes it impossible
to tell whether the final messages were actually the messages the signer was asked to sign, and
that only j, the number of such valid signatures, are of interest.

If an adversary has a non-negligible chance of obtaining more unique signatures than the
signer has issued (j > l), the adversary is successful in against breaking the non-forgeability of
the blind signature scheme.

Note that this experiment is different from the experiment of the blindness requirement,
because this is not a distinguishing experiment. This is merely an experiment challenging the
adversary to make use of the information available to him in order to gain new information that
is meant to be hidden. The winning chances of an adversary is measured in the success rate,
which is the probability that a certain unwanted event occurs.

Fischlin [12] also mentions a weak non-forgeability requirement, which requires the messages
m1, . . . ,mj′ to be distinct (opposed to unique message-signature pairs), such that an adversary
cannot try to produce more than one signature on any single message.

2.2.3 Summary

We have now identified the two security requirements that exist in today’s literature regarding
blind signature schemes, and we conclude by combining these two into one definition of the
security of a blind signature scheme.

Definition 2.6 (Secure blind signature scheme). If a blind signature scheme is both non-
forgeable and secure with respect to blindness, then it is secure.

This means that we do not need to consider other security notions when analysing the
security of a blind signature scheme. As we have mentioned in the discussions of the preceding
subsections, the security definitions here are the strongest we have encountered, and thus it is
possible to weaken some of the definitions and still regard the scheme as being secure enough
for practical considerations.
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2.3 Two blind signature schemes

We will in this section describe two blind signature schemes, namely the blind Schnorr signature
scheme and the blind Okamoto-Schnorr signature scheme, both first presented by Okamoto [19].
The blind Schnorr scheme is an extension of the regular Schnorr signature scheme [23], and
Okamoto adapts this by using a divertible zero-knowledge interactive proof [21] to introduce a
blinding factor. The blind Okamoto-Schnorr signature scheme is an equivalent extension of the
regular Okamoto-Schnorr signature scheme [19].

The two schemes will be put into the theoretical framework of the last section, and we will
prove that they both are secure with respect to blindness. We will also outline a proof by
Pointcheval and Stern [22], who show that the Okamoto-Schnorr scheme is non-forgeable in the
random oracle model under the discrete log assumption. The discrete log assumption states
that the discrete log problem dlog is infeasible [18, 25].

First we need to introduce some notation: We will encounter products like
∏n

i=1 gai
i . For

brevity, we write this as ga, and this notation is used whenever g = (g1, . . . , gn) and a =
(a1, . . . , an) are tuples of the same length. We also treat component-wise addition and scalar
multiplication of tuples, such that if c is a scalar, and a and b are tuples of corresponding
lengths, then ga+bc =

∏n
i=1 gai+bic

i .
Both of these schemes are described in Pointcheval and Stern [22], and we will follow their

presentation, except that we would like to stress the strong similarities between the two schemes
by rearranging the notation. They are therefore presented together in Algorithms 2.3–2.6, where
the Schnorr scheme corresponds to n = 1, and the Okamoto-Schnorr scheme corresponds to
n = 2.

The schemes use a group Zq of large prime order, and they use generators of subgroups of
order p as building blocks. In the setup phase, such a group is found by choosing primes p and
q, such that q | p − 1, and |p|, |q| = O(k), where k is the security parameter1. It follows from
the discrete log assumption that computing discrete logarithms in this group is infeasible [7].
The scheme also uses a hash function H : M × Zq → Zq, where M is the message space. We
do not specify the hash function in more detail, since we choose to work in the random oracle
model [22].

Algorithm 2.3 Gen(1k), the key generation algorithm of the (Okamoto-)Schnorr scheme:

1. Choose n elements gi ∈ Zp (i = 1, . . . , n), all of order q, and define g = (g1, . . . , gn).

2. Choose x
r← Zn

q , and let y = gx (mod p).

3. Output (PK,SK) = ((g, y),x).

The key generation algorithm finds n elements g1, . . . , gn of order q. The secret (or private)
key consists of g and the exponents x1, . . . , xn, which are used to form the public key y = gx.
We call x the representation of y with respect to g, and Brands [7] shows that finding repre-
sentations2 is equivalent to the discrete log problem. This is formalised as the representation
problem.

1Okamoto [19] suggests q > 2140 and p > 2512.
2Brands [7] only applies the definition when n ≥ 2, because if n = 1, then x1 is of course just the g1-logarithm

of y. We have however chosen to generalise the definition to include the case n = 1.
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Remember that the Schnorr scheme arises when n = 1, and thus the private key is uniquely
defined from the public key. The discrete log assumption however guarantees that the private
key is infeasible to find. The Okamoto-Schnorr scheme uses two generators g1 and g2 and
therefore has q possible private keys corresponding to any public key. Brands uses a variation
of the blind Okamoto-Schnorr signature scheme in his off-line cash system, so he studies this
property further in [7], along with a discussion on the representation problem.

The signing interaction of the two schemes is presented in Algorithms 2.4 and 2.5, where
the signer S and the user U cooperate to create a signature (e, s) on a message m.

Algorithm 2.4 S, the signing algorithm of the (Okamoto-)Schnorr scheme:

1. Choose k
r← Zn

q and let r̃ ← gk (mod p).

2. Send r̃ to U .

3. Receive ẽ from U .

4. Calculate s̃← k + xẽ (mod q) and send s̃ back to U .

5. Output Accept.

Algorithm 2.5 U(m), the user algorithm of the (Okamoto-)Schnorr scheme:

1. Choose a
r← Zn

q and b
r← Zq.

2. Receive r̃ from S.

3. Compute r ← r̃g−ay−b (mod p), e← H(m, r) and ẽ← e + b (mod q).

4. Send ẽ to S.

5. Receive s̃ from S, and check if gs̃yẽ = r̃ (mod p). If not, output ⊥.

6. Let s = s̃− a (mod q).

7. Output the signature σ ← (e, s).

After an initial request from the user, the signer starts by choosing n random exponents
k1, . . . , kn, and commits to these by sending r̃ = gk to the user. In this way, the signer knows a
representation of r̃ (with respect to g). The user has on his side chosen blinding factors a and
b, and computes e, which is the first part of the final signature. This is a hash of the message m
being signed, and r, the unblinded r̃. To receive the last part of the signature, U must compute
a challenge ẽ, which the signer only can correctly answer if he knows a representation of r̃. The
answer s̃ to this challenge is then verified in Step 5, and in Step 6 unblinded into s, the second
part of the signature. The challenge and answer interaction is actually a witness-hiding proof
of knowledge of a representation [7, 18].

The pair σ = (e, s) becomes the signature of the message m, which can be easily veri-
fied by the verification algorithm described in Algorithm 2.6. This verification is exactly the
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same as in the regular (Okamoto-)Schnorr signature scheme [22], so σ is actually also a valid
(Okamoto-)Schnorr signature on m.

Algorithm 2.6 Vrfy(m, (e, s)), the verification algorithm of the (Okamoto-)Schnorr scheme:

1. Compute r′ ← gsye (mod p).

2. Output Accept if e = H(m, r′), else output Reject.

Theorem 2.7. The blind Schnorr and Okamoto-Schnorr signature schemes are correct.

Proof. Assume that S and U was run with keys that were generated by Gen, and that they both
followed the protocol to create a signature (e, s) on a message m. Then, since

gs̃yẽ = gk+xẽg−xẽ = gk = r̃ (mod p),

the user does not output ⊥ in Step 4 of Algorithm 2.5. Also, since

gsye = gs̃−ayẽ−b = gk+xẽ−a−xẽ+xb = gk−ay−b = r̃g−ay−b = r (mod p),

then H(m, r′) = H(m, gsye) = H(m, r) = e, so Vrfy accepts in Algorithm 2.6. The schemes are
therefore correct.

Theorem 2.8. The blind Schnorr (S) and Okamoto-Schnorr (OS) signature schemes are secure
with respect to blindness.

Proof. Let Ŝ be an adversary of Experiment 2.1, and let µ0 and µ1 be the output distributions
of 〈Ŝ,U(m0)〉 and 〈Ŝ,U(m1)〉. The adversary is challenged to distinguish between µ0 and µ1,
knowing the values m, k, r̃, ẽ and s̃ of both interactions (but not knowing which m corresponds
to which user interaction). The only value Ŝ receives from U is ẽ, but in Step 3 of Algorithm 2.5,
this value is blinded using b, which is uniformly distributed on Zq. Hence, ẽ contains no
information about neither r̃ nor m, which are the values that are chosen by the adversary.

We will now prove that the output of any (completed) signing interaction is statistically
indistinguishable from the uniform distribution on Zq × Zn

q , and it then follows that µ0 and µ1

are statistically indistinguishable, and using Theorem 1.5 also polynomially indistinguishable.
The advantage Advblind

S/OS,Ŝ(k) is therefore negligible for all polynomial adversary Ŝ, and the
blind Schnorr and Okamoto-Schnorr schemes must be blind.

Let (e, s) ← 〈Ŝ,U(m)〉 be the output of any completed interaction between Ŝ and U , with
the public key chosen by the adversary. The last part s is uniformly distributed on Zn

q , because
in Step 6 of Algorithm 2.5, this tuple is computed from s̃ and a, where a is by an honest user
uniformly chosen (in Step 1 of the same algorithm). Any information that the adversary possibly
has hidden in s̃ is therefore effectively obscured. The first part e is the result of applying the hash
function H. In the random oracle model, the output value of H is also uniformly distributed.
The conclusion is that (e, s) is uniformly distributed on Zq × Zn

q , and µ0 and µ1 are therefore
both equal to the uniform distribution.
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As mentioned before, the crucial difference between the two schemes is the uniquely defined
private key of the Schnorr scheme. Because of this characteristic, there does not seem to exist
proofs for the non-forgeability of the Schnorr scheme, so we will now turn to Pointcheval and
Stern’s treatment on the non-forgeability of the Okamoto-Schnorr scheme. This proof reduces
the discrete log problem to the problem of forging the Okamoto-Schnorr signature.

Theorem 2.9. The blind Okamoto-Schnorr signature scheme (OS) is non-forgeable.

Proof. We will only sketch the proof of Pointcheval and Stern [22], and refer to their paper for
details.

Assume that the scheme is forgeable, then there exists a ppt adversary Â having non-
negligible chance of success ε in Experiment 2.2. We will build a polynomial algorithm B̂ that
uses this adversary as a subroutine to extract the discrete logarithm of g2 with respect to g1,
where (g1, g2) = g. Recall that g1 and g2 are generators defined in the public key, and that in
an attack, the public key is freely chosen by the adversary. Thus in the group Zq, any discrete
logarithm can be computed by B̂, and since this algorithm violates the discrete log assumption,
we conclude that OS is non-forgeable.

Whenever Â successfully does a forgery of the blind Okamoto-Schnorr signature scheme, let
l, as before, denote the number of interactions with the signer. Since the adversary outputs
more than l valid signatures, let (mi, (ei, si)), i = 1, . . . , l + 1 be the first l + 1 of them. Also,
let T be the running time of Â, and let Q be the number of queries to the hash function.

A critical observation is that since we assume that the hash function H behaves as a random
oracle, we know that Â cannot exploit the behaviour of this function. The adversary will
therefore be just as successful in the attack if we supply him with any other random-looking
function. We also note that for Vrfy(mi, (ei, si)) to accept in Step 3 of the experiment, Â must
with high probability have asked for the value H(mi, ri) during the attack, for some value ri.
If not, he has correctly guessed one of the q equally likely outputs. We can therefore assume
that H(mi, ri) in fact was asked during the interaction, and let ji be the identifier of this query,
where the identifiers run from 1 through Q, ordered by the time of the query.

The adversary B̂ is defined in Algorithm 2.7, and after Step 1, with probability greater than
1/2, Â has succeeded in doing a forgery, so Vrfy(mi, (ei, si)) = Accept, meaning ri = gsiye

i =
gsi−xei (mod p) for all i = 1, . . . , l + 1.

After this success, B̂ tries to obtain a different representation of the same ri by replaying the
attack. Since B̂ controls all (including the random) input to Â, the attack will proceed exactly as
before (including the choice of mi and ri), up to the point where Â asks for H(mi, ri). We then
instruct the oracle to return fresh answers, hoping to provide B̂ with a different representation
of ri.

Pointcheval and Stern formally prove that with non-negligible probability, for some i, B̂
learns another representation of ri, namely ri = gs′iye′i = gs′i−xe′i (mod p) with s′i − xe′i 6=
si − xei. We then see that (removing i from the subscripts)

gs−xe = gs′−xe′

gs1−x1e
1 gs2−x2e

2 = g
s′1−x1e′

1 g
s′2−x2e′

2

g
(s1−x1e)−(s′1−x1e′)
1 = g

(s′2−x2e′)−(s2−x2e)
2

g

(s1−x1e)−(s′1−x1e′)
(s′2−x2e′)−(s2−x2e)

1 = g2,
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Algorithm 2.7 B̂, an algorithm solving dlog, given access to Â:

1. Run Â with random input and a random oracle function at most 1/ε times, until it does
a successful forgery. In case of a forgery, record all valid signatures (mi, (ei, si)) and all
ji, for i = 1, . . . , l + 1.

2. Let N be the number of runs, or repeat Step 1 if no success occurs.

3. For i = 1, . . . , l + 1, run Â again, with the same random input as in the last success, but
modify the oracle so that it returns the very same answers in the first ji − 1 queries, but
let the rest of the answers be unrestricted.

4. Repeat Step 3 until another attack succeeds, or stop if Â does not success within 120N(1+
1/54k) tries. In case of success, record the index i giving success, and let (mi, (e′i, s

′
i)) be

the i’th valid signature.

5. If no success occurs in Step 4, restart from Step 1.

6. Return the logarithm of g2 with respect to g1 (see below).

and B̂ has with non-negligible probability found the discrete logarithm

logg1
g2 =

(s1 − x1e)− (s′1 − x1e
′)

(s′2 − x2e′)− (s2 − x2e)

of g2 with respect to g1.
We are left with showing that this is a polynomial reduction, or that B̂ is a polynomial

algorithm. Pointcheval and Stern do not show this explicitly, but they compute the expected
running time of B̂, which they find to be bounded by T ′ = 106(l + 1)2k2QT/ε. (Remember, T
is the running time of Â and Q is the number of queries to the hash function.) If we now abort
B̂ after cT ′ steps, for a constant c, then we have constructed a ppt algorithm that solves the
discrete log problem.

Corollary 2.10. The blind Okamoto-Schnorr signature scheme is secure.

Pointcheval and Stern also mentions that the proof of non-forgeability is built upon the
witness-hiding property of the signing protocol, and that it therefore easily can be adapted
to cover other blind signature schemes as well, such as the scheme based on the Okamoto-
Guillou-Quisquater identification scheme [19], and other schemes presented by Pointcheval and
Stern.

In addition, there have been proposed other schemes that are secure under more general
assumptions, like the existence of an arbitrary one-way trapdoor permutation family [16], in
the common reference string model [12], or even in the standard model by Hazay et al. [15] and
Okamoto [20].
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Chapter 3

Group signatures

Group signature schemes were first described by Chaum and van Heyst [11], and just like blind
signatures, they are an extension of the regular digital signature scheme. In a group signature
scheme, a group of participants is allowed to sign a document on behalf of the group. Any
receiver of a group signature can easily verify that this is a signature originating from some
member of the group, but they cannot tell from whom. If this was the complete story, such a
scheme could be defined just like a regular digital signature scheme, where all member of the
group would share the same secret key. But group signatures impose the additional requirement
that it should be possible for a group manager, a special person holding a secret group manager
key, to open the signature and reveal the identity of the signer. This last property is important
if there should be a dispute on some signature, or a malign member issues signatures that the
group cannot represent. In this case, the group manager should be called upon to unambiguously
reveal the misbehaving member.

This kind of cryptographic primitive is useful for instance in card payment systems, where
the holder of a payment card signs a transaction and in this way guarantees the merchant that he
can later go to the bank and withdraw such an amount [26]. The bank, being the group manager,
can open the signature to see which account should be charged for this amount. It is also useful
in voting or bidding, for example in an auction where only the identity of the highest bidder is
of importance [1]. In addition, it is natural to use group signatures in authentication settings,
where a member must prove he is a member of some given group, or to conceal organisational
structures within a company when making official or signed statements [2].

There are several variants and extensions of the group signature scheme. For instance, we
can allow the scheme to have dynamic groups, where members can enter and leave the group
arbitrarily [11]. But then the schemes naturally become more complex, and many more security
issues arise. We restrict ourselves in this paper to the case of static groups, where the number
of members n is fixed and decided during setup, and refer to Bellare, Shi and Zhang [5] for a
detailed study on dynamic groups. Also, Trolin [26] has introduced the additional notion of
hierarchical group signatures, where all participants (members and managers) are organised in
an hierarchical tree-like structure.

3.1 Definition

A formal definition of a group signature scheme was first made by Bellare, Micciancio and
Warinschi [3], and it requires the group to have a common public key, while each member has

25
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his own secret key. We can assume that the identity of the members corresponds with the
integers 1 ≤ i ≤ n. The manager also has a secret key which enables him to reveal the identity
of the signer.

Definition 3.1 (Group signature scheme). A group signature scheme GS consists of four
polynomial-time algorithms (Gen, Sign, Vrfy, Open):

• The ppt key generation algorithm Gen takes the security parameter k and the group size
n as input (encoded as string lengths 1k and 1n) and returns a tuple (PK,MSK,GSK),
where PK is the group public key, MSK is the group manager’s secret key, and GSK is a
vector (of size n) of the members’ secret keys. We denote by GSKi the secret signing key
for member i.

• The ppt group signing algorithm Sign takes a secret signing key GSKi and a message m
as input, and returns a group signature σ of the message, signed with the given member’s
key.

• The dpt group signature verification algorithm Vrfy takes the group’s public key PK, a
message m and a candidate signature σ of this message and outputs either Accept or
Reject.

• The dpt opening algorithm Open takes the group manager’s secret key MSK, a message
m and a signature σ as input, and outputs either i, an identity of a group member, or ⊥
to indicate that this signature is either invalid or cannot be traced to a member.

We would of course like the verification algorithm to correctly decide between valid and
invalid signatures, and we want the opening algorithm to in fact discover the originator of a
correctly generated signature. Therefore, we need a correctness definition to exclude algorithms
that do not behave as wanted.

Definition 3.2 (Correctness). A group signature scheme (Gen, Sign, Vrfy, Open) is correct if
for all k, n ∈ N, any (PK,MSK,GSK) output by Gen(1k, 1n), and all suitable i and m,

Vrfy(PK,m, Sign(GSKi,m)) = Accept and Open(MSK,m, Sign(GSKi,m)) = i.

As we can see, the verification algorithm must accept, and the opening algorithm must
correctly open any signature generated from a member’s secret signing key. Note that correct-
ness for example does not imply that Vrfy rejects any other signature, since this is a security
requirement which is treated in detail later.

As in the blind signatures case, the key, message and signature spaces are not mentioned
here, and the same discussion as in Section 2.1 applies here as well.

Length-regularity, that restricts the size of the signatures compared to the message size,
also applies to group signatures, but since we in addition have a new parameter, namely the
group size, we have another subtle point of the sizes of keys and signatures, named compactness
[3]. This states that we want the sizes of the keys and signatures to not grow faster than
polynomially in k and log(n).

Definition 3.3 (Compactness). A group signature scheme is compact if there exist polynomials
p1 and p2, such that for all k, n ∈ N, for any (PK,MSK,GSK) output by Gen(1k, 1n), all suitable
i and m, and all valid signatures σ,

|PK|, |MSK|, |GSKi| ≤ p1(k, log(n)), and |σ| ≤ p2(k, log(n), |m|).
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It is clear (by the necessary uniqueness of the members’ secret keys) that the sizes of keys
and signatures must grow at least at the rate of log(n), but it is also known that this bound is
reachable [3].

We will from now on assume that all group signature schemes are correct, length-regular
and compact, and proceed to the security requirements of group signatures.

3.2 Security requirements

Bellare, Micciancio and Warinschi [3] present two security requirements regarding group sig-
natures. The first concerns the anonymity of a group member, guaranteeing that it should be
infeasible to open the signature without having knowledge of the group manager’s secret key.
The other regards non-forgeability, which in this setting not only prevents a user outside the
group from creating signatures on behalf of the group, but also maintains the integrity of an
honest group member, such that it is infeasible for any other individual or group of people to
create a signature that opens to the honest member.

These two requirements can be thought of as representing attacks respectively by an adver-
sary trying to find the originator of a signature, and by forgers trying to create signatures on
behalf of others.

Other notions of security regarding blind signatures have also existed, and Ateniese et
al. [1, 2] mention unforgeability, anonymity, unlinkability, exculpability, traceability and coali-
tion resistance, but they appear quite vague and never explicitly defined. However, Bellare,
Micciancio and Warinschi [3] try to formalise all these diffuse concepts, and they show that
they all can be reduced to two requirements, which they call full-anonymity and full-traceability.
Since we feel there is an inconsistency in the nomenclature1, and believe the latter relates more
to forging than tracing, we have chosen to change the name from full-traceability to full-non-
forgeability.

3.2.1 Full-anonymity

This requirement concerns the anonymity of group members. A group member can be confident
of that a signature he makes cannot be opened without the use of the manager’s secret key.
There are many different attacks an adversary can carry out in order to try to find the signer
of a signature. He might have seen the opening of other signatures, or he might even be able
to ask the manager to open other signature of his choice, similar to a chosen-message attack
on regular signatures. There is also a possibility that the adversary controls other members of
the group, and is able to create signatures with these corrupted members’ keys. And last, we
will also ensure that even if the signer himself becomes corrupted, earlier signatures will not
automatically trace back to him. Even an honest member can be corrupted if his private key
somehow becomes exposed.

We want to protect the scheme against very powerful adversaries, and we will therefore allow
any adversary attacking anonymity to adaptively corrupt any member of the group and to ask
the manager to open any signature he wants (except of course the target signature). Formally,
this is achieved by giving the adversary a list of all the group member’s keys, and giving him
oracle access to the opening algorithm [5].

1Anonymity is an attractive characteristic, while traceability certainly is not.
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Similar to the blindness requirement of blind signatures, we will define an experiment where
the adversary wins if he can distinguish between the signatures of two chosen group members.
Similar to the existential forgery setting of regular digital signatures, both the message and
the two members are chosen by the adversary, guaranteeing that there does not exist any
significantly large set of message-signature pairs being weak and easy to trace.

Definition 3.4 (Full-anonymity). Consider the experiment Expanon
GS,Â(k, n), where Â is any

algorithm. We define the advantage of Â in breaking GS with respect to full-anonymity as

Advanon
GS,Â(k, n) =

∣∣Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]
∣∣ ,

where the probability is taken over all random choices done by all of the algorithms in the
experiment.

The group signature scheme GS is fully-anonymous if for all ppt algorithms Â, Advanon
GS,Â(k, n)

is negligible in the sense of two-argument functions.

Experiment 3.1 Expanon
GS,Â(k, n):

1. Let (PK,MSK,GSK)← Gen(1k, 1n).

2. Let (i0, i1,m)← ÂOpen(MSK,·,·)(choose,PK,GSK).

3. Let b
r← {0, 1}, and σ ← Sign(GSKib ,m).

4. Let b′ ← ÂOpen(MSK,·,·)(guess, σ).

5. Set b′ ← 0 if Â queried Open(MSK,m, σ) (its oracle) during the guess stage.

Recall that the notation ÂOpen(MSK,·,·) means that the adversary Â has oracle access to the
algorithm Open with the first input being fixed and hidden from Â. The adversary can query
the oracle a polynomially number of times (in k and n). The adversary is also allowed to know
and use the other algorithms of the scheme. Note that this implies that the signing algorithm
cannot be deterministic, or else the adversary could just run the signing algorithm himself to
discover which user did the signing. We give the adversary oracle access to Open such that he
can open any signature he wants without being given MSK explicitly, and because we then can
monitor if the adversary tries to open the candidate signature.

In Step 2, the adversary is given the secret keys of all group members, modelling that he
possibly has corrupted all of them. He shall then choose two candidate members of the group,
and the message he wants to have signed. In Step 3 of the experiment, one of the two members
is uniformly chosen to sign the message, and in Step 4, the adversary is asked to guess which
of the two candidates did the actual signing. He can ask the manager to reveal the signer of
any message, it could for instance be helpful to ask Open(MSK,m, σ′) for a slightly different σ′,
but if the adversary asks about the specific message signature pair, his guess is declared void in
Step 5.

It is clear that this adversary tries to distinguish between the output distributions of
Sign(GSKi0 ,m) and Sign(GSKi1 ,m), and that if these distributions are not polynomially in-
distinguishable, the anonymity of the members are not guaranteed.



3.2. SECURITY REQUIREMENTS 29

It seems natural that if the adversary is allowed to choose many messages that he wants to
have signed (instead of just one), he would have a better chance of winning. But if an adversary
has non-negligible success rate after asking for polynomially many signatures, a hybrid argument
on a series of games or experiments [13, 24] shows that there must be at least one signature
that is decisive. In short, the hybrid argument is that the sum of polynomially many negligible
functions is still negligible. The consequence is that on this decisive signature, the adversary
has a non-negligible chance of distinguishing the two members. So the case of polynomially
many messages reduces to this experiment of a single message [3].

3.2.2 Full-non-forgeability

Full-non-forgeability (in [3] denoted full-traceability) concerns the possible framing of a group
member. Framing occurs when a member does not take part in creating a signature, but the
opening algorithm says he is the originator. This could be a forgery by an outsider (unforge-
ability), by a member of the group (exculpability), or by many group members that join forces
in order to try to frame another member (coalition-resistance). In addition, we require that
framing is infeasible even if the manager’s key is available to the adversary [2].

Another possibility is that an adversary can create a signature that looks valid to the verifi-
cation algorithm, but if the signature is opened, the manager cannot find a member and outputs
⊥ (traceability).

Since the group manager has the power to revoke the anonymity of a member by opening a
signature, it is of great importance that the integrity of an honest member is secure. However,
as noted in [3], framing attempts by a corrupt or dishonest group manager is a different story,
because then we cannot assume that the opening algorithm runs as described. Perhaps the
manager always blames one specific member, regardless of input, or he may refuse to open any
signature. We will from now on assume that all algorithms of the scheme (Gen, Sign, Vrfy,
and Open) behave as expected, and refer to Bellare, Micciancio and Warinschi [3] for a further
treatment on dishonest managers.

Definition 3.5 (Full-non-forgeability). Consider the experiment Expforge

GS,Â
(k, n), listed in Ex-

periment 3.2, where Â is any algorithm. We define the advantage of Â in breaking GS with
respect to full-non-forgeability as

Advforge

GS,Â
(k, n) = Pr[Expforge

GS,Â
(k, n) = 1],

where the probability is taken over all random choices done by all of the algorithms in the
experiment.

The scheme GS is fully-non-forgeable if for all ppt algorithms Â, Advforge

GS,Â
(k, n) is negligible

in the sense of two-argument functions.

The attack on full-non-forgeability is very powerful, where in the first step of the experiment,
the adversary learns the public key and the manager’s secret key. In Step 2, the adversary can
choose any set C of members he wants to control, so he is successively given the secret key of
the last member he chose to corrupt. The adversary ends Step 2 by outputting ⊥, signalling
that he is content with his set of corrupted members. Recall that we implicitly assume that the
adversary is allowed to maintain state between calls2, and so at the end of this step, in addition

2To make this clear, we could like [3] introduce a state variable St, that is always part of the adversary’s input
and output, but we believe this only clutters the notation.
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Experiment 3.2 Expforge

GS,Â
(k, n):

1. Let (PK,MSK,GSK)← Gen(1k, 1n), and run Â(PK,MSK).

2. Let Â adaptively choose a set C of members to corrupt: Set i ← ⊥, and repeatedly run
i← Â(choose,GSKi), until i = ⊥ again.

3. Let (m,σ)← ÂSign(GSK[·],·)(guess).

Â succeeds if he can produce a valid signature that opens to a non-corrupt member, or
that cannot be traced to any member of the group at all:

4. If Vrfy(PK,m, σ) = Reject, return 0.

5. If Open(MSK,m, σ) = ⊥, return 1.

6. If Open(MSK,m, σ) = i for an i /∈ C, and in addition Sign(GSKi,m) was not queried by
Â, then return 1.

7. Else, return 0.

to PK and MSK, the adversary knows GSKi for all i ∈ C.
In Step 3, we ask the adversary to provide a signature, and the goal of the adversary is to

produce any kind of valid signature that opens to a non-corrupted member (Step 6) or to no
one at all (Step 5). During the guess stage, the adversary will have access to a signing oracle,
letting him produce valid signatures on any message by any (even non-corrupted) members.
This is necessary, because the adversary might get some valuable information by asking the
target member to sign some messages, without the member being aware of that the other part
of the interaction is an adversary trying to forge signatures. But it is crucial that any attempt
to produce a signature of this specific message via the oracle will make the adversary fail the
experiment. This is checked in Step 6.

As in the full-anonymity experiment, the adversary will know the signing algorithm, and
he has access to this algorithm (or could just simulate it) to sign a message with any key that
he chooses. Again, the oracle enables him to get signatures from a specific member without
explicitly knowing this member’s key.

3.2.3 Other security requirements

Before Bellare, Micciancio and Warinschi [3] simplified the various existing security notions of
group signature schemes and introduced full-anonymity and full-non-forgeability, there were
many more security notions that had to be checked. We will now present these obsolete no-
tions, for example mentioned by Ateniese and Tsudik [2] and Ateniese et al. [1], with proofs or
arguments that they all reduce to either full-anonymity or full-non-forgeability.

Exculpability Exculpability is the requirement that neither the group manager nor another
group member can create signatures that open to another member. This can be seen to be
a special case of full-non-forgeability, where the adversary is restricted to corrupt only one
member, and perhaps not knowing MSK at all. For instructional purposes, we will give a formal



3.2. SECURITY REQUIREMENTS 31

definition of exculpability, and prove that exculpability is a redundant requirement if we require
full-non-forgeability [3].

Definition 3.6 (Exculpability). Consider the two experiments Expexculp1

GS,Â
(k, n) and Expexculp2

GS,Â
(k, n),

listed in Experiments 3.3 and 3.4, where Â is any algorithm. The scheme GS is secure with
respect to exculpability if for all ppt algorithms Â, the advantage in both of these experiments
(defined in the usual manner) is negligible in the sense of two-argument functions.

Experiment 3.3 Expexculp1

GS,Â
(k, n):

1. Let (PK,MSK,GSK)← Gen(1k, 1n).

2. Let i← Â(choose,PK,MSK) (where i is allowed to be ⊥).

3. Let (m,σ)← ÂSign(GSK[·],·)(guess,GSKi) (where GSK⊥ = ⊥).

Steps 4 - 7: The same as Experiment 3.2 (with C = {i}).

Experiment 3.4 Expexculp2

GS,Â
(k, n):

1. Let (PK,MSK,GSK)← Gen(1k, 1n).

2. Let i← Â(choose,PK).

3. Let (m,σ)← ÂSign(GSK[·],·)(guess,GSKi).

Steps 4 - 7: The same as Experiment 3.2 (with C = {i}).

Theorem 3.7 (Full-non-forgeability ; Exculpability). If a group signature scheme GS is fully-
non-forgeable, then it is also secure with respect to exculpability.

Proof. We want to show that if the scheme is not secure with respect to exculpability, then we
can use an adversary breaking this requirement to construct another adversary that breaks the
full-non-forgeability requirement:

Let Â be an adversary breaking the exculpability requirement, having success in either
Experiment 3.3 or 3.4. Now use Â to construct the following ppt algorithm B̂ which will
interact in Experiment 3.2:

The first call to the adversary is B̂(PK,MSK), so store these keys in B̂’s state information.
When B̂ is called with choose as the first parameter, call Â and let i ← Â(choose,PK,MSK).
(Possibly excluding MSK if B̂ is built from an adversary running against Experiment 3.4.)
Return this i. If i 6= ⊥, another call, B̂(choose,GSKi), is performed by the experiment, and if so,
store i’s secret key and return ⊥ this time. When being challenged to forge a signature in Step 3
of Experiment 3.2, forward the challenge to Â and return whatever ÂSign(GSK[·],·)(guess,GSKi)
returns.

Since the rest of the steps of the experiments are equal, the advantage of B̂ is equal to the
advantage of Â (in their respective experiments). If a group signature scheme does not have
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exculpability, then Â as a non-negligible chance of success in either Experiments 3.3 or 3.4, and
then B̂ has also in Experiment 3.2, leading to a break of full-non-forgeability. We have thus
carried out a reduction from full-non-forgeability to exculpability.

We do not describe or treat the rest of the other security requirements of group signature
schemes in the same formal detail as above, but some informal notions are introduced, and
sketches of reduction proofs are shown.

Non-forgeability As with regular signatures, non-forgeability or unforgeability is related to
the creation of valid signatures without having the secret key [1]. Informally, a group signature
scheme is non-forgeable if there does not exist a ppt algorithm having a non-negligible proba-
bility of success of creating a message-signature pair (m,σ) such that Vrfy(PK,m, σ) = Accept
without having access to any part of GSK [3].

Theorem 3.8 (Full-non-forgeability ; Non-forgeability). If a group signature scheme is fully-
non-forgeable, then it is also non-forgeable.

Proof. We want to show that if an adversary violates the forgeability requirement, then the
same adversary breaks the full-non-forgeability requirement:

Let Â be an adversary breaking the non-forgeability requirement, then in Experiment 3.2,
Â does not need to corrupt any members. Because the message signature pair created by this
adversary is accepted by Vrfy, it passes Step 4, and because C is empty, it will also succeed
either Step 5 or Step 6 with the same probability of success as in the potential experiment
regarding non-forgeability, and Â therefore breaks full-non-forgeability.

Traceability Traceability in its original meaning meant that all validly produced signatures
must be traced to the correct member [11] . This is now incorporated in the statement about
the opening algorithm in the correctness requirement. It has later been used in another meaning
[2], which is more correctly named coalition resistance [1].

Coalition resistance and framing Ateniese et al. considered in [1] a new type of attack,
where a group of signers would collude and perhaps create signatures that cannot be traced to
any of them. Either to no members at all (called coalition resistance), or a member not part of
the colluding group (framing). In the strongest attacks of coalition resistance and framing, the
colluding group could be chosen adaptively, so a definition using a variation of Experiment 3.2,
except where the adversary is not given the manager’s key MSK (since the manager is not part of
the group) would seem appropriate. Since these notions with this observation become a special
case of full-non-forgeability, it is clear that both of them follow from full-non-forgeability.

Theorem 3.9 (Full-non-forgeability ; Coalition resistance). If a group signature scheme is
fully-non-forgeable, then it is also coalition resistant.

Proof. If there exists a ppt algorithm Â that breaks coalition resistance, we can use the exact
same adversary to break full-non-forgeability, by just ignoring the extra information MSK given
to Â in Step 1 of the experiment. The reduction follows immediately.
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Anonymity Anonymity is the natural requirement that the signature message pair itself
should not reveal anything about the identity of the signer. Thus, an adversary that does
not know the manager’s key or having access to the opening oracle should not be able to
effectively guess which member did the actual signature. Anonymity intuitively follows from
full-anonymity.

Theorem 3.10 (Full-anonymity ; Anonymity). If a group signature scheme is fully-anonymous,
then it is also anonymous.

Proof. If a ppt adversary Â breaks anonymity, then in Experiment 3.1 he neither needs the
opening oracle nor the secret keys GSK in order to have success, and Â breaks full-anonymity
with the exact same probability of success.

Unlinkability The last security requirement mentioned in Bellare, Micciancio and Warinschi
[3] is unlinkability. This concept is, like in the blind signature case, the notion that no adversary
after seeing a list of valid signatures, can select two of them and conclude with a non-negligible
probability of success that they were made by the same member. Note that the adversary,
in contrast to the anonymity case, does not need to say which member supposedly made the
signature. This requirement is useful, because even if such an adversary does not threaten the
anonymity of any specific member, it could reveal some structural information about the group.

Intuitively, this is a different flavour of anonymity, but it is nevertheless claimed in [3] that
regardless of how they choose to formalise the notion of unlinkability, they can show that it
both follows from and leads to anonymity, so the two concepts are totally equivalent.

3.2.4 Summary

Again, we have identified two security requirements, now regarding group signature schemes.
From the discussion above, it seems that any other reasonable security requirement is implied
by full-anonymity and full-non-forgeability. Remember that the discussion in this paper only
applies when we assume that the opening algorithm is honest. We then conclude the discussion
by defining a secure group signature scheme.

Definition 3.11 (Secure group signature scheme). If a group signature scheme is both fully-
anonymous and fully-non-forgeable, then it is secure.

After Bellare, Micciancio and Warinschi [3] summarised the vague concepts mentioned above
and identified the two main security requirements, formal proofs of the security of group signa-
ture schemes will hopefully be shorter and easier than they were before.

In the same paper, they created a scheme that is provably secure (from the definition above),
under the assumption of the existence of trapdoor permutations. This scheme is sketched in
the next section.

As mentioned, we have not taken dynamic groups into consideration, but Bellare, Shi and
Zhang [5] give formal security requirements for group signature schemes that allow group mem-
bers to be added after the initial key generation. They also extend the scheme presented in [3]
to allow the addition of members, still being secure in the dynamic setting. However, they do
not propose a fully dynamic scheme that allow both addition and removal of group members.
Such schemes are only shortly discussed in [5], and they are the next natural step of group
signatures.
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3.3 A secure general group signature scheme

In the paper where Bellare, Micciancio and Warinschi [3] present the two main security argu-
ments for group signatures, they also construct a provably secure scheme, in order to justify
their security definitions. The scheme is a general construction built from a regular digital sig-
nature scheme DS, a public-key encryption scheme AE , and a non-interactive zero-knowledge
(NIZK) proof system PS.

The digital signature scheme DS = (Gens,Signs,Vrfys) must be non-forgeable under adaptive
chosen-message attack (Section 1.3), and the encryption scheme AE = (Gene,Enc,Dec) must
satisfy indistinguishability under chosen-ciphertext attack (IND-CCA) [3, 25]. Both of these
security notions are standard, and such schemes are known to exist assuming the existence of a
family of trapdoor permutations [3].

Finally, for anonymity, the scheme uses a NIZK proof system PS = (P,V) for an NP-relation
[26]. It requires the proof system to be simulation-sound. A NIZK proof system is a system
where a user in one move (non-interactive) proves that he knows a secret, without revealing any
part of the secret (zero-knowledge). Specifically, for NP-relations, it means that the user can
prove that he knows the witness w to a theorem x in an NP-relation ρ. If (x,w) ∈ ρ, then the
witness w can be sent to the prover P to generate a proof π ← P(x,w), and the verifier V(x, π)
can check if this is a valid proof. It should be hard to find a witness of a random x, and without
a witness, it should be hard to generate a proof. We refer to [5] for the complete definition
of a NIZK proof system, and for the description of simulation-soundness. We have also left
out the details regarding the common reference string (see Section 1.4), which is needed to
make the system work. Such proof systems are known to exist over any NP-relation if trapdoor
permutations exists.

Using these cryptographic primitives, Bellare, Micciancio and Warinschi prove that their
scheme is both fully-anonymous and fully-non-forgeable, and therefore secure. We see that
under the assumption that trapdoor permutations exist, all three building blocks of this scheme
exist, having the required security. Therefore, this group signature exists and is secure under
the same assumption.

We will now sketch the system while referring to Figure 3.1, but we do not cover the security
proof.

The key generation algorithm Gen produces a group encryption key pair (PKe,SKe)← Gene,
which is used for the opening of signatures. Whenever a signature is made, the user encrypts
his identity i with the public encryption key PKe and passes this along with the signature.
The manager is given the corresponding secret encryption key SKe, so that he can decrypt the
signer’s identity. The generation algorithm also creates signature key pairs (PKi,SKi) ← Gens

and gives each member one such pair. To prevent a user from creating and using other signature
keys, the generation algorithm must make a signature certi on (PKi, i) (using a secret certificate
signing key SKs), which is a certificate that the public key PKi in fact corresponds to member i.
The public certificate signing key PKs is given to all members, so they can prove the validity
of their certificate. But the secret key must be thrown away, so that it is impossible to create
more members. In this way, all signatures can eventually be traced to a member of the group.

For completeness’ sake, we define the keys of the group signature scheme as PK = (PKe,PKs),
MSK = (SKe,PK), and GSKi = (i, (PKi,SKi), certi,PKs,PK).

To sign a message m, the member just makes a regular signature s ← Signs(SKi,m) with
his private signing key. However, if this signature was supposed to be verified with his public
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Public knowledge: k, n, PK = (PKe, PKs)

Gen
Group encryption keys:
(PKe,SKe)← Gene

Signature keys:
(PKi,SKi)← Gens

Certificate signing keys:
(PKs,SKs)← Gens

certi ← [PKi, i]SKs

?

SKe

?

i, certi,PKs

?

(PKi,SKi)

Sign

Sign s← [m]SKi
, encrypt C ← {PKi, i, certi, [m]SKi}PKe

, and

make NIZK proof π ← 〈certi = [PKi, i]SKs
and s = [m]SKi

are correctly signed, and
C contains what is claimed〉

-

m

?

m,σ = (π,C)

?Open
Verify π using V((PKe,PKs,m, C), π) and
open C = {PKi, i, certi, [m]SKi

}
PKe

with SKe

?
i or ⊥

Vrfy
Verify π using
V((PKe,PKs,m, C), π)

?
Accept or Reject

Figure 3.1: A model of the secure group signature scheme, where [·]K denotes signing with key
K, {·}K denotes encrypting with key K, and 〈·〉 denotes making a NIZK proof

key PKi, his identity must first be revealed. Therefore, he creates a NIZK proof that s is
actually signed using his private key, and that verification with his public key would succeed.
To prove that he is a valid member of the group (and did not come up with a separate signature
key), he must also prove in zero-knowledge that his certificate would verify his identity under
the public certificate signing key. At last, he must prove that the encryption of his identity
C = Enc(PKe, (PKi, i, certi, s)) is correct. He therefore uses the NIZK prover P to create a proof
π ← P((PKe,PKs,m, C), (i,PKi, certi, s)) of all these claims. The tuple (i,PKi, certi, s) is the
witness that his hidden inside the proof. The resulting signature σ = (π,C) is the combination
of the NIZK proof and his encrypted identity.

The verification algorithm Vrfy is only left with checking (using V) that the proof π is a
valid proof of the claims above, and if there is a need to open a signature, the Open algorithm
can call Dec(SKe, C) to decrypt and reveal the signer’s identity. The opening algorithm outputs
⊥ if the signature was invalid in the first place, or if the signature was forged.

Bellare, Micciancio and Warinschi then note that this scheme is compact, and proceed to
prove that this scheme is secure, using the following lemmas.

Lemma 3.12. If AE is an IND-CCA secure encryption scheme and PS is a simulation-sound
computational zero-knowledge proof system for ρ, then the group signature scheme is fully-
anonymous.

Lemma 3.13. If the digital signature scheme DS is secure against forgery under chosen-message
attack and PS is a sound non-interactive proof system for ρ, then the group signature scheme
is fully-non-forgeable.
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The proofs of these lemmas use the standard reduction technique to show that any efficient
attack on full-anonymity or full-non-forgeability will lead to a successful attack on one of the
underlying primitives.

This scheme is built from the ideas of Ateniese et al. [1], but Bellare, Micciancio and Warin-
schi adjusted this scheme to make it provably secure under the two new security requirements.
For example, they found that the underlying encryption scheme had to be secure against chosen-
ciphertext attack, and not only chosen-plaintext attack [3].

As mentioned in the previous section, this scheme is extendible to allow later addition of
group members, called partially dynamic groups. However, the definition and the security
requirements of such schemes become increasingly complex, and we refer to Bellare, Shi and
Zhang [5] for the description of this extension.



Chapter 4

Conclusion

We have in this thesis seen that there exists a formal framework for proving security of various
cryptographic protocols and schemes. We have in detail presented the formal definitions of blind
and group signature schemes, and we have treated their security requirements likewise. We have
seen that both schemes have two main security requirements, which both must be fulfilled in
order to call the scheme secure. From the presentation of two secure schemes, one of each type,
we conclude that the theory about such schemes is well-founded.

However, blind and group signature schemes still remain very theoretical, and they have
not seen widespread practical use. The proposed schemes are either general or inefficient, or
not provably secure. But we hope that since the theoretical framework now seems ready, these
digital signature schemes will begin to be utilised.

37
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