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Introduction

The purpose of this work is to present some of the theory developed during the last 30 years on the
subject of degeneration as a partial order on module categories. One of the highlights in this develop-
ment was an article by Grzegorz Zwara in 1999 called ”Degeneration for modules over representation-
finite algebras” [16]. It had been a long standing problem whether the degeneration order coincided
with the homomorphism order for representation-finite algebras. One of the main result in the arti-
cle of Zwara was a corollary which stated exactly this. The corollary made it rather easy to decide
degeneration for algebras of finite representation type, since once the isomorphism class of two repre-
sentations is known, the dimension of the homomorphism spaces between them can be deduced from
the AR-quiver of the algebra. In Chapter 2 we provide a formal method for determining degeneration
for algebras of finite representation type. The method relies on Zwaras result, which is stated in
Section 1.5.

It is well known (see [14]) that for a representation X over an algebra of finite representation
type, there exists a set of algebraic equations SX , by which one can determine whether a second
representation Y is a degeneration of X. The set of algebraic equations is not unique. It is also
known how one can find such algebraic equations (see [14]). In Chapter 3 we give an alternative
procedure for finding such algebraic equations. We believe that this is an easier and more effective
way to obtain such a set of algebraic equations.

In this thesis we have assumed that the reader is on a graduate level in algebra, familiar with
rings, modules and some homological algebra. Some of the examples in this thesis extend over several
pages. To help the reader recognize the end of an example, we use the symbol 4.

I want to thank my advisor Bernt Tore Jensen for excellent guidance and great patience. I
also want to thank my formal advisor Sverre O. Smalø which have managed to give many helpful
comments through e-mail. In general I am grateful to the entire Algebra group at NTNU. With no
exceptions, I have always felt welcome on the 8th floor.
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Chapter 1

Some Partial Orders on Module
Categories

1.1 Preliminaries

1.1.1 Affine Varieties

The affine space An is Kn with a topology, where K is an algebraically closed field. The topology is
the Zariski topology and is defined by the following:

V ⊆ An is closed if ∃f1, ..., fm ∈ K[x1, ..., xn] such that V = {(v1, ..., vn) | fi(v1, ..., vn) = 0, 1 ≤ i ≤ m}.

Definition 1.1.1 An affine variety is a closed subset of An in the Zariski topology.

1.1.2 Hasse Diagrams

A Hasse diagram is a graphical representation of a partially ordered set consisting of vertices and
line segments. A vertex is drawn for each element of the poset, and line segments are drawn between
these vertices according to the following two rules:

1. If x < y in the poset, then the vertex corresponding to x appears lower in the drawing than
the vertex corresponding to y.

2. The line segment between the vertices corresponding to any two elements x and y of the poset
is included in the drawing if x < y while x < z < y implies that z = x or z = y or if y < x while
y < z < x implies that z = x or z = y.

So if {x, y} is a partially ordered set with x < y the Hasse diagram would look like this

y

x

1.2 Background

Let A be a finite dimensional associative K-algebra with an identity. If a = (1 = a1, a2, ..., at) is
a basis of A over K, we have the structure constants aijk defined by aiaj =

∑
aijkak. Let M be

a d-dimensional left A-module with b = (b1, b2, ..., bd) as basis. Then M is a d-dimensional vector
space M with a multiplication by A from the left. By our choice of basis in M we can identify M
with the vector space Kd. The elements of EndK(M) can be represented by d× d-matrices over K.
There is a correspondence between d-dimensional left A-modules and t-tuples m = (m1, ...,mt) of

7
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d × d-matrices over K. For each d-dimensional left A-module M as above, M is determined as an
A-module by the algebra homomorphism

φ : A −→ EndKM, φ(ai) : M −→M,

where φ(ai)(m) = aim, ai ∈ A. Hence M corresponds to the t-tuple m = (m1, ...,mt), where
mi = φ(ai). We have that m1 is the identity matrix and mimj =

∑
aijkmk, 1 ≤ i, j ≤ t. For

each module M the t-tuple m and all polynomials f in t non-commuting variables over K with the
property that f(a1, ...at) = 0 we have that f(m1, ...,mt) = 0 in the ring of d× d-matrices.

Conversely, each t-tuple m, where m1 is the identity matrix and mimj =
∑
aijkmk, 1 ≤ i, j ≤ t,

corresponds to an K-algebra homomorphism φm : A → EndK(Kd). Then the A-module structure
on Kd is defined by aix = mix, for x ∈ Kd.

Let us illustrate with an example.

Example 1.2.1 Let A = C[x]/x2 be the two dimensional associative C-algebra with the basis {1, x}
over C, when one represent also the residues of 1 and x by 1 and x. The structure constant is
determined by the following multiplication table

× 1 x
1 1 x
x x 0

Let M be the 2-dimensional vector space C2. The elements of EndC(M) can be represented by
2×2-matrices over C. The two dimensional left A-module structure on M corresponds to the 2-tuple

m = (
(

1 0
0 1

)
,

(
0 0
1 0

)
), which makes M isomorphic to A as an left A-module.

Conversely, the 2-tuple m corresponds to A as an A-module.
4

In the following example the field R is not algebraically closed. The example is included because
of its nice and perhaps familiar form.

Example 1.2.2 Let A be the 4 dimensional associative R-algebra with the basis {1, i, j, k} over R
where the structure constant is determined by the following multiplication table

× 1 i j k
1 1 i j k
i i -1 k -j
j j -k -1 i
k k j -i -1

Note that A is the quaternions H over R.
Let M be the 4-dimensional vector space R4. The elements of EndR(M) can be represented by

4× 4-matrices over R. The 4-dimensional left A-module structure on M corresponds to the 4-tuple

m = (


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 ,


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

),

which makes M isomorphic to A as an left A-module.
Conversely, the 4-tuple m corresponds to M as an A-module.

4

Definition 1.2.3 The set of t-tuples {(m1,m2, ...,mt)} of d × d-matrices over K where m1 is the
identity matrix and mimj =

∑
aijkmk, for all 1 ≤ i, j ≤ t, is an affine variety and is denoted by

modA(d).

The general linear group Gld(K) is the group of d × d invertible matrices with entries in K.
The elements of Gld(K) acts on modA(d) by conjugation, g ∗ x = (gx1g

−1, ..., gxtg
−1), g ∈ Gld(K),

x ∈ modA(d), and the orbits O(x) under this action correspond to the isomorphism classes of d-
dimensional A-modules. The following lemma should make this clear:
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Lemma 1.2.4 The orbits of O(x) for x ∈ modA(d) corresponds to the isomorphism classes of d-
dimensional left A-modules.

Proof: Let m = (m1, ...,mt) and n = (n1, ..., nt) be two points in modA(d). Let M and N be
the A-modules corresponding to m and n respectively. We must show that

n ∈ O(m) ⇔ N ∼= M.

”⇒”: Assume there exist a g ∈ Gld(K) such that n = g ∗m. We want to show that N ∼= M . By the
choice of basis we have identified M and N with Kd as K-modules. We define a map

Θ : M −→ N, where Θ(x) = gx,

and prove that Θ is an isomorphism ofA-modules. First one can verify that Θ is anA-homomorphism,
i. e.

Θ(x+ y) = g(x+ y) = gx+ gy = Θ(x) + Θ(y)

and
Θ(aix) = gaix = gmix,

by assumption n = g ∗m⇔ ni = gmig
−1, 1 ≤ i ≤ t. So by inserting g−1nig for mi, we obtain

gmix = nigx = aiΘ(x),

ai ∈ a, x and y in M. One can define the inverse map Θ−1 : N −→ M given by y −→ g−1y. As
for Θ one can verify that θ−1 is an A-homomorphism. We see that Θ−1Θ is the identity on M and
ΘΘ−1 is the identity on N . Hence Θ is an isomorphism.

”⇐”: Assume that M ∼= N . We want to show that there exist a g ∈ Gld(K) such that n = g ∗m.
By assumption there exist an isomorphism φ : M −→ N . We know that φ is an A-isomorphism,
thus φ is invertible and φ(aix) = aiφ(x), ai ∈ a. By the choice of basis we have identified M and N
with Kd. We have Rφ ∈ Gld(K) such that φ(x) = Rφx. Thus for all 1 ≤ i ≤ t and x ∈ modA(d) we
have

φ(aix) = aiφ(x), ∀x⇔ Rφmix = niRφx, ∀x⇔ Rφmi = niRφ ⇔ ni = RφmiR
−1
φ ,

for all 1 ≤ i ≤ t. Hence n = g ∗m.
QED

We recall from the preliminaries that the topology on modA(d) is the subspace topology of the
vector space of all t-tuples m = (m1, ...,mt) in Atd2

.
Degeneration is defined on modA(d) by the following:

M �deg N :⇔ n ∈ O(m).

1.3 Degeneration �deg in RepK(Q)

1.3.1 The Category of Finite Dimensional Representations RepK(Q)

A quiver is a finite directed graph, possibly with multiple arrows between the vertices, and possibly
with loops. Formally a quiver Q = (Q0, Q1, s, t) consists of a finite set of vertices Q0, a finite set of
arrows Q1 and two maps s, t : Q1 → Q0 which sends an arrow α to its starting vertex s(α) and its
terminating vertex t(α). Thus we write α : i → j for an arrow starting in i and terminating in j.
A path p in the quiver Q is either an ordered sequence of arrows p = αn...α1 with t(αl) = s(αl+1)
for 1 ≤ l ≤ n− 1, or a trivial path ei for i ∈ Q. By a trivial path ei, we mean a path of length zero
where s(ei) = t(ei) = i.

If Q is a quiver and K a field, then the path algebra Λ = KQ is defined as follows: it is the
vector space having all the paths in the quiver as basis; multiplication is given by concatenation of
paths. If two paths cannot be concatenated because the end vertex of the first is not equal to the
starting vertex of the second, their product is defined to be zero. This defines an associative algebra
over K. The unit element of the algebra is the sum of the trivial paths corresponding to the vertices.
For a more detailed introduction to path algebras see [1].
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Example 1.3.1 Let
Q : 1 α−→ 2

β−→ 3.

The path algebra Λ = KQ will be a six dimensional algebra, with basis e1, e2, e3, α, β and βα. Here
e1, e2 and e3 represent the trivial paths at the vertices 1, 2 and 3 respectively. One has to make
a convention about how to represent a path and here, in accordance with the convention above, an
oriented path is ordered from right to left, that is βα means first α : 1 → 2 then β : 2 → 3.

The multiplication table for this algebra

e1 ∗ e1 = e1 e1 ∗ e2 = 0 e1 ∗ e3 = 0 e1 ∗ α = e1 e1 ∗ β = 0 e1 ∗ βα = 0
e2 ∗ e1 = 0 e2 ∗ e2 = e2 e2 ∗ e3 = 0 e2 ∗ α = α e2 ∗ β = 0 e2 ∗ βα = 0
e3 ∗ e1 = 0 e3 ∗ e2 = 0 e3 ∗ e3 = 0 e3 ∗ α = 0 e3 ∗ β = 0 e3 ∗ βα = βα
α ∗ e1 = α α ∗ e2 = 0 α ∗ e3 = 0 α ∗ α = 0 α ∗ β = 0 α ∗ βα = 0
β ∗ e1 = 0 β ∗ e2 = β β ∗ e3 = 0 β ∗ α = βα β ∗ β = 0 βα ∗ βα = 0

βα ∗ e1 = βα βα ∗ e2 = 0 βα ∗ e3 = 0 βα ∗ α = 0 βα ∗ β = 0 βα ∗ βα = 0

The unit element of Λ is e1 + e2 + e3.
4

A representation (V, f) of a quiver Q over a field K is a realization of its diagram of vertices in
the category of vector spaces, where each vertex i ∈ Q0 is replaced by a vector space V (i) and each
arrow α : i→ j in Q1 is replaced by a K-linear map fα from V (i) to V (j). Here we assume that the
representations of Q are finite dimensional, i. e. dimKV (i) <∞, i ∈ Q0. The dimension vector of a
representation (V, f) is the vector d ∈ ZQ0 , given by d(i) := dimKV (i).

A morphism φ : (V, f) → (V ′, f ′) between two representations of Q is a collection of K-linear
maps φi : V (i) → V ′(i), i ∈ Q0, such that the diagram

V (i)

fα

��

φi // V ′(i)

f ′α
��

V (j)
φj // V ′(j),

commutes ∀α ∈ Q1. Let (V, f), (V ′, f ′) and (V ′′, f ′′) be three representations and let

φ = {φi : V (i) → V ′(i)} : (V, f) → (V ′, f ′) and ψ = {ψi : V ′(i) → V ′′(i) : (V ′, f ′) → (V ′′, f ′′),

be morphisms. Then

ψφ = {ψiφi : V (i) → V ′′(i)} : (V, f) → (V ′′, f ′′).

We see that we have associativity of composition of morphisms, i.e. if φ : (V, f) → (V ′, f ′), ψ :
(V ′, f ′) → (V ′′, f ′′) and ζ : (V ′′, f ′′) → (V ′′′, f ′′′) then φ(ψζ) = (φψ)ζ. Also for every representation
(V, f), there exists an identity morphism 1(V,f) : (V, f) → (V, f), such that for every morphism
φ : (V, f) → (V ′, f ′), we have 1(V ′,f ′)φ = φ = φ1(V,f). By these properties we see that we get a
category consisting of finite dimensional representations of Q over K, which we denote by RepK(Q).

A morphism φ : (V, f) → (V ′, f ′) is an isomorphism if φi is an isomorphism for each i ∈ Q0.
We can also take direct sums of representations. Let (V, f) and (V ′, f ′) be two representations

in RepK(Q). We let the direct sum (V, f)⊕ (V ′, f ′) be defined by:

(V ⊕ V ′)(i) = V (i)⊕ V ′(i), ∀i ∈ Q0,

and

(f ⊕ f ′)α =
(
fα 0
0 f ′α

)
: V (s(α))⊕ V ′(s(α)) → V (t(α))⊕ V ′(t(α)), ∀α ∈ Q1.

By a trivial representation (V, f) we mean a representation where the dimension vector d is
the zero vector. If (V, f) ∼= (V ′, f ′) ⊕ (V ′′, f ′′), where both (V ′, f ′) and (V ′′, f ′′) are nontrivial
representations, we say that (V, f) is decomposable, if not, (V, f) is said to be indecomposable.
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The Krull-Remak-Scmidt theorem holds in RepK(Q) (see [1]), that is every representation (V, f) in
RepK(Q) has a unique decomposition into a direct sum of indecomposable summands (unique up to
isomorphism and ordering of summands). Let Λ = KQ be the path algebra of Q over K, we have
that RepK(Q) and mod Λ are equivalent as categories, where mod Λ denotes the category of finite
dimensional Λ-modules (see [1]).

1.3.2 Degeneration �deg in RepK(Q)

Now we define what is meant by degeneration �deg in RepK(Q). We start by choosing a basis for
V (i), i ∈ Q0. We define

RepK(Q,d) =
∏

α∈Q1

Hom(Kds(α) ,Kdt(α)),

where d = (di)i∈Q0 is a dimension vector. We see that RepK(Q,d) is a vector space. We choose a
basis b for the vector space RepK(Q,d), where the basis element bα(u,v) is the dim(s(α))×dim(t(α))-
matrix with one in entry (u, v) and zero elsewhere. To each basis element bα(u,v) we associate a
variable xα

(u,v). One realize that RepK(Q,d) is an affine space. The polynomials determining the
closed subsets in RepK(Q,d) are polynomials in the polynomial ring

K[xα
(u,v)], where α ∈ Q1, 1 ≤ u ≤ s(α) and 1 ≤ v ≤ t(α).

We also define a group action of

Gld(K) =
∏

i∈Q0

Gldi
(K) on RepK(Q,d),

given by

g ∗ x = (gt(α)xαg
−1
s(α))α∈Q1 , g = (gi)i∈Q0 ∈ Gld(K), x = (xα)α∈Q1 ∈ RepK(Q,d).

The orbit of x under the group action above is denoted by O(x).
There is a correspondence between representations and points in RepK(Q,d). By choosing basis

the correspondence follows naturally.
As for the t-tuples corresponding to the finite dimensional A-modules inmodA(d), the orbits O(x)

for x ∈ RepK(Q,d) corresponds to the isomorphism classes of representations with fixed dimension
vector d.

Lemma 1.3.2 The orbits of O(x) for x ∈ RepK(Q,d) corresponds to the isomorphism classes of
representations with dimension vector d.

Proof: Let x = (xα)α∈Q1 and y = (yα)α∈Q1 be two points in RepK(Q,d). Let X and Y be
representations with dimension vector d corresponding to x and y respectively. We must show that

y ∈ O(x) ⇔ Y ∼= X.

”⇒”: Assume there exist a g ∈ Gld(K) such that y = g ∗x. We want to show that X ∼= Y . We have

y = g ∗ x = (gt(α)xαg
−1
s(α)), g = (gi)i∈Q0 ∈ Gld(K), x = (xα)α∈Q1 ∈ RepK(Q,d).

So the following diagram commutes

Y : Kds(α)
yα // Kdt(α)

X : Kds(α)

gs(α)

OO

xα // Kdt(α)

gt(α)

OO

Since (gi)i∈Q0 are invertible, they are isomorphisms of vector spaces. It follows that Y ∼= X.
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”⇐”: Assume that X ∼= Y . We want to show that there exist a g ∈ Gld(K) such that y = g ∗ x.
By assumption there exist an isomorphism

φ : X −→ Y, φ ∈ Gld(K),

which is determined by the choice of basis. By the commutativity property of the diagrams arising
from this isomorphism

X : Kds(α)

φs(α)

��

xα // Kdt(α)

φt(α)

��
Y : Kds(α)

yα // Kts(α)

where (φi)i∈Q0 are isomorphisms, we see that

yα = (φt(α)xαφ
−1
s(α)).

It follows that y = g ∗ x.
QED

Degeneration is defined on RepK(Q,d) by the following:

X �deg Y :⇔ y ∈ O(x),

where O(x) = {z ∈ RepK(Q,d) | f(z) = 0, ∀f ∈ K[xα
(u,v)] such that f(O(x)) = 0}.

By Bongartz (see [5]) RepK(Q) and mod A has the same degeneration order.
We illustrate with an example of two representations.

Example 1.3.3 Let Q be the quiver
1 α−→ 2.

Consider the following two representations:

(V, f) : K2 fα−→ K2 and (V ′, f ′) : K2 f ′α−→ K2

fα =
(

1 0
0 0

)
, f ′α =

(
1 0
0 1

)
.

The orbit of f ′α, denoted by O(f ′α), is all invertible 2 × 2 matrices. We have that O(fα) is all
matrices of rank one. So we see that O(fα) ⊂ O(f ′α). In more detailed terms

{
(

1 0
0 t

)
| t 6= 0} ⊆ O

((
1 0
0 1

))
.

In general we have:
V ⊆W ⇒ V ⊆W,

so in particular:

{
(

1 0
0 t

)
| t 6= 0} ⊆ O

((
1 0
0 1

))
⇒ {

(
1 0
0 t

)
| t 6= 0} ⊆ O

((
1 0
0 1

))
.

If φ : RepK(Q) → K is a polynomial function in K[xα
(1,1), x

α
(2,1), x(1,2)α, x

α
(2,2)] such that

φ

(
1 0
0 t

)
= 0, ∀ t 6= 0,

then

φ

(
1 0
0 0

)
= 0.
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If ψ : RepK(Q) → K is a polynomial function such that

ψ

(
t 0
0 t

)
= 0, ∀ t 6= 0,

then

ψ

(
0 0
0 0

)
= ψ(0) = 0.

We see that O(f ′α) = {O(f ′α) ∪O(fα) ∪O(0)}, i. e. all 2× 2 matrices over K. It follows that(
1 0
0 0

)
∈ O

((
1 0
0 1

))
,

which implies that (V ′, f ′) �deg (V, f).
4

1.4 Virtual Degeneration �vdeg and the Hom-order �hom

Let A be a finite dimensional associative K-algebra with an identity over an algebraically closed field
K. Let M , N and L be finite dimensional A-modules.

The following result is generalized by K. Bongartz [3]:

Proposition 1.4.1 Let A be a finite dimensional associative K-algebra with an identity. Then two
finite dimensional A-modules M and N are isomorphic if and only if

dimK(HomA(M,X)) = dimK(HomA(N,X)), ∀ X ∈ mod A.

Proof: We assume that dimK(HomA(N,X)) = dimK(HomA(M,X)). We claim that if M and
N are different from the zero-module, they have a non-zero direct summand in common. This is
obtained by taking generators f1, f2, ..., fn of Hom(M,X) as a K-module and looking at the map
f : Mn → N given by

f(m1,m2, ...,mn) = f1m1 + f2m2 + ...+ fnmn.

By construction, the exact sequence

0 → T
g−→Mn f−→ N

induces an exact sequence

0 −→ HomA(M,T )
HomA(M,g)−→ HomA(M,Mn)

HomA(M,f)−→ HomA(M,N),

when we apply the left exact functor HomA(M,−). Take y ∈ HomA(M,N), since f1, f2, ..., fn is
generators we may write

y =
∑

rifi, ri ∈ R, fi ∈ HomA(M,N).

We have the commutative diagram:

M

∃ x ""D
DD

DD
DD

D
y // N

Mn,

f

OO

where fx = y. We can choose x = (r1idM , r2idM , ..., rnidM ), so HomA(M,f) is surjective. By
comparing dimension with the previous sequence we see that the induced sequence

0 −→ HomA(N,T )
HomA(N,g)−→ HomA(N,Mn)

HomA(N,f)−→ HomA(N,N) −→ 0,



14

has to be exact too. Since HomA(N, f) is surjective we have that ∀ h ∈ HomA(N,N),∃x ∈
HomA(N,Mn) such that h = HomA(N, f)(x), i. e. h = fx. We have that ∃ x, such that idN = fx,
therefore f splits and N is a direct summand of Mn.

The theorem of Krull-Remak-Schmidt (see Theorem 7.5 chapter 10 in [9]) asserts that in the
case where a module M is of finite length, it decompose into indecomposable summands and the
decomposition is unique up to isomorphism and ordering of summands. When the ring is a field as
in our case K, finite dimension implies finite length. Since the Krull-Remak-Schmidt theorem holds
in mod A, we can conclude that N and M have a non-zero indecomposable summand in common,
since N is a direct summand of Mn.

The proof of the theorem proceeds by induction on the dimension of HomA(N,N). The case
when HomA(N,N) = 0 is trivial. Let us denote the common indecomposable direct summand of M
and N by U 6= (0), such that M = M ′ ⊕ U and N = N ′ ⊕ U. We have that

dimK(HomA(M ′ ⊕ U,X)) = dimK(HomA(N ′ ⊕ U,X)),∀X.

We can cancel dimK(HomA(U,X)) on both sides and if N ′ and M ′ differ from the zero-module we
can repeat all the argument to obtain another common non-zero indecomposable direct summand. If
not, the assertion follows. Since dimK(HomA(N ′, N ′)) < dimK(HomA(N,N)), we get by induction
that M ′ and N ′ are isomorphic, therefore M ∼= N .

If M ∼= N then trivially dimK(HomA(N,X)) = dimK(HomA(M,X)), ∀ X.
QED

Recall the Hom-order (see [16]):

N �hom M :⇔ dimK(HomA(M,X)) ≤ dimK(HomA(N,X)), for all A-modules X.

Lemma 1.4.2 �hom is a partial order on the set of isomorphism classes of d-dimensional modules.

Proof: For �hom to be a partial order on the set of isomorphism classes of d-dimensional modules,
it has to be reflexive, antisymmetric and transitive.

(i) Reflexive:
dimK(HomA(M,X)) ≤ dimK(HomA(M,X)), ∀ X,

�hom is reflexive.

(ii) Antisymmetric: To be antisymmetric in this context means that if

dimK(HomA(M,X)) ≤ dimK(HomA(N,X))

and
dimK(HomA(N,X)) ≤ dimK(HomA(M,X)), ∀ X,

then M ∼= N . This follows by Proposition 1.4.1.

(iii) Transitive: If

dimK(HomA(M,X)) ≤ dimK(HomA(N,X)), ∀ X,

and
dimK(HomA(N,X)) ≤ dimK(HomA(L,X)), ∀ X,

then trivially
dimK(HomA(M,X)) ≤ dimK(HomA(L,X)), ∀ X.

QED
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We also recall a generalization of degeneration called virtual degeneration denoted by �vdeg[10].
In general one cannot cancel common direct summands from M and N when M �deg N (see example
due to J. Carlson [10]), and obtain a degeneration of the remaining complements. But if there exist
an X such that M ⊕X �deg N ⊕X, one says that M �vdeg N . One can choose X to be the zero
module, so obviously �deg⇒�vdeg.

1.5 Zwara’s Theorems

The main point of this section will be to present two very important theorems. Both are in the
generality presented here, due to Zwara. We omit the proofs of both theorems because they are
considered to be too long for this text.

We start with a proposition which proves one of the implications in Theorem 1.5.2 of this section.
A more general version of the following proposition is due to Riedtmann [10]. In [10] the algebra is
assumed to be a finitely generated K-algebra.

Proposition 1.5.1 Let A be a finite dimensional K-algebra. If there exists a short exact sequence

0 −→ Z −→ Z ⊕M −→ N −→ 0

of A-modules with Z, M and N finitely dimensional as A-modules, then dim(M) = dim(N) and
M �deg N .

Proof: We see that dim(Z ⊕M) = dim(Z) + dim(N), and since dimension is additive it is clear
by cancelation of dim(Z) on both sides that dim(M) = dim(N).

Next we consider a short exact sequence

0 −→ Z

h=

f
g


−→ Z ⊕M −→ N −→ 0,

where f : Z −→ Z and g : Z −→M are A-homomorphisms. Now consider for each λ in K the short
exact sequence:

0 −→ Z

hλ=

f − λIZ
g


−→ Z ⊕M −→ Nλ −→ 0,

of A-modules where IZ is the identity on Z and Nλ is the cokernel of the A-homomorphism hλ. By
change of the the basis of Z ⊕M as a vector space we can obtain the short exact sequence

0 → Z

r
s


−→ Im(h)⊕ C

(
u v

)
−→ N −→ 0,

where C is a vector space complement of Im(h). Where s = 0. Since the sequence is exact and
(
r
0

)
is injective, i.e. r is invertible, we have

(
u v

) (
r
0

)
= 0 ⇒ ur = 0 ⇒ u = 0.

Without loss of generality we may assume that r = id and v = id. Also notice that N ∼= C as a
vector space. Now consider the short exact sequence

0 → Z

hλ=

rλ
sλ


−→ Im(h)⊕N

(
u id

)
−→ N −→ 0,
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where rλ is invertible. We see that if a 6= 0 then
(
rλ(a)
sλ(a)

)
6=

(
0

sλ(a)

)
, hence

rλ invertible ⇔ Im(hλ) ∩N = (0).

If rλ is not invertible then det (rλ) = 0. First we must check that there exist a λ such that
det(rλ) 6= 0. For λ = 0 we have det (r) 6= 0, so such a λ do exist. Let K ′ = {K\zeros of det(rλ)}.
Since det(rλ) is a polynomial in λ and det(rλ) has a finite number of zeros, we conclude that there
is a finite number of λ’s for which rλ is non invertible.

Now to see how the module structure on N vary as a function of λ consider the following
commutative diagram:

0 // Z

hλ=

(
rλ

sλ

)
//

��

Im(h)⊕N

(
u id

)
//z δ

0 n


��

N //

nλ

��

0

0 // Z // Im(h)⊕N // N // 0

.

The exactness of the sequence gives us

urλ + sλ = 0 ⇒ u = −sλr
−1
λ ,

which gives us that u is a rational function of λ.

We know that there is a correspondence between N and a tuple n = (n1, ..., nt) ∈ modA(d) (as
with M and a tuple m = (m1, ...,mt)) and by the commutativity property of the diagram we can
give an explicit formula for how the structure of N , and hence the tuple vary with λ. We have

nλ(x) =
(
u id

)(z δ
0 n

)(
0
x

)
=

(
−sλr

−1
λ id

)(z δ
0 n

)(
0
x

)
= (−sλr

−1
λ δx+ nx),

so the function ζ describing the structure of N as a function of λ is defined by:

ζ : K ′ → modA(d),

λ 7→ (−sλr
−1
λ δ + n).

Let us return to the following sequence:

0 −→ Z

hλ=

f − λIZ
g


−→ Z ⊕M −→ Nλ −→ 0.

For all λ 6= 0 not an eigenvalue of f , hλ is a split monomorphism, thus

Nλ
∼= M.

Let nλ = (nλ
1 , ..., n

λ
t ) denote the t-tuple corresponding to Nλ and

V = {nλ = (nλ
1 , ..., n

λ
t ) | rλ invertible and λ not an eigenvalue of f}.

Since the inverse of a matrix can be obtained by cofactor expansion the function ζ : K ′ → modA(d), λ −→
(−sλr

−1
λ δ + n), gives us that the coefficients in the matrices of the t-tuple nλ must be on the form

p(λ)
det(rλ) , where det(rλ) 6= 0. Let

φ : modA(d) −→ K

be a polynomial in the coefficient of the matrices such that φ(nλ) = 0, when rλ is invertible and
λ is not an eigenvalue of f . Since the denominators of all the coefficients in the matrix is either 1
or det rλ, we have that there exist a t ∈ N such that φ(nλ) = v(nλ)

(det(rλ))t = 0 ⇔ v(nλ) = 0. Since
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v(nλ) = 0 for all except a finite number of λ’s, we have that v(nλ) = 0, ∀ λ ∈ K. In particular we
have that φ(n0) = 0. We also have that

V = {nλ | rλ is invertible and λ is not an eigenvalue of f} ⊆ O(m),

which implies
V ⊆ O(m).

To complete the proof we see that

n = n0 ∈ V ⊆ O(m) ⇒M �deg N.

QED
We now state the first theorem of this section.

Theorem 1.5.2 (Zwara) Let A be a finite dimensional K-algebra and let M and N be finite di-
mensional A-modules. Then the following conditions are equivalent:

(1) M �deg N.
(2) There is a short exact sequence 0 −→ N−→M ⊕Z −→ Z −→ 0 in mod A for some module Z in
mod A.
(3) There is a short exact sequence 0 −→ Z−→Z ⊕M −→ N −→ 0 in mod A for some module Z in
mod A.

Proof: (3)⇒ (1): See Proposition 1.5.1.
(2)⇒ (1): Follows by dual arguments.
For the rest of the proof, the reader is referred to [17].

QED
For a more general version of this theorem the interested reader is referred to [15]. Let us recall

a definition:

Definition 1.5.3 An algebra Af is of finite representation type if the category mod Af contains
only finitely many isomorphism classes of indecomposable modules.

We now state what will be a crucial theorem for the theory developed later in this thesis.

Theorem 1.5.4 (Zwara) If Af is a finite dimensional K-algebra of finite representation type, and
M and N are two Af -modules of the same dimension as K-modules, then the three following state-
ments are equivalent:

(1) M �deg N
(2) M �vdeg N
(3) M �hom N

Proof: (1) ⇒ (2) is obvious, one can always take an extra summand X = 0 and obtain virtual
degeneration.

(2) ⇒ (3) By Theorem 1.5.2 we have that to assume that M �vdeg N is equivalent to assuming
that there is an exact sequence of the form

0 −→ Y−→Y ⊕ Z ⊕M −→ Z ⊕N −→ 0,

for some module Z in mod Af . Let X be a Af -module which has finite dimension as a K-module.
We then apply the functor HomAf

(−, X) to this sequence and obtain the following exact sequence

0 −→ HomAf
(Z ⊕N,X)−→HomAf

(Y ⊕ Z ⊕M,X) −→ HomAf
(Y,X),

of K-modules. Then by counting dimension as K-modules, one obtains the inequality:

dimK(HomAf
(Y ⊕ Z ⊕M,X)) ≤ dimK(HomAf

(Z ⊕N,X)) + dimK(HomAf
(Y,X)).
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This gives:

dimK(HomAf
(Y,X)) + dimK(HomAf

(Z,X)) + dimK(HomAf
(M,X)) ≤

dimK(HomAf
(N,X)) + dimK(HomAf

(Z,X)) + dimK(HomAf
(Y,X)).

We can now subtract (dimK(HomAf
(Z,X)) + dimK(HomAf

(Y,X))) from each side of this in-
equality and obtain the desired result dimK(HomAf

(M,X)) ≤ dimK(HomAf
(N,X)) for each Af

module X which has finite dimension as a K-module. By definition dimK(HomAf
(M,X)) ≤

dimK(HomAf
(N,X)) implies M �hom N .

(3) ⇒ (1) For the rest of the proof, the reader is referred to [12]. The version of the proof in
[12] is more general. One do not need K to be an algebraically closed field, it is sufficient to assume
that K is a commutative artin ring.

QED

When one works with algebras of finite representation type the Hom-order is equivalent to the
degeneration-order (see Theorem 1.5.4). The AR-quiver in general gives all the isomorphism classes
of indecomposable modules in a category (see [1]). When the category is of finite representation type
it is no problem to number the indecomposable modules. If we fix a numbering, we associate a fixed
indecomposable module which we denote by idbi to the ith isomorphism class of indecomposable
modules. The t-dimensional vector Hx determined by

Hx(i) = dimKHomAf
(idbi, X), 1 ≤ i ≤ t,

where t is the number of isomorphism classes of indecomposable modules in the algebra, gives us a
vector by which we can decide where X is in the Hasse diagram of equal dimensional modules in the
same category. There will be given several examples and applications of this in Chapter 2.

1.6 The Tensor-Order �⊗
The tensor-order is defined in the following way:

N �⊗ M :⇔ dimK(X ⊗A N) ≤ dimK(X ⊗A M), ∀ X,

where N and M are left A-modules and X is a finite dimensional right A-module.

We shall see that the tensor-order is equivalent to the Hom-order:

Let R be a k-algebra over some commutative ring k and consider the category Mod R of (left)
R-modules. We fix an injective k-module I and denote by DI = Homk(−, I) the corresponding
functor Mod k → Mod k.

A short version of this proof can be found in [7].

Proposition 1.6.1 Let R be an k-algebra over some commutative ring k. Let X be an Rop-module
and Y be an R-module. Then there is an isomorphism

DI(X ⊗R Y ) ∼= HomR(X,DIY ), (1.1)

which is functorial in X and Y .

Proof: We know from homological algebra that both HomR(−, DIY ) and DI(−⊗R Y ) are both left
exact contravariant functors.
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It is also well known that in general HomR(−, B) converts sums into products. In other words:
if λi is the ith injection Xj −→

∐
Xi and if B is a module, then the map

Φ : Hom(
∐

Xi, B) −→
∏

Hom(Xi, B)

given by φ −→ (φλi) is an isomorphism.
Thus it is obvious that the functor HomR(−, DIY ) converts sums to product, but so doesDI(−⊗RY ),
this is due toDI(−⊗RY ) = Homk(−⊗RY, k).We also know that in general tensor products commutes
with direct sums.

Notice that DI(R⊗R Y ) = DIY and HomR(R,DIY ) = DIY , we say that the functors coincide
on R.

In the final step of the proof we then take a free presentation of X: F ′ −→ F −→ X −→ 0, and
apply both functors, obtaining:

0 // DI(X ⊗R Y ) // DI(F ⊗R Y ) // DI(F ′ ⊗R Y )

0 // HomR(X,DIY ) // HomR(F,DIY ) // HomR(F ′, DIY )

Which is a commutative diagram, due to the fact that we can choose F = Rn, F ′ = Rm, and

DI(F ⊗R Y ) ∼= DI(
∐

R⊗R Y ) ∼=
∏

DI(R⊗R Y ) ∼=
∏

DIY

also
HomR(F, Y ) ∼= HomR(

∐
R, Y ) ∼= HomR(

∐
R, Y ) ∼=

∏
DIY,

similar for F ′.
The assertion follows by the Five Lemma (see [11]).

QED

The proof above is valid if we replace DI = Homk(−, I) by the duality DK = HomK(−,K).

If we are considering finite dimensional modules, we know that an isomorphism preserves dimen-
sion.

If we use the dual DK = HomK(−,K) we obtain:

dimK(X ⊗R Y ) = dimKHomR(X,DKY ),

Corollary 1.6.2 Let Af be a finite dimensional K-algebra of finite representation type, and M and
N are two Af -modules of the same dimension as K-modules, then the following four statements are
equivalent:

(1) M �deg N
(2) M �vdeg N
(3) M �hom N
(4) M �⊗ N

Proof: The fact that (1), (2) and (3) are equivalent statements is Theorem 1.5.4. We will prove
that (3) and (4) is equivalent. Let X be a finite dimensional right Af -module. It follows from
Proposition 1.6.1 that

dimK(X ⊗Af
M) = dimKHomAf

(X,DKM).

Since DK = HomK(−,K) is a duality, we have that

dimKHomAf
(X,DKM) = dimKHomAf

(D2
KM,DKX) = dimKHomAf

(M,DKX).

So
dimK(X ⊗Af

M) = dimKHomAf
(M,DKX).
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As X varies over all the isomorphism classes of indecomposable finite dimensional left Af -modules,
so will DKX vary over all the isomorphism classes of indecomposable finite dimensional right Aop

f -
modules. Thus the �⊗-order will give the same partial order as the �hom-order.

QED



Chapter 2

Degeneration on Quivers of Finite
Representation Type

In this chapter we first recall some classic representation theory in Section 2.1. We then develop
a method for determining degeneration on quivers of finite representation type in Section 2.2. We
define two types of matrices HQ and TQ, which will determine degeneration. In Section 2.4 we
analyze the structure of these matrices and see how they are related.

2.1 Gabriel’s Theorem and the Coxeter functors

Let us recall two definitions:

Definition 2.1.1 A quiver Q is of finite representation type if the category RepK(Q) contains only
finitely many isomorphism classes of indecomposable objects.

Definition 2.1.2 For a quiver Q we define Γ(Q) to be the graph we get when we forget the orien-
tation of the arrows in Q.

We shall now state but not prove what is called Gabriel’s Theorem, a classic result!

Theorem 2.1.3 (Gabriel, 1972, [6]) A quiver Q is of finite representation type if and only if the
graph Γ(Q) is a Dynkin quiver, i.e. Γ(Q) is one of the following graphs.

An : 1 2 ... n , 1 ≤ n

Dn : 1

2 3 ... n

, 4 ≤ n

E6 : 1

2 3 4 5 6

E7 : 1

2 3 4 5 6 7

21
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E8 : 1

2 3 4 5 6 7 8

In particular the property of being representation finite does not depend on the orientation of the
edges.

For a more thorough and detailed elaboration on the theory in this section, the reader is referred
to [13]. We have in the following introduction to the partial Coxeter functors and the Coxeter
functors adopted much of the notation and structure from there.

Let QΩ denote the quiver Q with orientation Ω on the arrows. By QΩ′ we mean the quiver with
the same underlying graph, i. e. Γ(QΩ) = Γ(QΩ′), but with, possibly, a different orientation Ω′ on
the arrows.

To elucidate how the structural properties of RepK(QΩ) is connected to the properties of
RepK(QΩ′), we can recall the partial Coxeter functors and the Coxeter functors. These functors
leads to an equivalence of categories, which will turn out useful in our work on determining degen-
eration on RepK(Q), where Q is of finite representation type.

Given QΩ = (Q0, Q1, s, t) and a vertex v ∈ Q0, denote by

Σv = {α ∈ Q1 | s(α) = v or t(α) = v}.

We say that a vertex v ∈ Q0 is a sink if {α ∈ Q1 | s(α) = v} = Ø, and a source if {α ∈ Q1 | t(α) =
v} = Ø. So no arrow is ending in a source and no arrow is starting in a sink.

For a sink v of a quiver QΩ there exist a left partial Coxeter functor

C+
v : RepK(QΩ) −→ RepK(QΩ′),

where QΩ′ obtained from QΩ by shifting the orientation on all the arrows ending in v. We define
C+

v by the following. For X ∈ RepK(QΩ), let C+
v (X) = Y , where Xi = Yi, for all i 6= v, and Yv is

the kernel of the rightmost map in the following sequence

0 −→ Yv
i−→

∐
α∈Σv

Xs(α)
(Xα)−→ Xv. (2.1)

We have Yβ = Xβ : Xs(β) → Xt(β) , for all β /∈ Σv and Yα = παi : Ys(α) → Yt(α) , the composition of
the natural embedding of Yv into

∐
α∈Σv

Xs(α) and the projection of this sum onto the term Xs(α),
for each α ∈ Σv. Note that C+

v (Sv) = 0, where Sv is the simple indecomposable representation
corresponding to the vertex v.

Let h : X −→ X ′ be a morphism in RepK(QΩ). Then C+
v (h) : C+

v (X) −→ C+
v (X ′), where

C+
v (hi) = hi for all i 6= v and C+

v (hv) is the unique morphism which makes the following diagram
commute.

0 // Yv

C+
v (hv)

���
�
�

i //
∐

α∈Σv
Xs(α)

hs(α)

��

(Xα) // Xv

hv

��
0 // Y ′

v
i′ //

∐
α∈Σv

X ′
s(α)

(X′
α) // X ′

v

For a source v of a quiver QΩ there exist a right partial Coxeter functor

C−
v : RepK(QΩ) −→ RepK(QΩ′),

where QΩ′ differs from QΩ by that it has the shifted orientation on all the arrows starting in v. We
define C−

v by the following. For X ∈ RepK(QΩ), let C−
v (X) = Y , where Xi = Yi, for all i 6= v, and

Yv is the cokernel of the leftmost map in the following sequence

Xv
(Xα)−→

∐
α∈Σv

Xt(α)
π−→ Yv −→ 0. (2.2)



23

We have Yβ = Xβ : Xs(β) → Xt(β) , for all β /∈ Σv and Yα = πiα : Ys(α) → Yt(α) , the composition
of the embedding of Xt(α) into

∐
α∈Σv

Xt(α) and π is the natural projection of
∐

α∈Σv
Xt(α) onto

the term Yv, for each α ∈ Σv. Note that C−
v (Sv) = 0, where Sv is the simple indecomposable

representation corresponding to the vertex v.
If h : X −→ X ′ is a morphism in RepK(QΩ). Then C−

v (h) : Yv −→ Y ′
v is a morphism in

RepK(QΩ′), where C−
v (hi) = hi for all i 6= v and C−

v (hv) is the unique morphism which makes the
following diagram commute.

Xv

hv

��

(Xα) //
∐

α∈Σv
Xs(α)

hs(α)

��

π // Yv
//

C−
v (hv)

���
�
� 0

X ′
v

(X′
α) //

∐
α∈Σv

X ′
s(α)

π // Y ′
v

// 0

Theorem 2.1.4 The functors

C+
v : RepK(QΩ)/Sv → RepK(QΩ′)/Sv (if v is a sink)

and
C−

v : RepK(QΩ)/Sv → RepK(QΩ′)/Sv (if v is a source)

are both equivalences of categories.

Proof: For the proof we refer the reader to [2].
QED

Theorem 2.1.5 Let Q be a quiver and let Γ(Q) be the underlying graph with no cycles, let Ω and
Ω′ be two orientations of it. Then there exists a sequence of vertices such that

C∗
vk
...C∗

v1
: RepK(QΩ) → RepK(QΩ′),

where each C∗
vi
, 1 ≤ i ≤ k, is either a right partial Coxeter functor or a left partial Coxeter functor.

Proof: We refer the reader to [13].
QED

Let us illustrate how we can use the partial Coxeter functors by an example of categories which
will be revisited later and work as our crown example for the theory we are developing in this chapter.

Example 2.1.6 Let
QΩ : 1

α

��>
>>

>>
>>

3
γ // 4

2

β
@@�������

and QΩ′ : 1
α′

��>
>>

>>
>>

3 4
γ′
oo

2

β′
@@�������

Note that C
+
−
v (V ⊕ V ′) ∼= C

+
−
v (V )⊕C

+
−
v (V ′), so it is enough to analyze what the functors do with

the indecomposable representations of the category representing the isomorphism classes.
Further note that vertex 4 is a source of the quiver QΩ′ . We are going to apply

C−
4 : RepK(QΩ′) −→ RepK(QΩ).

We start by computing the AR-quivers of the categories. The indecomposable representations are
represented by their corresponding dimension vectors. Notice that the numbering is fixed in the two
categories with respect to the dimension vectors of the indecomposable representations. This is done
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to illustrate what happens when we apply the partial Coxeter functors, and is not something we shall
do throughout this thesis.

RepK(QΩ′) :

(1, 0, 1, 0)8

''NNNNNNNNNNN
(0, 1, 1, 1)4

''OOOOOOOOOOO
(1, 0, 0, 0)11

(0, 0, 1, 0)5

77ppppppppppp
//

''NNNNNNNNNNN
(0, 0, 1, 1)2 // (1, 1, 2, 1)6

77ppppppppppp
//

''OOOOOOOOOOO
(1, 1, 1, 0)10 // (1, 1, 1, 1)9

77ppppppppppp
//

''OOOOOOOOOOO
(0, 0, 0, 1)1

(0, 1, 1, 0)7

77ppppppppppp
(1, 0, 1, 1)3

77ppppppppppp
(0, 1, 0, 0)12

(2.3)

RepK(QΩ) :

(0, 1, 1, 1)4

''NNNNNNNNNNN
(1, 0, 1, 0)8

''OOOOOOOOOOO
(0, 1, 0, 0)12

(0, 0, 1, 1)2

77ppppppppppp
//

''NNNNNNNNNNN
(1, 0, 1, 1)3 // (1, 1, 2, 1)6

77ppppppppppp
//

''NNNNNNNNNNN
(0, 1, 1, 0)7 // (1, 1, 1, 0)10

77ooooooooooo
// (1, 0, 0, 0)11

(0, 0, 0, 1)1

77ppppppppppp
(0, 0, 1, 0)5

77ppppppppppp
(1, 1, 1, 1)9

77ppppppppppp

(2.4)

By the definition of the right partial Coxeter functor C−
4 we see that for example

K
id

  A
AA

AA
AA

A

K K
id
oo

K

id

>>}}}}}}}}

C−
4−→ K

id

  A
AA

AA
AA

A

K // 0

K

id

>>}}}}}}}}

and

K
id

  A
AA

AA
AA

A

K 0oo

K

id

>>}}}}}}}}

C−
4−→ K

id

  A
AA

AA
AA

A

K
id // K.

K

id

>>}}}}}}}}

By the definition of the right partial Coxeter functor we see that C−
4 sends the indecomposable

representation with dimension vector number 9 in RepK(QΩ) to the indecomposable representation
with dimension vector number 10 in RepK(QΩ′), and vice versa. It is straightforward to verify
that all the indecomposable representations are switched, with one exception. That is for the simple
representation corresponding to vertex 4, S4 = (0, 0, 0, 1)1. We see that C−

v (S4) = 0. By the definition
of the right partial Coxeter functor we see that 2 is switched by 5, 3 by 8, 4 by 7, 6 by 6, 11 by 11
and 12 by 12. By adding S4 to the image of C−

4 we obtain the full abelian category RepK(QΩ).
4
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2.2 The Structure of a Representation and the Matrix HQ

We recall from the previous section that a representation with underlying quiver of finite repre-
sentation type is classified by Gabriel([6]) to be a Dynkin diagram, i. e. An(n ≥ 1), Dn(n ≥ 4),
E6, E7, E8. The number of isomorphism classes of indecomposable representation is independent of
orientation on the quiver and it is well known to be n(n−1)

2 , n(n−1), 36, 63 and 120 respectively. We
shall determine degeneration as a partial order on the representations with equal dimension vector in
the category RepK(Q) for all quivers Q of finite representation type. This we will do by first decom-
posing into indecomposable summands, thus we give a procedure to determine the decomposition of
a given representation X ∈ RepK(Q).

Assume that Q is Dynkin and let Λ denote the path algebra KQ (see Section 1.3.1). The
corresponding AR-quiver of the category RepK(Q) is directed (i. e. contains no loops). Since
there is a finite number of isomorphism classes of indecomposable representations in the category,
there is no problem indexing the fixed indecomposables representing the isomorphism classes of
indecomposable representations in the category from the projectives to the injectives. That is for
all j < i, dimKHomΛ(idbi, idbj) = 0. This indexing is not always unique. After indexing the
indecomposables it is possible to define the entries of a matrix HQ by:

(i, j) = dimKHomΛ(idbi, idbj), ∀ 1 ≤ i, j ≤ m,

where m is the number of isomorphism classes of indecomposables in the category RepK(Q). We
will use that the ith row vector of HQ, denoted ri, is given by:

ri(j) = dimKHomΛ(idbi, idbj)j ,

where 1 ≤ j ≤ m.
The matrix HQ will be upper triangular since the AR-quiver is directed (i. e. contains no loops).

Also, since the AR-quiver is directed there will always be ones on the diagonal since there does not
exist a path in the AR-quiver from idbi to idbi (see [1]). The ones on the diagonal corresponds to the
identity morphisms, thus these matrices will always be invertible and the determinant will always be
one. The matrix HQ is used to determine the structure of a representation X in Rep(Q). This can
be done by first inverting HQ and then compute the vector

HX = dimKHomΛ(idbi, X), ∀ 1 ≤ i ≤ m,

where m is the number of isomorphism classes of indecomposables in RepK(Q). One should now
multiply the vectorHX by (HQ)−1. The result is a vector giving the multiplicity of idbi as a summand
of X. We have that if HX ≤ HY , where X and Y are representations with equal dimension vector
in RepK(Q), then X �deg Y , this follows from Theorem 1.5.4.

Let us now have an example to illustrate how this method works:

Example 2.2.1 Let Q be the oriented quiver:
1

α

��<
<<

<<
<<

<

3
γ // 4 (2.4)

2

β

@@��������

We compute the matrix HQ, where

(i, j) = dimKHomΛ(idbi, idbj), ∀ 1 ≤ i, j ≤ 12.
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So

HQ =



1 1 1 1 0 1 0 0 1 0 0 0
0 1 1 1 1 2 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 1 1 0
0 0 0 1 0 1 0 1 1 1 0 1
0 0 0 0 1 1 1 1 0 1 0 0
0 0 0 0 0 1 1 1 1 2 1 1
0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



.

Let X be the following representation:

K
1

0


  A

AA
AA

AA
A

K2

1 0
0 1


// K2,

K

0

>>}}}}}}}}

we get the vector

HX =
(

2 2 1 1 0 1 0 1 1 1 0 1
)tr

By elementary linear algebra one obtains

(HQ)−1 =



1 −1 0 0 1 0 0 0 0 0 0 0
0 1 −1 −1 −1 1 0 0 0 0 0 0
0 0 1 0 0 −1 0 1 0 0 0 0
0 0 0 1 0 −1 1 0 0 0 0 0
0 0 0 0 1 −1 0 0 1 0 0 0
0 0 0 0 0 1 −1 −1 −1 1 0 0
0 0 0 0 0 0 1 0 0 −1 0 1
0 0 0 0 0 0 0 1 0 −1 1 0
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


So the corresponding row operations on HX gives:

X = (HQ)−1HX =
(

0 1 1 0 0 0 0 0 0 0 0 1
)tr

Which is equivalent to say that

X ∼= idb2 ⊕ idb3 ⊕ idb12.

To relate this to degeneration which is our main focus, let us compare X with two other representa-
tions with the same dimension vector with respect to degeneration. Let T be:

K
0

!!B
BB

BB
BB

B

K2 0 // K2.

K

1
0

 ==||||||||
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One obtains
HT =

(
2 2 1 1 2 2 1 1 1 1 0 1

)tr
.

Let S be:

K
0

!!B
BB

BB
BB

B

K2 0 // K2.

K

0
==||||||||

One obtains
HS =

(
2 2 1 1 2 2 1 1 2 2 1 1

)tr
.

So with respect to degeneration, X and T are incomparable, but S is a degeneration of both X
and T . So in the Hasse diagram (see Subsection 1.1.2) of the representations with dimension vector
d = (1, 1, 2, 2) in RepK(Q) X, T and S would be ordered like this:

S

~~
~~

~~
~

??
??

??
?

X T

One can also multiply HT and HS by (HQ)−1 from the left, this would give:

T = (HQ)−1HT =
(

2 0 0 0 1 0 1 0 0 0 0 1
)tr

and
S = (HQ)−1HS =

(
2 0 0 0 2 0 0 0 0 0 1 1

)tr

.
Which is equivalent to say that

T ∼= idb1 ⊕ idb1 ⊕ idb5 ⊕ idb7 ⊕ idb12

and
S ∼= idb1 ⊕ idb1 ⊕ idb5 ⊕ idb5 ⊕ idb11 ⊕ idb12.

4

Let QΩ and QΩ′ be as in example 2.1.6. We apply

C+
4 : RepK(QΩ) −→ RepK(QΩ′).

We shall analyze the relation between HQΩ and HQΩ′ . First notice that by the definition of the
partial Coxeter functors we see that C+

4 makes all the same changes of indecomposables in the
category as C−

4 . That is: S4 is sent to 0, 2 is switched by 5, 3 by 8, 4 by 7, 6 by 6, 9 by 10, 11 by
11 and 12 by 12. We add S4 to the image of C+

4 to obtain the full abelian category RepK(QΩ′).
We obtain the matrix HQΩ′ , where we use the same indexing of the dimension vectors of the

indecomposables in the category RepK(QΩ′) as for the category RepK(QΩ).
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HQΩ′ =



1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 1 0 1 0
0 1 1 1 1 2 1 1 1 1 0 0
1 0 1 1 0 1 0 0 2 1 1 1
0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 1 0 1 1 1 1 0
1 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



.

Note that the differences between HQΩ and HQΩ′ can be explained by the partial Coxeter
functors. A general fact is that when applying C+

v to RepK(Q) we loose a simple projective repre-
sentation, just as we loose a simple injective when applying C−

v . This is obvious from the fact that
v is assumed to be either a sink or a source respectively, and Sv must therefore either be a simple
projective representation or a simple injective representation. On the other hand if Sv is added to
the image of either C+

v or C−
v , it will have the opposite status, since all arrows ending or starting in

v are turned. So note that in our case C+
4 (S4) = 0, where S4 = idb1. So idb1 is not in the image

of C+
4 . When we add it to the image, it is no longer a projective representation, but an injective

representation.
Let Sv = idbi. Recall the definition of the partial Coxeter functors effect on the morphisms in

RepK(Q). We can see that this corresponds to interchanging row i with column i in the matrix
HQ. Notice that in general when one change the ith row with the ith column in a upper triangular
invertible matrix such as HQ, the matrix will remain invertible! In our case, row one is interchanged
with column one.

The rows and columns of the remaining matrix consisting of all entries in HQΩ except for those
in the ith row or ith column are switched just as the functor C+

v switches the indecomposables in
the categories. The result is independent of whether you first switch rows or columns. Since this
actions are elementary row and column operations on a linearly independent set of vectors, one is
guaranteed that HQΩ′ is an invertible matrix.

In our case row 2 and 5 are switched, 3 and 8, 4 and 7 and 9 and 10. The columns are switched
in exactly the same way. So as one could expect the relations between the categories RepK(QΩ) and
RepK(QΩ′) are closely connected to the relations between HQΩ and HQΩ′ by the partial Coxeter
functors.

To compare the matrices HQΩ and HQΩ′ when the indexing of the dimension vectors of the
representations corresponding to the isomorphism classes of indecomposables is fixed for both cat-
egories, are really not that interesting. The structure of the AR-quiver of the two categories are
identical with the exception of the one simple representation. So it should be clear that by altering
the indexing of the indecomposables in the new category RepK(QΩ′), we can obtain the same matrix
with the exception of row one and column one. In the rest of this thesis, we make the convention
that the representations corresponding to the isomorphism classes of indecomposables in a category
RepK(Q), where Q is Dynkin is indexed according to the following rule:

j < i⇔ dimKHomΛ(idbi, idbj) = 0.

So when we apply one of the partial Coxeter functors, f. ex.

C+
4 : RepK(QΩ) −→ RepK(QΩ′),

we should change the indexing of the indecomposables according to this rule in RepK(QΩ′). Then
if the indexing matches the indexing in RepK(QΩ) relative to the structure of the respective AR-
quivers (the index of a representation is lowered by one for each place in the AR-quiver), we should
get the same matrix with the exception that row one and column one now are replaced by a new row
12 and column 12. So instead of the indexing in Section 2.1 we should order the indecomposable
representations in the AR-quiver of RepK(QΩ′) in the following way:
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RepK(QΩ′) :

(1, 0, 1, 0)3

''NNNNNNNNNNN
(0, 1, 1, 1)7

''NNNNNNNNNNN
(1, 0, 0, 0)10

(0, 0, 1, 0)1

77ppppppppppp
//

''NNNNNNNNNNN
(0, 0, 1, 1)2 // (1, 1, 2, 1)5

77ppppppppppp
//

''NNNNNNNNNNN
(1, 1, 1, 0)6 // (1, 1, 1, 1)9

77ppppppppppp
//

''OOOOOOOOOOO
(0, 0, 0, 1)12

(0, 1, 1, 0)4

77ppppppppppp
(1, 0, 1, 1)8

77ppppppppppp
(0, 1, 0, 0)11

(2.5)

If we now compute the matrix HQΩ′ , where (i, j) = dimKHomΛ(idbi, idbj), ∀ 1 ≤ i, j ≤ 12, we
see that

HQΩ′ =



1 1 1 1 2 1 1 1 1 0 0 | 0
0 1 0 0 1 1 0 1 1 1 0 | 1
0 0 1 0 1 0 1 1 1 0 1 | 0
0 0 0 1 1 1 1 0 1 0 0 | 0
0 0 0 0 1 1 1 1 2 1 1 | 1
0 0 0 0 0 1 0 0 1 1 0 | 0
0 0 0 0 0 0 1 0 1 0 1 | 1
0 0 0 0 0 0 0 1 1 1 1 | 1
0 0 0 0 0 0 0 0 1 1 1 | 1
0 0 0 0 0 0 0 0 0 1 0 | 0
0 0 0 0 0 0 0 0 0 0 1 | 0
− − − − − − − − − − − +
0 0 0 0 0 0 0 0 0 0 0 1



.

As we can see HQΩ′ has a 11× 11-submatrix which can be found in

HQ = HQΩ =



1 1 1 1 0 1 0 0 1 0 0 0
+ − − − − − − − − − − −

0 | 1 1 1 1 2 1 1 1 1 0 0
0 | 0 1 0 0 1 1 0 1 1 1 0
0 | 0 0 1 0 1 0 1 1 1 0 1
0 | 0 0 0 1 1 1 1 0 1 0 0
0 | 0 0 0 0 1 1 1 1 2 1 1
0 | 0 0 0 0 0 1 0 0 1 1 0
0 | 0 0 0 0 0 0 1 0 1 0 1
0 | 0 0 0 0 0 0 0 1 1 1 1
0 | 0 0 0 0 0 0 0 0 1 1 1
0 | 0 0 0 0 0 0 0 0 0 1 0
0 | 0 0 0 0 0 0 0 0 0 0 1



.

2.3 (HQ)−1

An interesting thing about the inverse matrix of HQ is that there exist a one-to-one correspondence
between the rows in (HQ)−1 and the minimal left almost split morphisms (see [1]) of the cate-
gory RepK(Q). We shall soon state this correspondence in a proposition, but we have to do some
preparations first.

Let r′i denote the ith row in (HQ)−1 and let TrD(i) denote the index of the indecomposable
representation TrD(idbi) corresponding to the TrD(i)th isomorphism class in RepK(Q).

Due to the ordering of the indecomposables in RepK(Q) (if j < i then dimK(HomΛ(idbi, idbj)) =
0), we have that for every minimal left almost split morphism fi from a indecomposable idbi, where
TrD(idbi) 6= 0, there exist a almost split sequence in RepK(Q) of the form:

0 −→ idbi
fi−→ idbj ⊕ ...⊕ idbk −→ TrD(idbi) −→ 0,



30

where for all l ∈ {j, ... , k}, we have that l > i. All almost split sequences starting in idbi, where
TrD(idbi) 6= 0, are on this form (see 1). If TrD(idbi) = 0, such a sequence does not exist. If
TrD(idbi) = 0, then the minimal left almost split morphism fi, starting in idbi, is a morphism of
the form:

idbi
fi−→ idbj ⊕ ...⊕ idbk −→ 0,

where for all l ∈ {j, ... , k}, we have that l > i. This is an epimorphism, since in fact, it is a
morphism on the form

I
fi−→ I/soc I, (see [1]).

The set {j, ... , k} may be the empty set ∅. Of technical reasons, if {j, ... , k} = ∅, we let idbj ⊕
...⊕ idbk = 0, the zero module. So then fi will trivially be an epimorphism on the form

I −→ I/soc I ∼= 0,

since I = 0 if and only if soc I = 0 (see [1]).

Proposition 2.3.1 Let Q be of finite representation type. There exist a one-to-one correspondence
between the rows in the matrix (HQ)−1 and the minimal left almost split morphisms starting at the
indecomposables in RepK(Q).

If TrD(idbi) 6= 0, the minimal left almost split morphism fi starting at idbi gives a almost split
sequence

0 −→ idbi
fi−→ idbj ⊕ ...⊕ idbk −→ TrD(idbi) −→ 0,

where for all l ∈ {j, ... , k}, we have that l > i,

which corresponds to:

r′i(t) =

 1, if t = i or t = TrD(i),
−1, if t ∈ {j, ... , k},

0, else.

If TrD(idbi) = 0, the minimal left almost split morphism fi starting at idbi

idbi
fi−→ idbj ⊕ ...⊕ idbk −→ 0,

where for all l ∈ {j, ... , k}, we have that l > i,

corresponds to:

r′i(t) =

 1, if t = i,
−1, if t ∈ {j, ... , k},

0, else.

Proof: We may assume that RepK(Q) contains n distinct isomorphism classes of indecomposable
representations.

If TrD(idbi) 6= 0, the minimal left almost split morphism fi, starting at idbi, gives the almost
split sequence

0 −→ idbi
fi−→ idbj ⊕ ...⊕ idbk −→ TrD(idbi) −→ 0,

where for all l ∈ {j, ... , k}, we have that l > i.
Apply HomΛ(−, X) to the sequence, where X 6= idbi, we get

0 −→ HomΛ(TrD(idbi), X) −→ HomΛ(idbj ⊕ ...⊕ idbk, X) −→ HomΛ(idbi, X) −→ 0,

where the right map is an epimorphism due to the minimal left almost split property of the first
sequence. Let X = idbt, we see that when t 6= i:

dimK(HomΛ(idbj ⊕ ...⊕ idbk, idbt)) = dimK(HomΛ(idbi, idbt)) + dimK(HomΛ(TrD(idbi), idbt))

and

0 = dimK(HomΛ(idbi, idbt)) + dimK(HomΛ(TrD(idbi), idbt))− dimK(HomΛ(idbj ⊕ ...⊕ idbk, idbt)).
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We know that

dimK(HomΛ(idbi, idbi)) = 1, dimK(HomΛ(TrD(idbi), idbi)) = 0 and

dimK(HomΛ(idbj , idbi)) + ...+ dimK(HomΛ(idbk, idbi)) = 0.

By the definition of the row vectors of HQ we have that

ri = dimK(HomΛ(idbi, idbt))t, rTrD(i) = dimK(HomΛ(TrD(idbi), idbt))t and

rj = dimK(HomΛ(idbj , idbt))t, ..., rk = dimK(HomΛ(idbk, idbt))t,

where 1 ≤ t ≤ n.
Let ei = (01, ..., 0i−1, 1i, 0i+1, ..., 0n), where 1 ≤ i ≤ n. By the equations above it follows that:

ei = ri − rj − ...− rk + rTrD(i).

It follows that r′i(t), is given in the following way:

r′i(t) =

 1, if t = i or t = TrD(i),
−1, if t ∈ {j, ... , k},

0, else.

If TrD(idbi) = 0, then the minimal left almost split morphism, starting at idbi, fi is on the form

idbi
fi−→ idbj ⊕ ...⊕ idbk −→ 0,

where for all l ∈ {j, ... , k}, we have that l > i. Note that if {j, ... , k} = ∅, then we let idbj ⊕ ...⊕
idbk = 0, the zero module.

Apply HomΛ(−, X) to the morphism, where X 6= idbi, we get

0 −→ HomΛ(idbj ⊕ ...⊕ idbk, X) −→ HomΛ(idbi, X) −→ 0,

where the map is an epimorphism due to the minimal left almost split property of fi. Let X = idbt,
we see that when t 6= i:

dimK(HomΛ(idbi, idbt)) = dimK(HomΛ(idbj ⊕ ...⊕ idbk, idbt)).

When t = i, we know that
dimK(HomΛ(idbi, idbi)) = 1 and

dimK(HomΛ(idbj , idbi)) + ...+ dimK(HomΛ(idbk, idbi)) = 0.

By the definition of the row vectors of HQ we have that

ri = dimK(HomΛ(idbi, idbt))t and

rj = dimK(HomΛ(idbj , idbt))t, ..., rk = dimK(HomΛ(idbk, idbt))t,

where 1 ≤ t ≤ n.
By the equations above it follows that:

ei = ri − rj − ...− rk.

Hence r′i(t), is given in the following way:

r′i(t) =

 1, if t = i,
−1, if t ∈ {j, ... , k},

0, else.

Thus the matrix (HQ)−1 is determined by the minimal left almost split morphisms in RepK(Q).
QED

Let us illustrate with some examples, let r′i denote the ith row in (HQ)−1:
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Example 2.3.2

0 // (0, 0, 0, 1)1 // (0, 0, 1, 1)2 // (0, 0, 1, 0)5 // 0

corresponds to

r′1 =
(

1 −1 0 0 1 0 0 0 0 0 0 0
)
.

4

A more interesting example is the following:

Example 2.3.3

0 // (0, 0, 1, 1)2 // (1, 0, 1, 1)3 ⊕ (0, 1, 1, 1)4 ⊕ (0, 0, 1, 0)5 // (1, 1, 2, 1)6 // 0

corresponds to

r′2 =
(

0 1 −1 −1 −1 1 0 0 0 0 0 0
)
.

4

2.4 The Structure of HQ and TQ

A similar matrix TQ is obtained by setting

(i, j) = dimK(idbi ⊗Λ idbj), ∀1 ≤ i, j ≤ m,

where m is the number of isomorphism classes of indecomposables in RepK(Q). The numbering
idbi and idbj refers to the same numbering of dimension vectors of the indecomposables in the AR-
quiver as in the previous example, but the underlying quiver of idbi is the opposite of idbj . Let
idbi = DK(idbi), where DK = HomK(−,K). The (i, j) entry is obtained by choosing a projective
resolution of idbi and then tensoring the projective resolution with (−⊗Λ idbj). We can then easily
calculate (i, j) = dimK(idbi ⊗Λ idbj). In more precise terms:

Q
q−→ P −→ idbi −→ 0

tensoring by (−⊗Λ idbj) gives

(Q⊗Λ idbj)
(fq⊗Λid)−→ (P ⊗Λ idbj) −→ (idbi ⊗Λ idbj) −→ 0.

We then see that

dimK(idbi ⊗Λ idbj) = dimK(P ⊗Λ idbj)− rank(fq ⊗Λ id).

Here it is easy to calculate the right side of the equation.
An example of this calculation could be:

Example 2.4.1 Let
Q: 1

α

��=
==

==
==

=

3
γ // 4,

2

β

@@��������

and
e2Λ

β−→ e3Λ −→ idb8 −→ 0

tensoring by (−⊗Λ idb2) gives

(e2Λ⊗KQ idb2)
(fβ⊗Λid)−→ (e3Λ⊗Λ idb2) −→ (idb8 ⊗Λ idb2) −→ 0.
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Now
dimK(idb8 ⊗Λ idb2) = dimK(e3Λ⊗Λ idb2)− rank(fβ ⊗Λ id),

but then
dimK(idb8 ⊗Λ idb2) = dimK(e3idb2)− rank(idb2)β .

We see that dimK(e3idb2) = 1 and rank(idb2)β = 0, thus entry

(8, 2) = dimK(idb8 ⊗Λ idb2) = 1− 0 = 1.

4

We end up with the following matrix TQ:

TQ =



1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0
1 2 1 1 1 1 0 0 0 0 0 0
0 1 1 0 1 1 1 0 0 0 0 0
0 1 0 1 1 1 0 1 0 0 0 0
1 1 1 1 0 1 0 0 1 0 0 0
0 1 1 1 1 2 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 1 1 0
0 0 0 1 0 1 0 1 1 1 0 1


Note that

HQ = (TQ)T .

There is much that could be said about the matrices HQ and TQ. There is a pattern in both matrices
due to the fact that

dimKHomΛ(X,Y ) = dimKHomΛ(TrD(X), T rD(Y )),∀ X, Y not injectives (see[1]),

where TrD denotes the transpose of the dual of a module (see[1]). We have that

dimKHomΛ(PQ
i ,M) = dimK(Mi),

where PQ
i = Λ ∗ ei and dimK(Mi) equals the dimension of M in the ith vector space. So if we take

the projectives from the AR-quiver and analyze the dimension of the Hom-spaces from them to all
the others:

PQ =


1 1 1 1 0 1 0 0 1 0 0 0
0 1 1 1 1 2 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 1 1 0
0 0 0 1 0 1 0 1 1 1 0 1

,

the rest of HQ is just a repetition of this pattern, where we shift all the representations by the TrD
to the right in the AR-quiver, always leaving out the injectives. Thus

TrD(PQ) =


0 0 0 0 1 1 1 1 0 1 0 0
0 0 0 0 0 1 1 1 1 2 1 1
0 0 0 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 1 0 1 0 1

,

and
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TrD(TrD(PQ)) =


0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

.

So by the notation above we can write:

HQ =

 PQ

TrD(PQ)
TrD(TrD(PQ))

.

This also explains why the matrices HQ and TQ only consists of the number 0, 1 and 2. If we
look at the AR-quiver of the category, we see that there are no higher dimensional vector spaces in
any of the indecomposable modules, they have either dimension 0, 1 or 2. This is a general fact for
all quiver-algebras with Dn as the underlying graph and a similar argument can be made for all the
other quiver-algebras with Dynkin diagrams as underlying graph.

The following should indicate the form of all the matrices that settles the question of the struc-
ture of representations with quivers of finite representation type, and hence settle the question of
degeneration for this class of algebras. Remember that the isomorphism classes of indecomposable
representations are indexed from the projectives to the injectives according to the following rule
if j < i then dimKHomΛ(idbi, idbj) = 0. This does not always give a unique indexing, but all
numberings having this property gives upper triangular matrices with ones on the diagonal.

HAn =



PAn

TrD(PAn)
(TrD)2(PAn)

.

.

.
(TrD)m(PAn)


, where m depends on n and the orientation on An .

where PQ is a matrix which corresponds to the dimension of the Hom-spaces from the projectives
of the AR-quiver of RepK(Q) to all the others.

We see that in addition to depending on n, m depends on the orientation on An. This is because
when we apply TrD to the projective representations in the AR-quiver of the category RepKAn

we might loose projectives, since a representation can be projective and injective at the same time,
TrD of an injective is zero (see [1]). That is why even if (TrD)t(PAn) is a k × n(n − 1) matrix,
(TrD)t+1(PAn) can be a l × n(n− 1) matrix, where l < k and 0 ≤ t ≤ n− 1.

To illustrate and clarify we give an example:

Example 2.4.2 Let
Aeq

5 : 1 // 2 // 3 // 4 // 5 .

Then

HAeq
5 =


PAeq

5

TrD(PAeq
5 )

(TrD)2(PAeq
5 )

(TrD)3(PAeq
5 )

(TrD)4(PAeq
5 )

 =
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HAeq
5 − − − − − − − − − − − − − −
| 1 . . . . . . . . . . . . .
| 0 1 . . . . . . . . . . . .
| 0 0 1 . . . . . . . . . . .
| 0 0 0 1 . . . . . . . . . .

| 0 0 0 0 HAeq
4 − − − − − − − − −

| 0 0 0 0 | 1 . . . . . . . .
| 0 0 0 0 | 0 1 . . . . . . .
| 0 0 0 0 | 0 0 1 . . . . . .

| 0 0 0 0 | 0 0 0 HAeq
3 − − − − −

| 0 0 0 0 | 0 0 0 | 1 . . . .
| 0 0 0 0 | 0 0 0 | 0 1 . . .

| 0 0 0 0 | 0 0 0 | 0 0 HAeq
2 − −

| 0 0 0 0 | 0 0 0 | 0 0 | 1 .

| 0 0 0 0 | 0 0 0 | 0 0 | 0 HAeq
1



,

where

HAeq
5 =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 1 1 1 1 1 1 0 0 0
0 0 0 1 1 0 0 1 1 0 1 1 1 1 0
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



,

HAeq
4 =



1 1 1 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0
0 0 1 1 0 1 1 1 1 0
0 0 0 1 0 0 1 0 1 1
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1


,

HAeq
3 =


1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 1
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1

 , HAeq
2 =

 1 1 0
0 1 1
0 0 1

 and HAeq
2 =

(
1

)
.

So

PAeq
5 =


1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 0 1 1 1 1 1 1 0 0 0
0 0 0 1 1 0 0 1 1 0 1 1 1 1 0
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

 ,
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TrD(PAeq
4 ) =


0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1

 ,

T rD2(PAeq
3 ) =

 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

 ,

T rD3(PAeq
2 ) =

(
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

)
and

TrD4(PAeq
2 ) =

(
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

)
.

4

For the other Dynkin diagrams the number of times we must apply TrD is independent of the
orientation on the underlying quiver:

HDn =


PDn

TrD(PDn)
.
.
.

(TrD)n−2(PDn)

,

HE6 =


PE6

TrD(PE6)
(TrD)2(PE6)
(TrD)3(PE6)
(TrD)4(PE6)
(TrD)5(PE6)

,

HE7 =



PE7

TrD(PE7)
(TrD)2(PE7)
(TrD)3(PE7)
(TrD)4(PE7)
(TrD)5(PE7)
(TrD)6(PE7)
(TrD)7(PE7)
(TrD)8(PE7)


,

HE8 =



PE8

TrD(PE8)
(TrD)2(PE8)
(TrD)3(PE8)
(TrD)4(PE8)
(TrD)5(PE8)
(TrD)6(PE8)
(TrD)7(PE8)
(TrD)8(PE8)
(TrD)9(PE8)
(TrD)10(PE8)
(TrD)11(PE8)
(TrD)12(PE8)
(TrD)13(PE8)
(TrD)14(PE8)



,



37

where PQ is a matrix which corresponds to the dimension of the Hom-spaces from the projectives
of the AR-quiver of RepK(Q) to all the others.

Proposition 2.4.3 If Q is a quiver of finite representation type, then

HQ = (TQ)T .

Proof: Assume that RepK(Q) contains t distinct isomorphism classes of indecomposable rep-
resentations. After ordering the fixed representations corresponding to the isomorphism classes of
indecomposable representations from 1 to t, we have to prove that entry (i, j) in HQ, denoted
(i, j)HQ , equals entry (j, i) in TQ, denoted (j, i)T Q . By the definition of the matrices we know that

(i, j)HQ = dimKHomΛ(idbi, idbj), ∀ 1 ≤ i, j ≤ t,

and

(j, i)T Q = dimK(idbj ⊗Λ idbi), ∀ 1 ≤ i, j ≤ t.

From Section 1.6 we know that

dimKDK(idbi ⊗Λ idb
j) = dimKHomΛ(idbi, DKidb

j),

where DK = HomK(−,K) and idbi := DKidbi.
We see that

(j, i)T Q = dimK(idbj ⊗Λ idbi) = dimKDK(idbj ⊗Λ idbi) = dimK(HomΛ(idbj , DKidbi)) =

dimK(HomΛ(Dkidbj , DKidbi)) = dimKDK(HomΛ(D2
Kidbj , D

2
Kidbi)) =

dimK(HomΛ(idbi, idbj)) = (i, j)HQ ,

which proves the assertion.
QED
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Chapter 3

Orbit Closures Determined by
Algebraic Equations

We start this chapter with some motivation in Section 3.1. In Section 3.2 we develop a general
procedure to find the set S(x) of algebraic equations, which determines the orbit closure of X ∈
RepK(Q), where Q is Dynkin. In Section 3.3 we give some examples of such algebraic equations and
in Section 3.4 we briefly relate degeneration to some algebraic geometry.

3.1 A Third Matrix RQ

It is already known (see [14]) that to determine the orbit closure by algebraic equations is possible for
all representations of Dynkin quivers. These equations are not unique. In this chapter we shall pro-
vide a different and perhaps more effective method for finding algebraic equations which determines
the orbit closures. Before we do it stringently in Section 3.2, let us try a ”naive” generalization of
the more or less straightforward method used for An-quivers, and see what goes wrong. This could
work as motivation for the more involved procedures developed in the next section.

In Section 1.3.2 we saw that O(x) corresponds to the isomorphism class of X. So we want to
classify the isomorphism class of X like we did in Chapter 2. We developed a machinery which solves
this for all X in RepK(Q), where Q is Dynkin. But this classification has a more natural variant
for the An (with arbitrary orientation) quivers. This more straightforward procedure will be briefly
introduced via an example. Let us first explain our notation. By

(
Mα Mβ

)
we mean the map from

Ks(α) ×Ks(β) → Kt(α)(= Kt(β).) So it is the matrix consisting of the columns of Mα succeeded by
the columns of Mβ .

Example 3.1.1 Let

Q : 1
α // 2 3

βoo 4
γoo ,

and

X : Kd1
Mα // Kd2 Kd3

Mβoo Kd4
Mγoo .

The indecomposable representation in RepK(Q) is:

idb1 = 0 // k 0oo 0oo , idb2 = k
1 // k 0oo 0oo , idb3 = 0 // k k

1oo 0oo ,

idb4 = 0 // k k
1oo k

1oo , idb5 = k
1 // k k

1oo 0oo , idb6 = 0 // 0 koo 0oo ,

idb7 = k
1 // k k

1oo k
1oo , idb8 = k // 0 0oo 0oo , idb9 = 0 // 0 koo k

1oo

and idb10 = 0 // 0 0oo koo .
One can see relatively easy that the isomorphism class of X ∈ RepK(Q) with dimension vector

d = (d1, d2, d3, d4) is given by the following computations:

#idb1 = d2 − rank
(
Mα Mβ

)
,

#idb2 = rank
(
Mα Mβ

)
− rank(Mβ),
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#idb3 = rank
(
Mα Mβ

)
− rank(Mα),

#idb4 = rank
(
Mα MγMβ

)
− rank(Mα),

#idb5 = rank(Mβ) + rank
(
Mα MγMβ

)
− rank

(
Mα Mβ

)
− rank(MβMγ),

#idb6 = d3 + rank(MβMγ)− rank(Mβ)− rank(Mγ),

#idb7 = rank(Mα) + rank(MβMγ)− rank
(
Mα MγMβ

)
,

#idb8 = d1 − rank(Mα),

#idb9 = rank(Mγ)− rank(MβMγ) and

#idb10 = d4 − rank(Mγ),

where #idbi equals the multiplicity of the ith indecomposable summand in X.
Since the dimension vector d is fixed, we see that the isomorphism class of X only depends on

the rank of the following set of matrices:

{Mα, Mβ , Mγ , MβMγ ,
(
Mα Mβ

)
,

(
Mα MγMβ

)
}.

4

We are looking for a similar set of matrices whereby we can determine the isomorphism class of X
and therefore O(x), when X ∈ RepK(Q) and Q is Dynkin. As we shall see in the next example, the
straightforward approach used in the previous example does not seem to work for a general Dynkin
quiver.

Example 3.1.2 Let
Q : 1

α

��>
>>

>>
>>

3
γ // 4

2

β
@@�������

and

X: Kd1

Mα

""E
EEEEEEE

Kd3
Mγ // Kd4 ,

Kd2

Mβ

<<yyyyyyyy

.

What we basically want to do, is to obtain a third matrix RQ, which can determine the iso-
morphism class of a representation in RepK(Q), where the conditions are as easy as possible. By
easy, we here mean it in the sense that they are similar to the conditions in example 3.1.1, or the
method one in general would use for a quiver of An-type. The following 11 independent conditions
are thought of as nice and similar to the conditions for An.

a1(X) = dimX(1) = d1, a2(X) = dimX(2) = d2, a3(X) = dimX(3) = d3, a4(X) = dimX(4) = d4,

a5(X) = rank(Mα), a6(X) = rank(Mβ), a7(X) = rank(Mγ), a8(X) = rank(MγMα), a9(X) = rank(MγMβ),

a10(X) = rank
(
MγMα MγMβ

)
, a11(X) = rank

(
Mα Mβ

)
,

where X varies over the indecomposables. These conditions are independent and will distinguish
nearly all indecomposable summands in a representation in RepK(Q). There are 12 isomorphism
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classes of indecomposables in RepK(Q), so it should be no surprise that one more condition is needed
to obtain a matrix which will determine degeneration in RepK(Q). It is the representations in the
following almost split sequence which are not uniquely determined by the 11 conditions stated above:

0 // (1, 1, 2, 1)6 // (0, 1, 1, 0)7 ⊕ (1, 0, 1, 0)8 ⊕ (1, 1, 1, 1)9 // (1, 1, 1, 0)10 // 0 .

The 11 conditions do not distinguish

(1, 1, 2, 1)6 ⊕ (1, 1, 1, 0)10 from (0, 1, 1, 0)7 ⊕ (1, 0, 1, 0)8 ⊕ (1, 1, 1, 1)9.

By reducing the matrix obtained by the set of 11 conditions, one can realize that the following tensor-
condition

a12(X) = dimK(idb6 ⊗Λ X) = dim((e3 + e4)X)− rank

(
MγMα 0
Mα Mβ

)
,

is not in span{a1(X), a2(X), a3(X), a4(X), a5(X), a6(X), a7(X), a8(X), a9(X), a10(X), a11(X)}, and
thus can be chosen to be the 12th condition. Since the dimension vector of X is fixed, the condition
is equivalent to

a′12(X) = rank

(
MγMα 0
Mα Mβ

)
.

These conditions are equivalent to both the Hom-conditions and the tensor-conditions and are
mentioned explicitly because of the ”nice and intuitive” form of the 11 first conditions. We obtain
the following matrix:

RQ =



0 0 1 0 0 1 0 1 1 1 1 0
0 0 0 1 0 1 1 0 1 1 0 1
0 1 1 1 1 2 1 1 1 1 0 0
1 1 1 1 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 1 1 1 0 0
0 0 0 1 0 1 1 0 1 1 0 0
0 1 1 1 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 1 0 0 0
0 0 1 1 0 2 1 1 1 1 0 0
1 2 1 1 1 1 0 0 0 0 0 0


4

As just illustrated in the example above, a ”naive” generalization of what is done for the repre-
sentations with underlying quiver equal to An (with arbitrary orientation), is not a fruitful approach
to classifying the isomorphism class of a representation when the underlying quiver is one of the
other Dynkin quivers.

For HQ the convention is that if HX ≤ HY , where X and Y are representations with equal
dimension vector in RepK(Q), then X �deg Y , this follows from Theorem 1.5.4. Due to the con-
nections between TQ and HQ given in Section 1.6, we see that for TQ the convention is that if
TX ≤ TY , where X and Y are representations with equal dimension vector in RepK(Q), then
X �⊗ Y ⇔ X �hom Y ⇔ X �deg Y.

Note that the convention for the partial order in the Hasse-diagram with respect to degeneration
must be the opposite for RQ on RepK(Q). That is if RX ≤ RY , where X and Y are representations
with equal dimension vector in RepK(Q), then Y �deg X. One way to explain this is to look at the
tight connection between the RQ-conditions and the TQ-conditions. This will be done in the next
section.

We end this section with a description of O(x) by the RQ- conditions, where the corresponding
X is just as in example 3.1.2:
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Example 3.1.3 Let

Q: 1
α

��=
==

==
==

=

3
γ // 4,

2

β

@@��������

X: kd1

Mα

!!C
CC

CC
CC

C

kd3
Mγ // kd4

kd2

Mβ

=={{{{{{{{

The orbit of the corresponding x ∈ RepK(Q,d), where d = (d1, d2, d3, d4), is given by

O(x) = {(Nα, Nβ , Nγ) ∈ RepK(Q,d) | rank(Nα) = rank(Mα), rank(Nβ) = rank(Mβ), rank(Nγ) = rank(Mγ),

rank(NγNα) = rank(MγMα), rank(NγNβ) = rank(MγMβ), rank
(
NγNα NγNβ

)
= rank

(
MγMα MγMβ

)
,

rank
(
Nα Nβ

)
= rank

(
Mα Mβ

)
, rank

(
NγNα 0
Nα Nβ

)
= rank

(
MγMα 0
Mα Mβ

)
}.

4

3.2 The General Procedure

Let Q be a Dynkin quiver. From a set-theoretic point of view one can say that the orbit closure O(x)
of a point x ∈ RepK(Q,d) corresponding to X ∈ RepK(Q), can be determined by a finite set of
algebraic equations (see Definition 1.1.1). In [14], there is a procedure for computing these algebraic
equations explicitly. What we basically will do here is to show how such a set of algebraic equations
can be computed explicitly in an alternative way which we believe is more efficient.

We start by defining what we mean by a universal representation.

Definition 3.2.1 A universal representation Y with dimension vector d is defined to be Y :=
{Yα | α ∈ Q1}, where Yα is a ds(α)×dt(α)-matrix with algebraic variables as entries: (Yα)(i,j) = xα

(i,j).

Assume that RepK(Q) contains n distinct isomorphism classes of indecomposable representation.
We take a projective resolution of idbi, 1 ≤ i ≤ n,

0 −→ Qi = ⊕t
k=1Q(i,k)

qi−→ Pi = ⊕s
j=1P(i,j) −→ idbi −→ 0,

where
qi =

(
f(i,k,j)

)
, and f(i,k,j) : Q(i,k) −→ P(i,j).

We then tensor the projective resolution with (−⊗Λ X), where X has dimension vector d. This
gives

(Qi ⊗Λ X)
(qi⊗ΛidX)−→ (Pi ⊗Λ X) −→ (idbi ⊗Λ X) −→ 0.

We then see that

dimK(idbi ⊗Λ X) = dimK(Pi ⊗Λ X)− rank(qi ⊗Λ idX). (3.1)

We define
ax

i = −dimK(idbi ⊗Λ X) + dimK(Pi ⊗Λ X) = rank(qi ⊗Λ idX). (3.2)
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We know that Q(i,j) = Λe(i,k) and P(i,j) = Λf(i,j),where e(i,k) and f(i,j) are two idempotents in
Λ. We see that HomΛ(Λe(i,k),Λf(i,j)) = e(i,k)Λf(i,j) ∼= Kp(i,k,j), if such a path p = α1...αm exist, or 0
if there exist no such path p. Let αi ∈ Q1, 1 ≤ i ≤ m. A path p in X is then Mp := Mα1Mα2 ...Mαm

.
Since f(i,k,j) is given by multiplication r(i,k,j)p(i,k,j), where r(i,k,j) ∈ K, we have that

(qi ⊗Λ IdX) =
(
r(i,k,j)Mp(i,k,j)

)
. (3.3)

Let Y be a universal representation with dimension vector d. Let S(x) be the union of the
vanishing of the (rank(qi ⊗Λ idX) + 1)-minors in the matrices (qi ⊗Λ idY ), which is a finite set of
algebraic equations due to the fact that the matrices (qi⊗Λ idY ) has algebraic expressions as entries
(see equation 3.2), as i varies from 1 to n.

Theorem 3.2.2 Let X be a representation in RepK(Q) with dimension vector d and let Y be a
universal representation in RepK(Q) with dimension vector d, where Q is a Dynkin quiver. Let x
be the point corresponding to X in RepK(Q,d). Then O(x) is determined by the vanishing of the
(rank(qi ⊗Λ idX) + 1)-minors of the matrices (qi ⊗Λ idY ). This vanishing constitute the finite set
S(x) of algebraic equations.

Proof: From Corollary 1.6.2 we know that the �⊗-order is equivalent with the �deg-order for
algebras of finite representation type. Since dimK(Pi ⊗Λ X) is independent of X with dimension
vector d, this can be regarded as just a constant term. Our definition of ax

i (see Equation 3.2)
involves multiplying Equation 3.1 by −1, so the degeneration order is reversed, that is

y ∈ O(x) ⇔ ay
i ≤ ax

i , 1 ≤ i ≤ n.

We see that the the �⊗-order is equivalent to the ”ax”-order.
It follows that O(x) is described by the vanishing of the (rank(qi ⊗Λ idX) + 1)-minors in the

matrices (qi ⊗Λ idY ), as i varies from 1 to n. This is the set S(x), the assertion follows.
QED

For the quiver Aeq
n it is rather easy to determine the closure of the orbits by algebraic equations.

Recall from Section 1.3.2 that O(x) corresponds to the isomorphism class of X.

Example 3.2.3 Let

Q : 1
α1 // 2

α2 // ... αn−1 // n .

For a fixed dimension vector d = (d1, ..., dn), the orbits corresponds to the isomorphism class of X.
So for the representation

X : Kd1
Mα1 // Kd2

Mα2 // ...
Mαn−1// Kdn ,

the orbit of the corresponding x ∈ RepK(Q,d) can be characterized by (see 14)

O(x) = {(Nα1 , ..., Nαn−1) ∈ RepK(Q,d) | rank(Nαi ...Nαj ) = rank(Mαi ...Mαj ) = c(i, j), ∀1 ≤ i ≤ j ≤ n−1 }.

By Theorem 3.2.2 the orbit closure is

O(x) = {(Nα1 , ..., Nαn−1) ∈ RepK(Q,d) | rank(Nαi
...Nαj

) ≤ c(i, j), ∀1 ≤ i ≤ j ≤ n− 1 }.

4

Let us revisit example 3.1.1.

Example 3.2.4 Let

Q : 1
α // 2 3

βoo 4
γoo ,

and

X : Kd1
Mα // Kd2 Kd3

Mβoo Kd4
Mγoo .
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The orbit of the corresponding x ∈ RepK(Q,d), where d = (d1, d2, d3, d4), was given by

O(x) = {(Nα, Nβ , Nγ) ∈ RepK(Q,d) | rank(Nα) = rank(Mα), rank(Nβ) = rank(Mβ), rank(Nγ) = rank(Mγ),

rank(NβNγ) = rank(MβMγ), rank
(
Nα Nβ

)
= rank

(
Mα Mβ

)
,

rank
(
Nα NγNβ

)
= rank

(
Mα MγMβ

)
}.

So the orbit closure is given by

O(x) = {(Nα, Nβ , Nγ) ∈ RepK(Q,d) | rank(Nα) ≤ rank(Mα), rank(Nβ) ≤ rank(Mβ), rank(Nγ) ≤ rank(Mγ),

rank(NβNγ) ≤ rank(MβMγ) rank
(
Nα Nβ

)
≤ rank

(
Mα Mβ

)
,

rank
(
Nα NβNγ

)
≤ rank

(
Mα MβMγ

)
}.

4

The following relatively extensive example will hopefully give a clear insight in how one in general
can determine the orbit closures by algebraic equations for all representation finite algebras.

Example 3.2.5 Let
Q : 1

α

��
2

β // 3
γ // 4 5

δoo 6
εoo

X : Kd1

Mα

��
Kd2

Mβ // Kd3
Mγ // Kd4 Kd5

Mδoo Kd6
Mεoo

Note that the injective indecomposables of the category RepK(Q) corresponds to the dimension of the
different vector spaces in the representation X. Since there are 36 isomorphism classes of indecom-
posable representations in the category RepK(Q) and the dimension vector d = (d1, d2, d3, d4, d5, d6)
is 6 dimensional and fixed, we need 36-6=30 conditions to determine the orbit of the corresponding
x ∈ RepK(Q,d). So to determine the orbit O(x) we need 30 equations on the form

ax
i = −dimK(idbi ⊗Λ X) + dimK(P ⊗Λ X) = rank(fqi ⊗Λ id).

These are:

ax
1 = −dimK((0, 0, 0, 1, 0, 0)⊗Λ X) + dimK(e4X) = rank

(
Mα Mγ Mδ

)
,

ax
2 = −dimK((0, 0, 1, 1, 0, 0)⊗Λ X) + dimK(e4X) = rank

(
Mα MγMβ Mδ

)
,

ax
3 = −dimK((0, 1, 1, 1, 0, 0)⊗Λ X) + dimK(e4X)− rank

(
Mα Mδ

)
,

ax
4 = −dimK((0, 0, 0, 1, 1, 0)⊗Λ X) + dimK(e4X) = rank

(
Mα Mγ MδMε

)
,

ax
5 = −dimK((0, 0, 0, 1, 1, 1)⊗Λ X) + dimK(e4X) = rank

(
Mα Mγ

)
,

ax
6 = −dimK((1, 0, 0, 1, 0, 0)⊗Λ X) + dimK(e4X) = rank

(
Mγ Mδ

)
,

ax
7 = −dimK((1, 0, 1, 2, 1, 0)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 0 Mδ MδMε

−Mα MβMγ Mγ 0 0

)
,
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ax
8 = −dimK((1, 1, 1, 2, 1, 0)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 Mδ MδMε

−Mα Mγ 0 0

)
,

ax
9 = −dimK((1, 0, 0, 1, 1, 0)⊗Λ X) + dimK(e4X) = rank

(
Mγ MδMε

)
,

ax
10 = −dimK((1, 0, 1, 2, 1, 1)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 0 Mδ

−Mα MβMγ Mγ 0

)
,

ax
11 = −dimK((1, 0, 1, 1, 0, 0)⊗Λ X) + dimK(e4X)K = rank

(
MγMβ Mδ

)
,

ax
12 = −dimK((0, 0, 1, 1, 1, 0)⊗Λ X) + dimK(e4X) = rank

(
Mα MγMβ MδMε

)
,

ax
13 = −dimK((1, 1, 2, 3, 2, 1)⊗ΛX)+3dimK(e4X) = rank

Mα 0 0 0 0 0
0 Mα 0 Mγ Mδ 0
0 0 MγMβ Mγ Mδ MδMε

 ,

ax
14 = −dimK((1, 0, 1, 2, 2, 1)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 0 MδMε

−Mα MγMβ Mγ 0

)
,

ax
15 = −dimK((0, 0, 1, 1, 1, 1)⊗Λ X) + dimK(e4X) = rank

(
MγMβ Mα

)
,

ax
16 = −dimK((1, 1, 2, 2, 1, 0)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 Mδ MδMε

−Mα MγMβ 0 0

)
,

ax
17 = −dimK((0, 1, 1, 1, 1, 0)⊗Λ X) + dimK(e4X) = rank

(
Mα MδMε

)
,

ax
18 = −dimK((1, 1, 1, 2, 1, 1)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 Mδ

−Mα Mγ 0

)
,

ax
19 = −dimK((2, 1, 2, 3, 2, 1)⊗ΛX)+3dimK(e4X) = rank

Mα MγMβ 0 0 MδMε

0 −MγMβ 0 Mδ 0
0 0 Mγ 0 −MδMε

 ,

ax
20 = −dimK((1, 1, 2, 2, 1, 1)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 Mδ

−Mα MγMβ 0

)
,

ax
21 = −dimK((1, 1, 1, 1, 0, 0)⊗Λ X) + dimK(e4X) = rank

(
Mδ

)
,

ax
22 = −dimK((1, 1, 1, 2, 2, 1)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 MδMε

−Mα Mγ 0

)
,

ax
23 = −dimK((1, 0, 0, 1, 1, 1)⊗Λ X) + dimK(e4X) = rank

(
Mγ

)
,

ax
24 = −dimK((1, 0, 1, 1, 1, 0)⊗Λ X) + dimK(e4X) = rank

(
MγMβ MδMε

)
,
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ax
25 = −dimK((1, 1, 2, 2, 2, 1)⊗Λ X) + 2dimK(e4X) = rank

(
Mα 0 MδMε

−Mα MγMβ 0

)
,

ax
26 = −dimK((1, 1, 1, 1, 1, 0)⊗Λ X) + dimK(e4X) = rank

(
MδMε

)
,

ax
27 = −dimK((0, 0, 0, 0, 1, 0)⊗Λ X) + dimK(e5X) = rank

(
Mε

)
,

ax
28 = −dimK((1, 0, 1, 1, 1, 1)⊗Λ X) + dimK(e4X) = rank

(
MγMβ

)
,

ax
29 = −dimK((0, 0, 1, 0, 0, 0)⊗Λ X) + dimK(e3X) = rank

(
Mβ

)
,

ax
30 = −dimK((0, 1, 1, 1, 1, 1)⊗Λ X) + dimK(e4X) = rank

(
Mα

)
.

The orbit is given by
O(x) = {y ∈ RepK(Q,d)|ay

i = ax
i , 1 ≤ i ≤ 30}

and

O(x) = {y ∈ RepK(Q,d)|ay
i ≤ ax

i , 1 ≤ i ≤ 30}.
4

3.3 Some Algebraic Equations

In this section we shall see some examples where the algebraic equations are given explicitly.

Example 3.3.1 Let
Q : 1 α−→ 2,

and

X : K2

1 0
0 1


−→ K2.

From Section 1.3.2 we have that the orbit of x consists of all points in RepK(Q, (2, 2)) where the
linear map Mα of the corresponding representation has rank two. So the orbit is determined by the
following condition:

det(Mα) = det

(
x1 x2

x3 x4

)
= x1x4 − x2x3 6= 0.

From Section 1.3.2 one also can also see that the orbit closure O(x) = RepK(Q, (2, 2)).
If

X : K2

1 0
0 0


−→ K2.

Then

O(x) = {
(
x1 x2

x3 x4

)
|x1x4 − x2x3 = 0}.

If

X : K2

0 0
0 0


−→ K2.

Then

O(x) =
(

0 0
0 0

)
.

4
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For X : K2

1 0
0 0


−→ K2, we had O(x) = {

(
x1 x2

x3 x4

)
|x1x4 − x2x3 = 0}.

Before we have another and more involved example; let us compare this algebraic equation by
the set of algebraic equations obtained by using Bongartz method, given in the article by Weyman
[14]. Before computing the set of algebraic equations, we first cite the relevant theorem without
proof, and then briefly give a description of the method.

Theorem 3.3.2 Let X and Y be two representations of dimension vector d of a Dynkin quiver Q.
Then

O(x) ⊆ O(y) ⇔ dimK(HomΛ(idbi, X)) ≥ dimK(HomΛ(idbi, Y )),

for all isomorphism classes of indecomposable representations in RepK(Q), represented by all the
idbi’s.

Let ri := dimK(HomΛ(idbi, X)). Then

O(x) = {Y | dimK(HomΛ(idbi, Y )) ≥ ri}. (3.4)

Let us define the map

dX
Y : ⊕j∈Q0HomK(X(j), Y (j)) −→ ⊕α∈Q1HomK(X(s(α)), Y (e(α)))

by the formula
dX

Y (φ(j))j∈Q0 = (φ(e(α))X(α)− Y (α)φ(s(α))α∈Q1 ,

whose kernel is HomΛ(X,Y ).
One can realize that set-theoretically equation 3.4 means that O(x) is given by the vanishing of

dimK(⊕j∈Q0HomK(X(j), Y (j)))− ri + 1 size minors of the matrix didbi

Y .
Now, let us use this method to compute a set of algebraic equations which determines O(x), for

X : K2

1 0
0 0


−→ K2.

First note that there are three isomorphism classes of indecomposable representations, represented
by

idb1 : 0 −→ K, idb2 : K 1−→ K and idb3 : K −→ 0.

The matrices are
didb1

Y =
(
0 0

)
,

didb2
Y =

(
x1 1 0 x2

x3 0 1 x4

)
and

didb3
Y =

(
x1 x2

x3 x4

)
.

By the vanishing of the dimK(⊕j∈Q0HomK(X(j), Y (j)))− ri +1 size minors of the matrix didbi

Y ,
one can see that the following set of algebraic equations determines the orbit closure:

SX = {x1 = 0 ∪ x2 = 0 ∪ x3 = 0 ∪ x4 = 0 ∪ 1 = 0 ∪ x1x4 − x2x3 = 0}.

We already know that the elements in O(x) is determined by the single algebraic equation

x1x4 − x2x3 = 0.

So as we can see SX contains many superfluous algebraic equations. The following is two interesting
open questions:

Question 3.3.3 Let Q be a Dynkin quiver. Let X be a representation in RepK(Q) and x the
corresponding point in RepK(Q,d).

Is S(x) ⊆ SX ?
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Question 3.3.4 Let Q be a Dynkin quiver. Let X be a representation in RepK(Q) and x the
corresponding point in RepK(Q,d). Can there exist a proper subset of S(x) which also determines
the orbit closure of x, or is S(x) a minimal set in this sense?

When determining S(x) the projective resolution where chosen to be minimal. This might be
related to these questions.

We continue with a more involved example.

Example 3.3.5 Let

Q: 1
α

��=
==

==
==

=

3
γ // 4,

2

β

@@��������

and

X: K


1
0
0


!!D

DD
DD

DD
D

K3


1 0 0
0 1 0
0 0 0


// K3.

K2


1 0
0 1
0 0

 =={{{{{{{{

From Section 3.1 we know by which rank-conditions we can determine the orbit closure of the
corresponding x ∈ RepK(Q, (1, 2, 3, 3)).

O(x) = {

x1

x2

x3

 ,

x4 x5

x6 x7

x8 x9

 ,

x10 x11 x12

x13 x14 x15

x16 x17 x18

 ∈ RepK(Q, (1, 2, 3, 3)) | 1: rank

x1

x2

x3

 ≤ 1, 2: rank

x4 x5

x6 x7

x8 x9

 ≤ 2,

3: rank

x10 x11 x12

x13 x14 x15

x16 x17 x18

 ≤ 2, 4: rank

x10x1 + x11x2 + x12x3

x13x1 + x14x2 + x15x3

x16x1 + x17x2 + x18x3

 ≤ 1,

5: rank

x10x4 + x11x6 + x12x8 x10x5 + x11x7 + x12x9

x13x4 + x14x6 + x15x8 x13x5 + x14x7 + x15x9

x16x4 + x17x6 + x18x8 x16x5 + x17x7 + x18x9

 ≤ 2,

6 :rank

x10x1 + x11x2 + x12x3 x10x4 + x11x6 + x12x8 x10x5 + x11x7 + x12x9

x13x1 + x14x2 + x15x3 x13x4 + x14x6 + x15x8 x13x5 + x14x7 + x15x9

x16x1 + x17x2 + x18x3 x16x4 + x17x6 + x18x8 x16x5 + x17x7 + x18x9

 ≤ 2,

7: rank

x1 x4 x5

x2 x6 x7

x3 x8 x9

 ≤ 2,

8 :rank


x10x1 + x11x2 + x12x3 0 0
x13x1 + x14x2 + x15x3 0 0
x16x1 + x17x2 + x18x3 0 0

x1 x4 x5

x2 x6 x7

x3 x8 x9

 ≤ 3}.

It follows from Theorem 3.2.2 that O(x) can be described by a set S(x) of algebraic equations. If we
look at the proof of Theorem 3.2.2 it is clear that



49

S(x) = { 3: x10x14x18 + x11x15x16 + x12x13x17 − x12x14x16 − x11x13x18 − x10x15x17 = 0 ∪

6: (x10x1 + x11x2 + x12x3)(x13x4 + x14x6 + x15x8)(x16x5 + x17x7 + x18x9)+

(x10x4 + x11x6 + x12x8)(x13x5 + x17x7 + x18x9)(x16x1 + x17x2 + x18x3)+

(x10x5 + x11x7 + x12x9)(x13x1 + x14x2 + x15x3)(x16x4 + x17x6 + x18x8)−

(x10x5 + x11x7 + x12x9)(x13x4 + x14x6 + x15x8)(x16x1 + x17x2 + x18x3)−

(x10x4 + x11x6 + x12x8)(x13x1 + x14x2 + x15x3)(x16x5 + x17x7 + x18x9)−

(x10x1 + x11x2 + x12x3)(x13x5 + x17x7 + x18x9)(x16x4 + x17x6 + x18x8) = 0 ∪

7: x1x6x9 + x4x7x3 + x5x2x8 − x5x6x3 − x4x2x9 − x1x7x8 = 0}.

4

3.4 Algebraic Geometry

A point v = (v1, ..., vn) ∈ An corresponds to M(v) = {f | f(v1, ..., vn) = 0} a maximal ideal in
K[An] = K[x1, ..., xn]. If V ∈ An is closed, V corresponds to an ideal I(V ) = {f | f(v1, ..., vn) =
0, ∀ v ∈ V } in K[An].

Let I be an ideal in a commutative ring R. By the radical of I,
√
I, we mean

√
I = {y ∈ R | ∃n such that yn ∈ I}.

Let R = K[x1, x2, x3, x4] as in example [3.3.1], the rank
(
x1 x2

x3 x4

)
= 1 case. We know that O(x)

is determined by the algebraic equation x1x4−x2x3 = 0. Let V = {(x1, x2, x3, x4) | x1x4−x2x3 = 0},
it follows by the definition of the topology on An (see [1.1.1]), that V is closed. Let V correspond
to the ideal I(V ). The equation (x1x4 − x2x3)2 = x2

1x
2
4 − 2x1x2x3x4 + x2

2x
2
3 = 0 also determines

O(x). Let J be the ideal generated by (x1x4 − x2x3)2. The equation x1x4 − x2x3 = 0 is thought of
as ”nicer” because for I(V ), we have that

√
I(V ) = I(V ), while

√
J = I(V ) 6= J.

In general one is interested in finding algebraic equations determining O(x). If found, a natural
question is whether the ideal I generated by the algebraic equations has the property that

√
I = I.

If not, how can one find a set of algebraic equations determining O(x) which generates an ideal with
this property, if possible?

We have the following question:

Question 3.4.1 Let Q be a Dynkin quiver. Let X be a representation in RepK(Q). Do the set S(x),
determining O(x), corresponds to an ideal I(S(x)), where

√
I(S(x)) = I(S(x))?

Using a different method, which possibly gives a different set of equations than S(x), this question
was settled for Aeq by V. Lakshmibai and P. Magyar (see [8]).
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Chapter 4

Summary and Further Discussions

We have seen a general procedure for how one can obtain explicit algebraic equations describing the
orbit closure of a point in the affine variety RepK(Q,d), where Q is a quiver of finite representation
type. Our procedure depends on the fact that �deg and �hom coincide for this class of algebras, and
we have also seen that �hom and �⊗ coincide. For algebras of finite representation type we have
also given a general procedure for how one can determine degeneration.

A natural question is how one can determine degeneration for other types of algebra. One of the
natural candidates for such a further investigation would be the algebras of tame type.

Definition 4.0.2 A quiver is tame if Q is of infinite representation type but its indecomposable
representations occur in a given dimension either a finite number of times or in a finite number of
one-parameter families.

It is known that �deg and �hom (and therefore also �⊗) coincide for all representations of tame
quivers [4]. In general one can classify all indecomposable representations in RepK(Q), when Q is
tame, even though there is infinitely many of them. The problem with the method provided here
when it comes to quivers of tame type, is that HQ and TQ will be infinitely large quadratic matrices.
Since �deg and �hom (and therefore also �⊗)coincide for all representations of tame quivers [4],
these infinitely large quadratic matrices must be invertible and in principle determine degeneration
for quivers of tame type, but they will not be upper triangular matrices. However, the preprojective
and preinjective components of the AR-quiver will be directed (i. e. contains no loops) (see [1]). So if
one is only considering these components and one choose a smart indexing of the fixed indecomposable
representations (corresponding to isomorphism classes), the infinitely large quadratic matrices will
be upper triangular with non-zero entries on the diagonal, and in principle determine degeneration
for representations only containing indecomposable objects from these components of the AR-quiver.

For a quiver Q of tame type, the sets SX and S(x), determining the orbit closure of a represen-
tation X in RepK(Q), will exist. But, S(x) will be a infinite set of equations. We have assumed
representations to be finite dimensional and the equations in S(x) will be equations in a ring of
polynomials over a field K. Thus the equations corresponds to ideals in a Noetherian ring. For all
Noetherian rings we have that every non-empty set of ideals has a maximal element with respect to
set inclusion. It follows that the orbit closure of a X can be described by a finite subset of S(x).
There might be a smart way to choose such a subset. Perhaps based on the isomorphism class of the
representation one are considering? However, it is an open question how this could be done.
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