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Introduction

The purpose of this work is to present some of the theory developed during the last 30 years on the
subject of degeneration as a partial order on module categories. One of the highlights in this develop-
ment was an article by Grzegorz Zwara in 1999 called ” Degeneration for modules over representation-
finite algebras” [16]. It had been a long standing problem whether the degeneration order coincided
with the homomorphism order for representation-finite algebras. One of the main result in the arti-
cle of Zwara was a corollary which stated exactly this. The corollary made it rather easy to decide
degeneration for algebras of finite representation type, since once the isomorphism class of two repre-
sentations is known, the dimension of the homomorphism spaces between them can be deduced from
the AR-quiver of the algebra. In Chapter 2] we provide a formal method for determining degeneration
for algebras of finite representation type. The method relies on Zwaras result, which is stated in
Section [[.5l

It is well known (see [14]) that for a representation X over an algebra of finite representation
type, there exists a set of algebraic equations Sy, by which one can determine whether a second
representation Y is a degeneration of X. The set of algebraic equations is not unique. It is also
known how one can find such algebraic equations (see ) In Chapter [3| we give an alternative
procedure for finding such algebraic equations. We believe that this is an easier and more effective
way to obtain such a set of algebraic equations.

In this thesis we have assumed that the reader is on a graduate level in algebra, familiar with
rings, modules and some homological algebra. Some of the examples in this thesis extend over several
pages. To help the reader recognize the end of an example, we use the symbol A.

I want to thank my advisor Bernt Tore Jensen for excellent guidance and great patience. 1
also want to thank my formal advisor Sverre O. Smalg which have managed to give many helpful
comments through e-mail. In general I am grateful to the entire Algebra group at NTNU. With no
exceptions, I have always felt welcome on the 8th floor.






Chapter 1

Some Partial Orders on Module
Categories

1.1 Preliminaries

1.1.1 Affine Varieties

The affine space A™ is K™ with a topology, where K is an algebraically closed field. The topology is
the Zariski topology and is defined by the following:

V C A" is closed if 3fy, ..., fm € K[x1, ..., 25] such that V = {(vy,...,v,) | fi(v1,..c,vn) =0, 1 <@ <m}.

Definition 1.1.1 An affine variety is a closed subset of A™ in the Zariski topology.

1.1.2 Hasse Diagrams

A Hasse diagram is a graphical representation of a partially ordered set consisting of vertices and
line segments. A vertex is drawn for each element of the poset, and line segments are drawn between
these vertices according to the following two rules:

1. If z < y in the poset, then the vertex corresponding to x appears lower in the drawing than
the vertex corresponding to y.

2. The line segment between the vertices corresponding to any two elements = and y of the poset
is included in the drawing if z < y while z < z < y implies that z = z or z = y or if y < = while
y < z < x implies that z =z or z = y.

So if {x, y} is a partially ordered set with z < y the Hasse diagram would look like this

1.2 Background

Let A be a finite dimensional associative K-algebra with an identity. If a = (1 = ay, a2, ...,as) is
a basis of A over K, we have the structure constants a,j, defined by a;a; = > a;jrar. Let M be
a d-dimensional left A-module with b = (b1, bo, ..., bgq) as basis. Then M is a d-dimensional vector
space M with a multiplication by A from the left. By our choice of basis in M we can identify M
with the vector space K¢. The elements of Endg (M) can be represented by d x d-matrices over K.
There is a correspondence between d-dimensional left A-modules and ¢-tuples m = (my,...,m;) of



d x d-matrices over K. For each d-dimensional left A-module M as above, M is determined as an
A-module by the algebra homomorphism

¢: A— Endg M, ¢(a;) : M — M,

where ¢(a;)(m) = a;m, a; € A. Hence M corresponds to the t-tuple m = (my,...,m;), where
m; = ¢(a;). We have that m; is the identity matrix and m;m; = > apxme, 1 < 4,5 < t. For
each module M the t-tuple m and all polynomials f in ¢ non-commuting variables over K with the
property that f(ai,...a;) = 0 we have that f(mq,...,m;) =0 in the ring of d x d-matrices.

Conversely, each t-tuple m, where m is the identity matrix and m;m; = " ajpme, 1 <14,5 <t,
corresponds to an K-algebra homomorphism ¢, : A — Endg(K<%). Then the A-module structure
on K% is defined by a;z = m;x, for x € K<

Let us illustrate with an example.

Example 1.2.1 Let A = C[z]/2? be the two dimensional associative C-algebra with the basis {1, x}
over C, when one represent also the residues of 1 and x by 1 and x. The structure constant is
determined by the following multiplication table

X | 1| x
1|z
z | x| 0

Let M be the 2-dimensional vector space C?. The elements of Endc(M) can be represented by
2 x 2-matrices over C. The two dimensional left A-module structure on M corresponds to the 2-tuple

0 1 10

Conversely, the 2-tuple m corresponds to A as an A-module.

m= ((1 0) , (0 O)), which makes M isomorphic to A as an left A-module.

A

In the following example the field R is not algebraically closed. The example is included because
of its nice and perhaps familiar form.

Example 1.2.2 Let A be the 4 dimensional associative R-algebra with the basis {1,1,j,k} over R
where the structure constant is determined by the following multiplication table

X i |7 k
1|14 |37 |k
i i | -1k |-
Jgolil-k|-1]73
k| kg |-i]-1

Note that A is the quaternions H over R.
Let M be the 4-dimensional vector space R*. The elements of Endg(M) can be represented by
4 x 4-matrices over R. The 4-dimensional left A-module structure on M corresponds to the 4-tuple

1000 0 -1 0 O 0 0 -1 0 00 0 -1
m=( 01 00 1 0 0 O 0 0 0 1 00 -1 0 )

0oo0o1o0’t0 0 0 -1)°fr 0o 0 OJ’t0 1 0 0|7

00 01 0 0 1 0 0 -1 0 O 10 0 O

which makes M isomorphic to A as an left A-module.
Conwversely, the 4-tuple m corresponds to M as an A-module.

Definition 1.2.3 The set of t-tuples {(m1, ma,...,my)} of d X d-matrices over K where my is the
identity matriz and m;m; = Y ajjgmy, for alll < 4,5 <'t, is an affine variety and is denoted by
mod(d).

The general linear group Gly(K) is the group of d x d invertible matrices with entries in K.
The elements of Gly(K) acts on moda(d) by conjugation, g * x = (gz197 %, ...,g7:971), g € Gla(K),
x € moda(d), and the orbits O(x) under this action correspond to the isomorphism classes of d-
dimensional A-modules. The following lemma should make this clear:



Lemma 1.2.4 The orbits of O(x) for x € moda(d) corresponds to the isomorphism classes of d-
dimensional left A-modules.

Proof: Let m = (my,...,m;) and n = (nq,...,n) be two points in mod(d). Let M and N be
the A-modules corresponding to m and n respectively. We must show that

neO(m)s N=M.

"=": Assume there exist a g € Gly(K) such that n = g« m. We want to show that N = M. By the
choice of basis we have identified M and N with K¢ as K-modules. We define a map

©: M — N, where O(x) = gz,

and prove that © is an isomorphism of A-modules. First one can verify that © is an A-homomorphism,
i. e.
Oz +y) =gz +y) =gz +gy=0(x)+0O(y)

and
O(a;x) = ga;x = gm;x,

1

by assumption n = g* m < n; = gm;g~',1 < i < t. So by inserting g~ 'n;g for m;, we obtain

gm;x = nigr = a;0(x),

a; € a, x and y in M. One can define the inverse map ©~! : N — M given by y — g~ 'y. As
for © one can verify that ! is an A-homomorphism. We see that @10 is the identity on M and
©07! is the identity on N. Hence © is an isomorphism.

7<”: Assume that M = N. We want to show that there exist a g € Gly(K) such that n = gxm.
By assumption there exist an isomorphism ¢ : M — N. We know that ¢ is an A-isomorphism,
thus ¢ is invertible and ¢(a;x) = a;¢(x), a; € a. By the choice of basis we have identified M and N
with K9. We have Ry € Gly(K) such that ¢(z) = Ryz. Thus for all 1 <i <t and x € mod4(d) we
have

o(a;x) = a;p(x), Yo < Rymxz = n;Ryx, Vr < Rym; = n;Ry & n; = R¢miR;1,

for all 1 <i <t. Hence n = g *xm.
QED
We recall from the preliminaries that the topology on mod(d) is the subspace topology of the
vector space of all t-tuples m = (myq,...,m;) in At
Degeneration is defined on mod4(d) by the following:

M <geg N :=n e O(m).

1.3 Degeneration <4, in Repx(Q)

1.3.1 The Category of Finite Dimensional Representations Repy(Q)

A quiver is a finite directed graph, possibly with multiple arrows between the vertices, and possibly
with loops. Formally a quiver Q = (Qo, Q1, s, t) consists of a finite set of vertices Qq, a finite set of
arrows @1 and two maps s,t : @1 — Qo which sends an arrow « to its starting vertex s(«) and its
terminating vertex t(a). Thus we write « : ¢ — j for an arrow starting in ¢ and terminating in j.
A path p in the quiver @ is either an ordered sequence of arrows p = a,...aq with t(a;) = s(a41)
for 1 <1 <n-—1, or a trivial path e; for ¢ € Q. By a trivial path e;, we mean a path of length zero
where s(e;) = t(e;) = i.

If @Q is a quiver and K a field, then the path algebra A = K@ is defined as follows: it is the
vector space having all the paths in the quiver as basis; multiplication is given by concatenation of
paths. If two paths cannot be concatenated because the end vertex of the first is not equal to the
starting vertex of the second, their product is defined to be zero. This defines an associative algebra
over K. The unit element of the algebra is the sum of the trivial paths corresponding to the vertices.
For a more detailed introduction to path algebras see [1].
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Example 1.3.1 Let
8

Q: 15253
The path algebra A = KQ will be a six dimensional algebra, with basis e1, e, e3, o, B and fa. Here
e1, e2 and ez represent the trivial paths at the vertices 1, 2 and 3 respectively. One has to make
a convention about how to represent a path and here, in accordance with the convention above, an
oriented path is ordered from right to left, that is Sa means first « : 1 — 2 then 5 : 2 — 3.

The multiplication table for this algebra

e1*xep =ep erkea =0 e1xe3=0 e xa=e e *x0=0 e xPa=0
eoxe; =0 egxeg=ey egxe3=0 exxa=a exF=0 e*xfa=0
e3xe; =0 e3xea =0 e3xe3=0 e3xa=0 e3*x0=0 e3xfa=_/Lua
akxel = akxey =0 axe3 =0 axa=0 axf=0 axfBa=0
Bxer =0 Bxea=0F (Bxe3=0 P[Bxa=p0a pLxP=0 Paxfa=0
Baxey =Pa Paxes =0 faxe3=0 Paxa=0 [axf=0 pLa*xfa=0

The unit element of A is e; + ex + e3.
AN

A representation (V, f) of a quiver @ over a field K is a realization of its diagram of vertices in
the category of vector spaces, where each vertex i € Qg is replaced by a vector space V(i) and each
arrow « : i — j in @ is replaced by a K-linear map f, from V(i) to V(j). Here we assume that the
representations of ) are finite dimensional, i. e. dimgV (i) < oo, ¢ € Qp. The dimension vector of a
representation (V, f) is the vector d € Z%@°, given by d(i) := dim gV ().

A morphism ¢ : (V, f) — (V', f') between two representations of @ is a collection of K-linear
maps ¢; : V(i) — V'(i), i € Qo, such that the diagram

commutes Vo € Q1. Let (V, f), (V/, f') and (V", f") be three representations and let
o={¢;i : V(i) = V'(i)}: (V.f) = (V' f) and o = {¢; : V'(i) = V"(i) = (V', f') = (V" f"),
be morphisms. Then
Uo = {igi : V(i) = V"(i)} - (V. f) = (V" f").

We see that we have associativity of composition of morphisms, i.e. if ¢ : (V,f) — (V' f), ¥ :
V', )= (V" fYyand ¢: (V7 f") — (V") ) then ¢(¢¢) = (). Also for every representation
(V, f), there exists an identity morphism 1y ) : (V,f) — (V, f), such that for every morphism
¢ (V. f) = (V',f'), we have 1(v/ yy¢ = ¢ = ¢l(v,5). By these properties we see that we get a
category consisting of finite dimensional representations of @ over K, which we denote by Repx (Q).

A morphism ¢ : (V, f) — (V’, f’) is an isomorphism if ¢; is an isomorphism for each i € Q.

We can also take direct sums of representations. Let (V, f) and (V’, f’) be two representations
in Rep(Q). We let the direct sum (V, f) @ (V', f) be defined by:

(Ve V)6E) =V(E)e V' (i), Vi€ Qo,

and
0

fa
By a trivial representation (V, f) we mean a representation where the dimension vector d is

the zero vector. If (V,f) = (V',f") @ (V",f"), where both (V' f’) and (V", f”) are nontrivial
representations, we say that (V) f) is decomposable, if not, (V, f) is said to be indecomposable.

o= ({? ) V(s(@)) & VV(s(0)) = V(t(a) & VV(t(a), Ya € Qs.
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The Krull-Remak-Scmidt theorem holds in Repg (Q) (see [1]), that is every representation (V, f) in
Repgk (@) has a unique decomposition into a direct sum of indecomposable summands (unique up to
isomorphism and ordering of summands). Let A = K@ be the path algebra of @ over K, we have
that Repk (Q) and mod A are equivalent as categories, where mod A denotes the category of finite
dimensional A-modules (see [1]).

1.3.2 Degeneration =, in Repg(Q)

Now we define what is meant by degeneration <4, in Repg (Q). We start by choosing a basis for
V (i), i € Qo. We define
Repg(Q,d) = [] Hom(K%, K%w),
a€Q:
where d = (d;)icq, is a dimension vector. We see that Repx (Q,d) is a vector space. We choose a
basis b for the vector space Rep (Q,d), where the basis element b, is the dim(s()) x dim(t(c))-
matrix with one in entry (u,v) and zero elsewhere. To each basis element b(o‘ ) We associate a

uU,v

variable 33‘(3‘ ) One realize that Repk(Q,d) is an affine space. The polynomials determining the

uU,v

closed subsets in Repg (Q,d) are polynomials in the polynomial ring
Kz, ], where @ € Q1, 1 <u < s(a) and 1 <v <t(a).

We also define a group action of

Gla(K) = [] Gla,(K) on Repg(Q,d),
1€Qo

given by
grT = (gt(a)wag;(i))aeczu 9= (9i)icq, € Gla(K), = (%a)acq, € Repx(Q,d).

The orbit of x under the group action above is denoted by O(z).

There is a correspondence between representations and points in Repg (Q,d). By choosing basis
the correspondence follows naturally.

As for the t-tuples corresponding to the finite dimensional A-modules in mod 4(d), the orbits O(x)
for z € Repk (Q,d) corresponds to the isomorphism classes of representations with fixed dimension
vector d.

Lemma 1.3.2 The orbits of O(z) for x € Repk(Q,d) corresponds to the isomorphism classes of
representations with dimension vector d.

Proof: Let © = (Za)acg, and ¥y = (Ya)ac@, be two points in Repg(Q,d). Let X and Y be
representations with dimension vector d corresponding to x and y respectively. We must show that

yeO(z) oY = X.
"=": Assume there exist a g € Glq(K) such that y = g «xz. We want to show that X =Y. We have
y=9%2 = (gi(a)Talm)s 9= (9:)icqo € Gla(K), ¥ = (Ta)acq, € Repx(Q,d).

So the following diagram commutes

Yo
Y : Ks(a) — K dt(a)
gs(a)T gt(a)T
To
X: Ks(a) — K dt(a)

Since (gi)ieq, are invertible, they are isomorphisms of vector spaces. It follows that ¥ = X.
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7<”: Assume that X 2 Y. We want to show that there exist a g € Gly(K) such that y = g z.
By assumption there exist an isomorphism

p: X —Y, ¢ €Gla(K),

which is determined by the choice of basis. By the commutativity property of the diagrams arising
from this isomorphism

To
X Kds(a) — Kdt(a)
i%m) l@(a)
Yo
Y: Kds(a) — Kls(

where (¢;)icq, are isomorphisms, we see that
Ya = (¢t(a)xa¢;(}l))-

It follows that y = g * x.
QED

Degeneration is defined on Repg (Q,d) by the following:

X jdeg Y& (BS O(.T),

where O(z) = {z € Repk(Q.d) | f(z) =0, Vf € K[a{, ,)] such that f(O(z)) = 0}.

By Bongartz (see ) Repk (Q) and mod A has the same degeneration order.
We illustrate with an example of two representations.

Example 1.3.3 Let @) be the quiver

129,

Consider the following two representations:

(V,f): K2 2% K2 and (vV/, 1) : K2 22 K2

10y ., _(10
f“:<o 0)7fa:<0 1)'

The orbit of f., denoted by O(f.), is all invertible 2 x 2 matrices. We have that O(f,) is all
matrices of rank one. So we see that O(fa) C O(fL). In more detailed terms

(o ) rerorco(( 1)

VCW=VCW,

In general we have:

so in particular:

(o ) rerorco((s 1) =G ) 1ero=o(( 1)

If ¢ : Repk (Q) — K is a polynomial function in K[x?‘171),x?271),x(l)g)a,x‘ég)] such that

1 0
o3 O =0 viro

10
¢(0 0)20'

then
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If 1 : Repi(Q) — K is a polynomial function such that

t 0
o5 %) =0 vers

0 0
o(p o) =vo=o.
We see that O(f!,) = {O(fL) UO(fa) UO(0)}, i. e. all 2 x 2 matrices over K. It follows that

b o)ee o 1)

which implies that (V', ') <aeq (V, ).

then

1.4 Virtual Degeneration =<,;, and the Hom-order =,

Let A be a finite dimensional associative K-algebra with an identity over an algebraically closed field
K. Let M, N and L be finite dimensional A-modules.

The following result is generalized by K. Bongartz (3]:

Proposition 1.4.1 Let A be a finite dimensional associative K-algebra with an identity. Then two
finite dimensional A-modules M and N are isomorphic if and only if

dimy (Homa (M, X)) = dimg (Homa (N, X)), V X € mod A.

Proof: We assume that dimyx(Homy (N, X)) = dimg(Hom4 (M, X)). We claim that if M and
N are different from the zero-module, they have a non-zero direct summand in common. This is
obtained by taking generators fi, fa, ..., fn of Hom(M, X) as a K-module and looking at the map
f: M™ — N given by
f(ml, mao, ,mn) = f1m1 + f2m2 + ...+ fnmn

By construction, the exact sequence
0T v LN
induces an exact sequence

0 — Homa (M, T) ™29 gom , (ar, My "2 Hom (01, V),

when we apply the left exact functor Hom 4 (M, —). Take y € Hom4 (M, N), since fi1, fa, ..., fn is
generators we may write

Yy = Z’I‘l‘fi, ri € R, fi S HOHlA(M, N)

We have the commutative diagram:

where fr = y. We can choose © = (ryidps, rotdps, ..., rnidas), so Homa (M, f) is surjective. By
comparing dimension with the previous sequence we see that the induced sequence

0 — Homs (N, T) "4 gom , (N, a7 "™ 28 Hom , (N, N) — 0,
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has to be exact too. Since Homu (N, f) is surjective we have that Vh € Homa(N,N),Jx €
Hom4 (N, M™) such that h = Homa (N, f)(x), i. e. h = fx. We have that 3 z, such that idy = fz,
therefore f splits and N is a direct summand of M™.

The theorem of Krull-Remak-Schmidt (see Theorem 7.5 chapter 10 in ﬂgﬂ) asserts that in the
case where a module M is of finite length, it decompose into indecomposable summands and the
decomposition is unique up to isomorphism and ordering of summands. When the ring is a field as
in our case K, finite dimension implies finite length. Since the Krull-Remak-Schmidt theorem holds
in mod A, we can conclude that N and M have a non-zero indecomposable summand in common,
since N is a direct summand of M™.

The proof of the theorem proceeds by induction on the dimension of Hom 4 (N, N). The case
when Hom 4 (N, N) = 0 is trivial. Let us denote the common indecomposable direct summand of M
and N by U # (0), such that M = M’ @ U and N = N’ & U. We have that

dimyg(Homu(M' @ U, X)) = dimx (Homa(N' @ U, X)),VX.

We can cancel dim g (Hom 4 (U, X)) on both sides and if N’ and M’ differ from the zero-module we
can repeat all the argument to obtain another common non-zero indecomposable direct summand. If
not, the assertion follows. Since dimy (Homa(N', N')) < dim g (Hom4 (N, N)), we get by induction
that M’ and N’ are isomorphic, therefore M = N.
If M = N then trivially dimg (Homa (N, X)) = dimg (Homx (M, X)), V X.
QED

Recall the Hom-order (see [16]):

N =<phom M = dimyg(Homa (M, X)) < dimg (Homa (N, X)), for all A-modules X.

Lemma 1.4.2 =y,,, is a partial order on the set of isomorphism classes of d-dimensional modules.

Proof: For =<j,m to be a partial order on the set of isomorphism classes of d-dimensional modules,
it has to be reflexive, antisymmetric and transitive.

(i) Reflexive:
dimg (Homuy (M, X)) < dimg (Homa (M, X)), V X,

=hom 1s reflexive.

(ii) Antisymmetric: To be antisymmetric in this context means that if
dimpg (Homy (M, X)) < dimg (Homa (N, X))

and
dimg (Homy (N, X)) < dimg(Homy (M, X)), V X,

then M = N. This follows by Proposition [1.4.1

(iii) Transitive: If
dimg (Homy (M, X)) < dimg (Homa (N, X)), V X,

and
dimp (Homy (N, X)) < dimg(Homyu (L, X)), V X,

then trivially
dimg (Homuy (M, X)) < dimg (Homa (L, X)), V X.

QED
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We also recall a generalization of degeneration called virtual degeneration denoted by jvdeg.
In general one cannot cancel common direct summands from M and N when M <4., N (see example
due to J. Carlson ), and obtain a degeneration of the remaining complements. But if there exist
an X such that M ©& X <4eq N ® X, one says that M =<,4eq N. One can choose X to be the zero
module, so obviously =geq==vdeg-

1.5 Zwara’s Theorems

The main point of this section will be to present two very important theorems. Both are in the
generality presented here, due to Zwara. We omit the proofs of both theorems because they are
considered to be too long for this text.

We start with a proposition which proves one of the implications in Theorem [I.5.2] of this section.
A more general version of the following proposition is due to Riedtmann . In the algebra is
assumed to be a finitely generated K-algebra.

Proposition 1.5.1 Let A be a finite dimensional K-algebra. If there exists a short exact sequence
0 —2Z2—26M—N—0

of A-modules with Z, M and N finitely dimensional as A-modules, then dim(M) = dim(N) and
M =geg N.

Proof: We see that dim(Z @& M) = dim(Z) + dim(N), and since dimension is additive it is clear
by cancelation of dim(Z) on both sides that dim(M) = dim(N).

Next we consider a short exact sequence

g

0—Z2Z — Z&M— N —0,

where f: Z — Z and g : Z — M are A-homomorphisms. Now consider for each A in K the short

exact sequence:
()
g
0—Z — Z&M — Ny — 0,

of A-modules where I is the identity on Z and N, is the cokernel of the A-homomorphism h). By
change of the the basis of Z & M as a vector space we can obtain the short exact sequence

02 Q Im(h) & C (u_2)

N — 0,

where C is a vector space complement of Im(h). Where s = 0. Since the sequence is exact and <6)

is injective, i.e. r is invertible, we have

(u v) (g)=0:ur:0:>u:0.

Without loss of generality we may assume that r = id and v = id. Also notice that N = C as a
vector space. Now consider the short exact sequence

,
ha=| A
S\

02 — ' Imh)eN

(u_id)

w i
—

N — 0,
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where r) is invertible. We see that if a # 0 then (ZA(G)> #* (s Oa)) , hence
A A

r invertible < Im(hy) NN = (0).

If r) is not invertible then det (ry) = 0. First we must check that there exist a A such that
det(ry) # 0. For A\ = 0 we have det (r) # 0, so such a A do exist. Let K’ = {K\zeros of det(ry)}.
Since det(ry) is a polynomial in A and det(ry) has a finite number of zeros, we conclude that there
is a finite number of A’s for which 7, is non invertible.

Now to see how the module structure on N vary as a function of A\ consider the following
commutative diagram:

The exactness of the sequence gives us
-1
ury + sy =0=u=—sr, ,

which gives us that « is a rational function of .

We know that there is a correspondence between N and a tuple n = (ny,...,n:) € mod(d) (as
with M and a tuple m = (myq,...,m;)) and by the commutativity property of the diagram we can
give an explicit formula for how the structure of IV, and hence the tuple vary with \. We have

WM@) = (u id) (g 2) (2) — (st id) (g fL) (2) — (—sxr 10w+ na),

so the function ¢ describing the structure of N as a function of ) is defined by:
¢: K' — moda(d),

A= (=sary '8+ n).

Let us return to the following sequence:

()
9

0—Z — Z®M — Ny — 0.
For all A # 0 not an eigenvalue of f, hy is a split monomorphism, thus
Ny = M.
Let n* = (n7,...,n}) denote the t-tuple corresponding to Ny and
V ={n* = (n},...,n}) | rx invertible and X not an eigenvalue of f}.

Since the inverse of a matrix can be obtained by cofactor expansion the function ¢ : K" — mod(d), A —
(=875 '0 +n), gives us that the coefficients in the matrices of the ¢-tuple n* must be on the form

%, where det(ry) # 0. Let

¢: moda(d) — K
be a polynomial in the coefficient of the matrices such that ¢(n*) = 0, when r) is invertible and
A is not an eigenvalue of f. Since the denominators of all the coefficients in the matrix is either 1

or det 7y, we have that there exist a ¢t € N such that ¢(nt) = % = 0 < v(n*) = 0. Since
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v(n?) = 0 for all except a finite number of \’s, we have that v(n*) = 0, V A € K. In particular we
have that ¢(n") = 0. We also have that

V = {n* | ry is invertible and X is not an eigenvalue of f} C O(m),

which implies

(m).

<l
IN
S

To complete the proof we see that

n=n"€V CO(m)= M =ge N.

QED
We now state the first theorem of this section.

Theorem 1.5.2 (Zwara) Let A be a finite dimensional K-algebra and let M and N be finite di-
mensional A-modules. Then the following conditions are equivalent:

(1) M =<geg N.

(2) There is a short exact sequence 0 — N—M & Z — Z — 0 in mod A for some module Z in
mod A.

(8) There is a short exact sequence 0 — Z—Z &M — N — 0 in mod A for some module Z in
mod A.

Proof: (3)= (1): See Proposition [L.5.1]
(2)= (1): Follows by dual arguments.
For the rest of the proof, the reader is referred to .
QED
For a more general version of this theorem the interested reader is referred to . Let us recall
a definition:

Definition 1.5.3 An algebra Ay is of finite representation type if the category mod Ay contains
only finitely many isomorphism classes of indecomposable modules.

We now state what will be a crucial theorem for the theory developed later in this thesis.

Theorem 1.5.4 (Zwara) If A is o finite dimensional K-algebra of finite representation type, and
M and N are two Ap-modules of the same dimension as K-modules, then the three following state-
ments are equivalent:

(1) M <4eg N
(Q)ijdegN
(3)MjhomN

Proof: (1) = (2) is obvious, one can always take an extra summand X = 0 and obtain virtual
degeneration.

2) = (3) By Theorem [1.5.2| we have that to assume that M =<,4., N is equivalent to assuming
g
that there is an exact sequence of the form

0—Y—YaeZeM —2ZpN — 0,

for some module Z in mod Ay. Let X be a Ay-module which has finite dimension as a K-module.
We then apply the functor Homa,(—, X) to this sequence and obtain the following exact sequence

0 — Homu,(Z ® N, X)—Homu, (Y © Z® M, X) — Homy, (Y, X),
of K-modules. Then by counting dimension as K-modules, one obtains the inequality:

dimg(Homy, (Y & Z© M, X)) < dimg(Homy,(Z © N, X)) + dimg (Hom g, (Y, X)).
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This gives:
dimp (Homy, (Y, X)) + dimg (Homa, (Z, X)) + dimg (Homa , (M, X)) <

dimy (Homy, (N, X)) + dimgx (Homa , (Z, X)) + dim g (Hom 4, (Y, X)).

We can now subtract (dimg(Homay,(Z, X)) + dimg(Hompu, (Y, X))) from each side of this in-
equality and obtain the desired result dimg(Homa, (M, X)) < dimg(Homa, (N, X)) for each Ay
module X which has finite dimension as a K-module. By definition dimy(Homy4, (M, X)) <
dimp (Homy, (N, X)) implies M =pom N.

(3) = (1) For the rest of the proof, the reader is referred to [[2]. The version of the proof in
[12] is more general. One do not need K to be an algebraically closed field, it is sufficient to assume
that K is a commutative artin ring.

QED

When one works with algebras of finite representation type the Hom-order is equivalent to the
degeneration-order (see Theorem . The AR-quiver in general gives all the isomorphism classes
of indecomposable modules in a category (see ) When the category is of finite representation type
it is no problem to number the indecomposable modules. If we fix a numbering, we associate a fixed
indecomposable module which we denote by idb; to the ith isomorphism class of indecomposable
modules. The ¢-dimensional vector H* determined by

H*(i) = dimgHoma, (idb;, X),1 < i <,

where t is the number of isomorphism classes of indecomposable modules in the algebra, gives us a
vector by which we can decide where X is in the Hasse diagram of equal dimensional modules in the
same category. There will be given several examples and applications of this in Chapter

1.6 The Tensor-Order =g

The tensor-order is defined in the following way:

N =g M:<:>dimK(X®AN) SdimK(X®A M), vV X,

where N and M are left A-modules and X is a finite dimensional right A-module.

We shall see that the tensor-order is equivalent to the Hom-order:

Let R be a k-algebra over some commutative ring k and consider the category Mod R of (left)
R-modules. We fix an injective k-module I and denote by Dy = Homy(—,I) the corresponding
functor Mod k — Mod k.

A short version of this proof can be found in [T].

Proposition 1.6.1 Let R be an k-algebra over some commutative ring k. Let X be an R°P-module
and Y be an R-module. Then there is an isomorphism

D[(X ®r Y) %HomR(X,DIY), (11)
which is functorial in X and Y .

Proof: We know from homological algebra that both Hompg(—, D;Y) and D;(— ®gY') are both left
exact contravariant functors.
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It is also well known that in general Hompg(—, B) converts sums into products. In other words:
if A; is the ith injection X; — J[ X, and if B is a module, then the map

® : Hom(] [ Xi, B) — [ [ Hom(X;, B)

given by ¢ — (¢A;) is an isomorphism.
Thus it is obvious that the functor Hompg(—, DY) converts sums to product, but so does D (—®RgY),
thisis due to D;(—®grY) = Hom(—®RrY, k). We also know that in general tensor products commutes
with direct sums.

Notice that D;(R®prY) = D;Y and Homp(R, D;Y) = DY, we say that the functors coincide
on R.

In the final step of the proof we then take a free presentation of X: F/ — F — X — 0, and
apply both functors, obtaining;:

00— D (X®rY) Di(F®RrY) Di(F'®RrY)

0—— HOII’IR X, D]Y) EE— HOHIR F, D[Y) *>HOHIR F’ D[Y)
Which is a commutative diagram, due to the fact that we can choose F = R", F/ = R™, and
Di(FerY)=D/(J[[RerY)=[[Di(RerY)=][][D1Y

also
Homp(F,Y) = Homp([[ R.Y) = Homp(J[ R, Y) = [[ D1V,

similar for F”.
The assertion follows by the Five Lemma (see )
QED

The proof above is valid if we replace Dy = Homy(—, I) by the duality Dx = Homg (—, K).

If we are considering finite dimensional modules, we know that an isomorphism preserves dimen-
sion.
If we use the dual D = Homg (—, K) we obtain:

dimK(X KRR Y) = dimKHOI’IlR(X, l)KY')7

Corollary 1.6.2 Let Ay be a finite dimensional K-algebra of finite representation type, and M and
N are two Ay-modules of the same dimension as K-modules, then the following four statements are
equivalent:

(1) M =Zgeg N
(Q)ijdegN
(3)MjhomN
(4) M 2 N

Proof: The fact that (1), (2) and (3) are equivalent statements is Theorem We will prove
that (3) and (4) is equivalent. Let X be a finite dimensional right A - module. It follows from
Proposition that

dimK(X ®Af M) = dimKHomAf(X, DKM).

Since Dk = Hompg (—, K) is a duality, we have that
dimgHoma, (X, D M) = dimyxHomy, (D%M, Dy X) = dimgHoma, (M, Dg X).

So
dimK(X ®Af M) = dimKHomAf(M, DKX).
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As X varies over all the isomorphism classes of indecomposable finite dimensional left A s-modules,
so will D X vary over all the isomorphism classes of indecomposable finite dimensional right A;p -
modules. Thus the <g-order will give the same partial order as the <j,,,-order.

QED



Chapter 2

Degeneration on Quivers of Finite
Representation Type

In this chapter we first recall some classic representation theory in Section We then develop
a method for determining degeneration on quivers of finite representation type in Section We
define two types of matrices H? and T?, which will determine degeneration. In Section [2.4] we
analyze the structure of these matrices and see how they are related.

2.1 Gabriel’s Theorem and the Coxeter functors

Let us recall two definitions:

Definition 2.1.1 A quiver Q is of finite representation type if the category Repk (Q) contains only
finitely many isomorphism classes of indecomposable objects.

Definition 2.1.2 For a quiver Q we define I'(Q) to be the graph we get when we forget the orien-
tation of the arrows in Q.

We shall now state but not prove what is called Gabriel’s Theorem, a classic result!

Theorem 2.1.3 (Gabriel, 1972, @) A quiver Q is of finite representation type if and only if the
graph T'(Q) is a Dynkin quiver, i.e. I'(Q) is one of the following graphs.

An:1 2 n,lfn
D, : 1 ,4<n
2 3 n
E62 1
2 3 4 ) 6
E7: 1
2 3 4 ) 6 7

21
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Eg: 1

2 3 4 5 6 7 8

In particular the property of being representation finite does not depend on the orientation of the
edges.

For a more thorough and detailed elaboration on the theory in this section, the reader is referred
to . We have in the following introduction to the partial Coxeter functors and the Coxeter
functors adopted much of the notation and structure from there.

Let Qq denote the quiver () with orientation 2 on the arrows. By Qg we mean the quiver with
the same underlying graph, i. e. I'(Qq) = I'(Qq-), but with, possibly, a different orientation £’ on
the arrows.

To elucidate how the structural properties of Repr(Qq) is connected to the properties of
Repk (Qqr), we can recall the partial Coxeter functors and the Coxeter functors. These functors
leads to an equivalence of categories, which will turn out useful in our work on determining degen-
eration on Repk (Q), where @ is of finite representation type.

Given Qq = (Qo, @1, s,t) and a vertex v € (g, denote by

Y, ={a e @] sla) =vortla) =0}

We say that a vertex v € Qg is a sink if {a € Q1 | s(a) = v} = @, and a source if {a € Q1 | t(a) =
v} = . So no arrow is ending in a source and no arrow is starting in a sink.

For a sink v of a quiver Qg there exist a left partial Coxeter functor

Cl: Repi(Qa) — Repr(Qov),

where Qo obtained from Qg by shifting the orientation on all the arrows ending in v. We define
C;t by the following. For X € Repk(Qq), let C;F (X) =Y, where X; =Y}, for all i # v, and Y, is
the kernel of the rightmost map in the following sequence
i (Xa)
0—Y, — H Xoa) — Xo. (2.1)
agl,

We have Y = X : X ) — Xy(p) , forall 3 ¢ ¥, and Yo, = mai 1 Yy(a) — Yy(a) » the composition of
the natural embedding of Y,, into HaEEv X(a) and the projection of this sum onto the term X, (),
for each a € ¥,. Note that C;f(S,) = 0, where S, is the simple indecomposable representation
corresponding to the vertex v.

Let h : X — X’ be a morphism in Repg(Qq). Then Cf(h): CH(X) — C;}(X'), where
Cr(h;) = h; for all i # v and C}(h,) is the unique morphism which makes the following diagram
commute.

7 Xa
0——=Y, —— Haezv Xs(a) g Xy

[
I CF (hy) lhsm) lhv
y (x7)

’

0——=Y, #>Ha62v X,

For a source v of a quiver Qg there exist a right partial Coxeter functor

C, : Repr(Qq) — Repx(Qu),

where Qq differs from Qg by that it has the shifted orientation on all the arrows starting in v. We
define C by the following. For X € Repi(Qq), let C, (X) =Y, where X; =Y, for all i # v, and
Y, is the cokernel of the leftmost map in the following sequence

X, S T Xuw) = Y — 0. (2.2)
a€Yl,
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We have Y = X : X3y — Xyp) , for all 8 ¢ Y, and Y, = i, : Ys(a) = Yi(a) , the composition
of the embedding of X;(q) into [[,cx, Xi(a) and 7 is the natural projection of [[ 5 Xi(a) onto
the term Y, for each a € ¥,. Note that C, (S,) = 0, where S, is the simple indecomposable
representation corresponding to the vertex v.

If h: X — X' is a morphism in Repg(Qq). Then C, (h) : Y, — Y/ is a morphism in
Rep (Qqr), where C, (h;) = h; for all ¢ # v and C,; (h,) is the unique morphism which makes the
following diagram commute.

(Xa)

Xy — laes, XS(Q) —— Y, —=0

|
lhv lhs(a) 1 Cy (hy)
(X2,) v

X, —>aes, Xi@) —=Y, —0
Theorem 2.1.4 The functors

Cf: Repr(Qq)/S, — Repr(Qar)/Sy (if v is a sink)
and
C,: Repr(Qq)/S, — Repx(Qqr)/Sy (if v is a source)

are both equivalences of categories.

Proof: For the proof we refer the reader to [2].
QED

Theorem 2.1.5 Let Q be a quiver and let T'(Q) be the underlying graph with no cycles, let Q and
Q' be two orientations of it. Then there exists a sequence of vertices such that

Cy .Ch 0 Repi(Qa) — Repr (Qqr),

where each C*

v

1 <i <k, is either a right partial Cozxeter functor or a left partial Coxeter functor.

Proof: We refer the reader to .
QED

Let us illustrate how we can use the partial Coxeter functors by an example of categories which
will be revisited later and work as our crown example for the theory we are developing in this chapter.

Example 2.1.6 Let
Qa: 1 and Qo : 1

+ + +

Note that C,, (Ve V)= C (V)®d C, (V'), so it is enough to analyze what the functors do with
the indecomposable representations of the category representing the isomorphism classes.

Further note that vertex 4 is a source of the quiver Qq.. We are going to apply

Cy : Repr(Qq) — Repk(Qq).

We start by computing the AR-quivers of the categories. The indecomposable representations are
represented by their corresponding dimension vectors. Notice that the numbering is fixed in the two
categories with respect to the dimension vectors of the indecomposable representations. This is done
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to illustrate what happens when we apply the partial Coxeter functors, and is not something we shall
do throughout this thests.

Repx (Qar) :

—~
=
=
J—‘

(==}
=
(o3
—
=
=

—_

—
~—
[\v]
—

—

—_
N

—_
~—
=]
—~
l—'

—

—_

(e
=
—_
(e}
—

—_

—_

—_

—
~—
e}

/ S \
=
=
=

—
—
—_

71a1a0)7 (17071a1)3 (0,170a0)12
(2.3)

Repg (Qq) :

(07171a1)4 (1705170)8 (051,070)12

T s T S

Cy
K — K
N N
KTK K——0
7’ 7’
K K
and
Cy
K — K
K<—0 K> K
4 4
K K

By the definition of the right partial Cozeter functor we see that C, sends the indecomposable
representation with dimension vector number 9 in Repk (Qq) to the indecomposable representation
with dimension vector number 10 in Repx(Qqs), and vice versa. It is straightforward to wverify
that all the indecomposable representations are switched, with one exception. That is for the simple
representation corresponding to vertex 4, Sy = (0,0,0,1);. We see that C, (S4) = 0. By the definition
of the right partial Coxeter functor we see that 2 is switched by 5, 3 by 8, 4 by 7, 6 by 6, 11 by 11
and 12 by 12. By adding Sy to the image of C; we obtain the full abelian category Repk (Qq).

AN
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2.2 The Structure of a Representation and the Matrix H¢

We recall from the previous section that a representation with underlying quiver of finite repre-
sentation type is classified by Gabriel([f]) to be a Dynkin diagram, i. e. A,(n > 1), D,(n > 4),
FEg, E7, Eg. The number of isomorphism classes of indecomposable representation is independent of
orientation on the quiver and it is well known to be w, n(n—1), 36, 63 and 120 respectively. We
shall determine degeneration as a partial order on the representations with equal dimension vector in
the category Repg (Q) for all quivers @ of finite representation type. This we will do by first decom-
posing into indecomposable summands, thus we give a procedure to determine the decomposition of
a given representation X € Repgk (Q).

Assume that @ is Dynkin and let A denote the path algebra K@ (see Section . The
corresponding AR-quiver of the category Repk(Q) is directed (i. e. contains no loops). Since
there is a finite number of isomorphism classes of indecomposable representations in the category,
there is no problem indexing the fixed indecomposables representing the isomorphism classes of
indecomposable representations in the category from the projectives to the injectives. That is for
all j < i, dimgHomy (idb;,idb;) = 0. This indexing is not always unique. After indexing the
indecomposables it is possible to define the entries of a matrix H? by:

(1,7) = dimgHomy (idb;, idb;), V1 <14, j <m,

where m is the number of isomorphism classes of indecomposables in the category Repg (Q). We
will use that the ith row vector of H?, denoted 7;, is given by:

’I"l(j) = dimKHOmA(idbi, idbj)j,

where 1 < 57 < m.

The matrix H% will be upper triangular since the AR-quiver is directed (i. e. contains no loops).
Also, since the AR-quiver is directed there will always be ones on the diagonal since there does not
exist a path in the AR-quiver from idb; to idb; (see |1]). The ones on the diagonal corresponds to the
identity morphisms, thus these matrices will always be invertible and the determinant will always be
one. The matrix H? is used to determine the structure of a representation X in Rep(Q). This can
be done by first inverting H% and then compute the vector

H™ = dimgHompy (idb;, X), ¥V 1 <i <m,

where m is the number of isomorphism classes of indecomposables in Repg (Q). One should now
multiply the vector H¥ by (H?)~!. The result is a vector giving the multiplicity of idb; as a summand
of X. We have that if HX < HY, where X and Y are representations with equal dimension vector
in Repr (Q), then X <40, Y, this follows from Theorem m

Let us now have an example to illustrate how this method works:

Example 2.2.1 Let Q be the oriented quiver:
1

3—>4 24)
v

2
We compute the matriz H?, where

(i, §) = dimgxHomy (idb;, idb;), ¥ 1 < i, j < 12.
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So

H? =

SO OODDODDODDODODODOC OO
OO DO DD DODODO OO =
O R HF O, EFEFOOFOO
RO, R P OFRORF,OOO

OO DO OO OO OO ==
S OO DODDDODODO O
[N eNelNoNeNeNol S eRoll o)
OO OO OO HFHFHF=N
OO OO O R MHMFEORFRRFRO
SO OO RO HHRKFEORFRO
O OO OO O F ==
OO R R KHEHFEFNRFRFRRFRRFRO

s}
o

Let X be the following representation:

(o 1)

we get the vector

H¥=(2 2110101110 1)"
By elementary linear algebra one obtains

0

—_
|
—_
—_
o

|
—
|
—
I~
—
o~ ocoo
cor~oo
— oo oo

O OO OO O OO
OO O OO oo

o
—
o

coocococococoo oo
cCcoocococococooo o —
cCoocococo0O0 0O =
coocococococorolo
cCoocococoOo~o o
cooo o
coocom~o
coo~oo |

[

|

o

|

o

0

o
—

So the corresponding row operations on HX gives:
X=H)'HX=(0 1100000000 1)
Which is equivalent to say that
X = idby @ idbs @ idb2.

To relate this to degeneration which is our main focus, let us compare X with two other representa-
tions with the same dimension vector with respect to degeneration. Let T be:
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One obtains .
HT:(221122111101)T.

Let S be:

One obtains ,
HS=(2 21122 11221 1)".

So with respect to degeneration, X and T are incomparable, but S is a degeneration of both X
and T. So in the Hasse diagram (see Subsection of the representations with dimension vector
d=(1,1,2,2) in Repr(Q) X, T and S would be ordered like this:

) ) )

S
X T
One can also multiply HT and H? by (HP)™! from the left, this would give:

T=H)'HT=(2 00 0 1 0 1 00 0 0 1)

and B .
S=(H?)H=(2 0002000001 1)

Which is equivalent to say that
T = idby @ idby @ idbs @ tdb7 D idb12

and
S =2 idby @ idby @ idbs D idbs @ idbiq, D idbyo.

Let Qq and Qq/ be as in example 2.1.6. We apply

Ci : Repi(Qq) — Repr(Qa).

We shall analyze the relation between H?® and H%¢’. First notice that by the definition of the
partial Coxeter functors we see that C; makes all the same changes of indecomposables in the
category as C; . That is: S4 is sent to 0, 2 is switched by 5, 3 by 8, 4 by 7, 6 by 6, 9 by 10, 11 by
11 and 12 by 12. We add Sy to the image of C; to obtain the full abelian category Repx (Qq)-

We obtain the matrix H?e', where we use the same indexing of the dimension vectors of the
indecomposables in the category Repr (Qqr) as for the category Repk (Qq).
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HQa —

OO O DODOO OO OO
OO ORHMFHFINOORO
OO OO O RO OO OO
O == =N == -=O
OO O FMFEMEFOOOO
R R R RO, O, OO0
RO, RRPRORFR,RPFR OO, OO

O OO OO O = = =
SO OO DD DODODO OO O
OO OO OO R MHEFEFORFRFRO
OO OO RO R EFRFORFRO
OO OO OO OO OO

(an)
(an)
(en)
(an)
(en)

Note that the differences between H?? and H%® can be explained by the partial Coxeter
functors. A general fact is that when applying C;" to Repg (Q) we loose a simple projective repre-
sentation, just as we loose a simple injective when applying C, . This is obvious from the fact that
v is assumed to be either a sink or a source respectively, and S, must therefore either be a simple
projective representation or a simple injective representation. On the other hand if S, is added to
the image of either C;f" or C,, it will have the opposite status, since all arrows ending or starting in
v are turned. So note that in our case C’Z‘ (S4) = 0, where Sy = idby. So idb; is not in the image
of C’4+ . When we add it to the image, it is no longer a projective representation, but an injective
representation.

Let S, = idb;. Recall the definition of the partial Coxeter functors effect on the morphisms in
Repi (Q). We can see that this corresponds to interchanging row i with column 4 in the matrix
H®. Notice that in general when one change the ith row with the ith column in a upper triangular
invertible matrix such as H?, the matrix will remain invertible! In our case, row one is interchanged
with column one.

The rows and columns of the remaining matrix consisting of all entries in H?® except for those
in the ith row or ith column are switched just as the functor C;f switches the indecomposables in
the categories. The result is independent of whether you first switch rows or columns. Since this
actions are elementary row and column operations on a linearly independent set of vectors, one is
guaranteed that H?¢ is an invertible matrix.

In our case row 2 and 5 are switched, 3 and 8, 4 and 7 and 9 and 10. The columns are switched
in exactly the same way. So as one could expect the relations between the categories Repx (Qgq) and
Repy (Qqr) are closely connected to the relations between H®?? and H% by the partial Coxeter
functors.

To compare the matrices H?® and H?® when the indexing of the dimension vectors of the
representations corresponding to the isomorphism classes of indecomposables is fixed for both cat-
egories, are really not that interesting. The structure of the AR-quiver of the two categories are
identical with the exception of the one simple representation. So it should be clear that by altering
the indexing of the indecomposables in the new category Repk (Qq-), we can obtain the same matrix
with the exception of row one and column one. In the rest of this thesis, we make the convention
that the representations corresponding to the isomorphism classes of indecomposables in a category
Repk (Q), where @ is Dynkin is indexed according to the following rule:

J < i< dimgHompy (idb;, idb;) = 0.
So when we apply one of the partial Coxeter functors, f. ex.

Ci : Repg(Qa) — Repk (Qu),

we should change the indexing of the indecomposables according to this rule in Repi(Qq/). Then
if the indexing matches the indexing in Repg (Qq) relative to the structure of the respective AR-
quivers (the index of a representation is lowered by one for each place in the AR~quiver), we should
get the same matrix with the exception that row one and column one now are replaced by a new row
12 and column 12. So instead of the indexing in Section [2:I] we should order the indecomposable
representations in the AR-quiver of Repg (Qq/) in the following way:
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Repr (Qor) -

If we now compute the matrix H? | where (i,7) = dimxHomy (idb;,idb;), ¥ 1 < i, j < 12, we
see that

111 1 2 1 1 1 1 0 0 | O

o1 0 0 1 1.0 1 1 1 0 | 1

o 0o 1 01 0 1 1 1 01 | O

0o 0o o111 1 0100 | O

o 0 0 o 1 1 1 1 2 1 1 \ 1

0o 0o 0001000 1 1 0 | 0

H? = 0 0 0 0 0 0 1 0 1 0 1 | 1

o o o oo oo 1 1 1 1 | 1

0 0o o 000 0 0 1 1 1 | 1

0 0o o 0000 OO 1 0 | O

0 0o o o000 0 0 01 | O

- - - - - - = = = = = 4
0O 0 0o 0O 0OOO 0O 0 0O 1
As we can see HP9" has a 11 x 11-submatrix which can be found in
1 11 1 0 1 0 0 1 0 0 O
+ — — — — — — — — — — —
o] 1t 1 1 1 2 1 1 1 1 0 0
o] o100 0 1 1 0 1 1 1 0
0] oo 1 0o 1 0 1 1 1 0 1
0] 0o 0o 0o 1 1.1 1 01 00
H?=H% =0 | 0 0 0 0 1 1 1 1 2 1 1
O] 0o 0o 0o 00 1 0 0 1 1 0
0] 00 0000 1 0 1 0 1
0] oo oo 00 01 1 1 1
0] oo oo 000 01 1 1
0] 0000 0O 0O O0 0 O0 1 0
0] 00 00 0O0O 0 0 0 0 1
2.3 (H9)!

An interesting thing about the inverse matrix of H? is that there exist a one-to-one correspondence
between the rows in (H?)~! and the minimal left almost split morphisms (see [1]) of the cate-
gory Repr (Q). We shall soon state this correspondence in a proposition, but we have to do some
preparations first.

Let 7} denote the ith row in (H%)~! and let TrD(i) denote the index of the indecomposable
representation TrD(idb;) corresponding to the T'rD(i)th isomorphism class in Repg (Q).

Due to the ordering of the indecomposables in Repg (Q) (if j < i then dim g (Homn (idb;, idb;)) =
0), we have that for every minimal left almost split morphism f; from a indecomposable idb;, where
TrD(idb;) # 0, there exist a almost split sequence in Repg (@) of the form:

0 — idb; L5 idb; & ... & idby, —s TrD(idb;) — 0,
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where for all I € {j, ... ,k}, we have that [ > i. All almost split sequences starting in idb;, where
TrD(idb;) # 0, are on this form (see [I). If TrD(idb;) = 0, such a sequence does not exist. If
TrD(idb;) = 0, then the minimal left almost split morphism f;, starting in idb;, is a morphism of
the form:

idb; L idb; @ ... @ idby, — 0,

where for all [ € {j, ... ,k}, we have that [ > 4. This is an epimorphism, since in fact, it is a
morphism on the form

gL I/soc I, (see [1]).
The set {j, ... ,k} may be the empty set . Of technical reasons, if {j, ... ,k} = 0, we let idb; ®
... ® idbg, = 0, the zero module. So then f; will trivially be an epimorphism on the form
I — I/soc I =0,
since I = 0 if and only if soc I =0 (see [1]).

Proposition 2.3.1 Let @ be of finite representation type. There exist a one-to-one correspondence
between the rows in the matriz (H?)™" and the minimal left almost split morphisms starting at the
indecomposables in Repr (Q).

If TrD(idb;) # 0, the minimal left almost split morphism f; starting at idb; gives a almost split
sequence

0 — idb; L5 idb; @ .. @ idby, —s TrD(idb;) — 0,
where for alll € {j, ... ,k}, we have that I > 1,

which corresponds to:

1, ift=14 ort =TrD(i),
ri(t) = —1,ifte{j, ... .k},
0, else.

If TrD(idb;) = 0, the minimal left almost split morphism f; starting at idb;

idb; 15 idb; @ ... @ idby, — 0,
where for alll € {j, ... ,k}, we have that | > 1,

corresponds to:
1, if t =1,
ri(t) =< -1, te{j ... k},
0, else.

Proof: We may assume that Repx (Q) contains n distinct isomorphism classes of indecomposable
representations.

If TrD(idb;) # 0, the minimal left almost split morphism f;, starting at idb;, gives the almost
split sequence

0 — idb; L5 idb; & .. @ idby, —s TrD(idb;) — 0,

where for all [ € {j, ... ,k}, we have that [ > 1.
Apply Homy (—, X) to the sequence, where X # idb;, we get

0 — Homa (TrD(idb;), X) — Homy (idb; & ... & idbs, X) — Homp (idb;, X) — 0,

where the right map is an epimorphism due to the minimal left almost split property of the first
sequence. Let X = idb;, we see that when ¢ # q:

dim i (Homp (idbj & ... @ idby, idb;)) = dim g (Homy (idb;, idb;)) + dim g (Homp (TrD(idb;), idb;))
and

0 = dim g (Hom (idb;, idb;)) + dim g (Homp (TrD(idb;), idb,)) — dim (Homy (idb; & ... & idby, idb,)).
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We know that
dim g (Hompy (idb;, idb;)) = 1, dimy (Homp (TrD(idb;),idb;)) = 0 and
dim g (Hompy (idbj, idb;)) + ... + dim g (Homp (idby, idb;)) = 0.
By the definition of the row vectors of H? we have that
r; = dimg (Homp (idb;, idbt))¢, rrrpey = dimy (Homp (T'rD(idb;), idb;)); and

r; = dimg (Homa (idbj, idby))e, ..., 7% = dim (Hompa (idby, idby)):,

where 1 <t <n.
Let ¢; = (04, ...,0;—1, 14, 0;41, ..., 0, ), where 1 < i < n. By the equations above it follows that:

€ ="7; —Tj—..— T+ TTrD(i)-
It follows that r.(t), is given in the following way:

1,if t =i or t = TrD(i),
rl(t) = —1,ift € {j, ... ,k},
0, else.

If TrD(idb;) = 0, then the minimal left almost split morphism, starting at idb;, f; is on the form

idb; L5 idb; @ ... @ idby, — 0,

where for all [ € {j, ... ,k}, we have that [ > i. Note that if {j, ... ,k} =0, then we let idb; & ... ®
idbi, = 0, the zero module.
Apply Homyp (—, X) to the morphism, where X # idb;, we get

0 — Homa (idb; & ... ® idby, X) — Hom (idb;, X) — 0,

where the map is an epimorphism due to the minimal left almost split property of f;. Let X = idb;,
we see that when ¢ # i

dimK (HomA (Zdb“ Zdbt)) = dimK (HOH]A (Zdbj D..0D idbk, Zdbt))

When ¢ = i, we know that
dim x (Hompy (idb;, idb;)) = 1 and

dimK(HomA(idbj, Zdbz)) + ..+ dimK(HomA(idbk, ’Ldbl)) =0.
By the definition of the row vectors of H? we have that
r; = dimy (Homp (idb;, idb;)); and

r; = dimg (Homa (¢dbj, idby))s, ..., 7% = dimg (Homna (idby, idby)):,

where 1 <t <n.
By the equations above it follows that:

61‘:1"1‘77”3'7...77%.
Hence 74(t), is given in the following way:
1,if t =4,
ri(t) =4« -1,ifte{j, ... ,k},

0, else.

Thus the matrix (H%)~! is determined by the minimal left almost split morphisms in Repx (Q).
QED

Let us illustrate with some examples, let 7/ denote the ith row in (H%?)~!:
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Example 2.3.2
0——(0,0,0,1); ——(0,0,1,1) ——(0,0,1,0)5s ——=0

corresponds to

ri=(1 -1001000000 0).

A
A more interesting example is the following;:
Example 2.3.3
0—— (0707 1a 1)2 —— (15 07 17 1)3 S2) (05 17 17 1)4 S2) (05 07 170)5 —— (17 1) 27 1)6 —0
corresponds to
r'zz(Ol—l—l—llOOOOOO).
A

2.4 The Structure of H% and T

A similar matrix T is obtained by setting
(i,) = dim (idb® @4 idb;), V1 <4, j < m,

where m is the number of isomorphism classes of indecomposables in Repg(Q). The numbering
idb" and idb; refers to the same numbering of dimension vectors of the indecomposables in the AR-
quiver as in the previous example, but the underlying quiver of idb’ is the opposite of tdb;. Let
idb® = D (idb;), where D = Homp (—, K). The (i,) entry is obtained by choosing a projective
resolution of idb® and then tensoring the projective resolution with (— ®a idb;). We can then easily
calculate (4, ) = dimg (idb® ®, idb;). In more precise terms:
Q-LP—id—0
tensoring by (— ®@a idb;) gives

(Q @n idby) VENY (P @y idb;) — (idb; @ idb;) — 0.

We then see that
dim (idb" @, idb;) = dimy (P @y idb;) — rank(f, @a id).

Here it is easy to calculate the right side of the equation.
An example of this calculation could be:

Example 2.4.1 Let

and
€2A L €3A — Zdb8 —0

tensoring by (— @4 idbs) gives

(fp@aid)
—

(e2A ®rcq idb?) (esA @4 idby) — (idb® @4 idby) — 0.
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Now
dimp (idb® @y idby) = dimp (esA @4 idbs) — rank(fs @a id),

but then
dim (idb® @, idby) = dimx (ezidbs) — rank(idbs)s.

We see that dimg (esidby) =1 and rank(idby)g = 0, thus entry

(8,2) = dim (idb® @ idby) =1 —0 = 1.

We end up with the following matrix T9:

TR =

O R HF R OFRFROORFROO
_— O MFEMFEFOFR O OOO
OO O REFEF R PR OOOO
R R NR PR OOO OO
O P OO, OO OoOOoOOo
— O R O OO0 OoO0OoOo
=== 0000000 O0o
=== 00000000 Oo
O OO0 oo o
H O OO ODIDODIDODDODODODOoO oo

O OO R OO O FH =
OO R R EFEF R INRFRRFERFRRFRO

Note that

=
R

|
S
L
S

There is much that could be said about the matrices H? and T9. There is a pattern in both matrices
due to the fact that

dimgHomy (X,Y) = dimgHoma (TrD(X), TrD(Y)),¥ X, Y not injectives (see[l]),
where TrD denotes the transpose of the dual of a module (see[l]). We have that
dimKHomA(PiQ7 M) = dimg (M;),
where PZ.Q = A xe; and dimg (M;) equals the dimension of M in the ith vector space. So if we take

the projectives from the AR-quiver and analyze the dimension of the Hom-spaces from them to all
the others:

111101001000

pQ _ 011112111100
001001101110}
0 00101O0111O01

the rest of H? is just a repetition of this pattern, where we shift all the representations by the TrD
to the right in the AR-quiver, always leaving out the injectives. Thus

0000711110100
000001111211

Q:
TrD(P%) 0000O0OO0OTOGOTI1T1GQ0]}|
000000O0TO0T1QO01

and
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000O0O0OO0OT1T11°1
000O0O0OUO0OOO0T111
QV\) —
TrDTrDPE) =16 6 0000000010
000O0O0O0UO0OO0O OO0 1
So by the notation above we can write:
Pe
H® = TrD(P9)
TrD(TrD(P?))

This also explains why the matrices H? and T? only consists of the number 0, 1 and 2. If we
look at the AR-quiver of the category, we see that there are no higher dimensional vector spaces in
any of the indecomposable modules, they have either dimension 0, 1 or 2. This is a general fact for
all quiver-algebras with D,, as the underlying graph and a similar argument can be made for all the
other quiver-algebras with Dynkin diagrams as underlying graph.

The following should indicate the form of all the matrices that settles the question of the struc-
ture of representations with quivers of finite representation type, and hence settle the question of
degeneration for this class of algebras. Remember that the isomorphism classes of indecomposable
representations are indexed from the projectives to the injectives according to the following rule
if j < i then dimgHomy (idb;,idb;) = 0. This does not always give a unique indexing, but all
numberings having this property gives upper triangular matrices with ones on the diagonal.

PAn
TrD(PAn)
(TrD)*(PAn)
HA» = . , where m depends on n and the orientation on A, .

(TrD)™(PA+)

where P is a matrix which corresponds to the dimension of the Hom-spaces from the projectives
of the AR-quiver of Repg (Q) to all the others.

We see that in addition to depending on n, m depends on the orientation on A,,. This is because
when we apply TrD to the projective representations in the AR-quiver of the category Repx A,
we might loose projectives, since a representation can be projective and injective at the same time,
TrD of an injective is zero (see [1]). That is why even if (TrD)!(P4») is a k x n(n — 1) matrix,
(TrD)**1(PA») can be a | x n(n — 1) matrix, where [ < k and 0 <t <n — 1.

To illustrate and clarify we give an example:

Example 2.4.2 Let

AL 2 3 4 5.
Then
pAs’
TrD(P45")
HA = | (TrD)2(P%") | =
(TrD)*(P45")

(TrD)}(PA)
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HA

HA

1
0
0
0
0
0
0

O OO O O OO o oo o

O O OO OO OO o oo o

— O OO OO OO oo o

where

0 000OO0OO0OO0OTO0OTO0ODOOO0OTO0OTQ 01

OO O A0 HO O O A
OO O A 10O A= O~ ™~ —
OO O —H O OO OO O — O
OO A A A0 A ——— OO
OO 1T OO A O - O OO
OO T O OO OO —+HO O OO
OrA " A= OO0 00O
O A A 4O A A OO OO oo
O 41 OO +H+H 0O OO0 oo oo
O O OO 10000 oo oo
e O O OO OO oo 0o
O OO0 0000 o oo
O OO0 00000 o oo
—n—H O OO0 OO o oo
— O OO OO OOOoOOoO oo oo

Il

S

x

110 0 0 0 0 O
11

1
1

1 0 0 0

1

1

0

1

0011011

1

00 01 0O01O01

0
1
0
1

0000111000
11 1

00 0 0 01

000 O0O0OO0OT1TO01

00 0O0O0O0OTO0T1

1
1

000 O0O0O0OTO0OTO

00 0O0O0OO0OO0OTO0OT 071

HAY =

10 0 0

1 1

(1).

),

So

OO OO -
SO O~
oo o~ O
OO~ -
OO A —A O
oo - OO
O =
O - - - O
O - - O O
O~ O OO
— o
— - - O
—. - — O O
—\ - O OO
— O O O O
N——

I

Wro

<

A
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coo oo o
coo Q00O
coo Q00O

coo 00O

01 11
0 011
0 0 01
0 0 0 O
0 0 0O
0 0 0O
0 0 0O

cCoo PR Ee

0
1
0
0
1
0
0

0
1
1
0
1
1
0

0 00 O0O0O0OO0OTO OO O0OTUO0OTO 0
0 00O0O0O0OO0OO OO O0OTUO0OO 0

R L =)

1
0
0 00o0O0O0OO0OO0OO0OGO0OO0OO0OTQO0OO®O

cb o O OO

—_—_ PO o

0
0
0

1

0
0
1
1

AN

For the other Dynkin diagrams the number of times we must apply TrD is independent of the

orientation on the underlying quiver:

HD» —

HE =

HEr =

HPs =

PP
TrD(PPr)

(TrD)"=2(PP

PFe
TrD(PEs)

PEs

®
— N S e

)
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where P is a matrix which corresponds to the dimension of the Hom-spaces from the projectives
of the AR-quiver of Repk (Q) to all the others.

Proposition 2.4.3 If Q) is a quiver of finite representation type, then
HC = (T9)7.

Proof: Assume that Repg (@) contains ¢ distinct isomorphism classes of indecomposable rep-
resentations. After ordering the fixed representations corresponding to the isomorphism classes of
indecomposable representations from 1 to ¢, we have to prove that entry (i,4) in H?, denoted
(i,§) gra, equals entry (4,4) in T9, denoted (j,7)re. By the definition of the matrices we know that

(i,7)ge = dimgHomy (idb;,idb;), ¥ 1 <1, j <t,
and
(j,i)re = dimg (id’ @4 idb;), ¥ 1 <1, j <t
From Section [[.6] we know that
dimg Dy (idb; @ idb’) = dim g Homp (idb;, Dycidb’),

where Dy = Homg (—, K) and idb := Dcidb;.
We see that

(j,yi)re = dimg (idb’ @, idb;) = dimy Dg (id? @, idb;) = dimy (Homp (idb , Dycidb;)) =
dimK(HOmA(Dkidbj, DKidbi)) = dimKDK(HOmA(D%(idbj, D%(Zdbt)) =
dim g (Homy (idb;, idb;)) = (4, §) ga,

which proves the assertion.
QED
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Chapter 3

Orbit Closures Determined by
Algebraic Equations

We start this chapter with some motivation in Section In Section we develop a general
procedure to find the set S(x) of algebraic equations, which determines the orbit closure of X €
Repk (Q), where @ is Dynkin. In Section we give some examples of such algebraic equations and
in Section we briefly relate degeneration to some algebraic geometry.

3.1 A Third Matrix R9

It is already known (see [L4]) that to determine the orbit closure by algebraic equations is possible for
all representations of Dynkin quivers. These equations are not unique. In this chapter we shall pro-
vide a different and perhaps more effective method for finding algebraic equations which determines
the orbit closures. Before we do it stringently in Section let us try a "naive” generalization of
the more or less straightforward method used for A,-quivers, and see what goes wrong. This could
work as motivation for the more involved procedures developed in the next section.

In Section we saw that O(x) corresponds to the isomorphism class of X. So we want to
classify the isomorphism class of X like we did in Chapter[2l We developed a machinery which solves
this for all X in Repk (@), where @ is Dynkin. But this classification has a more natural variant
for the A,, (with arbitrary orientation) quivers. This more straightforward procedure will be briefly
introduced via an example. Let us first explain our notation. By (Ma M g) we mean the map from
K5 x K300 — KHe) (= K*P)) So it is the matrix consisting of the columns of M, succeeded by
the columns of Mjg.

Example 3.1.1 Let

Q:1—=2 3 4,

and

X: K Mo Kd2 Kds Kda .

The indecomposable representation in Repr (Q) is:
1

idby =0 k 0 0,idby =k k 0 0,idb3 =0 k k
idby =0 k<t—k<——F,idbs =k — >k <~—F 0, idbs =0 0 k
idby =k —ts p <t p<l g idbg=k 0 0 0, idby = 0 0 o<
andidbm:O 0 0 k.

One can see relatively easy that the isomorphism class of X € Repi (Q) with dimension vector
d = (d1,ds,ds,dy) is given by the following computations:

#idby = dy — rank (M, Mg),
#idby = rank (Ms Mp) — rank(Mpg),

39

0,
0,
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#idbs = rank (Ms Mpg) — rank(My),
#idby = rank (My  M,Mg) — rank(M,),
#idbs = rank(Mpg) + rank (Mo M,Mg) — rank (Mo Mg) — rank(MgM.,),
#idbs = d3 + rank(MsM.,,) — rank(Mg) — rank(M.,),
#idby = rank(M,) + rank(MgM.,) — rank (M M, Mg),

#idbg = dy — rank(M,),

#idby = rank(M,) — rank(MgM,) and
#idbig = dg — rank(M,,),

where #idb; equals the multiplicity of the ith indecomposable summand in X .
Since the dimension vector d is fived, we see that the isomorphism class of X only depends on
the rank of the following set of matrices:

{M,, Mg, My, MgM,,, (M, Mpz), (M, M,Mp)}.
A

We are looking for a similar set of matrices whereby we can determine the isomorphism class of X
and therefore O(z), when X € Repg(Q) and @ is Dynkin. As we shall see in the next example, the
straightforward approach used in the previous example does not seem to work for a general Dynkin
quiver.

Example 3.1.2 Let
Q: 1

3— >
i
9

4

and

X: K

Y
Kd3 A Kd4’
>
K

What we basically want to do, is to obtain a third matriz R®, which can determine the iso-
morphism class of a representation in Repk(Q), where the conditions are as easy as possible. By
easy, we here mean it in the sense that they are similar to the conditions in ezample [3.1.1] or the
method one in general would use for a quiver of A,-type. The following 11 independent conditions
are thought of as nice and similar to the conditions for A,,.

a1(X) =dimX (1) =dy, az(X) =dimX(2) = da, a3(X) =dimX(3) =d3, as(X) =dimX(4) = da,
as(X) = rank(M,), a¢(X) = rank(Mpg), a7(X) = rank(My), as(X) = rank(M,M,), ag(X) = rank(M,Ms),
a10(X) = rank (MVMQ MVMQ) , a11(X) = rank (Ma Mg) ,

where X wvaries over the indecomposables. These conditions are independent and will distinguish
nearly all indecomposable summands in a representation in Repk (Q). There are 12 isomorphism
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classes of indecomposables in Repr (Q), so it should be no surprise that one more condition is needed
to obtain a matriz which will determine degeneration in Repy(Q). It is the representations in the
following almost split sequence which are not uniquely determined by the 11 conditions stated above:

00— (17 17 27 1)6 - (Oa 17 170)7 ® (13 07 170)8 S2) (13 17 17 1)9 —— (1a 1; 170)10 —0.
The 11 conditions do not distinguish
(1,1,2,1)6 ®(1,1,1,0)10 from (0,1,1,0)7 @ (1,0,1,0)s & (1,1,1, 1).

By reducing the matrix obtained by the set of 11 conditions, one can realize that the following tensor-
condition

a12(X) = dimg (idbg @4 X) = dim((e3 + e4)X) — rank <M7Ma 0 ) ,

M, Mg

is not in Span{al (X)v CLQ(X)v 0’3(X)7 0’4(X)7 0’5(X)7 QG(X)7 a7(X)7 QS(X)v a9(X>7 alO(X)a all(X)}) and
thus can be chosen to be the 12th condition. Since the dimension vector of X is fixed, the condition

18 equivalent to
M., M, 0
ay,(X :rank( e >
12( ) Ma Mﬁ

These conditions are equivalent to both the Hom-conditions and the tensor-conditions and are
mentioned explicitly because of the "nice and intuitive” form of the 11 first conditions. We obtain
the following matriz:

RQ =

_— OO OO +HOOO
N O OO ORrR OO HFHOO
— = =, O R R O RO
—_ R, R OR R OFRFRFEO
_H O OO OO HOO
=N = R R N
O R OO OO, OO MO
O OO0 =OF=O
O R H = = B
O OO OO FE O M= =
OO DD DD DODDODODOoODOo OO
OO DD DD DODODODODODO OO

A

As just illustrated in the example above, a "naive” generalization of what is done for the repre-
sentations with underlying quiver equal to A,, (with arbitrary orientation), is not a fruitful approach
to classifying the isomorphism class of a representation when the underlying quiver is one of the
other Dynkin quivers.

For H® the convention is that if HX < HY, where X and Y are representations with equal
dimension vector in Repg(Q), then X <g4eq Y, this follows from Theorem Due to the con-
nections between 79 and H? given in Section we see that for T9 the convention is that if
TX < TY, where X and Y are representations with equal dimension vector in Repx (Q), then
X2V X ZhmY & X 244 Y.

Note that the convention for the partial order in the Hasse-diagram with respect to degeneration
must be the opposite for R? on Repx (Q). That is if RX < RY, where X and Y are representations
with equal dimension vector in Repg (@), then ¥ <4y X. One way to explain this is to look at the
tight connection between the R%-conditions and the T@-conditions. This will be done in the next
section.

We end this section with a description of O(x) by the R?- conditions, where the corresponding

X is just as in example
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Example 3.1.3 Let

The orbit of the corresponding x € Repk (Q,d), where d = (dy,ds,ds,dy), is given by
O(z) = {(Na, Ng, N,) € Repk (Q,d) | rank(Ny) = rank(M,), rank(Ng) = rank(Mpg), rank(N,) = rank(M,),

rank(NyNo) = rank(M,M,), rank(NyNg) = rank(M,Mpg), rank (NyN, NyNg) =rank (M M, M,Mpg),

_ NyNo 0\ _ My Mo 0
rank (Na Ng) = rank (Ma Mg) , rank ( N, Ng) = rank ( M, M5>}

3.2 The General Procedure

Let @ be a Dynkin quiver. From a set-theoretic point of view one can say that the orbit closure O(x)
of a point € Repk(Q,d) corresponding to X € Repk(Q), can be determined by a finite set of
algebraic equations (see Definition . In 7 there is a procedure for computing these algebraic
equations explicitly. What we basically will do here is to show how such a set of algebraic equations
can be computed explicitly in an alternative way which we believe is more efficient.

We start by defining what we mean by a universal representation.

Definition 3.2.1 A wuniversal representation Y with dimension vector d is defined to be Y :=

{Yo | @ € Q1}, where Yy is a dg(a) X dy(o)-matriz with algebraic variables as entries: (Yo) @, j) = x?‘i,j).

Assume that Repk (Q) contains n distinct isomorphism classes of indecomposable representation.
We take a projective resolution of idb*, 1 < i < n,

0— Q= @2:1Q(i,k) 2 p= @jzlp(i,j) — idbt — 0,
where

¢ = (farg) and firs : Qur — Puj)-

We then tensor the projective resolution with (— ®x X), where X has dimension vector d. This
gives
(Qi @a X) TEA) (Bgy X) s (idb’ @p X) — 0.

We then see that
dim (idb’ @5 X) = dimg (P; @5 X) — rank(g; @4 idx). (3.1)

We define _
ai = —dimg (idb' @p X) + dimg (P; @ X) = rank(q; ®a idx). (3.2)
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We know that Q(; ;) = Ae ) and P jy = Af(; j),where e(; 1) and f(; ;) are two idempotents in
A. We see that Homyp (Aeg k), Afij) = €0 Afa,j) = Kbk, ), if such a path p = ..., exist, or 0
if there exist no such path p. Let o; € @1, 1 <4 < m. A path pin X is then M, := M, M,...M,,,.
Since f(; 5 is given by multiplication 7(; k. jp(i,k,5), Where r¢; x j) € K, we have that

(Qi XA Idx) = (T(Lk,j)MP(i,k,j)) . (33)

Let Y be a universal representation with dimension vector d. Let S(z) be the union of the
vanishing of the (rank(q; ® idx) + 1)-minors in the matrices (¢; ®4 idy ), which is a finite set of
algebraic equations due to the fact that the matrices (¢; ® idy ) has algebraic expressions as entries
(see equation , as 4 varies from 1 to n.

Theorem 3.2.2 Let X be a representation in Repr(Q) with dimension vector d and let Y be a
universal representation in Repk (Q) with dimension vector d, where Q is a Dynkin quiver. Let x
be the point corresponding to X in Repk(Q,d). Then O(zx) is determined by the vanishing of the
(rank(q; ®a idx) + 1)-minors of the matrices (¢; ®4 idy). This vanishing constitute the finite set
S(z) of algebraic equations.

Proof: From Corollary we know that the <g-order is equivalent with the =<geq-order for
algebras of finite representation type. Since dimg (P; ®x X) is independent of X with dimension
vector d, this can be regarded as just a constant term. Our definition of af (see Equation
involves multiplying Equation 3.1 by —1, so the degeneration order is reversed, that is

yeO(x)=al <af, 1<i<n.

We see that the the <g-order is equivalent to the ”a””-order.
It follows that O(x) is described by the vanishing of the (rank(g; ®, idx) + 1)-minors in the
matrices (g; ®4 idy ), as i varies from 1 to n. This is the set S(z), the assertion follows.

QED
For the quiver A¢? it is rather easy to determine the closure of the orbits by algebraic equations.
Recall from Section that O(x) corresponds to the isomorphism class of X.

Example 3.2.3 Let

[e %) a2 Qp—1

Q:1 2 n.

For a fized dimension vector d = (dy, ...,dy), the orbits corresponds to the isomorphism class of X.
So for the representation

Maz Mo‘n— 1

Mo,
X: Kd KAz Kdn |
the orbit of the corresponding x € Repi (Q,d) can be characterized by (see
O(z) ={(Nay -, Na,_,) € Repg (Q,d) | rank(Ny,...Ny,) = rank(M,...My,) = c(i,j), V1 <i<j<n—1}.

By Theorem[3.2.3 the orbit closure is

O(z) = {(Nays -y Na,_,) € Repr(Q,d) | rank(Na,...No,;) < c(i,j), VI<i<j<n-—1}

Let us revisit example

Example 3.2.4 Let

and
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The orbit of the corresponding x € Repi (Q,d), where d = (dy,da,ds,ds), was given by
O(z) = {(Na, N3, N,) € Repi(Q,d) | rank(Ny) = rank(M,), rank(Ng) = rank(Mpg), rank(N,) = rank(M,),
rank(NgN,) = rank(MgM,), rank (No Ng) =rank (M, Mg),
rank (No NyNg) =rank (Ms M, Mpg)}.

So the orbit closure is given by

O(z) = {(Na, Ng, N,) € Repr (Q,d) | rank(Ny) < rank(M,), rank(Ng) < rank(Mpg), rank(N,) < rank(M,),

rank(NgNy) < rank(MgM.,) rank (Na Ng) < rank (Ma Mg) ,
rank (Na NﬁNv) < rank (Ma MﬁMv)}.
AN

The following relatively extensive example will hopefully give a clear insight in how one in general
can determine the orbit closures by algebraic equations for all representation finite algebras.

Example 3.2.5 Let

Q: I
YA, G ey GO R S
X K
-
Kot s gty o pein M gy Mo pea,

Note that the injective indecomposables of the category Repr (Q) corresponds to the dimension of the
different vector spaces in the representation X. Since there are 36 isomorphism classes of indecom-
posable representations in the category Repy (Q) and the dimension vector d = (d1, da, ds, dy, ds, dg)
is 6 dimensional and fired, we need 36-6=30 conditions to determine the orbit of the corresponding
x € Repr(Q,d). So to determine the orbit O(x) we need 30 equations on the form

aj = —dimg (idb; ®p X) + dimg (P @5 X) = rank(fy ®a id).

These are:

ai = —dimg((0,0,0,1,0,0) ® X) + dimg (esX) = rank (Mo M, Ms),
ay = —dimg((0,0,1,1,0,0) @x X) + dimg(esX) = rank (M, M, Mg M;s
2 ((0,0,1,1,0,0) yB )
aj = —dimg ((0,1,1,1,0,0) @ X) + dimg (e4X) — rank (Mo Ms) ,
aj = —dimg((0,0,0,1,1,0) @5 X) + dimg (e4X) = rank (Ma M, M(;Me) ,
ai = —dimg((0,0,0,1,1,1) @ X) + dimg (e4X) = rank (Mo M,),

af = —dimg((1,0,0,1,0,0) ® X) + dimg (e4X) = rank (M, Ms) ,

aZ = —dimg((1,0,1,2,1,0) ® X) + 2dimg (e4X) = rank ( Ma 0 0 M M5ME) :

~M, MM, M, 0 0



af = —dimg((1,1,1,2,1,0) ® X) + 2dimg (e4X) = rank ( Mo Ms M5Mf> :

0
~M, M, 0 0

ag = —dimg((1,0,0,1,1,0) ®x X) + dimg (e4X) = rank (M'y M(;ME) ,

ajy = —dimg((1,0,1,2,1,1) ® X) + 2dimg (e X) = rank ( Mo 0 0 M‘S) ,

~M, MM, M, 0

af; = —dimg((1,0,1,1,0,0) @4 X) + dimg (e4X) g = rank (M, Mg Ms),

afy = —dimg ((0,0,1,1,1,0) @ X) + dimg (e4X) = rank (Mo M Mg MsM,),
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M, 0 0 0 o0 0
afs = —dimg((1,1,2,3,2, 1)@, X)+3dimg (esX) =rank [ 0 M, 0 M, Ms 0
0 0 MMs; M, Ms MM,

aly = —dimg((1,0,1,2,2,1) @4 X) + 2dimg (e4 X ) = rank ( Ma 0 0 MSME) ,

~M, M,Ms M, 0

als = —dimg ((0,0,1,1,1,1) @ X) + dimg (e4X) = rank (M, Mg M,,),

e _ . B M, 0 Ms M;sM.,
als = —dimg((1,1,2,2,1,0) @ X) + 2dim g (e4 X ) = rank (_Ma MM; 0 0 ) )

af; = —dimg ((0,1,1,1,1,0) @ X) + dimg (e4X) = rank (Mo MsM,),

afs = —dimg((1,1,1,2,1,1) @ X) + 2dimg (e4X) = rank ( Mo 0 M‘S) ,

~M, M, 0
M, MMs; 0 0 MM,
afy = —dimg((2,1,2,3,2,1) @4 X)+3dimg (esaX) =rank | 0 —-M,Mz 0 DM; 0
0 0 M, 0 -—MsM,

ajy = —dimg((1,1,2,2,1,1) @4 X) + 2dimg (e4 X ) = rank ( Mo 0 M6> ,

~M, M,Mg 0

ay = —dimg((1,1,1,1,0,0) @ X) + dimg (e4 X ) = rank (Mg) ,

z . , M, 0 MsM,
a3 = —dimg((1,1,1,2,2,1) @ X) + 2dimk (e4 X) = rank (_Ma M, 50 ) ,
a3y = —dimg((1,0,0,1,1,1) @ X) + dimg (e4X) = rank (M),

a3, = —dimg((1,0,1,1,1,0) ®p X) + dimg (e4X) = rank (M, Mg MsM,),
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x . . Moz 0 M5M€
ajs = —dimg((1,1,2,2,2,1) @4 X) + 2dim g (e4 X ) = rank <_Ma M, Mj 0 ) ,

afs = —dimg((1,1,1,1,1,0) ® X) + dimg (e4X) = rank (MsM.)
a; = —dimg((0,0,0,0,1,0) @ X) + dimg (esX) = rank (M) ,

ajs = —dimg((1,0,1,1,1,1) ® X) + dimg (e4 X ) = rank (Mng) ;
a%y = —dimg((0,0,1,0,0,0) ® X) + dimg (esX) = rank (M),

afy = —dimg ((0,1,1,1,1,1) @ X) + dimg (e4X) = rank (M,) .

The orbit is given by
O(z) = {y € Repx (Q.d)|af = a7, 1 <14 <30}

and

O(z) ={y € Repk(Q,d)|ay < af, 1 <i<30}.

3.3 Some Algebraic Equations

In this section we shall see some examples where the algebraic equations are given explicitly.

Example 3.3.1 Let
Q:1-%2,

o3

X:K? ' —' K2

From Section we have that the orbit of x consists of all points in Repx(Q,(2,2)) where the
linear map M, of the corresponding representation has rank two. So the orbit is determined by the

following condition:

and

det(M,,) = det (2 ij) = x174 — 273 # 0.

From Section one also can also see that the orbit closure O(x) = Repk (Q, (2,2)).

If
[0 o)
0 0
X: K2 —'’ K2
Then
TN I To . .
0w = (31 22) loses ~ vaza =0},
If
(0 o)
0 0
X: K?'—'’ K2
Then

0(@) = <8 8) .
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(1 O) FoYanY

. 2 00 2 _ Tr1 X2 .

For X : K *—’ K? wehad O(z) ={ . |z124 — 2223 = 0}
3 T4

Before we have another and more involved example; let us compare this algebraic equation by
the set of algebraic equations obtained by using Bongartz method, given in the article by Weyman
[14]. Before computing the set of algebraic equations, we first cite the relevant theorem without
proof, and then briefly give a description of the method.

Theorem 3.3.2 Let X and Y be two representations of dimension vector d of a Dynkin quiver Q).
Then

O(z) C O(y) < dimgk (Homy (idb;, X)) > dimi (Homy (idb;, Y)),

for all isomorphism classes of indecomposable representations in Repk (Q), represented by all the
idb; ’s.
Let r; :== dimg (Homp (idb;, X)). Then

O(z) ={Y | dimg (Hompy (idb;, Y)) > r; }. (3.4)

Let us define the map
dy : @jeq,Homp (X (5),Y (j)) — @acq, Homg (X (s()), Y (e(a)))
by the formula
dy (8(7))jeqo = (d(e(@) X (a) = Y (a)d(s(@))acqn

whose kernel is Homy (X,Y).

One can realize that set-theoretically equation means that O(z) is given by the vanishing of
dimg (®jeq,Hom (X (5),Y(5))) — i + 1 size minors of the matrix dic’.

Now, let us use this method to compute a set of algebraic equations which determines O(z), for
th
0 0
X:K? ' —’ K2

First note that there are three isomorphism classes of indecomposable representations, represented
by
idby 10 — K, idby : K —— K and idbs : K — 0.

The matrices are '
@™ = (0 0),

idb, _ (T1 1 0 zo
dy <x3 0 1 3?4) and

idbs _ [ T1 X2
= (1 =)
By the vanishing of the dim (®;ecq,Homg (X (j), Y (j))) — i + 1 size minors of the matrix di?’,
one can see that the following set of algebraic equations determines the orbit closure:

SX:{.Il:O U 1?220 U 1‘320 U CC4:O Uul=0U 581,184—.1321‘3:0}.

We already know that the elements in O(x) is determined by the single algebraic equation
T1Ty4 — XT3 = 0.

So as we can see Sx contains many superfluous algebraic equations. The following is two interesting
open questions:

Question 3.3.3 Let Q be a Dynkin quiver. Let X be a representation in Repk(Q) and x the
corresponding point in Repg (Q,d).
Is S(z) C Sx ?
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Question 3.3.4 Let Q be a Dynkin quiver. Let X be a representation in Repk(Q) and x the

corresponding point in Repi(Q,d). Can there exist a proper subset of S(x) which also determines
the orbit closure of x, or is S(x) a minimal set in this sense?

When determining S(x) the projective resolution where chosen to be minimal. This might be
related to these questions.

We continue with a more involved example.

Example 3.3.5 Let

2
and
1
X 0
K o) (1 00
1N(}lo
0 0 O
0 1 K*)Kg
00/4
K2

From Section [3.1] we know by which rank-conditions we can determine the orbit closure of the
corresponding x € Repk (Q,(1,2,3,3)).

- Z1 T4 s 10 T11  T12 Z1 T4
Ol@)={|z2|,lz6 x7|,| 213 x14 15| € Repr(Q,(1,2,3,3)) | 1: rank | z2 | <1, 2: rank | z¢
T3 Tg Tg Ti6 Ti7 T18 3 s
Ti0 T11 T12 T10T1 + 1122 + T1273
3:rank | x13 x4 x5 | <2, 4: rank | x1371 + T1472 + 21523 | < 1,
Ti6 T17 T18 T1621 + T17T2 + T18%3

T10T4 + 1126 + T12T8  T10T5 + L1127 + T12T9
5: rank | x13%4 + T14T6 + 1528 T13%5 + T14T7 + T1529 | < 2,
T162T4 + T17T6 + T18T8  T16T5 + L1707 + T18T9

T10T1 + 1122 + T12T3  T10T4 + T11T6 + T1228  T1025 + T11T7 + T12%9
6 :rank X13T1 + 142 + T1523 X13T4 + T14T6 + T1528 T13T5 + L1427 + T15%9 < 2,
T1621 T £17T2 + T18T3  T16T4 + T17%6 + T18T8 T16T5 + T17X7 + T18T9

1 T4 T
T:rank | xo xg 7| <2
xr3 Tg T9

1021 +.7311$2 +$12$3 O O
1321 + T14T2 + 1523 0 0
T16T1 + T1722 + 1823 0 0

8 :rank < 3}.
T Ty Ts
T2 Te T7
T3 Trg T9

It follows from Theorem that O(x) can be described by a set S(x) of algebraic equations. If we
look at the proof of Theorem [3:2.2] it is clear that

Ts5
X7
Tg
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S(x) ={ 8: x10214%18 + T112T15T16 + T12213T17 — T12T14T16 — L11L132T18 — L10T15L17 = 0 U

6: (z1071 + 21172 + ¥1273)(T1374 + T14%T6 + T1528) (V1675 + T1707 + T18T9)+
(w1074 + 21176 + T1278) (21375 + T1727 + T18T9) (T16T1 + T1702 + T1873)+
(1075 4+ 21107 + T12T9) (T1371 + T14%2 + T1573) (T16T4 + T17T6 + T1878) —
(T1075 + 21107 + T1279) (T1374 + 1476 + T1578) (T1671 + T17T2 + T1873)—
(w1074 + 1176 + T1278) (L1371 + T14%2 + T1523) (T1625 + T17T7 + T18T9)—

(z1071 + T1122 + T1223) (T13%5 + T1727 + T18%T9)(T16%4 + T17%6 + T182s) = 0 U

7: x126T9 + T4T7x3 + T5Tols — TrTeXsy — T4Taly — L1272 = 0}.

3.4 Algebraic Geometry

A point v = (v1,...,v,) € A™ corresponds to M(v) = {f | f(v1,...,vn) = 0} a maximal ideal in
K[A"] = K[z1,...,xz,). If V € A™ is closed, V corresponds to an ideal I(V) = {f | f(v1,...,v5) =
0, VveV}in K[A™.

Let I be an ideal in a commutative ring R. By the radical of I, v/I, we mean

VT = {y € R | 3n such that y" € I}.

ii = 1 case. We know that O(z)
is determined by the algebraic equation x124—xzox3 = 0. Let V = {(21, 22, 23, 24) | z1204— 2223 = 0},
it follows by the definition of the topology on A™ (see )7 that V is closed. Let V correspond
to the ideal I(V). The equation (124 — z273)? = 2323 — 221722374 + 323 = 0 also determines
O(z). Let J be the ideal generated by (z124 — 22w3)?. The equation x124 — 223 = 0 is thought of
as "nicer” because for I(V), we have that /I(V) = I(V), while v/J = I(V) # J.

In general one is interested in finding algebraic equations determining O(z). If found, a natural
question is whether the ideal I generated by the algebraic equations has the property that v/I = I.
If not, how can one find a set of algebraic equations determining O(x) which generates an ideal with
this property, if possible?

We have the following question:

Let R = K[x1,z2, 23, 24] as in example [3.3.1], the rank <i1
3

Question 3.4.1 Let Q be a Dynkin quiver. Let X be a representation in Repy (Q). Do the set S(z),
determining O(x), corresponds to an ideal I(S(x)), where \/I(S(x)) =1(S(x))?

Using a different method, which possibly gives a different set of equations than S(x), this question
was settled for A°? by V. Lakshmibai and P. Magyar (see [g]).
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Chapter 4

Summary and Further Discussions

We have seen a general procedure for how one can obtain explicit algebraic equations describing the
orbit closure of a point in the affine variety Repk (Q,d), where @ is a quiver of finite representation
type. Our procedure depends on the fact that <.y and =<jm coincide for this class of algebras, and
we have also seen that <j,,, and =<g coincide. For algebras of finite representation type we have
also given a general procedure for how one can determine degeneration.

A natural question is how one can determine degeneration for other types of algebra. One of the
natural candidates for such a further investigation would be the algebras of tame type.

Definition 4.0.2 A quiver is tame if QQ is of infinite representation type but its indecomposable
representations occur in a given dimension either a finite number of times or in a finite number of
one-parameter families.

It is known that =g, and =pom (and therefore also <g) coincide for all representations of tame
quivers . In general one can classify all indecomposable representations in Repy (Q), when @ is
tame, even though there is infinitely many of them. The problem with the method provided here
when it comes to quivers of tame type, is that H? and T% will be infinitely large quadratic matrices.
Since =geg and =pom (and therefore also <g)coincide for all representations of tame quivers [4],
these infinitely large quadratic matrices must be invertible and in principle determine degeneration
for quivers of tame type, but they will not be upper triangular matrices. However, the preprojective
and preinjective components of the AR-quiver will be directed (i. e. contains no loops) (see [1]). So if
one is only considering these components and one choose a smart indexing of the fixed indecomposable
representations (corresponding to isomorphism classes), the infinitely large quadratic matrices will
be upper triangular with non-zero entries on the diagonal, and in principle determine degeneration
for representations only containing indecomposable objects from these components of the AR-quiver.
For a quiver @ of tame type, the sets Sy and S(z), determining the orbit closure of a represen-
tation X in Repg(Q), will exist. But, S(x) will be a infinite set of equations. We have assumed
representations to be finite dimensional and the equations in S(x) will be equations in a ring of
polynomials over a field K. Thus the equations corresponds to ideals in a Noetherian ring. For all
Noetherian rings we have that every non-empty set of ideals has a maximal element with respect to
set inclusion. It follows that the orbit closure of a X can be described by a finite subset of S(x).
There might be a smart way to choose such a subset. Perhaps based on the isomorphism class of the
representation one are considering? However, it is an open question how this could be done.

o1
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