
June 2006
Jacob Laading, MATH

Master of Science in Physics and Mathematics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Simulation of counterparty risk in the
Norwegian financial market

Hans Michael Øvergaard





Problem Description
The aim of this work is to study different methods for estimating counterparty risk. This work will
focus on the exposure estimation and will do a comparison between the BIS methodology and an
approach based on Monte Carlo simulations.

Assignment given: 25. January 2006
Supervisor: Jacob Laading, MATH





Preface

This Master’s Thesis makes the end of a five year programme I have attended since August
2001 at the Norwegian University of Science and Technology culminating in the degree of
Master of Science and represents the work of 20 weeks. The work process with this study has
been an interesting period of my life and I am glad that I got the opportunity to work with
interesting topic in my Master Thesis.

This work is in an extension of my project work from the fall 2005 which was about pricing
of interest rate derivatives using the Libor Market Model, implemented as a Monte Carlo
simulation in the language of C++. That work gave me valuable knowledge in financial
engineering and particularly how the use of Monte Carlo methods can be combined with
financial theory in order to solve complex financial problems. In this thesis the work has
been taken one step further and uses the theory in estimation of counterparty credit risk for
interest rate derivatives, where the Libor Market Model has been used to describe the driving
factor in the model.

This paper is written for mathematicians with some knowledge in financial theory. That
means the reader should be familiar with basic financial option theory, beside that the financial
theory used is explained in the paper. Whereby the mathematics used in this paper is at a
level such that it should be accessible for a student with some background in mathematics at
the university level, however basic statistical knowledge are assumed.
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Abstract

This work will study different methods to estimate counterparty credit risk, where the methods
represent both analytical approximation and simulation based method. The somewhat more
analytical approximation that will be used is the current exposure method from the Bank
for International Settlements and is based on simple add-on factor to the current market
value. In the simulation part, Monte Carlo methods will be used. The paper will show that
Monte Carlo methods enable estimation of the full exposure distribution as a function of
time. From that distribution two measures of exposure will be used. The first use the peak
at the 95% percentile and the second uses the concept of effective expected exposure. Those
three alternative measures will be tested on six different portfolios. The portfolios are based
on real data and represent both private persons, small companies, life insurance, investment
bank and some of more academic interest. The estimate of exposure in those portfolios will
be estimated with and without the establishment of netting agreements in order to see how
that affects the exposure. The numerical results indicate that netting results in reduced
exposure. In the comparisons between the different exposure measures the results show that
the simulation based method in general estimates a lower exposure, but it depends intently
on the construction of the portfolio. Based on those observations the main conclusion is that
a simulation based approach is preferable since it enables better risk control within the firm
as a consequence of enabling anatomizes of the evolution of exposure through time.

Keywords: Counterparty Credit Risk, Libor Market Model and Monte Carlo
simulation
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1

Introduction

The purpose of this work is to study different methods to model counterparty credit risk
for both portfolios and individual derivatives. The work is concentrated around interest rate
derivatives with a substantial focus on interest rate swaps. This is motivated by the large
amount of interest rate derivatives daily traded in the market. During the last years there has
been a dramatic increase in the outstanding quantity of over the counter (OTC) derivatives.
Market surveys conducted by the International Swaps and Derivatives Association (ISDA)
show outstanding notional amounts of interest rate and currency swaps reaching US$ 25.4
trillion in 1996, US$ 60.4 trillion in 2000 and US$ 201.4 trillion in 2005. This large amounts
give the opportunity to transfer risk resulting on substantially improved risk sharing among
market participants. But as the volume grows banks have to be more accurately in quantify
the credit risk they are facing due to default on counterparty.

In the latest years there has been an increased focus on how to measure counterparty credit
risk, which is the potential loss given default on counterparty. This loss is usually quantified
in terms of the replacement cost of the defaulted derivatives. The Bank for International
Settlements and its Basel Committee on Banking Supervision has provided guidelines in how
to measure counterparty credit risk. In 1988 the Basel Committee decided to introduce a
capital measurement system commonly referred as the Basel Capital Accord. This accord
represented the beginning of a framework provided for measuring counterparty credit risk.
The framework is based on simple add-on factors and a minimum capital standard at 8% of
the estimated credit amount. This framework has been the only method that banks where
allowed to use in measuring credit exposure. However in 1999 the Basel Committee issued a
proposal of a revised capital adequacy framework later known as the Basel II accord, [BIS88]
and [BIS05b]. With this revised framework banks are allowed to use internal method which
often is based on Monte Carlo simulations in order to estimate credit exposure. As this
work will show, the Monte Carlo methods permit modelling whole term structure by using
sophisticated models for the underlying rate and manages to take the correlation between
different derivatives into account.

The growing activity in the market combined with new regulations have resulted in increased
research activity the latest years. And the development of new computer technology has given
a larger focus on simulation based methods. The evolution of models to estimate interest rate
exposure have in someway gone in two different directions the later years, where this work
will try to combine those different directions. By this it is meant that the development of
interest rate models and the modelling of credit exposure do not have be fully combined. In
the area of interest rate models one have the classic models by Vasicek, Cox & Ingersoll &
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2 1.1 Introduction

Ross, Ho & Lee and Hull & White. Those are all one factor models meaning that one factor
describe the evolution of the whole yield curve. Some of those models have later been turned
into multi factor models which then permit for several factors to describe the evolution of
future rates. However in the latest years the models have been turned into so called market
models. The market models are method that take the whole term structure in account and
gives a complete set of forward rates for the period one are looking at. They are based on the
framework to the HJM model by Heath, Jarrow and Morton [HJM92] which gives forward
rates in continuous time. Those models have later been modified into discreet time models
and is now known as the Libor Market Model (LMM). The model has no analytical solution
and hence some kind of numerical algorithm is necessary. In this work the focus will lie on
the LMM through the use of Monte Carlo simulations.

While there have been progress in the development of interest rate models there are not
that many published articles about exposure of credit risk. One reason for this can be that
the only method banks have been allowed to use is the standard method from the Basel
Committee, while in pricing banks may use whatever method they want. In the area of
risk management there has been written a lot about credit risk and possible ways to estimate
default probabilities but there are fewer articles about credit exposure. However some research
has been done in the area of credit exposure too. This involves Jeff Aziz and Narat Charupat
from Algo research quarterly [AC98] which have done a case study where a Monte Carlo
simulation is compared with the BIS methodology. In their paper they do not describe the
underlying method used to model the evolution of the underlying rates in the Monte Carlo
simulation, but their conclusion is that a simulation based method is to prefer since it enables
to take the evolution of the exposure curve in account when measuring counterparty credit
risk. Later on Michael S. Gibson at the Federal Reserve Board [Gib05] has gone in more
detail in the estimation methodology, where he describes the use of a simple method for the
evolution of the underlying rate. This paper will take the next step and use the LMM, which
is an advanced method to estimate the rate, and combine the method with estimation of
credit exposure. That exposure measure will be compared with the estimate from the BIS
methodology for portfolios with and without netting agreements.

1.1 Organization of Topics

This report is organized as follows. This chapter gives an introduction to the calculation of
credit exposure and a review of some previous work in the area. The rest of this chapter will
present whats coming later in the paper.

Chapter 2 will give an introduction to the mathematical method used in estimation of credit
exposure. This involves theory about Monte Carlo simulation with belonging variance reduc-
ing technics used to increase the speed of the simulations. This will be followed by theory
related to the Libor Market Model which will be used in forecasting of the rates. The end of
the chapter will give an introduction to interest rate derivatives, since these are the derivatives
that will be used in estimation of counterpart credit risk.

Chapter 3 will after previous introduction of the background theory give a detailed explanation
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of how to estimate counterpart credit risk. The chapter will start by introducing the field
of risk management in some general terms. This will be followed by the essential theory in
the Basel regulations. After an introduction to the aim of risk management Section 3.3 will
give some formal definitions used in estimation of credit risk. The definitions are based on
the Basel Accord but are treated in a more mathematical way. At the end of the chapter
those definitions will be used to estimate credit exposure and the text will show how it can
be done with both the BIS methodology and by an internal method based on Monte Carlo
simulations.

Chapter 4 will describe the data used in this text. This involves both the historic yield data
used in estimating of the volatility structure and the test portfolios used when estimating
credit exposure. The example portfolios represent six various portfolios which will be used
to compare the BIS exposure with the simulated results. Some of these portfolios represent
different financial companies while some of them are of more academic interest.

Chapter 5 will summarise the numerical results obtained from estimating of the exposure
based on both the BIS methodology and the Monte Carlo method. The results are described
by both tables and figures containing plots showing that a simulation based method gives
lower exposure and that the exposure can be reduced by introducing netting agreements.

Chapter 6 is the last chapter in this work and contains the conclusion saying that a simulation
based method reduce the estimated exposure and that it can be further reduced by introducing
netting agreements.

The rest of this work contains Appendix A with the portfolios and at last a bibliography and
an index at the end.
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Background theory

2.1 Monte Carlo methods

Monte Carlo simulation is a comprehensive method to estimate sophisticated probability
distributions. The method is highly used for financial estimation such as risk management
which include estimation of Value at Risk (VaR) and credit exposure. One reason for using
Monte Carlo methods is that it enables estimation of the full distribution with corresponding
expectation and variance of a distribution function containing different correlated stochastic
movements. This section will explain the principles of Monte Carlo simulations including
variance reducing techniques and how it can be used to determine financial problems.

2.1.1 Principles of Monte Carlo

Monte Carlo methods are based on the analogy between probability and volume, where prob-
ability of certain event is its volume or a measure relative to the possible outcomes [Gla04].
In practice this identity is used in reverse, calculate the volume of a set by interpreting the
volume as the probability For instance one can sample randomly from some discrete path
function g(x) and take the fraction of draws that fall in a given set as an estimate of the set’s
volume. An illustration of how this may be done i given by algorithm 2.1.

Algorithm 2.1: Monte Carlo simulation

input : A discrete path function g(x)
output: An estimate for the set’s volume x̂

for i = 1 to n do

xj = g(x) . Simulate a realization of a variable g(x)
end

x̂ = 1
n

∑n
j=1 xj . Which as well represent the expectation to g(x).

Monte Carlo methods is often used to evaluate integrals which may often represents probability
density functions. If one for instance want to estimate the integral of a function f(·) over the
unit interval the integral may be represented as

µ =
∫ 1

0
f(x) dx, (2.1)

5



6 2.1 Background theory

which is an expectation to E[f(U)], where U are independent and uniformly distributed
points on the domain [0, 1]. Then to evaluate the integral (2.1) one draw points U1, U2, . . .
independently and uniformly from the interval [0, 1] and evaluate the function f(·) at n of
those points. By taking the average of those function numbers the Monte Carlo estimate for
µ is given by

µ̂MC =
1
n

n∑
i=1

f(Ui). (2.2)

The existence of the solution to (2.2) is given by the strong law of large numbers, see for
instance [CB02], which says

µ̂→ µ with probability 1 as n→∞,

if f(·) is integrable over [0, 1]. If f(·) is square integrable and one set

σ2
f =

∫ 1

0

(
f(x)− µ

)2 dx,

the error ε = µ̂ − µ in the Mote Carlo estimate is approximately normally distributed with
mean 0 and standard deviation σf/

√
n for large n i.e.

ε ∼ N
(
0, σf/

√
n
)
. (2.3)

In a setting where µ is unknown the parameter σf would often be unknown to, but can be
estimated using the sample standard deviation

sf =

√√√√ 1
n− 1

n∑
i=1

(
f(Ui − µn)

)2
.

When n is large and as long there is convergence in the distribution the parameter sf can be
replaced with σf [Gla04]. In this way Monte Carlo simulation can be used to estimate both
the expectation and variance in an unknown distribution.

In financial estimation and the use of risk management one are often more interested in the
percentiles than the expectation or variance itself. This often involve estimating for instance
the 95% or 99% percentile of the distribution. In a simulation approach this is usually done
by order statistics. Where the order statistics of a random sample X1, . . . , Xn is defined
to be the sample placed in ascending order denoted by X(1), . . . , X(n). They then satisfy
X(1) ≤ · · · ≤ X(n) and in particular

X(1) = min
1≤i≤n

Xi

X(2) = second smallest Xi

...
X(n) = max

1≤i≤n
Xi.

(2.4)

Then in order to find the percentile of interest one order the observation according to (2.4) and
pick observation Xnp as the (100p)th sample percentile where n is the number of observations.
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As seen by (2.3) the convergence rate of the Monte Carlo integration is of order O(n−1/2). For
one dimensional integral this is not computer efficient when it is compared to the trapezoidal
rule which has a known convergence rate of O(n−2) for twice continuously differentiable
functions. In order to increase the convergence rate the next section will introduce antithetic
variates which is a common variance reduction technique.

2.1.2 Antithetic Variates

The use of antithetic variates is done by introducing pairs of replications with negative depen-
dency which will give a faster and wider exploration of the probability domain. As a result
of this one should expect a lower variance in the estimate of the expectation than one get
without using antithetic variates.

When using this method one should observe that if U is uniformly distributed over the interval
[0, 1] then 1−U is that too. As a result if one are sampling a path with the variables U1, . . . , Un,
a second path with the variable 1− U1, . . . , 1− Un can be generated to. This variables have
clearly negative dependency and antithetic in the sense that if one path get large value it is
accompanied by a small value on the other. This causes an unusually large or small value
from the first path to be balanced by the value computed from the antithetic path and hence
resulting in a reduction in the variance when using the middle value of f(U) and f(U − 1).

This techniques can be used to other distribution as well through the inverse transform method
of F−1(U) and F−1(1 − U). Since F−1 is monotone they are both antithetic and have the
distribution F . If the distribution is symmetric, F−1(U) and F−1(1−U) have the same mag-
nitude but opposite sign. This is often the case in a financial setting where the simulations is
based on estimating a Brownian motion, see Section 2.1.3, by using random normal distributed
variables. The simulation is then done by simulating a sequence of Z1, Z2, . . . independent
identically distributed normal, N(0, 1), variables together with the sequence −Z1,−Z1, . . . of
iid N(0, 1) variables.

The use of Monte Carlo simulations may have several purposes. It can span from finding the
expectation, a percentile or the whole probability distribution, but using antithetic variables
reduce the variance in all of those estimates.

When looking at a more precise analysis of the objective of estimating the expectation E[Y ]
when using an implementation of antithetic sampling compared with independent sampling
one shall note that using antithetic variables result in a sequence of pairs of observations
(Y1, Ỹ1), (Y2, Ỹ2), . . . , (Yn, Ỹn). Here the pairs are independent but each observation is not
independent. Through the analysis which is based on [Gla04] the following features will be
used:

• The pairs (Y1, Ỹ1), (Y2, Ỹ2), . . . , (Yn, Ỹn) are iid .

• The variables Yi and Ỹi have the same distribution, but not independent.

• The computer cost of simulation Yi and Ỹi are the same as to compute a sample of 2n
independent replications.
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From the antithetic variates the estimator is the average of all the 2n observations,

ŶAV =
1
2n

(
n∑

i=1

Yi +
n∑

i=1

Ỹi

)
=

1
n

n∑
i=1

(
Yi + Ỹi

2

)
. (2.5)

The right expression in (2.5) make it is evident that ŶAV is the mean of n independent
observations (

Y1 + Ỹ1

2

)
,

(
Y2 + Ỹ2

2

)
, . . . ,

(
Yn + Ỹn

2

)
.

If one then applie the central limit theorem [CB02] one get

ŶAV − E[Y ]
σAV /

√
n
⇒ N(0, 1),

with

σ2
AV = Var

[
Yi + Ỹi

2

]
,

where Y is used to indicate a random variable with the common distribution of the Yi and
Ỹi.

A question is under what conditions and how well the antithetic variates reduce the variance.
In this comparison the third feature, the computer cost of simulation Yi and Ỹi are the same
as to compute a sample of 2n independent replications, are essential. The use of antithetic
variables is then better and reduce the variance compared with independent sampling if

Var
[
ŶAV

]
= Var

[
Yi + Ỹi

]
< Var

[
1
2n

2n∑
i=1

Yi

]
= 2Var[Yi]. (2.6)

The variance on the left hand side in (2.6) can be written as

Var
[
Yi + Ỹi

]
= Var[Yi] + Var[Ỹi] + 2Cov[Yi, Ỹi]

= 2Var[Yi] + 2Cov[Yi, Ỹi],

since Yi and Ỹi have the same distribution. Thus the variance is reduced by using antithetic
variates if

Cov[Yi, Ỹi] < 0.

Hence the variance is reduced if the variables has negative dependence. This negative depen-
dence is what one achieve when using Z and −Z from the normal distribution with reduced
variance as a result.

From previous section it is known that in financial setting the percentile of the distribution
is of interest. When using antithetic variates to find a percentile the order statistics is once
more used. All 2n numbers are sort according to (2.4) and the observation X2np is used as
the (100p)th sample percentile. This text will not prove the result but refer to an article by
Avramids and Wilson [AW98] which has showed that: correlation induction techniques for
estimating percentiles can yield worthwhile improvements in estimator accuracy relative to
direct simulation.
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2.1.3 Simulation of normal distributed variables

Since financial processes often are driven by Brownian motions one need to be able of modeling
that drift. A Brownian motion is in brief a stochastic process {W (t), 0 ≤ t ≤ T} with
W (0) = 0, independent increments and

W (t)−W (s) ∼ N(0, t− s) for any 0 ≤ s < t ≤ T.

This then gives
W (t) ∼ N(0, t), (2.7)

for 0 < t ≤ T [Gla04]. Since most financial processes are model according to (2.7) it is
important to have a framework that can draw random normal distributed numbers. This can
be done in several ways, but it is usually done by some inversion of the cumulative distribution
function. Marsaglia and Bray [MB64] have developed an algorithm that will be used in this
text. It is one of the fastest algorithms to draw random normal distributed numbers [Gla04]
which is a nice property when one need to draw a lot of numbers. The algorithm is given
Algorithm 2.2.

Algorithm 2.2: Marsaglia Bray algorithm for generating normal random variables.

Output: Two independent normal distributed variables Z1 and Z2

while (X > 1) do
generate U1, U2 ∼ Unif[0, 1]
U1 ← 2U1 − 1
U2 ← 2U2 − 1
X ← U2

1 + U2
2

end

Y ←
√(
−2 log X

)
/X

Z1 ← U1Y
Z2 ← U2Y

return Z1, Z2.

2.2 Libor Market Model

2.2.1 Foundation

Classic models such as CIR and Hull-White only use one driving Brownian motion to model
the whole evolution of the yield curve. This will as result imply perfect correlation among all
forward rates. By the assumption of perfect correlated forward rates one should only observe
parallel shifts in historic yield. Just by looking at historic observation, for instance Figure 4.1,
one can observe that this is wrong. For U.S government bonds Litterman and Scheinkman
[LS91] showed that at least three factors are necessary to describe mayor movement i historic
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yield. This fact has motivated the development of market models which takes the whole yield
structure in consideration when developing future forward rates. One of the first to solve this
problem was Heath, Jarrow and Morton and their HJM model [HJM92].

In the framework of HJM the evolution of future rates are given i continuous time. Hence the
model can give a complete set of forward rates without restricting to a finite state of rates
or factors. This type of approach is some unreal related to what that can be observe in the
market which only contains a finite set of maturity dates. Motivated by this unrealism Brace,
Gatarek and Musiela developed the BGM model [BGM97]. The model is close related to the
HJM framework, but it is based on discrete time instead of continuous time. In the literature
many other people are related to the model and hence it is called the Libor Market Model,
which will be used in this text.

To give a more mathematical treatment of the Libor Market Model one shall consider a set
of maturity dates

0 = T0 < T1 · · · < TM < TM+1, (2.8)

to simulate in, which also represent the maturity of the initial data. The term L is used to
denote a forward rate for a given period of length δ where the forward rate L(t, T ) is the rate
set at time t for a period from T to T + δ which then represent a simple rate. This means if
one at time t agree to borrow 1 at time T and repay with interest at time t + δ the interest
will be δL(t, T ) and hence the pay back became 1 + δL(t, T ) at time T + δ. This simple rate
is in contrast to the usual compound interest where the charge is calculated on the sum lent
plus any interest that has accrued in previous periods. Hence the previous multiplier 1 + rt
now becomes (1 + r)t. In a market model the forward rates are usually not seen, but they
can be derived from zero coupon bonds with following relation

L(0, T ) =
B(0, T )−B(0, T + δ)

δB(0, T + δ)
. (2.9)

In (2.9) the fact that B(0, 0) = 1 is used which will as a result give as many forward rates as
there are zero coupon bonds.

To generalise the notation it is usual to write Bn(t) for the bond priced at time t with maturing
at time Tn, where 0 ≤ t ≤ Tn. In the same way Ln(t) is used to denote the forward rate set
at time t for the period [Tn, Tn+1]. In generality the distance between the maturity times in
(2.8) do not have to be equidistant. To compensate for this let

δi = Ti+1 − Ti, i = 0, . . . ,M,

be the distance between the maturity. With this notation (2.9) can be written as

Ln(t) =
Bn(t)−Bn+1(t)

δnBn+1(t)
, 0 ≤ t ≤ tn, n = 0, 1, . . . ,M, (2.10)

where the relationship only is valid for t ≤ Tn. To avoid this problem the definition of Ln(t)
is extended by setting Ln(t) = Ln(Tn) for all t ≥ Tn. Since (2.10) gives forward rates based
on initial bond prices the equation can be turned around in order to compute bond prices
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based on forward rates with the following relationship

Bn(Ti) =
n−1∏
j=1

1
1 + δj , Lj(Ti)

, n = i + 1, . . . ,M + 1. (2.11)

With this notation the estimation is required to be done at a tenor date Ti only and not at
an arbitrary time. In many settings, including risk estimation, one are often interested in
the forward rate at an arbitrary date t. Hence the need of finding a price at time t where
Ti < t < Ti+1, arise. This have lead to the introduction of a right continuous mapping
function η which is defined as

η : [0, TM+1)→ 1, . . . ,M + 1,

which then satisfy
Tη(t)−1 ≤ t < Tη(t). (2.12)

With this notation Equation (2.11) can be written as

Bn(Ti) = Bη(t)(t)
n−1∏

j=η(t)

1
1 + δjLj(Ti)

, 0 ≤ t < Tn, (2.13)

where Bη(t)(t) is the current price of the shortest bond.

2.2.2 Estimation

Last section said nothing about how the forward rate are estimated in the Libor Market
Model, only gave some of the formal notation.

To estimate the forward rate one seek a model which describe the arbitrage free dynamic by
a stochastic differential equation on the following form,

dLn(t)
Ln(t)

= µn(t)dt + σn(t)> dW (t), 0 ≤ t ≤ Tn, n = 1, . . . ,M, (2.14)

where W is a d-dimensional Brownian motion. The parameters µn and σn represents re-
spectively the expectation and volatility and can in general depend on both current rates(
L1(t), . . . , LM (t)

)
and the current time t. When using the forward measure, which is related

to the the usual risk neutral measure Brace, Gatarek and Musiela [BGM97] showed that

µn(t) =
n∑

j=η(t)

δjLj(t)σn(t)>σj(t)
1 + δjLj(t)

(2.15)

satisfy necessary no arbitrage conditions. A substitution of (2.15) into (2.14) gives

dLn(t)
Ln(t)

=
n∑

j=η(t)

δjLj(t)σn(t)>σj(t)
1 + δjLj(t)

dt + σn(t)> dW (t), 0 ≤ t ≤ Tn, (2.16)
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A solutions to (2.16) may not be found analytical. This means in order to find a solution it
has to be done by some numerical method where Monte Carlo simulation is the most common
used.

This text will assume a time grid on the form 0 < ti < · · · < tm < tm+1, where the simulation
will be done. The time grid can be arbitrary compared to the maturity dates when using
the η-function (2.12), but it is sensible to include the tenor dates Ti, . . . , TM+1 among the
simulation dates. In order to simulate from (2.16) it is sensible to use a first order Euler
discretization which gives

L̂n(ti+1) = L̂n(ti) + µn

(
L̂n(ti), ti

)
L̂n(ti)[ti+1 − ti]

+ L̂n(ti)
√

ti+1 − tiσn(ti)>Zi+1,
(2.17)

where

µn

(
L̂n(ti), ti

)
=

n∑
j=η(t)

δjL̂j(t)σn(t)>σj(t)
1 + δjL̂j(t)

,

and Z1, Z2, . . . are independent N(0, 1) random vectors in <d. Using (2.17) may produce
negative rates, to avoid that (2.16) can be discretization in the following way

L̂n(ti+1) = L̂n(ti)×

exp
([

µn

(
L̂n(ti), ti

)
− 1

2
‖σn(ti)‖2

]
[ti+1 − ti] +

√
ti+1 − tiσn(t)>Zi+1

)
.

(2.18)

Application of (2.18) is equivalent to apply an Euler scheme to log Ln, which may be seen as
an approximation of Ln by geometric Brownian motion over [ti, ti+1]. In case of deterministic
volatility this method is attractive since Ln is close to lognomal in this case [Gla04].

An implementation of (2.17) or (2.18) are typical given by the pseudo code in Algorithm 2.3
and produce output on the form given by Table 2.1 when compensate for arbitrary time grid.

Algorithm 2.3: Simulation of forward rates in the Libor market model.

input : Initial forward rates L
output: Next forward rates

for t = 1 to m + 1 do
for n = η(t) to M + 1 do

Ln(tt+1) = Ln(tt) + µn

(
L̂n(ti), ti

)
L̂n(ti)[ti+1 − ti] + L̂n(ti)

√
ti+1 − tiσn(ti)>Zi+1

end
end

2.2.3 Adjustments

The LMM is a general model which allows for some choices and modification related to the
implementation. This section will provide some modification when the model is used in risk
management related to the Norwegian bond market. The dynamics of the LMM is represented
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L(t0, t0, t1)
L(t0, t1, t2) L(t1, t1, t2) L(t∗1, t

∗
1, t2)

L(t0, t2, t3) L(t1, t2, t3) L(t∗1, t2, t3) L(t2, t2, t3)
...

...
...

...
. . .

L(t0, tn−2, tn−1) L(t1, tn−2, tn−1) L(t∗1, tn−2, tn−1) L(t2, tn−2, tn−1)
L(t0, tn−1, tn) L(t1, tn−1, tn) L(t∗1, tn−1, tn) L(t2, tn−1, tn ) . . . L(tn−1, tn−1, tn)

Table 2.1: Example of output structure from the Libor Market Model when the η function is
used to get a start time between the initial maturity times.

by (2.14), where the simulations have been concentrated around the Euler scheme given by
(2.17). The covariance matrix, σ, can be based on either implied volatility or historic volatility
based on yield which will be used in this text. Traditionally the implicit volatility are higher
than historic volatility but in estimating of credit exposure both are allow to use. Either one
choose implied or historic volatility the implementation can be done using a decomposition
of the covariance matrix into eigenvalues and eigenvectors on the following form

Σ = λiei, i = 1, . . . , n,

where n is the number of observations in Σ. For bonds containing several maturities this
will then give a dramatic decrease in the computer time. Litterman and Scheinkman [LS91]
showed that tree principal components describes the major movements in US bond. But
as shown in [Øve05] tree components is not a enough to describe the major movements in
the Norwegian market. In Section 4.1 and particularly Figure 4.3 this is shown by figures
containing Norwegian yield data. Hence an implementation using principal component do
not necessary reduce the over all computer time. An implementation using eigenvalues and
eigenvectors may in this case only introduce more numerical error than using the the full
covariance matrix as its given. From that reason the implementation in this text will use full
covariance matrix.

2.3 Interest rate derivatives

This work is about counterparty credit risk and how it can be estimated with a strong focus
on interest rate derivatives. Before introducing the risk estimation this section will describe
the behaviour of a financial derivatives and how the payoff profile look in order to better
understand the exposure in the following chapters.

2.3.1 Caps, floors, and swaps

In order to explain caps and floors one will first need to know what caplet and floorlet are.
Caplet and floorlet can be compared with call and put options from the asset theory. While
a call option gives a payment if the stock price goes above some fixed level a caplet gives a
payment if the interest rate is above some level K. This is then written as

Caplet = δ max
(
L(t, T )−K, 0

)
,



14 2.1 Background theory

where δ is time between t and T and L(t, T ) is the forward rate for accurate period. As the δ
parameter indicate the payment is for a period between two tenor dates where the equation
reflect this fact since the payment has to be multiplied with the length of the period. The size
of δ is usually below one which means a caplet is only valuable in a fraction of a year. From
the equation one can see that the payment level is determined at time t, since the forward
rate then will be known, but the payment is usually paid at time T .

An floorlet has the same properties as a caplet, but gives a payment if the rate goes below
some level K. This will then give a payment function in the following form

Floorlet = δ max
(
K − L(t, T ), 0

)
,

where δ and L(t, T ) has the same properties as for the caplet. The payment form a floorlet
has the same properties as the caplet and gives a payment for a time period at time T .
This payment is illustrated in Figure 2.1 which also shows the payment structure of caplet
combined with their values as a function of the rate.

0.04 0.05 0.06 0.07 0.08

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

 Caplet value 
 Caplet payoff 

(a) Caplet.
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(b) Floorlet.

Figure 2.1: Illustration of the payoff structure combined with the value for a caplet and
floorlet as a function of the rate.

The normal use of caplet and floorlet is to ensure that the rate do not goes above or below some
fixed level for a longer time period, which can be several years. In order get this insurance
for a upper level in the rate one have to buy a portfolio of single caplets. This collection of
single caplets is known as a cap with a payoff function of

n∑
j=1

= δj max
(
L(tj , tj + δj)−K, 0

)
,

where n is the number of time periods in the interval. Then in order of evaluate both the
value and exposure of this cap one have to sum the value of each single caplet. In the same
way a collection of floorlets is known as a floor and is evaluated in the same way as a cap.

As seen a cap gives a payment if the rate goes above some level, while a floor gives payment
if the rate goes below some fixed level. Something between is a change of floating against
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fixed rate formally known as an interest rate swap which will be abbreviated to swap. A swap
is an agreement between two counterparty to exchange a series of cash flows on prearranged
dates in the future where one part get fixed rate while the other get floating rate. And as
the reader may already have understood, a swap is collection of single swaplet. The payoff in
each period would then be the difference between the floating and fixed rate which gives the
following payoff function

Swap = δ
(
L(t, T )−K)

)
.

An graphical illustration of this exchange is given in Figure 2.2.

Figure 2.2: Illustration of change with following cash flows in a swap agreement

When one enter into an swap agreement this is usually done with an initial cost of zero for
both counterparty. In order to achieve this the fixed rate K has to be at the level where the
future forward rates are. A swap with this property is called a par swap, and the value of the
fixed rate K for which the swap has zero value is called the par swap rate. When the swap
start immediately this often abbreviated to just the swap rate.

2.3.2 Put-call parity

From asset theory there is well known that there exist a parity between the price of a put
and call option. In the same way there exist a parity between the price of a swap, cap and
floor. This is not an important result for the estimation of counterparty credit risk, but more
important in the area of risk management since it can be used to construct a portfolio with
the wonted risk profile. In the estimation of derivative priced in Chapter 5.1 one can observe
that the parity hold. Here the parity is stated with out proof, but refer to [HK00] for a reader
interest in a mathematical treatment of the parity.

A portfolio of long cap and a short floor with rc = rf and market rate r has a cash flow of

max(r − rc, 0)−max(rc − r, 0) = r − rc.

This is the same as the put-call parity which says

cap− floor = swap.

As a remark, without this parity it would have been arbitrage opportunities which in general
do not exist.
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Counterparty Risk

This chapter describes the treatment of counterparty credit risk, which late will be define
as the loss caused by default on counterparty, and this Chapter describes have this can be
estimated.

3.1 Risk management

Traditionally firms have used options to hedge risk in stock movements and swaps to get rid of
changes in interest and foreign exchange rates. But for banks and other financial institutions
making money on others risk it is not always possible to hedge all their credit risk. As a
result financial institution need to understand the different sources of risk they are facing and
know how they can be measured those. This intimate that counterparty credit risk is not
the only type of financial risk that financial institutions are exposed to and hence the risk
managers have to be capable of measure and controlling many different types of risk. Usually
the financial risk is separated into four groups: credit risk, market risk, liquidity risk and
operational risk.

The first source of risk to be delineated is market risk which usually is defined as the risk of
loss due to movements in market prices and volatility. When banks have open positions one
know its market values to day but future values are uncertain which may result in losses. For
instance if a bank owns a financial paper worth 100 today its value tomorrow can be 90 and
hence cause a loss of 10. Without going into detail it can be mention that market risk usually
is estimated using the Value at Risk (VaR) method. The method is based on estimating
market scenarios for a period of some few mounts and then estimating the potential loss.
From this simulation one estimate the 99% percentile or an other percentile of interest and
use it as a measure of the market risk. If the former loss of 10 is given as the value in the
99% percentile it means that in one of 100 days one have the potential loss of 10.

The second risk term, liquidity risk, is used for both market liquidity risk and founding
liquidity risk. For the first type an economic loss would arise if a transaction cannot be
conducted at market priced due to the size of the required trade relative to normal trading.
This type of liquidity risk should be a part of the VaR estimation when estimating the market
risk, but is often forgotten [Jor05]. The second type of liquidity risk, founding risk, arise
when institution are unable to meet its obligations because of an inability to liquidate assets
or obtain adequate funding.

17
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Operation risk is by the Basel Committee [BIS05b] defined as the risk of loss resulting from
inadequate or failed internal processes, people and systems, or from external events. This is
in effort to measure unexpected events such as the collapse of Barings Bank in 1995 and the
attack on the World Trade Center in 2001.

The last and probably larges source of financial risk is credit risk. It is usually defined as
the uncertainty in counterparties ability to meet its financial obligations. This uncertainty
is often related to companies default probability. CreditMetrics has provide a framework for
simulations of changes in credit rating for different firms. The framework are in daily use
to estimate the default probability for different firms and business sector, but the framework
do not says anything about the size of the potential loss. This potential loss will in the
remaining text be denoted as credit exposure. An illustration of the size of this risk category
can be found by looking at the 2005 Annual report for Norway’s largest financial institution
DnBNOR. It shows that the credit risk account for 65% of estimated risk capital before
diversification effects, clearly showing the size of this risk category.

The risk categories defined above do not necessarily fit into one separate category. For instance
a swap between a speculator and a bank may result in a wrong way trade. If the bank losses
money on the swap credit risk is not an issue but if the bank gain on the swap it is at the
expense of the speculator. If the loss for the speculator is large this could lead the speculator
to default and hence make credit risk for the bank and in this way the swap lead to double
default effects. For the bank this this type of transactions are fare more dangerous than
when the counterparty is a hedger since it will make the default risk smaller. Lager financial
institution all over the world and all banks in the European Economic Area, including Norway,
are liable of monitor this risk through the Basel II regulations.

3.2 Basel regulations

In an attempt to avoid bankruptcy, as a worst case, among the financial institution they are
by the Basel regulations set out by the Basel Committee on Banking Supervision been given
guidelines in how to measure different financial risk and regulations about minimum capital
requirement in order to live by a financial loss. The Committee is part of the Bank for Inter-
national Settlements (BIS) which is an international organization which fosters international
monetary and financial cooperation and serves as a bank for central banks. Currently the
bank have 55 member central banks including Norway.

The Basel II accord is a revised framework of the former Basel (I) accord, commonly referred
as the Basel Capital Accord. The new accord allow for more individual decision among
financial institution in the determination of what method to use, but the new accord is more
specific about what to estimate. This is done through the three following pillars, which the
Basel II accord is based on.

• Pillar 1: Calculations of total minimum capital requirements for credit, market and
operational risk.

• Pillar 2: Supervisory oversight of the minimum requirements and other capital issues.
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• Pillar 3: Disclosure requirements providing market discipline on bank capital adequacy.

This work will concentrate on the first pillar and the calculation of credit risk since is represent
the largest source of financial risk.

3.3 Credit risk

3.3.1 Credit risk definition

In the remaining text the credit risk definitions which follows in this section will be used.
They are all based on the Basel Capital Accord [BIS05a] but will here be given in more
mathematical terms.

Counterparty Credit Risk (CCR) is define to be the risk that a counterparty to a transaction
can default before the final settlement of the transaction’s cash flows. If the transaction or
portfolio of transactions with a counterparty has a positive economic value at the time of
default an economic loss will occur. In generally all positions that give rise to CCR share the
characteristics that they generate credit exposure.

To estimate CCR the Basel Accord refer to different probability measures for which the
credit risk is calculated. For this work only the distribution of market value and distribution
of exposure make sense to use among all proposed distributions. In some sense the names
reflect the outcome of the distribution. They are based on the fact that exposure always are
larger than zero since an economic loss do not occur if the market value are negative, which
means the market value can go below zero. In more mathematical terms f(m) is defined to be
the distribution of market values. Since the market value can be both positive and negative
the function f(m) is in fact a mapping from R to R i.e.

f(m) :→ R. (3.1)

This is in contrast to the exposure which only account for positive numbers. From this f(e)
is defined to be the distribution of exposure and since it only can be positive it is in fact a
mapping into R+, where R+ is the non negative real numbers. By follow the notation from
(3.1) it can be written as

f(e) :→ R+.

Often the distribution of exposure are defined by setting the non positive values in the market
distribution equal zero i.e.

f(e) ∼ max
(
f(m), 0

)
.

hence there exist a function ξ such that

ξ : f(e)→ f(m).

With these probability distributions we are capable of measuring CCR.

The first measure which is used in estimation of CCR is Current market value (CMV). It
is used to denote the market value of the transactions within a netting agreement set with
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a counterparty and is estimated at time zero only. In measuring CMV both positive and
negative values are used which means the value is estimated under the distribution of market
values. The estimation of CMV are often done by using the method of Black 76 [Bla76]. This
method will count for the volatility in future forward rates. But in practice the forward rates
are known deterministic at time zero gives a non stochastic market value. In this text the
last method is used because of its simplicity. Close related to CMV one have the Current
exposure, which often is denoted as the replacement cost. It is defined as the cost of replacing
the transaction if the counterpart defaults assuming there is no recovery of value. This means
it is calculated by taking the larger of CMV and zero.

The next exposure measure which is close related to current exposure is Expected exposure
(EE) often mention as credit exposure. The EE shall reflect the fact that market value change
according to time t and is defined as the mean average of the distribution of exposures at any
particular future date before the longest-maturity transaction in the netting set. This gives

EE(t) =
∫ ∞

0
etf(et) det, (3.2)

where the expected exposure has been give a t parameter to reflect its time dependency.

An other important exposure measure is Potential future exposure (PFE). It is defined as
the maximum amount of exposure expected to occur on a future date with a high degree
of statistical confidence. For instance the 95% PFE is the level of potential exposure that
is exceeded with only 5% probability. Implicitly it can be defined as the value that is not
exceeded at the given level p [Jor05]. If the position with value V (t) has a distribution f(et)
at time t, the PFE(t) is given by

1− p =
∫ ∞

PFE
f(e) de. (3.3)

In terms of simulations PFE is represented by the 95% highest observed value from the
order statistics. When estimating (3.2) and (3.3) netting and collateral have to be taken in
consideration. That will not change the definition and is treat in detail in Section 3.3.2.

Maximum potential future exposure (MPFE) is define to be the peak of PFE over the life time
of the portfolio. In mathematical terms this gives

MPFE = max
(
PFE(t)

)
, 0 ≤ t ≤ T, (3.4)

which means the MPFE is given by the largest value of all PFE.

An other measure of CCR that will be used in this text is Effective EPE. It is established to
capture rollover risk and is the amount by which expected positive exposure is understated
when future transactions with a counterpart are expected to be conducted on an ongoing
basis, but the additional exposure generated by those future transactions is not included in
calculation of expected positive exposure [BIS05b]. It is defined as

EffectiveEEtk = max(EffectiveEEtk−1, EEtk), (3.5)

where the exposure is calculated recursively and current date is denoted as t0.
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The two last measure of CCR that will be used in this text is derived from the previous defined
measure. The first is Expected Positive Exposure (EPE) which is the weighted average over
time of the expected exposures.

The last measure of CCR is Effective Expected Positive Exposure (Effective EPE). It represents
the weighted average over time of effective expected exposure over the first year, or over the
time period of the longest-maturity contract in the netting set where the weights are the
proportion that an individual expected exposure represents of the entire time interval. Hence
it is estimated as

Effective EPE =
1
n

n∑
i=1

EEi, (3.6)

if all contracts in the netting set mature after one year. If the contracts mature before one
year EPE is the average of expected exposure until all contracts in the netting set mature.
Hence Effective EPE is computed as a weighted average of Effective EE

Effective EPE =
min(1year,maturity)∑

k=1

EffectiveEEtk ×∆tk,

where the weights ∆tk = tk − tk−1 allows for the case when future exposure is calculated at
dates that are not equally spaced over time. An illustration of some of the risk measure is
given in Figure 3.1.

Figure 3.1: Illustration of how EE and effective EE can vary with time and how Effective EE
looks when it is estimated recursively starting at t0.

3.3.2 Treatment of exposure

Before estimating CCR one should know that exposure is highly dependent on contract type
and that netting and collateral may reduce the total exposure.

As said an interest rate swap is a agreement between two counterparties to exchange a fixed
interest toward a floating interest, where the market value of the swap contract is given as the
discounted difference between the fixed and floating rate. The market value of the swap will
change according to the state of the market and remaining payments. Since the floating rate
can go both up and down the belonging market value can be both positive and negative. If



22 3.1 Counterparty Risk

the market value is negative for one part it is positive for the counterparty and the other way
around if the market value is positive. Hence if one part default the other part are espoused
to an economic loss which make the risk of a swap two sided.

In contrast to swap which is an obligation to exchange payments there exist option type of
derivatives. They give the right to change value with a counterparty but is no obligation. In
terms of exposure it means that only the option buyer are adversely affected by default on
counterparty. For instance a contract of long option is always non negative for the option
buyer and non positive for the option writer. Hence only one part are exposed for an economic
loss which make the exposure one sided in contrast to swap which gave raise for two sided
exposure, related to the put call parity. Exposure may also depend on the features of any
embedded option. If the option is of American style the holder of an in the money swap may
want to exercise early if the credit rating of its counterparty starts to deteriorate. In this way
the exposure decreases relative to an equivalent European option. As the numerical examples
shows this can be used to reduce the total exposure, determine that the contract are part of
a netting agreement.

In Section 3.3.1 position containing netting and collateral where not take in consideration
when defining EE and PFE by (3.2) and (3.3). The introduction of netting and collateral will
here demonstrate that the previous define EE and PFE can be reduced and hence a reduction
in the over all credit exposure. As a remark and as mention before this can be done with out
changing the previous definitions since we only has to change the way we add the different
exposure.

This part will focus minor on the distribution but concentrate around the expectation in the
distribution. The term V (t) will be used to denote the value at time t which is given by

V (t) =
∫ ∞

−∞
mf(m) dm.

By using previous notation this gives EE for an uncollateral position equals

EE(t) = max
(
0, V (t)

)
. (3.7)

To reduce the potential loss in case of default on counterparty it is by the Basel Accord allow
to collateralize the position. The ISDA [ISD05] describe collateral as a contract that is one
the side of the main agreement, where the aim of the contract is in the event of default on
the primary transaction to reduce the potential loss. In the case of default on counterparty
the collateral receiver has recourse to the collateral asset and can thus indirectly make good
any loss suffered. By accounting for a collateral worth C(t) ≥ 0 the net exposure in (3.7) are
given by

max
(
0, V (t)− C(t)

)
. (3.8)

By comparing (3.8) with (3.7) one clearly observe that collateral can reduce the total exposure
to a counterparty.

An other method to reduce the exposure is to net contracts with different exposure profiles
as shown in Figure 3.2. When talking of netting there are at least two types of netting
agreements. The first is netting novation which is an agreement between counterparty to
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combine different cash flows into one single payment on daily bases. The second type, close
out netting, is a bilateral agreement whereby all contracted but not yet due obligations and
claims on each other will be accelerated and terminated immediately if default or another
termination event occur. In the case of default the gross market value of all contracts are
added up and one single net payment is owed by the counterparty that has a negative net
portfolio value. This is the type of netting agreement that will be considered in this text,
since it is one of the most important credit risk mitigation tools in the market [Fra01].
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Figure 3.2: Illustration of how netting agreement can reduce the exposure for a portfolio. The
left figures shows market value for two different swaps while right figures shows the exposure
profile with and without netting agreement.

To describe this in mathematical terms one can consider a position containing plural agree-
ments with market values given by,

V1(t), V2(t), . . . , Vn(t), (3.9)

at time t. If there is no netting agreement the total exposure is given as the sum of the
individual exposure in following form

Total exposure =
n∑

i=1

max
(
0, Vi(t)

)
. (3.10)

If one then assume the position in (3.9) to be part of a net portfolio the total exposure is
given as the sum of the individual values, which is written as

Total exposure = max

(
0,

n∑
i=1

Vi(t)

)
. (3.11)

From the expression in (3.10) and (3.11) it should be clear that

max

(
0,

n∑
i=1

Vi(t)

)
≤

n∑
i=1

max
(
0, Vi(t)

)
, (3.12)

with equality only if all transactions are perfect correlated. As (3.12) then shows, a netting
agreement can reduce the overall exposure dramatic.
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At last both collateral and netting can be combined to reduce the exposure. Hence the total
exposure are expressed as

Total exposure = max

(
0,−C(t) +

n∑
i=1

Vi(t)

)
,

which can be used in estimation of both EE and PFE.

3.4 Estimation of credit exposure

For interest rate derivatives the credit exposure is a function of the future rates, which in
general has an stochastic behaviour, of the remaining payments in the contract. Figure 3.3
shows how the exposure profile can be as a function of the time. It shows how the mean value
change according to time and how each time has it own probability distribution which depends
on future rates and remaining payments. This means in order to estimate the exposure at
any given time the forward rates form every time has to be determine, which indicate the
computation job can be enormous.
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Figure 3.3: Illustration of how the exposure is dependent on time. The Figure shows the
mean value change according to time and has an independent probability distribution at each
time.

3.4.1 The BIS methodology

The BIS methodology is an analytical approximation, equal for all firms, and do not require
any numerical simulation. Banks that decide to use the BIS methodology can choose between
the current exposure method and the standard method, where this text only treat the current
exposure method [BIS88] and refer to [BIS05a] for readers interested in the standard method.
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When estimating credit exposure with the BIS methodology one shall note that actual ex-
posure and thus both the potential and total exposure are defined at current time, t = 0,
only. To estimate the exposure in the BIS methodology the fact that the total exposure,
know as the credit equivalent amount (CEA), for a derivative position consist of two parts
actual exposure (AE) and potential exposure (PE) is used. In the current exposure method
the AE(0,t) are equal previous defined current market value, which easy can be estimated,
while the potential exposure(PE) is calculated using a pre-defined static add-on factor. The
potential exposure is then expressed as

PE = CF ×N, (3.13)

where N is notional and CF is the add on factor which in general depends on security type and
time to maturity. Table 3.1 summarize the factor by maturity date and type of underlying.
By combining (3.13) with the actual exposure the CEA can be written as

CEA = AE(0, t) + PE(t). (3.14)

To estimate (3.14) for a portfolio the PE in (3.13) is to be estimated as a sum of the individual
add on amounts. This means multiply the notional principal amount by the appropriate add
on factor for the transaction and then take the sum all transactions.

Residual
Interest Rates

FX
Equities

Precious Metals Other
Maturity and Gold Except Gold Commodities

< 1 year 0.0% 1.0% 6.0% 7.0% 10.0%
1-5 years 0.5% 5.0% 8.0% 7.0% 12.0%
> 5 years 1.5% 7.5% 10.0% 8.0% 15.0%

Table 3.1: BIS credit conversion factors [BIS05a].

If a netting agreement is established the PE in (3.14) has to be multiply with a netting factor
NF . Equation (3.14) is then written as

CEA = AE(0, t) + NF × PE(t), (3.15)

where the netting factor, NF , is defined as

NF = 0.4 + 0.6×NGR, (3.16)

where the factors 0.4 and 0.6 are values that have been set by the Basel Committee based
on market observations. The last term in (3.16) is the Net to Gross Ration, NGR, which
is equal the level of net replacement cost divided by the level of gross replacement cost for
transactions subject to legally enforceable netting agreements. Using (3.11) and (3.10) it is
expressed as

NGR =
max

(∑n
i=1 Vi(t), 0

)∑n
i=1 max

(
Vi(t), 0

) . (3.17)

If netting agreement is not permitted the NGR factor is equal one which also is the case
when non of the transactions cancel each other as a result of the the numerator being equal
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the denominator in (3.17). When NGR = 1 the NF factor becomes equal one and the CEA
is the sum of each transactions CEA, hence (3.14) becomes equal (3.15).

In a wider setting the CEA is used to measure necessary capital reserve. That is done by
multiply the CEA by a 8% capital to exposure ration and a risk factor (RF) depending on
type of counterparty. Capital reserve is then given as

CR = CEA× 0.08×RF,

where the RF are given by Table 3.2.

Type of Counterpart Risk Weight

Organization for Economic Cooperation
0%

and Development (OECD) governments
OECD banks and public sector entities 20%
Corporate and other counterparties 50%

Table 3.2: Risk weights factors

The benefit of this model is its simple arithmetic, but it fail to take the different derivatives
market correlation in account when measuring credit exposure.

3.4.2 Internal method

A more advanced method for estimating CCR in portfolios of interest rate derivatives is
through using Monte Carlo simulations where the Libor Market Model is used to model
underlying evolution of the rates. The idea is to estimate the whole exposure distribution
at any given future time by estimation the rates and estimate the values of the remaining
payments for the derivatives.

This text will use two different method for estimating PFE. The Basel Accord state that
PFE is to be estimated as a multiple of the Effective EPE. This method which is denoted as
Exposure amount (EAD) is then given as

EAD = α× Effective EPE (3.18)

where the Effective EPE is given by (3.6) which is a mean value of the Effective exposure
measured from (3.5). The alpha multiplier in (3.18) is set equal 1.4 by the Basel Committee
based on best market practice. Banks may seek approval form their supervisors to compute
internal estimates of alpha subject to a floor of 1.2. But supervisors also have the discretion
to require a higher alpha value. Hence the value of 1.4 sounds like a proper value and will be
used in this text.

The Monte Carlo simulations enabling estimation of any arbitrary percentile in the probability
distribution. This means that in some seance information get lost by using the alpha multiplier
is used instead of an direct simulation of the exposure percentile. To avoid this type of
information loss this text will also use direct simulation of the 95% percentile. The measure
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of exposure that will be used is peak in the percentile which is denoted as MPFE and is found
by using (3.4). Figure 3.4 shows the relation between this direct simulation of the exposure
and the use of the alpha multiplier.

Figure 3.4: Illustration of how EE and effective EE can vary with time and how effective EE
looks when it is estimated recursively starting with t0.

Distribution of exposure

Since the exposure is a function of the remaining stochastic forward rates for the period one
have to be able of estimating their distribution. When estimating CCR the interested are the
potential loss given default at time t. This imply that the counterparty was alive at t− 1 and
not yet taken by financial distress. Hence the interest is to estimate the loss given alive at
t − 1 and not at t = 0. An illustration of this is given in Figure 3.5. In mathematical terms
this means the forward rates Ft, which is estimated by the Libor Market Model, has to be
condition on the previous rates Ft−1 i.e.,

f(Ft|Ft−1), (3.19)

where Ft is the contracted at time t. This means for every point on the time line the estimation
of the exposure it have to be done by using the conditional distribution. In this way exposure
have the be estimated using the marginal distribution of Ft which is given by

f(Ft) =
∫ ∞

−∞
f(Ft, Ft−1) dFt−1. (3.20)

An illustration of this dependency is given in Figure 3.5. As Equation (3.20) shows each
point has it own probability distribution which make the distribution dependent on time and
illustrated by previous Figure 3.3

To generalise this for an arbitrary time in order to estimate EE(t) and PFE(t) by using the
definition given by (3.2) and (3.3) this gives

EE(t) =
∫ ∞

−∞

∫ ∞

−∞
(Ft − Fixed rate)f(Ft, Ft−1) dFt dFt−1 (3.21)

and
PFE(t) =

∫ ∞

−∞

∫ ∞

PFE
(Ft − Fixed rate)f(Ft, Ft−1) dFt dFt−1 (3.22)
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Both (3.21) and (3.22) can be impossible to solve for a general distribution and job has to be
done by some simulation method.

A simulation method will typical consist of a program containing two loops. The outer loop
will control the different times where the exposure is estimated while the inner loop estimate
the outcome based on previous time rates. Algorithm 3.1 shows how this can be done.

Algorithm 3.1: Estimation of exposure

input : Initial forward rates L0

output: Next forward rate

Effective EE(0) = 0

Looping exposure time
for t = 1 to T do

Looping MC simulations
for i = 1 to n do

Draw L(t,i) based on Lt−1

V = fixed rate− L(t,i)

EE(t,i) = max(0, V )
end
L(t) = 1

n

∑n
i=1 L(t,i)

EE(t) = 1
n

∑n
i=1 EE(t,i)

Effective EE(t) = max
(
Effective EE(t− 1), EE(t)

)
end
EPE = 1

T

∑T
i=1 EEi

Effective EPE = 1
n

∑n
i=1 Effective EE(i)

Figure 3.5: Illustration

Calculating exposure in a market model

Previous part treated the exposure in general terms without saying anything about how the
term floating minus fixed rate i.e., Ft−Fixed rate, was calculated and Ft was the forward rate
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contracted at time t. From Section 2.2 it is know that a forward rate is the rate determine at
time t for a period [t∗, t∗ + δ]. As a result there are in practice not a single forward rate for
the whole period but the period consist several rates covering different sub intervals. When
calculating exposure this have to be taken in consideration and it is sensible to let Ft(i) denote
the forward rate contracted at time t for the time interval i to i + 1.

The second thing to take in consideration is that the time interval given by i to i + 1 do
not necessarily fit by the time period of the derivatives. For instance a swap is typical given
as quarter paying swap with a fixed level of r. As an example one can think of a n period
quarterly coupon paying swap with a fixed level of r. This swap commits the seller to pay the
buyer at each future quarter i ≤ n the previous quarters short rate Ft(i − 1) in return for a
fixed payment of r. As a result the swap owner actually pays the difference [r−Ft(i−1)]/4 if
positive, and otherwise receives [Ft(i− 1)− r]/4 at time t [DS03], where the factor 1/4 reflect
the fact that the swap pays each quarter and would have to be changed for contracts of other
lengths.

Those facts makes the Libor Market Model powerful. It enables estimation of the forward
rates for all time periods within the rage of the initial time grid. But for longer time periods
the time grid do not contains a enough points related to the pay frequency of the swaps.A
native method to compensate for this is by linear interpolation. The motivation for doing
this is in order to better reflect the changes in the forward rates from time to time. The
interpolation is done with a first order approximation. Form a mathematical point of view a
higher method could have been used, but by looking at historical rates in Figure 4.1 that is
not rational. The curvature for the short term rates are greater than the long term rates but
for the short term rates the points are close and the potential error becomes small. For the
long rates the curvature of the rates are nearly flat indicating that a first order approximation
is appropriate to approximate that part. This method can not be used for the last time period
since there are no points to interpolate between. In practice one then have two choices either
one can choose to use the same rate in for the whole period or put the last point forward in
time. It will be as much wrong use both method since the curvature is rather flat, but this
text will use the last method in order to avoid equal rates for the whole period. An in this
way the LMM is powerful since it can be implemented taking this thing in consideration.

As a final remark on calculating credit exposure one should note that the exposure has to be
calculated as a sum of the individual payments. To consider a swap the exposure is those a
sum of the individual differences between the fixed and floating rate i.e.,

Exposure ∝
n∑

i=1

(r − Fi(t))dt, (3.23)

where dt is the time difference between i− 1 and i. The exposure on interest swap can thus
change according to the state future market prices. An upstate in one part of the market can
be cancelled by a down state in a other part of market. Using equation (3.23) in its simple
form do not take in consideration that the payments has to be discounted to the time where
the exposure is estimated. By taking that in consideration the exposure can be written as a
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recursive equation in the following way,

En =(r − Ft(n− 1)) · dt

En−1 =(r − Ft(n− 2)) · dt + En/(1 + Ft(n− 2) · dt)
...

E1 =(r − Ft(2)) · dt + Et(2)/(1 + Ft(2) · dt)
E0 =Et(1)/(1 + Ft(n− 1) · dt).

(3.24)

Using Equation (3.24) this can be written as an algorithm in the way given by Algorithm 3.2,
where interpolation is not taken i consideration.

Algorithm 3.2: Estimation exposure
input : Forward rates
payoff = 0
for t = 1 to T do

e← e + (r − Ft(i− 1)) · (ti(i)− tt(i− 1))
e← e

1+Ft(i−1)·(tt(i)−tt(i−1))

end
return payoff

After a introduction in the theory of counterpart credit risk estimation the next chapter will
describe the data that will be used to test the different methods in Chapter 5.
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Data description

This chapter describes the data used in both calibration of the volatility structure and an
introduction to the test portfolio used when estimating the exposure. The first section de-
scribes the structure of the initial data, while the second part gives an overview of the test
portfolios.

4.1 Calibration data

The volatility in this report is estimated using historic and not implied volatility. The volatility
is estimated form historic Norwegian zero coupon yield provided by DnBNOR, where the data
span a time period from 1 October 1998 to 29 August 2005 representing 1758 trading days.
Within this time period there are eight different maturity dates cover the range of 3, 6, 9
months and 1, 2, 3 and 10 years. Figure 4.1 shows the evolution of those historic yield.
As the Figure shows, some of the well known characteristic of interest rate behaviour are
represented. This involve both parallel shift and twisting of the yield curve. As said in
Section 2.2 this behaviour is a important motivation for using a market model instead of
traditional one factor interest rate models. A result of this is that a few number of factors
not are enough to describe the major movements in the historic yield. This is even more
clear in Figure 4.3 containing a plot and a table of the principal components of the covariance
matrix. The Figure 4.2 shows no sign of a breaking point that can indicate a few number of
factors is a enough to describe the correlation structure. This lack of structure in the principal
components have motivated the use of full covariance matrix in this paper.

Term structure data have normally the property that short term rates have greater volatility
than long term rates. Figure 4.5 contains a plot with the covariance of the historic yield
combined with a table of the main diagonal values. The plot shows the expected behaviour
with high volatility for short term rates and low volatility for long term rates. On the other
hand the plot confirms the results from the principal components analysis in the fashion that
rates are correlated.

As a last characteristic of the rate one should look at the level of the rates. The initial rates in
this text is shown in Figure 4.6 which also is the last observation covariance matrix. The plot
shows that the rates has increasing trend. This tendency is reasonable when interest rates is
known to have some kind of positive mean reverting level. One should thus expect long term
swap to be on a higher level than current short time rate and on the other hand derivatives
that have short time to expire typical are at a higher level resulting a large current exposure.

31
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Figure 4.1: Evolution of historical yield as a function of maturity and entering time.
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Figure 4.2: Principal components of the covariance ma-
trix as a function of its index in decreasing order.

Factor
Explained variance

Notional Accumulated

1 0.3787 0.3787
2 0.2335 0.6122
3 0.1353 0.7475
4 0.0939 0.8414
5 0.0570 0.8985
6 0.0424 0.9409
7 0.0336 0.9744
8 0.0255 1.0000

Table 4.1: Principal components
values together with accumulated
sum.

Figure 4.3: Principal components of the covariance matrix represent in both plot and table
form.
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Figure 4.4: Correlation structure.

Diagonal Variance
element (×10−4)

1 4.880
2 4.445
3 4.093
4 3.706
5 2.293
6 1.262
7 0.693
8 0.356

Table 4.2: Diagonal values

Figure 4.5: Evolution in historic yield based on daily return for Norwegian NIBOR rates. The
values for the main diagonal is represented in the belonging table.
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Figure 4.6: Evolution of the initial forward rates in the simulations, which also represents the
last observation used in estimation of the covariance matrix.
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4.2 Example portfolios

This section will describe all portfolios but only the first portfolio is given in detail. The
remaining can be found with complete numbers in Appendix A.

The purpose of this work is to study different methods to estimate credit exposure, where
the main focus is to compare the BIS exposure and different estimates from a Monte Carlo
simulation. In the comparison portfolios related to various business sector combined with
some portfolios that is a bit more of academic interest will be used. All portfolios are based
on real data provided by DnBNOR but modified in order to match the stated criterion. In this
way all portfolios will reflect sensible market behaviour in terms of the rate and notional level.
Before introducing the portfolio there is a remark to the date format used in the notation.
From Section 4.1 it is known that the last forward rate is form 29 August 2005. Due to some
simplification in the implementation this rate will be stated as the rate of 1 January 2006.
This modification will not affect the results since the work is concentrated around relative
time to maturity.

The first portfolio that will be considered is a single swap which is given in Tables 4.3 and
A.1. This is a 10 years quarter paying swap with a initial price close to zero, which then
gives an initial exposure close to zero. This swap represented by Portfolio 1 can be seen as
portfolio belonging to small company for instance in the establishment phase which only have
one interest rate paying loan that they wish to secure. In some way the swap can also be seen
as a belonging to private person securing the rate on the debt related to the apartment.

The aim of using this swap is to see how the BIS exposure behaves compared to simulated
exposure profile for a small company with only one swap which gives no possibility of netting
effect. As a reminding even though small often has a greater default probability it do not
affect the credit exposure and make the use of this swap sensible.

Product CCY Start Maturity Notional Rate Pay freq.

IR-swap NOK 2006-04-01 2016-04-01 100000000 0.0400 Q

Table 4.3: Portfolio 1

The second portfolio is a more mixed portfolio containing both sold and bought swaps. Most of
them are quarter paying swap but some of them are annual and semiannual paying derivatives.
The portfolio can bee seen as collection of interest rate derivatives for a smaller firm with
some swaps both ways combined with caps and floors in a way that they get the wanted risk
profile.

Portfolios 3 and 4, Tables A.3 and A.4, must in some way be seen together. They both consist
of long term swap, but in the first of those portfolios all swap are positive correlated while
the second one has swaps which is both sold and bought giving rise to negative correlation
among the derivatives. The first of those can then typical be against a life insurance firm
or a company in real estate. A life insurance company normally has long term obligation
to its policy holder. They have an obligation to their customer in order to pay a known
amount every year. In this way they hedge some of this risk by entering into long term swap
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agreement. A company in real estate normally has long term debt on their flats where the
interest payments are secured by a swap contract. Hence the portfolio can represent both
those types of companies. As said this portfolio has to be seen together with Portfolio 4,
which here is based on academic interest. Sine the portfolio contains the same swap and only
differ whether they are sold and bought they can be used to illustrate netting effect. The
portfolios will not necessarily have the same current market value since of the swap can be of
different sign but this negative correlation one should expect the peak exposure to be lower.

Portfolio five is a mixed portfolio containing both swaps, caps and floors. However the special
with this portfolio is that none of the derivatives have maturity that is longer than five years
and the rates are at a higher level than current state. In this way the portfolio represent for
instance a firm with a mixed interest rate portfolio that is terminating the contracts to is
counterparty. But an other interesting point with portfolio is to examine how the different
method behaves when the contracts are at higher level than current state.

The sixth and last portfolio that will be considered in this text can be seen as interest rate
portfolio belonging to an larger investment bank and is constructed by combining Portfolios
1-6. In this way the portfolio will consist of several different swap agreement at different levels
and different maturity dates. The swap are both sold and bought which gives rise for netting
effect in the sense that they are negative correlated. Beside just swap this portfolio consist of
both caps and floors with different strike levels. In this way the portfolio represent different
transactions which is typical for an investment bank.
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5

Numerical results

This chapter describes the numerical results from the Monte Carlo simulations. First section
shows some result related to simulation of forward rates and derivative pricing using the
LMM, while the second section gives the result related to estimation of credit exposure using
the exposure measures as defined in Chapter 3.

5.1 Interest rate simulation

From Section 2.2 it is known that the Libor market model makes it possible to simulate the
whole forward rate curve with corresponding distribution, expectation and variance for each
different rate interval. An illustration of that simulation is given in Figure 5.1, showing the
distribution of the forward rate for all different time periods. In the simulation a log-Euler
discretization, Equation (2.18), with 50 000 simulations has been used, and the plot shows
the LMM gives a complete distribution for all periods with a peak around the initial forward
rates. Hence the result shows the model enables simulation of the volatility for the forward
rates, which then can be used to pricing interest rate derivatives and estimation of credit
exposure.

Results related to pricing of interest rate derivatives with focus on cap, floor and swaps
are shown in Table 5.1, where the prices are measured with both the Euler and log-Euler
discretization. In Table 5.1 also a column with the difference, in absolute value, between the
two discretization are presented. As the table shows there are only minor differences between
those two method, making both methods suitable for pricing interest rate derivatives. Hence
in this paper both method could have been used, however the log-Euler discretization is used
in order to avoid possible negative rates. When the numerical results for these derivative
prices are seen together with the strike level and the corresponding volatility for the period,
the derivative prices shows reasonable levels. Based on those results the Libor market model
is as an appropriate method for estimation of financial derivatives. A last characteristic of
the simulation that is worth looking at, is the convergence rate of prices. Plot 5.2 shows trace
plots for both the mean value and the variance for one of the swaps. The plot shows that the
mean value has converged after about 15 to 20 thousands iterations, which means there are
no use to simulate 50 000 iterations which have been used for pricing purpose. Based on this
observations only 20 000 simulations will be used in the purpose of estimating counterparty
credit risk.
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(b) 0.5 to 0.75 year.
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(c) 0.75 to 1 year.
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(d) 1 to 2 years.
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(e) 2 to 3 years.
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(f) 3 to 5 years.
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(g) 5 to 10 years.

Figure 5.1: Distribution of estimated forward rates for different time intervals where ALU
the rates are determine at time zero. The x-axis gives the forward rates while the y-axis
represent the probability. All estimations are done by employ log Euler discretization with
50 000 simulations.

Type Strike Level Log Euler Euler Difference

Cap 0.035 0.03600 0.03372 0.00228
Cap 0.045 0.00582 0.01500 0.00918
Cap 0.055 0.00634 0.00586 0.00048

Floor 0.035 0.00498 0.00493 0.00005
Floor 0.045 0.01909 0.02014 0.00105
Floor 0.055 0.04292 0.04490 0.00198

Swap 0.035 0.03101 0.02878 0.00223
Swap 0.045 -0.00265 -0.00514 0.00249
Swap 0.049 -0.03011 -0.03178 0.00167
Swap 0.055 -0.03657 -0.03903 0.00246

Table 5.1: Simulated price for some common derivatives with start after two years and a final
maturity after seven years, where all derivatives have four payments a year.
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(a) Trace mean value.
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(b) Trace variance.

Figure 5.2: Convergence rate of the mean and variance in the LMM illustrated by trace plot of
cumulative mean and variance for a quarter paying swap with start at two years and maturity
after seven years, with a strike level at 4.9%.

5.2 Credit exposure

5.2.1 Portfolios credit exposure

The analysis will start by looking at a plain vanilla interest rate swap. This swap, which has
been denoted as Portfolio 1 and representing a small company or a private person, has a finial
maturity of ten years and a current market value just below zero. The BIS methodology is
calibrated towards firms having larger portfolios containing plural derivatives with different
exposure profiles. Since this portfolio only consist of a single swap one should not be surprised
when the results shows that the BIS estimate gives an exposure that is beneath the simulated
value. This is most easily seen in Figure 5.8 showing the exposure profile for the different
methods. As the plot shows the MPFE estimate is about two times the size of the BIS estimate
and the EAD measure is about two and a half time as large as the BIS estimate. Those values
shows how the BIS methodology underestimates the somewhat more true exposure from the
Monte Carlo simulation, when the portfolio consist of a single swap only. An interesting
observation is that the MPFE measure is above the EAD measure. This will be treated in
detail at the end, but it is a result coming from the fact that the EAD is estimated based
on the concept of effective expected exposure. As a last remark, the consideration of netting
agreement for this portfolio has no effect since a single swap do not give raise to any netting
effects and hence the numbers are equal for the portfolio with and without netting agreement.

Beside just study the values, the whole exposure distribution is given in Figure 5.7. As the
plot indicate the estimated exposure reach its maximum value around three years, where the
profile increasing before that time and decrease to zero after the peak is reach. This profile is
not unrealistic when the nature of a swap is taken in consideration. At time zero the market
value of a swap are usually close to zero making it into a par swap. But as time goes the
uncertainty in future rates becomes larger resulting in higher exposure. On the decreasing
side of the peak the numbers of remaining payments fell, giving fewer payments that are
exposed to changes in the rates. This behaviour can be seen in the distribution plot since
the tail of the distribution gets smaller, resulting in more probability mass around the mean
value. An remark for this swap is that the exposure has been calculated in a regime where
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the forward rates are at a low level and with a increasing trend. In this kind of regime the
swap rate are higher than the rate at current time, hence this can explain some of the fall in
the exposure curve.

For larger firms looking at only on single swap is not that interesting, since their portfolios
often consist of several different derivatives. To reflect that fact Portfolio 2, which was con-
structed to represent a smaller company, have both caps, floor and sold and bought swaps all
with different maturity, strike level and notional amount.

For the first portfolio the BIS estimate was below the Monte Carlo estimate when the portfolio
only consist of a single swap. For this diversified portfolio the results are the other way around,
the BIS estimate is above the simulated value. Here the ration between MPFE and BIS is
0.37 in the net portfolio against 2.3 in the previous. When the simulation of exposure is
based on peak in the 95% percentile, the MPFE measure, the ration to BIS is about 0.4.
This shows how the current exposure method is to conservative and overestimates the real
underlying exposure for a larger portfolio. On the other hand if the portfolio is not assumed
to be part of a netting agreement the BIS estimate but above the EPE estimate and below
EAD estimate. Those values should be seen together with the distributions given by Figures
5.7 - 5.9. The first represent the full distribution while the two others shows the time profiles
of the exposure measures. In opposite to Portfolio 1, Portfolio 2 has a current exposure that is
above zero and a flat exposure profile when the portfolio is part of a netting agreement and a
decreasing exposure profile when it is not part of a netting agreement. Since the add-on factor
in the BIS exposure is meant to compensate for potential future exposure, Portfolio 2 shows
it works against it purpose with that kind of exposure profile. This portfolio then clearly
shows some of the weakness with BIS methodologies ability to take the exposure curvature in
account when the portfolios have a positive current exposure, containing netting effects and
a no changing exposure profile.

For the next examples Portfolios 3 and 4 would have to be seen in some connection. Portfolio 4
was presented as belonging to a life insurance firm or a company in real estate while Portfolio
3 is a modification of Portfolio 4 in other contain both sold and bought positions.

The plots in Figures 5.7 and 5.8 containing the exposure profiles for the net setting shows
quite different exposure profiles for those two portfolios, as to expect. Portfolio 3 has zero
current exposure but after a couple of years the exposure profile is familiar with the one for
the single swap presented in Portfolio 1. This in contrast to Portfolio 4 which have an almost
decreasing exposure profile the whole time. To explain this behaviour one have to look at the
construction of the portfolios. The portfolio is constructed in the way that the life insurance
companies continuously updates the swaps agreements. In this way the swaps that mature
will be replaced by new one. This will as a result give some expensive swaps, in the portfolio,
which came from the time where the rate where contracted at a higher level. This will then
increase the exposure at time zero which is seen in Portfolio 4. On the other hand when
the sign on some of those swaps are changed, the exposure are zero at current time as is the
result for Portfolio 3. An other feature the plot shows is how those two portfolios with the
same magnitude of notional exposure can have quite different exposure profiles. Based on the
MPFE measure Table 5.2 shows that Portfolio 3 has an exposure equal 0.010 and Portfolio 4
has an exposure 0.015 related to the notional amount. On the other hand since the current
exposure for these two method is quite different it affect the BIS measure in the way that
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Portfolio 3 has an exposure of 0.008 towards Portfolio 4 with 0.020. To summarise a bit
Portfolio 4 shows how the BIS methodology becomes to restrictive by estimating a to high
exposure for companies that continuously update their swaps portfolios, which in reality gives
a decreasing exposure profile. On the other hand Portfolio 3 which have the same notional
amount shows how the BIS methodology do not enable to take the different correlation in
consideration.

So far the portfolios have consisted of derivatives carried out under today’s low rates and
with maturity up to ten years. Portfolio 5 which represent a firm that had withdrawal from
its counterparty and had only some few remaining derivatives left, where they consist of both
cap, floor and swaps with a maximum of five year to maturity. As the exposure plot show the
characteristic with this portfolio is that it has a decreasing exposure profile for both the net
and unnet setting. This behaviour is not unrealistic since all the derivatives are deep in the
money and hence the derivatives will in practice always give raise for CCR. The only thing
that reduce the real exposure in this portfolio is when the number of remaining payments
decrease. From the behaviour in Portfolio 4 and its decreasing exposure profile it is known
that the current exposure method over estimates the true credit exposure for this kind of
exposure profile, which once more is confirmed with this portfolio.

The last example is the investment bank represented by Portfolio 6. The exposure profile for
this portfolio has the same characteristics as for portfolio 1. It has a low current exposure with
a increasing exposure whereby it after three to four years decrease to zero when all derivatives
have matured. However while the BIS estimate was below the simulated estimate in Portfolio
1 the results is the other way a round for this portfolio. Hence due to netting effects the
estimates with the BIS methodology is beyond the results from the simulated approach. This
means for an investment bank the current exposure method do not enables to take the effect
of netting in account when estimating the exposure.

Portfolio
With net agreement Without a net agreement

BIS MPFE EAD BIS MPFE EAD

1 0.0150 0.0338 0.0302 0.0150 0.0338 0.0302
2 0.0156 0.0057 0.0065 0.0178 0.0160 0.0183
3 0.0057 0.0106 0.0061 0.0126 0.0118 0.0084
4 0.0195 0.0148 0.0176 0.0197 0.0241 0.0275
5 0.0402 0.0090 0.0127 0.0411 0.0406 0.0550
6 0.0196 0.0054 0.0047 0.0225 0.0200 0.0249

Table 5.2: Exposure relative to its notional value. The estimates are done with current
exposure measure denoted as BIS, direct simulation of the maximal value at the 95% percentile
in the exposure distribution denoted as MPFE and the concept of effective expected exposure
with an α-factor of 1.4 denoted as EAD. All estimates are done with and without netting
agreement.
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Mean(1-6) 0.9576 1.2001
Mean(2-6) 0.6983 0.9893

Figure 5.3: Comparison of direct simulation of the 95% percentile, denoted as MPFE, and
the corresponding BIS exposure. The values are estimated for a setting with and without the
establishment of netting agreement.
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Figure 5.4: Comparison of simulation of exposure based on the method where the mean value
in the exposure distribution is multiplied with an alpha factor of 1.4, denoted as EAD, and
the corresponding BIS estimate. The values are estimated for a setting with and without the
establishment of netting agreement.
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Figure 5.5: Comparison of exposure based on the simulation of EAD, which is based on the
concept of effective expected exposure with an α-factor of 1.4, and the direct simulation of
the 95% percentile which is denoted as MPFE. Hence the plot shows the ration of EAD to
MPFE. The values are estimated for a setting with and without the establishment of netting
agreement.

5.2.2 Comparison of exposure measure

While the previous section described the exposure related to the different portfolios this part
gives a more systematic comparison between the different exposure measures.

Figure 5.3 shows a comparison between the peak exposure in the 95% percentile and the
current exposure measure. The result shows that the BIS methodology estimates less exposure
than the Monte Carlo approach does in four out of six portfolios. The estimation of exposure
for Portfolios 1 and 3 gave a BIS estimate that was beneath the estimate from than the
Monte Carlo simulation, when the estimation where done with the establishment of netting
agreement. Portfolio 1 which represented the small company, with an single swap contract,
clearly shows how the current exposure method is to conservative in the way that it estimates a
to high exposure compared with the simulated estimate. Portfolio 3 which is the modified life
insurance portfolio have been constructed to have a low market value at time zero combined
with derivatives which later gives a high potential exposure. As a result of this the BIS
methodology estimates a small exposure since the current market value are low while the
Monte Carlo method managed to estimate peak which arise after some years. In the setting
where netting agreements is not permitted Portfolios 1 and 4 have a BIS estimate that is
beneath the Monte Carlo estimate. For Portfolio 1 the explanation is obvious since one swap
do not give raise to any netting effects. But for Portfolio 4, the life insurance portfolio, the
BIS methodology do not manage to take the continuous new derivatives, making a decreasing
exposure profile in, consideration. This then shows how the BIS method do not enables to
take the structure of the exposure in account. And the result shows that for larger portfolios
the reduction with a netting agreement can be enormous. This results is confirm by estimation
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done by the Financial Supervisory Authority of Norway1 indicating that a simulation based
method reduce the necessary capital reserve of approximately 35%.

Since the MPFE measure is not permitted by the Basel Committee, which says that the
estimation should be based on the concept of effective expected exposure, it is of interest
to compare the EAD measure with the BIS measure. Results for this is given in Figure
5.4. For the portfolios with a netting agreement the results are at the same magnitude as
for the method based on the MPFE measure. Hence the explanation is the same as for the
other method and once more confirm the results that a simulation based method estimates
a lower exposure compared with the BIS measure. However for the position without netting
agreements the results are a bit different. In that setting only the modified life insurance
portfolio, i.e. Portfolio 3, had a BIS measure that was beneath the Monte Carlo based. Hence
this shows some of the same problem as observe previous, in the way that BIS methodology
estimates to high exposure related to the underlying real exposure when the exposure profile
decrease substantially over time.

A more detailed analysis of the two Monte Carlo measure is given i Figure 5.5 which shows a
comparison between those two estimates. As the figure indicate the two method are in mean
value almost equal, but some differences do exist. Those differences is a direct result of the
curvature of the exposure curve as previous explained. Since effective expected exposure is
estimated recursively the shape will obvious have great influence on the estimate which the
results confirms. When the peak in the exposure are near time zero the MPFE estimate lies
below the EAD estimate and vice versa when the peak are far away out in time.

The distinction between the two estimate can also be explained by the alpha multiplier of 1.4
and the percentile used in the direct simulations. The alpha multiplier of 1.4 used in this paper
is based on the proposal from the Basel Committee. But the Basel Accord [BIS05a] discuss
both higher and lower estimate for alpha value. As it is said “because of high correlation
market values and high exposure to general wrong way risk supervisors have the direction to
require a higher alpha value.” But in the other end the Basel Accord allow for own estimates
for the alpha value subject to a floor of 1.2. Based on that fact an alpha value of 1.4 is not
unrealistic. In the estimation based on a direct simulation of the peak exposure the 95%
percentile have been used. This quantile has in some way been used based on a best qualified
guess. The 90% or 99% percentile could for instance have been used. However using a
percentile of 95% would count for 95 out of 100 potential losses. The use of an other quantile
should in some sense be determine from the banks wanted risk profile and corresponding
credit rating. However in these examples a percentile of 95% is not unreasonable, and turned
the other way around one can say that an alpha factor of 1.4 will account for losses up to a
confidence level of 95%.

5.2.3 Netting effects

As seen all simulations have been done with and without establishment of netting agreement.
To discuss the results in more detail Figure 5.6 shows a comparison of the portfolios with
and without netting agreement where the figure is given for all portfolios and for all three

1Press release 14/2006
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measures used to estimate the exposure. A number below one indicate that netting agreement
reduce the total exposure for the portfolio.

Once more there are no use to discuss Portfolio 1 since it only consist of one swap and in that
case do not give any raise to netting effect, and gives a ration exactly equal one. But for the
other portfolios the results are some different. By looking at the mean values in the Figure
one observe that the BIS methodology estimate a less reduction in the exposure caused by
netting effects compared with the other measures. One more characteristic with this results
is that Portfolio 3 perform different than the other portfolios for all estimation measures. For
this portfolio the BIS methodology estimate a reduction in the exposure caused by netting
that is greater then all the other methods does. This was know as the modified life insurance
portfolio in order to compare netting effect related to the exposure from the life insurance
example in Portfolio 4. These two example then shows some of the weakness with the BIS
methodology in handling netting effects when the portfolios are constructed in special ways.
For the other portfolios the simulation based method gives a quite lower exposure estimate
when the portfolio is in a netting agreement. For instance for the investment bank portfolio
the ration between the BIS estimate and the EAD estimate is below 0.2. In mathematical
terms this means that the simulation based method better manages to take the derivatives
different correlation in consideration when measuring counterparty credit risk. But it also
confirm the assumption from Chapter 3 saying that netting agreements should result in lower
exposure.
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Portfolio BIS MPFE EAD

1 1.0000 1.0000 1.0000
2 0.8764 0.3547 0.3538
3 0.4518 0.8986 0.7288
4 0.9923 0.6139 0.6406
5 0.9803 0.2224 0.2301
6 0.8739 0.2713 0.1882

Mean(1-6) 0.8625 0.5601 0.5236
Mean(2-6) 0.8349 0.4722 0.4283

Figure 5.6: The figure shows the effect caused by netting the derivatives in the portfolios. The
numbers represent the fraction between the exposure in the setting where netting agreement
is established to the setting where all derivatives stands alone. A number below one means
there is a reduction in the exposure when netting agreement is established. This is estimated
for current exposure measure denoted as BIS, direct simulation of 95% percentile denoted
as MPFE and the concept of effective expected exposure with an α-factor of 1.4 denoted as
EAD.
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(d) Portfolio 4

Time − Year

E
xp

os
ur

e 
− 

N
O

K

 

 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

x 107

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(e) Portfolio 5
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(f) Portfolio 6

Figure 5.7: The plot shows the distribution of exposure values as a function of time for the
different portfolios. The outline in the plot represents the potential max and minimal values
and the colour bar represent the belonging probability of the exposure at each time. For all
portfolios the estimation has been done under the establishment of netting agreement.
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(b) Portfolio 2
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(c) Portfolio 3
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(d) Portfolio 4
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(e) Portfolio 5
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(f) Portfolio 6

Figure 5.8: Evolution of the 95% percentile and the mean value in the exposure distribution
as a function of time. The red line denoted as BIS shows the BIS estimate for the potential
exposure by using the current exposure method. The green line shows the EAD measure
which is based on the concept of effective expected exposure with an α-factor of 1.4, where
the effective expected exposure is given by the dots on the y-axis. All values are estimated
with the establishment of netting agreement.
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(b) Portfolio 2
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(c) Portfolio 3
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(d) Portfolio 4
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(e) Portfolio 5
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Figure 5.9: Evolution of the 95% percentile and the mean value in the exposure distribution
as a function of time. The red line denoted as BIS shows the BIS estimate for the potential
exposure by using the current exposure method. The green line shows the EAD measure
which is based on the concept of effective expected exposure with an α-factor of 1.4, where
the effective expected exposure is given by the dots on the y-axis. All values are estimated
without the establishment of netting agreement.



6

Conclusion

The purpose of this work has been to study different methods for estimating of counterparty
credit risk, where the effort has been concentrated around how a Monte Carlo implementation
of the Libor market model can be used to estimate credit exposure. The results have shown
how this enables estimation of the full exposure distribution for portfolios with and without
netting agreements. From those distributions, the report has shown how an estimate for the
potential exposure can be estimated in two ways. The first, MPFE, was estimated by taking
the peak observation in the 95% percentile, while the second, denoted as EAD, was based on
multiplying the effective expected exposure with an α-factor of 1.4. Previously the Bank for
International Settlements has proposed the current exposure method, also denoted as the BIS
methodology, in order to estimate CCR. That method, which is based on simple arithmetic,
gave an estimate of potential future exposure based on the current exposure only.

First it start shown how the Libor market model can be used to price interest rate derivatives.
Those results suggested fair prices of the derivatives, showing that the model is suitable for
pricing interest rate derivatives. Another quality of the LMM which the simulation showed was
the ability to estimate the distribution of all forward rates. Those properties have motivated
the use of the LMM to model the evolution of the rates combined with Monte Carlo simulation
to estimate counterparty credit risk for portfolios of interest rate derivatives.

Based on the numerical values related to the estimation of CCR they indicate that a method
based on Monte Carlo simulation estimate a less exposure related to the the BIS methodology.
However on the other hand the portfolio related to the small company gave a BIS estimate
that was below the simulated value and the same results were seen for the academic example in
Portfolio 3. Those portfolios show how the BIS methodology can underestimate the exposure
when the portfolio has non-linear behaviour. In this way the Monte Carlo simulation enables
better risk management in the form that one can control the evolution of the whole exposure
curve. When the different exposure measures from the Monte Carlo simulation are compared,
there are minor differences. The choice of exposure measurement unit in the internal method
approach will then not influence the business volume of the estimated exposure, but use of the
MPFE measurement would give improved risk management capabilities even though banks
not official allowed using the MPFE measure.

The various methods only differ in the way that they manage to estimate the underlying
exposure and hence they do not reduce the real underlying exposure. On the topic of real
exposure reduction the results show that netting the derivatives in a portfolio can significantly
reduce the total exposure. Based on the EAD measure the results indicate that a netting
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agreement can reduce the exposure with about 50%. But there are differences; while the life
insurance portfolio gave just a small reduction because of highly correlated derivatives, the
investment bank portfolio gave a large reduction due to a much smaller degree of variation.
For these types of portfolios, the simulation-based shows how it explicitly managed to take
the correlation to when measuring exposure. This would not be possible under the alternative
method.

The results in this report confirms both previous research and theory. Essentially this involves
the results in [AC98] from J. Aziz and N. Charupat which found that a simulation based
method often gives a lower estimate of exposure relative to the BIS methodology. However
one of their main comments is that “the BIS does not take into account the evolution of the
exposure through time, the resulting reserve can be either too low or too high, depending
on the nature of the transaction,” which is what the results in this paper also have shown.
In terms of netting effects, the results have confirmed the assumption from Chapter 3 saying
that netting agreements should result in lower exposure.

Hence this paper confirms their conclusion to recommend financial institution to use an inter-
nal method based on Monte Carlo simulation, since it gives a more accurate estimate of the
exposure and enables better risk control with in the firm. Most important, a sophisticated
underlying model for this type of exposure measurement has been implemented and shown
great accurately.

6.1 Further research

To take this work further there are at least two obvious extension. The first is to improve
the estimation techniques used in this work. This should involve a systematic selection of
the points where the exposure is estimated, but should be coupled with effort to minimize
the unavoidably reduction in accuracy. A reduction in points will reduce the computer time
giving faster estimates of the exposure, research that could have been carried out to such an
effect, is a detailed exploration of which points on the time axis influence the exposure most.
An-other natural candidate for future research that would have been interesting to carry out,
is a combination with the default probabilities of counterparties. In that way one can estimate
not only the credit exposure, but also the expected loss on each counterparty.



A

Portfolios

The following tables represent the portfolios used when estimating the different exposure
profiles. The first portfolio consist of only one swap while the remaining are a collection of
many different swaps and other derivatives. Portfolio 6 is a combination of the portfolios
2-5, given in Tables A.2 to A.5, and hence not written twice. A detailed description and a
motivation for each portfolio is given i Section 4.2.

The following notation is used

• Product represent the type of interest rate derivative.

• CCY represent the currency of the underlying interest.

• Start gives the start time of the derivative.

• Maturity gives the date of the final maturity of the derivative.

• Notional represent the derivatives notional amount whereby the sing represent sold or
bought position.

• Rate is the fixed rate belonging to the derivative.

• Pay freq. is the payment frequency of the derivative. Q represent quarter paying
derivative, S represent semi annual payments and 1Y represent one payment a year.

Product CCY Start Maturity Notional Rate Pay freq.

IR-swap NOK 2006-04-01 2016-04-01 100000000 0.0400 Q

Table A.1: Portfolio 1.
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Product CCY Start Maturity Notional Rate Pay freq.

IR-cap NOK 2006-07-02 2016-08-02 100000000 0.0500 Q
IR-floor NOK 2006-07-02 2015-08-02 150000000 0.0300 Q
IR-swap NOK 2006-07-12 2015-08-02 -150000000 0.0427 Q
IR-swap NOK 2006-04-01 2011-04-01 -100000000 0.0710 Q
IR-swap NOK 2006-04-01 2016-04-01 100000000 0.0400 Q
IR-swap NOK 2007-01-02 2015-08-02 -300000000 0.0430 S
IR-swap NOK 2007-01-02 2015-08-02 150000000 0.0450 1Y
IR-swap NOK 2007-01-02 2015-08-02 -300000000 0.0430 S
IR-swap NOK 2007-01-02 2016-08-02 -300000000 0.0430 1Y
IR-swap NOK 2006-01-02 2016-01-02 200000000 0.0250 Q
IR-swap NOK 2006-01-02 2015-01-02 200000000 0.0427 Q
IR-swap NOK 2006-01-01 2011-01-01 -290000000 0.0255 Q
IR-cap NOK 2006-01-01 2011-01-01 250000000 0.0450 Q
IR-floor NOK 2006-01-01 2011-01-01 250000000 0.0250 Q
IR-swap NOK 2006-01-01 2011-01-01 -120000000 0.0395 1Y
IR-swap NOK 2006-01-11 2012-01-11 300000000 0.0390 Q
IR-swap NOK 2006-07-11 2013-07-11 300000000 0.0390 Q
IR-cap NOK 2006-01-11 2012-01-11 200000000 0.0490 Q
IR-cap NOK 2006-07-11 2013-07-11 200000000 0.0430 Q
IR-floor NOK 2006-07-02 2015-08-02 150000000 0.0300 Q
IR-swap NOK 2006-07-02 2015-08-02 150000000 0.0427 Q
IR-swap NOK 2006-07-02 2015-08-02 150000000 0.0429 Q
IR-swap NOK 2006-07-02 2008-08-02 100000000 0.0409 Q
IR-cap NOK 2006-01-01 2010-08-02 250000000 0.0450 Q
IR-floor NOK 2006-01-01 2015-08-02 290000000 0.0380 Q
IR-swap NOK 2006-01-01 2010-08-02 250000000 0.0450 Q

Table A.2: Portfolio 2.
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Product CCY Start Maturity Notional Rate Pay freq.

IR-swap NOK 2006-07-02 2015-08-02 150000000 0.0427 Q
IR-swap NOK 2006-04-01 2011-04-01 100000000 0.0710 Q
IR-swap NOK 2006-04-01 2015-04-01 100000000 0.0400 Q
IR-swap NOK 2007-01-02 2015-08-02 100000000 0.0430 S
IR-swap NOK 2007-01-02 2015-08-02 150000000 0.0420 1Y
IR-swap NOK 2007-01-02 2015-08-02 300000000 0.0430 S
IR-swap NOK 2007-01-02 2015-08-02 300000000 0.0430 1Y
IR-swap NOK 2006-01-02 2015-01-02 200000000 0.0450 Q
IR-swap NOK 2006-01-02 2015-01-02 200000000 0.0427 Q
IR-swap NOK 2006-01-01 2011-01-01 300000000 0.0315 Q
IR-swap NOK 2006-01-01 2011-01-01 250000000 0.0395 1Y
IR-swap NOK 2006-01-11 2012-01-11 300000000 0.0390 Q
IR-swap NOK 2006-07-11 2013-07-11 300000000 0.0390 Q
IR-swap NOK 2006-07-11 2009-08-02 300000000 0.0450 Q
IR-swap NOK 2007-01-02 2010-08-02 300000000 0.0550 S
IR-swap NOK 2006-04-01 2016-04-01 300000000 0.0400 Q
IR-swap NOK 2006-07-02 2007-08-02 200000000 0.0527 Q

Table A.3: Portfolio 3.

Product CCY Start Maturity Notional Rate Pay freq.

IR-swap NOK 2006-07-02 2015-08-02 -150000000 0.0427 Q
IR-swap NOK 2006-04-01 2011-04-01 -100000000 0.0710 Q
IR-swap NOK 2006-04-01 2015-04-01 100000000 0.0400 Q
IR-swap NOK 2007-01-02 2015-08-02 -100000000 0.0430 S
IR-swap NOK 2007-01-02 2015-08-02 150000000 0.0420 1Y
IR-swap NOK 2007-01-02 2015-08-02 -300000000 0.0430 S
IR-swap NOK 2007-01-02 2015-08-02 -300000000 0.0430 1Y
IR-swap NOK 2006-01-02 2015-01-02 200000000 0.0450 Q
IR-swap NOK 2006-01-02 2015-01-02 200000000 0.0427 Q
IR-swap NOK 2006-01-01 2011-01-01 -300000000 0.0315 Q
IR-swap NOK 2006-01-01 2011-01-01 -250000000 0.0395 1Y
IR-swap NOK 2006-01-11 2012-01-11 300000000 0.0390 Q
IR-swap NOK 2006-07-11 2013-07-11 300000000 0.0390 Q
IR-swap NOK 2006-07-11 2009-08-02 -300000000 0.0450 Q
IR-swap NOK 2007-01-02 2010-08-02 -300000000 0.0550 S
IR-swap NOK 2006-04-01 2016-04-01 300000000 0.0400 Q
IR-swap NOK 2006-07-02 2007-08-02 -200000000 0.0527 Q

Table A.4: Portfolio 4.
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Product CCY Start Maturity Notional Rate Pay freq.

IR-swap NOK 2007-01-02 2009-08-02 100000000 0.0640 S
IR-swap NOK 2006-04-01 2007-04-01 100000000 0.0810 Q
IR-swap NOK 2006-01-01 2010-01-01 -150000000 0.0689 1Y
IR-swap NOK 2005-01-02 2008-08-02 -100000000 0.0620 1Y
IR-swap NOK 2006-07-11 2009-07-11 300000000 0.0680 Q
IR-swap NOK 2006-07-02 2010-08-02 -150000000 0.0765 Q
IR-swap NOK 2006-07-02 2010-08-02 150000000 0.0678 Q
IR-swap NOK 2007-01-02 2009-08-02 100000000 0.0650 1Y
IR-swap NOK 2007-01-02 2008-08-02 150000000 0.0650 S
IR-swap NOK 2006-07-11 2009-07-11 -100000000 0.0680 Q
IR-swap NOK 2006-07-02 2010-08-02 -150000000 0.0765 Q
IR-swap NOK 2006-01-02 2008-08-02 -200000000 0.0750 S
IR-swap NOK 2006-01-01 2011-01-01 100000000 0.0659 Q
IR-swap NOK 2007-01-02 2009-08-02 -100000000 0.0540 S
IR-swap NOK 2006-04-01 2010-04-01 100000000 0.0640 Q
IR-swap NOK 2006-07-02 2007-08-02 150000000 0.0727 Q
IR-swap NOK 2006-07-02 2010-08-02 150000000 0.0427 Q
IR-swap NOK 2006-04-01 2011-04-01 -100000000 0.0710 Q
IR-cap NOK 2006-01-01 2010-08-02 150000000 0.0650 Q
IR-cap NOK 2006-01-11 2008-01-11 200000000 0.0700 Q
IR-cap NOK 2006-07-11 209-07-11 100000000 0.0690 Q
IR-floor NOK 2006-01-01 2010-08-02 150000000 0.0450 Q
IR-floor NOK 2006-01-11 2008-01-11 200000000 0.0390 Q
IR-floor NOK 2006-07-11 209-07-11 200000000 0.0400 Q
IR-cap NOK 2005-01-02 2008-08-02 100000000 0.0820 1Y
IR-cap NOK 2006-07-11 2009-07-11 150000000 0.0790 Q
IR-floor NOK 2006-07-02 2010-08-02 150000000 0.0460 Q
IR-floor NOK 2006-07-02 2010-08-02 150000000 0.0410 Q

Table A.5: Portfolio 5.
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