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Abstract

This thesis explores the modeling of volatility and dependence in forward rates
in the fixed income market for the purpose of risk estimation in derivative port-
folios. A brief background on popular quantile-based risk measures is given. A
short introduction is given to GARCH-type volatility models, as well as copula
and vine models for dependence between random variables. Some details on pa-
rameter estimation and sampling related to these models are also provided. A
backtesting procedure is performed using various combinations of volatility and
dependence models. The results of this procedure indicate that the Student’s
t copula is preferable among the dependence structures considered. Also, none
of the choices of conditional distribution for the volatility models provide good
results at all the percentiles considered, but the normal distribution appears to
be a good choice far into the tails.
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Chapter 1

Introduction

Fixed income derivative instruments make up a huge market in international
financial services, and are present in substantial quantities in the portfolios of
banks and other financial institutions. For a holder of such a portfolio, there
can be considerable risk associated with movements in the interest rate, that is,
the market risk associated with the instruments. A good model for this risk can
be an invaluable tool for decision support and monitoring trading activities.

The value of a portfolio consisting of fixed income instruments may be de-
pendent on the entire curve of short-, medium-, and long-term rates, known as
the yield curve. Hence, so may the risk. In particular, instruments that provide
some form of optionality are often valued using the forward rates associated
with market quoted yields. The idea pursued here is that since these models
require forward rates for pricing purposes, we will try to model the movements
in forward rates for risk evaluation purposes as well. The approach taken is thus
to try to recreate curves of future forward rates corresponding to typical actual
movements in these rates, and use these curves and standard pricing approaches
to obtain appropriate measures of risk.

We start off in chapter 2 with a look at Value at Risk (VaR), a very popular
measure of portfolio risk. Some common approaches to the calculation of VaR
are considered, and also an alternative risk measure suggested to correct some
shortcomings of VaR, the Expected Shortfall (ES).

Chapter 3 considers possible ways to model the volatility of individual time
series of financial asset data, through variations of GARCH -models. Chapter 4
takes a look at an increasingly popular approach to modeling the dependence
between financial variables, through the use of copulae. Chapter 5 considers
an extension of the copula approach known as a vine, allowing for a different
specification of dependence. Finally, chapter 6 analyzes how the different model
specifications behave when applied to our example of forward rates for fixed
income derivative risk estimation.
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Chapter 2

Value at Risk: Definitions

and common assumptions

2.1 Definition

Value at Risk can be defined as how much a portfolio can decrease in value,
within a given degree of confidence, over a specified time interval. To formalize
this, first assume the following notation:

S = a vector of n risk factors, typically market prices or rates
∆t = the risk measurement horizon

V (S, t) = portfolio value at time t as a function of the risk factors S
L = portfolio profit or loss over period ∆t,

= −∆V = V (S, t)− V (S + ∆S, t+ ∆t)
FL(x) = P (L < x), the distribution of L.

The VaR for a portfolio is then a percentile of its loss distribution FL.

Definition 2.1 (Value at Risk) For a given confidence level α ∈ (0, 1), the
α-level VaR is the smallest number x such that the probability that the loss L
exceeds x is no larger than 1− α. In the notation above,

V aR = F−1
L (α) = inf{x : FL(x) ≥ α}.

Its estimator, which will depend on the assumptions we make, is then

V̂ aR = F̂−1
L (α) = inf{x : F̂L(x) ≥ α}

for some estimate F̂L of the loss distribution FL.

For our example of a fixed income portfolio, the risk factors S would be a set
of forward rates, representing the market risk from changes in interest rates. The
timestep ∆t in estimation of market risk is typically short, somewhere between
one day and two weeks. As pointed out in Glasserman (2004) [35], two weeks is
often interpreted as the time it might take to unwind complex positions in the
case of an adverse market move.
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2.2 Common assumptions for VaR calculations

2.2.1 The Delta-Normal method

A common approach to the calculation of VaR, introduced in RiskMetrics (1996)
[59], is to assume that changes in the risk factors are normally distributed and
that the portfolio value is linear in the risk factors. Under these assumptions,
the possible changes in portfolio values, and thus the loss distribution of the
portfolio, are given by a normal distribution as well.

To see how this works, begin with the assumption on the risk factors. Over
a short time horizon, the mean of ∆S can be assumed to be negligible. Thus,
we impose the distribution

∆S ∼ N(0,Σ)

on the changes in risk factors for some covariance matrix Σ.

The linearity assumption means that

∆V = δ⊤∆S (2.1)

for some vector δ of portfolio value sensitivities to changes in risk factors. Thus
the change in portfolio value is a linear combination of changes in risk factors,
and the loss distribution is easily seen to be

L ∼ N(0, σ2
L)

with
σ2

L = δ⊤Σδ.

The α-level VaR is then simply

V aR = Φ−1(α)σL = Φ−1(α)
√
δ⊤Σδ

where Φ is the standard normal distribution.

This approach is fast, and also easy to implement given that portfolio deltas
are readily available or easy to evaluate. It does, however, have two major
shortcomings. One lies in the assumption of normally distributed changes in
risk factors, the discussion of which will be postponed to a later section. The
other, which will be addressed here, is the assumption of portfolio value changes
as a linear function of changes in risk factors.

The linearity assumption (2.1) is appropriate for a portfolio of instruments
whose value is linear or approximately linear in the underlying risk factors. The
problem occurs when optionality is introduced to the portfolio. Figures 2.1
and 2.2 show the effect of the linearity assumption given normally distributed
changes in rates. The delta-normal method will use a linear approximation for
change in portfolio value as a function of rates, leading to a normal distribution
for the possible portfolio values at the VaR horizon as well, as shown in figure 2.1.

If, however, we assume that the actual value of the portfolio is a nonlinear
function of the rates, the situation might look like figure 2.2. Here we have
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introduced a value function similar to that of a cap (a call option on the rate).
This will result in a skewed distribution of portfolio values, something the delta-
normal approximation will be unable to take into account. The size of this effect
on the VaR estimate will depend on the amount of nonlinearity, or how “bent”
the value function is, between the value today and the value corresponding to
the VaR α-quantile.

The delta approach outlined above can be improved for nonlinear positions
by including higher order terms, see e.g. the delta-gamma approximation of
RiskMetrics (1996) [59].

portfolio values rate

va
lu

e

rates

Figure 2.1: VaR estimation under the linearity assumption

2.2.2 Estimating VaR by simulation

The problems associated with the delta approximation can be circumvented by
building the distribution of portfolio values through simulation. In its simplest
form, a simulation proceeds as follows:

• For each of N replications

– Generate a vector ∆S of changes in risk factors over time period ∆t.

– Revalue portfolio as V (S + ∆S, t+ ∆t).

• Sort the vector of portfolio values from previous step; select V⌊Nα⌋ (the
Nα-smallest value) as the α-level portfolio value

• Estimate VaR as V (S, t)− V⌊Nα⌋
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portfolio values rate
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Figure 2.2: VaR estimation for an option portfolio

This is of course more time consuming than the delta-normal method, as we
need N revaluations of the portfolio. Depending on the instruments contained
in the portfolio, each revaluation may also be individually quite computationally
expensive. On the plus side, nonlinearities in the portfolio value function are
automatically taken into account. Also, we are free to choose the distribution
from which to sample the vector ∆S of changes in risk factors, we are no longer
limited to the normal distribution. As will become evident in later chapters,
estimating distributional parameters and generating samples from the chosen
distribution may also incur considerable computational effort. Note that the
vector ∆S should be generated under the real measure, whereas the portfolio
revaluations should be done under the risk-neutral measure.

A popular approach to VaR calculations is historical simulation. If a time
window and a sampling frequency have been chosen, e.g. one year and daily
sampling, this amounts to revaluing today’s portfolio positions on the daily price
changes over the past year, and choosing the appropriate percentile of the cor-
responding profit/loss-distribution as the VaR estimate. In terms of the above
simulation algorithm, the changes in risk factors ∆S are taken as historical
realizations over some time period. A few observations are made concerning
common arguments for using historical simulation in Finger (2006) [29]. A sen-
sible argument in favor of historical simulation is that the outcomes can be given
a very intuitive interpretation; in historical simulation, the worst-case scenario
corresponds to some historical event. It can be of interest in itself to know, for
example, what the effect on the portfolio would be if an event corresponding
to the worst event in the past year hit the market. It does not, however, nec-
essarily make historical simulation a good forecasting technique. An argument
that make less sense is that the model is assumption-free. Naturally, the model

5



implicitly assumes that the sampled historical data adequately represent the dis-
tribution of future returns and that the return distribution does not vary over
the time period chosen. The historical simulation approach is easy to explain
and implement, but those are perhaps its main virtues. The method will not be
considered further here.

2.3 Properties of VaR as a risk measure

Before discussing the specific properties of VaR, we should have some notion of
what constitutes a good risk measure. In Artzner et al. (1999) [7] four axioms
are listed which should be fulfilled by a risk measure in order for it to be what
they call coherent. Note that Artzner et al. (1999) [7] define risk through the
future value of the portfolio, rather than the loss. To keep notation consistent
with section 2.1, these axioms will be listed here as given in Frey & McNeil
(2002) [32].

First, define a risk measure on a convex cone M of random variables. M
being a convex cone means that if L1 ∈ M and L2 ∈ M, then L1 + L2 ∈ M,
and also λL1 ∈M for every λ > 0.

Definition 2.2 (Risk measure) Given some convex cone M of random vari-
ables, a measure of risk with domain M is a mapping ρ :M→ ℜ.

ρ(L) can then be interpreted as the amount of capital that needs to be
added to the portfolio with loss L to make the portfolio acceptable to some risk
controller. The axioms of coherence are then the following.

Axiom 1 (Translation invariance) For all L ∈M and every l ∈ ℜ a translation
invariant risk measure satisfies ρ(L+ l) = ρ(L) + l.

Axiom 2 (Subadditivity) For all L1, L2 ∈ M a subadditive risk measure satis-
fies ρ(L1 + L2) ≤ ρ(L1) + ρ(L2).

The subadditivity property implies that diversification does not increase risk.
A risk measure which is not subadditive might, for instance, motivate breaking
up a portfolio into smaller units to obtain a lower risk estimate for the sum of
the smaller units than for the original portfolio. Economically, this does not
make sense, we want the sum of the individual risks to provide an upper bound
on the total portfolio risk.

Axiom 3 (Positive homogeneity) For all L ∈ M and every λ > 0 a positive
homogeneous risk measure satisfies ρ(λL) = λρ(L).

Axiom 2 already implies ρ(nX) ≤ nρ(X), n = 1, 2, .... Axiom 3 imposes
the reverse inequality and requires equality for all positive λ. This means that
combining identical positions with exposure to the same single risk factor into
a larger portfolio does not give smaller risk for the resulting portfolio than the
sum of the risks of the original positions.

Note that subadditivity and positive homogeneity together imply convexity,
that is, the property ρ(λL1 + (1− λ)ρ(L2)) ≤ λρ(L1) + (1− λ)ρ(L2), λ ∈ [0, 1].
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Axiom 4 (Monotonicity) For L1, L2 ∈M such that L1 ≤ L2 almost surely, a
monotonic risk measure satisfies ρ(L1) ≤ ρ(L2).

The definition of coherency of a risk measure follows.

Definition 2.3 (Coherent risk measure) A risk measure ρ whose domain in-
cludes the convex cone M is called coherent (on M) if it satisfies Axiom 1, 2,
3 and 4.

VaR, as given in definition 2.1, can be seen to satisfy translation invariance,
positive homogeneity and monotonicity. However, Artzner et al. (1999) [7]
give examples to show that VaR does not, in, general, satisfy subadditivity. In
other words, examples can be constructed where diversification increases risk as
measured by VaR. Consider the following situation (Artzner et al. (1999) [7]):

• Two digital options A and B on a stock are available, both of which are
dependent on the value ST of the stock at time T .

• A pays 1000 if ST > U for a given U , nothing otherwise.

• B pays 1000 if ST < L for a given L < U , nothing otherwise.

• P{ST < L} = P{ST > U} = 0.008.

The 1% VaR of writing one of these options will be zero, whereas the 1% VaR
of writing both options will be 1000, illustrating a situation where VaR is not
subadditive (or, as the authors point out for this example, even convex).

Another criticism of VaR is that, since VaR represents an α-quantile, it can
be interpreted as the minimum loss incurred with probability α. This is inconve-
nient for the assessment of risks that create large losses with a small probability.
Jaschke (2002) [38] gives a few examples of strategies that can generate profits
with a large probability, and large losses with a small probability:

• Increase the bet until a certain profit is reached (As in a doubling strategy).

• Buy defaultable bonds and sell riskless bonds.

• Sell far-out-of-the-money put options.

• Sell insurances/financial derivatives for rare events.

Another risk measure has been suggested to compensate for the problems of
VaR, namely the expected shortfall (ES). In Frey & McNeil (2002) [32], ES is
defined as

ES = E(L|L > V aR). (2.2)

ES is thus the expected loss, given that the loss exceeds VaR. Frey & McNeil
(2002) [32] report that ES as defined in (2.2) is coherent for continuous loss
distributions, which is sufficient for our purposes. See Acerbi & Tasche (2002)
[6] for another definition of ES which is coherent under discontinuous loss dis-
tributions as well.

It can be noted that Embrechts, McNeil & Straumann (2002) [25] show that
if the risk factors are elliptically distributed and the portfolios considered are
linear in these factors, then VaR does in fact have the subadditivity property.
Elliptical distributions are briefly discussed in section 4.1.1 below.
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Chapter 3

Volatility specification

A realistic model for the volatility is crucial in obtaining sensible VaR estimates.
Using historical data, we would want a model that reflects current conditions in
the market and perhaps in some way captures typical movements in the volatil-
ity. However, as volatility is an unobservable and somewhat fickle quantity, the
correct model choice is seldom obvious. There is a large number of ways to
approach this problem, this chapter will review some of the simpler ones. The
basic idea we pursue is to assume some model for the volatility of each sepa-
rate risk factor, and not yet concern ourselves with the dependence between the
factors.

3.1 The rectangular moving average

The perhaps simplest approach to volatility modeling is the rectangular moving
average (RMA). Denoting by ǫt the return on the risk factor from time t− 1 to
t, the RMA volatility estimate is given by

σ2
t =

1

T

T∑

i=0

ǫ2t−i.

Under the assumption of a mean return of zero, this is just the sample
variance. So, the RMA estimator is easy to evaluate and understand, but those
are also the only advantages. Every return observation is weighted equally in this
estimator, so the model will be slow to adjust to new market conditions. Sudden
large positive or negative returns will have a limited effect on the volatility
estimate, and then this effect will stay in the estimate until a time period T has
passed. As noted in Franke, Härdle & Hafner (2004) [30], this typically leads to
an underestimation when the market is moving towards a more volatile phase,
and an overestimation when the market is moving towards a less volatile phase.

3.2 The exponentially weighted moving average

The exponentially weighted moving average (EWMA) estimator is an attempt to
make the volatility estimate adjust more quickly to changing market conditions.
For some starting value σ2

t−T , this estimator is given by

8



σ2
t = (1− λ)ǫ2t−1 + λσ2

t−1 = (1− λ)

T∑

i=0

λiǫ2t−i.

The name comes from the fact that the returns are given exponentially de-
creasing weights as you move backwards in time. This gives recent observations
a larger weight, allowing the estimator to adjust to the current typical size of
returns. The RMA estimator above is the boundary case of the EWMA estima-
tor as λ→ 1, see Franke, Härdle & Hafner (2004) [30].

3.3 A GARCH model for the volatility

Financial data tend to show evidence of volatility clustering, that is, large (in
absolute value) returns follow large returns, and small returns follow small re-
turns. Thus, for a sufficiently long time series of financial data, one will typically
see periods of large returns and periods of small returns. This indicates that the
current volatility should depend in some way on previous volatility as well as
previous returns. A class of models that attempts to capture this phenomenon,
and which have become widespread in the industry, are the GARCH -models of
Bollerslev (1986) [15].

The GARCH(p,q)-model is obtained by letting the innovations ǫt in the
linear regression

yt = x⊤t b+ ǫt (3.1)

follow the process

E(ǫt) = 0,

Var(ǫt) = σ2
t ,

σ2
t = α0 +

q∑

i=1

αiǫ
2
t−i +

p∑

i=1

βiσ
2
t−i,

where

p ≥ 0, q > 0,

α0 > 0,

αi ≥ 0, i = 1, ..., q,

βi ≥ 0, i = 1, ..., p.

In this model, we call the distribution of ǫt the marginal distribution, while
the distribution of ǫt/σt is known as the conditional distribution.

Now, we need to choose values for p and q and also a sensible form of
the regression in (3.1) to fit our risk factors in the fixed-income market. In
a survey, Aas (2004b) [2] mentions the following simple GARCH(1,1)-model for
the behaviour of the short-term interest rates:
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rt = b0 + (b1 + 1)rt−1 + ǫt, (3.2)

E(ǫt) = 0, (3.3)

Var(ǫt) = σ2
t , (3.4)

σ2
t = α0 + α1ǫ

2
t−1 + β0σ

2
t−1. (3.5)

Stationarity of the volatility in the model above is fulfilled for values of α1

and β0 such that α1 + β0 < 1. Due to the first-order autoregression in (3.2),
this model may be referred to as an AR(1)-GARCH(1,1) model.

The idea we pursue here is to try to model time series of individual forward
rates applying over different maturities by a process of the form (3.2) - (3.5).
This will be explored further in section 6.1.

For short-term interest rates, the volatility is known to exhibit a certain de-
pendence on the interest rate level. Such models will not be applied here to our
forward rates, see Aas (2004b) [2] for a review of several of these models. How-
ever, one other specification will be considered here, namely one which allows
for asymmetry in the volatility.

An effect occasionally seen in financial data is that negative returns can
tend to influence the level of volatility more than positive returns. A simple
suggestion on how to allow the volatility model to account for this is given by
Glosten, Jagannathan & Runkle (1993) [36]. The extension is to just add a term
containing a dummy variable to (3.5), such that

σ2
t = α0 + α1ǫ

2
t−1 + β0σ

2
t−1 + ωI(ǫt−1)ǫ

2
t−1,

where

I(x) =

{
1 (x < 0)
0 (x > 0)

The parameter constraints are as in the GARCH(1,1) model, with the addi-
tional constraint

α1 + ω > 0. (3.6)

This way the volatility is allowed to react differently depending on the sign
of the return. This model will be referred to as GJR-GARCH.

3.3.1 Choice of conditional distribution for the GARCH

models

The standard choice of conditional distribution for a GARCH-model such as the
one given in (3.2) - (3.5) is the normal distribution, that is,

f(ǫt|ψt−1) =
1√

2πσt

exp

(
− ǫ2t

2σ2
t

)
,

where ψt−1 denotes the information up to time t− 1.
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This yields a simple log-likelihood function to be maximized, namely

logL = −1

2

T∑

t=1

log σ2
t −

1

2

T∑

t=1

ǫ2t
σ2

t

,

excluding a constant term. This assumption on the conditional return dis-
tribution will give a marginal return distribution with heavier tails than the
normal. This is a result of the returns being drawn with different volatilities,
causing the return distribution to be a mixture of different normal distributions
(see e.g. Duffie & Pan (1997) [24]). However, financial returns may have distri-
butions which have even heavier tails than these.

An alternative is to use the standardized Student’s t distribution as a con-
ditional distribution, as suggested by Bollerslev (1987) [16]. He specifies this
distribution as

f(ǫt; ν|ψt−1) =
Γ(ν+1

2 )

Γ(ν
2 )σt

√
π(ν − 2)

[
1 +

ǫ2t
(ν − 2)σ2

t

]−(ν+1)/2

,

such that E(ǫ) = 0 and Var(ǫ) = σ2
t . The log-likelihood function is still

relatively simple, but it now contains one more parameter, namely the degrees
of freedom ν.

The Student’s t distribution for the conditional returns handles excess kurto-
sis (that is, peakedness and heavy tails) in the data. It is, however, symmetric,
and does not handle skewness. If we want the conditional distribution to handle
skewness, we have an interesting problem. As explained in the introduction,
the dependence structure of interest here will be modeled through copulae. As
we will see below, such a model involves drawing dependent uniform random
variables in the simulations. To preserve the dependence structure, achieving
specific marginal distributions will generally have to be done through inversion
of the distribution function. For the normal distribution and the Student’s t dis-
tribution, efficient numerical schemes are available for such inversion, but such
schemes may not be available for arbitrary skewed distributions. For example,
we would not want to do a root-finding procedure on a numerical integration of
the density function in every step in every dimension of the simulation proce-
dure; while certainly possible, such an approach would be excrutiatingly slow.
What we would like is a distribution which allows for skewness and excess kur-
tosis, while at the same time being relatively simple to invert.

A possibility is to use the inverse hyperbolic sine (IHS) distribution of John-
son (1949) [40]. The density is given by

f(ǫt;λ, δ|ψt−1) =
s

σtδ
√

2π [(ǫt/σts+ µ)2 + 1]
exp

(
− [sinh−1(ǫt/σts+ µ)− λ]2

2δ2

)
,

where −∞ < λ < ∞, δ > 0, s =
√

1
2 (ω − 1)(ω cosh(2λ) + 1), µ =

√
ω sinh(λ),

and ω = exp(δ2).
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As the name implies, this density is the result of applying an inverse hy-
perbolic sine transformation to the standard normal distribution. It is applied
with good reported results in Choi (2001) [20] as a conditional distribution for
GARCH-models, and it is characterized there as “one of the most flexible distri-
butions among all skewed and leptokurtic distributions”. The IHS distribution
can cover a wide range of values for skewness and kurtosis, and has the following
simple inversion formula:

F−1(u) =
sinh[λ+ δΦ−1(u)]− µ

s
,

where Φ is the standard normal distribution function. Thus, its inversion re-
quires only the inversion of the standard normal distribution and a hyperbolic
sine transformation.

A comprehensive test of volatility models with different conditional distrib-
utions is performed in Bao, Lee & Saltoğlu (2004) [8]. A wide variety of models
and distributions are applied to density forecasting for two stock indices. For
these data, the authors report that in terms of modeling the whole distribution,
the normal and Student’s t distribution perform well for one of the indices, while
the normal distribution provides poor results in the tails for both indices. The
IHS distribution does not rank among the best for any of their tests, but it is
generally not among the worst either. Further, it is suggested that the choice
of conditional distribution has a greater impact on results than the choice of
volatility model for these two stock indices. A similar comparison of how our
distributions and volatility models perform on the forward rate data will be
given in chapter 6, and details on parameter estimation can be found in appen-
dix A.2.
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Chapter 4

Copulae and their

applications to risk

management

Following the approach in Embrechts, McNeil & Straumann (2002) [25], consider
the real-valued random variables (X1, ...,Xn). The dependence between these
variables is completely described by their joint distribution function

F (x1, ..., xn) = P{X1 ≤ x1, ...,Xn ≤ xn}.

The idea of copulae is to separate F into a part that describes the depen-
dence structure and a part that describes the marginal distributions. Assume,
for simplicity, that the marginal distributions F1, ..., Fn of F are continuous.
Then the vector X = (X1, ...,Xn)⊤ can be transformed component-wise to
have U(0, 1) marginal distributions using the probability integral transform
T : ℜn → ℜn, (x1, ..., xn)⊤ 7→ (F (x1), ..., F (xn))⊤. The joint distribution func-
tion C of (F1(X1), ..., Fn(Xn))⊤ is then called the copula of X or of F .

More formally, we have the following theorem, known as Sklar’s theorem, as
stated in Embrechts, Lindskog & McNeil (2001) [26]:

Theorem 4.1 (Sklar’s theorem) Let F be an n-dimensional distribution func-
tion with margins F1, ..., Fn. Then there exists an n-copula C such that for all
x ∈ ℜn

F (x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (4.1)

If F1, ..., Fn are continuous, then C is unique, otherwise C is uniquely deter-
mined on RanF1× · · ·×RanFn. Conversely, if C is an n-copula and F1, ..., Fn

are distribution functions, then the function F defined above is an n-dimensional
distribution function with marginals F1, ..., Fn.

RanFi here denotes the range of Fi. This theorem shows the appealing property
that dependence and marginal distributions can be considered separately. For
F1, ..., Fn continuous, the equation (4.1) can be stated the other way around:

13



Corollary 4.2 Let F be an n-dimensional distribution function with continuous
margins F1, ..., Fn and copula C, where C satisfies (4.1). Then, for any u ∈
[0, 1]n

C(u1, ..., un) = F (F−1
1 (u1), ..., F

−1
n (un)). (4.2)

With this in mind, consider the following definition:

Definition 4.3 A copula is a multivariate distribution function of a random
vector in ℜn with U(0, 1) marginals. Alternatively, a copula is any function
C : [0, 1]n → [0, 1] with the following three properties:

1. C(u1, ..., un) is increasing in each component xi.

2. C(1, ..., 1, ui, 1, ..., 1) = ui ∀ i ∈ {1, ..., n}, ui ∈ [0, 1].

3. ∀ (a1, ..., an), (b1, ..., bn) ∈ [0, 1]n, where ai ≤ bi we have∑2
i1=1 · · ·

∑2
in=1(−1)i1+...+inC(u1i1 , ..., unin

) ≥ 0,
where uj1 = aj , uj2 = bj ∀ j ∈ 1, ..., n.

Stating that a copula is a multivariate distribution with U(0, 1) marginals is
a somewhat “operational” definition, as it does not specify what is meant by a
multivariate distribution function. For a discussion on this and a more detailed
version of definition 4.3, see Embrechts, Lindskog & McNeil (2001) [26].

The density associated with the copula C is given by

c(u1, ..., un) =
∂C(u1, ..., un)

∂u1 · ... · ∂un
, (4.3)

and the density f of an n-dimensional distribution F can be obtained by

f(x1, ..., xn) = c(F1(x1), ..., Fn(xn))

n∏

i=1

fi(xi). (4.4)

4.1 Some examples of copulae

First, a particularly simple, but conceptually important example is the copula
corresponding to independent variables:

Example 4.4 (Product copula) The special case of independent random vari-
ables corresponds to the product copula, or independence copula

CΠ(u1, ..., un) = u1 · · ·un.

The rest of this section presents five other commonly used copulae. Two of
them, the Gaussian and Student’s t copulae, are implicit copulae, meaning their
density c(u1, ..., un) is given by a known multivariate distribution. Further, they
are both elliptical, a term explained in section 4.1.1.

The other three, the Clayton, Gumbel and Frank copulae, are explicit cop-
ulae, meaning that their distribution function C(u1, ..., un) has a closed-form
expression. Also, all three of these copulae belong to a subclass known as
Archimedean copulae.
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4.1.1 Elliptical copulae

Elliptical copulae are the copulae associated with elliptical distributions, that
is, distributions whose contours of equal density form ellipsoids. Before defining
elliptical distributions, consider the following definition from Embrechts, McNeil
& Straumann (2002) [25].

Definition 4.5 (Spherical distribution) A random vector X = (X1, ...,Xn)⊤

has a spherical distribution if for every orthogonal map U ∈ ℜn×n (i.e. U is
such that UU⊤ = U⊤U = In×n)

UX
d
= X. (4.5)

In other words, rotation of the coordinates leaves the distribution of X un-
changed. We can also say that X is spherically distributed if and only if it
admits the stochastic representation

X
d
= RU, (4.6)

where R is a nonnegative random variable and U is a random vector indepen-
dent of R which is uniformly distributed on the unit hypersphere Sn−1 = {s ∈
ℜn|‖s‖2 = 1}. Thus spherical distributions have densities that are constant on
spheres, such that if X has density f(x), then f is of the form f(x) = g(x⊤x) for
a non-negative function g. For the multivariate normal distribution we would
have R ∼

√
χ2

n, whereas R2/n ∼ F (n, ν), where F denotes the Fisher distri-
bution, would give the multivariate Student’s t distribution. These spherical
distributions would then be the distributions of random variables with zero lin-
ear correlation, which in the normal case corresponds to independence.

Turning to the elliptical distributions, these can be defined as the affine maps
of the spherical distributions (Embrechts, McNeil & Straumann (2002) [25]):

Definition 4.6 (Elliptical distribution) For an affine map T : ℜn → ℜn, x 7→
Ax + µ, A ∈ ℜn×n, µ ∈ ℜn, and given a spherically distributed variable Y ,
X = T (Y ) has an elliptical distribution.

An elliptically distributed vector with parameters µ and Σ can be represented
similarly as in (4.6) by

X
d
= µ+RAU, (4.7)

where A is a matrix such that AA⊤ = Σ and R and U are as above. If Y has
density f(y) and |A| 6= 0, then the density g of X can be written

g(x) =
1√
|Σ|

f((x− µ)⊤Σ−1(x− µ)). (4.8)

Note that in one dimension the class of elliptical distributions coincides with the
class of symmetric distributions. Elliptically distributed random vectors have
certain convenient properties regarding linear combinations and marginal and
conditional distributions, see Embrechts, McNeil & Straumann (2002) [25].

A range of elliptical distributions have been applied to financial problems. In
addition to the Gaussian and Student’s t distributions, Bradley & Taqqu (2001)
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[18] list the the logistic distribution, scale mixture distributions and stable laws
as examples.

The focus here will be on vectors of random variables whose dependence is
described by the copula of an elliptical distribution, but with arbitrary mar-
ginals. These kinds of distributions have been termed meta-elliptical by Fang,
Fang & Kotz (2002) [28]. Examples of such distributions and discussions on
their properties are found in e.g. Fang, Fang & Kotz (2002) [28] and Abdous,
Genest & Remillard (2005) [5].

Example 4.7 (Gaussian copula) The copula of the n-dimensional Gaussian, or
normal, distribution with correlation matrix R is given by

CGa
R (u) = Φn

R(Φ−1(u1), ...,Φ
−1(un)), (4.9)

where Φn
R denotes the standardized n-variate normal distribution function with

correlation matrix R and Φ−1 is the inverse of the standard normal distribution.
CGa

R is then called a Gaussian copula.

Since the multivariate standardized normal density is given by

f(x) =
1

(2π)n/2|R|1/2
exp

{
−1

2
x⊤R−1x

}
,

(4.4) yields the density of the Gaussian copula as

c(u; θ) =
1

|R|1/2
exp

{
−1

2
x⊤(R− I)x

}
,

where I is the identity matrix and x = (Φ−1(u1), ...,Φ
−1(un))⊤.

Example 4.8 (Student’s t copula) The copula of the n-dimensional Student’s
t-distribution is

Ct
ν,R(u) = tnν,R(t−1

ν (u1), ..., t
−1
ν (un)), (4.10)

where tnν,R is the distribution of the n-variate standardized Student’s t distrib-
ution with ν degrees of freedom and scale matrix R, and tν is the distribution
of the standardized univariate Student’s t distribution with ν degrees of freedom.

Again, we can find the density of the t-copula through the density of the
multivariate standardized Student’s t distribution

f(x) =
Γ((ν + n)/2)

Γ(ν/2)(νπ)n/2|R|1/2
(1 +

1

ν
x⊤R−1x)−(ν+n)/2,

and application of (4.4), yielding

c(u; θ) =
Γ((ν + 1)/2)[Γ(ν/2)]n−1(1 + x⊤R−1x)−(ν+n)/2

|R|1/2[Γ((ν + 1)/2)]n
∏n

i=1(1 + x2
i /ν)

(ν+1)/2
, (4.11)

where xt = (t−1
ν (u1), ..., t

−1
ν (un))⊤.
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4.1.2 Archimedean copulae

Archimedean copulae can be defined as follows (Bouyé et al. (2000) [17]):

Definition 4.9 (Archimedean copula) The copula given by

C(u1, ..., un) =

{
φ−1(φ(u1)) + ...+ φ(un)),

∑n
i=1 φ(ui) ≤ φ(0)

0, otherwise
(4.12)

where φ(u) is a C2 function such that φ(1) = 0, φ′(u) < 0 and φ′′(u) > 0 for
all 0 ≤ u ≤ 1, is called an Archimedean copula.

The function φ is called the generator of the copula. Further, the density of
an Archimedean copula can be represented as (see Savu & Trede (2004) [60])

c(u1, ..., un) = φ−1(n)(φ(u1) + ...+ φ(un))
n∏

i=1

φ′(ui), (4.13)

where φ−1(n) is the derivative of order n of the inverse of the generator.

Now, the specification (4.12) is quite restrictive. Any marginal distributions
of C(u1, ..., un) which have the same dimension will be identical, resulting in
very limited flexibility in the dependence modeling. Embrechts, Lindskog &
McNeil (2001) [26] discuss multivariate extensions of the bivariate Archimedean
copula which allow for different generators to be used for different margins. As
an example, in three dimensions the distribution C could be specified through

C(u1, u2, u3) = C1(C2(u1, u2), u3) (4.14)

= φ−1
1 (φ1 ◦ φ−1

2 (φ2(u1) + φ2(u2)) + φ1(u3)), (4.15)

and this generalizes to higher dimensions, allowing for n− 1 distinct generators
for an n-variate distribution. For a detailed discussion of this, see Embrechts,
Lindskog & McNeil (2001) [26].

Example 4.10 (Clayton copula) The generator of the Clayton copula and its
inverse are given by

φ(t) = (t−δ − 1), φ−1(x) = (x+ 1)−1/δ.

The distribution function of the n-dimensional Clayton copula can be rep-
resented as

C(u1, ..., un) =

(
n∑

i=1

u−δ
i − d+ 1

)−1/δ

,

δ ≥ 0, with corresponding density, according to (4.3) given by

c(u1, ..., un) = δn Γ( 1
δ + n)

Γ( 1
δ )

(
n∏

i=1

u−δ−1
i

)[
n∑

i=1

u−δ
i − n− 1

]−1/δ−1

. (4.16)

The Clayton copula is asymmetric, with a greater dependence for observa-
tions in the negative tail.
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Example 4.11 (Gumbel copula) The Gumbel copula has

φ(t) = (− log(t))δ, φ−1(x) = exp(−x1/δ),

and the distribution can be given by

C(u1, ..., un) = exp



(
−

n∑

i=1

(− log ui)
δ

)1/δ

 . (4.17)

The Gumbel copula is also asymmetric, but with the dependence being
greater in the positive tail.

Example 4.12 (Frank copula) The generator and its inverse for the Frank
copula are given by

φ(t) = log

(
exp(−δt)− 1

exp(−δ)− 1

)
, φ−1(x) = 1 +

x− log(1− exp(δ) + exp(δ + x))

δ
,

resulting in the distribution

C(u1, ..., un) = −1

δ
log

(
1 +

∏n
i=1(exp(−δui)− 1)

(exp(−δ)− 1)n−1

)

for δ ∈ ℜ\{0}. The bivariate Frank copula is the only Archimedean copula
which is radially symmetric, meaning that the Frank distribution of (U1, U2) is
the same as of (1 − U1, 1 − U2). See Genest (1987) [33] for more on this and
other properties of the Frank copula.

For both the Gumbel and the Frank copula, the expression for the density
becomes rather involved in higher dimensions. In both cases it can be derived
from (4.13) and the formulas for the derivatives of the generators and their
inverses listed in Savu & Trede (2004) [60].

4.2 Dependence concepts

4.2.1 Linear correlation

By far, the most commonly used notion of dependence between random variables
is the linear correlation, also known as the Pearson correlation.

Definition 4.13 (Linear correlation) The linear correlation between the ran-
dom variables X and Y is given by

ρ(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )
,

where Cov(X,Y ) = E(XY ) − E(X)E(Y ) is the covariance of X and Y and
Var(·) denotes the variance.

The linear correlation measures linear dependence, such that Y = aX +
b, a ∈ ℜ\{0}, b ∈ ℜ ⇔ |ρ(X,Y )| = 1, otherwise |ρ(X,Y )| < 1. The linear corre-
lation is easy to calculate, and for the multivariate normal distribution it sums
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up the entire dependence structure. This means that a linear correlation of zero
implies independence of the normal variates. Unfortunately, this is the only case
where this is true. Embrechts, McNeil & Straumann (2002) [25] give a simple
example of the breakdown of linear correlation: consider X ∼ N (0, 1), Y = X2.
The third moment of the normal distribution is zero, so the linear correlation is
zero despite strong dependence. For an in-depth discussion of the properties of
linear correlation, see Embrechts, McNeil & Straumann (2002) [25].

4.2.2 Other measures of dependence

Rank correlation

Several interesting dependence measures are based on the concept of concor-
dance. Two observations (x, y)T and (x̃, ỹ) from a vector (X,Y )T of continuous
random variables are said to be concordant if (x− x̃)(y− ỹ) > 0, and discordant
if (x− x̃)(y − ỹ) < 0. An example of a concordance based dependence measure
is Kendall’s tau:

Definition 4.14 Kendall’s tau for the random variables X and Y is given by

τ(X,Y ) = P{(X − X̃)(Y − Ỹ ) > 0} − P{(X − X̃)(Y − Ỹ ) < 0},
where (X̃, Ỹ ) is an independent copy of (X,Y ).

Kendall’s tau is, in other words, the probability of concordance minus the
probability of discordance. An interesting example for the interpretation of
Kendall’s tau is provided by Kruskal (1958) [44]:

A rewording of the interpretation of τ is the following. Suppose that
observations (X1, Y1) and (X2, Y2) are drawn but that only X1 and
X2 are revealed to us at first by some kind of mechanical device.
Suppose further that we agree to play a game wherein we predict
Y1 < Y2 when X1 < X2 and Y1 > Y2 when X1 > X2. If our
prediction turns out to be correct we win one dollar; if wrong, we
lose one dollar. After prediction, the mechanical device reveals Y1

and Y2 and the payoff is made. Our expected gain in dollars is τ .

In terms of the copula of X and Y , Kendall’s tau can be expressed as

τ(X,Y ) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1.

A useful result is that, for elliptical copulae,

τ(X,Y ) =
2

π
arcsin(ρ(X,Y )). (4.18)

This provides a convenient way to estimate correlation parameters for elliptical
copulae which may or may not have elliptical margins.

The following procedure for estimating Kendall’s tau for a set of multivariate
observations is given in Lindskog (2000) [48]. Consider T bivariate observations
{(xt, yt)}Tt=1. Kendall’s tau is the probability of concordance minus the proba-
bility of discordance, so the sample version is

τ̂ =
c− d
c+ d

, (4.19)
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where c is the number of concordant pairs in the sample and d is the num-
ber of discordant pairs. In other words, for every (T+1)T/2 pairs of observa-
tions (xi, yi), (xj , yj), increment c if (xi − xj)(yi − yj) > 0, and increment d if
(xi − xj)(yi − yj) < 0.

A slight correction to (4.19) may be necessary in case of ties in the data,
that is xi = xj or yi = yj . In his explanation of the procedure, Lindskog (2000)
[48] calls a case of xi = xj an “extra y pair”, denoted ey, and conversely for ex.
The corrected estimator then becomes

τ̂ =
c− d√

c+ d+ ey

√
c+ d+ ex

. (4.20)

For multivariate observations with dimension n > 2, τ̂ would be calculated
for every bivariate pair.

Another concordance-based dependence measure is Spearman’s rho:

Definition 4.15 Let (X,Y ), (X̃, Ỹ ) and (X ′, Y ′) be independent copies. Spear-
man’s rho is then given by

ρS(X,Y ) = 3(P{(X − X̃)(Y − Y ′) > 0} − P{(X − X̃)(Y − Y ′) < 0}). (4.21)

Spearman’s rho can also be expressed in terms of the copula C of (X,Y ), by

ρS(X,Y ) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3. (4.22)

The relation (4.22) can be used to show that ifX and Y are random variables
with distribution functions F1 and F2, then

ρs(X,Y ) = ρ(F1(X), F2(Y )), (4.23)

where ρ denotes linear correlation, see Embrechts, Lindskog & McNeil (2001)[26].
Similarly to the relation (4.18) for Kendall’s tau, we have that for the normal
distribution Spearman’s rho and the linear correlation are related through

ρS(X,Y ) =
6

π
arcsin

(
ρ(X,Y )

2

)
. (4.24)

where again ρ denotes linear correlation. Contrary to (4.18) however, the re-
lation (4.24) does not hold in general for elliptical distributions, see Hult &
Lindskog (2001) [37].

Tail dependence

Tail dependence is a measure of joint extreme co-movements of bivariate random
variables, and is defined as follows.

Definition 4.16 Let (X,Y ) be continuous random variables with distribution
functions F1 and F2. The coefficient of upper tail dependence of (X,Y ) is

lim
uր1

P{Y > F−1
2 (u)|X > F−1

1 (u)} = λU ,

provided λU ∈ [0, 1] exists. If λU ∈ (0, 1], X and Y are said to be asymptoti-
cally dependent in the upper tail, whereas if λU = 0, X and Y are said to be
asymptotically independent in the upper tail.
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Lower tail dependence is defined similarly.

Tail dependence can be shown to be a copula property, see Embrechts, Mc-
Neil & Straumann (2002)[25]. The Gaussian copula has asymptotic indepen-
dence in both tails, while the Student’s t copula has asymptotic dependence in
both tails, except for the limiting case ν =∞, which gives the Gaussian copula
(Embrechts, Lindskog & McNeil (2001) [26]). For general results on tail depen-
dence in elliptical distributions, see Hult & Lindskog (2001) [37].

For Archimedean copulae, upper tail dependence has a simple expression in
terms of the generator, given that the inverse of the generator is the Laplace
transform of a strictly positive random variable. This expression is

λU = 2− 2 lim
sց0

(
φ−1′(2s)

φ−1′(s)

)
,

and lower tail dependence is defined similarly, see Embrechts, Lindskog & Mc-
Neil (2001) [26]. The above mentioned additional condition on φ is fulfilled by
the copulae considered here. The Clayton copula has lower tail dependence but
not upper tail dependence, the Gumbel copula has upper tail dependence but
not lower tail dependence, while the Frank copula has neither upper nor lower
tail dependence, see Embrechts, Lindskog & McNeil (2001) [26].

4.3 Parameter estimation for selected copulae

The parameter estimation procedures that will be considered here are variations
of maximum likelihood estimation (MLE), as outlined in Bouyé et al. (2000)
[17]. Denote by Θ the parameter space, and let θ ∈ Θ be a vector of parameters
to be estimated. Let Lt(θ) be the likelihood for observation t. The exact
maximum likelihood (EML) estimator of θ is then given by

θ̂ML = arg max
θ∈Θ

T∑

t=1

logLt(θ).

For estimating the parameters of an n-dimensional distribution F , the ex-
pression (4.4) allows us to write this expression as

θ̂ML = arg max
θ∈Θ

T∑

t=1

log c(F1(x
t
1), ..., Fn(xt

n)) +

T∑

t=1

n∑

i=1

log fi(x
t
i), (4.25)

or, assuming uniform margins,

θ̂ML = arg max
θ∈Θ

T∑

t=1

log c(u1, ..., un). (4.26)

In higher dimensions, the maximization procedure above can become quite
involved. An alternative approach, treated in Joe (1997) [39], suggests estimat-
ing marginal distribution parameters and copula parameters separately. In the
notation of (4.25) this would amount to estimating the parameters of each fi
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first, then using these in (4.25) to estimate the copula parameters. This method,
called inference function for margins (IFM), does not in general give the same
estimates as EML, but is reported to be much more efficient (Joe (1997) [39]).
Further, it relies on sensible distributions being chosen for the margins to obtain
reasonable copula parameters. To circumvent this difficulty, one can instead find
the empirical copula marginals û1, ..., ûn and use these in (4.26) to estimate the
copula parameters directly. Such a method is called canonical maximum likeli-
hood (CML), and is outlined below. It is illustrated for the Gaussian copula in
Bouyé et al. (2000) [17] and for the t-copula in Mashal & Zeevi (2002) [51], as
shown below.

4.3.1 The empirical marginal transformation

Let XT = {Xt}Tt=1, Xt = (Xt1, ...,Xtn) be our sample, assumed to be mutu-
ally independent and distributed according to some function F with marginals
F1, ..., Fn. If the marginals were known, we would have that (U1, ..., Un) =
(F1(Xt1), ..., Fn(Xtn)) ∼ C(·|θ), with C being the copula of F .

However, the marginals are not known. Instead we construct the empirical
marginals

F̂i(·) =
1

T

T∑

t=1

I(Xti ≤ ·), i = 1, ..., n (4.27)

where I(·) is an indicator function. Then define

Ût = (F̂1(Xt1), ..., F̂n(Xtn)), (4.28)

and let UT = {Ût}Tt=1 denote the pseudo-sample. In practice, the empirical
marginals F̂i(·) are scaled by a factor of T

T+1 to keep the elements of the pseudo-
sample from becoming 1.

4.3.2 Parameter estimation examples

Example 4.17 (Parameter estimation for the Gaussian copula) A simple method
for parameter estimation for the Gaussian copula is shown in Aas (2004a) [1].
The only parameter to be estimated here is the correlation matrix R. However,
to avoid a maximization procedure which can be computationally very expensive
in high dimensions, Aas (2004a) [1] suggests an approximate solution through
instead maximizing over the set of possible covariance matrices Σ. This problem
has an analytical solution given by

Σ̂ =
1

T

T∑

t=1

xtx
⊤
t ,

where again xt = (Φ−1(ut1), ...,Φ
−1(utn))⊤. The ut may be generated through

the empirical marginal transformation in (4.27) and (4.28), in which case Σ̂
would be a CML estimate, or from assumed specified marginals, which would
lead to an IFM estimate. The correlation matrix R is then obtained through

R̂ = ∆−1Σ̂∆−1,

22



∆ being a diagonal matrix of the square roots of the diagonal elements of Σ̂.

Example 4.18 (Parameter estimation for the Student’s t copula) A CML algo-
rithm for parameter estimation for the t-copula is suggested in Mashal & Zeevi
(2002) [51]. First, assume a pseudo-sample UT has been generated by (4.27)
and (4.28). The simultaneous maximization over both R and ν would be quite
involved. As an alternative, Mashal & Zeevi (2002) [51] suggest exploiting the
relation (4.18) to estimate R and then maximizing the likelihood only over ν.
Estimating Kendall’s tau from the procedure mentioned in section 4.2.2 and
applying (4.18) for every bivariate pair yields an estimate R̂ of the correlation
matrix R. The maximization step now simplifies to

ν̂ = arg max
ν∈(2,∞]

[
T∑

t=1

log c(ut; ν, R̂)

]
, (4.29)

with c(·) as in (4.11) and R̂ fixed, a far more pleasant task than simultaneous
maximization over both R and ν.

Details on the estimation of ν, as well as on parameter estimation for the
Clayton and Frank copulae, can be found in appendix A.3.

4.4 Goodness-of-fit tests for copulae

When choosing a specific copula to model the dependence structure for a set of
observations, it would be nice to get some idea how how well it does the job. A
quite recent approach to this problem is through goodness-of-fit (GOF) tests. A
comparative study of several such tests that have been proposed can be found
in Berg & Bakken (2006) [11]. Several of the tests they consider are based on
applying the probability integral transformation of Rosenblatt (1952) [57], then
projecting the multivariate problem to a univariate problem, and finally using
some univariate test statistic.

4.4.1 A test procedure based on the probability integral

transformation

The probability integral transformation (PIT) is a method which converts any
set of data with known distribution into a set of iid U(0, 1) variables. This
section will describe how to apply this to copula GOF tests, as explained in
Breymann, Dias & Embrechts (2003) [19].

Let X = (X1, ...,Xn) be a random vector with continuous cdf F (x1, ..., xn),
and let FXi

(xi) = P (Xi ≤ xi) i = 1, ..., n denote the marginal distributions.
Consider the n transformations

T (x1) = P (X1 ≤ x1) = FX1
(x1),

T (x2) = P (X2 ≤ x2|X1 = x1) = FX2|X1
(x2|x1),

...

T (xn) = P (Xn ≤ xn|X1 = x1, ...,Xn−1 = xn−1),

= FXn|X1,...,Xn−1
(x1|x1, ..., xn−1).
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The the random variables Zi = T (Xi), i = 1, ..., n are independently and
uniformly distributed on [0, 1]n.

If C is the copula of X, such that

F (x1, ..., xn) = C(FX1
(x1), ..., FXn

(xn)),

then let Ci(u1, ..., ui) denote the joint i-marginal distribution:

Ci(u1, ..., ui) = C(u1, ..., ui, 1, ..., 1), i = 2, ..., n

of U1, ..., Ui, with C1(u1) = u1 and Cn(u1, ..., un) = C(u1, ..., un).

The conditional distribution of Ui given U1, ..., Ui−1 is then

Ci(ui|u1, ..., ui−1) =
∂i−1Ci(u1, ..., ui)

∂u1 · · · ∂ui−1

/∂i−1Ci−1(u1, ..., ui−1)

∂u1 · · · ∂ui−1
, i = 2, ..., n,

which means we can write

Zi = Ci(FXi
(Xi)|FX1

(X1), ..., FXi−1
(Xi−1)), i = 2, ..., n.

This means that if our random variables (FX1
(x1), ..., FXn

(xn)) have the
distribution function C, then Φ−1(Zi), i = 1, ..., n are iid N (0, 1), and our test
statistic S =

∑n
i=1[Φ

−1(Zi)]
2 has a chi-square distribution with n degrees of

freedom.

Example 4.19 (Gaussian PIT) Suppose we have a set of data XT = {Xt}Tt=1

for which we want to test the hypothesis H0 that the dependence structure is
Gaussian. Since we specifically want to test the dependence structure, the mar-
ginal distributions FX1

, ..., FXn
of (4.30) are taken to be the empirical marginals.

The following procedure is then applied to each Xt ∈ XT , assuming a mean
of zero:

• Set Ut = (F̂1(Xt1), ..., F̂n(Xtn)), t = 1, ..., T , with F̂i as in (4.27). If H0

is correct, then Ut ∼ CGa.

• Set Yt = (Φ−1(Ut1), ...,Φ
−1(Utn)), t = 1, ..., T .

• Find the empirical covariance matrix Σ of Yt = {Yt}Tt=1, and a matrix C
such that C⊤C = Σ.

• Set Wt = C−1Yt, t = 1, ..., T . If H0 is correct, then the components of
each Wt should be standard normally distributed and independent.

• Set Zt = (Φ(Wt1), ...,Φ
(Wtn)), t = 1, ..., T . Under H0, the components of

each Zt should be uniformly distributed on [0, 1]n and independent.
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Comparison of the above procedure with the simulation procedure in section
4.7 should highlight why the PIT has been called the inverse of simulation; rather
than drawing independent random variables and trying to transform them to
variates from a given multivariate distribution, a multivariate distribution is
assumed on the data and the procedure attempts to transform them to inde-
pendent random variables.

Based on the recommendations for choosing a test procedure given in Berg
& Bakken (2006) [11], we consider the test by Berg & Bakken (2005) [12].
Continuing to denote by Zi, i = 1, ..., n the variables resulting from applying the
PIT to a multivariate vector X ∈ ℜn, this test uses the following transformation:

Z∗
i = P(ri ≤ Z̃i|r1, ..., ri−1) =


1−

(
1− Z̃i

1− ri−1

)n−(i−1)

 , (4.30)

where Z̃ is the sorted version of Z and the ri are the rank variables of Z.
The next step is to let

Y =

n∑

i=1

γ(Zi;α) · Φ−1(Z∗
i )2, (4.31)

where γ is a weight function that adds flexibility to the test; for instance, choos-
ing γ(Zi;α) = (Zi − 1/2)α, α ∈ (2, 4, ...) results in a test which emphasizes the
tails of the copula. (Berg & Bakken (2005) [12] refer to this choice of γ as power
tail weighting). If the cdf of Y is denoted FY (·), the test is defined by the cdf
B(w) of FY (Y ), that is

B(w) = P{FY (Y ) ≤ w}, w ∈ [0, 1]. (4.32)

Under H0, B(w) = w.

In practice, for T observations of the vector Z, its empirical counterpart

B̂(w) =
1

T + 1

T∑

t=1

I(FY (Y ) ≤ w), w =
1

T + 1
, ...,

T

T + 1
. (4.33)

is used, where I is an indicator function. Some test statistic is then applied to
B̂. Here, the Anderson-Darling statistic is used, defined as

T AD = T

∫ 1

0

(F̂ (z)− F (z))2

F (z)(1− F (z))
dF (z).

For F (z) = z, an empirical version of this statistic is (see Berg & Bakken (2006)
[11])

T̂ AD =
T

T + 1

T∑

t=1

(F̂ ( t
T+1 )− t

T+1 )2

t
T+1 (1− t

T+1 )
.

This procedure is then repeated for a suitable number of iterations using
simulated values from the copula assumed under H0 in place of the observed
data. Finally, the p-value is found by applying the empirical distribution of
the test statistics of the simulated values to the test statistic from the observed
data.
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4.5 Simulation from copulae

4.5.1 Elliptical copulae

Example 4.20 (Simulation from the Gaussian copula) Simulating random vari-
ates from the Gaussian copula is simple. If X has a standardized multivariate
normal distribution (that is, it has mean 0 and covariance equal to the correla-
tion matrix R), then X can be represented as

X
d
= AZ,

where A is a matrix such that AA⊤ = R and Z1, ..., Zn ∼ N (0, 1) and indepen-
dent. Drawing a vector u from the copula CGa

R in (4.9) can then be done by the
following algorithm.

• Find a matrix A such that AA⊤ = R.

• Draw a vector z of independent normal random variates from N (0, 1).

• Set y = Az.

• Set ui = Φ(yi), i = 1, ..., n,

yielding a vector (u1, ..., un) ∼ CGa
R .

Example 4.21 (Simulation from the Student’s t copula) Simulating variates
from the t-copula Ct

ν,R in (4.10) is also straightforward. If X can be represented
as

X
d
=

√
ν√
S
AZ,

where S ∼ χ2
ν , A is a matrix such that AA⊤ = R and Z1, ..., Zn ∼ N (0, 1) are

independent, then X has an n-dimensional standardized tν-distribution with ν
degrees of freedom and scale matrix R.

An n-dimensional vector of variates from Ct
ν,R can then be drawn using the

following algorithm.

• Find a matrix A such that AA⊤ = R.

• Draw a vector z of independent normal random variates from N (0, 1).

• Draw a random variate s from χ2
ν independent of z1, ..., zn.

• Set y = Az.

• Set x =
√

ν√
s
y.

• Set ui = tν(xi), i = 1, ..., n.

The resulting vector is then (u1, ..., un) ∼ Ct
ν,R.
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4.5.2 Archimedean copulae

A general methodology that can be used for sampling many types of Archimedean
copulae is suggested by Marshall & Olkin (1988) [50], and is described here as
recounted in Aas (2004a) [1].

Let φ denote the generator of an Archimedean copula as in (4.12). If φ is
the inverse of the Laplace transform of a distribution function G on ℜ+ such
that G(0) = 0, then simulation from the copula can be done by means of the
following algorithm:

• Draw a random variate X ∼ G.

• Draw n independent uniform random variates V1, ..., Vn.

• Set U = (φ−1(− log(V1)/X), ..., φ−1(− log(Vn)/X))⊤.

The (n× 1) vector U then has the distribution of the copula in question.

Example 4.22 (Simulation from the Clayton copula) For the Clayton copula,
the inverse of the generator is the Laplace transform of a gamma variate X,
such that X ∼ Ga(1/δ, 1). The gamma distribution with arbitrary real positive
shape parameter can be a little intricate to sample; the implementation here
uses the GammaDistribution routine from the matpack 1 library. See Devroye
(1986) [23] for a list of generators for the gamma distribution.

Example 4.23 (Simulation from the Gumbel copula) For the Gumbel copula,
we would have X ∼ St(1/δ, 1, γ, 0), where St(·) denotes the positive stable dis-
tribution and γ = (cos( π

2δ )δ). Aas (2004a) [1] recounts an algorithm, attributed
to Nolan, for sampling positive stable variates.

Example 4.24 (Simulation from the Frank copula) Finally, for the Frank cop-
ula we would draw X from the logarithmic series distribution on the positive
integers, with parameter α = (1− exp(−θ)). This discrete distribution has pmf

P(X = i) = − αi

i log(1− α)
, (4.34)

and Devroye (1986) [23] gives the following one-line generator, attributed to
Kendall and to Kemp: Let U, V ∼ U [0, 1] Then

X ←
⌊
1 +

log(V )

log(1− (1− α)U )

⌋
(4.35)

has the logarithmic series distribution with parameter α. Devroye (1986) [23]
lists other generators reported to be faster, but the gain would be negligible for
our implementation, so we will stick with (4.35).

Discussions of the above sampling procedures and some further details can
be found in Frees & Valdez (1998) [31] and Melchiori (2006) [52].

1Matpack C++ Numerics and Graphics Library: www.matpack.de
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Chapter 5

Vines

Vines are a type of graphical models introduced by Bedford & Cooke (2002) [10]
to model dependence in high-dimensional distributions. A vine is a form of gen-
eralization of a Markov tree to allow for conditional dependence between pairs of
variables. A detailed discussion on Markov trees and belief networks will not be
given here, see e.g. Ripley (1996) [58]. However, a short introduction is in order.

First, some terminology:

• A graph is a collection of vertices and edges, where the edges represent
pairs of vertices.

• A path on a graph is a list of vertices where each successive pair of vertices
are joined by an edge.

• If every pair of vertices are joined by a path, the graph is said to be
connected.

• A cycle is a path which returns to its origin without visiting any one
vertice more than once.

• A tree is a connected graph with no cycles

• A graph is directed if the edges are ordered pairs of vertices commonly
represented by arrows, otherwise it is undirected. In a directed graph, we
might call the first vertex a parent, and the one(s) following it a child.

A commonly encountered type of graph is the directed acyclic graph, or
DAG. Such a graph is often used for modeling causality, and if the vertices are
random variables, it is often called (among other things) a belief network. A
belief network expresses a natural factorization of the joint distribution of the
random variables through the conditional distributions of the vertices given the
values of its parents. The joint distribution over the set of vertices V in a DAG
can be expressed as

f(x) =
∏

v∈V

f(xv|xpa(v)),

where pa(v) is the set of vertices which are the parents of the node v.
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A Markov network can be constructed from a DAG by removing the direc-
tions on the edges and adding edges between the parents of each vertex. Such a
graph allows for the use of a wide range of tools available for Markov networks,
see Ripley (1996) [58]. Obviously, a Markov network which is a tree is a Markov
tree.

To see how a distribution can be modeled by a Markov tree, Bedford &
Cooke (2002) [10] define the following.

Definition 5.1 (Bivariate tree specification) (F , T,B) is an n-dimensional bi-
variate tree specification if

1. F = (F1, ..., Fn) is a vector of one-dimensional distribution functions,

2. T is an undirected acyclic graph with nodes N = {1, ..., n} and edges E,

3. B = {B(i, j)|{i, j} ∈ E}, where B(i, j) is a subset of the class of copula
distribution functions.

Definition 5.2 (Tree dependence)

1. A multivariate probability distribution G on ℜn realizes a biviriate tree
specification (F , T,B) if the marginal distributions of G are Fi, i = 1, ..., n
and if for any {i, j} ∈ E the bivariate copula Cij of G is an element of
B(i, j).

2. G has tree dependence of order M for T if {i, k1}, ..., {km, j} ∈ E implies
that Xi and Xj are conditionally independent given any M of kl, 1 ≤ l ≤
m; and if Xi and Xj are independent when there are no such k1, ..., km

(i, j ∈ N).

3. G has Markov tree dependence for T if G has tree dependence order M
for every M > 0.

An attraction of specifying a multivariate distribution through a Markov
tree can be seen from the following theorem, the proof of which can be found in
Cooke (1997) [21].

Theorem 5.3 Let (F , T,B) be an n-dimensional bivariate tree specification
that specifies the marginal distributions fi, i = 1, ..., n, and the bivariate den-
sities fij , {i, j} ∈ E, the set of edges of T . Then there is a unique density f on
ℜn with marginals f1, ..., fn and bivariate marginals fij , {i, j} ∈ E such that f
has Markov tree dependence described by T . The density of f is given by

f(x1, ..., xn) =

∏
{i,j}∈E fij(xi, xj)∏

i∈N (fi(xi))deg(i)−1
, (5.1)

where deg(i) denotes the degree of node i, that is, the number of neighbours of
i in the tree T .

The theorem provides a convenient factorization of the probability density
for a distribution modeled as a bivariate Markov tree.
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As a motivation for the introduction of vines, consider the following simple
example, as given in Bedford & Cooke (2001) [9]. We want to specify the joint
distribution of three random variables X1, X2 and X3 with uniform marginals.
Figure 5.1 shows examples of (a) a belief network, (b) a Markov tree, and (c) a
vine.

(c)

2 2 2

1 3 1 3 1 3

(a) (b)

Figure 5.1: A belief network, a Markov tree and a vine

The configuration of the belief network can be hard to do, as it involves spec-
ifying conditional distributions in such a way that the remaining marginals are
uniform. Besides, the model specifies conditional independence between vari-
ables 1 and 3 given the value of variable 2, which may not be what we are looking
for. The Markov tree allows the use of copulae as indicated above, making it
more convenient for modeling with given marginals. However, the conditional
independence assumption remains. Finally, the vine presents a modeling frame-
work where copula modeling is natural while at the same time variables 1 and 3
can be assigned conditional dependence given the value of variable 2, allowing
for more flexibility in the choice of dependence structure.

An informal definition of a vine and a regular vine can be found in Kurow-
icka & Cooke (2002) [45]: They describe a vine on n variables as a nested set
of trees, where the edges of tree j are the nodes of tree j + 1, j = 1, ..., n − 2,
and each tree has the maximum number of edges. Further, a regular vine on
n variables is a vine in which two edges in tree j are joined by an edge in tree
j + 1 only if they share a common node, and this applies for j = 1, ..., n − 2.
Consequently, a regular vine contains n(n− 1)/2 edges.

The following, more formal, definition can be found in Bedford & Cooke
(2002) [10].

Definition 5.4 (Vine, regular vine) V is a vine on n elements if

1. V = (T1, ..., Tn).

2. T1 is an undirected acyclic graph with nodes N1 = (1, ..., n) and a set of
edges denoted E1.

3. For i = 2, ...,m, Ti is an undirected acyclic graph with nodes Ni ⊂ N1 ∪
E1 ∪ E2 ∪ · · · ∪Ei−1 and edge set Ei.

V is a regular vine on n elements if

1. m = n.
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2. Ti is an undirected tree with edge set Ei and node set Ni = Ei−1 with
#Ni = n− (i− 1) for i = 1, ..., n, where #Ni is the cardinality of the set
Ni.

3. The proximity condition holds: for i = 2, ..., n − 1, if a = {a1, a2} and
b = {b1, b2} are two nodes in Ni connected by an edge e ∈ Ei (recall
a1, a2, b1, b2 ∈ Ni−1), then #a ∩ b = 1.

The focus here will be on regular vines. Figures 5.2 and 5.3 show two simple
representations of regular vines on four variables.

341 2 3 4

13|2 24|3

14|23

12 23

Figure 5.2: The d-vine on four variables

34|12

2

1

4

3

12

 13

1424|1 23|1

Figure 5.3: The c-vine on four variables

The vine in figure 5.2 is known as a standard vine, or d-vine, while the one
in figure 5.3 is known as a canonical vine, or c-vine. Note that the structure
imposed by the vine depends on the permutation of the variables. Now, the
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conditional bivariate distributions of the vines can be expressed through the
bivariate version of (4.4), that is,

c(F1(x), F2(y)) =
f12(x, y)

f1(x)f2(y)
. (5.2)

The following example shows how to use this to obtain an expression for the
density of the d-vine in figure 5.2.

Example 5.5 (Joint density of the d-vine) The joint density of the 4-variate
d-vine can be expressed as

f1234 = f14|23f23

= c14|23(F1|23, F4|23)f1|23f4|23f23

= c14|23(F1|23, F4|23)
f123f234
f23

= c14|23(F1|23, F4|23)
f13|2f2f24|3f3

f23

= c14|23(F1|23, F4|23)c13|2(F1|2, F3|2)c24|3(F2|3, F4|3)
f1|2f3|2f2f2|3f4|3f3

f23

= c14|23(F1|23, F4|23)c13|2(F1|2, F3|2)c24|3(F2|3, F4|3)
f12f23f34
f2f3

. (5.3)

We see that the final factor in the last line of (5.3) is equal to what we would
get using (5.1) for the first-level tree. Thus, Markov tree dependence could be
obtained as a special case here by modeling the conditional dependencies by the
product copula, i.e. assuming conditional independence.

Bedford & Cooke (2001) [9] generalize the density expression above for reg-
ular vines. We will adopt their notation of denoting the conditioning set by De,
that is, the variables conditioned on for an edge labeled ij|De. The distribution
and density of the copula corresponding to this edge are then Cij|De

and cij|De
,

and the vine dependent density is given in the following theorem.

Theorem 5.6 Let V = (T1, ..., Tn) be a regular vine on n elements. Given Fi

and Cij|De
there is a unique vine dependent distribution with density given by

f1···n =

(
n−1∏

m=2

∏

e∈Em

cij|De
(Fi|De

, Fj|De
)

) ∏
(i,j)∈E1

fij∏
i∈N1

(fi)deg(i)−1
, (5.4)

where e is an edge with label ij|De.

Thus the density of the regular vine dependent distribution can be expressed as
the density of the first-level tree as if assumed markov tree dependent, multiplied
by the conditional copula densities of the higher-level trees. The density can be
simplified a bit by applying (5.2) to the fij , resulting in the following expression:

f1···n = f1 · · · fn

n−1∏

m=1

∏

e∈Em

cij|De
(Fi|De

, Fj|De
). (5.5)
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Example 5.7 (Joint density and conditional densities of the c-vine) Applying
(5.5) to the 4-variate c-vine in figure 5.3, we get the following expression:

f1234 = f1f2f3f4

×c34|12(F3|12, F4|12)c23|1(F2|1, F3|1)c24|1(F2|1, F4|1)

×c12(F1, F2)c13(F1, F3)c14(F1, F4).

Inspecting this expression and comparing with the standard density decompo-
sition

f1234 = f1f2|1f3|21f4|321,

we see the following simple expressions for conditional densities:

f1 = f1,

f2|1 = c12f2,

f3|21 = c23|1c13f3,

f4|321 = c34|12c24|1c14f4.

Bedford & Cooke (2001) [9] report that the d-vine does not have such a simple
expression for conditional densities.

5.1 Sampling the regular vines

Bedford & Cooke (2001) [9] give the following general procedure for sampling a
d-vine.

Example 5.8 (Sampling the d-vine) For a d-vine such as the one shown in
figure 5.2 sampling can be done by the following scheme.

• Sample X1 from the distribution F1.

• From C12, F1 and F2, determine F2|1 and sample X2 given X1.

• From C12, F1 and F2, determine F1|2. From C23, F2 and F3 determine
F3|2. From C13|2, F1|2 and F3|2 determine F3|12 and sample X3 given X1

and X2.

• From C34, F3 and F4 determine F4|3. From C23, F2 and F3 determine
F4|3. From C23, F2 and F3 determine F2|3. From C24|3, F2|3 and F4|3
determine F4|23. From C13|2, F1|2 and F3|2 determine F1|23. From C14|23,
F1|23 and F4|23 determine F4|123 and sample X4 given X1, X2 and X3.

• ...

A similar procedure can be outlined for the c-vine as follows:

Example 5.9 (Sampling the c-vine) For a c-vine such as the one shown in
figure 5.3 sampling can be done by the following scheme.

• Sample X1 from the distribution F1.

• From C12, F1 and F2, determine F2|1 and sample X2 given X1.
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• From C13, F1 and F3 determine F3|1. From C23|1, F2|1 and F3|1 determine
F3|12 and sample X3 given X1 and X2.

• From C14, F1 and F4 determine F4|1. From C24|1, F2|1 and F4|1 determine
F4|12. From C34|12, F3|12 and F4|12 determine F4|123 and sample X4 given
X1, X2 and X3.

• ...

The examples above show only schematic procedures. For details on the
estimation and sampling of the Student’s t c-vine, see appendix A.4.
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Chapter 6

Application to fixed income

derivative portfolios

This chapter will deal with applying techniques from previous chapters to the
forward rates of the Norwegian fixed income market. The reason for modeling
forward rates is that we want to calculate market risk for portfolios of fixed in-
come derivatives. Market practice is to price instruments such as caps, floors or
european swaptions through variations of Black’s formula, also known as Black
’76. This formula was originally introduced in Black (1976) [14] for pricing com-
modity options. These formulae use forward rates as inputs, and can be shown
(see e.g. Björk (2004) [13]) to have a sound theoretical justification concerning
application to such instruments. See appendix A.1 for the price formulae of a
few common fixed income instruments. Also, a possible extension to include
more complex interest rate derivative products in the portfolios motivates the
modeling of forward rates. Some of the current state-of-the-art techniques to
price such instruments are based on LIBOR market models, which model a dis-
crete set of forward rates. See Rebonato (2002) [55] for a thorough discussion
on the use of these models.

An important distinction should be noted on the approach taken here, con-
cerning short-term market risk, as compared to models for various long-term
risks associated with fixed income contracts. As noted in Jorion (2000) [41];
if the underlying process is a simple diffusion, the innovation component will
severely dominate the drift over short time horizons. The drift term scales with
∆t, while the innovation term scales with

√
∆t, so over a time horizon of, say,

one day, the drift coefficient would need to be roughly 20 times as large as the
diffusion coefficient to make much of an impact. Models applying over longer
time periods would need some appropriate way to reproduce the real drift be-
tween rates of different maturities, see e.g. Rebonato et al. (2005) [56]. Such
models might be necessary for instance for assessment of counterparty credit
risk, hedging performance of models or of investment strategies. Here, though,
we are concerned with market risk over a short time period and hence rather
put the effort into modeling movements in the innovations.

The use of heavy-tailed models for the short-term real dynamics of returns
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combined with Black-type pricing models with their normality assumptions is
obviously inconsistent. However, Glasserman, Heidelberger & Shahabuddin
(2002) [34] report that option pricing formulae are routinely used this way in
practice. We will not be concerned with this problem, rather leaving the ques-
tion of suitability of the model to the backtesting results.

The data set used for testing the different models is daily NIBOR data from
01.10.98 to 18.08.05, a total of 1750 points1. Rates of eight different maturities
were used: 3M, 6M, 9M, 1Y, 2Y, 3Y, 5Y and 10Y. This means that when trans-
formed to forward rates, the first rate is the one applying from 0-3M, and the
last is the one applying from 5Y-10Y.

Figures 6.1 and 6.2 outline the steps involved in calculating VaR and ES one
time period ahead. For the backtesting, the results of which are described in
section 6.4, this procedure is repeated for each of 1500 data points and compared
to realized changes in portfolio value to evaluate of the appropriateness of the
different model specifications.

6.1 The volatility structure and conditional dis-

tributions of forward rates

As discussed in chapter 3, we want to specify a volatility strucure accompa-
nied by a conditional distribution which provides a reasonable fit to the actual
marginal forward rates. The motivation for this step of the modeling is the
autocorrelation which is evident in the time series of the rate changes.

First, we will take a look at the standard AR(1)-GARCH(1,1)-model and the
three suggestions for conditional distributions from chapter 3. As an example,
consider the entire series of the 2-3 year rate, that is, 1750 observations of the
rate applying from two years ahead to three years ahead.

For purposes of comparison, figure 6.3 shows a normal quantile-quantile plot
and the autocorrelation function of the absolute values of the changes in this
rate. Heavy tails are evident, and also significant autocorrelation at lags up to
and above 30.

Turning to our models, we start off with conditionally normal returns. Fig-
ure 6.4 shows a normal q-q plot and the autocorrelation function of the absolute
values of the standardized residuals ǫt/σt. As could be expected, both tails of
the distribution of the standardized residuals are heavier than those of the nor-
mal distribution. The figure on the right shows there is some autocorrelation
left at lag one with this model, otherwise no significance is evident.

Figure 6.5 shows the results of fitting the GARCH-model with conditionally
Student’s t distributed returns. The quantile-quantile plot here shows the fit
of the standardized residuals against a Student’s t distribution with the esti-
mated degrees of freedom. The residuals appear to be fitted quite well by this

1The data was supplied by DnBNOR, through thesis supervisor Jacob Laading
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Calibrate a volatility model
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ÊSα

Estimate VaR, ES

by simulation

structure

Estimate dependence

�
�

�
�

Notation:
{ft}Tt=1, ft = (ft1, ..., ftn): n historical forward rates

from time t = 1 to t = T
Θv = (θ1, ...,θn): n vectors of volatility model

parameters
{ǫt/σt}Tt=1, ǫt/σt = (ǫt1/σt1, ..., ǫtn/σtn): Standardized residuals

σT = (σ1,T , ..., σn,T )⊤: Current volatility
Θc: Copula parameters

Figure 6.1: Chart of steps involved in obtaining estimates of VaR and ES
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Step 1: Estimate the volatility structure

• Input: {ft}Tt=1, ft = (ft1, ..., ftn): n historical forward rates from
time t = 1 to t = T , with time resolution ∆t = ti+1 − ti.

• Calibrate a volatility model to each of the n time series of forward
rates.

• Output: Matrix Θv = (θ1, ...,θn) of n vectors of volatility
model parameters; Standardized residuals {ǫt/σt}Tt=1, ǫt/σt =
(ǫt1/σt1, ..., ǫtn/σtn); Current volatility σT = (σ1,T , ..., σn,T )⊤.

?

Step 2: Estimate the dependence structure

• Input: Standardized residuals {ǫt/σt}Tt=1.

• Calibrate a chosen copula to the standardized residuals.

• Output: Copula parameters Θc.

?

Step 3: Simulation

• Input: Copula parameters Θc; volatility model parameters Θv;
current volatility σT .

• Repeat for j = 1, ..., N iterations

– Draw n dependent uniform random variables u1, ..., un ac-
cording to chosen copula with parameters Θc.

– Invert u1, ..., un according to chosen volatility model with pa-
rameters Θv and current volatility σT to obtain estimated
forward rates f̂T+∆t = (f̂T+∆t

1 , ..., f̂T+∆t
n )⊤.

– Calculate the value of the portfolio PVj for the rates f̂T+∆t.

• Output: V̂ aRα, ÊSα, estimated from the empirical distribution
of simulated portfolio values PV.

Figure 6.2: Chart of steps involved in obtaining estimates of VaR and ES
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Figure 6.3: Autocorrelation and Q-Q plot for the 2-3 year forward rate changes
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Figure 6.4: Autocorrelation and Q-Q plot for the residuals from the 2-3 year
rate assuming conditional normality
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t-distribution, though there is some heaviness in the tails that has not been
accounted for, particularly in the left tail. The ACF resembles that of the
conditionally normal model above.
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Figure 6.5: Autocorrelation and Q-Q plot for the residuals from the 2-3 year
rate assuming a conditional Student’s t distribution

Turning to the conditionally IHS-distributed returns, we take a slightly dif-
ferent approach to examine the quantiles. When estimating a GARCH-model
with an IHS conditional distribution, Ramirez (2001) [54] points out that if the
distributional assumption is correct, then the transformed residuals

vt =
sinh−1(ǫt/σts+ µ)− λ

δ
(6.1)

should be normally distributed. Accordingly, the left plot in figure 6.6 shows a
normal q-q plot of the transformed standardized residuals, which appears to fit
very well. Again, the ACF resembles the two cases above.
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Figure 6.6: Autocorrelation and Q-Q plot for the transformed residuals from
the 2-3 year rate assuming a conditional IHS distribution

Note, however, that the above figures describe the fit when the entire data
set is used to estimate the model. As model suitability will ultimately be judged
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from a risk estimation backtesting procedure, where the model is fitted to the
past 250 data points, these results may be misleading.

6.2 The dependence structure of yields vs. for-

ward rates

The underlying factors of fixed-income markets are quoted as yields. A yield is
the interest rate applying from today’s date up until some specified future point
in time, known as the maturity of the rate. Yields are often defined through
the corresponding unit zero-coupon bond price, which is today’s price of a bond
with payoff 1 at the time of the yield’s maturity. Given today’s date t0, a
set of maturities t1, ..., tn and their corresponding yields R1(t0), ..., Rn(t0), the
zero-coupon bond prices P1(t0), ..., Pn(t0) of these maturities are given by

Pi(t0) =
1

(1 +Ri(t0))(ti−t0)
, i = 1, ..., n,

where a discrete compounding of interest is assumed.

The factors we are interested in modeling here, however, are the forward
rates of the market, i.e. the rates applying between two future points in time.
Given P1(t0), ..., Pn(t0) as above, the set of discrete forward rates are given by

fi(t0) =
Pi(t0)− Pi+1(t0)

1 + [ti+1 − ti]Pi+1(t0)
, i = 0, ..., n− 1,

where P0(t0) has been set to 1.

So, what happens to the factors of our market when we convert them from
yields to forward rates? The left plot in figure 6.7 shows the 2- and 3-year yields
plotted against each other.
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Figure 6.7: Example scatterplots of yields and forward rates

The yield returns appear highly dependent, which should not be a big sur-
prise. The lines in the plot are the marginal 1% and 99% quantiles under
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the normality assumption. Frequent and large joint movements outside these
bounds may indicate a level of tail dependence incompatible with a normal de-
pendence structure assumption.

The plot on the right-hand side of figure 6.7 shows the corresponding forward
rates, namely the rate applying from one to two years and the rate applying from
two to three years. Both dependence in general and extreme joint movements
are much less evident here. Apart from this, we see that the tails of the mar-
ginal distributions, in particular the 1-2-year rate, may be a bit too heavy for
the normality assumption, a point we will return to below.
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Figure 6.8: Example scatterplots of yields and forward rates when mapped to
the unit square

First, have a look at the empirical marginal distributions associated with
the same data in figure 6.8. Again, the very high degree of dependency be-
tween the yield returns is evident, while the forward rate returns appear much
more scattered. For both plots, we see a certain clustering in the lower-left and
upper-right corners which might indicate tail dependence, though this is also
more obvious for the yield returns. We will not try to estimate the dependence
between yields here, but Junker, Szimayer & Wagner (2004) [42] report good
results with a transformation of the Frank copula when estimating a form of
dependence between monthly 1- and 5-year US yields.

In fact, the strong level of dependence between yield returns has been used
to reduce the dimensionality of problems involving a large set of yields, as ex-
plored by Litterman & Scheinkman (1991) [49]. The idea of this dimensionality
reduction is to take a set of yields and apply some form of factor analysis, such
as principal components analysis (PCA). The subject of how to best process the
data before applying the PCA is discussed in Lardic, Priaulet & Priaulet (2001)
[46], where the authors suggest using the correlation matrix of yield changes.
The PCA is done through an eigenvalue decomposition; if the correlation matrix
is denoted by R, this decomposition will produce matrices V and Λ such that

R = V ΛV ⊤,

where Λ is a diagonal matrix with the eigenvalues as its elements, and the

42



columns of V are the corresponding eigenvectors. The first principal component
(PC) is then the square root of the largest eigenvalue multiplied by its eigenvec-
tor, the second PC is formed the same way from the second largest eigenvalue
and its eigenvector and so on. The relative size of each eigenvalue is taken to
represent the degree of explanation of that PC, i.e. the degree of the joint move-
ments in the rates explained by this factor. The first three factors are known
to exhibit certain qualitative features, labeled level, steepness and curvature by
Litterman & Scheinkman (1991) [49]. The level factor is commonly reported to
be by far the largest factor. It has the same sign for all maturities, correspond-
ing to a parallell shift in all rates. The steepness factor has different sign for
long and short rates, corresponding to a movement where long rates move in
the opposite direction of short rates. The curvature factor has the same sign for
long and short rates and the opposite sign for intermediate rates, corresponding
to a movement where intemediate rates move in the opposite direction of the
long and short rates.

Results of such a PCA analysis tend to look a bit different when applied to
forward rates, as the first three factors derived from forward rates commonly
have smaller degrees of explanation and less obvious qualitative features. Lekkos
(2000) [47] suggests that much of the effects found through a factor analysis of
yields are due to yields being a form of averages of forward rates. No detailed
discussion of this will be given here, we will restrict ourselves to considering fig-
ure 6.9. This figure shows the first three factors extracted from the correlation
matrix of daily changes in yields and forward rates, respectively.
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Figure 6.9: Principal components for yields and forward rates

The plot shows how a lot of the structure present in yields disappears when
converted to forward rates. The eigenvalues corresponding to the first three
factors are also substantially smaller for the forward rates. Still, the level effect
is quite pronounced in the forward rates as well as in the yields. In light of the
discussion in section 4.2, however, one should be wary of methods expressing
dependence solely through linear correlation. Regardless of what explanatory
features are found in a factor analysis of the data, there may still remain de-
pendencies which are not expressed through a linear correlation matrix.
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6.3 Estimation of the dependence structure of

the forward rates

The dependence structure of the forward rates will be estimated from the stan-
dardized residuals of the GARCH-estimation described in section 6.1. In other
words, a volatility structure is imposed on and calibrated to each marginal for-
ward rate, and the estimation of multivariate dependence is then done on the
standardized residuals from these separate univariate procedures. For a similar
approach, see Junker & May (2005) [43], who also report that it is common
practice in literature to treat the estimated standardized residuals as true ob-
servations.

What we are looking for is a model for the dependence that captures as much
as possible of the typical co-movements seen in the estimated standardized resid-
uals. It turns out that the dependence between forward rates of different ma-
turities is not entirely trivial. One thing is that, as might be expected, there is
a much stronger dependence between adjacent rates than between rates further
apart. Also, some rates, to a certain degree, depend negatively on each other.
Figure 6.10 shows contourplots of two-dimensional kernel density estimates for a
few pairs of residuals mapped to the unit square2. The residuals are taken from
the estimation of the GARCH model with conditionally Student’s t distributed
returns, with the estimation done on the entire data set. The left plot shows a
clear positive dependence between the rates, the middle plot shows a moderate
negative dependence, while the right plot is somewhat harder to interpret.
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Figure 6.10: Contour plots of various maturity realized residuals mapped to the
unit square

Ideally, simulations should reproduce these kinds of co-movements. Figure
6.11 shows corresponding contour plots constructed from simulated values from
the Student’s t copula. Again, the GARCH estimation is done with a conditional
Student’s t distribution, and the copula parameter estimation is performed on

2Gaussian kernel densities are not ideal for copula density estimation, as it will produce
a downslope in the tails, which is spurious. However, keeping this in mind, such estimates
should still give a reasonable impression of what the actual density looks like.
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the entire data set. Similarly, figure 6.12 is constructed from values simulated
with the Student’s t c-vine.
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Figure 6.11: Contour plots of various maturity simulated values from the Stu-
dent’s t copula
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Figure 6.12: Contour plots of various maturity simulated values from the Stu-
dent’s t c-vine

We see that the general patterns from the real data are reproduced by both
methods, but neither shows a perfect fit. It appears that the vine does a better
job at not putting too much of the density in the tails.

Figure 6.13 shows the same type of plot made from values simulated from
the Gaussian copula. Again, the general patterns are more or less represented,
but the tails appear a bit on the light side compared to the realized values in
figure 6.10.

Table 6.1 shows the results of applying the GOF test discussed in section
4.4.1 to the entire data set of forward rate changes3. The test was run with no

3The Copulae R library of Berg & Bakken was used for the test.
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tail weight and power tail weight, for the Student’s t and Gaussian copulae. As
noted in Demarta & McNeil (2004) [22], the Gaussian copula can be thought
of as a special case of the Student’s t copula as ν → ∞, so in a sense we
are testing whether the degrees of freedom for the Student’s t copula should
approach infinity. 5000 simulations were used for each test. The results show
clearly that the Gaussian copula is rejected in any case. The Student’s t copula
appears to give a reasonable fit when the test emphasizes the tails. When no
particular region is weighted, both the Student’s t copula and the Gaussian
copula are rejected at the 5% level, though the Student’s t copula attains a
higher p-value. This may suggest that the Student’s t copula does not capture
the entire dependence structure of the distribution, but does a reasonable job of
fitting the tails, which for many applications is the most critical part. Applying
the same tests to standardized residuals from the volatility model estimation
yields similar results.

No tail weight Power tail weight, α = 2
Student’s t copula 0.013 0.404
Gaussian copula ≈ 0 ≈ 0

Table 6.1: P-values of the GOF test of Student’s t vs. Gaussian copula
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Figure 6.13: Contour plots of various maturity simulated values from the
Gaussian copula

As an experiment, the Clayton and Frank copulae were attempted fitted to
the residuals as well, with a specification of the form (4.13). The results, how-
ever, were not encouraging. The Frank copula tended to underestimate both
tails, whereas the Clayton copula appeared to overestimate the tail associated
with negative rate returns. For the Clayton copula this should not be a big
surprise, as the data do not in general show asymmetric lower tail dependece.
In any case, a specification of the type (4.13) amounts to estimating the entire
dependence structure of an eight-dimensional distribution with a single scalar
parameter, which is a bit optimistic.
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6.4 Results of the backtesting procedure

As mentioned in the beginning of this chapter, 1750 days of data were used for
testing the models. At each time point, each model was estimated from the past
250 days of data, corresponding to approximately one trading year. Accordingly,
1500 estimates were obtained. In each time step, 10000 iterations were used in
the simulation. The estimated one-day VaR and ES estimates for six different
quantiles were then compared to the realized daily portfolio return at each time
point. For the VaR estimates, two statistics were recorded. One is the number
of violations xα. A good VaR estimate should yield a percentage of violations
xα/N , where N is the sample size, close to the corresponding α-level; i.e. 5%
for α = 0.05 and α = 0.95 and so on. The other is the P-value for the likelihood
ratio test statistic used in Aas & Haff (2005) [4], attributed to Kupiec. Under
H0, this test statistic is given by

2 log

((
xα

N

)xα (
1− xα

N

)N−xα
)
− 2 log

(
αxα

(1− α)N−xα
)
,

asymptotically distributed as χ2(1).

For the ES estimates, a measure suggested by Embrechts, Kaufmann & Patie
(2005) [27] is used. In the notation of Aas & Haff (2005) [4], it is given by

Dα =
|Dα

1 |+ |Dα
2 |

2
.

Dα
1 is the standard ES backtest measure

Dα
1 =

1

xα

∑

t∈κα

(Rt − ÊS
α

t ),

where κα is the set of points where a VaR violation occurs and Rt is the time t
portfolio return. Dα

1 is obviously strongly dependent on the VaR estimates. To
obtain an ES measure which makes sense on its own, the penalty term Dα

2 is

introduced. Dα
2 is defined as follows. Let δα

t = Rt − ÊS
α

t and denote by τα the
set of time points for which δα

t is less than (or, for short positions in the same
portfolio, greater than) its empirical α-quantile. If yα is the number of times
this happens, then

Dα
2 =

1

yα

∑

t∈τα

δα
t .

Good estimates of expected shortfall should yield low Dα-values.

Two different portfolios are considered. We would like to have one portfolio
with a sufficiently nonlinear value function, to see how the risk estimates handle
optionality. A portfolio P1 consisting of a ten-year cap and a ten-year floor,
both struck at 5% is chosen for this purpose. Further, for comparison purposes,
a portfolio P2 consisting of a single ten-year swap with the fixed rate set at 5%
is also considered.

The tables show that none of the combinations of copula and volatility spec-
ification provide a good fit for all of the quantiles considered. Looking at the
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Gaussian copula
GARCH GJR-GARCH

Quantile N T IHS N T IHS
P1 5% 3.4% 4.07% 3.47% 3.6% 4.13% 3.87%

95% 4.6% 4.67% 4.27% 3.93% 4.6% 4.6%
1% 0.867% 0.533% 0.533% 1.13% 0.733% 0.333%
99% 1.33% 0.733% 1.07% 0.933% 0.8% 1.13%
0.5% 0.667% 0.2% 0.2% 0.6% 0.267% 0.2%
99.5% 0.867% 0.467% 0.467% 0.667% 0.333% 0.6%

P2 5% 5.47% 5.67% 5.2% 4.73% 4.8% 5.27%
95% 3.87% 4.13% 4.2% 3.6% 4.53% 4.8%
1% 1.13% 0.6% 0.667% 0.733% 0.733% 0.6%
99% 1% 0.267% 0.467% 0.933% 0.6% 0.2%
0.5% 0.667% 0.267% 0.333% 0.467% 0.267% 0.4%
99.5% 0.533% 0.133% 0.0667% 0.533% 0.133% 0.2%

Table 6.2: Percentage violations for the Gaussian copula under different volatil-
ity assumptions

Gaussian copula
GARCH GJR-GARCH

Quantile N T IHS N T IHS
P1 5% 0.00261 0.0869 0.00401 0.00897 0.113 0.0363

95% 0.471 0.549 0.182 0.0493 0.471 0.471
1% 0.595 0.0462 0.0462 0.611 0.276 0.00258
99% 0.217 0.276 0.797 0.793 0.42 0.611
0.5% 0.384 0.0608 0.0608 0.595 0.159 0.0608
99.5% 0.0684 0.853 0.853 0.384 0.33 0.595

P2 5% 0.414 0.246 0.724 0.633 0.721 0.638
95% 0.0363 0.113 0.144 0.00897 0.4 0.721
1% 0.611 0.0926 0.167 0.276 0.276 0.0926
99% 1 0.000693 0.0205 0.793 0.0926 0.000145
0.5% 0.384 0.159 0.33 0.853 0.159 0.569
99.5% 0.856 0.0166 0.0027 0.856 0.0166 0.0608

Table 6.3: Kupiec test P-values for the Gaussian copula under different volatility
assumptions
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Gaussian copula
GARCH GJR-GARCH

Quantile N T IHS N T IHS
P1 5% 1.06 1.22 1.26 1.05 1.18 1.28

95% 1.03 1.1 1.08 1.02 1.1 1.04
1% 0.0527 0.0989 0.0826 0.0209 0.107 0.0575
99% 1.59 1.95 2.09 1.57 1.96 1.81
0.5% 2.06 6.28 5.57 2.11 6.15 5.09
99.5% 1.84 2.45 2.65 1.78 2.44 2.27

P2 5% 0.64 0.696 0.667 0.637 0.68 0.657
95% 0.693 0.946 0.807 0.705 0.756 0.83
1% 0.0247 0.0812 0.0163 0.0102 0.069 0.0223
99% 1.1 2.24 1.83 1.12 1.8 1.76
0.5% 1.26 1.87 1.51 1.27 1.66 1.52
99.5% 1.3 4.69 3.48 1.35 3.93 2.6

Table 6.4: Dα-values for the Gaussian copula under different volatility assump-
tions

Student’s t copula Student’s t
c-vine

GARCH GJR-GARCH GARCH
Quant. N T IHS N T IHS T

P1 5% 4.2% 4.27% 4.73% 3.53% 4.8% 4.2% 4.13%
95% 5% 4.67% 5.13% 4.4% 4.67% 5.4% 4.4%
1% 1% 0.667% 0.733% 1% 1% 0.533% 0.8%
99% 0.933% 0.6% 0.733% 0.867% 0.733% 0.933% 0.6%
0.5% 0.533% 0.333% 0.267% 0.467% 0.267% 0.267% 0.267%
99.5% 0.667% 0.267% 0.533% 0.533% 0.4% 0.533% 0.267%

P2 5% 4.87% 5.53% 5.73% 5.13% 4.87% 5.4% 5.2%
95% 3.87% 4.67% 4.93% 3.33% 5.07% 4.6% 4.4%
1% 0.933% 0.4% 0.6% 0.867% 0.467% 0.6% 0.4%
99% 0.8% 0.467% 0.4% 1% 0.533% 0.4% 0.533%
0.5% 0.4% 0.133% 0.333% 0.533% 0.333% 0.333% 0.2%
99.5% 0.533% 0.267% 0.133% 0.333% 0.2% 0.2% 0.0667%

Table 6.5: Percentage violations for the Student’s t copula under different
volatility assumptions, as well as the Student’s t c-vine

49



Student’s t copula Student’s t
c-vine

GARCH GJR-GARCH GARCH
Quant. N T IHS N T IHS T

P1 5% 0.144 0.182 0.633 0.00605 0.721 0.144 0.113
95% 1 0.549 0.813 0.277 0.549 0.483 0.277
1% 1 0.167 0.276 1 1 0.0462 0.42
99% 0.793 0.0926 0.276 0.595 0.276 0.793 0.0926
0.5% 0.856 0.33 0.159 0.853 0.159 0.159 0.159
99.5% 0.384 0.159 0.856 0.856 0.569 0.856 0.159

P2 5% 0.812 0.351 0.202 0.813 0.812 0.483 0.724
95% 0.0363 0.549 0.905 0.00166 0.906 0.471 0.277
1% 0.793 0.00789 0.0926 0.595 0.0205 0.0926 0.00789
99% 0.42 0.0205 0.00789 1 0.0462 0.00789 0.0462
0.5% 0.569 0.0166 0.33 0.856 0.33 0.33 0.0608
99.5% 0.856 0.159 0.0166 0.33 0.0608 0.0608 0.0027

Table 6.6: Kupiec test P-values for the Student’s t copula under different volatil-
ity assumptions, as well as the Student’s t c-vine

Student’s t copula Student’s t
c-vine

GARCH GJR-GARCH GARCH
Quant. N T IHS N T IHS T

P1 5% 1.02 1.28 1.28 1.04 1.2 1.26 1.16
95% 1.02 1.13 1.09 1.02 1.12 1.05 1.11
1% 0.0424 0.189 0.0982 0.0216 0.217 0.0796 0.156
99% 1.64 2.01 2.05 1.58 2.04 1.82 2.05
0.5% 2.04 4.84 8.63 2.04 4.9 5.3 4.97
99.5% 1.86 2.66 2.75 1.83 2.72 2.34 2.61

P2 5% 0.657 0.713 0.676 0.642 0.699 0.658 0.697
95% 0.686 0.827 0.831 0.705 0.806 0.8 0.775
1% 0.0293 0.0925 0.0252 0.034 0.0354 0.0348 0.102
99% 1.1 2.25 2.2 1.12 2.1 1.66 1.66
0.5% 1.31 1.88 1.48 1.31 1.71 1.46 1.95
99.5% 1.28 3.19 4.64 1.37 3.36 2.71 2.85

Table 6.7: Dα-values for the Student’s t copula under different volatility as-
sumptions, as well as the Student’s t c-vine
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quantiles pairwise and starting with the 5%/95% quantiles, table 6.3 shows that
the VaR estimates of the Gaussian copula are frequently rejected at the 0.05
level. A look at the values in table 6.2 shows a tendency to overestimate the
VaR at these quantiles. Tables 6.6 and 6.5 show that in terms of number of vi-
olations, the Student’s t copula fits better here. The Student’s t GJR-GARCH
appears to give the best estimates when both portfolios are considered. The
IHS GARCH gives reasonable results as well. This may suggest that asymme-
try should be taken into account in some way, but maybe that it should rather
be done in the GARCH equations than in the conditional distribution. Taking
a look at the Dα-values though, we see that the conditionally normal volatility
models give the best ES estimates, regardless of copula choice. This could in-
dicate that though the tails of the Student’s t and IHS distributions have the
right thickness at the 5%/95% quantiles, they decay too slowly.

Moving further into the tails at the 1%/99% and 0.5%/99.5% quantiles, we
see that the conditionally normal volatility models outperform the others. The
Kupiec test P-values and percentage violations suggest that in particular the
Student’s t copula with a conditionally normal GJR-GARCH volatility could
be appropriate. The Student’s t and IHS distributions appear useless this far
into the tails, almost consistently overestimating the risk at both ends of the
portfolio value distribution. The Dα-values further show that the extreme tails
of the marginal distributions are modeled better by the more quickly decaying
normal distribution. The discussion in section 6.1 indicated rather that the
heavier-tailed conditional distributions appeared to give a better fit. There,
however, we looked at the fit when the model was calibrated to the entire data
set. The situation appears to shift in favor of the normal distribution when the
model is calibrated many times on only the past 250 days of data.

The comparison of contour plots in section 6.3 suggested that when com-
paring simulated values from the vine to simulated values from the Student’s t
copula, those from the vine looked more realistic. Thus, we might have expected
the vine to provide better risk estimates than the Student’s t copula on the con-
ditionally Student’s t distributed residuals. Looking at the tables 6.5-6.7, we see
that this is not the case, the two models perform quite similarly. This suggests
that even if the vine captures more of the dependence structure, it might not be
dependence which is important for the risk associated with these two particular
portfolios.

51



Chapter 7

Conclusion

Several points are worth noting in conclusion concerning both the volatility of
individual forward rates and the dependence between them.

As for the volatility, the normal distribution seems like a good choice of
conditional distribution for sufficiently infrequent events. The tails of the nor-
mal distribution appear to decay at an appropriate rate when considering the
portfolio value distributions at the 99%/1% quantile and beyond. They do,
however, appear too heavy at the 95%/5% quantiles. To obtain a volatility
model suitable at all quantiles considered here, one might want a conditional
distribution with tails that can be lighter than those of the normal distribution
at the 95%/5% quantile, but which decay at a similar rate. The possibility to
account for skewness might also be desirable, though perhaps not critical.

Concerning the volatility model itself, the possibility to capture asymmetry
appeared favorable in some cases, but overall did not make too much of a dif-
ference. The volatility specifications tested here are only two simple choices out
of a large number of GARCH-type models suggested for financial data. Bao,
Lee & Saltoğlu (2004) [8] list a good number of such models as well as sug-
gestions for conditional distributions. Models that let the volatility depend on
the rate level have been reported to give good results for modeling the short
rate, and it could be interesting to see whether they could be applied with suc-
cess to forward rates over different time periods. For more on these models,
see Aas (2004b) [2] and the references therein. Finally, the models used here
are applied to the univariate time series of individual rates and thus do not
take into account possible covariation in volatility across rates. A multivariate
GARCH-type model could be applied to capture such effects. For a brief in-
troduction and references to further work on this, see Aas & Dimakos (2004) [3].

Turning to the dependence structure, the Student’s t copula seems like the
most sensible choice out of the suggestions considered here. As mentioned in
section 6.3, the Gaussian copula can be considered a special case of the Student’s
t copula as ν → ∞, that is, as the tail dependence disappears. It could have
been a reasonable choice in the case of insignificant tail dependence, as it is less
computationally demanding to estimate and simulate, but the results indicate
that the Student’s t copula does indeed give a better fit.
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The Student’s t c-vine could have been expected to perform better than it
does here, at least judging from the inspection of density plots in section 6.3.
This vine specification was only run on a single volatility model example due
to the computational effort involved, so further testing seems to be in order.
Other permutations of the variables could also be considered, or, for that mat-
ter, other copulas for the bivariate dependencies. As it appeared to perform
similarly to the Student’s t copula in the backtest here, the Student’s t copula
appears as yet the better choice due to significantly lower computational time
for estimation and simulation.

The Archimedean copulae used here did not perform well, but the way these
models were specified, they could not be expected to. It should not come as
a surprise that it is difficult to capture the dependence between eight variables
with a single scalar parameter. Specifying these multivariate copulae to allow
for different generators, as discussed in section 4.1.2, would be a natural exten-
sion to the approach here.

Last, it should be kept in mind that the tests here were restricted to two
portfolios, and one may wish to consider other combinations of instruments.
Furthermore, the tests were restricted to the one-day horizon; testing on longer
horizons would be desirable to obtain more general performance results.
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[49] Litterman, R. and Scheinkman, J. (1991). Common factors af-
fecting bond returns. Journal of fixed income 1(1), 54-61.

[50] Marshall, A. W. and Olkin, I. (1988). Families of multivariate
distributions. Journal of the American Statistical Association 83,
834-841.

[51] Mashal, R. and Zeevi, A. (2002). Beyond correlation: Extreme
co-movements between financial assets. Columbia University.

[52] Melchiori, M. R. (2006). Tools for sampling multivariate
Archimedean copulas. Universidad Nacional del Litoral.

[53] Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling,
W.T. (1988). Numerical recipes in C. Cambridge University Press.

[54] Ramirez, O. (2001). Autoregressive conditional heteroskedasticity
under error-term non-normality. Texas Tech. University.

[55] Rebonato, R. (2002). Modern pricing of interest-rate deriva-
tives: The LIBOR market model and beyond. Princeton Univer-
sity Press.

[56] Rebonato, R., Mahal, S., Joshi, M., Buchholz, L. and Nyholm,
K. (2005). Evolving yield curves in the real-world measures: A
semi-parametric approach. Journal of Risk 7 (3), 29-61.

[57] Rosenblatt, M. (1952). Remarks on a multivariate transformation.
The Annals of Mathematical Statistics 23 (3), 470-472.

[58] Ripley, B. D. (1996). Pattern recognition and neural networks.
Cambridge University Press.

[59] Morgan Guaranty Trust Company (1996). RiskMetrics technical
document, 4th ed.

57



[60] Savu, C. and Trede, M. (2004). Goodness-of-fit tests for paramet-
ric families of Archimedean copulas. University of Münster.

58



Appendix A

A.1 Price formulae for common fixed-income in-

struments

A.1.1 The FRA

The perhaps simplest fixed income derivative instrument is the forward rate
agreement (FRA). An FRA is an agreement between two parties at time t to
exchange an amount of money at time T + τ proportional to the difference
between a strike K, agreed upon at time t, and the interest rate R(T, T + τ)
that resets at time T for payment at time T + τ . The proportionality factor
is given by the notational principal NP times the accrual period τ . Thus the
payoff at time T + τ will be

Payoff(FRA)T+τ = NP [R(T, T + τ)−K]τ. (A.1)

Denote by f(t, T, T + τ) the time t forward rate applying between T and
T + τ . The payoff (A.1) can be expressed as

Payoff(FRA)T+τ = NP [f(T, T, T + τ)−K]τ.

Further, let P (t, T ) denote the time t price of a maturity T unit payoff zero-
coupon bond. An arbitrage argument shows (see e.g. Rebonato (2002) [55])
that the time t present value of the FRA is given by

PV(FRA)t = NP [f(t, T, T + τ)τ −K]P (t, T + τ). (A.2)

A.1.2 The cap

A cap is a series of call options on FRAs, with each option on an FRA known
as a caplet. The caplet payoff at time T + τ is thus

Payoff(Caplet)T+τ = NP [f(T, T, T + τ)−K]+τ. (A.3)

where [·]+ denotes max(·, 0). Black (1976) [14] showed that under the assump-
tion of lognormally distributed forward rates, an arbitrage argument gives the
present value of such a contract as

PV(Caplet)t = NP [f(t, T, T + τ)Φ(h1)−KΦ(h2)]P (t, T + τ)τ, (A.4)
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where

h1 =
log[f(t, T, T + τ)/K] + 1

2σ
2
Black(T − t)

σBlack

√
T − t

(A.5)

h2 =
log[f(t, T, T + τ)/K]− 1

2σ
2
Black(T − t)

σBlack

√
T − t

, (A.6)

where Φ is the standard normal distribution and σBlack is the Black volatility.
This is the formula known as Black ’76. The present value of the cap is simply
the sum of the present values of its caplets. The Black volatility is defined as
follows. Let σi be the instantaneous volatility of the forward rate resetting at
time Ti. The Black volatility is related to σi through

σ2
Black(Ti) =

1

Ti

∫ Ti

0

σ2
i (u)du. (A.7)

In a liquid cap market, standard practice is to calculate the Black volatility from
prices of traded caps by inverting Black’s formula. Here, however, we stick to
the historical interest rate data, and calculate the Black volatility from historical
volatilities of forward rates and application of (A.7).

A.1.3 The floor

A floor is a series of put options on FRAs, with each option known as a floorlet.
Thus, the payoff of a floorlet is

Payoff(Floorlet)T+τ = NP [K − f(T, T, T + τ)]+τ. (A.8)

Similarly as for caplets, the present value of the floorlet is

PV(Floorlet)t = NP [KΦ(−h2)− f(t, T, T + τ)Φ(−h1)]P (t, T + τ)τ (A.9)

with h1 and h2 defined as above. Again, the present value of the floor is the
sum of the present values of its floorlets.

A.1.4 The swap

A swap is an agreement between two parties to exchange the payments rep-
resented by interest on a notational principal, on equally spaced prespecified
dates. One side pays a fixed rate, the other a floating rate. No principal is
exchanged at the maturity of the contract. If the fixed rate is set at K and
there are a total of N periods, the annuity made up of the payments on the
fixed rate add up to

At = NP ·K
N−1∑

i=0

P (t, Ti + τ)τ, (A.10)

where Ti + τ = Ti+1.
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The payments on the floating rate, assuming the number of payments are
the same as on the fixed rate, become

FLt =
N∑

i=1

NPf(t, Ti, Ti + τ)τP (t, Ti + τ) (A.11)

= NP

N∑

i=1

[P (t, Ti)− P (t, Ti + τ)] (A.12)

= NP [P (t, T0)− P (t, TN )]. (A.13)

The value of the swap is then At − FLt to the receiver of the fixed rate, and
FLt −At to the receiver of the floating rate.

A.2 Parameter estimation for the volatility spec-

ifications

For both GARCH model specifications, in combination with each of the three
conditional distributions, the parameters are estimated by a multidimensional
optimization of a likelihood. To outline the general procedure, let the volatility
specification be given by

yt = x⊤t b+ ǫt

E(ǫt) = 0

Var(ǫt) = σ2
t

σ2
t = z⊤t θ (A.14)

For instance, the standard AR(1)-GARCH(1,1) model (3.2) - (3.5) would
have yt = rt, xt = (1, rt−1)

⊤, b = (b0, (b1 + 1))⊤, zt = (1, ǫ2t−1, σ
2
t−1)

⊤, and
θ = (α0, α1, β0)

⊤. Also, the conditional distribution employed may contain
additional parameters θ∗, i.e. θ∗ = {ν} for the Student’s t distribution and
θ∗ = {λ, δ} for the IHS distribution. Now, we want to maximize the likeli-
hood with respect to all the parameters simultaneously. Algorithm 1 returns
the log-likelihood LT (b, θ, θ∗;x,y) for given parameters b, θ and θ∗, and data
y = (y1, ..., yT )⊤, x = (x1, ..., xT )⊤. The density function f(θ, θ∗; ǫ, σ) is the
density for the conditional distribution being used.

The specification (A.14) requires starting values for ǫ0 and σ0. The value of
ǫ0 is set by including an extra data point (y0, x0) used only for this purpose,

while σ2
0 is set to the empirical variance V̂ar(ǫ) of the residuals ǫ = (ǫ1, ..., ǫT )⊤.

The log-likelihood functions of the three choices of conditional distribution
are listed in table A.1

So, the objective is to find the parameters that maximize the function
LT (b, θ, θ∗;x,y) given by algorithm 1, i.e.

(b, θ, θ∗) = arg max
b,θ,θ∗∈Θ

LT (b, θ, θ∗;x,y), (A.15)
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Algorithm 1 LT (b, θ, θ∗;x,y)

Require: Data yt, xt, t = 0, ..., T , parameters b, θ, θ∗

1: for t = 0, ..., T do

2: ǫt = yt − x⊤t b
3: end for

4: σ2
0 = V̂ar(ǫ)

5: for t = 1, ..., T do

6: σ2
t = z⊤t θ

7: end for

8: L =
∑T

t=1 log f(θ, θ∗; ǫt, σt)
9: return L, b, θ, θ∗

Distribution Log-likelihood L

Gaussian −T
2 log(2π)− 1

2

∑T
t=1

(
log(σ2

t ) +
ǫ2

t

σ2

t

)

Student’s t T ·
(
log Γ

(
ν+1
2

)
− log Γ

(
ν
2

)
− 1

2 log(π(ν − 2))
)

− 1
2

∑T
t=1

(
log(σ2

t ) + (ν + 1) log(1 +
ǫ2

t

σ2

t
(ν−2)

)
)

IHS T ·
(
− 1

2 log(2π) + log(s)− log(δ)
)

− 1
2

∑T
t=1

(
log(σ2

t )− log(R2 + 1)− (sinh−1(R)−λ)2

δ2

)

where R = ǫt

σts+µ , s =
√

1
2 (ω − 1)(ω cosh(2λ) + 1),

µ =
√
ω sinh(λ), and ω = exp(δ2)

.

Table A.1: Likelihood functions for the three choices of conditional distributions
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with Θ being the parameter space. The method used here is the amoeba method
from Press et al. (1988) [53], which is an implementation of the downhill simplex
algorithm. The downhill simplex is not necessarily the fastest method, but it is
easy to implement, robust, and requires only function evaluations, no derivatives
are needed. Positivity constraints for the parameters θ were imposed by iterating
over values θ̃i and setting θ = θ̃2i .

A.3 Parameter estimation for the copulae

Three of the copulae implemented here require a univariate numerical maxi-
mization of a likelihood to estimate a parameter. These are the Student’s t
copula, for which the degrees of freedom ν must be estimated in this fashion,
and the Clayton and Frank copulae, for which the single parameter δ must be
estimated. Estimation of the correlation matrix of the Gaussian copula and the
scale matrix of the Student’s t copula do not require such a procedure, as they
can be estimated through the methods described in section 4.3.

A.3.1 The likelihood for the degrees of freedom for the

Student’s t copula

From (4.11) and (4.29) we see that the maximization problem for the Student’s
t copula becomes

ν̂ = arg max
ν∈(2,∞]

[
T∑

t=1

log c(ut; ν, R̂)

]
(A.16)

where the likelihood
∑T

t=1 log c(ut; ν, R̂) is given by

T∑

t=1

log c(ut; ν, R̂) =

T ·
(

log Γ

(
ν + 1

2

)
+ (n− 1) log Γ

(ν
2

)
− 1

2
log |R| − n log Γ

(
ν + 1

2

))

−
T∑

t=1

[
ν + n

2
log(1 + x⊤

t R
−1xt) +

ν + 1

2

n∑

i=1

log

(
1 +

x2
ti

ν

)]
,

where again xt = (t−1
ν (ut1), ..., t

−1
ν (utn)), and the uti are the result of apply-

ing the empirical marginal transformation to the data.

The above maximization is quite computationally demanding. The matrix
inversion is one thing, but that procedure only has to be performed once, before
the maximization, as the scale matrix R is held fixed. But the parameter ν
appears in the inversion used to obtain the vectors xt, so every evaluation of the
likelihood requires inverting every point in the data set used. In our backtesting
example with n = 8 and T = 250, that means 8× 250 = 2000 inversions of the
Student’s t distribution in every evaluation of the likelihood. The computational
time would thus depend heavily on the time necessary to invert the Student’s t
distribution. The implementation here uses the stdtri method from the goose
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1 statistical library. Also, the methods ludcmp and lubksb from Press et al.
(1988) [53] are used to find the determinant of and invert the scale matrix R.

A.3.2 The likelihood for δ for the Clayton copula

Estimating the single parameter δ for the Clayton copula is quite straightfor-
ward, as its density has the simple closed-form expression (4.16). The maxi-
mization problem is given by

δ̂ = arg max
δ>0

[
T∑

t=1

log c(ut; δ)

]

where the likelihood
∑T

t=1 log c(ut; δ) can be expressed as

T∑

t=1

log c(ut; δ) =

T ·
(
n log(δ) + log Γ

(
1

δ
+ n

)
− log Γ

(
1

δ

))

−
T∑

t=1

[
(δ + 1)

n∑

i=1

log(ui) +

(
1

δ
+ 1

)
log

(
n∑

i=1

u−δ
i − n− 1

)]
.

The likelihood is thus simple to implement, and its evaluation is relatively
cheap, computationally speaking.

A.3.3 The likelihood for δ for the Frank copula

Estimating the parameter δ for the Frank copula is also a case of a simple one-
dimensional maximization of a likelihood, but the density is somewhat more
complicated to express. As above, we want to find

δ̂ = arg max
δ>0

[
T∑

t=1

log c(ut; δ)

]
, (A.17)

where a positive value of δ enables the use of a simulation algorithm of the
type outlined in 4.5.2. The density of the multivariate Frank copula is easiest to
express through (4.13) and the following expressions, as given in Savu & Trede
(2004) [60]:

1GNU object-oriented statistics environment: www.gnu.org/software/goose
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φ(t) = log

(
exp(−δt)− 1

exp(−δ)− 1

)

φ′(t) =
δ exp(−δt)

exp(−δt)− 1

φ−1(n)(x) =
(exp(δ)− 1) exp(δ + x)

(exp(δ)− exp(δ + x)− 1)nδ

×
n−1∑

k=1

Bn−1,k exp((n− 1− k)(x+ δ))(exp(δ)− 1)k−1

where
Bi,j = (i− j − 1)Bi−1,j−1 + jBi−1,j , Bi1 = Bii = 1.

Algorithm 2 shows the pseudocode for evaluating the density of the Frank
copula according to (4.13) and the expressions above.

Algorithm 2 Evaluate Frank copula density

Require: Data u1, ..., un, parameter δ
1: B ← n× n empty matrix
2: for i = 1, ..., n− 1 do

3: Bi,1 ← 1 Bi,i ← 1
4: end for

5: for i = 3, ..., n− 1 do

6: for j = 2, ..., i− 1 do

Bi,j = (i− j − 1)Bi−1,j−1 + jBi−1,j

7: end for

8: end for

9: x←∑n
i=1 φ(ui)

10: y ←∏n
i=1 φ

′(ui)
11: return φ−1(n)(x) · y

The likelihood is then evaluated directly by (A.17) with algorithm 2 called
for t = 1, ..., T .

A.3.4 Maximization of the likelihoods

For all three likelihoods above, the implementation here uses the bracketing
method mnbrak and Brent’s method brent from Press et al (1988) [53] to
bracket and minimize the negative likelihood. Brent’s method combines a sec-
tion search with inverse parabolic interpolation, and does not require derivatives.
The method appears robust as far as the calculations here are concerned. To re-
duce the number of iterations, a routine that uses derivative information might
be considered, though this has not been tested here. As for the constraints on
the parameter values, for the Frank and Clayton copulae, these were enforced
by iterating over values δ̃ and setting δ = δ̃2. For the Student’s t copula, the
somewhat unelegant method of setting the negative likelihood to return a high
value in the case of a constraint violation was employed. While perhaps not the
optimal method, it appeared to work satisfactorily here.
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A.4 Calibration and simulation for the Student’s

t c-vine

The procedure of calibrating and simulating from the Student’s t c-vine is some-
what complex, this section will go through some of the details 2.

For the procedure outlined below, we will need the univariate and bivariate
Student’s t distribution conditional on some set of variables. For convenience,
this conditional distribution is shown first here. Consider a vector of Student’s
t distributed variables X = (X1, X2)

⊤, where X ∈ ℜn, X1 ∈ ℜi, X2 ∈ ℜn−i.
The distribution of X is

f(x) =
Γ((ν + n)/2)

Γ(ν/2)(νπ)n/2|R|1/2

(
1 +

1

ν
(x− µ)⊤R−1(x− µ)

)−(ν+n)/2

. (A.18)

Now, we want an expression for the distribution of X2|X1 = x1. First, divide
the scale matrix and mean of X into components corresponding to X1 and X2:

R =

[
Ri×i

11 R
i×(n−i)
12

R
(n−i)×i
21 R

(n−i)×(n−i)
22

]
µ =

[
µi×1

1

µ
(n−i)×1
2

]
.

Set

µ2|1 = µ2 + S⊤
12S

−1
11 (x1 − µ1)

R2|1 =
ν + (x1 − µ1)

⊤S−1
11 (x1 − µ1)

ν + i
(S22 − S⊤

12S
−1
11 S12)

ν2|1 = ν + i

and insert into the density expression (A.18) to obtain the density of X2|X1.
For univariate conditional distributions, R·|··· becomes a scalar parameter. The
bivariate case is needed for the estimation of the conditional copulae Cij|De

, in
which case the matrix Rij|De

should be scaled by the square roots of its diagonal
entries.

Turning to the construction of the vine, the first step is to estimate the
necessary unconditional parameters. It turns out that for the n-dimensional
c-vine, we need to estimate for each i ∈ 2, ..., n copula parameters for the sets
of variables {1, i}, ..., {1, ..., i− 1, i}. Denoting the parameter estimates for a set
of variables {1, ..., j, i} by Θ1···ji, we thus need to estimate the unconditional
parameters as listed in table A.2.

Since the copula used for the vine here is the Student’s t copula, each set of
copula parameters will be given by Θ1···ji = {R1···ji, ν1···ji} where as usual R···
is the scale matrix and ν··· denotes the degrees of freedom.

2The calibration and simulation methodology used is an adaption of the code in Berg &
Bakken’s Copulae R library.
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Θ12 Θ13 · · · Θ1n

Θ123 · · · Θ12n

. . .
...
Θ12···(n−1)n

Table A.2: Unconditional parameter estimates for the c-vine

Now, we want variables v1, ..., vn that are uniform on (0, 1)n and dependent
according to the vine specification. Start by drawing independent uniforms
u1, ..., un on (0, 1)n. These are the realized values of the marginal distribu-
tions F1, ..., Fn. We have already estimated the bivariate copulae C12, ..., C1n,
but not the conditional bivariate copulae Cij|De

. From the estimated copula
parameters Θ···, we obtain the Cij|De

by conditioning on the estimated vine
distributed variables vi, i ∈ De. Finally, from the bivariate copulae Cij and the
conditional bivariate copulae Cij|De

, we obtain the univariate conditional dis-
tributions Fi|··· by conditioning on realized values u1, ..., un from the marginal
distributions F1, ..., Fn.

Recall the figure showing the c-vine on four variables from chapter 5, shown
here again in figure A.1:

34|12

2

1

4

3

12

 13

1424|1 23|1

Figure A.1: The c-vine on four variables

The following procedure generates variates vi with dependence described by
the Student’s t c-vine.

Calculate v1:
This is easy:

1. Set v1 = u1.
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1

12

2

Figure A.2: Calculating v2

Calculate v2:
Still quite simple. v1 and v2 have a bivariate dependence according to the copula
C12, with parameters Θ12 = {ν12, R12}, see figure A.2. Hence,

1. From Θ12, condition on u1 to calculate Θ2|1, the parameters of the condi-
tional t-distribution t2|1 = t(x2|x1 = t−1

ν12
(u1)). This gives the conditional

distribution F2|1(x) = t2|1(t
−1
ν12

(x)) for the vine-distributed variable x.

2. Set v2 = F−1
2|1 (u2) = tν12

(t2|1(u2)).

2.

1

3

13

1

2 3

1312

23|1

3.

23|1
32

1.

Figure A.3: Calculating v3
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Calculate v3:
For v3, we see where the vine strucure enters. v3 is dependent on v1 through
the copula C13, and is also dependent on v2 conditional on v1, through the
conditional copula C23|1. Figure A.3 illustrates the steps below.

1. From Θ13, condition on u1 to calculate Θ3|1, the parameters of the condi-
tional t-distribution t3|1 = t(x3|x1 = t−1

ν13
(u1)).

Let F3|1(x) = t3|1(t
−1
ν13

(x)).

2. From Θ123, condition on v1 to calculate Θ23|1, the parameters of the con-
ditional t-distribution t23|1 = t(x2, x3|x1 = t−1

ν123
(v1)). These are the para-

meters of the conditional bivariate copula C23|1. Note that (although v1
and u1 are the same in this case) the dependence between variables 2 and
3 is defined as conditional on the vine-distributed variable v1.

3. From Θ23|1, condition on u2 to calculate Θ3|12, the parameters of the
conditional t-distribution t3|12 = t(x3|x1 = t−1

ν123
(v1), x2 = t−1

ν23|1
(u2)).

Let F3|12(x) = t3|12(t
−1
ν23|1

(x)).

4. Set

v3 = F−1
3|1 (F−1

3|12(u3))

= tν13
(t−1

3|1(tν23|1
(t3|12(u3))))

We will include the steps for one more variable.

2.

2 4
24|1

12

2

1

4

24|1

14

5.4.

34|12
43

3

34|12

24|123|1

12

4

14

4

1

3.1.

Figure A.4: Calculating v4
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Calculate v4:
The calculations start to get a bit involved now. See figure A.4 for an illustration
of the steps below.

1. From Θ14, condition on u1 to calculate Θ4|1, the parameters of the condi-
tional t-distribution t4|1 = t(x4|x1 = t−1

ν14
(u1)).

Let F4|1(x) = t4|1(t
−1
ν14

(x)).

2. From Θ124, condition on v1 to calculate Θ24|1, the parameters of the con-
ditional t-distribution t24|1 = t(x2, x4|x1 = t−1

ν124
(v1)). These are the para-

meters of the conditional bivariate copula C24|1.

3. From Θ24|1, condition on u2 to calculate Θ4|12, the parameters of the
conditional t-distribution t4|12 = t(x4|x1 = t−1

ν124
(v1), x2 = t−1

ν24|1
(u2)).

Let F4|12(x) = t4|12(t
−1
ν24|1

(x)).

4. From Θ1234, condition on v1, v2 to calculate Θ34|12, the parameters of the
conditional t-distribution t34|12 = t(x3, x4|x1 = t−1

ν1234
(v1), x2 = t−1

ν1234
(v2)).

These are the parameters of the conditional bivariate copula C34|12.

5. From Θ34|12, condition on u3 to calculate Θ4|123, the parameters of the con-
ditional t-distribution t4|123 = t(x4|x1 = t−1

ν1234
(v1), x2 = t−1

ν1234
(v2), x3 =

t−1
ν34|12

(u3))

Let F4|123(x) = t4|123(t
−1
ν34|12

(x)).

6. Set

v4 = F−1
4|1 (F−1

4|12(F
−1
4|123(x)))

= tν14
(t−1

4|1(tν24|1
(t−1

4|12(tν34|12
(t−1

4|123(u4)))))).

(A.19)
The procedure generalizes to higher dimensions, for this illustration the first

four variables will suffice.
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