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Abstract

Through a study of cored wells from the Statfjord Formation in the Tampen Area, we
derive a spatially coupled classification model for facies units. We consider a Bayesian
framework for the problem. A likelihood model is defined from the log-response of the
formation, where response from neighbour observations are considered. A first order
Markov chain prior model is estimated from the cores. From the posterior pdf, the
marginal maximum posterior solution can be calculated and simulations can be gen-
erated. Since the posterior pdf can be factorized, it can be calculated by a recursive
Forward-Backward algorithm for hidden Markov models. The classification model is
complex, and if the model assumptions does not coincides with the underlying model,
the classification might give poor results due to the large number of estimated model
parameters. The results from the classification of a blind well were not as good as we
expected, but gave good results for the small classes, compared to a classification model
without spatial coupling.
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1 Introduction

In this study we derive a spatially coupled model for classification of facies units in wells
based on real well log data from the Statfjord Formation in the Tampen Area. Both
well logs and core interpretation is used, in which the latter is considered to be the
truth. We look at two training wells, A and B, and one test well, C. The data from the
two training wells is used in the derivation of the classification model, and the model
is further evaluated on the test well in addition to the training wells. The cores from
the wells considered are classified into a hierarchical system of classes of facies units
defined by the Statfjord Formation. In this study we derive classification models for
both classification into four classes of facies associations, which represents continental
to nearshore deposits, and six classes of lithofacies, which is a finer classification based
on grain size.

We have chosen a Bayesian framework for the inverse problem. The log-response from
the formation of the wells considered in the likelihood model, and the spatial coupling
in the formation in the Markov chain prior model. The model parameters are estimated
based on a statistical approach, and we consider two methods of estimating the likelihood
parameters. The first method is based on a visual study of the logs, while the second is a
least-squares minimization. From Bayes rule, the prior and likelihood model gives us the
posterior pdf. Given the observed log data, the posterior pdf gives the probabilities of all
possible combinations of facies units along the profile. In order to compute the posterior
pdf, we consider the exact and efficient Forward-Backward algorithm for hidden Markov
models given in Chib (1996) and Scott (2002), where we extend the algorithm to include
neighbours in the likelihood model. From the calculated posterior pdf the marginal
maximum posterior solution can be calculated and simulated profiles can be generated.

An extensive search for similar articles has been done, and we are surprised that no
statistical study of well logs for use in an inversion problem was found.

In Avseth and Mukerji (2002) seismic lithofacies are classified from well logs using sta-
tistical rock physics. Three different classification methods are considered, Mahalanobis
discriminant analysis, a pdf classification and a neural network classification. All clas-
sifications are based on a study of gammaray logs and seismic p-wave velocity of the
seismic lithofacies. Prior to the classification, the data have been filtered in order to re-
move noise. Inversion is not considered, and therefore the spatial coupling of the facies
and the spatial response from the formation is not utilized.
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In Ali and Lall (1998) a methodology for simulation of core profiles using a continuous
homogeneous semi-Markov model is presented. The strategy is developed by using a
transition intensity matrix to determine the transitions between states, and bootstrap-
ping to determine the layer thickness corresponding to the new state. No conditioning
upon well logs is considered, and neither is an inversion problem. The semi-Markov
model could have been used as a prior model for the inversion problem in this study, if
we formulate the prior in the form of a one-step transition probability matrix. However,
since the layers of the wells are thick, this demands extremely large state spaces and
therefore computing resources. In our study, we will only consider a simple first order
Markov chain as prior model, since the focus will be on deriving a likelihood model
adapted to the well log data.

The core interpretation and the well logs are presented in section 2, and the derivation
of the stochastic model and computational algorithm are given in section 3. Further,
the parameter estimation is given in section 4, followed by some information about
implementation together with the test criteria in section 5. In section 6 the results with
discussions are presented, and at last, closing remarks are given in section 7.

2 Description of the well log data

The well log data considered in this study are from the Statfjord Formation in the
Tampen area. The three wells, A, B and C, are chosen because they are located relatively
close to each other, and therefore should have some of the same qualities. The wells are
cored, which means that they are drilled with a hollow, cylindrical drill, in such way
that the cores can be removed from the well. Further, the cores are analyzed and the
facies units are classified.

After the cores are removed from the wells, logging tools are lowered down to the bottom
of the wells fastened on wires. The tools are raised at a constant speed to the top of
the wells, while different information of the formation is recorded at regular intervals.
Log data is normally recorded at every half feet, but after an interpolation the data is
represented at every fifth centimeters. The extra data is a disadvantage for us, since
redundant data make our computations unnecessary complicated. This is solved by only
using data at every third realization, which means at every fifteenth centimeters. The
log data and the core interpretation from the three wells are given in Figure 1, 2 and 3.
The core interpretation is missing in some locations, which are hatched in the figures.
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Figure 1: The first training well, A. From left is the gammaray log, the density log and
core interpretations of facies associations and lithofacies respectively. The gray scale levels
for the classes are given in Figure 4 and 6.
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Figure 2: The second training well, B. From left is the gammaray log, the density log
and core interpretations of facies associations and lithofacies respectively. The gray scale
levels for the classes are given in Figure 4 and 6. In the locations that are hatched, the
interpretations of lithofacies are missing.
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Figure 3: The test well, C. From left is the gammaray log, the density log and core
interpretations of facies associations and lithofacies respectively. The gray scale levels for
the classes are given in Figure 4 and 6. In the locations that are hatched, the interpretations
of lithofacies are missing.
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Figure 4: The descriptions, classes and gray scale levels of the facies associations, πfa.

The locations for the data points are ordered from the top of the well and down. The
three wells have different length and depth, but for notational convenience we denote
the locations by t = 1, 2, ..., n.

2.1 Core interpretation and classification

The formation of the wells can be described by the Statfjord Formation, which partition
the formation in three hierarchic levels. First, the formation can be partitioned into 8
zones called picks, which are numbered from the bottom to the top of the formation.
The picks can be separated into two super groups, pick 1-5 and pick 6-8, where the picks
in each of the groups have some of the same qualities. We will consider pick 2-4 in this
study.

Each of the picks can be partitioned into layers of facies associations at random order.
There are 10 different facies associations, and not all of them occur in every pick. The
facies associations describe the continental to nearshore deposits. The facies associations
can be grouped into a two-, three- or four-class system, and in this study we will consider
the four-class system. Figure 4 shows the descriptions of the facies associations, πfa,
where the gray scale levels correspond to the four classes denoted by πfa

1 , ..., πfa
4 . Figure

5 shows the proportions of the classes in the three wells.

The facies associations can again be partitioned into layers of lithofacies. The 21 different
types of lithofacies describes structure and contents of different geological aspects as
sand, mud, clay, heterolith and others, and are the finest classifications of the well. The



2.2 Well logs 7

1 2 3 4
0

0.25

0.5

0.75

1
Well A

1 2 3 4
0

0.25

0.5

0.75

1
Well B

1 2 3 4
0

0.25

0.5

0.75

1
Well C

Figure 5: The proportion of the classes of facies associations, πfa, in the three wells.

lithofacies can be grouped into either two or six groups, and in this study we will consider
the six groups denoted by πlf

1 , ..., πlf
6 , which partition the lithofacies according to their

grain size. The descriptions and corresponding gray scale levels we can see in Figure 6,
and the proportion of the classes in the three wells in Figure 7.

In this study we consider the classification into both facies associations and lithofacies.
The cores, which we denote by x = {x1, x2, ..., xn}, take values from both πfa and πlf .

2.2 Well logs

We consider two different logs recorded in the three wells, which is the gammaray log,
lgr, and the density log, ld.

The gammaray log, lgr, is a passive log. The logging tool for the gammaray log consists
of one receiver that measures the natural radioactivity of the formation. The response
is a function of the concentration per weight of the radioactive mineral and the density
of the rock.

The density log, ld, on the other hand, is an active log. The logging tool for the density
log consists of one source and two detectors. The source emits gamma rays and the
density of the formation is measured by the attenuation of the gamma rays in the
detectors. The gamma rays collide with electrons in the formation, which make them
loose energy and change direction. The intensity that is measured in the detectors
represents the electron density of the formation, which is correlated with the density of
the formation.

In order to see how the response from the three wells behave, the density log versus
the gammaray log is plotted in Figure 8. As we can see, the range of the response
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Figure 6: The descriptions, classes and gray scale levels of the lithofacies, πlf .
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Figure 7: The proportion of the classes of lithofacies, πlf , in the three wells.
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Figure 8: The gamma ray log, lgr, versus the density log, ld, for the three wells.
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Figure 9: The gamma ray log, lgr, versus the density log, ld, for the three wells with
standardized data.

varies between the wells, and especially for the gammaray log in the test well, C. If we
disregard the few outliers at the right in the plot of well C, we notice that the response
from the gammaray log lies in the interval [20, 80], which is narrow compared to the
interval [20, 120] for well A and B.

If we want to define a classification model for well C, based on well A and B, the log
data from all wells need to have similar levels of response. Since the range is different in
the wells, the log data need to be standardized. We give the data mean 0 and variance 1.
Figure 9 shows the standardized data, and as we can see, the range is now more similar
in the three wells.

In order to see how the response from the different classes in the formation behave, the
realizations in the plots are depicted by symbols, as we can see from Figure 10 and
11. In Figure 10 the symbols separate the realizations into facies associations, πfa, and
in Figure 11 into lithofacies, πlf . If all realizations from each class are gathered into
separated clusters, the classification would be easy. Unfortunately, the data are more
mixed, because of variance and possible shoulder effects from neighbour observations.
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Figure 10: The gamma ray log, lgr, versus the density log, ld, for the three wells with
standardized data classified into facies associations. The dots (·) are class πfa
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Figure 11: The gamma ray log, lgr, versus the density log, ld, for the three wells with
standardized data, classified into lithofacies. The dots (·) are class πlf

1 , the circles (◦) are
class πlf

2 , the plus signs (+) are class πlf
3 , the triangles (/) are class πlf

4 , the diamonds (¦)
are class πlf

5 and the crosses (×) are class πlf
6 .

In Figure 10 we can see that the dots (·) and the plus signs (+) are clustering separately,
which indicates that the probability of misclassifying locations from class πfa

1 as class
πfa

3 and vice versa is small. The same thing we can see for the circles (◦) and crosses
(×), class πlf

2 and class πlf
6 , in Figure 11.

Apart from this, the classes of both facies associations and lithofacies are relatively mixed
into each other, which means that we are not able to classify the wells from these plots
alone, we will need a spatial classification model.
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3 Stochastic models and computational algorithm

In this section we derive a general Bayesian model for an unknown core profile, x =
(x1, x2..., xn), and corresponding log data, d = (d1, d2..., dn), followed by definition of an
efficient algorithm for calculating the posterior pdf. Further, a Bayesian model adapted
to the data from the Statfjord Formation at the Tampen Area is derived. Finally, as a
comparison, a location wise model is defined.

Given the observed log data, d = (d1, d2..., dn), we want to classify the corresponding
core profile. From a Bayesian setting, the unknown core profile, x = (x1, x2..., xn), has a
prior pdf, p(x), which is based on the assumptions we make for the model. The likelihood
function, p(d|x), gives the probabilities of the log data, given all possible combinations
of classes along the profile. The posterior pdf, p(x|d), gives the probability of all possible
combinations of classes along the profile given d, and from Bayes rule we have

p(x|d) =
p(d|x)p(x)

p(d)
,

where p(d) is a constant.

3.1 Likelihood model

If the observed log data depends on the unknown profile as we can see from Figure 12,
we can express the log data at location t as

dt = g(xt) + εt (1)

where g(·) is some known function and εt is the error at location t. As mentioned in the
previous section, the likelihood function gives the probability of the log data given all
possible combinations of classes along the profile. We assume that the error in expression
(1) is independent, identical distributed as

εt ∼ N (0, σ2),

thus, only white noise is considered. This gives the distribution for the likelihood function

p(d|x) ∼ Nn(g(x), σ2I),
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Figure 12: The graph illustrates the relation between the locations of the profile, x1, ..., xn,
and the observed log data, d1, ..., dn.

where the mean is a vector, g(x) = (g(x1), g(x2), ..., g(xn))T , and I is the identity matrix
of dimension n× n. This again gives

p(d|x) = (2π)−
n
2 σ−nexp

{
− 1

2σ

n∑

t=1

[dt − g(xt)]2
}

,

which can be written in the form

p(d|x) =
n∏

t=1

p(dt|xt), (2)

where p(dt|xt) ∼ N (g(xt), σ2).

3.2 Prior model

In this section we first define a Markov chain, and then introduce the Markov chain prior
model.

Markov chains

We look at a sequence of random variables, x = (x1, x2..., xn), where each variable,
xt, take values from a finite set of classes, Ψ = {ψ1, ψ2, ..., ψm}. This is a stochastic
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process where the index t denotes the location at which xt occurs. A good reference for
stochastic processes is Ross (2003).

The stochastic process is said to be a Markov chain if it fulfils the following condition

p(xt|x1, x2, ..., xt−1) = p(xt|xt−1) for t = 2, 3, ..., n. (3)

In words, the conditional distribution of xt given x1, x2..., xt−1, is conditionally indepen-
dent of x1, x2..., xt−2, given xt−1. This is called the Markov property, and is illustrated
in Figure 12.

We define the probabilities for making a transition from class ψi to class ψj for all
ψi, ψj ∈ Ψ, that is

q(j|i) = p(xt = ψj |xt−1 = ψi).

The probabilities q(j|i) are called one-step transition probabilities, and since the number
of classes is finite, they define the one-step transition probability matrix,

Q =




q(1|1) q(2|1) · · · q(m|1)
q(1|2) q(2|2) · · · q(m|2)

...
...

. . .
...

q(1|m) q(2|m) · · · q(m|m)




, (4)

where the rows give the class at location t− 1, and the columns the class at location t.
Since the process must make a transition into some class, we have that

m∑

j=1

q(j|i) = 1.

The transition probabilities are independent of t, that is

p(xt|xt−1) = p(xt+u|xt+u−1) for t = 2, 3, ..., n,

for arbitrary u ∈ N+. This means that the conditional probability of xt given xt−1 is
the same for every t. A Markov chain with this property is said to be homogeneous.

The initial distribution of a Markov chain is the probability at location t = 1, p(x1).
The probability distribution for a homogeneous Markov chain is fully described by the
initial distribution and the transition probability matrix. The probabilities at location
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t can be calculated by
p(xt) = p(x1)Qt−1,

for t = 2, 3, ..., n. In words, the distribution at location t is the product of the initial
distribution and the transition probability matrix powered to t− 1.

The joint distribution for the Markov chain is

p(x) = p(x1, x2, ..., xn)
= p(xn|x1, ..., xn−1)p(xn−1|x1, ..., xn−2) · · · p(x2|x1)p(x1)
= p(xn|xn−1)p(xn−1|xn−2) · · · p(x2|x1)p(x1)
=

∏n
t=1 p(xt|xt−1),

where p(x1|x0) = p(x1) is the initial distribution, and the transition probabilities p(xt|xt−1)
for t = 2, 3, ..., n are given by the transition probability matrix, Q, in expression (4).

We define the ν-step transition probabilities

qν(j|i) = p(xt+ν = ψj |xt = ψi),

which is the probability that a process at location t + ν is class ψj , when location t is
class ψi, for all ψi, ψj ∈ Ψ.

Class ψj is said to be accessible from class ψi if qν(j|i) > 0 for some ν ∈ N+, which means
that it is possible to reach class ψj from class ψi. Two classes ψi and ψj that are accessible
to each other are said to communicate. A Markov chain, x = (x1, x2..., xn) ∈ Ψn, with
transition probability matrix Q, is irreducible if all the classes in Ψ communicate with
each other.

Class ψi is said to have period d if qν(i|i) = 0 whenever ν is not divisible by d, and d is
the largest integer with this property. A class with period 1 is said to be aperiodic.

For an irreducible and aperiodic Markov chain, x = (x1, x2, ..., xn) ∈ Ψn, with transition
probability matrix, Q, it can be shown that there exists a unique stationary distribution,
ps(x). The stationary distribution satisfies

ps(xt = ψj) =
m∑

i=1

p(xt = ψj |xt−1 = ψi)ps(xt−1 = ψi),
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and
m∑

j=1

ps(xt = ψj) = 1,

for t = 2, 3, ..., n. If the Markov chain reaches equilibrium, the marginal distribution for
all t will converge to the stationary distribution, regardless of what the initial distribution
is. That is ps(x = ψj) = limν→∞p(xt+ν = ψj |xt = ψi) for all ψi, ψj ∈ Ψ.

If we let the initial distribution be the stationary distribution, we make sure that the
Markov chain will always stay in the stationary distribution. The joint distribution for
the Markov chain is fully described by the transition probability matrix, Q, from which
the stationary distribution, ps(x), can be determined.

Markov chain prior model

We want to classify the unknown profile, x = (x1, x2, ..., xn), where xt ∈ Ψ = {ψ1, ψ2, ..., ψm}
for every t. From Figure 12 we notice that xt is dependent of xt+1, xt+2, ..., xn. We there-
fore need to define the Markov property in expression (3) in the opposite direction, and
we have that

p(xt|xt+1, ..., xn) =
p(xt, ..., xn)

p(xt+1, ..., xn)

=
p(xn|xn−1)p(xn−1|xn−2) · · · p(xt+1|xt)p(xt)

p(xn|xn−1)p(xn−1|xn−2) · · · p(xt+2|xt+1)p(xt+1)

=
p(xt+1|xt)p(xt)

p(xt+1)
= p(xt|xt+1).

(5)

We now consider the unknown profile a stationary Markov chain defined upwards, given
by

p(x) = p(x1, x2, ..., xn)
= p(x1|x2, ..., xn)p(x2|x3, ..., xn) · · · p(xn−1|xn)p(xn)
= p(x1|x2)p(x2|x3) · · · p(xn−1|xn)p(xn)
=

∏n
t=1 p(xt|xt+1),

(6)

where we have chosen the stationary distribution as initial distribution, p(xn|xn+1) =
ps(xn). The transition probabilities p(xt|xt+1) can be calculated from the transition



16 3 STOCHASTIC MODELS AND COMPUTATIONAL ALGORITHM

probability matrix Q in expression (4), that is

p(xt|xt+1) = p(xt+1|xt)
ps(xt)

ps(xt+1)
,

where p(xt+1|xt) are the transition probabilities from Q, and ps(xt) and ps(xt+1) are
given by the stationary distribution.

3.3 Posterior model

The likelihood function in expression (2) and the prior pdf in expression (6) give the
posterior pdf

p(x|d) = const× p(d|x)p(x)
= const×∏n

t=1 p(dt|xt)p(xt|xt+1),
(7)

where const is a normalizing constant and p(xn|xn+1) = ps(xn).

The model in this study is a hidden Markov model (HMM). A HMM is a process where
the behavior of the observed data, d, can be expressed conditionally upon an unob-
served, hidden Markov chain, x = (x1, x2, ..., xn). This phenomenon we capture in the
likelihood function in expression (2). The Markov chain in the HMM has a station-
ary transition probability matrix and the initial distribution is often taken to be the
stationary distribution for the chain, as for the prior pdf in expression (6).

The posterior pdf of the HMM given in expression (7) is a nonhomogeneous Markov
chain, and give the probabilities of all possible outcomes of the unobserved profile, x =
(x1, ..., xn). The normalizing constant is therefore very difficult to determine since it
requires a sum over all possible combinations of classes along the profile. Since the
posterior pdf of the HMM is factorized, it can be calculated by the recursive Forward-
Backward algorithm for HMM (Chib, 1996; Scott, 2002). Given the observed data,
d = (d1, d2, ..., dn), the algorithm computes the posterior pdf, p(x|d), and its marginal
posterior pdfs, p(xt|d), for all t.

3.4 Forward-Backward algorithm

The Forward-Backward recursion operates as follows. As the forward recursion moves
upward through the profile it calculates the pdf at each step based on the data up to the
actual location and the pdf in the most recently step. The backward recursion goes down
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through the profile again, updating the pdf when data from above have been collected.

Forward recursion

The forward algorithm calculates the forward pdf recursively step by step, which means
that in each step it calculates the joint pdf for xt+1 and xt, conditioned upon the data
in the locations n, ..., t. The joint pdf can be partitioned like this

p(xt+1, xt|dn, ..., dt) = const× p(dt|xt+1, xt, dn, ..., dt+1)p(xt+1, xt|dn, ..., dt+1)
= const× p(dt|xt)p(xt+1, xt|dn, ..., dt+1)
= const× p(dt|xt)p(xt|xt+1, dn, ..., dt+1)p(xt+1|dn, ...dt+1)
= const× p(dt|xt)p(xt|xt+1)p(xt+1|dn, ...dt+1).

The probability p(dt|xt) is the likelihood of the data dt given xt, and p(xt|xt+1) is
the transition probability from the prior Markov chain. Further, p(xt|dn, ..., dt) is the
marginal forward pdf at location t. The transition from line 1 to line 2 is valid because
dt is conditionally independent of xt+1 and dn, ..., dt+1, given xt. The transition from
line 3 to 4 is also valid because xt is conditionally independent of dn, ..., dt+1, given xt+1.
The normalizing constant is given by

const =


∑

xt+1

∑
xt

p(xt+1, xt|dn, ..., dt)



−1

.

The marginal forward probabilities are calculated from

p(xt|dn, ..., dt) =
∑
xt+1

p(xt+1, xt|dn, ..., dt),

with the initial distribution

p(xn|dn) = const× ps(xn)p(dn|xn),

where const is calculated from
∑

xn
p(xn|dn) = 1.

The forward pdf for the profile is a Markov chain because the distribution of xt condi-
tioned upon (xn, ..., xt+1) and (dn, ..., dt) is independent of (xn, ..., xt+2) and (dn, ..., dt+1).
The Markov chain is non-homogeneous because the transition probabilities are not con-
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stant as t change.

Backward recursion

The backward recursion calculates the joint backward pdf for xt−1 and xt given the
entire set of observed data (d1, d2, ..., dn). The joint pdf for xt−1 and xt is given by

p(xt−1, xt|d1, ..., dn) = p(xt|xt−1, d1, ..., dn)p(xt−1|d1, ..., dn)
= p(xt|xt−1, dt, ..., dn)p(xt−1|d1, ..., dn)
= p(xt|xt−1, dt−1, ..., dn)p(xt−1|d1, ..., dn)

=
p(xt, xt−1|dt−1, ..., dn)

p(xt−1|dt−1, ..., dn)
p(xt−1|d1, ..., dn)

=
p(xt, xt−1|dn, ..., dt−1)

p(xt−1|dn, ..., dt−1)
p(xt−1|d1, ..., dn),

(8)

where p(xt, xt−1|dn, ..., dt−1) and p(xt−1|dn, ..., dt−1) are the joint and marginal forward
pdf respectively, and p(xt−1|d1, ..., dn) is the marginal backward pdf. The transition
between line 1 and 2 is valid because for every t, xt is conditionally independent of
(d1, ..., dt−1) given xt−1. Therefore the transition between line 2 and 3 also is valid.
Since xt is conditionally independent of dt−1, it can be joined to the conditioning. Going
from line 3 to line 4 we are using Bayes rule.

The marginal backward probabilities can be calculated as follows,

p(xt|d1, ..., dn) =
∑
xt−1

p(xt−1, xt|d1, ..., dn),

and initially we have that the marginal backward pdf at location t = 1 equals the
marginal forward pdf at the same location, p(x1|d1, ..., dn).

In order to generate simulations from the posterior pdf, we need to calculate the condi-
tional backward pdf, which is

p(xt|xt−1, d1, ..., dn) =
p(xt−1, xt|d1, ..., dn)

p(xt−1|d1, ..., dn)

=
p(xt, xt−1|dn, ..., dt−1)

p(xt−1|dn, ..., dt−1)
.

The transition here is verified in expression (8). The conditional backward pdf is actually
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expressed by the joint and marginal forward pdf.

Algorithm

In Algorithm 1 the Forward-Backward recursion is presented. The algoritm calculates
the posterior pdf, p(x|d), from which it generates simulation profiles, xS = (xS

1 , ..., xS
n).

It also calculates the marginal pdf, p(xt|d), for all t, from which the maximum marginal
posterior solution is calculated, xM = {maxxt p(xt|d), t = 1, 2, ..., n}.

Algorithm 1 Forward-Backward algorithm
1: p(xn|dn) = const× ps(xn)p(dn|xn)
2: const =

[∑
xn

p(xn|dn)
]−1

3: for t = n− 1, n− 2, ..., 1 do
4: p(xt+1, xt|dn, ..., dt) = const× p(dt|xt)p(xt|xt+1)p(xt+1|dn, ..., dt+1)

5: const =
[∑

xt+1

∑
xt

p(xt+1, xt|dn, ..., dt)
]−1

6: p(xt|dn, ...dt) =
∑

xt+1
p(xt+1, xt|dn, ..., dt)

7: end for
8: Generate xS

1 ∼ p(x1|d1, ..., dn)
9: xM

1 = maxx1 p(x1|d1, ..., dn)
10: for t = 2, 3, ..., n do

11: p(xt|xt−1, d1, ..., dn) =
p(xt, xt−1|dn, ..., dt−1)

p(xt−1|dn, ..., dt−1)
12: p(xt|d1, ..., dn) =

∑
xt−1

p(xt|xt−1, d1, ..., dn)p(xt−1|d1, ..., dn)
13: Generate xS

t ∼ p(xt|xt−1, d1, ..., dn)
14: xM

t = maxxt p(xt|d1, ..., dn)
15: end for

3.5 Bayesian model adapted to the data from the Statfjord Formation

From Figure 1-3 we notice that in the locations where there are transitions between
classes of facies associations or lithofacies, the transitions in the logs are smooth. We
assume that this smoothness is not only a result of noise in the data, but also of the
spatial response from the formation. We assume that every observation in the log re-
sponds to not only the corresponding location in the formation, but also to k neighbours
at each side, where k ¿ n, as we can see from Figure 13.

If the the posterior pdf adapted to the data from the Statfjord Formation can be fac-
torized and formulated as in expression (7), we are able to calculate it by the Forward-
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Figure 13: The graph illustrates the relation between the locations of the profile, x1, ..., xn,
and the observed log data, l1, ..., ln.

Backward recursion in Algorithm 1. In this section we first derive a likelihood model
based on the log-response from the formation, followed by a first order Markov chain
prior model adapted to the likelihood model. There will obviously be irregularities at
the borders, but a section will be ignored at the bottom and top of the wells due to
this. Therefore, the boundary conditions will not be considered in the derivation of the
model.

The methodology for the gammaray log, lgr, and the density log, lgr, is parallel, and
therefore we only denote the logs by l. The same thing yields for the core classification
into facies associations, πfa, and lithofacies, πlf , which we sometimes denote by π. The
levels of response, the weights and the variance corresponding to either classification and
log we denote by r(·), θi and σ2 in the methodological discussion.
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Likelihood model

As we can see from Figure 13, the observations of the log respond to more than one
location in the core profile. We can express the log at location t as a weighted linear
combination of the response in the corresponding location and k neighbours at each side,
plus an error. The relation is given by

lt =
k∑

i=−k

θir(xt+i) + εt, (9)

where the weights are normalized,
∑k

i=−k θi = 1, and the response function, r(·), is the
level of response for the class of the input location. We assume that also the error in
expression (9) is independent, identical distributed as

εt ∼ N (0, σ2).

This gives the distribution of the likelihood function

p(l|x) = (2π)−
n
2 σ−nexp

{
− 1

2σ

n∑

t=1

[lt −
k∑

i=−k

θir(xt+i)]2
}

,

which can be written in the form

p(l|x) =
n∏

t=1

p(lt|xt−k, ..., xt+k), (10)

where p(lt|xt−k, ..., xt+k) ∼ N (
∑k

i=−k θir(xt+i), σ2).

In this study we consider two well logs, the gammaray log, lgr, and the density log, ld.
The parameters in the likelihood function will be different for the logs, but the likelihood
function for both logs are defined by expression (10). Conditioned on the formation of
the well, the two logs are independent. Therefore the likelihood function for the entire
model is the product of the likelihood function for the two logs, that is

p(l|x) = p(lgr|x)p(ld|x).
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Prior model

We have chosen to consider the prior model a first order Markov chain. In order to
combine a first order Markov chain prior model with the likelihood function in expression
(10), we need to consider the overlapping set of locations (xt−k, ..., xt+k), as variables in
the transition probabilities, that is

p(xt−k, ..., xt+k|xt−k+1, .., xt+k+1).

The Markov chain prior model expressed by these transition probabilities is given by

p(x) =
∏n

t=1 p(xt−k, ..., xt+k|xt−k+1, .., xt+k+1). (11)

Since the variables are overlapping, the transition probabilities p(xt−k, ..., xt+k|xt−k+1, .., xt+k+1)
are zero if the classes in the locations xt−k+1, ..., xt+k changes. If the classes in these
locations are unchanged, we can express the transition probabilies by

p(xt−k, ..., xt+k|xt−k+1, .., xt+k+1) = p(xt−k|xt−k+1, .., xt+k+1)
= p(xt−k|xt−k+1).

The transition in the first line is valid because reducing the probability space by removing
locations that are also conditioned upon, will not change the probability. The transition
between the first and the second line is valid because conditioned upon xt−k+1, xt−k is
independent of xt−k+2, ..., xt+k+1 because of the Markov property in expression (5). The
probabilities p(xt−k|xt−k+1) are actually the transition probabilities in the first order
Markov chain, q(j|i), given by expression (4).

The transition probabilities in the prior model in expression (11) are now given by

p(xt−k, ..., xt+k|xt−k+1, .., xt+k+1) =

{
p(xt−k|xt−k+1) for xt−k+1, ..., xt+k unchanged

0 otherwise
,

(12)
which define a transition probability matrix of size m2k+1 × m2k+1. The locations,
(xt−k, ..., xt+k), therefore take values from the state space defined by π× · · · ×π, where
π = (π1, ..., πm).
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Posterior model

The posterior pdf can now be expressed by the likelihood function for both logs and the
prior pdf given in expression (10) and (11) respectively,

p(x|lgr, ld) = const × p(lgr|x)p(ld|x)p(x)
= const × ∏n

t=1 p(lgr
t |xt−k, ..., xt+k)p(ldt |xt−k, ..., xt+k)

×p(xt−k, ..., xt+k|xt−k+1, ..., xt+k+1).

(13)

The posterior pdf is factorized and can therefore be assessed by the Forward-Backward
algorithm.

3.6 Location wise model

In order to illustrate the effect of taking advantage of the spatial coupling in the for-
mation, and the neighbourhood effect in the logs in the stochastic model, we consider
a simple model as a comparison. The simple model has a prior pdf without spatial
coupling, that is

p(x) =
n∏

t=1

p(xt),

where xt ∈ π. A likelihood function without any neighbourhood effect is given in
expression (2). The likelihood function for both logs together with the prior pdf above,
define the location wise posterior pdf given by

p(x|lgr, ld) = const×
n∏

t=1

p(lgr
t |xt)p(ldt |xt)p(xt), (14)

where const is a normalizing constant. The posterior pdf can be calculated location wise
for every t, and from there the model has its name.

4 Parameter estimation

In this section we estimate the model parameters. The estimation is based on the training
wells, A and B, because we want the test well, C, to be a blind well. At first, we estimate
the likelihood parameters for the Bayesian model adapted to the data from the Statfjord
Formation in expression (10), and we consider two different methods of estimating them.
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The first method is based on visual inspection of the well log data, while in the second
method we make use of the information we get from the first parameter estimation, and
estimate the parameters by minimizing the squared error. Further, the prior transition
probabilities in expression (11) are estimated by calculating the upward transitions in
the cores. Finally, the model parameters for the location wise model in expression (14)
are estimated, and the two different methods of estimating the likelihood parameters are
considered.

In the following sections we denote the Bayesian model adapted to the data from the
Statfjord Formation by the spatial model.

4.1 Likelihood parameters estimated based on visual inspection

At first, we estimate the weights, θi, followed by the response, r(·), and the variance, σ2.

Weights

As we can see from Figure 13, the observations in the logs respond to a set of locations
in the formation. In order to know how many significant neighbours each of the logs
respond to, we need to compare the logs with the core classification. From sections of
the logs where we know from the core classification that there is a transition between
two thick layers, we can calculate the number of significant neighbours, and how much
influence each of them have on the logs, i.e. the weights.

Figure 14 shows five sections from well A and B where we have such transitions in both
facies association and lithofacies. In some of the sections we can see that there is a shift
in t between the log and the core, since the change of class is not corresponding to the
center of the wavelet in the log. Shifts in t is a general problem in parameter estimation
and facies classification. By looking at the logs isolated, we avoid this problem in the
parameter estimation.

If we assume that the levels of response for each class are given, the exact weights for
each of the sections in Figure 14 can be calculated directly from the log-wavelets. The
weights are the gradients of the log-wavelets between the observations. From Figure 14
we can see that up to eight observations in the logs are involved in the transitions, which
indicates that each observation in the logs might respond to up to three neighbours at
each side of the corresponding location. We need to calculate the weights corresponding
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Figure 14: Five sections from the gammaray log, lgr, the density log, lgr, and the corre-
sponding core classification into facies associations, πfa, and lithofacies, πlf from well A
and B. The stars in the logs indicate the observations in the transition between the layers.
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Figure 15: The calculated weights from the gammaray log, lgr. Left are the weights
calculated from the five sections in Figure 14, where the stars are the average of all the
weights. Right is the average weights illustrated with 90% Gaussian confidence intervals.

to four neighbours at each side, in order to check if more than three neighbours are
significant, which means θi for i = −4, ..., 4.

The weights from the sections in Figure 14 are calculated and normalized,
∑4

i=−4 θi = 1,
and illustrated in Figure 15 and 16. As we can see from Figure 16, one of the sections
gives very small and negative θ3 and θ4. We consider these as outliers, and adjust them
to zero. Right in Figure 15 and 16 are plots of 90% Gaussian confidence intervals for
all θi, and in the figures the stars are the average of the weights from all sections. In
both the gammaray log and the density log the middle weight, θ0, is largest, descending
at the sides. The weights are also approximately symmetric, which agrees with what
we expect from the physics. The logs try to make their respective measurement in the
actual location, but will at the same time get response from both sides of the location.

The average weights, 90% Gaussian confidence intervals and the estimates of the weights,
θ̂, are presented in Table 1. From the table we can see that for both logs, θ−4 and θ4

are not significantly different from zero, which means that there are not more than three
significant neighbours.

Response

We know that the response in both logs is affected by neighbours and possible shifts in
t in some sections, and therefore the average of the entire set of observations from each
class is not a good estimate for the response. By removing some observations in the logs
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Figure 16: The calculated weights from the density log, ld. Left are the weights calculated
from the five sections in Figure 14, where the stars are the average of all the weights. Right
is the average weights illustrated with 90% Gaussian confidence intervals.

Gammaray log, lgr Density log, ld

90% Gaussian 90% Gaussian
Average confidence intervals θ̂ Average confidence intervals θ̂

θ−4 -0.0136 [-0.0699, 0.0427] 0 0.0020 [-0.0741, 0.0781] 0
θ−3 0.0257 [-0.0175, 0.0688] 0.0256 0.0445 [-0.0284, 0.1174] 0.0391
θ−2 0.0972 [ 0.0233, 0.1710] 0.0970 0.1116 [ 0.0289, 0.1944] 0.0981
θ−1 0.2368 [ 0.0826, 0.3909] 0.2364 0.2144 [ 0.1507, 0.2782] 0.1884
θ0 0.3209 [ 0.2399, 0.4019] 0.3204 0.4119 [ 0.0829, 0.7408] 0.3619
θ1 0.2158 [ 0.0686, 0.3630] 0.2154 0.2683 [-0.0108, 0.5474] 0.2357
θ2 0.0720 [-0.0330, 0.1770] 0.0719 0.0687 [-0.0276, 0.1651] 0.0604
θ3 0.0332 [-0.0760, 0.1424] 0.0331 0.0187 [-0.0414, 0.0787] 0.0164
θ4 0.0121 [-0.0593, 0.0835] 0 0.0089 [-0.0433, 0.0611] 0

Table 1: Estimates of the weights from the first parameter estimation. Average, 90% Gaus-
sian confidence intervals and the best estimates, θ̂, for the gammaray log, lgr, and density,
ld. The weights yields both classifications, i.e. facies associations, πfa, and lithofacies, πlf .
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Figure 17: At the left is a section of core classification into facies associations, πfa, and
the same section of the gammaray log, lgr, where the stars represent the observations that
remain after seven observations at each side of every transition are removed. The left column
of histograms are of all observations in the gammaray log, lgr, from well A and B, for each of
the classes of facies associations, πfa. The right column of histograms are of the observations
that remain after seven observations at each side of every transition are removed.

at both sides of every transition, we remove these effects.

At the left in Figure 17 and 18 we can see which observations in the logs that remain
after removing seven observations at each side of the transitions between classes of facies
associations, πfa. We notice that the response in both logs is very unstable in the section
of class πfa

2 . This may be due to misinterpretation of the core, but we decide to ignore
this and accept the core classification to be the truth. The left column of histograms in
Figure 17 and 18 is from the entire set of observations from the logs for every class, and
the right column of histograms are after removing the observations in the transitions.
From the histograms we can see that for class πfa

3 and πfa
4 the range of the response is

considerably wider before removing the observations. The long tail that disappears in
the histogram of class πfa

4 is a good illustration of the effects that we want to remove.
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Figure 18: At the left is a section of core classification into facies associations, πfa, and the
same section of the density log, ld, where the stars represent the observations that remain
after seven observations at each side of every transition are removed. The left column of
histograms are of all observations in the density log, ld, from well A and B, for each of the
classes of facies associations, πfa. The right column of histograms are of the observations
that remain after seven observations at each side of every transition are removed.
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Gammaray log, lgr Density log, ld

90% empirical 90% empirical
r̂(·) confidence intervals r̂(·) confidence intervals

πfa
1 -0.9883 [-1.3527, 0.2205] -1.0010 [-1.5575, 0.7966]

πfa
2 0.2510 [-1.1836, 1.5271] 0.4113 [-1.7458, 1.4241]

πfa
3 1.0356 [ 0.5334, 1.7876] 0.4558 [ 0.2039, 0.9866]

πfa
4 0.9685 [ 0.3773, 1.6752] 0.8968 [ 0.4122, 1.5060]

Table 2: Response estimates and 90% empirical confidence intervals for the response from
the gammaray log, lgr, and density log, ld, for the classes of facies associations, πfa, in the
first parameter estimation.

Gammaray log, lgr Density log, ld

90% empirical 90% empirical
r̂(·) confidence intervals r̂(·) confidence intervals

πlf
1 -1.1677 [-1.3887, -0.7977] -1.1723 [-1.4625, 0.1289]

πlf
2 -1.1260 [-1.2749, -0.8166] -1.1313 [-1.4442, 0.5377]

πlf
3 -0.9846 [-1.2301, -0.4995] -1.1209 [-1.3789, 1.7074]

πlf
4 -0.8349 [-0.8603, -0.8294] 1.0336 [ 0.4314, 1.0502]

πlf
5 (1.2247) NA (0.6353) NA

πlf
6 0.9918 [ 0.3401, 1.7118] 0.8236 [ 0.3538, 1.4267]

Table 3: Response estimates and 90% empirical confidence intervals for the response from
the gammaray log, lgr, and density log, ld, for the classes of lithofacies, πlf , in the first
parameter estimation. The estimates of the response of class πlf

5 in parenthesis are made
from all available locations for the class, since the layers of this class are too thin and no
observations are left after removing observations in the transitions.

Estimates of the response for each of the classes of facies associations, for the gammaray
log and the density log, r(xt) for xt ∈ πfa, are the median of the remaining observations.
These estimates and 90% empirical confidence intervals for the facies associations are
presented in Table 2. Estimates of the response for the lithofacies, r(xt) for xt ∈ πlf , are
found similarly, and are presented in Table 3. The response for class πlf

5 was not possible
to estimate this way, because the layers of this class are so thin that no observations
were left after removing observations in the transitions. The estimates in parenthesis
are made from all available observations of class πlf

5 .
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Core classification Log σ̂2 90% bootstrapping intervals
πfa lgr 0.4297 [0.2936, 1.1525]
πfa ld 0.5949 [0.5493, 1.5814]
πlf lgr 0.4046 [0.3200, 0.7294]
πlf ld 0.6004 [0.4891, 1.2855]

Table 4: Estimates of the variance, σ̂2, and 90% bootstrapping intervals for the four cases
in the first parameter estimation.

Variance

Estimates of the variance we calculate from the expression,

σ̂2 = V̂ ar(ε) =
1

n− 1

n∑

t=1

ε2t =
1

n− 1

n∑

t=1

{
lt −

3∑

i=−3

θ̂ir̂(xt+i)

}2

, (15)

where the estimates of the response, r̂(·), and the weights, θ̂i for i = −3, ..., 3, are given
in Table 1, 2 and 3. Histograms of the error, εt = lt −

∑3
i=−3 θ̂ir̂(xt+i) for t = 1, ..., n,

are presented in Figure 19, and we notice that the empirical distributions of the error
are approximately Gaussian, though they are a little skew. The resulting estimates of
the variance are given in Table 4. Since we have two logs and two ways of classifying
the logs, there are four different estimates of the variance. The range of the variance is
from 0.4 to 0.6, which is reasonable considering that the data alone have variance of 1
and we expect this variance to be less.

In order to make intervals of uncertainty for σ2, we need to use the method of bootstrap-
ping, which is based on sampling from empirical distributions. A reference for bootstrap-
ping is Efron and Tibshirani (2003). T times, one set of weights, θ∗i for 1 = −3, ..., 3,
are drawn from the five possible in Figure 15 or 16, and levels of response, r∗(·), are
drawn from their corresponding confidence intervals in Table 2 or 3, which we consider
Gaussian. The error, σ∗2, is calculated by expression (15) at every instance, and 90%
bootstrapping intervals are made from the T estimates of the error. The intervals are
given in Table 4.

4.2 Likelihood parameters estimated by minimizing the squared error

In the previous section we noticed that the logs respond to the corresponding location in
the formation and three neighbours at each side, and that the weights are approximately
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Figure 19: Histograms of the error, εt for t = 1, ..., n, for the four cases of the spatial model
in the first parameter estimation.

symmetric. If we decide that the weights are symmetric, θ−i = θi, we have that θ0 =
1 − 2θ1 − 2θ2 − 2θ3, and we only need to estimate three weights, θ1, θ2 and θ3. We
have also observed that θ0 ≥ θ1 ≥ θ2 ≥ θ3. These restrictions on the parameters we can
express as intervals for the three parameters, that is

θ1 ∈ [0, 1
3(1− 2θ2 − 2θ3)]

θ2 ∈ [0, θ1]
θ3 ∈ [0, θ2],

(16)

where the weights are normalized,
∑3

i=−3 θi = 1. We want to estimate the parameters
by minimizing the squared error, which gives us the expression

(θ, r) = arg min
(θ,r)

n∑

t=1

ε2t = arg min
(θ,r)

n∑

t=1

{
lt −

3∑

i=−3

θir(xt+i)

}2

. (17)

This is actually a linear regression problem if the weights are given, where the response
for all classes are the regression coefficients. With the weights given, expression (17) can
be equivalently expressed as

r = (DT
θ Dθ)−1DT

θ l, (18)



4.2 Likelihood parameters estimated by minimizing the squared error 33

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

200

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

120

140

160

πfa, lgr πfa, ld

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

50

100

150

200

250

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

πlf , lgr πlf , ld

Figure 20: Histograms of the error, εt for t = 1, ..., n, for the four cases of the spatial model
in the second parameter estimation.

where r is a vector of length m with response for the m classes, Dθ is the design matrix
for the regression problem where the weights corresponding to the core classification are
represented, and l is a vector of length n with the log data. For θi, i = −3, ..., 3 given, the
method of least squares in expression (18) calculates the minimizing response directly.
By solving expression (18) for every combination of θ1, θ2 and θ3 on a regular grid given
by the restrictions in expression (16), we can also identify the minimizing weights. We
consider a grid with distance of 0.01 between the nodes, and further a zooming grid with
distance of 0.001. We also check for possible shifts in t, which means that we solve the
minimization problem for several shifts between the core and the log.

The resulting estimates for the weights, θ̂i for i = −3, ..., 3, and the response, r̂(·), are
given in Table 5, 6, 7 and 8. Further, the variance, σ̂2 is calculated by

σ̂2 = V̂ ar(ε) =
1

n− 1

n∑

t=1

ε2t =
1

n− 1

n∑

t=1

{
lt −

3∑

i=−3

θ̂ir̂(xt+i)

}2

.

Histograms of the error, εt = lt −
∑3

i=−3 θ̂ir̂(xt+i), are presented in Figure 20, and we
notice that also in this parameter estimation we get approximately Gaussian distribution
on the error. The estimates of the variance, σ̂2, are given in Table 9.

In order to get intervals for the uncertainty, we need to use the method of bootstrapping.
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Figure 21: Estimated weights, θ̂i for i = −3, ..., 3, with corresponding 90% bootstrapping
intervals for the four cases in the second parameter estimation.

T times, a new set of log data, l∗, is made from

l∗t =
3∑

i=−3

θ̂ir̂(xt+i) + ε∗,

where ε∗ is drawn randomly from the error, εt = lt −
∑3

i=−3 θ̂ir̂(xt+i) for t = 1, ..., n.
From the log data, l∗, the minimization problem in expression (17) is solved, and new
estimates of the weights, θ∗i for i = −3, ..., 3, the response, r∗(·), and the variance, σ∗2,
are made. From the T estimates of every parameter, 90% bootstrapping intervals are
made. The estimates with the corresponding intervals are given in Table 5, 6, 7, 8 and
9.

The best estimates of the weights, θ̂i for i = −3, ..., 3, together with the corresponding
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Gammaray log, lgr Density log, ld

90% bootstrapping 90% bootstrapping
θ̂ intervals θ̂ intervals

θ−3 0.0643 [0.0093, 0.1192] 0.0689 [0.0147, 0.1230]
θ−2 0.1484 [0.0989, 0.1978] 0.1328 [0.0946, 0.1709]
θ−1 0.1884 [0.1270, 0.2497] 0.1939 [0.1463, 0.2415]
θ0 0.1980 [0.0578, 0.3382] 0.2090 [0.0413, 0.3767]
θ1 0.1884 [0.1270, 0.2497] 0.1939 [0.1463, 0.2415]
θ2 0.1484 [0.0989, 0.1978] 0.1328 [0.0946, 0.1709]
θ3 0.0643 [0.0093, 0.1192] 0.0689 [0.0147, 0.1230]

Table 5: Estimates of the weights from the second parameter estimation for the facies
associations, πfa. Best estimates, θ̂, and 90% bootstrapping intervals for the gammaray
log, lgr, and density, ld.

bootstrapping intervals are illustrated in Figure 21. If we compare the weights in Figure
21 with the weights from the first parameter estimation in Figure 15 and 16, we notice
that the weights from this parameter estimation are smoother than the others. This is
due to the fact that we only check for global shifts in t when the weights are estimated
this way. Different stretch in the logging tool wire at different depth result in different
shifts in t along the well. The weights estimated when only global shifts in t are allowed,
will be almost equalized due to this. In the first parameter estimation the weights are
invariable for shifts in t, and therefore we do not have this problem.

The parameter estimates are relatively stable. The estimates of the response given
in Table 7 and 8 have the same ordering as the estimates in the previous parameter
estimation, given in Table 2 and 3, except for the facies associations for the density log.
Due to estimating the parameters by minimizing the squared error, the estimates of the
variance given in Table 9 are smaller than in the previous parameter estimation.

4.3 Prior model parameters

We need to estimate the transition probabilities in the prior Markov chain in expression
(4), that is q(j|i) for i, j = 1, ...,m, for both facies associations, πfa, and lithofacies,
πlf . In order to estimate these probabilities we count the upward transitions between
all observations in well A and B, nij . From

∑m
j=1 q(j|i) = 1, we have that

q(j|i) =
nij

Ni
, where Ni =

m∑

j=1

nij .
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Gammaray log, lgr Density log, ld

90% bootstrapping 90% bootstrapping
θ̂ intervals θ̂ intervals

θ−3 0.1386 [0.1106, 0.1667] 0.1299 [0.0886, 0.1711]
θ−2 0.1386 [0.1217, 0.1556] 0.1299 [0.0995, 0.1603]
θ−1 0.1435 [0.1261, 0.1609] 0.1539 [0.1182, 0.1895]
θ0 0.1585 [0.1324, 0.1846] 0.1727 [0.1151, 0.2304]
θ1 0.1435 [0.1261, 0.1609] 0.1539 [0.1182, 0.1895]
θ2 0.1386 [0.1217, 0.1556] 0.1299 [0.0995, 0.1603]
θ3 0.1386 [0.1106, 0.1667] 0.1299 [0.0886, 0.1711]

Table 6: Estimates of the weights from the second parameter estimation for the lithofacies,
πlf . Best estimates, θ̂, and 90% bootstrapping intervals for the gammaray log, lgr, and
density, ld.

Gammaray log, lgr Density log, ld

90% bootstrapping 90% bootstrapping
r̂(·) intervals r̂(·) intervals

πfa
1 -0.7746 [-0.9717,-0.6681] -0.7077 [-0.8653,-0.5710]

πfa
2 0.1385 [-0.0384, 0.2946] 0.1173 [-0.0537, 0.2795]

πfa
3 1.2502 [ 1.0521, 1.4860] 0.6487 [ 0.3972, 0.9621]

πfa
4 0.9594 [ 0.7530, 1.1330] 0.9151 [ 0.7450, 1.0754]

Table 7: Response estimates and 90% bootstrapping intervals for the response from the
gammaray log, lgr, and density log, ld, for the classes of facies associations, πfa, in the
second parameter estimation.

Gammaray log, lgr Density log, ld

90% bootstrapping 90% bootstrapping
r̂(·) intervals r̂(·) intervals

πlf
1 -1.1494 [-1.3793,-0.9961] -0.6300 [-0.8870,-0.3917]

πlf
2 -0.8628 [-1.0973,-0.6786] -0.9555 [-1.1361,-0.7586]

πlf
3 -0.5977 [-0.8025,-0.4550] -0.5384 [-0.7559,-0.4179]

πlf
4 0.2891 [-0.0063, 0.3887] 0.2800 [-0.0314, 0.4512]

πlf
5 2.9801 [ 2.6837, 3.6494] 1.3542 [ 0.8091, 2.2667]

πlf
6 1.0022 [ 0.8366, 1.1469] 0.9036 [ 0.7070, 1.0796]

Table 8: Response estimates and 90% bootstrapping intervals for the response from the
gammaray log, lgr, and density log, ld, for the classes of lithofacies, πlf , in the second
parameter estimation.
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Core classification Log σ̂2 90% bootstrapping intervals
πfa lgr 0.3730 [0.3806, 0.4464]
πfa ld 0.5281 [0.4967, 0.5830]
πlf lgr 0.2696 [0.2735, 0.3287]
πlf ld 0.4344 [0.4125, 0.5620]

Table 9: Estimates of the variance, σ̂2, and 90% bootstrapping intervals for the four cases
in the second parameter estimation.

The number of upwards transitions, nij , in the facies associations, πfa, are

nfa =




688 4 6 4
1 258 2 7
5 3 58 1
8 4 1 421




. (19)

From expression (19) we notice that the diagonal entries, nii, are much larger than
the off-diagonal entries, which indicates that the layers of facies associations are thick.
The number of transitions between layers, nij for i 6= j, differs and we can see that
some transitions are very unlikely, for instance, n21 = n34 = n43 = 1. The transition
probability matrix for the facies associations is given by

Qfa =




0.9801 0.0057 0.0085 0.0057
0.0037 0.9627 0.0075 0.0261
0.0746 0.0448 0.8657 0.0149
0.0184 0.0092 0.0023 0.9700




, (20)

which illustrates the spatial structure in the formation concerning the facies associations.
Coming from class πfa

i , the probability distribution for entering class πfa
j for j = 1, ..., 4

is multinomial with probability q(j|i). From this we have that 90% confidence intervals
for the probabilities are given by




[0.9797, 0.9804] [0.0055, 0.0059] [0.0083, 0.0088] [0.0055, 0.0059]
[0.0034, 0.0041] [0.9615, 0.9638] [0.0069, 0.0080] [0.0251, 0.0271]
[0.0682, 0.0811] [0.0397, 0.0499] [0.8573, 0.8740] [0.0119, 0.0179]
[0.0179, 0.0189] [0.0089, 0.0096] [0.0021, 0.0025] [0.9694, 0.9707]




.



38 4 PARAMETER ESTIMATION

The number of upwards transitions, nij , in the lithofacies, πlf , in well A and B are,

nlf =




154 14 4 0 1 2
11 285 28 5 1 4
7 18 215 6 2 15
1 5 4 94 0 10
0 1 2 3 10 1
2 11 10 7 3 526




. (21)

The pattern in the matrix of lithofacies in expression (21) is more explanatory than for
the facies associations. The four first classes, πlf

1 , πlf
2 , πlf

3 and πlf
4 all consists of sand

of different grain size, where class πlf
1 is most coarse-grained, and class πlf

4 is the most
fine-grained. From expression (21) we notice that starting in class πlf

1 , the most likely
transition is to class πlf

2 , and from class πlf
2 , to class πlf

3 . From here the transition might
be back to class πlf

2 again, or to class πlf
6 , while a transition into class πlf

4 is less likely.
Except for the small probability of entering class πlf

4 from class πlf
3 , the pattern described

above confirms the principle of fining upwards, which means that the fine-grained sand
lies above the coarser-grained sand. In addition to this, some entries in the matrix in
expression (21) are zero or very small, which justifies that there is a spatial structure in
the formation. The transition probability matrix for the lithofacies is given by

Qlf =




0.8800 0.0800 0.0229 0 0.0057 0.0114
0.0329 0.8533 0.0838 0.0150 0.0030 0.0120
0.0266 0.0684 0.8175 0.0228 0.0076 0.0570
0.0088 0.0439 0.0351 0.8246 0 0.0877
0 0.0588 0.1176 0.1765 0.5882 0.0588
0.0036 0.0197 0.0179 0.0125 0.0054 0.9410




, (22)

with 90% confidence intervals for all probabilities given by




[0.8769, 0.8831] [0.0774, 0.0826] [0.0215, 0.0243] [0, 0] [0.0050, 0.0064] [0.0104, 0.0124]

[0.0348, 0.0368] [0.8384, 0.8424] [0.0897, 0.0927] [0.0156, 0.0170] [0.0030, 0.0036] [0.0124, 0.0136]

[0.0256, 0.0276] [0.0669, 0.0700] [0.8151, 0.8199] [0.0219, 0.0237] [0.0071, 0.0081] [0.0556, 0.0585]

[0.0074, 0.0101] [0.0409, 0.0468] [0.0324, 0.0377] [0.8191, 0.8300] [0, 0] [0.0836, 0.0918]

[0, 0] [0.0361, 0.0816] [0.0865, 0.1488] [0.1396, 0.2134] [0.5406, 0.6359] [0.0361, 0.0816]

[0.0034, 0.0038] [0.0193, 0.0201] [0.0175, 0.0183] [0.0122, 0.0128] [0.0052, 0.0056] [0.9403, 0.9417]




.
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From expression (12) we have that

p(xt−k, ..., xt+k|xt−k+1, .., xt+k+1) =

{
p(xt−k|xt−k+1) for xt−k+1, ..., xt+k unchanged

0 otherwise,

where (xt−3, ..., xt+3) ∈ π × · · · × π since xt ∈ π. The state space will be of size 47 for
the classes of facies associations, πfa, and of size 67 for the lithofacies, πlf . This gives
transition probability matrices of size 47 × 47 and 67 × 67.

4.4 Location wise model parameters

For the location wise model in expression (14) the parameters that need to be estimated
are the parameters in the likelihood function, which is the response, r(·), and variance,
σ2, and the probabilities in the prior pdf, p(xt) for xt ∈ π. As for the spatial model, we
consider two ways of estimating the likelihood parameters.

Likelihood parameters estimated based on visual inspection

Since the estimates of the response given in Table 2 and 3 are independent of the choice
of model, we consider these parameters in the location wise model as well. If we assume
that the log data respond to only one location in the formation, we get the relation

lt = r(xt) + εt.

The estimates of the variance in this model are calculated from

σ̂2 = V̂ ar(ε) =
1

n− 1

n∑

t=1

ε2t =
1

n− 1

n∑

t=1

[lt − r̂(xt)]2, (23)

and the estimates are given in Table 10. Comparing these estimates of the variance with
the estimates based on visual inspection for the spatial model given in Table 4, we can
see that the variance in this model is larger in all cases. Since this model is actually too
simple to express the structure of the underlying model, this agree with what we expect.

The intervals of uncertainty are made from T bootstrapping estimates, σ∗2, which are
calculated from expression (23) with levels of response, r∗(·), drawn from their intervals
in Table 2 and 3. The 90% bootstrapping intervals for σ2 are given in Table 10.
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Core classification Log σ̂2 90% bootstrapping intervals
πfa lgr 0.4484 [0.4511, 0.9148]
πfa ld 0.6140 [0.6004, 1.7387]
πlf lgr 0.5035 [0.4441, 0.8530]
πlf ld 0.7047 [0.6627, 1.6101]

Table 10: Estimates of the variance, σ̂2, and 90% bootstrapping intervals for the four cases
in the location wise model and the first parameter estimation.

Likelihood parameters estimated by minimizing the squared error

In this parameter estimation we estimate the response by minimizing the squared error,
that is

r = arg min
r

n∑

t=1

ε2t = arg min
r

n∑

t=1

[lt − r̂(xt)]2. (24)

The variance is calculated from expression (23). The estimates of the response and
variance are given in Table 11, 12 and 13. The estimates of the response have the same
ordering and are not much different from the estimates in the spatial model given in
Table 7 and 8. The estimates of the variance are larger than the estimates given in
Table 9, as we expected.

In order to get intervals of uncertainty for these parameters, we bootstrap T sets of new
log data, l∗, where

l∗t = r̂(xt) + ε∗,

and ε∗ is drawn randomly from the error, εt = lt − r(xt), for t = 1, ..., n. From the
new sets of log data, we calculate the response, r∗(·), by expression (24), and further
the variance, σ∗2, from expression (23). From the T estimates of the response and the
variance, 90% bootstrapping intervals are calculated, which are given in Table 11, 12
and 13.

Prior model parameters

We want the probabilities for the different classes to reflect the proportion of locations in
the formation that are classified to the respective classes. The proportion of each class
of facies associations and lithofacies for the three wells are illustrated in Figure 5 and 7
respectively. The estimates of the probabilities in the prior model are the average of the
proportions of well A and B. The estimates for the facies associations and lithofacies are
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Gammaray log, lgr Density log, ld

90% bootstrapping 90% bootstrapping
r̂(·) intervals r̂(·) intervals

πfa
1 -0.7484 [-0.7809,-0.7068] -0.6541 [-0.7037,-0.6133]

πfa
2 0.2186 [ 0.1420, 0.3124] 0.2073 [ 0.1476, 0.2762]

πfa
3 1.1399 [ 0.9959, 1.2551] 0.4674 [ 0.3178, 0.6177]

πfa
4 0.8971 [ 0.8381, 0.9506] 0.8553 [ 0.8069, 0.9096]

Table 11: Response estimates and 90% bootstrapping intervals for the response from the
gammaray log, lgr, and density log, ld, for the classes of facies associations, πfa, in the
location wise model and the second parameter estimation.

Gammaray log, lgr Density log, ld

90% bootstrapping 90% bootstrapping
r̂(·) intervals r̂(·) intervals

πlf
1 -1.0255 [-1.0837,-0.9641] -0.5759 [-0.6530,-0.4959]

πlf
2 -0.7909 [-0.8433,-0.7394] -0.8019 [-0.8426,-0.7284]

πlf
3 -0.4079 [-0.4690,-0.3559] -0.4308 [-0.4953,-0.3385]

πlf
4 0.2429 [ 0.1252, 0.3120] 0.1996 [ 0.1081, 0.2955]

πlf
5 1.3076 [ 1.0775, 1.0775] 0.4835 [ 0.1792, 0.7674]

πlf
6 0.8871 [ 0.8483, 0.9286] 0.7938 [ 0.7486, 0.8458]

Table 12: Response estimates and 90% bootstrapping intervals for the response from the
gammaray log, lgr, and density log, ld, for the classes of lithofacies, πlf , in the location wise
model and the second parameter estimation.

Core classification Log σ̂2 90% bootstrapping intervals
πfa lgr 0.4272 [0.3913, 0.4579]
πfa ld 0.5620 [0.5292, 0.5900]
πlf lgr 0.3785 [0.3523, 0.4055]
πlf ld 0.5351 [0.5017, 0.5699]

Table 13: Estimates of the variance, σ̂2, and 90% bootstrapping intervals for the four cases
in the location wise model and the second parameter estimation.
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Facies associations
xt p̂(·)
πfa

1 0.4766
πfa

2 0.1826
πfa

3 0.0455
πfa

4 0.2953

Lithofacies
xt p̂(·)
πlf

1 0.1194
πlf

2 0.2278
πlf

3 0.1794
πlf

4 0.0784
πlf

5 0.0116
πlf

6 0.3834

Table 14: Prior model parameter estimates for the location wise model, for the facies
associations and lithofacies.

given in Table 14. Since the prior probabilities in the location wise model are calculated
from the same wells as the prior probabilities in the spatial model, the parameters are
consistent with the parameters in expression (20) and (22).

5 Implementation and test criteria

Since the set of overlapping locations, (xt−3, ..., xt+3) for t = 1, ..., n, constitute a part
of the posterior pdf in expression (13), the Forward-Backward algorithm needs to be
reformulated. The reformulated recursion is given in Algorithm 2, and we notice that
calculating the constant in line 3 requires a sum over 414 ≈ 2.68 × 108 elements for
the facies associations and 614 ≈ 7.84 × 1010 elements for the lithofacies. This is too
large for a normal computer to calculate. To be able to calculate the posterior pdf we
need to take a look at the pattern in the transition probability matrices. Since the
locations, (xt−3, ..., xt+3) for t = 1, ..., n, are overlapping, the majority of the elements
in the transition probability matrices are zero.

The stars in Figure 22 illustrate the pattern of nonzero elements in the transition prob-
ability matrix for the facies associations. The nonzero elements are located four by four,
and as we can see they form four declining rows. The nonzero elements of the transition
probability matrix for the lithofacies will behave equivalently, in six declining rows. In
order to calculate the posterior pdf in expression (13) by the Forward-Backward algo-
rithm, we need to implement smartly. By removing all the zero elements, we are left
with four and six rows of nonzero elements, and get transition probability matrices of
size 4× 47 and 6× 67 instead. The sum in line 3 in the Forward-Backward algorithm is
then over 48 = 65536 and 68 = 1679616 elements, which is manageable.
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Figure 22: Illustration of the pattern in the transition probability matrix of size 47 × 47

for the facies associations. The stars represent the pattern of nonzero elements.
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Algorithm 2 Forward-Backward algorithm for the data from the Statfjord Formation
1: for t = n− 1, n− 2, ..., 1 do
2: p({xt−2, ..., xt+4}, {xt−3, ..., xt+3}|ln, ..., lt) = const× p(lt|{xt−3, ..., xt+3})

×p({xt−3, ..., xt+3}|{xt−2, ..., xt+4})p({xt−2, ..., xt+4}|ln, ..., lt+1)

3: const =
[∑

{xt−2,...,xt+4}
∑
{xt−3,...,xt+3} p({xt−2, ..., xt+4}, {xt−3, ..., xt+3}|ln, ..., lt)

]−1

4: p({xt−3, ..., xt+3}|ln, ...lt)
=

∑
{xt−2,...,xt+4} p({xt−2, ..., xt+4}, {xt−3, ..., xt+3}|ln, ..., lt)

5: end for
6: for t = 2, 3, ..., n do
7: p({xt−3, ..., xt+3}|{xt−4, ..., xt+2}, l1, ..., ln)

=
p({xt−3, ..., xt+3}, {xt−4, ..., xt+2}|ln, ..., lt−1)

p({xt−4, ..., xt+2}|ln, ..., lt−1)
8: p({xt−3, ..., xt+3}|l1, ..., ln)

=
∑
{xt−4,...,xt+2} p({xt−3, ..., xt+3}|{xt−4, ..., xt+2}, l1, ..., ln)p({xt−4, ..., xt+2}|l1, ..., ln)

9: Generate {xt−3, ..., xt+3}S ∼ p({xt−3, ..., xt+3}|{xt−4, ..., xt+2}, l1, ..., ln)
10: p(xt|l1, ..., ln) =

∑
xt−3

∑
xt−2

∑
xt−1

∑
xt+1

∑
xt+2

∑
xt+3

p(xt−3, ..., xt+3|l1, ..., ln)
11: xM

t = maxxtp(xt|l1, ..., ln)
12: end for

5.1 Test criteria

In this section we define the criteria we will use to evaluate the posterior pdf, p(x|lgr, ld),
and the marginal posterior pdf, calculated by

p(xt|lgr, ld) =
∑
xt−3

∑
xt−2

∑
xt−1

∑
xt+1

∑
xt+2

∑
xt+3

p(xt−3, ..., xt+3|lgr, ld),

for t = 1, ..., n.

Mmap solution versus true core profile

The predicted profile is the marginal maximum posterior solution (mmap), and is cal-
culated from

xM
t = arg max

xt

p(xt|lgr, ld),

where xM = (xM
1 , ..., xM

n ) and p(xt|lgr, ld) is the marginal posterior pdf for all t. The
mmap solution is displayed next to the true core profile. Comparison can be done by
visual inspection. The ideal mmap solution is identical to the true core profile. We
expect the mmap solution to be smoother, because it is a prediction towards the mean.
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Display of the marginal posterior pdfs

The probabilities for each class at every location in the posterior pdf is displayed sep-
arately, i.e. the marginal posterior pdf, p(xt|lgr, ld), for xt ∈ π. The presence of the
classes in the true core profile is marked on the axis of the respective plots. In an ideal
prediction the probability profiles would be square-shaped with probability of 1 when
the class is present in the true core profile and 0 elsewhere.

Confusion matrix

The confusion matrix reflects the relation between the locations of the true core profile,
xt, and the mmap solution, xM

t , for all t. The sum of the rows is the number of times
each class appears in the true core profile, and the sum of the columns is the number
of times they appear in the mmap solution. Each element of the matrix is the number
of locations where the class given in the row appears in the true profile, and in the
mmap solution is classified into the class given in the column. Thus, the sum of the
diagonal elements of the confusion matrix is the number of locations where the mmap
solution equals the true core profile. In an ideal prediction the off-diagonal elements of
the confusion matrix would be zero.

Share of matches

The share of matches is the number of times the mmap solution equals the true core
profile, divided by the number of locations in the profile. In an ideal prediction the
share of matches would be one. If the proportion of one class in the true core profile is
very large, a mmap solution with only this class will give a share of matches equally to
this proportion. Therefore the share of matches alone is not a sufficient measure of the
results from the classification.

Simulated profiles versus true core profile

We simulate several profiles from the posterior pdf, xS ∼ p(x|lgr, ld). The simulated
profiles show the variation in the posterior pdf. The simulated profiles we display next
to the true profile, hence comparisons can be done by visual inspection.
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Signal-to-noise ratio

As a measure of how much signal we get from the log data we calculate the ratio

signal

noise
=

σ2
s

σ2
n

where σ2
s is the variance in the signal and σ2

n is the variance in the noise. The variance
in the signal is calculated by

σ2
s =

1
n− 1

n∑

t=1

{
r̂(xt)− 1

n

n∑

k=1

r̂(xk)

}2

.

The noise is the result we get by subtracting the signal from the log data, and the
variance in the noise is calculated by

σ2
n =

1
n− 1

n∑

t=1

{
[lt − r̂(xt)]− 1

n

n∑

k=1

[lt − r̂(xk)]

}2

.

Both estimates of variance depend on the estimates of the response, r̂(·), in the model.
The larger the ratio, the better classification we expect. If the ratio is 1 we have just as
much noise as signal in the log data, and if the ratio larger than 1 we have more signal
than noise.

6 Results and discussions

In this section the results from the classifications with the Bayesian model adapted to
the Statfjord data, named the spatial model, and the location wise model are presented.
The posterior pdfs based on the well log data, lgr and ld, are calculated for both facies
associations, πfa, and lithofacies, πlf , with likelihood parameters from the first and
second parameter estimation. We present the results from the two training wells, A and
B, and the test well, C. At first the results from the classification of facies associations
are evaluated, followed by the results from the classification of lithofacies. At every
incident, the results from the location wise model are displayed next to the results from
the spatial model, thus the results can be compared. We expect the results from the
spatial model to be better than the results from the location wise model because the
spatial model is more adjusted to the underlying model than the location wise model.
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6.1 Facies associations

Before we evaluate the results, some typical challenges in the classification of facies
associations can be mentioned. Two examples of problems are that thin layers of class
πfa

2 between thick layers of class πfa
4 are often assumed to be class πfa

1 , and thin layers
of πfa

3 between layers of πfa
1 are assumed to be class πfa

4 . The first problem appears
at approximately t = 555 and t = 590 in well A and at approximately t = 450 in well
C. The second problem appears at approximately t = 115 and t = 320 in well A, at
approximately t = 430 in well B and at approximately t = 230 and t = 260 in well
C. In the following discussion of the results for the facies association, we will comment
whether our model manages to make correct classifications in these locations.

Another challenge is to correctly classify the small classes. From Figure 5 we can see the
proportions of all classes of facies associations in the three wells. Notice that class πfa

3

is a small class in all wells. The proportions are also different between the wells, and
particularly we notice that the proportion of class πfa

4 is very high in the test well, C.

The results from the classification of facies associations are presented in Figure 23-40.
First we consider the results from the first parameter estimation, followed by the results
from the second.

Likelihood parameters estimated based on visual inspection

The results from the first parameter estimation for the facies associations are given in
Figure 23-25 for the first training well, A, in Figure 26-28 for the second training well,
B, and in Figure 29-31 for the test well, C.

By visually comparing the two mmap solutions for the first training well, A, in Figure
23, we find them equally good. Both logs seem to find class πfa

1 at most locations, which
makes the pattern look similar to the truth. Notice that only the spatial model finds
class πfa

3 at approximately t = 115 and class πfa
2 at approximately t = 555. From the

display of the marginal posterior pdfs in Figure 24 we can see that the probability curves
in the spatial model are smoother than for the location wise model, which indicates that
the spatial model is less sensitive to noise than the location wise model. The probabilities
for class πfa

3 in the location wise model are small at all locations, which is reflected in the
confusion matrix where we can see that the number of locations in the mmap solution
that are classified into class πfa

3 for this model is zero. The share of matches is of the
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same reason smaller for the location wise model. The simulations in Figure 25 reflect the
variation in the posterior pdfs, and especially the instability in the location wise model
which results in many thin misclassified layers.

The mmap solutions for the second training well, B, in Figure 26 both classify class πfa
1

almost correctly, which makes the pattern of the mmap solutions good, except that they
misclassify a section of class πfa

2 at around t = 100 into class πfa
4 . From the display

of the marginal posterior pdfs in Figure 27 we can see that both models have small
probabilities for class πfa

3 . This is reflected in the confusion matrices. Class πfa
3 is a

small class in well B, and therefore it does not influence much on the share of matches,
which are 0.78 and 0.76 for the spatial and location wise model respectively. The share
of matches of 0.78 is the largest match we have when it comes to the facies associations
for the spatial model, and there might be a connection with the large signal-to-noise
ratio for the gammaray log, of 2.60. The simulations in Figure 28 for the spatial model
are very similar to the mmap solution, and although we recognize the pattern from the
true profile in the simulations for the location wise model, the instability of the posterior
pdf is prominent.

We notice from the mmap soulutions in Figure 29 that the spatial model seems to have
problems finding class πfa

4 in the thick layers of the test well, C. As we can see from
Figure 5 the proportion of class πfa

4 is very high in this well. The location wise model
does not seem to have this problem, though the thick layers are partitioned by relatively
thin layers of class πfa

2 . The display of the marginal posterior pdfs and the confusion
matrices in Figure 30 tell the same story about class πfa

4 as the mmap solutions. Further,
the spatial model over-classify class πfa

3 , while the location wise model does not find class
πfa

3 at all. In addition both models over-classify class πfa
2 . This leads to share of matches

of 0.5431 and 0.6936 for the spatial and location wise model respectively. We notice that
the spatial model manages to find the thin layer of class πfa

3 at approximately t = 230
and some of the layer of class πfa

2 at approximately t = 450. The simulations in Figure
31 display the variation in the posterior pdfs, and we describe the results to be of only
average quality.

Likelihood parameters estimated by minimizing the squared error

The results from the second parameter estimation are given in Figure 32-34 for the first
training well, A, in Figure 35-37 for the second training well, B, and in Figure 38-40 for
the test well, C. The least squares parameter estimates make the signal-to-noise ratios
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smaller in all wells, which may lead to poorer results.

From the mmap solutions for the first training well, A, in Figure 32 we can see that the
spatial model does not find class πfa

4 in the thick layer around t = 200, as apposed to
the location wise model and both models with the first parameter estimates. Due to this
layer, the share of matches given in Figure 33 is smaller with these likelihood parameters
for the spatial model. Except from this, the results with the second parameter estimates
does not differ much from the first for this well, and we can add that also here the
spatial model finds class πfa

3 at approximately t = 115 and class πfa
2 at approximately

t = 555. The location wise model has problems finding the small classes, πfa
2 and πfa

3 ,
but because of the good match of class πfa

4 , the share of matches is slightly better than
for the spatial model. The simulations are displayed in Figure 34, and notice that also
here the simulations reflect the degree of variation in the posterior pdf.

From Figure 35 we can see that with the second parameter estimates, in the mmap
solution for the second training well, B, for the spatial model, many sections of class πfa

4

are misclassified into class πfa
3 . Class πfa

3 is a small class, which results in the location
wise model not finding the class at all. The marginal posterior pdfs and the confusion
matrices in Figure 36 confirm this, but still the share of matches are 0.7730 and 0.7718
for the spatial and location wise model respectively. The simulations from the spatial
model in Figure 37 also contain many layers of class πfa

3 , while the simulations from the
location wise model are unstable as we have seen before.

From the mmap solutions for the test well, C, in Figure 38 we can see that the spatial
model finds class πfa

4 in more locations than with the first parameter estimates. But
still, the method does not manage to correctly classify the entire layers of this class. This
may be due to the high proportion of class πfa

4 in this well, compared to the training
wells, A and B. As for the first parameter estimates, the location wise model finds more
of this class than the spatial model. By comparing the display of the marginal pdfs and
the confusion matrices for the models in Figure 39, we can see that the spatial model is a
better classification model for the small classes, and we can see that the mmap solution
for this model finds some of the layer of class πfa

2 at approximately t = 450. The location
wise model does not find class πfa

3 and hardly class πfa
2 . With signal-to-noise ratios of

1.30 for the gammaray log and 1.09 for the density log, the share of matches of 0.6183
and 0.7266 are good, compared to the results from the first parameter estimation. In
accordance with the mmap solution, the simulations from the spatial model in Figure
40 finds more of class πfa

4 than for the first parameter estimates.
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Summary of the results for the facies associations

In a lot of the instances above the location wise model had a better share of matches than
the spatial model. This can be explained by the good match the location wise model had
in the large classes, even though the model had considerable problems finding the small
classes. The spatial model found more of the small classes, and in addition, it managed
to find some of the challenging layers that was introduced in the beginning. The location
wise model did not find any of them. The location wise model was very affected by the
noise in the data, which is reflected in the display of the marginal posterior pdfs and the
simulations. The probability curves in the marginal posterior pdfs are not as smooth as
for the spatial model, which leads to very unstable simulations.

The spatial structure in the prior transition probability matrix in expression (20), is kept
in the simulations. This means that the transitions corresponding to the small entries
of the transition probability matrix will occur less than the transitions corresponding to
the large probabilities. The simulations from the location wise model does not have this
structure. In order to show that this structure is present in the simulations from the
spatial model only, transition probability matrices are calculated from all simulations
from both models. The transition probability matrix calculated from the simulations
from the spatial model is given by

Q̂
fa

=




0.9607 0.0131 0.0165 0.0097
0.0144 0.9172 0.0183 0.0501
0.0626 0.0376 0.8859 0.0140
0.0278 0.0113 0.0078 0.9530




,

and we notice that this matrix is similar to the transition probability matrix in expression
(20). The transition probability matrix calculated from the simulations from the location
wise model is given by

Q̂
fa
lw =




0.8751 0.0884 0.0037 0.0327
0.2120 0.3104 0.0614 0.4162
0.0483 0.2310 0.1069 0.6138
0.0449 0.2229 0.0904 0.6418




,

which does not have the structure of expression (20) at all.

Since the observations from class πfa
1 and πfa

3 separates into different clusters in Figure
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10, we expected that class πfa
1 and πfa

3 should be easy to separate from each other, which
the results from the classifications confirm.

The results from the two different parameter estimates alternated in giving the best
share of matches for the three wells. The second parameter estimates gave best match
for the test well, C, which we did not expect since the signal-to-noise ratios are smaller
with these parameters. The results from second parameter estimates had a tendency to
over-classify class πfa

3 . Apart from this, it is difficult to point out one of the parameter
estimates to be the best for the spatial model.
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Figure 23: Results from the first parameter estimation (visual inspection). From left is the
core classification of well A into facies associations, πfa followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.15 for the gammaray log and 1.03 for the density
log. The gray scale levels of the respective classes are given in Figure 4, and we have that
class πfa

1 is white and class πfa
4 is black.
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Figure 24: Results from the first parameter estimation (visual inspection). From the top
the marginal posterior pdf for well A, p(xt|lgr, ld), is displayed for all t and all classes of
facies associations, πfa, for the spatial model (left) and the location wise model (right). The
presence of the classes of facies associations at every location is marked on the axis of the
respective plots. Further confusion matrices and share of matches for the two models.
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Figure 25: Results from the first parameter estimation (visual inspection). From left is
the core classification of well A into facies associations, πfa, followed by the gammaray log,
lgr, and density log, ld. Further, three simulations from the posterior pdf for the spatial
model, xS , and location wise model xS

lw. The signal-to-noise ratio is 1.15 for the gammaray
log and 1.03 for the density log. The gray scale levels of the respective classes are given in
Figure 4, and we have that class πfa

1 is white and class πfa
4 is black.
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Figure 26: Results from the first parameter estimation (visual inspection). From left is the
core classification of well B into facies associations, πfa followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 2.60 for the gammaray log and 1.29 for the density
log. The gray scale levels of the respective classes are given in Figure 4, and we have that
class πfa

1 is white and class πfa
4 is black.
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Spatial model Location wise model

0 0.5 1

100

200

300

400

500

600

700

800

0 0.5 1 0 0.5 1 0 0.5 1

πfa
1 πfa

2 πfs
3 πfa

4

0 0.5 1

100

200

300

400

500

600

700

800

0 0.5 1 0 0.5 1 0 0.5 1

πfa
1 πfa

2 πfs
3 πfa

4

Confusion matrix Confusion matrix

x\xM πfa
1 πfa

2 πfa
3 πfa

4

P

πfa
1 386 48 5 21 460

πfa
2 19 53 0 52 124

πfa
3 0 9 0 14 23

πfa
4 8 3 0 197 208P

413 113 5 284

x\xM πfa
1 πfa

2 πfa
3 πfa

4

P

πfa
1 385 57 0 18 460

πfa
2 20 36 0 68 124

πfa
3 1 6 0 16 23

πfa
4 8 5 0 195 208P

414 104 0 297

Share of matches 0.7804 Share of matches 0.7558

Figure 27: Results from the first parameter estimation (visual inspection). From the top
the marginal posterior pdf for well B, p(xt|lgr, ld), is displayed for all t and all classes of
facies associations, πfa, for the spatial model (left) and the location wise model (right). The
presence of the classes of facies associations at every location is marked on the axis of the
respective plots. Further confusion matrices and share of matches for the two models.
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Figure 28: Results from the first parameter estimation (visual inspection). From left is
the core classification of well B into facies associations, πfa, followed by the gammaray log,
lgr, and density log, ld. Further, three simulations from the posterior pdf for the spatial
model, xS , and location wise model xS

lw. The signal-to-noise ratio is 2.60 for the gammaray
log and 1.29 for the density log. The gray scale levels of the respective classes are given in
Figure 4, and we have that class πfa

1 is white and class πfa
4 is black.
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Figure 29: Results from the first parameter estimation (visual inspection). From left is the
core classification of well C into facies associations, πfa followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.55 for the gammaray log and 1.28 for the density
log. The gray scale levels of the respective classes are given in Figure 4, and we have that
class πfa

1 is white and class πfa
4 is black.
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Figure 30: Results from the first parameter estimation (visual inspection). From the top
the marginal posterior pdf for well C, p(xt|lgr, ld), is displayed for all t and all classes of
facies associations, πfa, for the spatial model (left) and the location wise model (right). The
presence of the classes of facies associations at every location is marked on the axis of the
respective plots. Further confusion matrices and share of matches for the two models.



60 6 RESULTS AND DISCUSSIONS

50

100

150

200

250

300

350

400

450

500

−1 0 1 −1 0 1

x lgr ld xS xS xS xS
lw xS

lw xS
lw

Figure 31: Results from the first parameter estimation (visual inspection). From left is
the core classification of well C into facies associations, πfa, followed by the gammaray log,
lgr, and density log, ld. Further, three simulations from the posterior pdf for the spatial
model, xS , and location wise model xS

lw. The signal-to-noise ratio is 1.55 for the gammaray
log and 1.28 for the density log. The gray scale levels of the respective classes are given in
Figure 4, and we have that class πfa

1 is white and class πfa
4 is black.
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Figure 32: Results from the second parameter estimation (least squares). From left is the
core classification of well A into facies associations, πfa followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.03 for the gammaray log and 0.80 for the density
log. The gray scale levels of the respective classes are given in Figure 4, and we have that
class πfa

1 is white and class πfa
4 is black.
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Figure 33: Results from the second parameter estimation (least squares). From the top
the marginal posterior pdf for well A, p(xt|lgr, ld), is displayed for all t and all classes of
facies associations, πfa, for the spatial model (left) and the location wise model (right). The
presence of the classes of facies associations at every location is marked on the axis of the
respective plots. Further confusion matrices and share of matches for the two models.
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Figure 34: Results from the second parameter estimation (least squares). From left is the
core classification of well A into facies associations, πfa, followed by the gammaray log, lgr,
and density log, ld. Further, three simulations from the posterior pdf for the spatial model,
xS , and location wise model xS

lw. The signal-to-noise ratio is 1.03 for the gammaray log and
0.80 for the density log. The gray scale levels of the respective classes are given in Figure 4,
and we have that class πfa

1 is white and class πfa
4 is black.
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Figure 35: Results from the second parameter estimation (least squares). From left is the
core classification of well B into facies associations, πfa followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.93 for the gammaray log and 0.92 for the density
log. The gray scale levels of the respective classes are given in Figure 4, and we have that
class πfa

1 is white and class πfa
4 is black.
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Figure 36: Results from the second parameter estimation (least squares). From the top
the marginal posterior pdf for well B, p(xt|lgr, ld), is displayed for all t and all classes of
facies associations, πfa, for the spatial model (left) and the location wise model (right). The
presence of the classes of facies associations at every location is marked on the axis of the
respective plots. Further confusion matrices and share of matches for the two models.
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Figure 37: Results from the second parameter estimation (least squares). From left is the
core classification of well B into facies associations, πfa, followed by the gammaray log, lgr,
and density log, ld. Further, three simulations from the posterior pdf for the spatial model,
xS , and location wise model xS

lw. The signal-to-noise ratio is 1.93 for the gammaray log and
0.92 for the density log. The gray scale levels of the respective classes are given in Figure 4,
and we have that class πfa

1 is white and class πfa
4 is black.
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Figure 38: Results from the second parameter estimation (least squares). From left is the
core classification of well C into facies associations, πfa followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.30 for the gammaray log and 1.09 for the density
log. The gray scale levels of the respective classes are given in Figure 4, and we have that
class πfa

1 is white and class πfa
4 is black.
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Figure 39: Results from the second parameter estimation (least squares). From the top
the marginal posterior pdf for well C, p(xt|lgr, ld), is displayed for all t and all classes of
facies associations, πfa, for the spatial model (left) and the location wise model (right). The
presence of the classes of facies associations at every location is marked on the axis of the
respective plots. Further confusion matrices and share of matches for the two models.
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Figure 40: Results from the second parameter estimation (least squares). From left is the
core classification of well C into facies associations, πfa, followed by the gammaray log, lgr,
and density log, ld. Further, three simulations from the posterior pdf for the spatial model,
xS , and location wise model xS

lw. The signal-to-noise ratio is 1.30 for the gammaray log and
1.09 for the density log. The gray scale levels of the respective classes are given in Figure 4,
and we have that class πfa

1 is white and class πfa
4 is black.
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6.2 Lithofacies

The challenge in the classification of lithofacies is that there are a larger number of classes
than for the facies associations, which makes the layers thinner and the proportion
of some of the classes very small. Especially in the test well, C, we notice that the
proportions of class πlf

1 , πlf
4 and πlf

5 are very small, as we can see from Figure 7. We
expect the small classes to be hard to find. We also expect the models to have problems
separating the four classes of sand of different grain size, πlf

1 − πlf
4 , from each other.

The results from the classification of lithofacies are presented in Figure 41-58. First the
results from the first parameter estimation is considered, followed by the results from
the second parameter estimation.

Likelihood parameters estimated based on visual inspection

The results from the first parameter estimation for the lithofacies are given in Figure
41-43 for the first training well, A, in Figure 44-46 for the second training well, B, and
in Figure 47-49 for the test well, C.

The mmap solution for the spatial model for the first training well, A, in Figure 41 seems
to have all the six classes represented, as apposed to the location wise model. From the
display of the marginal posterior pdfs in Figure 42 we notice that for the location wise
model the pattern of the probabilities for class πlf

1 , πlf
2 and πlf

3 are almost similar, with
the probabilities of class πlf

2 a bit larger than the others. From the confusion matrix it
seems that the location wise model is only capable of separating sand from not sand,
since the mmap solution nearly almost consists of class πlf

2 and πlf
6 . The spatial model

is better to separate the four classes of sand, πlf
1 − πlf

4 , from each other. We notice
that both models have problems finding the correct locations of class πlf

4 , and also the
smallest class in this well, class πlf

5 . In addition, the location wise model does not find
class πlf

1 at all. From the simulations in Figure 43 we can see that the spatial model
gives better simulations, since the noise is a big disturbance in the simulations from the
location wise model.

None of the mmap solutions for the second training well, B, in Figure 44 seems to find
class πlf

1 . From the display of the marginal posterior pdfs and the confusion matrices in
Figure 45, we notice that none of the models find class πlf

5 either. Again we can see that
the location wise model does not manage to separate the first three classes of sand, πlf

1 ,
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πlf
2 and πlf

3 from each other, and we therefore get the same sand/not sand classification
as in the first training well. The spatial model manages to find some of both class πlf

2

and πlf
3 , but still, the share of matches is smaller than for the location wise model. From

the simulations in Figure 46 we notice that both models find it hard to separate the
classes of sand, πlf

1 − πlf
4 , from each other. The the spatial model manages to find the

correct class of sand in relatively many locations, but the location wise model on the
other hand, is too sensitive to the noise in the log data.

From the mmap solutions for the test well, C, in Figure 47 we can see that the location
wise model again has almost exclusively class πlf

2 and πlf
6 in the mmap solution. These

are the largest classes in the test well, as we can see from Figure 7. The spatial model
has all six classes represented in the mmap solution, but from the display of the marginal
posterior pdfs and the confusion matrices in Figure 48 we notice that the model over-
classifies both class πlf

1 and πlf
4 . Since the location wise model has such large proportions

of the biggest classes, πlf
2 and πlf

6 , in the mmap solution, it gets the largest share of
matches, of 0.7104, compared to a share of mathces of 0.6258 for the spatial model. In
the simulations in Figure 49 we can see that class πlf

1 is over-represented in both models.
The simulations from the location wise model are also unstable due to noise, and the
problem in this well also seems to be separating the classes of sand from each other.

Likelihood parameters estimated by minimizing the squared error

The results from the second parameter estimation are given in Figure 50-52 for the first
training well, A, in Figure 53-55 for the second training well, B, and 56-58 for the test
well, C. The signal-to-noise ratios are smaller with these parameters, which may lead to
poorer results.

The mmap solution for the first training well, A, in Figure 50 for the location wise
model seems to have more classes represented in this parameter estimation, but still
we can see that the spatial model finds class πlf

1 better than the location wise model.
The display of the marginal posterior pdfs and the confusion matrix for the location
wise model in Figure 51 tell the same story as in the first parameter estimation, the
model is only capable of separating sand from not sand. Apart from the spatial model
finding class πlf

1 in more locations than the location wise model, the spatial model has
problems finding class πlf

3 , πlf
4 and πlf

5 in the correct locations, which gives the small
share of matches of 0.5032. The share of matches for the location wise model is larger,
0.5508, due to the large proportion of class πlf

6 . The simulations from the spatial model
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in Figure 52, are more stable than for the location wise model, but still, the model has
problems separating the classes of sand.

By visually comparing the mmap solutions for the second training well, B, in Figure 53
with the mmap solutions from the first parameter estimation in Figure 44, these seem
better because they find class πlf

1 . From the display of the marginal posterior pdfs and
the confusion matrices in Figure 54 we can see that as apposed to the spatial model, the
location wise model hardly finds class πlf

1 , and never finds class πlf
4 and πlf

5 at all. The
location wise model has a better share of matches than the spatial model because it has
larger number of correct classifications of class πlf

2 and πlf
6 . The spatial model handles

the separation of the classes of sand, πlf
1 −πlf

4 , better than the location wise model. The
simulations in Figure 55 tell the same story as before, the spatial model is less sensitive
to the noise in the log data.

The mmap solutions for the test well, C, in Figure 56 have even more layers misclassified
into class πlf

1 than for the first parameter estimation, especially for the spatial model.
From the display of the marginal posterior pdfs and the confusion matrices in Figure
57 we can see that the results for the location wise model are almost identical to the
results from the first parameter estimation, while the results for the spatial model are
poorer. The spatial model has a smaller match at class πlf

2 and πlf
6 than the location

wise model, and both models have problems correctly classifying the rest of the classes.
The simulations from the spatial model in Figure 58 seem poorer than before, due to
the large representation of class πlf

1 . The simulations from the location wise model are
as unstable as always.

Summary of the results for the lithofacies

As for the facies associations, the location wise model gave better share of matches
than the spatial model in many of the instances, due to the good match in the large
classes. Still, the posterior pdf from the spatial model managed to separate the four
classes of sand, πlf

1 − πlf
4 , better than the location wise model. We noticed that for the

location wise model, the probabilities in the marginal posterior pdfs are below 0.5 nearly
everywhere for all classes except class πlf

6 , almost like it protected itself for making total
misclassifications. The spatial model has larger probabilities for the class the model
classifies in the respective locations, including for the misclassifications.

Notice that the simulations from the spatial model keep the same spatial structure that
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was specified in the prior model in expression (22). This means that the transitions
corresponding to the small entries of the prior transition probability matrix in expres-
sion (22), should appear less than the transitions corresponding to the large entries in
the simulations. There are no such structure in the location wise model. Transition
probability matrices are calculated from all simulations from both models, in order to
confirm this structure. The transition probability matrix calculated from all simulations
from the spatial model is given by

Q̂
lf

=




0.8868 0.0675 0.0210 0.0007 0.0082 0.0157
0.0293 0.8574 0.0651 0.0217 0.0096 0.0169
0.0234 0.0652 0.7791 0.0394 0.0172 0.0757
0.0097 0.0410 0.0299 0.8229 0.0042 0.0924
0 0.0752 0.1028 0.1153 0.6316 0.0752
0.0057 0.0151 0.0176 0.0178 0.0153 0.9284




,

and the transition probability matrix calculated from all simulations from the location
wise model is given by

Q̂
lf
lw =




0.2172 0.4410 0.2555 0.0407 0.0008 0.0448
0.2134 0.4354 0.2657 0.0371 0.0004 0.0480
0.1735 0.3637 0.2926 0.0544 0.0022 0.1137
0.0581 0.1185 0.1280 0.2382 0.0083 0.4491
0 0 0.0124 0.0248 0.0186 0.9441
0.0082 0.0235 0.0377 0.0712 0.0266 0.8328




As we can see, only the simulations from the spatial model have the structure of ex-
pression (22). The entries that are zero in expression (22) should have been zero in
the matrix calculated from the simulations of the spatial model, but due to numerical
instabilities, the entries are only almost zero.

Based on Figure 11 we expected the probabilities of misclassifying class πlf
2 as class πlf

6

and vice versa to be small, which the results from the classification confirm.

For the lithofacies also, the two parameter estimations alternated in giving the best share
of matches, though the first parameter estimates gave the best results for the test well,
C. The signal-to-noise ratio was larger for the first parameter estimates in this well, of
1.53 for the gammaray log and 1.37 for the density log, which may have been the reason.
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Figure 41: Results from the first parameter estimation (visual inspection). From left is
the core classification of well A into lithofacies, πlf followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.64 for the gammaray log and 1.13 for the density
log. The gray scale levels of the respective classes are given in Figure 6, and we have that
class πlf

1 is white and class πlf
6 is black.
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Figure 42: Results from the first parameter estimation (visual inspection). From the top
the marginal posterior pdf for well A, p(xt|lgr, ld), is displayed for all t and all classes of
lithofacies, πlf , for the spatial model (left) and the location wise model (right). The presence
of the classes of lithofacies at every location is marked on the axis of the respective plots.
Further confusion matrices and share of matches for the two models.
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Figure 43: Results from the first parameter estimation (visual inspection). From left is
the core classification of well A into lithofacies, πlf , followed by the gammaray log, lgr, and
density log, ld. Further, three simulations from the posterior pdf for the spatial model, xS ,
and location wise model xS

lw. The signal-to-noise ratio is 1.64 for the gammaray log and
1.13 for the density log. The gray scale levels of the respective classes are given in Figure 6,
and we have that class πlf

1 is white and class πlf
6 is black.
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Figure 44: Results from the first parameter estimation (visual inspection). From left is
the core classification of well B into lithofacies, πlf followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 2.32 for the gammaray log and 1.61 for the density
log. The gray scale levels of the respective classes are given in Figure 6, and we have
that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched the core

classification is missing.
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Figure 45: Results from the first parameter estimation (visual inspection). From the top
the marginal posterior pdf for well B, p(xt|lgr, ld), is displayed for all t and all classes of
lithofacies, πlf , for the spatial model (left) and the location wise model (right). The presence
of the classes of lithofacies at every location is marked on the axis of the respective plots.
Further confusion matrices and share of matches for the two models.
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Figure 46: Results from the first parameter estimation (visual inspection). From left is
the core classification of well B into lithofacies, πlf , followed by the gammaray log, lgr, and
density log, ld. Further, three simulations from the posterior pdf for the spatial model, xS ,
and location wise model xS

lw. The signal-to-noise ratio is 2.32 for the gammaray log and
1.61 for the density log. The gray scale levels of the respective classes are given in Figure 6,
and we have that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched

the core classification is missing.
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Figure 47: Results from the first parameter estimation (visual inspection). From left is
the core classification of well C into lithofacies, πlf followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.53 for the gammaray log and 1.37 for the density
log. The gray scale levels of the respective classes are given in Figure 6, and we have
that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched the core

classification is missing.
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Figure 48: Results from the first parameter estimation (visual inspection). From the top
the marginal posterior pdf for well C, p(xt|lgr, ld), is displayed for all t and all classes of
lithofacies, πlf , for the spatial model (left) and the location wise model (right). The presence
of the classes of lithofacies at every location is marked on the axis of the respective plots.
Further confusion matrices and share of matches for the two models.
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Figure 49: Results from the first parameter estimation (visual inspection). From left is
the core classification of well C into lithofacies, πlf , followed by the gammaray log, lgr, and
density log, ld. Further, three simulations from the posterior pdf for the spatial model, xS ,
and location wise model xS

lw. The signal-to-noise ratio is 1.53 for the gammaray log and
1.37 for the density log. The gray scale levels of the respective classes are given in Figure 6,
and we have that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched

the core classification is missing.
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Figure 50: Results from the second parameter estimation (least squares). From left is
the core classification of well A into lithofacies, πlf followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.57 for the gammaray log and 0.95 for the density
log. The gray scale levels of the respective classes are given in Figure 6, and we have that
class πlf

1 is white and class πlf
6 is black.
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Figure 51: Results from the second parameter estimation (least squares). From the top
the marginal posterior pdf for well A, p(xt|lgr, ld), is displayed for all t and all classes of
lithofacies, πlf , for the spatial model (left) and the location wise model (right). The presence
of the classes of lithofacies at every location is marked on the axis of the respective plots.
Further confusion matrices and share of matches for the two models.
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Figure 52: Results from the second parameter estimation (least squares). From left is the
core classification of well A into lithofacies, πlf , followed by the gammaray log, lgr, and
density log, ld. Further, three simulations from the posterior pdf for the spatial model, xS ,
and location wise model xS

lw. The signal-to-noise ratio is 1.57 for the gammaray log and
0.95 for the density log. The gray scale levels of the respective classes are given in Figure 6,
and we have that class πlf

1 is white and class πlf
6 is black.
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Figure 53: Results from the second parameter estimation (least squares). From left is
the core classification of well B into lithofacies, πlf followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 2.57 for the gammaray log and 1.27 for the density
log. The gray scale levels of the respective classes are given in Figure 6, and we have
that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched the core

classification is missing.
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Figure 54: Results from the second parameter estimation (least squares). From the top
the marginal posterior pdf for well B, p(xt|lgr, ld), is displayed for all t and all classes of
lithofacies, πlf , for the spatial model (left) and the location wise model (right). The presence
of the classes of lithofacies at every location is marked on the axis of the respective plots.
Further confusion matrices and share of matches for the two models.
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Figure 55: Results from the second parameter estimation (least squares). From left is the
core classification of well B into lithofacies, πlf , followed by the gammaray log, lgr, and
density log, ld. Further, three simulations from the posterior pdf for the spatial model, xS ,
and location wise model xS

lw. The signal-to-noise ratio is 2.57 for the gammaray log and
1.27 for the density log. The gray scale levels of the respective classes are given in Figure 6,
and we have that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched

the core classification is missing.
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Figure 56: Results from the second parameter estimation (least squares). From left is
the core classification of well C into lithofacies, πlf followed by the gammaray log, lgr,
density log, ld, and mmap solutions, xM and xM

lw, for the spatial and location wise model
respectively. The signal-to-noise ratio is 1.21 for the gammaray log and 1.07 for the density
log. The gray scale levels of the respective classes are given in Figure 6, and we have
that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched the core

classification is missing.
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Figure 57: Results from the second parameter estimation (least squares). From the top
the marginal posterior pdf for well C, p(xt|lgr, ld), is displayed for all t and all classes of
lithofacies, πlf , for the spatial model (left) and the location wise model (right). The presence
of the classes of lithofacies at every location is marked on the axis of the respective plots.
Further confusion matrices and share of matches for the two models.
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Figure 58: Results from the second parameter estimation (least squares). From left is the
core classification of well C into lithofacies, πlf , followed by the gammaray log, lgr, and
density log, ld. Further, three simulations from the posterior pdf for the spatial model, xS ,
and location wise model xS

lw. The signal-to-noise ratio is 1.21 for the gammaray log and
1.07 for the density log. The gray scale levels of the respective classes are given in Figure 6,
and we have that class πlf

1 is white and class πlf
6 is black. In the locations that are hatched

the core classification is missing.
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7 Closing Remarks

In this study we have shown that a spatial classification model for wells from the Statfjord
Formation at the Tempen Area can be derived and evaluated. Through a study of the
well logs and the formation of the wells, we have adapted a Bayesian model to the well
log data considered.

From the study of the well logs, we have seen that the levels of response from the
formation varies between the wells. The need of a standardization method for the log
data is therefore present. In this study we considered a simple standardization of the
log data, but a class-dependent standardization may be considered in future research.

We found a considerable spatial structure in the classes of facies associations and litho-
facies, which is reflected in the prior model. The proportions of the classes in the wells
are different, which makes it hard to derive a good prior model for classification of blind
wells. In further studies a prior model may be estimated from several representative
training wells. A semi-Markov or a second order Markov prior model can also be con-
sidered, though the problem will be extremely expanded. The well logs also contains
spatial structure. The log-response is considerably affected by neighbour observations
in the formation, and we have tried to recreate the underlying structure in the likeli-
hood model. The parameter estimates in the likelihood model were relatively stable. In
further work a class-dependent error may be considered.

The classification model in this study is complex, and there are many model parameters
to be estimated. If the model assumptions and the underlying model does not coincides
completely, a complex model may give poorer results than a simpler model. The results
from the classifications of the blind well were not as good as we had hoped, which may
be due to incorrect model assumptions, but also to the differences between the wells
considered. Still, our classification model managed some of the classical challenges in
facies classification. Further, the spatial model managed to classify the small classes of
the wells relatively good, compared to the location wise model.

There is obviously a spatial structure in the well log data and the formation. The
expenses of the spatial classification model are the large state spaces, and therefore the
need of large computing resources. The extra effort with the spatial model compared
to a location wise model, is yet not proven to give significantly improved results. If a
spatial model should be considered in further studies, more representative training data
must be used.
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