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Abstract

We study and improve the CM-method for the creation of elliptic curves with specified
group order over finite fields. We include a thorough review of the mathematical theory
needed to understand this method. The ability to construct elliptic curves with very
special group order is important in pairing-based cryptography.
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Preface

In recent years a special family of elliptic curves, known as CM-curves, has been of
increasingly interest in cryptography. This master thesis focuses on the construction of
CM-curves, using the CM-method [1]. The mathematical theory needed to understand
this method is considerable and take up a large part of this paper. The CM-method for
creating elliptic curves is presented in the last chapter, where it is also generalized to
work over any finite field.

In the first part this paper follows the excellent book by Borevich and Shafarevich [3].
Most of the material regarding elliptic curves is from [10], [11] and [12]. The CM-method
was first developed by Atkin and Morain [1] and has been studied further in [7]. The
computer system PARI/GP has been used for computations.

The author thanks supervisor prof. Alexei Rudakov for his insight and comments,
and assistent supervisor Kristian Gjøsteen for introducing this topic, his continuous help
and his ability to see things from a different angle.
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1 Introduction

In recent years many new types of cryptographic protocols have been studied, based on
bilinear pairings. Here one can especially mention identity based cryptography, see [2] for
one proposed encryption scheme. The only known group structures with efficiently com-
putable bilinear pairings usable for cryptography are special families of elliptic curves.

An elliptic curve E(Fq) with q = pr and p > 3 prime, can be represented as the
solutions (x, y) over Fq of an equation y2 = x3 +Ax+B where A,B ∈ Fq, together with
a single extra point. One can define an addition on elliptic curves, turning them into
abelian groups.

When using an elliptic curve in a cryptosystem, controlling the group order #E(Fq)
is important as it directly determines the security of the cryptosystem. One method to
find proper curves is to generate random curves and compute the group order using point
counting algorithms such as Schoof’s [8] or Satoh’s algorithms. A different approach is
known as the complex multiplication method (CM-method) and was developed by Atkin
and Morain [1] and studied further by Lay and Zimmer [7]. Here one can specify the
group order n and a prime p and the CM-method produces an elliptic curve E such that
#E(Fp) = n, provided such a curve exists.

CM-curves have special properties and are usually avoided in cryptography. Pairing-
friendly curves are very sparse and point counting algorithms cannot efficiently produce
them. The CM-method can however do this efficiently, as one can specify properties of
the curve in advance. This makes CM-curves interesting for identity based cryptography.

The purpose of this paper is to understand the mathematical theory behind the CM-
method. We study generalized prime numbers in rings without unique factorization,
modules and orders in algebraic number fields, class field theory and elliptic curves over
the complex numbers, number fields and finite fields. We also include and extend the
CM-method.
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2 Number Theory

2.1 Norm, trace and modules

We start this section by introducing norm and trace of elements of extension fields. Let
k be a field and K/k a finite extension of degree n. Let ω1, . . . , ωn be a basis for this
extension. For any α ∈ K we can write

αωi =
n∑
j=1

aijωj

for each i, where aij ∈ k. The set of aij then define a matrix (aij) and we define the
characteristic polynomial fα(x)

fα(x) = det(xI − (aij))

where I is the identity matrix. It can be shown that the characteristic polynomial is a
power of the minimal polynomial and is independent of the basis chosen.

We also define norm and trace of the element α

NK/k(α) = det(aij)

TrK/k(α) =
n∑
i=1

aii

Trace and norm are independent of the basis we have chosen for K/k and they satisfy
the following properties. For any α, β ∈ K and any a ∈ k

N(αβ) = N(α)N(β)
Tr(α+ β) = Tr(α) + Tr(β)

Tr(aα) = aTr(α)

We also have the following relation between norms, traces and the characteristic
polynomial.

Theorem 2.1. Let fα(x) be the characteristic polynomial for the element α ∈ k/K and
let Ω be an extension where fα splits into linear factors

fα(x) = (x− α1) . . . (x− αn)

Then

NK/k(α) = α1 . . . αn

TrK/k(α) = α1 + · · ·+ αn
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Proof. If
fα(x) = det(xI − (aij)) = xn + b1x

n−1 + · · ·+ bn

then it follows from the properties of determinants that b1 = −Tr(aij) and bn =
(−1)ndet(aij). But from the splitting in Ω we have b1 = −(α1 + · · · + αn) and bn =
(−1)nα1 . . . αn, and the theorem is proven.

For the remainder of this section K will be an algebraic number field, i.e. a finite
extension of Q. Let µ1, . . . , µm ∈ K be any finite set of elements. Define a set

M = {c1µ1 + · · ·+ cmµm : ci ∈ Z}. (1)

This is a finitely generated Z-module with {µ1, . . . , µm} as generator set. We will only
consider modules on this form and we will sometimes just write M = {µ1, . . . , µm}.

We say that two modules M and M ′ are similar if there exists an element α ∈ K
such that M = αM ′.

If K has degree n over Q, a module in K can not have more than n linearly inde-
pendent elements over Q. We say that a module is full if it contains exactly n linearly
independent elements over Q.

We know that a module has many distinct sets of generators. We are interested in
finding a small set that still generates the whole module. Let {α1, . . . , αm} be a set of
generators. We say that this set is a basis if its elements are linearly independent over
Z.

One can show that all modules on the form given by (2.1) are free, and thus they
have a basis and any basis for a module has the same number of elements. The number
of elements in a basis is known as the rank of the module and coincides with the number
of linearly independent elements (over Q) in the module.

2.2 Coefficient rings and orders

We will now define a few constructions related to modules. We start with orders. A full
module in K/Q is called an order if it contains 1 and is a subring of K.

Let M be a full module in K. We define the coefficient ring of M

DM = {α ∈ K : αM ⊆M}

It is easily shown that DM is a ring with unity.

Theorem 2.2. Let M be a full module in K/Q. The coefficient ring of M is a full
module.

Proof. We first show that DM is a module. Let γ ∈ M be any non-zero element. For
any α ∈ DM , αγ ∈ M . It follows that γDM ⊆ M and that γDM is a submodule of M .
But then DM = γ−1(γDM ) is also a module.
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To show that this is a full module, we pick a non-zero element α ∈ K. Let
{µ1, . . . , µn} be a basis for M . Clearly it is also a basis for K over Q. We can then
choose rational numbers aij such that

αµi =
n∑
j=1

aijµj

for all 1 ≤ i ≤ n. We can find an integer c such that all caij ∈ Z. Since M is a Z-module,
cαµi ∈ M . This is true for all µi and thus cα ∈ DM . We now let {α1, . . . , αn} be any
basis for K. Using the above, we can find integers {c1, . . . , cn} such that all the product
ciαi are in the coefficient ring. These elements are linearly independent over Q, and it
follows that DM is a full module.

Since DM is a full module and a ring with unity, we have this corollary.

Corollary 2.3. The coefficient ring of any full module in K/Q is an order.

Lemma 2.4. Let α be in the order D. Then the characteristic polynomial and the
minimal polynomial of α has integer coefficients and the norm and trace of α are integers.

Proof. Let M be a module such that D is its coefficient ring. (We can always find such
an M , for instance we could take M = D.) And let {µ1, . . . µn} be a basis for M . Since
α ∈ D, we can write

αµi =
∑

aijµj ∈M

for all i. It follows that aij are integers. The characteristic polynomial

fα(x) = det(xI − (aij))

thus has integer coefficients. Using the fact that fα is a power of the minimal polynomial
and Theorem 2.1, we have shown the lemma.

2.3 Maximal order

A number field has many orders and we will in this part show that there exists a maximal
order containing all orders. We have seen that elements in an order have minimal
polynomials with integer coefficients. This motivates us to look at the set of all elements
whose minimal polynomial has integer coefficients. We call this set RK . It is clear that
all orders must be contained in this set. It turns out that RK is in fact the maximal
order.

Theorem 2.5. The maximal order of a number field K is the set of elements that
have minimal polynomials with integer coefficients. This is equivalent to saying that the
maximal order is the integral closure of Z in K.

First we prove two lemmas.
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Lemma 2.6. Let α be an element in a number field K and let tm + c1t
m−1 + · · · + cm

be the minimal polynomial of α. If all ci are integers (i.e. α ∈ RK), then the module
M = {1, α, . . . , αm−1} is a ring.

Proof. Need only to show that αk ∈M for all k ≥ 0. This is clear for all k ≤ m− 1 and
since α is a root of its minimal polynomial we get

αm = −c1αm−1 − c2α
m−2 − · · · − cm

and αm ∈M . We will show the rest by induction. Let k > m and assume that αk−1 ∈M .
Then there exists integers ai such that

αk−1 = a1α
m−1 + a2α

m−2 + · · ·+ am

and
αk = ααk−1 = a1α

m + a2α
m−1 · · ·+ amα ∈M.

The lemma is proved.

Lemma 2.7. Let D be an order in a number field K. Let α1, . . . , αp ∈ RK . Then the
polynomial ring D[α1, . . . , αp] is an order in K.

Proof. We first show that D[α] is an order, for α ∈ RK . Let ω1, . . . , ωn be a basis for D.
From the previous lemma we can find integers such that αk = a0 +a1α+ · · ·+am−1α

m−1

for any k ≥ 0. An element of D[α] can be written as a linear combination of elements on
the form ωiα

j , with 1 ≤ i ≤ n, 0 ≤ j ≤ m−1. Hence D[α] is a finitely generated module.
Since D ⊆ D[α], we see that it is a full module in K and thus an order. Repeating this
procedure yields the lemma.

Proof of theorem. Let D be an order. Take two elements α, β ∈ RK . From the previous
lemma, D[α, β] is an order. Lemma 2.4 states that elements of an order lies in RK , and
we get D[α, β] ⊆ RK . Then α − β and αβ are in RK , which shows that RK is a ring.
Since D ⊆ RK , we know that RK contains n linearly independent elements. It remains
to show that it is finitely generated.

Let ω1, . . . , ωn be a basis for D. There exists a set of elements ω∗1, . . . , ω
∗
n ∈ K such

that Tr(ωiω∗i ) = 1, Tr(ωiω∗j ) = 0 for i 6= j. Consider the Z-module D∗ generated by
ω∗1, . . . , ω

∗
n. Let α ∈ RK be any element. Since it is contained in K we can find rational

numbers ci such that
α = c1ω

∗
1 + · · ·+ cnω

∗
n

We multiply with ωi and take traces.

Tr(αωi) = c1Tr(ωiω∗1) + · · ·+ cnTr(ωiω∗n) = ci

Since αωi ∈ D[α] we can use Lemma 2.4 and get that ci is an integer, for each i. Hence
the element α is in D∗ and RK ⊆ D∗ is a submodule. Since D∗ is noetherian, any
submodule is finitely generated. The theorem is proved.
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2.4 Finiteness of class number

Let D be an order in a number field. Similar modules have the same coefficient ring, so
consider classes of similar modules in this field. The number of such classes that has D
as coefficient ring is called the class number of the order D. If RK is the maximal order
of K, we say that the class number of the field K is the class number of RK .

This section is devoted to proving the following important theorem.

Theorem 2.8. Let D be any fixed order in the algebraic number field K. There are only
finitely many non-similar modules in K which has D as coefficient ring, i.e. the class
number of D is finite.

We first state two lemmas from the general group and module theory.

Lemma 2.9. Let M be a free abelian group of rank n. Let M0 ⊆M be a subgroup also
with rank n. Then the index (M : M0) is finite and equals the absolute value of the
determinant of the transition matrix from a basis for M to a basis of M0.

Lemma 2.10. Let M be a full module in a number number field K. Then for a fixed
positive integer n, there are only a finite number of submodules M0 ⊆ M such that the
index (M0 : M) = n.

Earlier we defined the norm of an element. We will now look at the norm of a
module. Let K be an algebraic number field. Let M = {µ1, . . . , µn} be a full module
with coefficient ring DM = {ω1, . . . , ωn}. We define a matrix (aij) as the transition
matrix between these bases

µj =
n∑
i=1

aijωi.

Any two bases for a module are connected by a matrix with determinant ±1. Hence the
determinant of (aij) is not depended on the bases chosen, up to sign, and we define the
norm of the module M as N(M) = |det(aij)|.

For a full module M we will now define its discriminant. Let µ1, . . . , µn be a basis
for M . Consider the matrix

(Tr(µiµj)) where 1 ≤ i, j ≤ n

We define the discriminant of the module M to be the determinant of this matrix and we
write D(M) = det(Tr(µiµj)). Using the same argument as when we defined the norm
of a module, we see that the discriminant is not dependent on the basis chosen for M .

Lemma 2.11. Let M and αM be two similar modules. Then

N(αM) = |N(α)|N(M)

Proof. Write M = {µ1, . . . , µn}, αM = {αµ1, . . . , αµn}. These similar modules have
the same coefficient ring, D. Let A be the transition matrix from the first basis to the
second. Let B and C be the transition matrices from any basis of the coefficient ring to
the bases µi and αµi, respectively. Now the lemma follows from the fact that C = BA,
and det(A) = N(α).
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Let K be an algebraic number field of degree n. Then there are n distinct embeddings
of K into C. For a complex embedding, we can always take its complex conjugate, and
get a distinct embedding. Therefore the complex embeddings come in pair. We write 2t
for the number of complex embeddings and s for the number of real.

Lemma 2.12. Let K/Q have degree n = 2t + s. Let M be a full module in K with
discriminant D. Then there exist a non-zero element α ∈M such that

|N(α)| ≤ (
2
π

)t
√
|D|

Proof. Let ε be any positive real number. We can find positive real numbers c1, . . . , cs+t
such that

c1 . . . cs+t = (
2
π

)t
√
|D|+ ε.

We now use Minkowski’s Lemma (see Chapter 2, Section 4 of [3]), which ensures that
we can find a non-zero number α ∈M satisfying

|σk(α)| < ck for 1 ≤ k ≤ s

|σs+j(α)|2 < cs+j for 1 ≤ j ≤ t

where σi are the different embeddings. We then get

|N(α)| = |σ1(α)| . . . |σs(α)||σs+1(α)|2 . . . |σs+t(α)|2 < c1 . . . cs+t

Since this holds for arbitrary small ε, there must be such an α and the lemma is proved.

Proof of Theorem 2.8. Let M be any module with D as coefficient ring. Let D be the
discriminant of M and D0 the discriminant of D. It can be shown that there is a simple
connection between these discriminants, given by

D = D0N(M).

Using this and the previous lemma, we get

|N(α)| ≤ (
2
π

)tN(M)
√
|D0|.

We now use Lemma 2.9 and get

(
1
α
M : D) = N(

1
α
M)−1 =

|N(α)|
N(M)

≤ (
2
π

)t
√
|D0|.

Consider now all the cases where ( 1
αM : D) = r, where r ≤ ( 2

π )t
√
|D0| is a fixed integer.

It follows that 1
αM ⊆ 1

rD and we get

D ⊆ 1
α
M ⊆ 1

r
D.

From Lemma 2.10 we get that there can only be a finite number of modules 1
αM such

that this is satisfied. By adjusting r to count for all the cases, we still end up with a
finite number of modules. Any module M which has D as coefficient ring is similar to
one of the modules in this finite set. The theorem is proved.



2.5 Orders in quadradic fields 9

2.5 Orders in quadradic fields

Algebraic number fields of degree 2 will be of special interest to us. Let K be such a
field. It is clear that K = Q(

√
d) for some square-free d ∈ Z. Let us now consider the

maximal order RK of Q(
√
d). An element α ∈ Q(

√
d) can be written as

α = a+ b
√
d

with a, b ∈ Q. Since its characteristic polynomial is

x2 − 2ax+ a2 − db2.

we need 2a and a2 − db2 to be integers. Some simple calculations give us the following
theorem.

Theorem 2.13. Let d 6= 1 be a square-free integer. Let RK be the maximal order of the
quadratic field Q(

√
d). We can then take the following as a basis for RK

{1, ω} where
{
ω = (1 +

√
d)/2 if d ≡ 1 (mod 4)

ω =
√
d if d ≡ 2, 3 (mod 4)

Further, any order is on the form {1, fω}, where f is a positive integer.

We now look at classes of similar modules in quadratic fields. Any module {α, β} is
similar to a module {1, γ}, by simply setting γ = β/α. We will therefore focus on the
modules on this form.

Let γ be any irrational number in the field Q(
√
d). Then there exist integers a, b, c

such that aγ2 + bγ+ c = 0. If we require these integers to have no common divisors and
a > 0, this induces a unique polynomial

φγ(t) = at2 + bt+ c.

We say that the integers (a, b, c) corresponds to the element γ.

Theorem 2.14. Let γ ∈ Q(
√
d) with φγ(t) = at2 + bt+ c. Then the module M = {1, γ}

has coefficient ring DM = {1, aγ}. Further, the discriminant of DM is b2 − 4ac and the
norm of M is 1/a.

Proof. Let α ∈ M be any element. We write α = x + yγ with x, y ∈ Q. Recall that
α ∈ DM is equivalent to αM ⊆M . αM ⊆M if and only if

α1 = x+ yγ ∈M

and
αγ = xγ + yγ2 = −cy

a
+ (x− by

a
)γ ∈M.

Thus we require x, y, bya ,
cy
a to be integers. But since a, b and c does not have common

divisors, we see that a must divide y. It follows that DM = {1, aγ}.
A straigthforward calculation proves the rest of the theorem.
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We will now look at all the modules which have the same fixed coefficient ring, D.
Recall from the previous section that these modules are divided into a finite number of
equivalence classes. We will show that one can define a multiplication on these classes,
and this makes the set of classes into a finite abelian group.

Let M = {α, β} and M1 = {α1, β1} be modules. We define multiplication of modules
as the element-wise multiplication. The product will again be a module, independent of
the bases chosen and generated by {αα1, αβ1, βα1, ββ1}. We write MM1 for the product
of M and M1.

Lemma 2.15. Let M be a full module in a quadratic field K, with coefficient ring D.
Define the conjugate module M to consist of the complex conjugates of all the elements
of M . Then M is a full module with coefficient ring D. We also have the following
relation.

MM = N(M)D

Proof. Let M = {α, β}. Any element γ ∈M is on the form γ = aα+ bβ, where a and b
are integers. M is clearly a full module. We have

γ ∈ DM ⇔ γ ∈ DM .

Using Theorem 2.13, simple arithmetics shows that the conjugate of an order, is the
same order. Hence, γ ∈ DM and the coefficient rings of M and its conjugate coincide.

To prove the last part of the lemma, we first assume that M = {1, γ}. We use the
notation in Theorem 2.14 and observe that φγ = φγ . Then

MM = {1, γ}{1, γ}
= {1, γ, γ, γγ}

= {1, γ,−γ − b

a
,
c

a
}

= {1, γ, b
a
,
c

a
}

=
1
a
{a, b, c, aγ}

=
1
a
{1, aγ},

where the last equality follows from the fact that g.c.d(a, b, c) = 1. From Theorem 2.14
we get

MM =
1
a
{1, aγ} =

1
a

DM = N(M)DM .

We now show this for any module N . We can write N = α{1, γ} = αM . From 2.11 we
get

NN = αMαM = ααN(M)DM = |N(α)|N(M)DM = N(αM)DM = N(N)DN .

This completes the proof.
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Lemma 2.16. Let D be a fixed order in a quadratic field. The set of modules which has
D as coefficient ring, becomes an abelian group with the multiplication defined above.

Proof. Let the modules M and M1 both have D1 as coefficient ring. Let the product
MM1 have coefficient ring D2. We use the previous lemma and get

MM1MM1 = N(MM1)D2.

Since multiplication is associative and commutative, we can also write

MM1MM1 = MMM1M1 = N(M)N(M1)D1

But the norm of a module is simply a number, so comparing these two equations, we get

aD2 = bD1

So, these two orders are similar, which means that they must be equal (Theorem 2.13).
Hence, this multiplication preserves the coefficient ring. Also observe that D1 acts as
the identity element, and M/N(M) is the inverse of M . This proves the lemma.

Theorem 2.17. Let D be a fixed order in a quadratic number field. The set of equivalence
classes of similar modules which have D as coefficient ring becomes a finite abelian group
with multiplication defined above.

Proof. For any moduleM , we let [M ] be its equivalence class of similar modules. Observe
that (αM)(βM1) = αβ(MM1), and we define multiplication of equivalence classes as

[M ][M1] = [MM1]

where we choose any representative for the class. Using the previous Lemma and Theo-
rem 2.8, we have proved this Theorem.

2.6 Class number of an imaginary quadratic field

We now turn our focus towards imaginary quadratic fields. We have seen that for orders
in number fields, the class number is finite. We will in this section show how one can
compute this number for imaginary quadratic field. We start by introducing reduced
modules, which will act as unique representatives for our equivalence classes.

Definition 2.18. Let ω1 and ω2 be two complex numbers which are linearly independent
over R. Then a lattice corresponding to {ω1, ω2} is the discrete subgroup of C defined
by the set

{ω1a+ ω2b : a, b ∈ Z}

Two lattices, M and M1, are similar if there exists an element γ ∈ C such that
M = γM1.

For a lattice M , we can find a special basis, called the reduced basis. This is the
basis made up of the shortest vector α ∈M and the shortest vector β ∈M which is not
collinear to α. This basis is unique up to rotations which takes the lattice onto itself.
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Lemma 2.19. Let M and M1 be lattices in C. If M and M1 are similar then their
reduced bases can be transformed onto each other by a rotation and a scaling.

Proof. Let α, β be a reduced basis for M and α1, β1 for M1. Let ξM = M1. It follows
that ξα, ξβ is a reduced basis for M1. Hence we can obtain this basis from a rotation of
α1, β1. Let ν ∈ C correspond to this rotation. Then νξα = α1, νξβ = β1. Hence the basis
given by α1 and β1 is obtained by a rotation with the angle arg(νξ) and multiplication
by the scalar |νξ|. The Lemma follows.

Definition 2.20. Let K be an imaginary quadratic field. An element γ ∈ K is reduced
if the following is satisfied

Imγ > 0
−1

2 < Reγ ≤ 1
2

|γ| > 1 if −1
2 < Reγ < 0

|γ| ≥ 1 if 0 ≤ Reγ ≤ 1
2

(F)

We further say that the module M is reduced if M = {1, γ} and γ is reduced.

Theorem 2.21. Each equivalence class in an imaginary quadratic number field contains
one and only one reduced module.

Proof. Let M be a module in the field Q(
√
d), where d < 0. We can consider M as

a lattice of the complex plane. Let α, β form a reduced basis for the lattice M . From
geometric considerations we get that the similar module 1

αM = {1, γ}, is a reduced
module. This shows that any equivalence class has a module on reduced form. We now
turn to the uniqueness.

Let γ = x + yi be reduced. If we consider all the vectors on the form k + lγ, a
small calculation shows that γ is the shortest of these that are not on the real line.
This means that 1 and γ forms a reduced basis for the lattice {1, γ}. Let γ and γ1 be
reduced numbers with the module {1, γ} similar to {1, γ1}. Since these modules are
similar as lattice, Lemma 2.19 says that we can transform the basis {1, γ} into {1, γ1}
by multiplying with a complex number. But this clearly implies that γ = γ1, and the
reduced module is unique.

We now look at how we can find these reduced forms. For the imaginary quadratic
field, Q(

√
d), we fix an order D with discriminant D < 0. Let M = {1, γ} be any

module on reduced form with coefficient ring equal to D. Let (a, b, c) be the integers
corresponding to γ. We can then write, using the notation from Theorem 2.14,

γ = −b+
√
D

2a
D = b2 − 4ac.

(∗)

From the conditions of γ being reduced, we get the following restrictions on a, b and c.

−a ≤ b < a
c ≥ a for b ≤ 0
c > a for b > 0

(∗∗)
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Solutions to (∗) and (∗∗) give us all reduced modules with D as coefficient ring. From
these equations, we also deduce the following bound for a and b

|b| ≤ a <

√
−D
3

From this, it follows that there can only be a finite number of reduced modules with D
as coefficient ring. But it also gives us an opportunity to find these modules. We show
this in an example.

Example 2.22. We consider the imaginary field Q(
√
−15). Its maximal order is {1, ω},

ω = 1+
√
−15

2 , with discriminant D = −15. We now calculate the reduced modules with
coefficient ring equal to this order. We use the above restrictions and get

|b| ≤ a <
√
−D/3 =

√
5.

If b is even, we get that c = (b2−D)/4a is not an integer, for D = −15. Since b < a ≤ 2,
we end up with the following possible cases

b = ±1, a = 2, c =
1 + 15

8
= 2

b = −1, a = 1, c =
1 + 15

4
= 4

The case b = +1, a = 2, c = 2 must be discarded since it violates the above conditions.
This means that we have two reduced modules which have {1, ω} as coefficient ring,
{1, γ1} and {1, γ2} where

γ1 =
1 +

√
−15

4

γ2 =
1 +

√
−15

2
.

Thus, we have found 2 reduced modules, and the class number of the maximal order of
Q(
√
−15) is 2.

The class number for the maximal order is called the class number of the field. We
show later that it can also be defined as the number of divisor classes of the field.
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3 Divisors and Valuations

3.1 Divisors

Let D be an integral domain. D may or may not have unique factorization in prime
factors. We wish to create a semi-group D with unique factorization and a mapping

(−) : D∗ → D

α 7→ (α),

such that we can study the structure of D by the prime decomposition in D .
It is clear that we need this mapping to be a homomorphism, so that (αβ) = (α)(β).

Hence if α divides β in D, (α) divides (β) in D . We also want the converse to be true.
We say that a ∈ D divides α ∈ D if a divides the image (α), and we write a|α.

The elements that are divisible by the element α in D are closed under addition. We
wish to preserve this property in D .

We also wish to make D as small as possible. Hence if two elements of D divide the
same set of elements, they must be equal. We formalize this in the following definition.

Definition 3.1. Let D be an integral domain. D has a divisor construction if there is
a semi-group D with unique factorization and a homomorphism D∗ → D that satisfies
the following for all α, β ∈ D∗ and a, b ∈ D .

(a) α|β if and only if (α)|(β),

(b) if a|α and a|β, then a|α± β,

(c) let A ⊆ D be the set of elements that are divisible by a and B ⊆ D the set of
elements divisible by b. If A = B, then a = b.

The elements of D are called divisors, and the elements on the form (α) principal
divisors. An element of D is called a prime divisor if its only divisible by itself and by
the units of D .

Not all domains have a divisor construction. However, we now show that if a divisor
construction exists, it will be unique.

Theorem 3.2. Let D be a domain. If there are two divisor constructions D∗ → D
and D∗ → D ′, then there exists an isomorphism D → D ′ in which principal divisors
corresponding to the same element in D are identified.

Proof. For prime divisors p ∈ D and p′ ∈ D ′ we define corresponding sets

p ⊆ D∗ : set of elements divisible by p with respect to the divisor construction D∗ → D .
p′ ⊆ D∗ : set of elements divisible by p with respect to the divisor construction D∗ → D ′.

Let p′ ∈ D ′ be a prime divisor. Assume that p is not contained in p′ for all p ∈ D .
Choose a non-zero element β ∈ D such that p′|β. (Property (c) of Definition 3.1 ensures
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that such an β exists for any divisor.) We can write (β) = pk11 . . . pkr
r ∈ D for prime

divisors pi. From our assumption we have pi * p′, hence for each i there exists γi ∈ D
such that pi|γi, p′ 6 | γi. Define γ = γk11 . . . γkr

r . We have pk11 . . . pkr
r |γ

k1
1 . . . γkr

r which
means that in the ring D, β|γ. From the choice of β it follows that p′|γ. But p′ is prime
and does not divide any of the γi, hence we have a contradiction and there must exist
a prime divisor p such that p ⊆ p′. By symmetry there is a prime divisor q′ ∈ D ′ such
that q′ ⊆ p. Let ξ ∈ D be an element such that q′|ξ, q′p′ 6 | ξ. By assuming that q′ 6= p′,
we get p′ 6 | ξ. But q′ ⊆ p ⊆ p′, so the existance of such an element γ proves that q′ = p′.
This shows that we have a one-to-one correspondence between prime divisors in D and
D ′.

Similar usage of the definition of the divisor construction gives that (α) ∈ D and
(α)′ ∈ D ′ corresponds to eachother, which proves the theorem.

We have not yet shown when a domain have a divisor construction. Now we state
one condition that needs to be satisfied. We first define a concept of integrality.

Definition 3.3. Let S be an integral domain. Let R ⊆ S be a subring. We say that
s ∈ S is integral over R, if s is the root of a monic polynomial f(X) ∈ R[X]. The set of
all such elements is called the integral closure of R in S.

Let now S be the quotient field of R. If R equals the integral closure of R in S, we
say that R is integrally closed in S.

Theorem 3.4. If a domain D has a divisor construction D∗ → D , then D is integrally
closed in its quotient field K.

Proof. Let ξ ∈ K be an element which satisfies the equation

ξn + a1ξ
n−1 + · · ·+ an = 0, ai ∈ D.

Assume that ξ /∈ D. Writing ξ = α/β with α, β ∈ D, this means that β 6 | α. The divisor
(β) will then not divide (α) in D , and there is a prime divisor p which occour with a
greater power in (β) than in (α). Say that pk|(α), with k ≥ 0, but no higher power of p

divides. We rewrite the above equation

αn = −a1βα
n−1 − · · · − anβ

n.

Since (β) is divisible by pk+1, the right hand side is divisible by pkn+1. However the
left side is not divisible by powers of p higher than kn. This contradiction proves the
theorem.

3.2 Valuations

We now define valuations on a field. Valuations are closely related to divisors, and we
will study this connection.
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Definition 3.5. Let K be any field. A function v

v : K → Z ∪ {∞}

is called a valuation of K if it satisfies:

(1) v is onto and v(0) = ∞

(2) v(αβ) = v(α) + v(β)

(3) v(α+ β) ≥ min{v(α), v(β)}

for any α, β ∈ K.

For the field Q, the p-adic valuations satisfies this definition. Motivated by this, we
create a valuation using a divisor construction.

Consider a domain D with a divisor construction D∗ → D . Let p be a prime divisor.
We create a function vp which acts on D. Let α ∈ D be an arbitrary element. The
divisor (α) can be written uniquely as (α) = βpa, where a ≥ 0 is an integer and p does
not divide β. We define vp(α) = a. Alternatively, vp satisfies the following

pvp(α)|α
pvp(α)+1 6 | α

Since arbitrary power of p divides 0, we define vp(0) = ∞. We can extend this to the
quotient field of D. For γ = α/β with α, β ∈ D we define vp(γ) = vp(α) − vp(β). This
makes vp into a valuation of the quotient field.

This shows how we can get valuations from prime divisors. Its easily seen that
distinct prime divisors, gives disctinct valuations, and that all these valuations satisfies
vp(α) ≥ 0 for any α ∈ D.

Let α ∈ D∗. The principal divisor (α) can be written as a product of prime divisor

(α) =
∏
i

p
vpi (α)
i (2)

where the product goes over the primes pi with vpi(α) > 0. Since the prime divisors are
in one-to-one correspondence with the valuations, all the divisors of D are determinded
by the valuations. Using the above product we have a homomorphism D∗ → D and
thus valuations can be used to construct a divisor construction. We now state a theorem
which shows when a set of valuations induce a divisor construction.

Theorem 3.6. Let D be a domain with quotient field K. Let R be a set of valuations
on K. Then R can induce a divisor construction on D if and only if the following is
satisfied:

(1) For any α ∈ D∗, v(α) = 0 for almost all (i.e. all but a finite number of) v ∈ R.

(2) Let α ∈ K. Then α ∈ D ⇔ v(α) ≥ 0 for all v ∈ R.
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(3) Let v1, . . . , vm ∈ R be any set of valuations, and let k1, . . . , km be any non-negative
integers. Then there exist an element α ∈ D such that

vi(α) = ki for all 1 ≤ i ≤ m

Proof. We first show that these conditions are necessary for R to induce a divisor con-
struction. For an element α ∈ D we write as above (α) =

∏
i p
vpi (α)
i . So condition (1)

must be satisfied.
We must also have v(α) ≥ 0 if α ∈ D. Now let ξ = α/β ∈ K with v(ξ) ≥ 0 for all

v ∈ R. Then v(α) ≥ v(β), which means that β|α in D. Hence ξ ∈ D, and condition (2)
must be satisfied.

Take any set v1, . . . , vm ∈ R of valuations corresponding to prime divisors p1, . . . , pm.
Let k1, . . . , km be a set of integers. Define a divisor a = pk11 . . . pkm

m and a set of divisors
ai = ap1 . . . pi−1pi+1 . . . pm. We need condition (3) of Definition 3.1 to be satisfied, so
there exists an element αi such that ai|αi, but aip 6 | αi. By setting α = α1 + · · ·+αm we
get pki

i |α, pki+1
i 6 | α. Hence we have found an element α such that vi(α) = ki for each i.

This shows that all the three conditions are needed for a set of valuations to induce a
divisor construction. We now let D be a semi-group with unique factorization, in which
the prime divisors are in one-to-one correspondence with the valuations of R. We let
the homomorphism D∗ → D be defined by equation (2). It is now straight-forward to
show that this satisfies the conditions needed to define a divisor construction.

We now look at how a divisor construction for a domain behaves, if the domain
already has unique factorization.

Theorem 3.7. Let D be a domain. D has unique factorization if and only if there is a
divisor construction D∗ → D in which every divisor is principal.

Proof. Let D have unique factorization. Let (α) denote the class of elements in D which
are associates to α ∈ D. The mapping α 7→ (α) is easily seen to define a divisor
construction, and all divisors are principal.

Assume that D has a divisor construction D∗ → D where all divisors are principal.
Let π 6= 0 ∈ D.

Claim: π is prime on D if and only if (π) is a prime divisor in D . Proof of claim: Let
(π) = p ∈ D be a prime divisor and let γ|π in D. Then (γ)|p in D and either (γ) = p

or (γ) is the unit divisor. It follows that π must be prime in D. Now let (α) ∈ D be an
element which is not prime and not the unit element. Then there exist a prime divisor
(π) which divides (α). It follows that π|α and α ∈ D is not a prime. The claim is proved.

Take any α ∈ D∗ and write
(α) = p1 . . . pr

with pi prime divisors in D . We have assumed all divisors principal, so we can find
elements in D such that pi = (πi). Using the claim it follows that we can write

α = επ1 . . . πr ∈ D.

The unique factorization in D now induces a unique factorization in D.
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We also have the following theorem, which states a necessary condition when D has
unique factorization.

Theorem 3.8. Let D be a domain. If there is a divisor construction for D with only
a finite number of prime divisors, then D has unique factorization into primes. There
is a finite set of elements π1, . . . , πm ∈ D such that any element α ∈ D can be written
uniquely on the form

α = επk11 . . . πkm
m

with ε a unit in D.

Proof. Let D∗ → D be a divisor construction with the prime divisors p1, . . . pm. Let
v1, . . . , vm be the corresponding valuatons on the quotient field of D. Let a = pk11 . . . pkm

m

be any divisor. Using Theorem 3.6 we can find α ∈ D such that vi(α) = ki for all i. But
then a = (α). Hence, all divisors of D are principal and D has unique factorization from
the previous theorem. We can then find elements in D such that (πi) = pi for all i. It
follows that the set of elements π1, . . . , πm are all the prime factors of D up to associates.
πi is characterized by vi(πi) = 1 and vj(πi) = 0 for all j 6= i.

We now get back to valuations and explore some properties surrounding them. The-
orem 3.6 will be very important.

Definition 3.9. Let v be a valuation of a field K. We define the valuation ring of v

Dv = {α ∈ K : v(α) ≥ 0} ⊆ K

We note that Dv has a divisor construction with only one prime divisor, corresponding
to v. We also have the following theorem.

Theorem 3.10. Let Dv be the valuation ring corresponding to the valuation v in K. Dv

is integrally closed in K.

Proof. If K equals the quotient field of Dv, we can use Theorem 3.4.
The quotient field of Dv is the smallest field k such that Dv ⊆ k. It is clear that

k ⊆ K, and we need to show equality. Let α ∈ K be any element, we will now show
that α must be in k. If α ∈ Dv, then α ∈ k. Assume α /∈ Dv, so there is a positive m
such that v(α) = −m. Pick an element β ∈ Dv ⊆ k with v(β) > m. From the definition
of valuations we get v(αβ) = v(α) + v(β) > 0. So the product αβ ∈ Dv ⊆ k. But k is a
field, so β−1 ∈ k. It follows that α ∈ k and k = K. The theorem is proved.

Part (3) of Theorem 3.6 shows that valuations corresponding to prime divisors are
independent. We now show that this property holds for any finite set of valuations,
regardless of a divisor construction.

Theorem 3.11. Let v1, . . . , vm be distinct valuations of a field K. For any set k1, . . . , km
of integers, there exists an element γ ∈ K such that vi(γ) = ki for all 1 ≥ i ≥ m.

Before we prove this theorem, we state a corollary which will be usefull.



20 3 DIVISORS AND VALUATIONS

Corollary 3.12. Let v1, . . . , vm be distinct valuations of K and let D1, . . . ,Dm be the
corresponding valuation rings. Then the intersection D =

⋂m
i=1 Di is a ring with unique

factorization. There are elements πi such that vi(πi) = 1, vi(πj) = 0 for i 6= j and any
element α ∈ D can uniquely be written as

α = επk11 . . . πkm
m

with ε a unit in D.

Proof. Condition (1) and (2) of Theorem 3.6 are easily seen to be fulfilled for D and the
valuations v1, . . . , vm. Assuming this theorem holds, condition (3) also holds. So D has
a divisor construction with a finite number of prime divisors. Using Theorem 3.8 the
corollary is proved.

Proof of Theorem. We will prove this by induction on the number of valuations. Ifm = 1
the theorem follows from the defintion of valuations. Let m ≥ 2 and assume that the
theorem is proved for m− 1 valuations.

We now assume that for any γ ∈ K there exist integers c1, . . . , cm, not all zero, such
that

c1v1(γ) + · · ·+ cmvm(γ) = 0 (3)

It is clear that atleast two of the ci’s must be non-zero. We now show that two of the
coefficients must have the same sign. If this is not the case, we must be in the situation
that we only have two non-zero coefficients, say c1 and c2, with c1 < 0 and c2 > 0. Then

c1v1(γ) + c2v2(γ) = 0

and setting e = − c1
c2
> 0 we have

v2(γ) = ev1(γ).

The surjectivity of valuations leads to e = 1 and thus v1 = v2. This contradiction shows
that we can write (3) as

v1(γ) = a2v2(γ) + · · ·+ amvm(γ)

with ai ∈ Q and at least one ai < 0. By induction we can find elements β, β′ ∈ K such
that

vi(β) = 0 vi(β′) = 1 if ai ≥ 0
vi(β) = 1 vi(β′) = 0 if ai < 0

for i = 2, . . . ,m. From the above equation for v1 we get v1(β) < 0 and v1(β′) ≥ 0. Since
vi(β + β′) = min(vi(β), vi(β′)) = 0 for all i ≥ 2, we get that v1(β + β′) = 0. But we also
have

v1(β + β′) = min(v1(β), v1(β′)) = v1(β) < 0.

The contradiction proves that (3) is impossible.
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We have assumed that the theorem is proved for them−1 valuations v2, . . . , vm. Thus
the corollary is also true for these valuations. We follow the notation in the corollary
with these valuations. We also define E to be the set of units in the intersection ring D.
For any ξ ∈ K∗ we write

ξ = επk22 . . . πkm
m

with ε ∈ E. Assume that v1(ε) = 0. Then

v1(ξ) = k2v1(π2) + · · ·+ kmv1(πm) = a2v2(ξ) + . . . amvm(ξ)

where ai = v1(πi). But this equation is on the form given in (3), and there must be an
element ε ∈ K with v1(ε) 6= 0.

Take the element γ ∈ E in which v1 takes the smallest positive value l. It is clear
that for every element γ′ ∈ E, l|v1(γ′). As above we set a2 = v1(π2), . . . , am = v1(πm).
Assume that one of these is not divisible by l, say a2. Consider the element

α = π2(π3 . . . πm)lγs

where s ∈ Z is chosen such that

a2 + l(a3 + · · ·+ am) + sl = l1

satisfies 0 < l1 < l. We then have

v1(α) = l1

vi(α) > 0 for i = 2, . . . ,m

We set ε = γ + α and see that vi(ε) = 0 for all i = 2, . . . ,m. Hence ε ∈ E. But we also
have

v1(ε) = min(v1(γ), v1(α)) = min(l, l1) = l1 < l

This shows that all the ai’s are divisible by l. It follows that l must divide v1(ξ) for any
ξ ∈ K∗. This is only possible for l = 1.

We now replace our prime elements by setting π′i = πiγ
−ai , i = 2, . . . ,m. Then

v1(π′i) = 0 for all i = 2, . . . ,m. We set π′1 = γ and get a set of elements such that
vi(πi) = 1 and vj(πi) = 0 for i 6= j. We can now for any set of integers k1, . . . , km make
the element ξ = π′k11 + · · ·+ π′km

m and get

vi(ξ) = ki for all i = 1, . . . ,m

The theorem is proved.

3.3 Extensions of valuations

Let k be a field and let K be a finite extension of k. If v is a valuation of K, we can
look at the restriction of v to k. We first show that v can not be identically zero on
k. Assume that v(α) = 0 for all α ∈ k. Then k is contained in the valuation ring Dv.
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But the minimal polynomial for α has coefficients in k, hence in Dv. This means that
α is integral, but Dv is integrally closed. It follows that α ∈ Dv and K ⊆ Dv. This is
impossible. So v takes on non-zero values, and if v(α) > 0 then v(α−1) < 0. Let e be the
smallest positive value v takes on k. Then it is easily seen that for any non-zero α ∈ k,
e|v(α). We define

v0(a) = v(a)
e for any 0 6= α ∈ k

v0(0) = ∞

This makes v0 a valuation of k, and we say that v0 is induced from v. We also say that
v is an extension of v0. The number e is the ramification index of v with respect to v0.

Theorem 3.13. Let v0 be a valuation of a field k, and let K be a finite extension of
k of degree n. Then v0 can be extended to K, and the number of such extensions is at
most n.

Theorem 3.14. Let d be the valuation ring of v0 and let D be its integral closure in
K. Let v1, . . . , vm be all the extensions of v0 in K, with corresponding valuation rings
D1, . . . ,Dm. Then

D =
m⋂
i=1

Di

Proof. We choose not to include proofs of these two Theorems, and refer the reader to
Section 3.4 of [3].

Lemma 3.15. Let d be an integrally closed domain in its quotient field k. Let K be
a finite extension of k. Then any α ∈ K is integral over d if and only if the minimal
polynomial of α lie in d[x].

Proof. Let f(x) ∈ k[x] be the minimal polynomial of α.
If f has all its coefficients in d, it follows from the definition that α is integral over d.
Now let α be integral over d, say α is a root of the monic polynomial g(x) ∈ d[x].

It is clear that g(x) is divisible by the minimal polynomial f(x). g(x) splits into linear
factors in K, the algebraic closure of K. Let D be the integral closure of d in K. All
the roots of g(x) are then clearly in D, and it follows that all the roots of f(x) are also
in D. Hence f(x) ∈ D[x]. But f(x) ∈ k[x] and since d is integrally closed k ∩ D = d, it
follows that f(x) ∈ d[x]. The lemma is proved.

Theorem 3.16. Let d be a domain with quotient field k. Let d∗ → D be a divisor
construction determined by a set of valuations R0. If K is a finite extension of k and
R are all the extensions of R0, then R induces a divisor construction on the integral
closure D of d in K.

Proof. We use Theorem 3.6 and need only show that R satisfies the three conditions.
(2) Let v0 ∈ R0 be any valuation, and let v ∈ R be an extension. It is clear that

v(α) ≥ 0 for all α ∈ d, so d is contained in the valuation ring Dv. We know that Dv is
integrally closed in K, so we must have D ⊆ Dv. Hence for any α ∈ D, v(α) ≥ 0.
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Now let α ∈ K be such that v(α) ≥ 0 for any valuation v. Let α have minimal
polynomial tr + a1t

r−1 + . . . ar ∈ k[x]. For any valuation v0 ∈ R0 let v1, . . . , vm ∈ R be
the extensions. Since vi(α) ≥ 0, Theorem 3.14 says that α lies in the integral closure in
K of the valuation ring of v0. From the previous Lemma, it follows that the coefficients
of the minimal polynomial ai must lie in the ring of the valuation of v0. So v0(ai) ≥ 0
for all ai. This argument holds for any v0 ∈ R0, hence all ai lie in d and it follows that
α ∈ D. Condition (2) is satisfied.

(1) Let α ∈ D, α 6= 0. Let as above tr + a1t
r−1 + . . . ar be the minimum polynomial

for α. Since the ai’s lie in d, we have v0(ai) = 0 for almost all v0 ∈ R0. Using this and
the fact that v(α) ≥ 0 we can write

v(α−1) = v(a−1
r (αr−1 + a1α

r−2 + · · ·+ ar−1))
= v(αr−1 + a1α

r−2 + · · ·+ ar−1)− v(ar)
= v(αr−1 + a1α

r−2 + · · ·+ ar−1) for almost all v
≥ 0.

But the only way v can be non-negative for both α and its inverse, is if v(α) = 0.
Condition (1) is proved.

(3) Let V = {v1, . . . , vm} ⊆ R be a set of distinct valuations, and let k1, . . . , km
be non-negative integers. Take the set of valuations in R0, V0 = {v01, . . . , v0m} which
are induced by the valuations of V .Extend these valuations back up to R and get a set
v1, . . . , vm, vm+1, . . . , vs. Using Theorem 3.11 we find an element γ ∈ K such that

vi(γ) = ki for 1 ≤ i ≤ m

vi(γ) = 0 for m+ 1 ≤ i ≤ s.

If γ ∈ D we can set α = γ and we are done. Assume that γ /∈ D. Let v′1, . . . , v
′
r be

valuations of R where v′j(γ) < 0, say

v′1(γ) = −l1, . . . , v′r(γ) = −lr

for positive lj . Let these valuations induce the set V ′
0 = {v′01, . . . , v′0r} ⊆ R0 on k. We

see that any element v′0j ∈ V ′
0 must be different from any element v0i ∈ V0, so there

exists an element a ∈ d such that

v0i(a) = 0 for 1 ≤ i ≤ m

v′0j(a) = l for 1 ≤ i ≤ r

where l = max(l1, . . . , lr). We can now set α = γa and get

v′j(α) = v′j(γ) + v′j(a)
≥ lj + v′0j(a)
= lj + l

≥ 0.
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It follows that α ∈ D, and we can in any case find an element α ∈ D which satisfies
condition (3).

The Theorem is proved.

When we use this theorem on algebraic number fields, we get the following corollary.

Corollary 3.17. Let K be an algebraic number field with the maximal order RK . Then
there exists a divisor construction D∗ → D which is induced by the valuations of K.

Proof. D is the integral closure in K of Z. We know that Z has unique factorization,
and thus it has a divisor construction. It is easily seen that the valuation of Q induces
this divisor construction. Since all the valuations of K are extensions of valuations on
Q, using the previous Theorem proves our corollary.

We continue to look at extension fields and the relation between divisor constructions
on the two field. Let d be a domain with quotient field k which has a divisor construction
d∗ → D0. Let K/k be a finite extension and let the integral closure D of d in K also
have a divisor construction D∗ → D . Since d ⊆ D, every element a ∈ d∗ corresponds
to divisors in both D0 and D . We use the following notation to distinguish between
these divisors, (a)k ∈ D0 and (a)K ∈ D . We now show that this correspondence can be
extended to all divisors of D0.

Theorem 3.18. With the notation above, there is an monomorphism from the semigroup
D0 into the semigroup D which identifies (a)k and (a)K .

Proof. Take any prime divisor p of D0, with vp the corresponding valuation of k. We
extend this valuation to a set of valuations vb1 , . . . , vbm on K, with corresponding prime
divisors b1, . . . , bm. Let e1, . . . , em be the ramification indices, and for any i we can
write vbi(a) = eivp(a). For any a ∈ d∗ consider the divisor (a)k ∈ D0 and the divisor
(a)K ∈ D . The factor pvp(a) of (a)k becomes b

b1(a)
1 . . . b

bm(a)
m = (be11 . . . bem

m )vp(a) in (a)K .
We create a mapping D0 → D defined on the prime divisors as

p 7→ be11 . . . bem
m .

This mapping satisfies the theorem.

We shall identify the divisors in D0 with divisors in D using the mapping from the
proof above and write simply p = be11 . . . bem

m .
Using the notation above, we let p ∈ D0 and b ∈ D be divisors. We see that b divides

p if the valuation vb is an extension of the valuation vp

If b|p, we define the ramification index of b over p as the ramification index of the
corresponding valuations.

Let p have the decomposition

p = be11 . . . bem
m .

If all the ei’s are equal to one, we say that p is unramified in D.
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3.4 Degree of divisors

In this section K/k is a finite extension of fields. For any valuation v of the field K,
recall that we defined the corresponding ring, Dv, consisting of the elements of K for
which v is non-negative. This ring has a theory of divisor with a single prime element
π, which is unique up to associates. From Theorem 3.8, we can write any non-zero α of
Dv in the form

α = επm

where ε is a unit in Dv. For a fixed π, this form is unique. We now consider congruence
classes modulo the prime π. Two elements are equivalent if their difference is divisible by
π, and this forms equivalence classes of the elements in Dv. Observe that since the prime
we chose was unique up to accociation, any prime gives the same equivalence classes, so
this is completely determined by the ring Dv. It is easily verified that these equivalence
classes form a ring, and we write Σv = Dv/(π). For α ∈ Dv with α 6≡ 0 (mod π), we
have vπ(α) = 0. Then α has an inverse in Dv, ξ. Since αξ = 1, we get αξ ≡ 1 (mod π)
and α has an inverse in Σv. This proves that Σv is a field, the residue class field. If vp

is a valuation corresponding to the prime p, we write Σp for the residue class field.
Let b be a prime divisor of K and p of k such that b|p. Consider the valuation rings

Dp and Db, corresponding to these divisors. Let p be the prime of Dp and π the prime
of Db. Since Dp ⊆ Db, we can write p = επm for a unit ε. It follows that if a ≡ b
(mod p) in Dp, then a ≡ b (mod π) in Db. Hence every residue class of Dp is contained
in a single residue class of Db. This induced an monomorphism of the residue class field
Σp into Σb. This means that Σp is a subfield Σb and an easy calculation shows that the
degree [Σb : Σp] is limited by the degree of K/k. The degree fb = [Σb : Σp] is called the
degree of inertia of the prime divisor b over p. It is sometimes refered to as the degree
of a prime over an extension.

We state a theorem relating ramification, degree of inertia and the degree of the
fields.

Theorem 3.19. Let d be a domain with quotient field k and let K/k be a seperable
extension. Let p be a prime divisor of d. For any b dividing p, we denote eb the ramifi-
cation index and fb the degree of inertia of b over p. If n is the degree of K/k we have
the following connection, ∑

b|p

ebfb = n,

where the sum runs over all prime divisors that divide p.

Proof. [3] Theorem 7, Chapter 5.3

It can be shown that for separable extensions, ramification is rare. That is, in a ring
d there are only finitely many prime divisors that ramify in a finite extension D.
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3.5 Congruences modulo divisors

We start this section by defining congruence modulo divisors. This generalizes what we
did with primes in valuation rings.

Definition 3.20. Let D be any domain with a divisor construction D∗ → D . Two
elements α, β ∈ D are congruent modulo the divisor a ∈ D if the difference α − β is
divisible by a. We denote this by

α ≡ β (mod a).

For the divisor a we see that this definition divides D into classes of elements which
are congruent modulo a. It is easily verified that the set of classes forms a ring. We call
it the residue class ring modulo a and write D/a.

Theorem 3.21. Let RK be the maximal order in an algebraic number field K. Let p be
a prime divisor. Then p divides precisely one prime number p ∈ N. The residue class
ring RK/p is a finite field of characteristic p.

Proof. The prime divisor p corresponds to a valuation vp. Since K is an extension of
Q, vp induced a p-adic valuation on Q, for some prime p. Then vp(p) ≥ 1 and p ≡ 0
(mod p). For any prime q 6= p, vp(q) = 0, meaning that p does not divide any prime
q 6= p.

Since p divides p, congruences that hold modulo p also hold modulo p. We look at
classes module p. Let ω1, . . . , ωn be a basis for RK . It is clear that any α ∈ RK is
congruent modulo p to an element on the form

a1ω1 + · · ·+ anωn

where the integers ai are restricted by 1 ≤ ai ≤ p. Since if ai > p, we can subtract the
element pωi. Hence there are only a finite number of congruence classes modulo p and
also only a finite number of congruence classes modulo p.

Now let α, β ∈ RK be elements such that αβ ≡ 0 (mod p) and α 6≡ 0 (mod p). This
is equivalent to p|(αβ), or p|(α)(β). But since p 6 | (α), we must have p|(β) and β ≡ 0
(mod p). Hence, RK/p is finite without zero-divisors. Take any non-zero γ ∈ RK/p.
Then γx1 = γx2 if and only if x1 = x2. Hence the map x 7→ γx hit all of RK/p. We can
then take x such that γx = 1 and we see that all non-zero elements γ have inverse and
RK/p is a field. This field have characteristic p, since for any α ∈ RK , αp ≡ 0 (mod p).
This completes the proof.

3.6 Fractional divisors

This section is devoted to fractional divisors, which are a generalization of divisors.
Earlier we used divisors to get information about the multiplicative structure of a domain,
D. We now expand the notion of divisors, to get information about the quotient field of
D.
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Definition 3.22. Let D be an integral domain with quotient field K. Let D∗ → D be
a divisor construction for D and let p1, . . . , pm be prime divisors.

a = pk11 . . . pkm
m

with ki any integers is called a fractional divisor of K. We see that if all the exponents
are non-negative, this becomes a divisor of D, we sometimes call these divisors integral
divisors.

We write
a =

∏
p

pa(p)

where the product runs over all the prime divisors p, but almost all the exponents a(p)
are zero.

We define multiplication of fractional divisors as

(
∏
p

pa(p))(
∏
p

pb(p)) =
∏
p

pa(p)+b(p).

We see that this makes the fractional divisors into an abelian group with e, the divisor
with all exponents equal to zero, as the identiy element.

Let vp be the valuation corresponding to the prime divisor p. For any ξ ∈ K∗, it is
clear that vp(ξ) = 0 for almost all valuations vp (Theorem 3.6). A divisor on the form

(ξ) =
∏
p

pvp(ξ)

is called a principal fractional divisor. We see that for elements of the domain D this
definition corresponds with the previous definition of principal divisors.

It can be shown that these generalized divisors share many of the properties of the
old divisors. We say that the fractional divisor a divides b if there exists an integral
divisor c of the ring D such that ac = b.

3.7 Divisors in number fields

Recall that if RK is a maximal order in any algebraic number field, we have a divisor
construction R∗K → D . We can therefore study fractional divisors over any algebraic
number field.

Definition 3.23. Let RK be the maximal order in an algebraic number field K. A
non-empty subset A ⊆ K is called a fractional ideal of K if it satisfies the following.

(1) A is a group under the addition from K.

(2) ARK ⊆ A (i.e. for any a ∈ A and r ∈ RK , ar ∈ A.)

(3) There exists a non-zero element γ ∈ K such that γA ⊆ RK .
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We see that if A ⊆ RK , then A is an ideal of the ring RK , and we call such ideals
for integral ideals.

We first state a small lemma, and include a sketch of a proof. Note that this lemma
can be generalized to work with any Dedekind domain, not just maximal orders in
number fields.

Lemma 3.24. Let RK be the maximal order in an algebraic number field K. Let A be
a fractional ideal of K and M a torsion-free RK-module. Then the map

φ : A−1M → HomRK
(A,M)

x 7→ (φx : α 7→ αx)

is an isomorphism.

Proof. We can symbolically write K = R/R∗, for the quotient field K. Similarly we can
construct M/R∗, in which we consider fractions of the module M . This is the same as
the tensor product of M with K over R and we write

MK = M ⊗R K = M/R∗.

Let ψ ∈ HomR(A,M). We now have the situation A ⊆ K and M ⊆ MK . We extend φ
to K and get a K-linear map φ ∈ HomK(K,MK). This extension is uniquelly defined
and for α ∈ A

ψ(α) = ψ(α) = ψ(1 · α) = αψ(1) ∈M.

This shows that any map in HomR(A,M) corresponds to an element ψ ∈ A−1M , which
shows that our map is surjective.

It is easily checked that the map is a monomorphism, which completes the proof.

We now state a theorem which identifies ideals and divisors in number fields. This
allows us to use the theory on divisors, when dealing with ideals.

Theorem 3.25. Let K be an algebraic number field. For a fractional divisor a we denote
Aa ⊆ K as the set of elements that are divisible by a. Then Aa is a fractional ideal.
Further, the fractional ideals form an abelian group and the mapping

a 7→ Aa

is an isomorphism from the group of fractional divisors to the group of fractional ideals
of the field K.

We need a lemma.

Lemma 3.26. Let RK be the maximal order in an algebraic number field K with
α1, . . . , αs ∈ RK . Let d be the greatest common divisor of (α1), . . . , (αs). Then for
any α ∈ RK which is divisible by d we can find a set of elements ξi ∈ RK such that

α = ξ1α1 + · · ·+ ξsαs
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Proof. [3] Lemma 2, Section 3.6

Proof of Theorem. We first prove a weaker version of this theorem. We prove that for
any integarl ideal a, the map

a 7→ Aa

is an isomorphism from the semi-group of integral divisors to the semi-group of non-zero
integral ideals of the ring RK .

The third point of the definition of a divisor construction, gives that the map is
one-to-one. We show that it is onto. Take any non-zero ideal A of RK . For each prime
divisor p we set

a(p) = min
α∈A

vp(α).

This is non-zero only for a finite number of prime divisors, and we see that

a =
∏
p

pa(p)

is a divisor. We also note that A ⊆ Aa. We now show that these ideals are equal. Take
any α ∈ A. Since a(p) is zero for almost all prime divisors, we can find a finite set
α1, . . . , αs ∈ A such that

a(p) = min(vp(α1), . . . , vp(αs)) for all p.

It follows that a is the greatest common divisor of (α1), . . . , (αs), and using the Lemma,
we can find ξi ∈ RK such that

α = ξ1α1 + · · ·+ ξsαs.

Since A is an ideal in RK , we have α ∈ A, and Aa ⊆ A. This proves that our map is
onto.

It remains to show that this is a homomorphism of groups. We need to show

AaAb = Aab

for any divisors a and b. Since AaAb is an ideal, we have seen that there exist a divisor
c such that

AaAb = Ac.

We therefore only have to show that ab = c. For a prime divisor p denote its power in a

and b as a and b respectively. Then

min
γ∈Ac

vp(γ) = min
α∈Aa,β∈Ab

vp(αβ) = min
α∈Aa

vp(α) + min
β∈Ab

vp(β) = a+ b.

We see that the power of p in c is a+ b. Since this holds for all prime divisors, we must
have ab = c.
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This proves the weak version of the Theorem. We now look at fractional divisors and
ideals. Let γ ∈ R∗K and a =

∏
pa(p) a fractional divisor of K. For ξ ∈ K we have

ξ ∈ A(γ)a ⇔ vp(ξ) ≥ vp(γ) + a(p), ∀p
⇔ vp(ξ/γ) ≥ a(p), ∀p
⇔ ξ/γ ∈ Aa

⇔ ξ ∈ γAa

Hence, A(γ)a = γAa, and it is easy to verify that for a fractional divisor a, the set Aa is
a fractional ideal of K.

Let a and b be fractional divisors with Aa = Ab. It is clear that we can find a γ ∈ R∗K
such that (γ)a and (γ)b are both integral. Some computations give us

Aa = Ab ⇒ γAa = γAb

⇒ A(γ)a = A(γ)b

⇒ (γ)a = (γ)b
⇒ a = b,

which proves that the map is one-to-one. We now show that it is also onto. Take any
fractional ideal A. Let γ ∈ K be a non-zero number such that γA ⊆ RK . It follows that
γA is an integral ideal and from the weak version of the Theorem there is an integral
divisor c such that Ac = γA. Create the fractional divisor a = c(γ)−1. Then

γA = Ac = A(γ)a = γAa,

which means that A = Aa and the map is onto.
All that remains is to show that the map is a homomorphism. Let a and b be

fractional divisors. Take non-zero elements α, β ∈ RK such that (α)a and (β)b are
integral. We now use the weak version and get

αβAab = A(αβ)ab

= A(α)aA(β)b

= αAaβAb.

This shows that Aab = AaAb and we have proved the Theorem in general. We note that
this makes the set of fractional ideals into an abelian group with RK as the identity
element, and the inverse of the ideal Aa is Aa−1 .

3.8 Divisor classes

Definition 3.27. Let a and b be two fractional divisors of an algebraic number field
K. We say that a and b are equivalent if there exists a principal divisor (α), α ∈ K∗,
such that a = (α)b. This divides all the divisors into equivalence classes, which we call
divisor classes of K. We write [a] for the divisor class containing a.
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We define an multiplication on divisor classes by setting

[a][b] = [ab].

This is easily seen to be independent of the representative chosen from the divisor classes.
This makes the set of divisor classes into an abelian group. The class consisting of all
the principal divisors, [e], is the identity element, and the inverse of [a] is [a−1]. This
group is called the divisor class group of K and we write CL(K). It is also known as the
Picard group.

Theorem 3.28. The divisor class group of an algebraic number field forms a finite
abelian group.

Proof. Let K be an algebraic number field. We use the Theorem 3.25, which identifies
a fractional divisor a with the fractional ideal Aa.

Next we observe that Aa is a full module in K. Pick an element γ ∈ K such that
γAa ⊆ RK , where RK is the maximal order ofK. (This element exists from the definition
of fractional ideals.) Since RK is a module, it follows that γAa is a module, and thus
also Aa. Since AaRK ⊆ Aa it follows that Aa contains as many linearly independent
elements as RK , and hence Aa is a full module. It is clear that its coefficient ring is RK .
Conversely, all full modules with coefficient ring RK , satisfies the definition of fractional
ideals.

This means that dividing fractional divisors up in equivalence classes, corresponds to
dividing full modules with coefficient ring RK into equivalence classes. From Theorem 2.8
it follows that there are a finite number of divisor classes, and the Theorem is proved.

3.9 Conductor, Artin Reciprocity and the Hilbert class field

We will in this section introduce a few new concepts. The Hilbert class field is an
important extension of a number field in which every prime stays unramified. We also
state a Theorem known as Artin reciprocity law, which will be useful later.

In this section K is an imaginary quadratic number field, unless otherwise stated.
Let L be a finite extension of K with degree n such that Gal(L/K) is abelian. We denote
RK and RL for the maximal orders of the fields respectively. Let p be a prime divisor
in RK . Recall that p will not normally stay prime in RL, but we will assume that it is
unramified. Let b be any prime divisor of RL that divides p. We can now create the
residue class fields of these divisors,

k = RK/p

and
l = RL/b.

From Theorem 3.21, we see that l/k is an extension of finite fields.
Write the splitting of p in L as

p = b1 . . . bs.
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Then the Galois group of L/K, G = Gal(L/K), acts transitively on the set of divisors
X = {b1, . . . , bs} ([6] 8,3.1). For each bi we consider a subgroup of the Galois group,
called the stabilizer group of bi,

Gbi = {σ ∈ G : σ(bi) = bi}.

Since the Galois group actions is transitive, there exists an element σ ∈ G which sends
bj to bi. We have also assumed that the Galois group also is abelian, and get

Gbj = σ−1Gbiσ = Gbi .

So we see that in this case all these sets consist of the same Galois elements and we write
Gb.

Take an element σ ∈ Gb. Since σ ∈ Gal(L/K), it fixes the maximal order RL. It is
also in the stabilizer group of b, so it fixes this divisor as well. In this way we see that
we get a mapping from Gb to the Galois group of l/k,

Gb → Gal(l/k).

We now use some facts from the theory of group actions. Let G × X → X be
a transitive action. The stabilizer subgroup Gb ⊆ G are related to G and X by the
following equality,

|G| = |Gb| · |X|.
This gives us |Gb| = n/s =degree of the extension l/k. Using this together with the
assumption that p is unramified in L, it is possible to show that the mapping

Gb → Gal(l/k)

is an isomorphism of groups. (See Section 8,3 of [6].)
We know that Gal(l/k) is cyclic, generated by the Frobenius automorphism

x 7→ xN
K
Q p.

We let σp ∈ Gal(L/K) be the unique element, depending on p, which maps to this
Frobenius.

Let c be an integral divisor such that ramfication in L/K are limited to primes in c.
We first define a subgroup of the group of fractional divisors

I(c) = {a : gcd(a, c) = 1},

and a homomorphism called the Artin map from this subgroup into the galois group of
L/K

(·, L/K) : I(c) → Gal(L/K)

(
∏
p

pnp , L/K) =
∏
p

σ
np
p .

where σp is the unique element that maps to Frobenius.
We have the following theorem regarding the Artin map, proof can be found in [5].
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Theorem 3.29 (Weak Artin Reciprocity). Let K be an imaginary quadratic number
field and let L/K be a finite abelian extension. Then there exists an integral divisor m in
RK such that if α ∈ K∗ satisfies α ≡ 1 (mod m), then the principal divisor (α) is in the
kernel of the Artin map. There exists a largest such divisor which we call the conductor
of L/K and write mL/K .

Definition 3.30. Let m be an integral divisor of K. Let Km be a finite abelian extension
of K. Km is called a ray class field of K modulo m if for any finite abelian extensions
L/K there holds

mL/K |m ⇒ L ⊆ Km.

Definition 3.31. Let K still be an imaginary quadratic number field. The Hilbert class
field of K is the ray class field of K modulo the unit divisor (1). We write HK for this
field.

We see that HK is the maximal finite abelian extension of K in which we have no
ramification. It can also be shown that the Artin map induces an isomorphism between
the divisor class group of K and the Galois group of Hilbert class field of K,

(·,HK/K) : CL(K)→̃Gal(HK/K)

We need another set of divisors. For any integral divisor c, we define a subset of I(c)

P (c) = {(α) : α ∈ K∗ and α ≡ 1 (mod c)}

We state a version of Dirichlets Theorem which will be needed.

Theorem 3.32 (Dirichlet). Let K be any number field and c an integral divisor. Then
every divisor class in I(c)/P (c) contains infinitely many primes of inertia degree one
over the extension K/Q.
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4 Elliptic Curves

4.1 The j-invariant

Let E be an elliptic curve over a field K. Then we can represent E as the solutions to
a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, where ai ∈ K

together with an additional point, labeled O.
We define some quantities related to the coefficients ai.

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

c4 = b22 − 24b4
∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

We will only look on non-singular curves, and this is equivalent to ∆ 6= 0 ([10] Prop.1.4).
We define the j-invariant to be c34/∆, and write j(E) for the j-invariant corresponding
to E.

Theorem 4.1. Let K be an algebraically closed field. Let E and E′ be two elliptic curves
defined over K. Then j(E) = j(E′) if and only if E and E′ are isomorphic.

Proof. It is clear that an elliptic curve can be represented by different Weierstrass equa-
tions. The change of variables however must satisfy some restrictions. From Proposition
3.1.b in [10] we have that any two Weierstrass equations for the same curve, are related
by a linear change of variables of the form

X = u2X ′ + r

Y = u3Y ′ + su2X ′ + t

with u, r, s, t ∈ K,u 6= 0. By simple arithmetics, we can verify that two equations
related by such a transformation has the same j-invariant. Hence the j-invariant is not
dependent on the Weierstrass equation chosen for an elliptic curve.

Let E and E′ have the same j-invariant. The expressions for the j-invariant now gives
us an relation between these curves. By examining this relation one can find a change
of variables satisfying the above.

Let K be a field, not necessarily algebraically closed. For a curve E/K, we can not
use Theorem 4.1. Isomorphic curves will still have the same j-invariant, but it is possible
to have non-isomorphic curves with the same j-invariant. For this part will we assume
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that K has characteristic different from two and three. Then the curve can be written
on the following Weierstrass form

E : y2 = x3 +Ax+B,

where j(E) = 1728(4A)3

−16(4A3+27B2 . Coordinate changes which preserve this form acts the
following on x, y and the coefficients,

x = u2x′

y = u3y′

A = u4A′

B = u6B′,

where u ∈ K and non-zero. But since K is not algebraically closed, u is not necessarily
in K. This means that if u /∈ K, u4, u6 ∈ K, we will get a non-isomorphic curve (over
K) which has the same j-invariant. However, we also see that there are only two such
isomorphism-classes, as long as j 6= 0, 1728 (which is equivalent to A,B 6= 0). Such a
change of variables can be done by picking any element α = u2 of K which does not have
a square root in K, and multiply the coefficients A and B, with α2 and α3 respectively.
We summarize.

Definition 4.2. Let E/K be as above. Let α be any non-square in K. The twist of E
is then,

Etwist : y2 = x3 + α2Ax+ α3B.

Theorem 4.3. Let E be an elliptic curve and Etwist its twist. Then j(E) = j(Etwist).
If j(E) 6= 0, 1728, any elliptic curve with this j-invariant is isomorphic to either E or
Etwist.

We also have the following Theorem, which states that for any j0, there is a corre-
sponding elliptic curve.

Theorem 4.4. Let K be a field, and let j0 ∈ K. Then there exist an elliptic curve E
defined over K(j0) with j(E) = j0.

Proof. First assume j0 6= 0, 1728. Consider the curve given by

E : y2 + xy = x3 − 36
j0 − 1728

x− 1
j0 − 1728

A small computation gives us ∆ = j20
(j0−1728)3

and j = j0.
The special cases are covered with these two curves

E : y2 + y = x3 ,∆ = −27, j = 0
E : y2 = x3 + x ,∆ = −64, j = 1728

Note that in characteristic 2 and 3, 0 = 1728, so we can choose a non-singular curve in
these cases as well.
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Remark: For a finite field Fp with p > 3, there is an alternative method to get a
Weierstrass form from the j-invariant. Let j0 6= 0, 1728 be in Fp. Then the elliptic curve

E/Fp : y2 = x2 + 3cx+ 2c, where c =
j0

1728− j0

has j-invariant j0.

4.2 Elliptic curves over C

We will in this section state some results from the general theory on elliptic curves over
the complex numbers. For a complete understanding of this material, we refer the reader
to [12], [10] or other introductory books on elliptic curves.

An elliptic function relative to a lattice Λ, is a meromorphic function on C which is
periodic with respect to Λ. I.e. f(z+ω) = f(z) for all ω ∈ L, x ∈ C. We see that elliptic
functions are equivalent to meromorphic functions on the quotient space C/Λ.

Let Λ be a lattice in C. Define the Weierstrass ρ-function related to Λ,

ρ(z) = ρ(z,Λ) =
1
z2

+
∑

0 6=ω∈Λ

(
1

(z − ω)2
− 1
ω2

)
.

For integers k ≥ 3 define the Eisenstein series

Gk = Gk(Λ) =
∑

0 6=ω∈Λ

ω−k.

It can be shown that the sum converges, and for k odd, Gk = 0. We have the following
connection between the Eisenstein series and Weierstrass ρ-function,

ρ′(z)2 = 4ρ(z)3 − g2ρ(z)− g3,

where g2 = 60G4 and g3 = 140G6. The connection to elliptic curves is obvious and the
following Theorem confirms this.

Theorem 4.5. Let E/C be an elliptic curve over the complex numbers. Then there
exists a lattice Λ such that E and C/Λ are isomorphic as complex-analytic groups. We
say that E corresponds to the lattice Λ, and we write EΛ.

The converse is also true. For any lattice in C, we can find an elliptic curve, such
that these are isomorphic as complex-analytic groups.

Proof. [12] Theorem 9.19 and Theorem 9.10

We also note that the j-invariant for an elliptic curve over C can be computed directly
from the corresponding lattice. For a lattice Λ = Zω1+Zω2 we set τ = ω1/ω2, inverting if
needed, such that τ lies in the upper half plane of C. It is possible to derive a convergent
sum from the Eisenstein series which allows us to compute the j-invariant. This sum in
on the form

j(Λ) = j(τ) =
1
q

+
∑
i=0

aiq
i

where ai are integers and q = e2πiτ .
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Theorem 4.6. Let E1 and E2 be elliptic curves over C corresponding to the lattices Λ1

and Λ2. Then there is a bijection between the two sets

Hom(E1, E2) ∼= {holomorphic maps φ : C/Λ1 → C/Λ2 with φ(0) = 0}

Proof. [10] Theorem VI.4.1.b

Theorem 4.7. Let E1 and E2 be elliptic curves over C corresponding to the lattices Λ1

and Λ2. Then E1 and E2 are isomorphic over C if and only if there exists α ∈ C such
that αΛ1 = Λ2.

Proof. [10] Corollary VI.4.1.1

Theorem 4.8. Let E be an elliptic curve over C corresponding to the lattice Λ. Then
the endomorphism ring of E satisfies

End(E) ∼= {β ∈ C : βΛ ⊆ Λ}.

Proof. [12] Theorem 10.1

Theorem 4.9. Let E be an elliptic curve over C. Then End(E) is isomorphic to either
Z or to an order in an imaginary quadratic number field.

Proof. [10] Theorem VI.5.5

We say that E has complex multiplication if its endomorphism ring is larger than Z.

4.3 Reduction of elliptic curves

We will in this section see how one can reduce a curve E defined over a number field to
a curve Ẽ defined over a finite field.

Let E be a curve defined over a number field K. Let v be a valuation of the field K.
We know there are many Weierstrass equations for E/K,

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Consider now all the Weierstrass equations in which v(ai) ≥ 0 for all coefficients. It
follows that v(∆) ≥ 0, where ∆ is the discriminant of E. We say say that a Weierstrass
equation is minimal at v, if v(ai) ≥ 0 and v(∆) takes its minimal value under this
constraint.

Assume now that E/K is represented by a minimal Weierstrass equation. Write Dv

for the valuation ring of v and let π ∈ Dv be its prime element. Let k = Dv/(π) be
the residue class field. Since v(ai) ≥ 0, all the coefficients will be in Dv. We can thus
reduce the coefficients ai and get elements ãi of k. If v(∆) = 0, the reduction ∆̃ will be
non-zero. This means that when we reduce the minimal Weierstrass equation, we get a
reduced Weierstrass equation which defines a non-singular elliptic curve over the field k,

E/k : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6.
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If v(∆) = 0 we say that E has good reduction at v, since we get a non-singular elliptic
curve. If the prime divisor p of K corresponds to the divisor v, we also say that E has
good reduction at p.

Theorem 4.10. Let L be a number field and b a prime divisor. Let E1/L and E2/L
be elliptic curves with good reduction at b. We write Ẽ1 and Ẽ2 for the reduced curves.
Then the map

Hom(E1, E2) → Hom(Ẽ1, Ẽ2)
φ 7→ φ̃

preserves degree.

Proof. Take a prime l not divisible by b, and consider the Tate module of an elliptic
curve Tl(E). We know ([10] Section III.8) that there exists a bilinear, non-degenerate
pairing

eE : Tl(E)× Tl(E) → Tl(µ).

For any isogeny φ : E1 → E2 with dual φ̂ this pairing satisfies

eE1(S, φ̂(T )) = eE2(φ(S), T )

for S ∈ Tl(E1), T ∈ Tl(E2) ([10] Prop. III.8.2). These properties allows us to write two
identities,

eE1(x, y)
deg φ = eE1(deg φx, y) = eE1(φ̂φx, y) = eE2(φx, φy)

and
eẼ1

(x̃, ỹ)deg φ̃ = eẼ2
(φ̃x̃, φ̃ỹ).

We also know that under reduction, the subgroups of points of a given order, is mapped
isomorphic, when the order is not divisible by the prime used for reduction. It follows
that

Tl(E) = Tl(Ẽ).

We can use the Weil pairing, and when studying its definition, we see that from the
above equality it follows that

˜eE(x, y) = eẼ(x̃, ỹ).

We can now use these identities in the following computation

eẼ1
(x̃, ỹ)deg φ = ˜eE1(x, y)deg φ

= ˜eE2(φx, φy)

= eẼ2
(φ̃x, φ̃y)

= eẼ2
(φ̃x̃, φ̃ỹ)

= eẼ1
(x̃, ỹ)deg φ̃.
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Since the pairing is non-degenerate, it follows that

deg φ = deg φ̃

and the Theorem is proved.

A non-zero isogeny φ ∈ Hom(E1, E2) cannot have degree equal to zero. We immidi-
atly get the following corollary.

Corollary 4.11. Let L be a number field and b a prime divisor. Let E1/L and E2/L be
elliptic curves with good reduction at b. Let Ẽ1 and Ẽ2 be the reduced curves. Then the
map

Hom(E1, E2) → Hom(Ẽ1, Ẽ2)
φ 7→ φ̃

is injective

Corollary 4.12. Let E be an elliptic curve over a number field. Let E have good
reduction to the elliptic curve Ẽ over a finite field. If E has complex multiplication by
the maximal order of an imaginary quadratic field we have

End(E) ∼= End(Ẽ).

Proof. We have seen that End(E) injects into End(Ẽ). We also know that the endo-
morphism ring is an order in an imaginary quadratic field. But since we are assuming
that End(E) is the maximal order, it follows that End(E) and End(Ẽ) must be isomor-
phic.

4.4 Curves with complex multiplication

The following construction will be helpful, in which we identify elliptic curves which are
similar.

ELL(RK) =
{Elliptic curves E/C with End(E) = RK}

Isomorphisms over C
Normally, we are only interested in the study of these equivalence classes of curves. We
often say that an elliptic curve E is in ELL(RK), when we mean that E is a representative
for an equivalence class in ELL(RK).

If we letRK be the maximal order in an imaginary quadratic fieldK, we are interested
in finding elliptic curves whose endomorphism ring is RK . If we take any fractional ideal
Aa in K, this is a lattice in C and we can take the elliptic curve EAa corresponding to
this lattice. This curve has the following endormorphism ring

End(EAa) ∼= {α ∈ C : αAa ⊆ Aa} from Theorem 4.8
= {α ∈ K : αAa ⊆ Aa} since Aa ⊂ K
⊇ RK .

But we know that the endomorphism ring is either Z or an order in K. Since RK is
the maximal order of K, it follows that End(EAa) = RK . Hence every fractional ideal
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in K gives us an elliptic curve with endomorphism ring equal to RK . However, for any
non-zero c ∈ C, the ideals Aa and cAa give us the same elliptic curve in ELL(RK).

Using the correspondence between fractional ideals and fractional divisors, this is
equivalent to saying that any fractional divisor gives us an elliptic curve. But also that
equivalent divisors give us elliptic curves in the same equivalence class. This suggests
that we consider the divisor classes of K, CL(K). We show this correspondence between
ELL(RK) and CL(K) in the following theorem.

Theorem 4.13. Let Λ ⊂ C be a lattice and EΛ ∈ ELL(RK) be an elliptic curve,
representing a class. Let Aa and Ab be non-zero fractional ideals in K. Then

(1) AaΛ is a lattice in C,

(2) End(EAaΛ) ∼= RK ,

(3) EAaΛ = EAbΛ in ELL(RK) if and only if [a] = [b] in CL(K).

This induces a well-defined group-action of CL(K) on ELL(RK) defined by

[a] ? EΛ = EA−1
a Λ.

This action is simply-transitive, that is for any two E1, E2 in ELL(RK) there exists
precisely one [c] in CL(K) such that [c] ? E1 = E2.

Proof. (1) We have that End(EΛ) = RK , so from Theorem 4.8 RKΛ = Λ. Since Aa is a
fractional ideal, we can find a non-zero element d ∈ C such that dAa ⊆ RK . It follows
that AaΛ ⊆ 1

dΛ, meaning that AaΛ is a discrete subset of C.
We can also find a non-zero element c ∈ Aa ⊂ C such that cRK ⊆ Aa. From this we

get that cΛ ⊆ AaΛ and AaΛ is not contained in R. Thus, AaΛ is a lattice.
(2) For α ∈ C and Aa a non-zero fractional ideal we have

αAaΛ ⊆ AaΛ
m

A−1
a αAaΛ ⊆ A−1

a AaΛ
m

αΛ ⊆ Λ.

From Theorem 4.8 we have,

End(EAaΛ) = {α ∈ C : αAaΛ ⊆ AaΛ}
= {α ∈ C : αΛ ⊆ Λ}
= RK .

(3) From Theorem 4.7 we can find an element α ∈ C such that

EAaΛ
∼= EAbΛ ⇔ αAaΛ = AbΛ.
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We can now rewrite this in two ways and get.

EAaΛ
∼= EAaΛ ⇔ Λ = αA−1

b AaΛ
⇔ Λ = (αA−1

b Aa)−1Λ

We now use Theorem 4.8 and see that this is equivalent to that both αA−1
b Aa and

(αA−1
b Aa)−1 are contained in RK . This can only happen if αA−1

b Aa is the identity
element and we get

αAa = Ab.

Statement (3) now follows.
It is now easy to see that the group action is well-defined,

[a] ? ([b] ? EΛ) = [a] ? EA−1
b Λ = EA−1

a (A−1
b Λ) = E(AaAb)−1Λ = [ab] ? EΛ.

We first show that if EΛ1 and EΛ2 are any elements of ELL(RK), then there is an
element [a] ∈ CL(K) that sends the first curve to the second, using our action. Choose
any non-zero λ1 ∈ Λ1. Then Aa1 = 1

λ1
Λ1 ⊂ K is a full module with coefficient ring RK ,

and hence a fractional ideal in K. (See the proof of 3.28.) In the same way, we choose
0 6= λ2 ∈ Λ2 and get the fractional ideal Aa2 = 1

λ2
Λ2. Then

λ2

λ1
Aa2A

−1
a1

Λ1 = Λ2.

By setting Aa = λ1
λ2
A−1

a2
Aa1 , it follows that

[a] ? EΛ1 = EA−1
a Λ1

= EΛ2

Hence for any two elliptic curve, we can find a divisor class that acts on the first to
produce the second. We need to show that this is unique. In other words, we must show
that if

[a] ? EΛ = [b] ? EΛ,

then [a] = [b]. But this follows from statement (3) above. The proof is complete.

Remark: Let a be an integral divisor with corresponding ideal Aa. Then Λ ⊆ A−1
a Λ

and we have a natural homomorphism C/Λ → C/A−1
a Λ which induces a natural map

EΛ → [a] ? EΛ.

It can be shown that this map has degree equal to the norm of Aa. ([11] II.1.5)
Since the group-action defined in the Theorem is simply-transitive, we get this im-

portant corollary.

Corollary 4.14. For a quadratic imaginary field K with maximal order RK we have

#ELL(RK) = #CL(K).
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This corollary is very powerful, since we know that the number of divisor classes is
finite. We will use this in the following theorem, which deals with rationality of elliptic
curves. If σ is any automorphism of C and E/C is an elliptic curve, we let Eσ be obtained
by letting σ act on the coefficients of a Weierstrass equation for E. Then Eσ is clearly
an elliptic curve.

Theorem 4.15. (a) Let σ be a C-automorphism and E/C an elliptic curve. Then

End(Eσ) ∼= End(E).

(b) Let E/C be an elliptic curve with endomorphism ring equal to the maximal order
in a quadratic imaginary field. Then the j-invariant of E is an algebraic number.

(c) The set ELL(RK) which was defined as C-isomorphism classes, can be written as

ELL(RK) ∼=
{Elliptic curves E/Q with End(E) = RK}

Isomorphisms over Q
Proof. (a) Recall that any endormophism corresponds to an element of an order in
an quadratic imaginary field. It follows that we can let a C-automorphism act on
any endomorphis. Hence for any endomorphism φ : E → E, we get an endomorphism
φσ : Eσ → Eσ.

(b) j(E) is just a linear combination of the coefficients of a Weierstrass equation of
E. From the definition of Eσ it follows that

j(Eσ) = (j(E))σ.

From (a) we have that End(Eσ) = RK . We know that #ELL(RK) is finite, so Eσ

can only take a finite number of different isomorphism classes as σ ranges over the
automorphism ring. Thus [Q(j(E)) : Q] <∞ and j(E) is an algebraic number.

(c) This follows from (b) and Theorem 4.1 and Theorem 4.4.

4.5 Galois group action

We have seen that we have an action

Gal(K/K)× ELL(RK) → ELL(RK)

given by σ × E = Eσ. We have also seen that the action

CL(K) ? ELL(RK) → ELL(RK)

is simply-transitive. This means that there is a unique fractional ideal Aa such that
[a] ? E = Eσ, and this induces a map

F : Gal(K/K) → CL(K)

defined by
Eσ = F (σ) ? E for all σ ∈ Gal(K/K)

We will now show that this map is a group-homomorphism and that it is independent
of the elliptic curve we have chosen.
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Lemma 4.16. Let K be a quadratic imaginary field with maximal order RK . Then there
is a group-homomorphism

F : Gal(K/K) → CL(K)

which is uniquely given by
Eσ = F (σ) ? E

for all σ ∈ Gal(K/K) and all E ∈ ELL(RK).

We need the following Lemma

Lemma 4.17. Let K be an imaginary quadratic field as before. Let E/K be an elliptic
curve in ELL(RK), [a] a divisor class in CL(K) and σ an element in Gal(K/K). Then

([a] ? E)σ = [a]σ ? Eσ.

Proof. Proposition II.2.5 of [11] and Lemma 3.24.

Proof of Lemma 4.16. We have seen that for given σ ∈ Gal(K/K) and E ∈ ELL(RK)
we get a map which satisfies Eσ = F (σ)?E. First we show that this is a homomorphism.
For any σ, τ ∈ Gal(K/K) we get

F (στ) ? E = Eστ = (F (τ) ? E)σ = F (σ) ? (F (τ) ? E) = (F (σ)F (τ)) ? E,

which shows that F is a group homomorphism.
We now show that this map is independent of the choice of E. So let E1 and E2 be

in ELL(RK) and σ ∈ Gal(K/K). We can find divisor classes [a1] and [a2] such that

Eσ1 = [a1] ? E1

Eσ2 = [a2] ? E2.

So we need to show that [a1] = [a2]. We have seen that CL(K) acts transitively on
ELL(RK), so there exists a [b] ∈ CL such that E2 = [b] ? E1. Since b ∈ K, [b]σ = [b].
Using this and the previous Lemma, we get

[b] ? Eσ1 = ([b] ? E1)σ = Eσ2 = [a2] ? ([b] ? E1) = [a2][b][a−1
1 ] ? Eσ1 .

Since CL(K) acts freely on ELL(RK), there is only the identity element of CL(K) that
sends E1 to E1, and this shows that [a1] = [a2] and proves the Lemma.

4.6 The Hilbert class field

In this section we will prove the following Theorem

Theorem 4.18. Let K be an imaginary quadratic field with maximal order RK . Let E
be an elliptic curve representing a class in ELL(RK). Then

(a) K(j(E)) = HK , the Hilbert class field of K.
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(b) [Q(j(E)) : Q] = [K(j(E)) : K] = #ELL(RK) = #CL(K) = hK = the class
number of K.

(c) Let E1, . . . , Eh be a complete set of representatives of ELL(RK). Then J = j(E1), . . . , j(EhK
)

is a complete set of Galois-conjugates of j(E) in Gal(K/K).

We start with proving a lemma which deals with the homomorphism

F : Gal(K/K) → CL(K)

defined earlier.

Lemma 4.19. Let K be an imaginary quadratic field. There exists a finite set of rational
primes S ⊂ Z, such that if any rational prime p /∈ S splits in K, say (p) = pp′, then

F (σp) = [p],

where σp is the Frobenius element that corresponds to p.

Proof. We will need the following facts.

(a) Let L ⊆ C be a field. Let E1/L and E2/L be elliptic curves. Then there exists
a finite extension L′/L such that any φ ∈ Hom(E1, E2) is defined over L′. ([11]
II.2.2.c)

(b) Let E1 and E2 be elliptic curves defined over a field of non-zero characteristic.
Then any ψ : E1 → E2 factors as

E1
φ // E

(q)
1

λ // E2

where q is the inseparable degree of ψ, φ is the qth Frobenius map and λ is separa-
ble. This means that for non-separable maps, we can factor out the inseparability
in a Frobenius map. ([10] II.2.12)

(c) Let E1 and E2 be curves. Any map φ : E1 → E2 induces a map on differentials
φ∗ : ΣE2 → ΣE1 . Further φ is separable if and only if φ∗ is non-zero. ([10] II.4.2.c)

We have seen that ELL(RK) is finite and that any E/C ∈ ELL(RK) can be represented
by a curve E/Q. This means that we can find a finite extension L/K and elliptic curves
E1/L, . . . , En/L representing each class in ELL(RK). Using fact (a) we can choose L in
such a way that any φ ∈ Hom(Ei, Ej) is defined over L, for all i, j.

We now construct a finite set of rational primes, S. This set consists of all ”bad”
primes. More precisely, a prime p is in S if it satisfies any of the following conditions.

(i) p ramifies in L.

(ii) There is a prime divisor of L which divides p in which Ei has bad reduction, for
some i.
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(iii) Write vp for the p-adic valuation of Q.

vp(NL
Q(j(Ei)− j(Ej))) 6= 0

for some i 6= j.

Condition (iii) ensures that distinct Eis reduces to distinct Ẽis.
Take a rational prime p /∈ S such that (p) = pp′. Let b be a prime divisor of L

dividing p. Choose an integral divisor a relative prime to p such that ap is principal, say
ap = (α), α ∈ K. Let E ∼= C/Λ be an elliptic curve. We now use Theorem 4.6 and the
fact that divisors and ideals are isomorphic and get the following commutative diagram.

C/Λ z 7→z
//

∼
��

C/A−1
p Λ z 7→z

//

∼
��

C/A−1
ap Λ = //

∼
��

C/(α)−1Λ ∼
z 7→αz

//

∼
��

C/Λ

∼
��

E
φ

// [p] ? E
ψ

// [a] ? [p] ? E = // [(α)] ? E
λ

∼ // E

Choose a Weierstrass equation for E, which is minimal at b

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Then the invariant differential of E is

ω =
dx

2y + a1x+ a2
.

The differential of C/Λ which corresponds to ω is a multiple of dz. The map in the top
row of our diagram is z 7→ αz. We look at dz as a function and pull it back, getting

α∗(dz) = d(αz) = αdz.

Using the commutativity of the diagram, we see that

(λ ◦ ψ ◦ φ)∗ω = αω.

We reduce E modulo b and get the curve Ẽ. The invariant differential of Ẽ is then

ω̃ =
dx

2̃y + ã1x+ ã2

.

Since b divides p and (α) = ap we get

(λ̃ ◦ ψ̃ ◦ φ̃)∗ω̃ = ˜(λ ◦ ψ ◦ φ)
∗
ω̃ = α̃ω̃ = 0̃.

Using fact (c), we see that λ̃ ◦ ψ̃ ◦ φ̃ is inseparable. We have

deg φ̃ = deg φ = NK
Qp = p

deg ψ̃ = degψ = NK
Qa

deg λ̃ = deg λ = 1 since λ is an isomorphism
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Recall that we chose a relative prime to p, so both λ̃ and ψ̃ are separable. So since
λ̃ ◦ ψ̃ ◦ φ̃ is inseparable, we must have that

φ̃ : Ẽ → [̃p] ? E

is inseparable. We can now use fact (b), and since deg φ̃ = p we get the following
factorization of φ̃

Ẽ
pth

Frobenius
// Ẽ(p)

∼ // [̃p] ? E,

into a Frobenius map and an isomorphism. Hence j([̃p] ? E) = j(Ẽ(p)) = j(Ẽ)p and we
get

j([p] ? E) ≡ j(E)N
K
Q (p) ≡ j(E)σp = j(Eσp) = j(F (σp) ? E) (mod b).

Since we chose p /∈ S, this means that [p] ? E = F (σp) ? E. We know that the action of
CL(K) on ELL(RK is free, so we get

[p] = F (σp)

Proof of 4.18. Let L/K be a finite extension characterized by that L is the fixed field of
the kernel of

F : Gal(K/K) → CL(K).

Then, using that CL(K) acts simply-transitively on ELL(RK) we can write

Gal(K/L) = kerF
= {σ ∈ Gal(K/K) : F (σ) = 1}
= {σ ∈ Gal(K/K) : F (σ) ? E = E}
= {σ ∈ Gal(K/K) : Eσ = E}
= {σ ∈ Gal(K/K) : j(E)σ = j(E)}
= Gal(K/K(j(E))),

and L = K(j(E)). From the choice of L we see that

F : Gal(L/K) → CL(K)

is injective. Since CL(K) is abelian, it follows that K(j(E)) is an an abelian extension
of K.

Let cL/K be the conductor of L/K and consider the composition of the artin map
and F ,

F ((·, L/K)) : I(cL/K) → CL(K).
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Take any divisor a ∈ I(cL/K) and let S be a finite set of ”bad” primes, as in the previous
Lemma. From Theorem 3.32 we can find a prime p ∈ I(cL/K) of degree 1 over Q, not
lying over any prime in S and which satisfies

a = (α)p
α = 1 (mod cL/K)

for some α ∈ K. We use this and the definition of the conductor and get,

F ((a, L/K)) = F (((α)p, L/K))
= F ((p, L/K)) since (α) is principal divisors
= [p] Lemma 4.19
= [a]

Hence, the map F ((·, L/K)) is just the natural projection of I(cL/K) into CL(K).
We see that F (((α), L/K)) = 1 for any principal divisor (α) ∈ I(cL/K) and since
F : Gal(L/K) → CL(K) is injective, it follows that

((α), L/K) = 1 for any principal divisor (α) ∈ I(cL/K).

From the definition of the conductor, we must have cL/K = (1). Hence there are no
primes of K that ramify in L. We conclude that L is contained in the Hilbert class field
of K.

Now since cL/K = (1), the map F ((·, L/K)) : I((1)) → CL(K) is clearly surjective.
We thus get that

F : Gal(L/K) → CL(K)

is surjective, and hence an isomorphism. We can now write the following,

[L : K] = #Gal(L/K) = #CL(K) = #Gal(H/K) = [H : K].

Since L ⊆ H, we see that L = K(j(E)) = H, which proves point (a).
We see from the arguments in the proof of Theorem 4.15(b) that the degree [Q(j(E)) :

Q] is not larger than the class number of K. We thus get this tower of fields.

K(j(E))
≤2

rrrrrrrrrr
hK

GG
GG

GG
GG

GG

Q(j(E))

≤h MMMMMMMMMMMM K

2
vvvvvvvvvv

Q

We see that [Q(j(E)) : Q] = hK and we have proved (b).
Since CL(K) acts simply-transitively on ELL(RK), we get that CL(K) also acts

simply-transitively on the set J = {j(E1), . . . , j(EhK
)}. We have seen that Gal(L/K)

is isomorphic to CL(K). From the definition of F , this means that Gal(K/K) acts
transitively on J. It follows that J is a complete set of Gal(K/K) conjugates of E(j).
This proves (c) and the Theorem.
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Definition 4.20. Let K = Q(
√
d) be an imaginary quadratic field with maximal order

RK . Let E1, . . . Eh be a complete set of representatives for ELL(RK) and let ji = j(Ei).
The Hilbert polynomial corresponding to K is

hK(x) = hd(x) = (x− j1) . . . (x− jh).

From Theorem 4.18 this polynomial splits over HK .

Theorem 4.21. The Hilbert polynomial has integer coefficients.

Proof. Theorem 11.2.6 of [4]

Example 4.22. We continue from example 2.22 and look at the quadratic field Q(
√
−15).

We let RK be the maximal order in this field. Recall that there are two equivalence
classes of modules that has RK as coefficient ring. We found the two reduced modules
corresponding to these classes

M1 = {1, 1 +
√
−15

4
} and M2 = {1, 1 +

√
−15

2
}.

Since these reduced modules are full modules in an imaginary quadratic field, they can
be represented as lattices in the complex plane. We know that any lattice corresponds to
an elliptic curve, and the coefficient ring of the lattice corresponds to the endomorphism
ring of the elliptic curve. There is a convergent series that enables us to compute an
approximation of the j-invariant of a lattice.

We can numerically compute the j-invariants for the two reduced modules and con-
struct an approximation to the Hilbert polynomial. But since the Hilbert polynomial
has integer coefficients, we can find the correct Hilbert polynomial by rounding the
approximation, as long as we ensure high enough precision. We compute

j1 = j(M1) ≈ 632.83286

and
j2 = j(M2) ≈ −191657.83286

and construct the Hilbert polynomial

h−15(x) = (x− j1)(x− j2) = x2 + 33 · 52 · 283x− (32 · 5 · 11)3.
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5 The Complex Multiplication Method

We will in this section use the theory we have described up until now. We will see how
we can create an elliptic curve with specified group order over a given finite field.

5.1 The Frobenius endomorphism

We first study the Frobenius endomorphism of elliptic curves. See Section 4.2 of [12] for
complete proofs.

Let q = pr, where p > 3 is prime. Given an integer n, we wish to find an elliptic
curve Ẽ/Fq such that #Ẽ(Fq) = n.

The qth power Frobenius endomorphism π sends a point (x, y) ∈ Ẽ(Fq) to (xq, yq) ∈
Ẽ(Fq). A point P is in Ẽ(Fq) if and only if π(P ) = P . Hence we can count the number
of Fq-rational points of Ẽ with the following equation.

n = #Ẽ(Fq) = # ker(1− π) (4)

It can be shown that for any separable endomorphism φ we have # ker(φ) = deg(φ) ([10]
III.4.10) and that the map (1− π) is separable ([10] III.5.3). We use Rosati involution,
which states that deg(φ) · 1 = φφ̂, where φ̂ is the dual isogeny of φ. We know that the
norm of the Frobenius π is equal to q. From this, Theorem III.6.2 of [10] and the above
equation it follows that

n = # ker(1− π) = 1− Tr(π) + N(π) = 1− t+ q,

where we define t = Tr(π).
We have seen that the endomorphism ring of an elliptic curve is contained in an

imaginary quadratic field. From the definition of trace and norm of an element, we
deduce the following identity for an element α in a quadratic field

N(x− α) = x2 − Tr(α)x+ N(α).

We can consider endomorphism as elements of an imaginary quadratic field. This allows
us to use the above equation and get a polynomial

c(x) = x2 − tx+ q,

with c(π) = 0. The roots of c(x) can be written as

t±
√
t2 − 4q
2

.

We write d ·m2 = t2 − 4q, where d is squarefree. From Hasse’s Theorem, we know that
d ≤ 0. If we let K = Q(

√
d), we see that π is an element of the maximal order RK of an

imaginary quadratic field K.
We will find an elliptic curve over C with endomorphism ring equal to RK , and then

reduce this to get a curve over Fq. Since the endomorphism ring is preserved under
reduction we will get an elliptic curve with a Frobenius satisfying equation (4).
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We have seen that there is a correspondence between elliptic curves E/C and lattices
Λ ⊂ C. We consider the case when lattices are full modules in some quadratic imaginary
field. From Theorem 4.8 we see that the endomorphism ring of E is isomorphic to the
coefficient ring of Λ. We are therefore interested in finding full modules of the field K
with coefficient ring equal to the maximal order RK . By finding the j-invariant to any
of these full modules, we get an elliptic curve with the proper endomorphism ring.

From Theorem 4.15 we know that the j-invariant of an elliptic curve E/C with
complex multiplication by RK is defined over Q. There is an convergent sum which
gives us the j-invariant, but computing this directly is not feasible. Instead we create
the Hilbert polynomial of K, hK(x). Recall that the Hilbert polynomial is defined as

hK(x) = (x− j1) . . . (x− jh),

where the js are the j-invariants corresponding to non-isomorphic elliptic curves (or non-
similar lattices), and has integer coefficients. This allows us to approximate the different
j-invariants and create an approximation to the Hilbert polynomial, ĥK(x). By ensuring
high enough precision of this calculation, we can round the coefficients of ĥK(x) and get
the true hK(x).

Consider now the case where q = p. Then we have 4p = t2 − dm2, and p splits
completely into distinct primes in K, say (p) = pp. However, since p = 4αα where
α = t+

√
−dm
2 ∈ K, we see that p = (α) is a principal divisor. It follows that the artin

map acts trivially on p which implies that x ≡ xp (mod b) for any x ∈ RH , where b is a
prime divisor dividing p. This means that the residue field RH/b must be equal to Fp.
From this it follows that the reduction of the Hilbert polynomial modulo p must give us
a polynomial which splits completely over Fp.

Now we look at the general case, q = pr and 4q = t2−dm2. Let K = Q(
√
d) as usual.

This means that there is some α ∈ K such that q = N(α) and α is a root of x2 − tx+ q.
Let H be the Hilbert class field of K and h(x) ∈ Z[x] the Hilbert polynomial, with
degree h = |Gal(H/K)|.

If p remains prime in K, the residue field RK/(p) is the field Fp2 . We also have that
the Artin map acts trivially on (p), since it is a principal divisor. It follows that the
residue field RH/b = Fp2 , where b ∈ RH is a prime dividing (p). This is not the situation
we want. We therefore require that p splits into two primes in K.

So let (p) = pp′ in K, and let p = b1 . . . bs in H. We now use results which were
presented in Section 3.9. We write Fb = RH/b and Fp = RK/p. We have seen that
all the stabilizer subgroups Gbi = {σ ∈ G : σ(bi) = bi} are equal and isomorphic to
Gal(Fb/Fp). From this we saw that |Fb/Fp| = |Gb| = h/s = fb.

Suppose (α) = aa′ for a prime divisior a and some divisor a′. Then

N(α) = N(aa′) = N(a)N(a′) = q = pr.

It follows that a = p or a = p′, hence these are the only primes dividing (α). Now let

(α) = pkp′k
′
.
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Since N(p) = N(p′) = p, we have k + k′ = r.
Let both k and k′ be non-zero and assume k ≥ k′. Then

(α) = (pp′)k
′
pk−k

′
= (p)k

′
pk−k

′
.

Since p divides (α), we deduce that p must divide the trace of α, i.e. p|t. This implies
that we are in the supersingular case, which is not what we are interested in. So we will
only consider cases where t 6≡ 0 (mod p).

Because of symmetri, we can assume k′ = 0 and (α) = pr. Let (p,H/K) = σp ∈ Gb

be the element which maps to Frobenius, i.e. σp is the generator of the subgroup Gb.
We use the Artin map on (α) and get (α,H/K) = (pr,H/K) = σrp = 1. Thus fb|r. The
element σrp corresponds to the map (x 7→ xp

r
), which is the Frobenius for Fq. Hence,

in this case, the reduced Hilbert polynomial must split completely in Fq. We note that
it may split over some smaller extension of Fp, but we are interested in points over Fq.
Also if the number of points is prime, we can use Hasse’s Theorem and see that the
curve is defined over Fq.

To complete the procedure, we reduce the Hilbert polynomial modulo p and take a
root j0 of hK(x) mod p. From the above discusssion we see that this root lies in Fq.
From Corollary 4.12 there is a curve and with j-invariant equal to j0 with endomorphism
ring RK . We assume that we are not in the special case where j0 = 0 or j0 = 1728.
We can then use Theorem 4.3 and quickly determine the correct curve from the reduced
j-invariant.

We summarize the method to create an elliptic curve over a finite field Fq with order
n, where char(Fq) > 3. Let q = pr and t = q + 1 − n. If |t| ≤ 2

√
q and t 6≡ 0 (mod p)

we can find such a curve with the following steps.

(1) Write d ·m2 = t2 − 4q, with m integer and d square-free. Let K = Q(
√
d).

(2) Check that p splits completely in K. Go to step (1) and find a new d if this fails.

(3) Compute hK(x), the Hilbert polynomial of K.

(4) Find a root j0 of hK(x) over Fq.

(5) Compute the elliptic curve with j-invariant equal to j0, taking the twist if needed.
This curve will have the correct group order over Fq.

We note that the computation required to find and reduce the Hilbert polynomial in-
crease with both |d| and the class number of K. We are therefore interested in keeping
these small. The class number can be checked before computing the Hilbert polynomial.
One could also consider using Tables of class numbers to exclude certain values of d.

Remark: This can easily be generalized for p = 2, 3. There are only a few places we
require this condition.
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5.2 Pairing friendly curves

Let E/Fq be an elliptic curve, with q = pr. Let m be an integer not divisible by p. Then
the subgroup

E[m] = {P ∈ E(Fq) : mP = O}

is isomorphic to Z/mZ× Z/mZ. There exists a non-degenerate bilinear pairing

em : E[m]× E[m] → µm

where µm ∈ Fq is the mth roots of unity. The set µm forms a cyclic group of order
m. If E[m] ⊆ E(Fqk), it can be shown that µm ⊆ F∗

qk . The smallest such k is known
as the embedding degree of E[m]. Pairing-based cryptography uses such a pairing and
requires that the Discrete Logarithm Problem (DLP) is hard enough both in E[m] and
in µm. Since µm ⊆ F∗

qk one can use the more efficient index calculus method. Hence,
we must make sure that k is sufficiently large. If k is too large however, the efficiency
of the cryptosystem suffers. Current methods to solve DLP suggests that k = 6 is a
good choice. But as computer power increases, k must also increase if the crypto system
should maintain security and optimal efficiency.

Since #F ∗
qk = qk−1 and the order of any subgroup must divide this, we can determine

the embedding degree of E[m] by

m|qk + 1
m 6 | qs + 1 for any 1 ≤ s < k

The kth cyclotomic polynomial Φk(x) has precisely the property that m|Φk(q). For
k = 6 we have Φ6(x) = x2 − x+ 1.

This puts strict limitations on the elliptic curves which can be used.

5.3 Examples

We are now ready to find some elliptic curves.
We search only for curves over finite fields of prime order. We require the curve to

have a subgroup whose embedding degree is 6. Since Φ6(x) = x2 − x + 1 we get the
following constraints, where t = p+ 1− n,

p prime
n = ur where r is prime and u is small
r|(p2 − p+ 1)
|t| ≤

√
2p

t2 − dm2 = 4p has a solution with small d.

We limit our search to −d < 30. Ideally we would like u = 1, but there are no such
curves for 100 < p < 107. We loosen our requirements and accept u < 30.
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Example 5.1. We now find many candidates and pick the following.

p = 1699
Φ6(p) = 7 · 19 · 109 · 199

n = 16 · 109 = 1744
d = −15

Since d = −15 we need the Hilbert polynomial corresponding to K = Q(
√
−15). We

have computed this in a previous example,

h−15(x) = x2 + 33 · 52 · 283x− (32 · 5 · 11)3.

We now reduce this polynomial modulo p = 1699 and get

h−15(x) ≡ x2 + 737x+ 837 mod 1699
≡ (x+ 100)(x+ 637) mod 1699

We take a zero of h15(x) over F1699 and get the j-invariant j1 = 1599. We find a curve
E1 with this j-invariant.

E1 : y2 = x3 + 1104x+ 736

But calculating the number of points on E1 reveals that this is not the curve we are
looking for. We take the twist of E1 and get

E1T : y2 = x3 + 1018x+ 791.

We know that this curve is the correct one, and a calculation gives us

#E1T = 16 · 109.

We have found an elliptic curve with a subgroup of order 109 over F1699. This subgroup
has embedding degree 6.

Example 5.2. We pick another candidate, given by

p = 73709
Φ6(p) = 3 · 19 · 43 · 727 · 3049

n = 24 · 3049 = 73176
d = −5

The maximal order in K = Q(
√
−5) is RK = {1,

√
−5} and has discriminant D = −20.

We first find the reduced modules of the maximal order. We recall that the reduced
modules are on the form {1, γ} and γ ∈ K is reduced. We denoted a triple of integers
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(a, b, c) as the unique set such that aγ2 + bγ + c = 0, a > 0 and g.c.d(a, b, c) = 1. This
allowed us to write

γ =
−b+

√
D

2a
.

Since we are interested in reduced modules only, we saw that we got these constraints

D = b2 − 4ac

−a ≤ b < a <
√

−D
3

c ≥ a for b ≤ 0
c > a for b > 0

Now since D = −20 and c = b2−D
4a must be an integer, we need b to be an even integer.

We see that the only valid values for b is 0 and −2. We are therefore limited to the
following cases

a = 1 b = 0 c = 5
a = 1 b = −2 c = 6 not valid since − a > b
a = 2 b = 0 c = 5/2 /∈ Z
a = 2 b = −2 c = 3.

Hence, there are two different sets of triples which give us a reduced module. So we have
the two reduced modules {1, γ1} and {1, γ2} where

γ1 =
02 +

√
−20

2 · 1
=
√
−5

γ2 =
(−2)2 +

√
−20

2 · 2
=

1 +
√
−5

2
.

To calculate the Hilbert polynomial we have seen that we need to find all non-isomorphic
elliptic curve with endormophism ring equal to RK . The correspondence between lattices
and elliptic curves allowed us to find the non-similar lattices with RK as coefficient ring.
We could also calculate the j-invarient directly from the lattices using convergent sums.
This means that we can calculate the j-invariant from the two reduced modules we have
found and build the Hilbert polynomial. We get

j1 = j({1, γ1}) = j(
√
−5) ∼= 1264538.9094751

j2 = j({1, γ2}) = j(
1 +

√
−5

2
) ∼= −538.9094772

and the Hilbert polynomial is

h−20 = (x− j1)(x− j2) = x2 − 27 · 53 · 79x− 8803.

We reduce the Hilbert polynomial and factor it to get

h−20 ≡ (X + 24272)(x+ 38490) (mod 73709).



5.4 Improving the CM-method 57

We take j = −24272 and calculate an elliptic curve over F73709 corresponding to this
j-invariant,

Ẽ : y2 = x3 + 17642x+ 36331.

This time we do not need to take the twisted curve, as a calculation of the group order
reveals that #Ẽ = 23 · 3 · 3049, and we have the subgroup we were looking for.

Example 5.3. We search for a curve with a subgroup with embedding degree 7. We
find the parameters p = 10861, n = 4 · 2731 and d = −11. Calculating the reduced
modules reveal that Q(

√
−11) has class number one, and we find the j-invariant to be

j = −32768. With class number one, we do not need to build the Hilbert polynomial,
since it has degree one. We simply reduce j modulo p. The first curve we try, is not the
correct one. So after taking the twist we get the following curve

ET : y2 = x3 + 10769x+ 7118

with #ET /F10861 = 4 · 2731.

5.4 Improving the CM-method

The method we have described for generating elliptic curves has some weaknesses. If
we are interested in curves which are usable in cryptography, we need a group order of
atleast 160 bits. To have much hope of finding elliptic curves of this size, we need to
accept much larger discriminants. The problem with this is that the coefficients of the
Hilbert polynomial quickly gets huge, as they grow exponentially as the discriminant
grows. To remedy this, it is possible to use Weber polynomials. This involves using
different elements to generate the Hilbert class field, and by choosing these carefully one
can get a polynomial with relatively small coefficients. The theory of Weber polynomials
can be found in [13]. Both [1] and [7] used Weber polynomials in their algorithms.

In our examples to find pairing-friendly curves, we found suitable candidates with a
naive search. This can be improved using simple number theory. Scott and Baretto [9]
uses efficient solving of the Pell equation to speed up the search.
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6 Concluding Comments

We have presented the CM-method and the mathematical theory needed to understand
it. We have extended the method to handle any finite field.

The theory of orders, divisors and class fields is very general and has applications in
both pure and applied mathematics.

This area of research has just recently found applications in cryptography, and there
are still many open problems.
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