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Abstract

We begin with a description of a mathematical model of the geomagnetic field and some
discussion of the classical non-uniqueness results of Backus. Then we look at more recent
results concerning reconstruction of the geomagnetic field from intensity and the normal
component of the field. New stability estimate for this reconstruction is obtained.
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Introduction

The aim of this thesis is to look at a mathematical model for the geomagnetic field and
the challenges it offers.

The geomagnetic field is a complicated phenomenon. Both its origin and behavior are
not completely understood. We are only going to look at the time independent field in
the atmosphere, and it turns out that in this case there is, at least from a mathematical
point of view, a very nice model that describes it. Using this model, we will consider
different empirical data and see if they are sufficient to reconstruct the geomagnetic field.

Our starting point is Maxwell’s equations, which are the classical tool to describe elec-
tromagnetic fields. Motivated by [Gri99] and [AE92], we take a closer look at this system
for electromagnetic fields. Then following [BPC96] we analyze Maxwell’s equations and
see, that under some reasonable assumptions, the geomagnetic field in the atmosphere
can be approximated by the gradient of a harmonic function. Measurements show that
the main contribution to the geomagnetic field is due to sources inside the earth. So the
gradients of functions harmonic outside the earth provide a good mathematical model of
the geomagnetic field.

One of the famous problems in geophysics is the reconstruction of the geomagnetic field
using surface data. A natural question is then: can more than one magnetic field satisfy
these data? We have collected some answers to this question and will present them in
this text.

From [BPC96| we get an explicit formula for reconstructing the magnetic field from vec-
tor data on a sphere, and thus answering no to our question. The most famous answer is
due to Backus in [Bac70] for the situation when intensity on a spherical surface is known.
Here he constructs a simple example of two fields with the same intensity on a sphere.
This example is reproduced in the text along with two others using the same technique.
A different approach to this problem is due to [AOP04] where Clebsch-Gordan coeffi-
cients are used to obtain general uniqueness criteria. They use this to show that if two
fields have a finite expansion then they are equal provided they have the same intensity
on a sphere. Both this approach and the result are included in the text. The criterion is
also used to study an example.



2 Introduction

A natural follow up question would then be: if we know the intensity on two spheres,
are there still more than one magnetic field which fit these data? Attempts of answering
this has been made using the techniques and examples for the one sphere case. But it
seems that there is no simple counter example.

The next question is if we know the intensity everywhere outside a sphere are there more
than one magnetic field that fit these data? The answer is no and we present the proof
given by Backus in [Bac68].

A more modern approach to the reconstruction problem is when in addition to the in-
tensity the sign of the normal component is assumed known. It is shown in [KHLM97]
that this uniquely determines a magnetic field. Also in a follow up paper [KHLM99| a
stability estimate for this uniqueness is given. Both of these results are presented in this
text. We use the latter to find a more explicit stability estimates for this situation.

The most part of the thesis consists of the review of some known results from books and
articles, mainely [BPC96|, [AOP04], [KHLM97| and [KHLM99|. We tried to unify the
approach and write a consistent treatment of the subject. Some of the proofs are modi-
fied and/or simplified. The two sphere problem is known in geomagnetism. Discussions
of the examples for two sphere in section 3.5 is new as well as those for the one sphere
in sections 3.3 and 3.5.

The main new result of the thesis is an explicit stability estimate in section 4.2.5. Step
1 of the proof is contained in [KHLM99|, where general domain instead of R3 \ B is
considered. A stability estimate in [KHLM99] for the uniform norm of the field on the
sphere on which the data is known is obtained by a normal family argument. Our aim
was to give an explicit proof and get a quantitative estimate.

Overview of the Thesis

Chapter 1: Geomagnetic and Mathematical Preliminaries

We start with a short introduction of the geomagnetic field and some motivation to study
it. Then general notation and background about harmonic functions used in this text
are summarized. Some units and constants are listed in the end of the chapter.

Chapter 2: The Magnetic Field in the Atmosphere

We analyze Maxwell’s equations using real data. It turns out that the gradient of func-
tions harmonic in the atmosphere approximate the geomagnetic field well. Also we see
that we can divide the geomagnetic field into two parts, one due to internal sources and
one due to external. Expanding harmonic functions in spherical harmonics, we find an
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explicit formula for the reconstruction of the geomagnetic field in the atmosphere from
vector data on a sphere.

Chapter 3: Reconstruction from Intensity

In this chapter we consider the problem: can two different magnetic fields have the same
intensity on a sphere? We also look at if this holds for two spheres. Expanding harmonic
functions in spherical harmonics, we get examples of different fields with same intensity on
a sphere. Moreover, we show that these examples does not hold for the two-sphere case.
Further we use Clebsch-Gordan coefficients in expanding the product of two spherical
harmonics. From this we get a general formula for constructing fields with same intensity
on spheres. Then we use the formula to show that two fields corresponding to functions
having finite expansion are equal if they have the same intensity on a sphere. We also
use this formula to get another example of two fields with same intensity on a sphere.
However none of these has the same intensity on two spheres. We finish the chapter by
showing uniqueness from intensity everywhere outside a sphere.

Chapter 4: Reconstruction from Intensity and Dip Equator

Here we consider the problem: can two different magnetic fields have the same intensity
and same sign of the normal component on a sphere? First we show that this cannot
happen, and then we look at two magnetic fields By, Bo, for which the difference of the
intensities is small on a sphere and the signs of the normal components are the same (at
least where the normal components are not very small). We find that on this sphere we
have under some conditions that

IB; — By| < CY6,

where ¢ depend on how close the data are and C' is some specific constant.
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Chapter 1

Geomagnetic and Mathematical
Preliminaries

1.1 The geomagnetic field

There is a magnetic field everywhere. From the outer reaches of the galaxy to, where
you (probably) are now, the surface of the earth. In interstellar space, the strength of
the magnetic field is about 1nT. It is created from magnetically oriented dust particles
and observed by how it polarizes light. Within the solar system, the sun’s magnetic field
dominates interplanetary space. Solar winds are continuously streaming from the sun
carrying along charged particles. The magnetic field they create is about 5nT and is
directed away the sun, or towards it, in huge sectors. Immediately surrounding the earth
and up to 10-20 earth radii we have the magnetosphere. We call the magnetic field here
for the geomagnetic field. Sometimes we also divide this into three parts, depending on
where it originates from. The main geomagnetic field is created inside the earth. This
field has a strength of 30-60 uT on the earth’s surface, and it has a slow and steady
variation of a few nT a year. This field can be approximated by that of a dipole, or a
bar magnet, at the center of the earth, as we can see in Figure 1.1'.

Figure 1.1: The earth’s magnetic field look like a dipole.

'From http://www.sunblock99.org.uk/sb99/people/DMackay/magearth.html, 15.06.2006

)
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Magnetic rock on the earth’s surface also creates a magnetic field, and its strength is
about some hundreds of nT.

The geomagnetic field also has a contribution from outside the earth, this creates current
systems in the ionosphere and magnetosphere, and this imposes a magnetic field. This
field is mostly due to the solar winds and has a strength of up to 80nT. It also varies
rapidly dependent on the solar activity.

Magnetic forces was probably first discovered in China about 4000 years ago, where one
observed that certain iron ores, such as lodestone, have the tendency to attract small
pieces of iron. The geomagnetic field was at least known in China in 1088 when it was
used for navigational proposes. Still today, many people use it to navigate. However, the
most important thing about the geomagnetic field is that it protects the earth’s surface
against charged particles of the solar wind. The geomagnetic field becomes a shield which
the particles collide in, as illustration in Figure 1.22.

Figure 1.2: The earth’s magnetic field look like a dipole.

These particles could be fatal to the living organisms on earth. Even now, the collisions
can cause great damage. These collisions are known as magnetic storms and they can
cause significantly damages to power grids, telecommunications system and oil pipelines.
This happened in 1989 when a magnetic storm shut down a substantial part of the Cana-
dian electrical power grid.

Therefore, it is important to study the geomagnetic field and how it evolves. Studying
the geomagnetic field is also an important source to gain information about how the
earth is build up inside. Also in connection with sending up space shuttles, knowledge
of the geomagnetic field is important.

’From http://en.wikipedia.org/wiki/Geomagnetic_ field, 15.06.2006
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1.2 Notation and Terminology

In this section some general notation and conventions used in the text are summarized,

mostly adapted from [BPC96].

We will work in the Euclidean space R? where we denote a point by r = (z,y, z). This
space will be equipped with the usual Euclidean norm |r| = /22 + y? + 22, where we
write r for short. For the standard axial unit vectors we write x = (1,0,0), y = (0,1,0)
and z = (0,0,1). Also a point r € R? can be written as r = rt, where |#| = 1. We will
also use spherical coordinates where we have the following relations

Tz = rcosAsinf
y = rsinAsind
z = rcost

For a subset E C R3 we will write E, int(E) and OF for the closure, interior and bound-
ary of E. We define the boundary of E to be dE = E \ int(E), and for the boundary of
E in R? U {co} we write 0°F.

An open ball of center x and radius R is denoted by B(x, R) and its boundary points by
S(x, R). When the center x = 0 we just write B and Sg. If in addition the radius is one
we simply write B and S. For an annulus we write A(ry,72) = {r € R3: 1| < |r| < r2}.

For n € N and a subset £ C R? we define the L™ norm of a function f on E by

1/n
1l = ( /E | f\”dr) .

By L?-estimate we will mean the estimate in L? norm. We let L"(E) = {f: E — C :

I flln(E) < 0o}
For a complex number z we will denote the complex conjugate by Z.

For f € L'(S) we define

< f>= / f ds.
s
f(=@)

Saying that a function f(r) = o(x) when |z| — a means lim,_, T =0

We define the gradient of a function f by Vf = (0. f,0,f,0.f) and Laplacian operator
Aby A= aa—; + 88_52 + 8722. In spherical coordinates this becomes

~ 1 ~1
V = 10, +A\——0\+0-9
rsinf T
1 1 1 9 1
A = T@(r&ﬂ-l)%—rz (sin296’\+66 +tan086> .
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Thus by defining

V,=r0, and Vi= As.rll(;@)\ + 989
A, =710y (rd, +1) and A= 515290/2\ + 83 + ﬁ@g,

we have the relations 7V = V, + V; and r2A = A, + A;.

1.3 Harmonic functions

Let E be a domain in R?, then a function f: F — R is called harmonic on E if f € C?*(E)
and Af = 0. The set of all harmonic functions on F is denoted by H(E). And the set
of all non-negative harmonic functions on F is denoted by H,(F). If E is unbounded
we write Ho(E) for the harmonic functions in F which vanishes at infinity.

Fact 1 (Extremum principle). Let f € H(E), then f achieve its extremum on O°FE.
Proof. See [AG01, Theorem 1.2.4]. O

Fact 2. The spherical harmonics {Y;"}i, for 0 < |m| < 1 < oo, is an orthonormal
basis for L?(S), where

2041 (1 —m)!

YrA0) = (=1)" Ar (I +m)!

P™(cos §)e™?,

and P™ are Legendre functions given by

1

— ﬁ(l—mQ)m/28i+m(x2_1)l’ for —l<m<l.

B (x)
And Pm"=0 for 1 < |m|. By orthonormality we mean < YIZ”IW >= 01Ot - Also we
have Y™ = (—=1)™Y,; "™,
Proof. See [AW95, Equation (12.167)]. O
Fact 3. [V"|2 < 22—? for every I and m.
Proof. This follows from [Jac75, Equation (3.69)]. O

If p is a polynomial of degree | then we say that p is homogenous if p(r) = rip(t). We
then denote p by p;. For the set of all homogenous polynomials of degree | we write P;.
Specially we write H; for the set of homogenous harmonic polynomials of degree [.

For a homogenous harmonic polynomial h; we have
0=7r2Ah(r) = m@E) A+ Ay(F)
= [+ Dhy(F) + Ay (2))r,

Arhy(F) = —1(1 + DIy (#). (1.1)



1.4. MEASUREMENTS AND UNITS

Fact 4. For any smooth functions f and g we have
<Vif-Vig>=—< fA19>.
Proof. This follows by direct computations.
Using Fact 4 we see that
< VY ViYy" > = - < WAlYlm >

= I(l+1) <WY/”>
= l(l + 1)511/5mm/.

Fact 5. Let f € L*(S), then there are unique scalars fi" such that

9] l
FE =303 @)
=0 m=-—1
where f" =< Y f >.

Proof. See Theorem 3 on p.51 in [BPCY6].

1.4 Measurements and units

We are going to use the units in Table 1.1.

Quantity Symbol  SI unit Name
Area A m?

Current 1 A ampere
Current density J A/m?

Electric charge q C coulomb
Electric charge density p C/m?

Electric displacement D C/m?

Electric field E V/m  volt/meter
Electric polarization P C/m?

Length L m meter
Magnetic displacement H A/m

Magnetic field B T tesla
Magnetization M A/m

Time t 5 second

Table 1.1: Some quantities used, their symbol, unit and name.
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We will use the constants in Table 1.2.

Quantity Symbol Value
Earth radii R_4 6.371 x 10%m
micro I 10~6
nano n 107?
Speed of light c 299,792, 4587
Vacuum permeability 1o 47 x 10_7525 =
Vacuum permittivity €0 uo—f;

Table 1.2: Some physical constants.



Chapter 2

The Magnetic Field in the
Atmosphere

The goal of this chapter is to build a mathematical model that describes the magnetic
field in the atmosphere.

2.1 Maxwell’s equations

If we have two electrically charged particles we will experience a force between them.
This is called an electrical force. A number of experiments have resulted in Coulomb’s
law that connects the force between them with their charge and position. From this law
we can define an electric field. We also experience a force when we have two charged
particles in relative motion. This is another force, and Lorentz’s law connects it with the
magnetic field. Moreover, Biot-Savart’s law connect the magnetic field with the motion
of the charges. These laws are justified through many experiments. In short we can say
that the electric field is given by the positions of the charged particles and the magnetic
field by their velocities. In nature there are lot of charged particles close together, and
their mutual forces make them move, so here the electric and magnetic field always co-
exists. So naturally we will often work with both fields at the same time and then we use
the term electromagnetic field to refer to them both. Also we call the charges creating
a field the sources of the field. From Coulomb’s and Biot-Savart’s law we can deduce
four famous relations between the flux and circulation to an electromagnetic field and
its sources. These are called Maxwell’s equations and are standard in physics, so for a
derivation see any respectable book on electromagnetism, for example [Gri99].

11
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Maxwell’s equations. For any closed surface A and closed path L we have the following
macroscopic relations between an electric field E and magnetic field B.

%E'dA = q/60
A

%B-dA = 0
A

%E-dL = 4 B-dA

I dt Ja,

jI{B-dL = Mo(I—i—Eoi E-dA).
I dt Ja,

Here q is the total charge inside A, €y is the vacuum permittivity, Ay is the surface
bounded by L, ug is the vacuum permeability, and I is the total current through Ar.

The term macroscopic relations is used because there are some microscopic electromag-
netic effects that are not correctly explained by these equations. Thus on such scales
we really need to use quantum mechanics. Moreover a true microscopic field would be
very complex and varies wildly on small intervals in time and space. For example the
magnetic field in an atom is averaged to about 1T over the size of the atom (107!%m). So
the intensity fluctuates wildly between values that are millions of times larger than the
typical geomagnetic intensity. We will also have these wild fluctuations in time due to the
high speed of the electrons. Therefore most practical implementation of these equations
on microscopic scales would be very difficult. These fluctuations can also cause problems
when applying Maxwell’s equations on macroscopic scales, but then we can average over
time and space. And in most cases if this is done in a satisfactory way, we get nice
smooth fields which does not vary so much, but looks the same as the "true" field on a
macroscopic scale. See [Ros65] for a discussion of the averaging process.

We are interested in the local nature of the electromagnetic field, so we want to write the
integral equations into differential form. If we assume that the surface A is independent

of time we can take the differentiations inside the integrals in the last two equations.
Then we can use Green’s and Stokes’ theorem to rewrite the left hand sides,

/V-EdV = /p/eodV
\% \%
/V~BdV =0
1%
/(VxE)-dA - /—QB-dA
/(VxB)-dA - uo/(JJreogE)-dA.

Here p is charge density and J is current density. We have smoothed the sources, so
therefore are p, J, E and B continuous. Since these equations hold for every volume
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and surface the integrands must therefore be equal. Then we get Maxwell’s equations in
differential form,

V-E = p/eo
V-B=0
0
E=—-——B
V x 5
0
VXB:/L()J—F/J,()GOEE.

2.2 Electromagnetic field in a medium

We are going to look at how an electrical field affects a neutral media. A neutral media
is a media with no sources. Usually it consist of neutral atoms/molecules or randomly
oriented dipoles. A neutral atom or molecule consists of a positive charged core and
a negative charged electron cloud surrounding it. The electrical charges just balance,
so there is no electromagnetic field outside the atom/molecule. An electric dipole is a
particle that consists of an equal amount of positive and negative charges, but the pos-
itive and negative charge centers are shifted a bit. This creates an electric field outside
the particle, even if the total charge is zero. A magnetic dipole is orbiting current. For
example electrons orbiting around their core and electrons spinning around their axis are
magnetic dipoles, and they will create electromagnetic fields. In nature electrical and
magnetic dipoles almost always co-exists, so we will just talk about dipoles.

If we have a neutral media consisting of neutral atoms/molecules and randomly oriented
dipoles, then by definition there will be no sources due to this media. Suppose we expose
it to an electromagnetic field. Then the dipoles will orient in accordance to the field, so
the fields from the dipoles will no longer cancel each other. Also the core of the neutral
atoms/molecules will be pushed in the direction of the electric field and the electron
cloud in the opposite way. If the exterior field is strong enough it could pull the atom
apart. Then clearly this will create an electric field. If not, then the stretching of the
atom will reach a balance with the positive charge shifted one way and the negative the
other. Thus we will get an electrical dipole. In this way we get induced sources in the
media, so the media is no longer neutral. We call these sources polarization sources and
the field they create polarization field.

How can we get induced sources when we have the law of charge conservation? This may
seem somewhat odd, but it accrues when we average Maxwell’s equations to write them
on differential form. When we average over (macroscopically speaking) neutral media,
we forget that there really are sources there. And because of this, in our model, the fields
are no longer linearly dependent on the sources.

We divide the total electromagnetic field, F', into two parts.
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F=FF L )

where F(P) is the polarized field due to the polarization sources and FU4) is the "free"
field due to all the other sources. Let o be the sources of F', then we also can divide o,

UZU(F)+U(P).

If we look at the electromagnetic field F(*)| created from the "free" sources, then induced
sources would have no effect on the field. Thus in a way we have conservation of charge
in a macroscopic sense. This means that the field is linearly dependent on its sources.
Therefore we define the following fields,

The polarization field P —EP)
Electric displacement D = ¢E®

The magnetization field M = B®) /g,
Magnetic displacement H = B /g,

Although there are no common accepted names on these fields in literature their letters
and meanings are very often the same. The minus sign in the definition of the polarization
field is due to convention since E() is oppositely directed of E®). These definitions lead
to the following relations

D = E+P
H = B/u—M.

Using these relations we can rewrite Maxwell’s equations,

v-D = p)
VxE = —8tB
vV-B = 0

VxH = JF) 4§D.

By understanding Maxwell’s equations in this way we can say that electromagnetic fields
are (locally) linearly dependent on their sources.

2.3 The geomagnetic field in the atmosphere

By measuring or somehow predicting the sizes of terms, we can get a notion of how each
term contributes in a relation. In this way we will analyze one of Maxwell’s equations.
We will look at them in the atmosphere, and hope that this analysis will lead to some
simplification. We will look at the following equation

VxH=J" 4§D. (2.1)

We want to get a better feeling of how it behaves in the atmosphere. From observations
in the atmosphere we have the following data.
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H| =~ 30-60-107%4/m
JE| =~ 1071 A/m?
ID| ~ 107°C/m?2.

We are looking on length scales of order R_; = the radius of the earth ~ 6.25-10°m and
time scales of order ¢. Then the terms in equation (2.1) have the following magnitude,

IVxH| =~ 4-10754/m?
JE| ~ 1071 A/m?
0D  ~ 102 As/m?.

If we look at time scales ¢ > 2.5-10™%s, we see that |V x H| is dominating the equation
totally. Therefore we will neglect the other terms. The atmosphere is very slightly
magnetically polarizable, so we set M = 0 or equivalently pyoH = B. Then we have

V xB=0. (2.2)

Although (2.1) and (2.2) are in a way close in the atmosphere, this do not in general
imply that their solutions are close. To verify that we have to compare the solution of
the approximated equation with the solution of the real equation or with observed data.
We are not going to do this, but it turns out that the solutions are close.

The atmosphere is simply connected so we can use the following fact.

Fact 6. Let F be a continuous differentiable vector field in a simply connected region E,
then

VxF=0&F=VV,
for some function V.

Proof. See |Kre99, Theorem 3 p. 475]. O
Thus there exists a function v such that
B =-Vq. (2.3)

We will say that ¢ is the potential to B. Now it follows from the third of Maxwell’s
equations that

V-B=-Ay =0.
So 1 is harmonic. We state this in a result.

Result 1. The geomagnetic field is in the atmosphere well approximated by the gradient
of a harmonic function.
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2.4 Internal and external fields

In the last section we concluded that we can neglect J) in the atmosphere. This means
that we look at magnetic fields without any sources there. In Gauss’ theory of the
earth’s magnetic field sources are located above the atmosphere or within the earth. As
announced we now want to split the magnetic field dependent on its sources. We will
split the field in a internal and an exterior field, B{) and B respectively. Then for
the total magnetic field B we have

B =B + B®),
Let R_1 be the radius of the earth and Ry the radius of the ionosphere, we have

v -BW = (0 everywhere
V-B¥ = (0 everywhere
VxBY = 0 whenr>R_;
VxB® = 0 whenr< Ry

Now it follows from Fact 6 that there exists potentials ¢/!) and ¥(&) such that

B = —vy)  and AyY) =0forr >R,
BE) = — vy and A¢E) =0 for r < Ryq.

2.5 Reconstruction from vector data

It is always a question of accuracy when describing a real physical phenomena. One can
never describe it exact, so one is forced to look at idealized situations, approximations
or probability models. This is also the case for the geomagnetic field. We will therefore
only look at the "well approximated" magnetic field in Result 1. This result says, that
for the geomagnetic field, B, in the atmosphere there exists a harmonic function ¢ such
that

B = -V

Let the annulus A(r1,72), for 0 < r; < r9 < 00, be the atmosphere. Then 1 will be
harmonic there. Fix r € (r1,72) and define ,(#) = ¥ (rt). Clearly v, € L?*(S), so by
Fact 5,

00 l
V) = (@) =) Y W)Y (@)
=0 m=-1
Here the coefficients ;" (r) depend on . Since ¢ is harmonic we need
0=r2Ay =

Y™ (@) A" (r) + 9" (r) A Y™ (8)]
l

[Ar" (r) = UL+ D" (r)]Y™ (£).
l

Mz 104
M- -

N
Il
=)



2.5. RECONSTRUCTION FROM VECTOR DATA 17

We used 7?A = A, + Ay and (1.1). Now {Y;"};,,, form a basis for L?(S), thus the above
equation holds only if

A (r) = L+ D (r) = r28297 (r) + 200" (r) = 11+ DY (r) =0, (24)
for every [ and m. This is an Fuler-Cauchy equation which has solutions of the form ™.
Putting ;" (r) = r™ into (2.4) we get

[n(n—1)+2n—I1(l+ 1)]r" =0,

thus n = —l — 1 or n = [. The general solution of (2.4) is then
Y(r) = gD 4 ket (2.5)

Where g/ and k] are some constants which we will call the Gauss’ coefficients of the
function . Putting this expression into the formula for ¢ we get

o0 l

W) =" > oY kY (E). (2.6)

=0 m=—1

Applying —r~'V,. and —r~'V; on (2.6) we get the radial and the spherical part of the
magnetic field.

00 l

Be(r) =Y Y [+ Vg™ — 1k Y () (2.7)
=0 m=—1
[ l
Bi(r) ==Y > [g/r D + kY (R). (2.8)
1=0 m=-1

Fix r = R, then knowing ;" (R) corresponds to knowing v on a sphere since

Y (R) =< Y™(8)¢(Rs) >. If we only know 1" (R), there are infinitely many choices of
Gauss’ coefficients which satisfy (2.5). Thus there are infinitely many potentials which
are equal on a given sphere. However, if we know ;" (r) for two values of r, there is just
one choice of Gauss’ coefficients that satisfy (2.5), so this is then sufficient to reconstruct
the magnetic field. Since it is B and not ¢ that is observable we will show how to
reconstruct the field form its values on a sphere. We use (2.7) and the orthonormality to
the basis vectors to project B, onto W,

<Y(8)By(r8) >= (I + 1)g"r~ WD — jgel=1, (2.9)

Also we have < V1Y - V1 Y™ >= (I 4+ 1)8j 6y from (1.2), thus using (2.8) we get

< ViY/"(8) - By (r8) >= —1(l 4+ 1) (g/"r~ 2 4 grpl=h). (2.10)
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Solving (2.9) and (2.10) for g;* and k™ gives

< V1iY™(8) - Bs(rs) >

(20 + 1)r~HDgm —< V(8) B, (r8) > T (2.11)
- Y (3) - By (rs
(@4 DR —< TIEIB, (r8) > + (S; (r8) > (2.12)

Now (2.12) does not hold for [ = 0. However, since Y = 1, the term kJr°Y is constant
in the expansion (2.6) for ¢, thus B is independent of it and we can choose it arbitrarily.

In the last section we saw that ¢ can be divided into two functions 1) and &), where
¥ is harmonic for » > R_; and #¥) is harmonic for r < R,;. Now assume we only
have internal sources, thus ¢ = ¢¥!). The gauss coefficients is still given by (2.11) and
(2.12). Because we only have internal sources it seems reasonable to assume that B
vanishes at infinity. Let r — oo in (2.12). We assumed that B vanish at infinity, so the
right hand side goes to zero. In order for the equation to hold we therefore need £;* = 0
for [,m > 1. For convenience we assume v vanishes at infinity, so k:8 = 0. Then we have

[e.9]

l
O (r) =) gi'r~ Y (R).
=0 m=—1

Not that this is a general formula for harmonic functions. We state it in a lemma.

Lemma 7. Let 0 < r; <ry < oo and assume f € Ho(A(r1,r2)), then

o) l
Fla)y=>">" = Eym),

=0 m=-1
where f™ are the Gauss coefficients to f, given by (I + 1) f" =< Ym0, f >.

We can proceed in a similar way to find ¢(#). Assume we have no internal sources and
that |B| is bounded at zero. Let 7 — oo in (2.11). Then the left hand side goes to infinity
while the right hand side is bounded. This imply g;" = 0 for every [ and m. Thus

00 l
GP ) =3 3 k().

=0 m=-1

We conclude that in a magnetic field in the atmosphere the g;" coefficients are due to in-
ternal sources and £} to external. Note that if we only have an internal or external field,
then due to (2.9) and (2.10), we only need to know the spherical component, By, or the
normal component, B,., on a sphere, in order to reconstruct it in the whole atmosphere.

Also in the general case we set kJ = 0 for convenience. Further by (2.11) we have

7’_298 = Y_O0 < B, (r§) >,
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because YOO is constant. In addition we have

. 1 e 1
< B(r§) >= e /SBT,(rs)ds = 2 /S(T) B, (s)ds

1 1
=13z /8B(7") B(s) - ds = pp— /B(T)(V -B)ds = 0.

Here we used Stokes’ theorem in the next last, and Maxwell equation V - B = 0 in the
last step. This implies that g) = 0. We end this section by summing up our results.

Result 2. Suppose ¥ € Ho(A(r1,7r2)) for 0 < r1 < 19 < 00 and let B = =V be its
corresponding magnetic field, then

g~ + kY (8)

=

I
hE
M-

l

Il
—

m=—I1

[(1+ g r =2 — ket =Y (8)

¥
=

I
WE
M-

l —1

[es) l
Bi(r) = > > g " vy (),

=1 m=—1

1m

where g/ and k" are given by (2.11) and (2.12). Also if B is created only by internal
sources and vanish at infinity, then k" = 0. If B is created only by external sources,
then g = 0. Moreover, if we have any of those cases, then we only need B, or B, to
reconstruct the field, and its Gauss coefficients are given by (2.9) or (2.10).
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Chapter 3

Reconstruction from Intensity

In the previous chapter we found out that it is enough to know the magnetic field on a
sphere in order to reconstruct it. In practice it is difficult to collect such data. We can
measure the magnetic field on the earth’s surface, but since the magnetic observatories
are few (< 200) and unevenly distributed it is hard to get measurements that corresponds
to that of a sphere (see [Lan87| for a table of magnetic observatories).

If we use satellites for these measurements we avoid these problems. A low orbiting
satellite would take about 22 days to achieve a 1° spacing between the measurements.
However, to measure the magnetic field accurate, we have to know the orientation of the
satellite correspondingly accurate. This is very difficult and expensive, and inaccurate
orientation data affect the end result significantly. The intensity of the geomagnetic field
can however be measured very precise, so we want to determined if we can use this to
reconstruct the field. We ask the question: can two different magnetic fields have the
same intensity on a sphere? And we also look at if this holds for two spheres.

To answer this question we will look at some simple examples and special cases. These
will not immediately imply something about the geomagnetic field, but will give us some
notion of what to expect. In practice some geomagnetic models of intensity data dif-
fers from measurements of the magnetic field with up to 1000nT near the equator (see
[BPC96, Subsection 4.4.1]). From this we would expect non-uniqueness, and it had been
nice with some example giving this a theoretical foundation.

The main geomagnetic field is the field created from sources inside the earth. Measure-
ments indicate that the annual mean magnetic field is 99.9% internally produced. We will
therefore ignore the field created from external sources in the following and concentrate
on the main geomagnetic field. It now follow from Result 2 that our potential, %, is on

the form
l

Pr) =Y DN yry(E), (3.1)
=1

m=—1

Let B, and B, be internally produced magnetic fields such that |B,| = |B,| on a sphere

21
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containing the sources. We want to know if this imply that B, = +B,. A follow up
question would then be if we can say B, = £B,, when |B,| = |B,| on two spheres. This
is a very interesting situation and is still an open problem.

Now B, = —Vu and B, = —Vv for some harmonic functions v and v. Also we have
|[Vu| =|Vv| & Vu-Vu=Vv-Vve V(utv)-V(u—wv)=0.

This imply that finding two different magnetic field with the same intensity is equivalent
to finding two non-zero orthogonal fields. We will try to do this by looking at some
examples. Define ¢ = u+ v, ¥y = u —v, Bt = —V¢, B~ = —V1), then our plan
is first to let ¢ be an explicit harmonic potential, and then try to find ¢ such that
V¢ Vi =BT .-B~ =0, on one or two spheres.

3.1 An easy example, ¢ = r 1Y

We start with the easy example ¢ = r~1Y, where Y = . Then

s
3

—1
Vo = <—,0,0>
¢ VArr?

Vi = <O, (rsinf) Loz, r 1 op > .

Then imposing the orthogonality condition we have

V- Vip = ~0,1) = 0.

\/_

Using the expression (3.1) for 1, the above equation implies

ZZ (1 + 1r~ U2y (#) = 0.

=1 m=—1

Then since {Y;™}; ,, form a basis for L?(S) the above equation holds if and only if

—(1+ 1)~ Dy = 0,

for every | and m. Thus every ¢;" = 0, so ¢ = 0. This means that there are no non-zero
fields orthogonal to —Vr~'Y. This means that if the sum of two fields are r 'Y and
they have the same intensity on a sphere, then they are equal.

Note also that the implication 0,9 = 0 = % = 0 follows directly from the fact that
1 vanishes at infinity. And also that in this example the Gauss coefficient 98 # 0, so
in accordance to what we found out in the previous chapter, —V, and thus —Vu and
—Vw, does not correspond to actual magnetic fields. However, the next example we are
going to look at does.
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3.2 Backus example, ¢ = r—2Y}

Now we are going to look at a famous example constructed by Backus in [Bac70]. This
will show non-uniqueness from intensity on a sphere. We will also try to extend this

non-uniqueness to two spheres. Let ¢ = r‘zYlo, where Y = \/% cos . Then setting

1 = cos 6 we get
3 -3 -3
Vo = — < =2ur~°,0,—r"°sinf >
4

Vo = <O ——Oni,r O > .

rsin 6

Thus
Vo -Vip = \/%(—2;17"‘%%1/} —r~1sin 00y).
Using 0p = —sin 00, then V¢ - Vi) = 0 if and only if
(1 = u?)0utp — 2rpdyp = 0.
Using the expression (3.1) for ¢, we get

00 1
Do U = p)0, Y+ 2p(l + 1)Y= 0, (32)

=1 m=—1
Define g/ = 0 for [ < |m| and
[ U4+m)l —m)
I @+ @ -1
Also let Y™ = 0 for | < |m|. We have the following relations from [EWK28|

m

1/2
] for 0 < |m| <.

(1- Mz)auylm = (I+Dg"Y™ — gV

(3.3)
py," = g™+ g Y

Substitute these into (3.2)

00 [
SO e EIBE+ DY + (L + 2097 Y] =0,

=1 m=—1

and define ¢/ = 0 for [ < |m| and ¥)J = 0. Then we can rewrite this last equation as

ST BU g, + (L Dl Y <o,

m=—00 l:\m\
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The spherical harmonics, Y;™, form a basis for L?(S), so the above equation holds if and
only if

3+ 2)g1 ¥k + (L + Dgieitar® = 0,
for 0 < |[m| < 1. Since gj}; # 0 we can rewrite it as
1 (I+1)g"

Yty = o 2 34
I+1 3(l+2)gl+1 -1 ( )

If this equation shall hold for two different r-values, we must have ;" = 0 for all [ and
m. Thus we have uniqueness from intensity on two spheres. For the one sphere case we
fix r = R. Then by definition we have Yimj—1 =0, s0 (3.4) implies that for any positive

integer n, Yi7 1o, 4 = 0. Also we can choose Y|y, arbitrarily, and (3.4) will determine
mﬂ 4on- 1f this series converge we have an example of two different fields with same

intensity on a sphere.

One sphere: convergence
We are going to look at convergence of
o0 o0
Yo D Ty,
m==00 |=|m|
By writing out the expression (3.4) for ", we see after some calculations that
< R2 ™ _|. Then set aJ*(r) = mp—(+1)ym(3), Now o™ is only non-zero for
Il = P:E, I-1 l ! ! l Y
I = |m| + 2n, where n is a non-zero integer. Using |Y;™|* < % from Fact 3, we have

R >2" (2\my +4n+1>1/2

| o (F)] < il (D) <

ﬁ 47
Thus
[S) o0 ) ~ 00 R 2n 2’m‘+4n+1 1/2
a(r)] < m 1.~ (ml+1) <_> <—> 7
X e 3wy (7 =

2n 1/2
where o = 1) = 0. The series f, = > o°° (%) (W) will converge for

every m and r > % due to the ratio test. If we choose

Uy < B
for a constant C and § < 1 and then apply the ratio test once again, we see that the
double series converge absolutely for r > max{%, [} .However, since Y,”™ = (—1)"Y;™

by Fact 2, we have to choose ;™ = (—1)™¢!" in order for 1) to be real. Now the
series converges to a real harmonic function psi. Then we can easily find u, v, such that
|Vu| = |Vv| on a sphere and u # +v. Therefore we have the following result.
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Result 3 (Non-uniqueness). A magnetic field is not uniquely determined up to sign by
its intensity on a sphere.

3.3 Example, ¢ = c;72Y + cor 3YY

Now we let ¢ = 177 2Y +cor=3Yy, where Y = /2 cosf and Y3 = {/12-(3cos? 0 —1).

Writing p for cos # and s for sin 6, and also let b = 4/ 16%02 and a = 4/ %cl b~—! such that
b~1g = aur=2 + (3u% — 1)r=3. Then

Vo = b< —2apr=3—33p>—1)r40,—asr™ — 6usr—* >
v¢ = < 87“1/)7 (7“5)_18)\¢77“_189¢ >,

and we have
V-V = —br~{[2aur + 3(3u® — 1)]0,1) + [asr + 6us|r ' dpib}

We set this equal to zero and set in the expansion (3.1) for . If we use the relations (3.3)
and drop the, for the moment, superfluous superscript m’s, we get after some calculations

151+ 3)gr2git1ti2 + 3a(l + 2) g1t 1r® + 3[5(1+ 1)g? + (1 + 3)giq — (1+ D]+
+a(l + Vgipr—1r* + 3( + 1) gi—1g19b1—or* = 0.

Clearly g; — % when [ — oco. So dividing the above equation by [ and letting | — co we
get the corresponding asymptotic relation,

15040 + 6athyy 172 4 6912 4 2ath 17 4 3¢hy_or* = 0.

We will look on the one sphere case and set therefore » = 1. The characteristic equation
for this difference equation is

15z + 6ax> + 62% 4 2ax + 3 = 0. (3.5)

If we are going to have convergent solutions, the characteristic equation needs roots with
modulo less than one. Therefore we write this as a function of a,

1524 + 622 + 3
Ar) = 651

Then if (3.5) shall have roots with modulo less than one, a must be in the image of
(—1,1) under a(x). We can see a(z) in Figure 3.1.
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Figure 3.1: The function a(x) between —1 and 1.

To find the values a(z) takes in (—1,1), we find its extremum points. Differentiating
a(z) we get

602° + 122 (152* + 622 +3) (1822 + 2)

/
a(z) =—
() 623+ 2z (623 + 22)*

Setting this equal to zero and solving for =, we get two real roots,

3+ 2V6 3+ 2V6
st=\ "5 @ s =\ Ty

We have a(£1) = F3 and a(sy) = %, so from figure 3.1 we see that
la| < % no convergent solution
% < la| <3 two convergent solutions
3 < lal one convergent solution

Analyzing this case for the two sphere case becomes very difficult and computational
demanding. And for more involved examples it gets even harder. We will therefore look
at another technique to get examples like this.

3.4 General formula

We want a general formula for constructing orthogonal fields. The technique we used in
the three previous examples can be used to look at any field, but as we saw it becomes
very difficult and computational demanding for involved examples. Therefore we have
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little hope to use this in order to find a general formula. We will follow [AOP04] to get
a general expression for BT - B™. First we have the following key relation,

A(uv) = vAu + ulAv + 2(Vu - Vo).

This follow by direct calculation. Since ¢ and 1 are harmonic we only need to find
A(¢p)). Expanding ¢ and v in spherical harmonics we get

6= > Z R (i

=1 m+=—1+

b= Z Z wl* KR

I—=1m—=-I
Thus
+ +
XX e
It mti—m—
Now we can use the following fact.
Fact 8.
11+1o l
2[1 + 1 2[2 + 1)
m mo . .
Y21 1Y22 2 Z Z 2[ T 1) < l107l20|l0 >< llml,l2m2|lm > lem’

1=l —lp| m=—1

where < lymy;lame|lm > are the Clebsch-Gordan coefficients. For further details see
[Edm57, Chapter 3], specially see (3.6.10) or (8.6.11) in that chapter for an explicit
expression. However, the main properties of the Clebsch-Gordan coefficients that we are
going to use are that they are only nonzero when m = my+mg and |ly —lo| <1 <1y +13,
and that < 110;150|10 > is nonzero only when Iy + lo + 1 is even.

By this fact we have

R

2+ 12— +1
pp=> > > Z : +2k( ll ) 10,17 0[k0 > < Pt 1= me kg >
It mt - m= k=|lt—l-|mp=—k + )
mt  m~ —(l++li+2)Ymk
X¢1+ T/Jlf r o
We have A = r~2(A, + A1), and also
A~ UTHTHD = (2292 4 opg, )~ (THTH2)

_ (l+ +1 + 2)(l+ 4+ + 3)r—(1++l*+2) _ 2(l+ +1 + Q)T—(l++l*+2)
= (P41 D)+ 2 ),
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By (1.1), A Y™ = —k(k +1)Y,"™, so
Ap~UHTFyme — [ 4T V)T 17 4 2) — k(k 4 )]y
We have the simple relation
a(a+1)—k(k+1) = a®>+a—k>~k = a®>~k*+a—k = (a+k)(a—k)—(a—k) = (a+k+1)(a—k).
Using this with a =T + 1~ + 1, we can write
Ap~ TRy e — (1 T 2 k)T 1 41— k) Dy e

Finally we have

T4~ _
B B -1 SIS s < oo >
l+ Imt=—It1-=1m-=—1 k=|l*—1— | mp=—Fk

x <Urmb i mTkmy > (541 424 k)17 +17 +1— k)i g =Ty me

Since {Y;} are orthogonal, it follows that BT - B~ = 0 if and only if

SN VT D@ D0 I 24 k(I T 1 k)
It m*T i~ m~— (36)
X < 1H0;170[k0 >< ITm*; 1~ m™ |kmy, > ¢ g r= T+ — g,

for every pair (k,my) such that 0 < |my| < k.

This was the relation we sought. We will use this to get a general result about fields with
finite expansion.

Result 4 (Finite expansion). If two internally produced magnetic fields have the same
intensity on a sphere and their sum and difference only have a finite number of non-zero
Gauss coefficients, then they differ at most by a sign.

Proof. Along with the previous discussion in this section, we have to show that if BT
and B~ have finite expansions and are orthogonal on a sphere, then one of the fields is
identically zero. Assume that none of the fields are identically zero, then since BJr has
only ﬁmtely many non-zero Gauss’ coefficients there exists L™, M T such that qS ;é 0
and (ﬁﬁ =0 when [T > LT or [T = L™ and m™ > M™. Similarly there are constants
L=, M~ for 2.

Now we look at (3.6) when k = L™ + L™ and my, = M™ + M~. If the Clebsch-Gordan
coefficients shall be nonzero m™,m~,[",l~ has to fulfill some relations listed in Fact 8.
Namely mp = MT™ + M~ = m™ +m~, thus m™ = M* and m~ = M~. Ana also
k=L"+ L <I"+1 sol™=L"and [~ = L. These are the only options so we are
left with

<LYO; L 0|LY + L 0>< LYM*Y LMLt + LMt + M~ > ¢M M =
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If we let J = j1 + jo and M = mq + my, then we have from [Edm57, Equation (3.6.12)],

(251)1(272)!(J + M)!(J — M)! 1/2
2D (1 — m)! (1 +m1)!(Ga — m2)!(j2 + ma)!

< jima; joma|JM >=

Clearly < LYO; L7 0|LT + L70 >< L™TM™; L M~ |Lt + L™ M* + M~ ># 0, thus
(b w 7~ = 0. This contradict the assumption that both fields are not identical zero. [J

3.5 Another example, ¢ = r3Y}

We will use (3.6) to look at ¢ = r~3Y4, this means that all Gauss’ coefficients of ¢ are
zero except ¢3, thus

> V@D H4+E)(1T +3—k) < 20;170[k0 >< 21,17 m” [kmy > ¢ v =0,
= ,m~—
for every pair (k,my) such that 0 < |my| < k.
Also < 20;170|k0 ># 0 only when 2 4+ 1~ + k is even and < 21;1”m™ |kmy ># 0 when
mr =m~ +1and |I- —2| <k <™ +2. Therefore to get a non-trivial equation we must
have
m-=mp—1 and |k—2/<I”" <k+2 and [ +k even,

where 0 < |my| < k. We have ¢ =0, when [ <0 or [ < |m/,so wecanlet k—2 <[~ <
k4 2. Taking into account that [~ + k must be even we have [~ € {k —2,k,k+2}. Now
(3.7) reduces to

(2 —3)(k +1) <20;k — 2 0[k0 >< 21k — 2 my, — Llkmy, > g%t +
+3/(2k + 1)(k +2) < 20;k0[k0 >< 215k my — 1kmy > e +
+54/(2k +5)(k +3) < 20;k 42 0[k0 >< 21;k+2mk—1\kmk>¢/?f51 = 0

If we replace the Clebsch-Gordan coefficients by their values using [AS72, Table 27.9.4],
we get

k+1 [(k+my—1)(k+mg —2)(k2 —m3) -t
2%k —1 2k — 3 V-
3(k+2)(2my — 1)
(2k — 1)(2k + 3)
_5(/<:+3)\/(/c—mk+3)(k—mk+2)(kz—mk+1)(k+mk+l)
2k +3 2k + 5

V= mg + 1)k + mg) 2k + D r2— (38

mr—1
Upia =

This yields the three terms recurrence relation
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k+2 5(k+3)(2k —1) \| (k—my+3)(k—my +2)(k+my+1)
2k +3)(k+1) (2k +5)(k + my — 1)(k + my, — 2)(k* — m?) Gl
5(k+3)(2k — 1) \| (k—my +3)(k —my +2)(k — my + 1)(k +my + 1)(2k — 3) " +2
(3.9)
One sphere: convergence
Fix r = R and then define p, ¢ by rewriting (3.9) as
Uity = pkmi) T RE gk, m )yt RY (3.10)
We want to choose {¢;"} that fulfill (3.10) and such that
00 l
Yo Wy )
=1 m=—1
converges. Let a(r) = r~ DY (#), then it is clearly sufficient to show that

SNy e < oo for some integer N.
If we let k — oo, then p(k,my) ~ —5 and q(k,my) =
an integer N such that for k > N we have

%, so it follows that there exist

Ui < SR SR
If we choose {wm‘,zb(fn' +1} such that they are bounded for all m, then ;" will at least

be bounded for finite . This means that there exists a constant A such that for a > 0
we have [0 5" < (@R)N"2A4 and |3+ | < (aR)N A, and it follows that

mg—1 2 k+2
[Py | < <5a2 5a> (aR)*2A.

1/2
Letting o = <%> we get |2/);7\}i;1| < (aR)**2A. Tt then follows by induction that
Y| < (aR)!A for I > N. Using |Y"|> < ZtL from Fact 3 we have

2141 20+1
m < (D) m| < —(I41) l > N.
log" (r)] < \V ar " Y] < Vo " (aR)' A, forl > N

Then by the ratio test we have

00 l 0o
> 3 larl< o= (Y a <

=N m=-1

for r > aR.
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Two spheres: uniqueness

Fix my and define the a,b, ¢ by rewriting (3.8) as

a(k)p_or® 4+ b(k)Yrr? 4 (k)i = 0. (3.11)

Here we drop the superscript my, since they are fixed. Also fix k£ > |my| + 3 such that
abc # 0. Assume ¢;_o # 0, then we can divide by a(k)ix_2, and (3.11) becomes

b(k)Yr o | clk)Pri2
a(k)be—s * a(k)yp—s 0

We can think of the left hand side of this equations as a real polynomial in 7, and rewrite
the equation as

rt 4+

(r?* —r})(r® —r3) =" — (1 + r3)r +riri =0,

where
b(k) vk
—(rf+13) = ————
) =
k)Yrto
r2r2 — <( +
b a(k)r—2
This we can again rewrite as
V2 b(k) '
wk+2 — a(k),r%r% (3 13)
V2 c(k) '
Now using (3.12) twice, we have
wk+2 o 1/%—1—2 wk _ CL(k + 2)@(1{7)(7’% + T%)2 ) (314)

Yp—2 Uk Yr—2 b(k + 2)b(k)
These equations holds for every k, and if we let k be big, we see from (3.8) that

k73/2 3]-(71/2 5k,3/2

~——, blk)~— k) ~ ———.
Wi (k) Wi c(k) Wi
Now if k — oo, then using (3.13) we get

a(k)

. ko . c(k) 5
lim 2E=2 _ g - 0.
oo V1o oo a(k)r?rs r2r2 7

However (3.14) gives us
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o WEENR)

sl + 2aR) (0 + 1)
This is a contradiction, so if (3.11) holds for two different r-values we must have ¢_o = 0,
and (3.11) reduces to

Yht2 = — %WTZ-

Then for this to hold for two different r-values we must have ¥y 29, = 0, so it follows
by an easy induction argument that ¢; = 0 for all /, and thus B~ = 0.

3.6 Intensity outside a sphere

We have seen several examples of different magnetic fields with the same intensity on a
sphere. However, if we know the intensity of the geomagnetic field everywhere outside
the earth then it can reconstructed.

Result 5 (Intensity outside a sphere). A magnetic field is uniquely determined up to
sign by its intensity outside a sphere containing its sources.

Proof. It follows from the discussion at the start of this chapter that it is enough to show
that BT - B~ = 0 everywhere outside a sphere imply that one of the fields is identically
Z€ero.

Assume B* B~ # 0, then due to (3.1) we can write

o) = 3 e
=M

b(r) = Z h;l-i(-ll')’
=N

Vo(r) = Z [—(L+ 1)k + Vlhl*]r—(“r?)

Vip(r) = Y [+ Dh # + Vihy e (42,
The orthogonality conditions gives
Vo Vi = Z Z [T+ 1) + DA h + Vih .Vlh;]r—(l++l*+4)

It=MI1-=N
(M + 1) (N 4+ V)hi hy + Vihi, - Vihglr MY L o= (MHENH9)) — .



3.6. INTENSITY OUTSIDE A SPHERE 33

M+N+4

Now by multiplying the above equation with r and let » — oo we see that

(M + 1)(N + 1)hi,hy + Vihi, - Vihy = 0.

It then follow that

ht h'y _ _
<VTM—”+’1> ' <VN—N+1> = [(M + (N + Dhifyhy + Vihi; - Vihy)r 4 =0,

Then by Result 4 er have h;(/[ = 0 or hyy = 0. This contradicts our assumption and it
follows that at least one of BT or B~ is identically zero. O
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Chapter 4

Reconstruction from Intensity and
Dip Equator

So far we have found a way to reconstruct a magnetic field from its values on a sphere,
and we have found several examples of different magnetic fields with the same intensity
on a sphere. Good empirical data for the geomagnetic field on a sphere are not available,
so our reconstruction formula will not be used in practice. Good empirical data for the
intensity of the geomagnetic field on a sphere are available, but these are not sufficient
for reconstruction. This is often referred to as the Backus effect due to his counter-
example in [Bac70]. The urge of reconstructing the geomagnetic field is still there, so
we will try to add some new information to good intensity data in order to reach our goal.

When reconstructing the geomagnetic field in practice one gets some large errors. These
errors specially arise in the neighborhood of the earth’s equator. The errors seem to
be too big to be caused only by discretization errors, so one suspects that the Backus
effect has a major influence here. One reconstruction technique often used in order to
avoid these errors is to add a small set of vectorial data near the equator. Then even low-
quality vectorial data together with good intensity data greatly reduces the Backus effect.

What is so special about the geomagnetic field near the equator? One thing is that
here the vector field is almost entirely horizontal, meaning that the vertical component
is almost zero. We will call the set of points where the radial component of a magnetic
field is zero for the dip equator. These empirical results motivate us to ask if we can
get uniqueness if we in addition to intensity data on a sphere know the dip equator.
In this chapter we will first show that the intensity and sign of the normal component
of a magnetic field on a sphere uniquely determines the field. Then we will look at
how imperfect reconstruction data affect this uniqueness and come up with a stability
estimate.

35



36 CHAPTER 4. RECONSTRUCTION FROM INTENSITY AND DIP EQUATOR

4.1 Uniqueness

We want to show that if two magnetic fields have the same intensity and their normal
component have the same sign on a sphere, then they are the same. We start by formally
defining the dip equator, D8, of a function u on Sg,,

DY = {x € Sg, : - Vu(x) = d,u(x) = 0}.

Note that the dip equator divides Sg, into regions where 0,u has a determined sign. We
will denote these sets by

Dd = {x € Sg, : Oru(x) > 0}

Dy = {x € Sg, : Oru(x) < 0}.
We will write Dy for all these three sets, and call them the signed dip equator. Note that

Sg, = Df UDJUD; . Let Q = R*\ Bg,. We will look at potentials u, v € Ho(2)NC(Q)
which are connected through the following equivalence relation,

u~v <& |Vu|=|Vo| and sign(d,u) = sign(d,v) on Sg,.
We want to show that v ~ v = u = v when u,v € Ho(Q) N C}(Q). First we have
\Vul? — |Vv|> = Vu-Vu— Vu-Vo=V(u+uv)-V(u—uv)=0. (4.1)

Define h = u — v. Now h is harmonic and it follows from the extremum principle (Fact
1) that it achieves its extremum at 0°°€). If h is non-zero it has at least one extremum
on Spg, since it vanishes at infinity. Assume & is non-zero and thus has an extremum
X0 € Sgr,- Then we will use the following key lemma from [BJS64, pp. 151-152, Theorem
I11].

Lemma 9. Let E be a domain with differentiable boundary. If f € H(E) N CY(E) is
not constant and f has extremum that lies on the boundary, then at this point we have
Vf = an for some o # 0, where 11 denotes the normal to OF.

By Lemma 9, - Vh(xg) = - Vu(xg) — - Vu(xg) = a # 0, thus xo ¢ DJ. However,
from (4.1) we have

Vh(xo) - V(u+v)(x0) = af - V(u+v)(x0) = a[f - Vu(xo) + £ - Vu(x9)] = 0.

This is a contradiction since xg € D U Dy implies that # - Vu(xo) and f - Vu(xq) are
non-zero and have the same sign.

Result 6. A magnetic field is uniquely determined by its intensity and the sign of its
normal component on a sphere surrounding its sources.

This result does not immediately solve our problems since B, is hard to measure for the
same reasons as B is. However, we only need to know where B, is small and what sign
it has to determine the signed dip equator, and it turns out that this can be done with a
satisfactory accuracy. In the next section we are going to look at how good reconstruction
we are guaranteed from some uncertain reconstruction data.
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4.2 Convergence

In practice we only measure the intensity and the signed dip equator of a magnetic field
up to some accuracy. Therefore we will assume some uncertainty in our collected data
and try to find out how this affects the accuracy of the reconstructed field.

We are concerned with the main geomagnetic field outside the earth and will assume that
its strength and signed dip equator will be measured on the sphere Sg, in the atmosphere.
Let R_; = earth radii and ' = R®\ Bi_,. We will consider potentials of the following
class

. K\2
M={feHEQ)NC(Y):|Vf| < Bmax on Sg_, and |f(x)| < <m> for x € V'}.
Empirical data will reduce the set of potentials that can correspond to the geomagnetic
field, and we will assume that the range of several measurements will cover the values of
the true field. Using this we can predict a constant §, such that if some measurements

|Vul|, V| are taken of the same field, we will have

|IVu(x)| — [Vu(x)|| < d for every x € Sg,.

To express the uncertainty in the signed dip equator we define the following sets for a
harmonic function f,

DZ(f) = {x€Sgr :0-f(x)<—¢}
DAf) = {x€Sp :|0-f(x)| <€}
D:—(f) = {X € SRO : arf(x) > 6}'

Assume that the sphere is divided into the three sets DT, D~ and D, then we say that
these sets form a signed e-dip equator for u if

DY cDf(u) and D~ C D (u) and D°cC DY (u). (4.2)

Then specially for two functions u, v to have the same signed e-dip equator we need

DY c DX(u)NnDF(v) and D~ C D7 (u)N D (v) and D°c DY (u)N DY, (v).

Assume u,v € M have the same signed e-dip equator and ||Vu| — [Vv|| < § on Sg, and
let h = v —v. We want a point estimate for Vh in Sg,, or equivalently we want to
estimate ||VA||poo( Spy)- To do this we will proceed in four steps and we will operate on
the different spheres in Figure 4.1.
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Figure 4.1: Different spheres in the atmosphere.

Here Sr_, will be the surface of the earth, and Sg, will be the sphere where our data is
collected. These data are usually collected by a low orbiting satellite, so we assume that
R_; and Ry are relative close. The spheres Si_, /2 and Spg, are some auxiliary spheres
that we will choose in the end.

4.2.1  Step 1: [|hllL2(sp,)

In this first step we will get an L%-estimate for Vi on Sg,. To do this we will follow
[KHLM99], but to get the best explicit estimate in Lemma 13 we combine the proof of
[HL97, Lemma 1.34] and [KHLM99, Lemma 3], and we also use Harnack’s inequality
from [AGO1].

Auxiliary results
Theorem 10. (Harnack’s inequalities) If f € Hy(B(xo,7)), then

(r—|x —xo|)r N N (r+ |x —xo|)r N
(T woll 2 00 = 09 = g 2 )

for each x € B(xg,r).

Proof. See [AGO01, Theorem 1.4.1] O

Lemma 11. Suppose f € H(B) N C(B). If f(x) < f(xq) for any x € B and some

Xg € 0B, then
of - flxo) = J(0)
or 4 )
Proof. Define g(x) = ﬁ — 1, then g(x) € H4+(B\ {0}). For € > 0 we define

he(x) = f(x) = f(x0) + eg(x).

(x0) >
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Clearly he € H(A(R,1))NC(A(R,1)) for any R € (0,1), thus by the extremum principle,
(Fact 1), h, achieves its maximum on Si U S. Clearly he < 0 on S and h¢(xg) = 0, and
since f(x) < f(xo) for |x| = R we may take ¢ > 0 so small such that h. < 0 on Sg. Then
it follows that h. < 0in A(R,1), thus

of (x0) > —e%(xo) =e>0.

Oh.
> e
5 (x9) >0 or o

Now we estimate €. We want € > 0 such that

for every x € Sp.

Define w(x) = f(x9) — f(x) in B. Then w € Hy(B), so by Harnack’s inequalities
(Theorem 10) there holds

1-R
Thus it is sufficient that
1—R w(0)
< - 7 f es
R (e B
R
= m[f(xo) — f(0)].
This holds for every R € (0,1). Also 0 < ﬁ < % when R € (0,1), so we can choose
e = a[f(x¢) — f(0)] for a € (0, %). Then
of
E(Xo) > alf(xo) — f(x)],
and this holds also for o = 1 O

1-
Corollary 12. Suppose f € H(B(y,R)) N C(B(y,R)). If f(x) < f(xo) for any x €
B(y,R) and some x € S(y, R), then
of
on

where 1 denotes the unit normal to S(y, R).

f(xo) = f(y)
4R ’

(x0) >

Proof. The statement follows immediately from Lemma 11 by using that g(x) = f(Rx+
y) € H(B). O

_ 2
Lemma 13. Suppose f € H(Q)NCH Q) and |f(x)| < <£> . If f achieves mazimum

x|
at xg € Sg,, then
f(x0) < 3(2K|V f(x0)])**.
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X0

Sy, R)

SR“

Figure 4.2: Sketch for the proof in lemma 13.

Proof. We let B(y,R) C QU {xq} such that xo € S(y, R), as in Figure 4.2.
Now x( is a maximum point for f on B(y, R), so by Lemma 9 the gradient of f at x is
normal to S(y, R). Applying Corollary 12 we get

V1Gx0)] = L () > L2 TW) (4.3)
Thus
fxo) < 1¥) +ARIVS(x0)
2
< (7g) +aRmIe)
2
< <%> + 4RIV f(x0)|.

This holds for every R > 0. We want to find the R that minimize the right hand side
therefore we differentiate it with respect to R and set this equal to zero. Solving this for

R we get
K2 1/3
R= <7> |
2|V f(x0)|

This is clearly the minimum since when R — 0,00 the expression goes to infinity. Now
using this value for R in (4.3) the result follows. O

Estimate

Since h is harmonic in ) it achieves its extremum on 9°°€). If h = 0 our final result
will hold, so we assume h # 0. Since h vanish at infinity it will have at least one
extremum on Sg,. Let xo be a maximum point of |h|. If xg € DY, then by definition
|Vh(x0)| < |Vu(xo)| + |Vu(xo)| < 4e. If xg € DF U D, then the situation will be as in
Figure 4.3, and we will use elementary geometric considerations to get an estimate for
|Vh(x0)|. In the figure O stands for xq.
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Vu B

Vh

o!
Q

Figure 4.3: Sketch of when xo € DI U D, where xo=0 in the figure.

Now Vu and Vv are on the same side of OC' in the figure since 9,u(x¢) and 9,v(xg)
are of equal sign. Since x is an extreme point it follows from Lemma 9 that Vh(xg) is
a nonzero radial vector. Because of this we have two right-angled triangles, OC A and
OCB. Using the Pythagoras’ theorem on these we get

|OA? = |OC)* +|CAP

OB]*> = |0C)?+|CBJ*.
Taking the difference of these two equations and use that |CA| = |CB| + |BA|, we get
(I0A| + |OBI)(|0A| - |OB|) = |OA[* — |OBJ* = |CA]* - |CB|* = |BA]® - 2|CB||BA].
This is a second order polynomial equation in |BA| and its positive root is

|IBA| = +/|CBJ?>+ (JOA| + |OB|)(|OA| - |OB]) — |CB|
< +/|CBJ?2 +2|0A|(|OA| — |OB]) — |CB|
< €2 4+ 20 Bipax — €.

We used that vaz? + A — z is decreasing when A is positive, and that |Vu| < Bpyax on
Sr_, and therefore also on Sg,. Now since |Vh(xg)| = |BA| we have

IVh(x0)| < /€ + 20 Brnax — €.
Let R(e,0) = max{ve? + 20 Bmax — €,4¢€} such that |Vh(xg)| < R(e, 9).

2
Next we have |h(x)| < |u(x)] + [v(x)] < <@> , 50 we can apply Lemma 13 and get a

[x]
bound for |A|

7]l oo (5 ) = 1P(x0)| < 6(K|Vh(xo)[)*/?.
Then it follows that

1/2
12/l 22 (55,) = (/s ’h\2dr> < 2VmRo|h]| 1< (5,
Ro
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4.2.2 Step 2: ||Vh||L2(SRl)

In this step we will get an L2-estimate for VA on a sphere outside Sg,. Lemma 3 in
[KHLM99| connects harmonic functions with their gradients. The lemma is taken from
[Mit94, Corollary 5.18] and stated without proof. The lemma is stated for any harmonic
function v which tends to zero at infinity and any convex smooth and closed surface X..
The lemma fails for the simple case when u = % and ¥ = 5. Also the strict inequality
for the relation ~ in the lemma clearly does not hold when u = 0. A correct version of
this lemma for the special case when X is a sphere is stated and proved in this subsection
(Lemma 16), and this will be the key point to get the estimate.

Auxiliary results

Proposition 14. If0 <7 < R<ry < oo and f € Ho(A(r1,72)), then

J v =Y 3 (D DIPRR )

=0 m=-1
where f|" are the Gauss coefficients of f.

Proof. By Lemma 7 we have

00 !

=337 ey ). (4.4)
=0 m=-1
Let F = —Vf, then |Vf|? = |F?=F-F = F.F, + F, - Fg, where F,, = —r~1V,f is
the radial part and Fy = —r~'V f the spherical part of F. It then follows from (4.4) by
direct calculations that

!
Z l+1 (l+2)}/lm(f,)

l
Z (l+2 VlYm(f)

Using this we get
FFds =YY (1 + 1)1+ 1) fm f7 R+ / YY) ds.
SR I,m U',m/ SR
Now {Y;™};,, are orthonormal and independent on r so letting s = Rw we have

YY)V ds = R / V™Y dw = Ry -
Sr S

Thus
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/ FFuds =Y (1412 f"*PR 2, (4.5)
Sr

I,m

We have from equation (1.2) that < VlYlT”’ “V1Y™ >=1(141)6y Oppyy - So with a similar
change of variable as above will give

Vi Y™ V1st = R+ 1)1 S -
Sr

Thus

/S F,Fods =Y Y fm i R+ /S VYV Y ds = Y 1) £ PR,
R R

Lm U'ym/ I,m
(4.6)
Now the results follows by combining (4.5) and (4.6). O
Corollary 15. If0 <7 <r <R <ry<oo and f € Ho(A(r1,72)), then
IV T = [ (VSPds < [ (94Pds = [V Bags,
SR Sy
Proof. This follows immediately from Proposition 14. O

Lemma 16. If f € Ho(A(R, o)) N C(A(R,0)) for R > 0 and f(x) = o <i> when

|x| — oo, then

[ IviPe - Ryds < | |fPas. (47
R3\Bpg Sk
Proof. By Lemma 7 we have
00 1
)= 0y (). (4.8)
=0 m=-—1

Since f = o (ﬁ) we have fJ = 0. Also |f|> = ff, so using (4.8) and the orthonormality
of {Y™}1 1, it follows immediately that

[e%S) l
/9 |f|2d§ — Z Z flmflm/R—(l+l’+2) /S YEmYZnIdS _ Z Z |flm|2R_2l- (49)
R R

Lym U'm/ =1 m=-I

Now for the left hand side of (4.7) we have

/IRS\BR IVf|*(r — R)ds = /Roo(r ~R) /ST IV f(r)Pdsdr.
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We have fg = 0 so it follows from Proposition 14 that

/ IVf>(r — R)ds = Z(l+1)(2l+1)\f{”\2/ rm @D _ R (H2) g 10)
R3\Bg R

Im
SN |
=1 m=-1
Now the result follows by comparing (4.9) and (4.11). O

Estimate

By Corollary 15 we have

Ry
/ (r — Ro)|Vh|?dr = / r— Ro/ |V h|?dsdr
A(Ro,R1) Ro Sr

Ry
Vh|? / r — Rodr
I IILz(sRl) .

v

1

Then from Lemma 16 it follows that

/ (r — Ro)|Vh|?dr < / (r — Ro)|Vh|?dr < / |h|?ds.
A(Ro,Rl) A(R(),OO) SRO

Thus we have the following estimate

V2
VAl L2(ss,) < m\\hHL%sRO)-

This gives us an L%-estimate for Vh on any bigger sphere then Sg,, but we see that
when we get close to Sg, this bound grows to infinity. Thus we have no control of what
happens on Sg,. We will in the next two steps use that h is bounded on Sr_, and that
it vanishes at infinity in order to get a uniform bound for VA on Sg,.

4.2.3 Step 3: |Vhl|rxs, | )

In this step we find an estimate for VA on a smaller sphere than the one where we
collected the data. The fact we use to prove this follows from the proof of Lemma 2.1 in
[KM94] by doing some minor changes.
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Auxiliary results

Fact 17. If f € Ho(R3\ Bg) NC(R?\ Bg) and R > r1 < 19 < r3 < oo is such that
_ o l—a
ro = r{r; “, then

IV Fllzaes,,) < IVFIZ2es,) IV s, )

Proof. It follows from the proof of Lemma 2.1 in [KM94]. O

Estimate

By Fact 17
I9hlz2(5n, ) < I9AISs 5, ) IVRIESE,

Since Vh < Bpax on S_1 we have
VA2 ) = ( /
Sk

IVhlL2se ) < (2\/EBmaXR_1)O‘HVhHlL;(O‘SRl) where R_; /5 = R R|™*.

1/2
]Vh\2ds> < 2y/TBuaxR_1.

-1

Thus

4.2.4 Step 4: || Vh|1=(sp,)

In this last step we use Poisson’s integral formula and the Kelvin transform in order to
get our uniform estimate of VA on the sphere where we collected the data.

Auxiliary results

Definition 18. The Poisson kernel of B(X, R) is the function

1 R?—|x—x[?

WE o yP (y € S(%,R);x e R®\ {y}).

P(X7 Y) =

Theorem 19 (Poisson’s integral). If h € H(Br) N C(Bg) then
h(x) = / h(y)P(x,y)dy
Sk

Proof. See [AG01, Corollary 1.3.4]. O

Definition 20 (Kelvin transform). If x € R3\ {y}, then the inverse of x with respect to
S(y,R) is the point
R2

= 7|X_y|2(x—y)+y. (4.12)
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And the inverse of a set E with respect to S(y, R) is the set E* = {x*: x € E\{y}}. If
f is a function defined on at least E, then we define f* on E* by

R

f[i(x) = x—yl

f(x5). (4.13)

The mapping f — f* is called the Kelvin transform (with respect to S(y, R)).

Theorem 21. If f € C?*(E) and f* is the image of f under the Kelvin transform with
respect to S, then
Af*(x) = [x| PAf(x*) x e E*. (4.14)

Proof. The result follows by direct calculation (see [AGO01, Theorem 1.6.3]). O

Corollary 22. If h € H(E) and h* is the image of h under the Kelvin transform with
respect to S(y,a), then h* € H(E™)

Proof. This follows from Theorem 21 by using a dilation and an isometry. O

Theorem 23. If h is harmonic in B(y,R) \ {y} and h(x)|x —y| — 0 as x — y, then
h has a harmonic continuation to B(y, R).

Proof. See [AG01, Theorem 1.3.7]). O

Estimate

We will estimate VA point-wise on Sg, by using the L?-estimate on Sr_, o TO do this
we are going to apply the Poisson integral formula, so we project our field VA onto a
vector p. We write ¢ = Vh - p. Then g is obviously harmonic since

Ag=A(Vh-p)=V(Ah)-p.

Let g* be the Kelvin transform of g with respect to Sg_, e Then by Corollary 22 we
have g* € H(Bgr_,,, \ {0}). Also g € C(R3\ Br_,,,) so we have g € C’(F}LU2 \ {0})
since g = g* on Sp_1/2. Now Vh vanishes at infinity, this means that g(x) = o(1) when
|x| — o0, thus ¢*(x*) = o(1) when |x*| — 0. Therefore it follows from Theorem 23 that
¢* has a harmonic continuation to Bg_, ., we denote this by g’. Now we apply Poisson’s
integral formula,

1/27

G (x) = /S 6 () P(x,y)dy.

—1/2

R_1,5

Now g} (x) = g*(x) = TQ(X*) forx € Bgr_, , \ {0}. Using g} = g* =g on Sk_,,, and
(x*)* = x we get
x|

g(x) = B / 9(y)P(x*,y)dy, forxe€ R3 \ERA/Z.
~1/2 JSp_, ,
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By Cauchy-Schwartz’s inequality we have

|

_ |x*|
R 1/

/S 9(y)P(x",y)dy| < 7

R_y/9

l9(x)|

1P ¥) L2 (sp

iy 1/2)||9||L2(S,L

1/2)'

This holds specially for all x € Sg,, thus
x|

191l o0 (5,) < R_1/2HP(X*,Y)HL?(SR%/Z)||9||L2(537

1/2)'

Since g = VA - p where p was an arbitrary vector, we have the following

VAl Leo(sp,) = Joax |Vh(x)]
= max (|[Vh %>+ |Vh-y> +|Vh-2})/?
XESRO
< (max |Vh-%[>+ max |Vh-§|*+ max |Vh-z|?)/?
XESRO XESRO XESRO
’ *’ 1/2
X
< X paet e / 9.kl + |0, k12 + 10.h[2ds
R_1/2H ="yl (SR1/2)< M)I |* + [Oyh|” + |0:h]
< P )l IV
= R.ip ) L2(Sr_, ,5) L2(Sr_y )"

Now we calculate HP(X*7Y)HL2(SR,1/2)’

1P 92 s, ) = </s

2 *|2
We have P(x*,y) = Foapp bl
Y AtR_1/5  [x*—yP?

1/2
IP(X*,y)Izdy) :

R_q1/9

, X* = (R%/z)zx and |x| = Ry, so setting a =

R_y1/o
R We get

1/2
R_1)2 9 dy
P(x* =121 - —_— .
1P (x 7Y)||L2(SR71/2) I (1—a”) /SR la2x — y]©

1/2

We normalize the variables by setting u = x/Ro and v = y/R_; /5, then

1P, )] -1 a-» / v\
Y LQ(SRfl/Q) N 47TR_1/2 S ]au — V|6 ’

To calculate the integral we parameterize the unit sphere by

r(£,0) = (/1 —E&2cos0,y/1 —E2sinb,¢).
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If we let the z-axis go along v we can think of this as slicing the sphere up along this
axis. Then first we integrate the slices, and then we sum them up along the z-axis. This
is illustrated in Figure 4.4 where £ is the integration variable along the z-axis.

V/

Figure 4.4: Sketch of how we integrate.

Now our surface element is dv = |Ogr x O¢r|dAdE, see [Kre99, p. 501] for details. Ele-
mentary calculations shows that |Ogr x Ocr| = 1. Also we see from the figure that if we
use the Pythagoras’ theorem twice we have

lau—v[* = (€ —a)? +1—€ =1+a® —2a€.

/ dv _/1 /2“ [Opr X Der|ddS /1 d¢
slau—v[" o Jy Gra@—2a6F ") 0+ a2— 206

Substituting w = 1 + a? — 2a¢ we get dw = —2ad¢, so

Then

) /1 d¢ -7 (1—a)? d_w T 1 B 1 un 1+ a2
m S (M+a2 =246 a Jagez w?P 20 \(1—a)t (1+a)t) — (1-a)?

Now

) 1 5 1+ a?
1P Ylz2sa ) m(l —a?) zmm
V1+a?

VATR_yj5(1 - a?)

Then we have the following estimate
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V14 a?
< [
> 47TR0(1—CL2)”V}ZHL2(SR

,/1%’2+R21/2

HVhHLOO(SRO) —1y2)

= h .
47T(R2 R2 1/2)||V ||L2(SR71/2)
4.2.5 Result
Collecting all the estimates we have
RI: ”VhHLOO(SRO) < mOQ—TQLHVhHL%SR 1/2)
R2: ”VhHLZ(SRil/z) < (2\/_BmaxR 1)< HVhHLz (Sr,)
R3: [|Vh[|2sy,) < Hh”L2 (Smy)
Ra: |[hllr2(sp,) < 2\/_R0HhHL°°(SRO
R5: Bl zoe (s, < 6(K|Vh(x)|)*?
R6:  |Vh(xp)] < max{VeZ + 20Bpax — €,4€} = R(e,9)

We want a uniform estimate for Vh on Sg, and using the results above we have

/RS + R, Lo
/2 V2 2/3
Bl 7o < /T Bmax B—1)% | =———2/7R6(K R(e, §))?
VAl reo(sp,) < prrye R21/2)( N 1) (Rl—Ro VTRo6(K R(e,0)) )

B “ R_1/5\*R* R_yp\? R(e, )
= 6V2K?/3 ([ 1+ (—£) =1 —=£ ’
V2R oo R ) R Rq &
We have the freedom to choose R_; /5, R; in order to minimize the expression above. We
assume that Bpmax, 12K%/3 > 1 and we have R_1, R_y/5 < Ry, thus

1—
R_ -1 2/3
HVhHLOO(SRO) < 12K2/3Bmax <1 . 1/2> <R(€ 5) )

Ro R

Now we want to choose R_1 /3, R such that

R_1) 1 [ R(e,6)/3 e
() (e o

goes to zero in a relatively fast way when R(e,d) — 0. We will set R(e,d) = ¢, then we
will have

R(e, 6)%/3

B
Ro 1

=g (4.16)
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for some v depending on the choice of R;. Note that if we choose R; such that v < 0,
thus R;%)Ql/g > 1, then R_; will be the optimal choice for R_; /5, but then a = 0, so the

Ro
expression in (4.15) will not go to zero when R(e,d) — 0. Therefore we will choose Ry
such that v > 0. Now (4.16) gives

We set y = % — . Then using the connection between R_; /5 and Ry we get

R yjy =R Ry =R (1+¢¥) 7 Ry
Thus

R 1) R_1\“ 1—
- 14 e¥)l-e,
o < ) (1+¢&Y)

Set % =1 — z, then

u—xwu+fwka:u+f%<f;i>a:u+f%<1—fij>%

For 0 < a, 2 < 1 we have that
(1-2)*<1-az (4.17)

This clearly holds for & = 0,1, and for 0 < a < 1 we have equality when z = 0. So by
differentiation we see that the left hand side decays faster then the right. Clearly x < 1
and when y > 0 we may assume x + ¥ < 1, so using (4.17) we get

N

R 1) x + &Y
L 1491
Ro = ( +€)< a1+€y>

= 1+4+¢&’—alx+¢eY).

Then we have R
1—%/2 >a(x+e¥)—e¥ >0.

0
Yy Yy
So we need o > = . We choose o = 2_*—;. Then
(1 B Rél/Q)—laﬂy(l—a) < [Oé(l’ + Ey) - Ey]—lg'y(l—oc) — E'y(l—oz)—y.
0

Now we want to choose v € (0, %) such that

F() =~(1 - a) oy (1- -2 220
= — Q) — = — —_ — .
7 " y " T+ &Yy 3
Thus we need

eY x 1

1-— = > —.
r+e¥y x+4+e¥ 3y
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1<x~|—sy

! ) — L+ erm <n

X

So at least we need v > 1/3. For v = % we get

1 51/6

1 1
1) = 2 -
11/2) 3 x4el/6 3 14x/el/6

We see that in order for f(1/2) to be positive we need ¢ < (z/2)%, this also makes a < 1.
If we for example assume £ < (x/5)% we get a convergence rate of 6. We sum this up
in a result.

The Stability Result. Let u,v € M have the same signed e-dip equator and
|Vu(z)| — |Vo(x)|| <  for every x € Sg,.
6
If e = max{\/€? + 20 Biax — €,4€} < (%) , then

[Vt = Vol oe(sy) < 12K Brraxe™®.
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