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Abstract

Some theory on Lévy processes and stochastic differential equations driven by Lévy processes is
reviewed. Inverse Fast Fourier Transform (iFFT) routines are applied to compute the density of
the increments of Lévy processes. We look at exact and approximate path integration operators to
compute the probability density function of the solution process of a given stochastic differential
equation. The numerical path integration method is shown to converge under the transition
kernel backward convergence assumption. The numerical path integration method is applied on
several examples with non-Brownian driving noises and nonlinearities, and shows satisfactory
results. In the case when the noise is of additive type, a general path integration code written
for Lévy driving noises specified by the Lévy-Khintchine formula is described. In this code the
iFFT routine is an integral part. Some preliminary results on path integration in Fourier space
are given.
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Chapter 1

Introduction

The last few decades have seen an increased interest in the field of stochastic analysis.
The development of mathematical finance has fueled this development. The increased
interest in the field has also reviled some of the weaknesses in the classic stochastic
calculus based on Brownian motion. The inability of the classic Black-Scholes model to
incorporate heavy tails in the log-returns, jumps and other features made embedded by
the use of Brownian motion as driving noise has turned the attention of mathematicians
working in mathematical finance to more general Lévy processes (Cont & Tankov 2004),
(Schoutens 2003). Also other fields of research have lied their eyes on the tools that
a more general stochastic calculus provides. This includes civil engineering (Protter
& Talay 1997), physics (Applebaum 2004), hydrology and neurophysiology (Daly &
Porporato 2006).
The numerical path integration method is used to approximate the probability density of
the solution process of a stochastic differential equation. The method is well-described
in the case when the driving noise is Brownian motion (see e.g. Naess (2001), Naess
& Moe (2000)) but relatively little have been written when the driving noise is a more
general Levy process. In this text we attempt to extend the numerical path integration
machinery to a wider class of stochastic differential equations. Due to time-constraints
on this work, this has only been done to 1-dimensional models.
The text is lied out as follows. Chapter 2 is a brief exposition of some of the analysis and
stochastic analysis tools which we use later in the text. The chapter treats the close con-
nection between the Markov processes described in this text and a class of integro-partial
differential operators. Also included in this chapter is the development of some notation
which we use when we show convergence of the numerical path integration method.
Chapter 3 is a review of Lévy processes and the stochastic calculus associated with such
processes. This will form the theoretical foundation for treating stochastic differential
equations driven by Lévy processes.
In chapter 4 we look at methods for numerical inversion of characteristic functions as-
sociated with stochastic variables. This will be an integral part of the numerical path
integration code for additive noise stochastic differential equations described in chapter
6. Moreover the techniques are used to compute densities from the path integration in
Fourier space methods described in appendix A.
Chapter 5 describes the path integration method and the numerical path integration
method in some detail. The first part treats the rather abstract notion of path integra-
tion, and then describes the path integral in a stochastic differential equation setting.
Further we look at methods for approximating the path integration operator on a dig-
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ital computer, and show convergence under some assumptions. Finally some issues of
implementation are treated.
The final chapter 6 treats examples of numerical path integration for different models.
The main scope of this chapter is to show that the path integration method can be
implemented for a quite wide family of problems, and gives satisfying results. In many
of the examples, we describe the corresponding (integro-)PDE-initial value problem that
the numerical path integration method solves approximately.
The reader should have some background in real- and Itô-stochastic analysis. Also ba-
sic numerical analysis for ordinary differential equations and basic probability theory is
assumed known.
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Chapter 2

Mathematical Preliminaries

In this chapter we review some basic results from real and stochastic analysis. The reader
is assumed to have some background in measure theory and Itô stochastic analysis. More
complete accounts and proofs of the following real analysis results can be found in Stroock
(1998), Rudin (1976) or Folland (1999), and the stochastic analysis results in Øksendal
(2003), Karatzas & Shreve (1988) or Gihman & Skorohod (1972).

2.1 Some Real and Stochastic Analysis

2.1.1 Some Notation

Unless otherwise noted, we use standard notation for Rn, that is, a vector x ∈ Rn is
written as x = [x1, x2, . . . , xn]. We write R+ = R \ (∞, 0]. The min and max operators
f ∨ g = max(f, g), f ∧ g = min(f, g) are defined pointwise for functions f, g mapping to
R. We use the notation 1S for the indicator function - that is, for some S ⊆ Rn,

1S(x) =

{
1 if x ∈ S

0 elsewhere.
(2.1)

The support of a function f : Rn → R is defined as

supp(f) = {x ∈ Rn; f(x) 6= 0}. (2.2)

2.1.2 Basic Real Analysis

We denote the σ-algebra consisting of all open sets on Rn the Borel σ-algebra B(Rn).
Moreover, let µ(dx) denote the Lebesgue measure on B(Rn). We often use the shorthand
notation µ(dx) = dx when there is no room for confusion. An even shorter notation is∫

f =
∫
R f(x)µ(dx). The triplet (Rn,B(Rn), µ) is called the basic measure space on Rn.

A function f : Rn → R is said to be measurable with respect to the basic measure space
if f−1(S) ∈ B(Rn) ∀ S ∈ B(R).

Definition 2.1: A measurable function f : Rn → R is said to be of class Lp(Rn) if

‖f‖p =
[∫

Rn

|f |pdµ

](1/p)

< ∞ (2.3)
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for p ∈ [1,∞) and of class L∞(R) if

‖f‖∞ = inf{C ≥ 0; µ({|f | > C}) = 0} < ∞. (2.4)

The families of functions Lp(R), p ∈ [1,∞] are normed spaces where the functionals
‖ · ‖p are the norms.

The integral (2.3) is taken in the Lebesgue-sense. The space L2(Rn) have some special
properties:

Theorem 2.1: L2(Rn) is an inner product space with inner product

〈f, g〉 =
∫

Rn

fgdµ. (2.5)

for f, g ∈ L2(Rn).

Theorem 2.2: For any inner product space we have the Cauchy-Schwartz inequality;
in the special case of L2(Rn) the Cauchy-Schwartz inequality can be written as

|〈f, g〉| ≤ ‖f‖2‖g‖2 ∀ f, g ∈ L2(Rn) (2.6)

We introduce some more notation:

Definition 2.2: Let f : R × R → R be a bivariate function. The univariate functions
‖ · ‖x,p, ‖ · ‖y,p are defined as

y → ‖f‖x,p =
[∫

R
|f(y, x)|pµ(dx)

](1/p)

(2.7)

x → ‖f‖y,p =
[∫

R
|f(y, x)|pµ(dy)

](1/p)

. (2.8)

and obvious analogs apply for L∞.

A short hand notation for the differentiation operator will make the notation more
compact: :

Definition 2.3: We write for a univariate function f : R→ R where the i-th derivative
exist:

Di(f)(x) =
di

dxi
f(x) (2.9)

Some important classes of functions are the Cα spaces:

Definition 2.4: A function f : R → R is said to be of class Cα(R) for α ∈ N ∪ {0} if
it exists and is continuous, and Dif is continuous and bounded for i ≤ α.

Now some basic stochastic analysis:
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2.1.3 Basic Stochastic Analysis

We define in the usual manner the filtered probability space (Ω,F ,Ft,P) such that
P(Ω) = 1 and Ft is a σ-algebra such that Ft ⊆ F ∀ t ∈ [0,∞). Moreover the filtration
has the increasing property Fs ⊆ Ft ∀ 0 ≤ s ≤ t. A function X : (Ω,F) → Rn is said to
be a stochastic variable if it is measurable with respect to (Ω,F). A family of stochastic
variables {Xt}t is called a stochastic process if it is indexed by either t ∈ [0,∞) or
t ∈ (N ∪ {0}). A stochastic process is said to be adapted to the filtration Ft if Xt is
measurable with respect to Ft for all t.

Definition 2.5: A stochastic variable X is said to have a probability density if there
exist a function dX such that for all S ∈ B(Rn) we have that

P({ω ∈ Ω; X(ω) ∈ S}) =
∫

S
dX(x)µ(dx) (2.10)

We sometimes denote the density the law of X and use the notation L[X] = dX .

Some important densities are:

Definition 2.6: A random variable X : (Ω,F) → R is said to be Gaussian or Normal
if there exist µ ∈ R, σ ∈ R+ such that

L[X](x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.11)

We use the notation L[X] = N(µ, σ2) if X is Gaussian.

Definition 2.7: A random variable X : (Ω,F) → R+ ∪ {0} has an exponential density
if

L[X](x) = λ exp(−xλ) (2.12)

where λ ∈ R+.

We use the notation L[X] = EXP (λ) if X is exponential.

Definition 2.8: A random variable X : (Ω,F) → S, S ⊂ R, µ(S) > 0 has a S-uniform
density if

L[X](x) =
1S(x)
µ(S)

. (2.13)

We use the notation L[X] = UNIF (S) if X is S-uniform.

Definition 2.9: The expectation operator E applied on a stochastic variable X is defined
as

E[X] =
∫

Ω
XdP. (2.14)
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When X has a probability density dX(x) (2.14) reduces to

E[X] =
∫

Rn

x dX(x)dx. (2.15)

The expectation operator of a mapped stochastic variable f(X), f ∈ L∞ is given as

E[f(X)] =
∫

Rn

f(x) dX(x)dx. (2.16)

Throughout this text, the vast majority of the stochastic processes to be studied are
Markov Processes:

Definition 2.10: If t ∈ (N ∪ 0), and for each finite collection of times t1 < t2 < · · · <
tm < tm+1 ∈ (N∪ 0) and corresponding spatial points x1, x2, . . . , xm we have the equality

P(Xtm+1 ∈ S|Xt1 = x1∩Xt2 = x2∩· · ·∩Xtm = xm) = P(Xtm+1 ∈ S|Xtm = xm) ∀ S ∈ B(Rn)
(2.17)

we say that the process Xt is a Markov chain. Completely analogous, if t ∈ [0,∞) and
for each finite collection of times t1 < t2 < · · · < tm < tm+1 ∈ [0,∞) we have the equality
(2.17), we say that the process Xt is a Markov process.

Markov processes have some properties which we shall use extensively throughout this
text:

Definition 2.11: Let Xt be a Markov chain or a Markov process. We denote the mea-
sure K(S, x, t′, t), t′ > t with property

P(Xt′ ∈ S|Xt = x) = K(S, x, t′, t) =
∫

S
K(dy, x, t′, t) (2.18)

the transition measure. If it exist, we denote the function k(y, x, t′, t) with property

P(Xt′ ∈ S|Xt = x) =
∫

S
k(y, x, t′, t)dy (2.19)

the transition kernel of Xt.

Definition 2.12: If the transition kernel is time-invariant, that is

k(y, x, t′, t) = k(y, x, t′ + h, t + h) ∀ h ∈ [0,∞) (2.20)

we say that our Markov process (chain) is time-homogeneous and write k(y, x, t′ − t) =
k(y, x, t′, t).

For a time-homogeneous Markov process (chain) we denote the univariate functions y 7→
k(y, x, t) the forward transition kernel and x 7→ k(y, x, t) the backward transition kernel.
From the above it is clear that the forward transition kernel form a probability density.
For time-homogeneous Markov processes (chains) we have the Chapman-Kolmogorov
equation, relating the transition kernels for different time steps:
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Theorem 2.3 (Chapman-Kolmogorov Equation): The transition kernel of a time-homogeneous
Markov process has the property

k(y, x, t + t′) =
∫

Rn

k(y, z, t)k(z, x, t′)dz ∀ t, t′ > 0. (2.21)

Throughout the text we use the notation Bt for standard Brownian motion and Nt for
the Poisson process with rate λ.

2.1.4 Markov Processes and Integro-PDEs

There is close relation between the law of certain Markov Processes and a class of Integro-
partial differential equations. We give an informal sketch of the equations usually referred
to as the Kolmogorov forward and backward equations, omitting the regularity condi-
tions. The lines of Applebaum (2004) are followed. We define the so-called infinitesimal
generator of a time-homogeneous Markov process:

Definition 2.13: For any function f ∈ C2
c , i.e. C2 with compact support, we define the

infinitesimal generator A of the time-homogeneous Markov process as

Af(x) = lim
t→0

E[f(Xx
t )]− f(x)
t

(2.22)

where the superscript correspond to the initial condition Xx
0 = x. If the transition kernel

exists we have that

Af(x) = lim
t→0

∫
Rn f(y)k(y, x, t)dy − f(x)

t
. (2.23)

Assuming that the process is well-behaving enough, we have the following initial value
problem

∂

∂t
v(x, t) = Av(x, t), x ∈ Rn, t ∈ R+ (2.24a)

v(x, 0) = f(x) (2.24b)

where v(x, t) = E[f(Xx
t )]. This is the Kolmogorov backward equation. In our case, the

operator A is some differential or integro-differential operator.
We can use equation (2.23) to figure out the corresponding equation for the transition
kernel k, again omitting the details. Start with the left hand side of (2.24a).

∂

∂t
v(x, t) =

∂

∂t

∫

Rn

f(y)k(y, x, t)dy =
∫

Rn

f(y)
∂

∂t
k(y, x, t)dy. (2.25)

It can be shown using the conditional expectation operator (Applebaum 2004) that

Av(x, t) = E[Af(Xx
t )] (2.26)
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hence
Av(x, t) =

∫

Rn

(Af)(y)k(y, x, t)dy. (2.27)

Since we integrate over the same space we have that
∫

Rn

f(y)
∂

∂t
k(y, x, t)− (Af)(y)k(y, x, t)dy = 0 (2.28)

Assuming that A has a formal adjoint A∗ we get the desired relation
∫

Rn

f(y)[
∂

∂t
k(y, x, t)−A∗k(y, x, t)]dy = 0. (2.29)

Since C2
c is dense in L1, it can be concluded that the transition kernel obeys the Kol-

mogorov forward equation

∂

∂t
k(y, x, t)−A∗k(y, x, t) = 0. (2.30)

This equation is sometimes referred to as the Fokker-Planck equation in physics-literature.
We exemplify this with Itô-diffusions:

Example 2.1: Let Xt ∈ R be the solution of the Itô-stochastic differential equation.

dXt = b(Xt)dt + σ(Xt)dBt. (2.31)

It is relatively easy to see, using the Itô-formula, that (Øksendal 2003)

Af(x) =
[
1
2
σ2(x)

∂2

∂x2
+ b(x)

∂

∂x

]
f(x). (2.32)

To find the adjoint operator A∗, recall the definition

〈Af, g〉 = 〈f,A∗g〉. (2.33)

Here we use the L2 inner-product, since f, g ∈ C2
c ⇒ f, g ∈ L2 trivially. Integration by parts

with compact support yields:

〈Af, g〉 =
∫

R

[
1
2
σ(x)2D2f(x) + b(x)Df(x)

]
g(x)dx

= −
∫

R
Df(x)D(

1
2
σ(x)2g(x)) + f(x)D(b(x)g(x))dx

=
∫

R
f(x)

[
D2(

1
2
σ(x)2g(x))−D(b(x)g(x))

]
dx = 〈f, A∗g〉. (2.34)

Hence the forward operator is given as

A∗f(x) =
[
1
2

∂2

∂x2
σ2(x)− ∂

∂x
b(x)

]
f(x) (2.35)
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The forward transition kernel coincides with what is called the basic solution of partial
differential equations (Evans 1998). That is, the forward kernel k solves problems on
the form

∂

∂t
u(y, t) = A∗u(y, t) (2.36)

u(y, 0) = δ(y − x) (2.37)

where δ denotes the Dirac δ-function. It can be shown that if we have the basic solutions
at hand, p(y, t) given as

p(y, t) =
∫

k(y, x, t)f(x)dx, (2.38)

solves the corresponding problem

∂

∂t
p(y, t) = A∗p(y, t) (2.39)

p(y, 0) = f(y), f ∈ L1. (2.40)

Later it will become apparent that f can be taken to be the initial density of a Markov
process Xt, i.e. L[X0] = f and L[Xf

t ] = p(y, t) where the superscript denotes the initial
condition of the process.
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2.2 Smooth Densities and Quasi Densities

In this section we state and prove some results that will be handy in the numerical path
integration convergence proof. This subsection can be read simultaneous with section
5.6, and is not essential to other parts of this text.

Definition 2.14: We define D to be the space of well-behaving probability densities over
R. That is, for each f ∈ D we have that

1. f ≥ 0

2.
∫

f = 1

3. f ∈ C2(R)

Lemma 2.1: D ⊂ L1(R)

Proof.

‖f‖1 =
∫
|f | =

∫
f = 1 < ∞ (2.41)

Lemma 2.2: Let f ∈ D. Then f is bounded above, i.e. there exist Bf ∈ R+ such that
f(x) ≤ Bf ∀x ∈ R.

Proof. See e.g. Rudin (1976) Theorem 4.15

Lemma 2.3: D ⊂ L2(R)

Proof. Let f ∈ D. Using all three properties gives us that µ({f ≥ 1}) ≤ 1. Moreover,
f ∈ D implies that f is bounded by Bf ∈ R+. This gives us a bound for ‖f‖2:

‖f‖2
2 =

∫
f2 ≤ µ({f ≥ 1})B2

f + ‖f21{f<1}‖1 ≤ B2
f + ‖f‖1 < ∞ (2.42)

Definition 2.15: For each function f ∈ D and L,R ∈ R, L < R we define the the
L,R-truncation (or short the truncation) of f to be f t = f1[L,R]. We denote the space
of L,R-truncations Dt([L,R]).

Lemma 2.4: Let f t ∈ Dt([L,R]), then we have that

1. f t ≥ 0

2.
∫

f t ≤ 1

3. f t ∈ C2([L,R])
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The proof is trivial and omitted.

Lemma 2.5: Let f ∈ D. For each truncation f t we then have that ‖f‖2 ≥ ‖f t‖2.

The proof is trivial and omitted.

Lemma 2.6: The truncations are dense in D in the L2-sense. More precisely; for each
f ∈ D and each εt

f > 0 there exists L,R ∈ R such that

‖f − f t‖2 < εt
f (2.43)

where f t denotes the L,R-truncation of f .

Proof. Let f ∈ D. For all L∗ ∈ R we have trivially that

∫ L∗

−∞
f(x)dx = 1−

∫ ∞

L∗
f(x)dx (2.44)

Since
lim

L∗↘−∞

∫ ∞

L∗
f(x)dx = 1 (2.45)

there exist L∗ such that for each 0 < εL∗ < 1 we have that
∫ ∞

L∗
f(x)dx = 1− εL∗ . (2.46)

Hence ∫ L∗

−∞
f(x)dx = 1− 1 + εL∗ = εL∗ . (2.47)

Completely analogous arguments lead to the converse relation, namely that for each
0 < εR∗ < 1 there exists R∗ ∈ R such that

∫ ∞

R∗
f(x)dx = εR∗ . (2.48)

To show density in the L2-sense define

SL = {a; f(x) < 1∀x ∈ [−∞, a)} (2.49)
SR = {b; f(x) < 1∀x ∈ (b,∞]}. (2.50)

It is clear that SL, SR 6= ∅ since lim|x|→∞ f(x) = 0, and that SL, SR are simply connected.
Set

L = L∗ ∧ supSL (2.51)
R = R∗ ∨ inf SR. (2.52)
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Then, if we choose L,R as our truncation limits we have that

‖f − f t‖2
2 =

∫ L

∞
f(x)2dx +

∫ ∞

R
f(x)2dx. ≤ εL∗ + εR∗ (2.53)

Since we are free to choose εL∗ , εR∗ , we have shown existence of L,R such that for each
εt > 0

‖f − f t‖2 ≤
√

εL∗ + εR∗ < εt (2.54)

Definition 2.16: Let f ∈ D. We call the function fp a L2-perturbation (or short a
perturbation) if there exist an εp such that

‖f − fp‖2 ≤ εp (2.55)

and the following is fulfilled:

1. fp ≥ 0

2. fp ∈ C2(R).

We denote the space of L2-perturbations Dp.

Definition 2.17: Let fp ∈ Dp, then we define the L, R-truncation of fp in the obvious
manner. The space of L,R-truncated perturbed quasi probability densities is denoted Dpt.



13

Chapter 3

Lévy Processes and Stochastic
Differential Equations

This chapter reviews some important properties of the so-called Lévy processes, and sto-
chastic differential equations driven by such processes. We follow closely the definitions
in Protter (2004) in this chapter.

3.1 Lévy Processes

3.1.1 Definition

We first define a complete filtered probability space (Ω,F ,Ft,P) in the usual manner.
On this space we define the Lévy processes:

Definition 3.1: An adapted process X = {Xt}t≥0 with X0 = 0 a.s. is a Lévy process if

• X has increments independent of the past, that is, Xt − Xs is independent of
Fs, 0 ≤ s < t < ∞.

• X has stationary increments, that is, Xt −Xs has the same distribution as Xt−s.

• Xt is continuous in probability, that is limt→s Xt = Xs, where the limit is taken in
probability.

There is a one-to-one correspondence between Lévy processes and a class of probability
distributions, namely the infinitely divisible distributions. To see this, consider the
Fourier transform of Xt:

φXt(u) = E[exp(iuXt)] (3.1)

also known as the characteristic function of the random variable Xt. From definition 3.1
it is easy to see that φ0(u) = 1 and that φs+t(u) = φs(u)φt(u) (independent increments).
Due to the independent increment property of Lévy processes, it is possible to write the
characteristic function of Xt as a finite or infinite product of characteristic functions. It
is also easy to see that this implies that an infinitely divisible distribution can be written
as a finite or infinite convolution of transition kernels. Sato (1999) shows the one-to-one
correspondence stringently.
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3.1.2 The Lévy-Khinchine Representation

One important property of the Lévy processes is that any Lévy process can be repre-
sented by a triplet consisting of a matrix, a vector and a measure. More precisely (see
e.g. Cont & Tankov (2004) Theorem 3.1)

Theorem 3.1: Let X = {Xt}t≥0 be a Lévy process on Rd with Lévy triplet (A, γ, ν),
then the characteristic function is given by:

φXt(u) = exp
(

t

[
iγ>u− 1

2
u>Au +

∫

Rd

exp(iu>x)− 1− iu>x1{|x|<1}(x)ν(dx)
])

(3.2)

where A ∈ Rd×d and positive definite, γ ∈ Rd and ν is a measure on Rd satisfying
∫

Rd\{0}
(1 ∧ |x|2)ν(dx) < ∞ (3.3)

Many important properties of a Lévy process Xt can be found by studying the Lévy
triplet and the Lévy-Khinchine representation. It is easy to see that the two first terms
in the exponent corresponds to constant drift and Brownian motion. The last term
determines the jumps of the process. The measure ν, called the Lévy measure, has a
simple interpretation in the one dimensional case if ν(R) < ∞. Then jumps of size in S ⊂
R occur according to a Poisson process with intensity parameter ν(S) (Schoutens 2003).
Similar interpretations in more dimensions apply. To explore the Lévy triplet further,
consider the following examples in one dimension i.e. d = 1:

Example 3.1: Let the Lévy triplet for X = {Xt}t≥0 be given as (σ, β, 0), that is ν(S) = 0
for all Borel sets S ⊂ R and σ, β ∈ R, then Xt = X0 + σBt + βt where Bt is standard
Browian motion. This process is called Browian motion with drift.

Example 3.2: The Poisson process is another Lévy processes, being a pure jump process
with jumps of fixed size 1 and intensity λ. The Lévy triplet for this process is given as
(0, 0, λδ1(dx)). δ1 denotes the Dirac δ-measure on 1.

Example 3.3: An important class of Lévy processes which we use as building blocks for
general Lévy processes is the compound Poisson processes. We define them in the following
way. Let Nt be an ordinary Poisson process with intensity parameter λ. That is the stochastic
process taking values in the non-negative integers with the discrete probability measure

P[Nt = j|N0 = 0] = exp(−λt)
(λt)j

j!
, j = 0, 1, . . . . (3.4)

Moreover let Zj , j = 1, 2, . . . be a sequence of independent random variables with identical
law and characteristic function φZ . We define the compound Poisson Yt process as

Yt =
Nt∑

j=1

Zj (3.5)
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where the empty sum is defined to be 0.
To show that the compound Poisson process is a Lévy process, we compute the characteristic
function

φYt(u) = E[exp(iuYt)] = E


exp


iu

Nt∑

j=1

Zj





 (3.6)

=
∞∑

k=0

P(Nt = k)E


exp


iu

k∑

j=1

Zj





 (3.7)

=
∞∑

k=0

exp(−λt)
(λt)k

k!
{E[exp(iuZ)]}k (3.8)

= exp(−λt) exp (λtE[exp(iuZ)]) (3.9)
= exp (λtE[exp(iuZ)− 1]) . (3.10)

Let M(dx) = P[Z ∈ dx], then

φYt(u) = exp
(

λt

∫

R
(exp(iux)− 1)M(dx)

)
. (3.11)

Setting ν(dx) = λM(dx) we obtain the Lévy-Khintchine representation of the process:

φYt(u) = exp
(

t

∫

R
(exp(iux)− 1)ν(dx)

)

= exp

(
t

[
iu

∫

[−1,1]
xν(dx) +

∫

R
(exp(iux)− 1− iux1[−1,1](x))ν(dx)

])
. (3.12)

Assume that there exist some dZ = L(Z). Then we have that ν(dx) = (dZ(x)dx)/λ and
the Lévy triplet can be written as (0,

∫
[−1,1] x(dZ(x)dx)/λ, (dZ(x)dx)/λ).

3.1.3 Properties of the Paths of Lévy Processes

First we define an important class of stochastic processes:

Definition 3.2: A process Xt is said to be cadlag (from French: ”Continu à droite,
limite à gauche”) if it is right continuous with left limits; that is

Xt− = lim
s↗t

Xs (3.13)

and
Xt+ = lim

s↘t
Xs (3.14)

exist, and Xt = Xt+.
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Protter (2004) shows that every Lévy process has a unique modification that is cadlag.
In the rest of the text we shall only discuss the cadlag modification of the Lévy process
in question.
From the definition above, it is clear that the jump at time s, which we denote ∆Xs =
Xs+ −Xs− = Xs −Xs− is well-defined for cadlag processes.
To gain the full understanding of how the Lévy measure works, the following relation is
useful (Protter 2004): Let f : Rd → Rd be bounded and vanishing in a neighborhood of
0, then

E


 ∑

0<s≤t

f(∆Xs)


 = t

∫ ∞

−∞
f(x)ν(dx). (3.15)

The sum on the left hand side is taken over every time s when a jump occurs. Taking
f(x) = 1S(x) where S is some set in Rd the relation tells us that the expected sum of
jumps ∆Xs ∈ S is the integral over S with the Lévy measure.

3.2 Stochastic Differential Equations Driven by Lévy Processes

This section is devoted to develop stochastic calculus for Lévy processes. We follow the
lines of Protter (2004), and develop stochastic calculus for a class of stochastic processes
called semimartingales. The connection to Lévy processes will become apparent later
on. Due to time and space constraints on this work, many details are skipped.

3.2.1 Semimartingales and the Stochastic Integral

We start off with the somewhat involved definition of semimartingales. Semimartingales
are roughly speaking the class of stochastic processes where the we can define a stochastic
integral in the same manner as the Itô integral. Let us start with the integrand:

Definition 3.3: A process H is said to be simple predictable if H has a representation

Ht = H01{0}(t) +
n∑

i=1

Hi1(Ti,Ti+1](t) (3.16)

where 0 = T1 ≤ · · · ≤ Tn+1 < ∞ is a finite collection of stopping times with respect
to Ft, Hi is adapted to FTi and |Hi| < ∞ a.s. for 0 ≤ i ≤ n. The family of simple
predictable processes is denoted S.

We denote S with uniform convergence in (t, ω) as topology Su. Moreover let L0 be the
space of finite valued random variables topologized by convergence in probability. Be-
tween these two spaces we define the map which will be our integral for simple predictable
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processes given a reasonable process X. More precisely we define IX(H) : S → L0 as

IX(H) = H0X0 +
n∑

i=1

Hi(XTi+1 −XTi). (3.17)

Definition 3.4: A process Xt is a total semimartingale if X is cadlag, adapted and
IX(H) : S→ L0 is continuous.

Let Xt be a process and T a stopping time, then the notation XT
t denotes the process

XT
t = {Xt∧T }t≥0.

Definition 3.5: A process is a semimartingale if, for each t ∈ [0,∞), Xt is a total
semimartingale.

Hence a semimartingale is a process that gives meaning to the map IX defined on Su as
an integral for arbitrary finite integration limits.
Following the usual routine of extending integrals of simple functions to more general
spaces, Protter (2004) then shows that S dense in the space of cadlag processes. More
precisely:

Definition 3.6: Let D and L denote two spaces of adapted processes with cadlag paths.

On these spaces we define a topology:

Definition 3.7: A sequence of processes {Hn}n≥1 converges to H uniformly on com-
pacts in probability (UCP) if for each t > 0, sup0≤s≤t |Hn

s −Hs| converges in probability.

Further Protter (2004) shows that

Theorem 3.2: The space S is dense in L under UCP topology.

Finally we define the stochastic integral for a process in L:

Definition 3.8: Let X be a semimartingale. Then the continuous linear mapping IXt :
LUCP → DUCP obtained as the extension of IXt(H) : S → D is called the stochastic
integral.

Remark 3.1. From (3.17) it is clear that the Itô integral is one instance of the stochastic
integral, since the integrand is evaluated in the left endpoint, and obviously Xt is a
Brownian motion.

Now that we have the stochastic integral we are ready to develop the notion of stochastic
differential equation driven by semimartingales.
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3.2.2 Stochastic Differential Equations Driven by Semimartingales

Given the results in the previous subsection, we are ready to give meaning to the equation

dXt = f(Xt−)dZt (3.18)

where Zt is a m-vector semimartingale and Z0 = 0. The notation is just the shorthand
notation of the integral equation:

Xi
t = xi +

m∑

α=1

∫ t

0
f i

α(Xs−)dZα
s (3.19)

where i = 1, . . . , d, Xi
t denotes the i-th component of the vector process X and Zα

s

denotes the α-th component of the process Z at time s. The coefficient functions f i
α :

Rd → R are given and we denote f(x) the d×m matrix function (f i
α(x)) admitting the

notation

Xt = x +
∫ t

0
f(Xs−)dZ (3.20)

which is equivalent to (3.18).
As for ordinary differential equations, we have a theorem that ensures existence and
uniqueness of solutions of (3.18). First we need the notion of locally Lipschitz functions:

Definition 3.9: A function f : Rd → R is said to be locally Lipschitz if there exist
constants CK only dependent on K such that

|x− y| < K ⇒ |f(x)− f(y)| < CK (3.21)

for every x, y ∈ Rd and | · | being the Euclidean norm.

It is rather obvious that functions of class C1, that is continuous functions with contin-
uous partial derivatives, are locally Lipschitz. We are finally ready to state the main
theorem (Theorem V.38 in Protter (2004)):

Theorem 3.3: Let Z and f be as above with f locally Lipschitz. Then there exists a
function ζ(x, ω) : Rd×Ω → [0,∞] such that each x, ζ(x, ·) is a stopping time, and there
exists a unique solution of

Xt = x +
∫ t

0
f(Xs−)dZs (3.22)

up to ζ(x, ·) with lim supt→ζ(x,·) ‖Xt‖ = ∞ a.s. on {ζ < ∞}.

Hence stochastic differential equations with locally Lipschitz coefficient functions have
unique solutions up to explosion times T (ω) = ζ(x, ω).
It is also worth noticing that if the coefficient functions are taken to be globally Lipschitz,
the solutions exists and are unique for all times t ∈ [0,∞). This is in accordance with
the classical result for Itô stochastic differential equations given in e.g. Øksendal (2003).
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3.2.3 Stochastic Differential Equations Driven by Lévy Processes

Finally we are ready to address stochastic differential equations driven by Lévy processes.
The following results can be found in Protter (2004):

Theorem 3.4: A Lévy process is a semimartingale.

The deterministic function g(t) = t is a semimartingale since it is the Lévy process with
Lévy triplet (0, 1, 0). Hence any stochastic differential equation on the form

dXt = f1(Xt−)dt + f2(Xt−)dLt (3.23)

is well-defined for a (m-vector) Lévy process Lt, and we can apply the results above
concerning stochastic differential equations driven by semimartingales.
One important property of (3.23) is that the solution is a strong Markov process. More-
over it is in fact true that if the solution of a general stochastic differential equation
(3.18) is a strong Markov process, the driving noise Z is a Lévy process (Protter 2004).

3.2.4 The Infinitesimal Generator

As noted in Protter & Talay (1997), a motivation for the analysis of equations on the
form (3.22) is that it can be used to solve the Kolmogorov Backward equation. A nice
expression for the generator A of the process Xt solving (3.22) is at hand:

Theorem 3.5 (Protter (2004) Exercise V-8): Let Lt be a Lévy process with Lévy measure
ν. Moreover let Lt have the decomposition Lt = bt + cBt + Mt where Mt is a pure jump
martingale. Then the generator of the process Xt solving (3.22) is given as

Ag(x) = ∇g(x)f(x)b +
1
2

d∑

i,j=1

(
∂2g

∂xi∂xj
(x)

)
(f(x)cf(x)>)ij

+
∫

ν(dy)(g(x + f(x)y)− g(x)−∇g(x)f(x)) (3.24)

where g ∈ C∞
c and ∇g(x) is a row vector.

No general adjoint operator is to our knowledge given in closed form. However we shall
see later that it is often easy to find when a specific equation is given.



20 CHAPTER 3. LÉVY PROCESSES AND STOCHASTIC DIFFERENTIAL EQUATIONS

3.2.5 A Solvable Stochastic Differential Equation

Example 3.4: An important class of stochastic differential equations with applications in
mathematical finance are on form (Cont & Tankov 2004):

Xt = 1 +
∫ t

0
XsdLs. (3.25)

Here Z is a 1-dimensional Lévy-process with Lévy triple (σ2, γ, ν). Its solution is given by
the so-called stochastic exponential for rather obvious reasons:

Xt = E(Lt) = exp[Lt − σ2t/2]
∏

0<s≤t

{(1−∆Ls) exp[−∆Ls]} (3.26)

Notice that for a continuous process, that is with ν = 0, this equation reduces to the
ordinary solution of the Black Scholes Equation. In mathematical finance, is often useful to
find the stochastic differential equation with solution Yt = exp(Lt) where Lt is a given Lévy
process. In the one dimensional case, this can be done following Proposition 8.22.2 in (Cont
& Tankov 2004):

Proposition 3.1: Let Y be given as Yt = exp(Lt) where Lt is a Lévy process with Lévy
triplet (σ2, γ, ν), then there exists a Lévy process X such that Yt = E(Xt). The Lévy
triplet of X, (σ2

X , γX , νX) is given as:

σX = σ (3.27)

γX = γ +
σ2

2
+

∫

R
{(ex − 1)1[−1,1](e

x − 1)− x1[−1,1](x)}ν(dx) (3.28)

νX(S) =
∫

R
1S(1− ex)ν(dx) for S ⊂ R (3.29)

We see that Lévy stochastic calculus is somewhat more complicated than the Itô sto-
chastic calculus. Generally we do not get nice expressions involving the driving noise
only as the strong solution.

3.3 Pathwise Numerical Solution of Stochastic Differential Equations

As for ordinary differential equations, only a small class of stochastic differential equa-
tions have analytical solutions in the strong sense. To analyze more complicated sto-
chastic differential equations, one has to turn to numerical methods. The majority of
the literature on this subject consider a Monte Carlo approach to find weak solutions of
stochastic differential equations by approximating a large ensemble of single paths, and
use statistical methods to approximate functionals of the weak solutions. To exemplify
this, let h ∈ L∞, and let Xt be the solution of a given stochastic differential equation.
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We are often interested in the value of E[h(XT )] for some fixed time T . To estimate this
we use the ordinary mean estimator:

E[h(XT )] ≈ 1
N

N∑

j=1

h(X̄j
T ) (3.30)

for an ensemble of approximate paths {X̄j
t }j .

Finding approximate paths is done by discretizing the time, and simulating the random
increments using a pseudorandom number generator on a digital computer.

3.3.1 The Euler Scheme

The most studied scheme for Lévy driven stochastic differential equations is the Euler
scheme (see e.g. Protter & Talay (1997), Jacod, Kurtz, Mèlèard & Protter (2005) or
Kloeden & Platen (1999) in the Brownian motion case). The scheme generalizes the
Euler scheme for ordinary differential equations, by including the random increments
characterizing the stochastic differential equation. Consider the (vector) stochastic dif-
ferential equation given by

Xt = x +
∫ t

0
f(Xs−)dLs, t ∈ [0, T ], T < ∞ (3.31)

and let ti = iτ, i = 0, . . . , M where τ = T/M . Then the Euler Scheme is given recursively
as

X̄j
t0

= x (3.32)

X̄j
ti

= X̄j
ti−1

+ f(X̄j
ti−1

)[Lti(ωj)− Lti−1(ωj)]. (3.33)

The reader will recognize that in the time homogeneous case, the Lévy increment
[Lti(ωi) − Lti−1(ωi)] is independent of Fti−1 . Using this, it is quite straight forward
to simulate single paths with the Euler Scheme, provided that we can simulate the in-
crement. Jacod et al. (2005) also treat the case when we can only simulate the increment
approximately.

3.3.2 Weak Convergence of the Euler Scheme

The notion of weak convergence of pathwise schemes is important when we consider the
convergence of path integration schemes later on: Several notions of weak convergence
exist. First we state that of Kloeden & Platen (1999), which is similar to that of Milstein
(1995).
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Definition 3.10: A pathwise scheme X̄t approximating the solution Xt of a given sto-
chastic differential equation is said to have weak convergence of order δ if there exists
Ch < ∞ not dependent on τ such that

|E[h(X̄T )]− E[h(XT )]| < Chτ δ (3.34)

for all h ∈ C
2(δ+1)
P . Here the subscript ”P” denotes that h has at most polynomial

growth.

The main results in (Protter & Talay 1997) gives bounds for

|E[h(X̄T )]− E[h(XT )]| (3.35)

when h is specified in advance under constraints on f and h. Though they present several
theorems for stochastic differential equations under even stronger assumption, we shall
only state their most general theorem.
We consider the stochastic differential equation (3.31) where Zt has Lévy triplet (A, γ, ν).
Define for K > 0, m > 0 and p ∈ N \ {0}

ρp(m) = 1 + ‖γ‖2 + ‖A‖2 +
∫ m

−m
‖z‖2ν(dz)

+ ‖γ‖p + ‖A‖p +
(∫ m

−m
‖z‖2ν(dz)

)p/2

+
∫ m

−m
‖z‖pν(dz). (3.36)

Moreover we define
ηK,p(m) = exp(Kρp(m)) (3.37)

and
j(m) = ν({x; ‖x‖ ≥ m}). (3.38)

Theorem 3.6: Suppose that:

1. f ∈ C4

2. h ∈ C4

3. X0 ∈ L4(Ω) , i.e. X0 has finite 4th moment.

Then there exists a strictly increasing function K depending only on the dimensions of
f and the L∞-norm of the partial derivatives of f and h up to order 4 such that for any
discretization step of type T/n, for any integer m

|E[h(X̄T )]− E[h(XT )]| ≤ 4‖h‖∞(1− exp(−j(m)T )) +
ηK(T ),8(m)

n
. (3.39)

More heuristically, Protter & Talay (1997) state that the weak order of convergence is
generally lower than one, depending on how the Lévy measure tends to 0 at the tails.
Moreover, their results generalize the results in (Kloeden & Platen 1999) which states
that the Euler Scheme has weak order δ = 1 when ν(S) = 0 for all S ⊂ Rd.
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3.4 Concluding Remarks

The main objective of this work is to approximate the law of the solution process of a
Lévy driven stochastic differential equation. The discussions above form the theoretical
basis for this to be meaningful. From now on; all stochastic differential equations under
consideration are on the form (3.23) with well-behaving coefficient functions f1, f2.
One of the underlying ideas of the numerical path integration procedure is that we
approximate the law (i.e. the transition kernel) of the solution-process of the Euler-
scheme. Hence the Euler-scheme will become an integral part of our later discussion.
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Chapter 4

Numerical Inversion of the
Characteristic Function

This chapter discusses the application of the Fast Fourier Transform to estimate the
forward transition kernel for stochastic differential equations driven by Lévy Processes.
In this chapter we consider only the 1-dimensional case, but generalizations to vector
valued stochastic processes should be straight forward.

4.1 The Fourier Transform

4.1.1 Some Basic Facts

Fourier analysis is a vast field and this account is by no means complete. We recall the
definition of the Fourier transform:

Definition 4.1: Choose A ∈ (0,∞] and set S = [−A,A]. The functions f, f̂ ∈ L1(S)
form a Fourier pair if

f̂(u) =
∫

S
exp(iux)f(x)dx (4.1a)

f(x) =
1
2π

∫

S
exp(−iux)f̂(u)du. (4.1b)

The function f̂ is called the Fourier transform of f and conversely f is called the
inverse Fourier transform of f̂ . A short hand notation for the two operators is Ff =
f̂ , F−1f̂ = f .

Now we state one of the big theorems of Fourier analysis:

Theorem 4.1: The Fourier transform is a continuous operator F : L1(R) → L∞(R).

Proof. See e.g. theorem 8.1 in Champeney (1987)

From definition 4.1 it is relatively easy to see that a probability density and its charac-
teristic function form a Fourier pair:
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Theorem 4.2: The probability density fX(x) associated with the stochastic variable X
and its characteristic function φX(u) defined as

φX(u) = E[exp(iuX)] (4.2)

form a Fourier pair. Here S = supp(fX).

Proof.

φX(u) = E[exp(iuX)] =
∫

S
exp(iuX)fX(x)dx = f̂X(u) (4.3)

The following result is simple but will become very useful in our later discussions of
numerical path integration schemes based on characteristic functions:

Result 4.1: Take a ∈ R and let φ(u) be the characteristic function associated with the
stochastic variable X. Then the characteristic function associated with the stochastic
variable aX is given as

φaX(u) = φX(au) (4.4)

Proof.
φaX(u) = E[exp(iuaX)] = φX(au) (4.5)

4.1.2 Discrete Fourier Transforms

As in most cases when computers are used to do mathematics, some kind of discretization
has to be done. This is also usually the case when the integrals in (4.1) have to be
evaluated. Such discretizations are called Discrete Fourier Transforms, and they are no
more than weighted trapezoid rules of numerical integration. More precisely, consider
S = [−A,A] and discretizise S into N equidistant partitions: ∆x = 2A/N and xj =
j∆x−A, j = 0, . . . , N − 1. We assume f to be periodic, and that A is chosen such that
f(x0) = f(xN ). Next we define the corresponding discretization of u: uk = −πN/2A +
kπ/A, k = 0, . . . , N − 1, and we are ready to give the approximation:

f̂(uk) =
∫

S
exp(iukx)f(x)dx ≈ ∆x

N−1∑

j=0

exp(iukxj)f(xj) = F̂k, k = 0, . . . , N − 1. (4.6)

We use the right hand side as our definition of the discrete Fourier transform and the
inverse discrete Fourier transform is defined in a completely analogous way. For com-
putational purposes it is convenient to take N to be a power of 2, since we can use
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the so called Fast Fourier Transform (FFT) in this case. See e.g. Gasquet & Witomski
(1999) for a more complete account of the FFT. The FFT is an algorithm that computes
{F̂k}N−1

k=0 in only O(N log2(N)) operations. This is a considerable speed up compared to
the O(N2) operations needed to compute the N sums directly.

4.2 Inverse FFT Applied on the Characteristic Function of a Lévy
Process

In this section we describe a method, using Theorem 4.2 and the inverse FFT (iFFT),
to compute approximations to the forward transition kernel of increments of a Lévy
process.

4.2.1 Conjugate Symmetry

This subsection describes an important property of the Fourier transform of real func-
tions, namely the conjugate symmetry. In this text we only consider probability densities
that are real, hence all characteristic functions under consideration are conjugate sym-
metric. We state this more formally:

Theorem 4.3: Let d : R → R, d ∈ L1(R) be a probability density. Then its Fourier
transform is conjugate symmetric. That is d̂(u) = d̂(−u) where · denotes the complex
conjugate.

Proof. The proof is simple; by the Euler formula we have that

(Fd)(ω) =
∫

R
d(x) cos(ωx)dx + i

∫

R
d(x) sin(ωx)dx (4.7)

(Fd)(−ω) =
∫

R
d(x) cos(ωx)dx− i

∫

R
d(x) sin(ωx)dx. (4.8)

All the integrals exist by theorem 4.1 and are trivially real, and we have shown the
desired relation.

This relation can be shown the other way around for a large class of Lévy process
increments. Recall that the characteristic function of an increment of a Lévy process Lt

is given by the Lévy-Khinchine formula in one dimension:

φLt(u) = exp
(

t

[
iγu− 1

2
a2u2 +

∫

R
exp(iux)− 1− iux1{|x|<1}(x)ν(dx)

])
(4.9)

If we fix the argument at some value u = ω, for some fixed t, and compare φLt(−ω) and
φLt(ω) we get the following property:
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Result 4.2: Assume that ν(R)∨∫
[−1,1] xν(dx) < ∞ and that there exists a function d ∈

L1(R) such that ν(dx) = d(x)dx. Then the Lévy-Khinchine representation is conjugate
symmetric, i.e. φt(u) = φt(−u)

Proof. Fix some ω > 0 and evaluate φt(ω):

φLt(ω) = exp
(

t

[
iγω − 1

2
a2ω2 +

∫

R
exp(iωx)− 1− iωx1{|x|<1}(x)d(x)dx

])

= exp(−t[σ2ω2 + ν(R)])︸ ︷︷ ︸
K1

exp(tiγω) exp
(

t

∫

R
exp(iωx)d(x)dx

)
exp


−tiω

∫

[−1,1]
xν(dx)

︸ ︷︷ ︸
K2


 .

(4.10)

The corresponding expression for −ω becomes:

φLt(−ω) = K1 exp(tiω(K2 − γ)) exp
(

t

∫

R
exp(i(−ω)x)d(x)dx

)
(4.11)

It is clear that the integrals in the exponents form Fourier transforms. By theorem 4.3
cω = c−ω when cω = (Fd)(ω). Set cω = α + iβ and obviously c−ω = α − iβ. Inserting
this into equations (4.10),(4.11) yields

φLt(ω) = K1 exp(α) exp(i(tωγ − tωK2 + β)) = K3 exp(iK4) (4.12)
φLt(−ω) = K1 exp(α) exp(−i(tωγ − tωK2 + β)) = K3 exp(i(−K4)) (4.13)

Finally the Euler formula gives us

φLt(ω) = K3(cos(K4) + i sin(K4)) (4.14)
φLt(−ω) = K3(cos(−K4) + i sin(−K4)) (4.15)

= K3(cos(K4)− i sin(K4)) = φLt(ω) (4.16)

since K1, K2,K3,K4 ∈ R.

The restrictions on the Lévy measure in result 4.2 might seem very tight. However it
can be shown that any Lévy process can be approximated with arbitrarily high accuracy
by a finite sum of compound Poisson processes and a Brownian motion with drift (see
e.g. Cont & Tankov (2004)), each fulfilling the restrictions.
Having established this property, we review the discrete inverse Fourier transform of the
characteristic function.
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4.2.2 Inverse Discrete Fourier Transform of a Characteristic Function

The inverse discrete Fourier transform of the characteristic function is given as

dt(xj) = ∆u
N−1∑

k=0

exp(−iukxj)φt(uk), j = 0, . . . , N − 1 (4.17)

where ∆u = π/A. Using the results in the previous subsection, we know that φt(uk) =
φt(uN−k) since −uk = uN−k. Numerically this accounts to only evaluating half the
characteristic function values. Moreover, this ensures that dt(xj) is real since

exp(−iukxj)φt(uk)+exp(−iuN−kxj)φt(uN−k) = exp(−iukxj)φt(uk)+exp(iukxj)φt(uk)

= exp(−iukxj)φt(uk) + exp(−iukxj)φt(uk) = 2<[exp(−iukxj)φt(uk)] (4.18)

for k = 1, . . . , N/2− 1. For k = N/2 ⇒ uN/2 = 0, the elements are trivially real.
As we see from (4.18) it is possible to simplify and speed up the computation of the
discrete transform considerably when using the conjugate symmetry property.

4.3 Error Bounds

Since we are computing approximate distributions, some sort of error analysis should be
performed. Hughett (1998) gives us explicit error bounds assuming that the character-
istic function and the probability density decay at certain rates in the tails:

Theorem 4.4: Let d be a probability density function and φ(u) its characteristic func-
tion. Suppose that there exist constants B, C, α > 1 and β > 1/2 such that |d(x)| ≤
B|x|−α for all |x| ≥ A and |φ(u)| ≤ C|u/2π|−β for all |u| ≥ πN/2A. Let g be the low
pass filtered approximation to d with N on [−A,A]. Then the sampling error is bounded
by

1√
2A
‖d− ds‖2 ≤ B

Aα

2α− 1
α− 1

(4.19)

and the truncation error by

1√
2A
‖ds − g‖2 ≤ C(2A)β−1

√
β − 1/2

(
2

N − 2

)β−1/2

(4.20)

The low pass filtered approximation is the one given by (4.17) when varying the x-grid
to get a continuous function. In our case it will generally be sufficient to compute the
density on a discrete grid, and the details for obtaining a continuous function is therefore
omitted.
It is relatively easy to see that under the assumptions of result 4.2 the characteristic
function of a Lévy increment will obey the tail bound of theorem 4.4:
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Result 4.3: Let φt(u) be given as in result 4.2. Then there exists a C < ∞ such that
|φ(u)| ≤ C|u/2π|−β ∀ |u| ≥ πN/2A.

Proof.

|φt(u)| = exp
(
t(d̂(u)− ν(R))

)
exp(−tσ2u2)

≤ exp
(
t(‖d̂‖∞ − ν(R))

)
exp(−tσ2u2) = K exp(−tσ2u2) (4.21)

The inequality is justified by the fact that the Fourier transform is a linear operator
F : L1(R) → L∞(R). To show the existence of C, set b = πN/2A. We may without loss
of generality assume that b ≥ 1. If we take C = K exp(−tσ2b2)bα and consider u ≥ b
then

log
(

C

uα

)
= log(K)− tσ2b2 + α(log(b)− log(u)) (4.22)

log(K exp(−tσ2u2)) = log(K)− tσ2u2 (4.23)

since u2 grows faster than α log(u) for u > 1 it is clear that

C

uα
≥ K exp(−tσ2u2))∀u ≥ b (4.24)

Completely analogous arguments give us the same result for u ≤ −b.

4.4 Implementation and Numerical Examples

To illustrate the technique outlined above, we consider some numerical examples. The
inverse transformations are done using the routine ZFFTD in the Sun Performance Library
(Sun Studio 11: Sun Performance Library Reference Manual - ZFFTD 2005). ZFFTD is
a routine written for conjugate symmetric input of length N/2+1, and returns output of
length N. This accounts to only evaluating {φt(uk)}N/2

k=0. The code is written in Fortran
90.

4.4.1 Finding Appropriate Windows

As in any numerical integration procedure, infinite integration limits are intangible, and
we will have to truncate the integration limits to where the integrand is close to numerical
zero. In the code used here we choose A to be some multiple of the standard deviation
of the stochastic variable. We can approximate the standard deviation by evaluating the
characteristic function once. More precisely we have that

E[X] = µ = −i
d
du

φX(u)|u=0 (4.25)

E[(X − µ)2] = σ2 =
d2

du2
φX(u)|u=0 − µ2 (4.26)
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Figure 4.1: The Gaussian density function computed with l = 6 standard deviations on
each side. (-) is the iFFT computed density, and (¤) is the exact density. Notice that
the computed density is periodic.

To estimate the standard deviation σ we use the first and second finite differences:

µ ≈ µ̄ =− i
φX(h)− φX(h)

2h
(4.27)

σ2 ≈ σ̄2 =
φX(h)− 2 + φX(h)

h2
− µ̄2 (4.28)

for 1 >> h > 0. Here we use that φX(0) = 1 in the Lévy-Kitchine representation. Hence
we call [−A,A] = [−lσ̄, lσ̄] our window, where l is approximately the number of standard
deviations included.

4.4.2 Numerical Examples

Example 4.1: The first example is the Gaussian density. More precisely: Let L[X] =
N(µ, σ2) and consider the stochastic variable Y = 2X with µ = 0.05, σ = 0.2. This is
a typical forward transition kernel when working with discretized Itô stochastic differential
equations. The characteristic function is trivially given as:

φY (u) = exp(2iµu− 1
2
(2uσ)2). (4.29)

The approximate density given in figures 4.1a - 4.1d for N = 28, 210 and l = 6, 12. We see
that in the case where l = 6 the iFFT computed density follows the exact density all the way.
When l = 12 the iFFT computed density deviates from the exact density at roughly 10−14,
which should be accurate enough for most numerical computations. Notice that the iFFT
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Figure 4.1: The Gaussian density function computed with l = 12 standard deviations
on each side. (-) is the iFFT computed density, and (¤) is the exact density.

computed density is periodic. This is only a small source of error in case of the Gaussian
density since the tails behaves equally at both sides. In the case where the tails have very
different behavior, this will be a greater source of error.

Example 4.2: Now consider a jump diffusion increment. In our case Uτ = Bτ + Xτ

where Bt is standard Brownian motion, and Xt is a compound Poisson process with L[Zi] =
N(0, σ2

Z) and rate λ. The variables Bt, Nt and {Zi} are assumed to mutually independent.
We derive the exact transition kernel k(y, x, τ) = L[Uτ |U0 = x](y) in the same manner as
in example 3.3. For simplicity we set x = 0, then we have that:

k(y, 0, τ) = exp(λτ)
∞∑

j=0

(λτ)j

j!
√

2π(τ + jσ2
Z)

exp
(
− y2

2(τ + jσ2
Z)

)
. (4.30)

The sum converges fast and approximately 20 terms are sufficient to reach errors less than
numerical zero on a typical digital computer. Hence we can use the partial sum as our
reference when we look at the iFFT computed densities.
The next step is to derive the characteristic function for such an increment. Recall that the
Lévy-measure for a compound Poisson processes is given as ν(dx) = λL[Zi](x)dx. Hence

φUτ (u) = exp

(
τ

(
λ

∫

[−1,1]
iuxν(dx)− 1

2
u2 + λ

∫

R
(exp(iux)− 1− iux1[−1,1](x))ν(dx)

))

(4.31)
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Figure 4.2: The jump diffusion forward transition kernel computed with l = 6 standard
deviations on each side. (-) is the iFFT computed density, and (¤) is the exact density.
Notice that the computed density is periodic.

Since the Lévy-measure is symmetric about the origin we have that

φUτ (u) = exp


τ


−1

2
u2 + λ

∫

R
(exp(iux)− 1)

1√
2πσ2

Z

exp
(
− x2

2σ2
Z

)
dx







= exp
(
−τ

1
2
u2 + τλ

(
exp

(
−1

2
σ2

Zu2

)
− 1

))
(4.32)

and finally an application of result 4.1 yields

φbUτ (u) = exp
(
−τ

1
2
(bu)2 + τλ

(
exp

(
−1

2
σ2

Z(bu)2
)
− 1

))
. (4.33)

Hence we have an expression suitable for numerical inversion by iFFT.
In our example we use the parameters b = 0.3, τ = 0.05, λ = 3.5, σZ = 0.9. The iFFT
computed densities are plotted in figures 4.2a - 4.2d. We see that the computed density
follows the reference density except for the last few points in both tails in all cases.

Example 4.3: The last example is analogous to the previous, but we let L[Zi] = EXP (1/β).
This example is not included to illustrate the accuracy of the iFFT computed densities, but
to illustrate what happens when the tails behaves differently. Let us first compute the
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Figure 4.2: The jump diffusion forward transition kernel computed with l = 12 standard
deviations on each side. (-) is the iFFT computed density, and (¤) is the exact density.

characteristic function of the increment:

φUτ (u) = exp
(

τ

(
−1

2
u2 + λ

∫

R
(exp(iux)− 1)1[0,∞](x)

1
β

exp
(
−x

β

)
dx

))

= exp
(
−τ

1
2
u2 + τλ

(
1

1− iuβ
− 1

))
(4.34)

and

φbUτ (u) = exp
(
−τ

1
2
(bu)2 + τλ

(
1

1− iuβb
− 1

))
. (4.35)

The iFFT computed density is plotted in figure 4.3 with parameters b = 0.9, λ = 1.5, β =
1.1, τ = 1/20 and l = 50. The computation was done with N = 210. We see from figure 4.3
a rather obvious fact. When the tail behavior differs significantly, the imposed periodicity
makes our computed densities inaccurate. In our case, the left tail decays roughly as a
Gaussian density (O(exp(−x2)), whereas the right tail decays roughly as an exponential
density (O(exp(−x))). When our density has this property, care should be taken, and we
generally need to remove data or move the window such that d(x0) ≈ d(xN−1).

4.5 Concluding Remarks

As we have seen in this chapter, in theory we can compute densities with arbitrary
accuracy using iFFT. We have tested our method on two relatively simple problems
and one hard problem. This has shown us that care should be taken when working
with problems that are quantitatively asymmetric. The process of choosing windows
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Figure 4.3: The density computed from (4.35) by iFFT. We see that when the tail
behaveior differs significantly, the imposed periodicity makes our computed density in-
acurate.

or discarding data can to some extent be automated by e.g. computing course test
densities or comparing gradients in the tails. This has not been implemented in the
path integration code which we shall allude to shortly due to time constraints.
The iFFT code used to do to the numerical examples in this chapter has become an
integral part of path integration code for additive noise stochastic differential equations
described later. Since our Lévy process increments often are specified using the Lévy-
Kintchine representation, the alteration of the code to a new model will only consist of
changing the characteristic function. In fact, we shall later look at processes where the
Lévy process increments have densities equal to those in the examples above.
One important aspect in the numerical examples above is that one generally need a
significant part of Brownian motion in the increments to make the computations stable.
It is relatively easy to see that pure compound Poisson processes will have a δ-function at
the origin for all finite times, making the computations unstable due to scaling problems.
This will not cause problems when the Lévy measure is infinite since these processes have
smooth forward kernel (Cont & Tankov 2004).
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Chapter 5

Path Integration

In this chapter we discuss the exact path integration operator and its time-discrete
counterpart in some detail. The understanding of the path integration operator should
be that it propagates the probability density of the dynamics specified by some stochastic
differential equation trough time. However it is only in very few cases that an analytical
expression for the operator is at hand, and generally we have to use some sort of numerical
approximation procedure. The last part of the chapter is therefore a description of a
numerical path integration procedure. Throughout the chapter we exemplify many of
the features discussed with the Langevin equation. Due to time-constraints, the rest of
the text is in a 1-dimensional setting.

5.1 Path Integration Heuristics

Path integration in the sense discussed here is a way of computing the time-evolution of
some kind of mathematical object given some underlying dynamics. Gas densities and
probability distributions are examples of such objects. Path integration was first made
famous with Richard P. Feynman’s path integral-representation of quantum mechanics
(Feng, Wang & Lu 1992). Feynmans principle can, somewhat sloppy, be formulated as
that the probability of a particle with position Xt moving from x to A (A ⊂ Rd), is the
integral over all possible paths from x to A with an appropriate probability measure λ:

P(XT ∈ A|X0 = x) =
∫

ΩA
x

λ(X), ΩA
x = {X; XT ∈ A andX0 = x}. (5.1)

See figure 5.1 for illustration. At first sight this functional integral seems to be a rather
intangible object, but we shall see now that there are ways of computing it exactly or
by approximation. We start with the Onsager-Machlup Functional method.

5.1.1 Generalized Onsager-Machlup Functional

The Onsager-Machlup Functional is described in Onsager and Machlups paper (Onsager
& Machlup 1953) on fluctuations of thermodynamic systems near equilibrium. Onsager
and Machlup uses an entropy argument to describe the dynamics of the system subject
to additional noise. More mathematically oriented accounts of the Generalized Onsager-
Machlup Functional (GOMF) can be found in Wissel (1979) and Risken (1984), where
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the underlying dynamics are specified using short time transition probability densities.
For simplicity, we consider the GOMF in one space-dimension only in this section. To
start our discussion of the GOMF we introduce some notation. Let a < b be two times,
and let a = t0 < t1 < · · · < tN = b be an equidistant partition of [a, b] with step size
τ = (b − a)/N . Further; let xi be the space-variable associated with time i (x0 = x
and xN = y) and let u(x, a) be the initial distribution of the quantity at time a. Fix
some N > 1 and recall the Chapman-Kolmogorov equation (2.21) for the time-partition.
Inserting the short time transition probability

k(y, x, τ) =
1√

2πg(x)2τ
exp

(
− [y − x− f(x)τ ]2

2g(x)2τ

)
(5.2)

corresponding to the stochastic differential equation

dXt = f(Xt)dt + g(Xt)dBt (5.3)

into (2.21) yields:

u(y, b) =
∫ ∫

· · ·
∫ N−1∏

i=0

{[2πg(xi)2τ ]−1/2dxi}×

exp

(
−

N−1∑

i=0

[xi+1 − xi − f(xi)τ ]2

2g(xi)2τ

)
u(x, a). (5.4)

Since the short time transition probabilities are approximations of O(τ2) (Risken 1984)
we can achieve an explicit formula by letting N →∞. Before we do so, we use the ap-
proximation xi+1−xi = ẋ(ti)τ +O(τ2), hence the in the limit, the sum in the exponential
can be written as:

lim
N→∞

N−1∑

i=0

[xi+1 − xi − f(xi)τ ]2

2g(xi)2τ
=

∫ b

a

[ẋ(t′)− f(x(t′))]2

2g(x(t′))2
dt′. (5.5)

The functional on the right hand side is what is called the Generalized Onsager-Machlup
Functional. A common way of writing (5.4) is:

u(y, b) =
∫

Ωydy
x

Dl[x] exp
[
−

∫ b

a

[ẋ(t′)− f(x(t′))]2

2g(x(t′))2
dt′

]
u(x, a) (5.6)

where
∫
Ωydy

x
D denotes the infinite integral operator over the function space Ωydy

x . The
functional in the exponential can be interpreted as a probability measure, assigning a
value to all x ∈ Ωydy

x . As noted in Feng et al. (1992) it is generally not possible to
compute this functional integral, but some approaches can be followed to yield exact or
approximate solutions when more restrictions are imposed on the underlying dynamics.
Moreover, Wissel (1979) shows that (5.6) is in fact not uniquely defined when the time
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discretization procedure is not specified, but also shows how to work around the math-
ematical ambiguity of the operator.
One way of achieving an approximate expression for (5.6) , known as the WKB method,
is to find the most probable path x0 ∈ Ωydy

x by a variational argument, and then expand
the functional as a functional power series around x0. Since the first Frechet-derivative
(see e.g. Troutman (1996)) is zero, the two first terms in the series simply reduces to
a functional over x0 and the integral operator can generally be tackled. Under certain
assumptions on the underlying dynamics, such as linearity in drift and a wellbehaving
diffusion matrix, the WKB method turns out to give exact solutions. It is worth noticing
that in Onsager & Machlup (1953), the authors apply this method on a linear system
to obtain the exact solution.

5.1.2 Generalized Cell Mapping - A Numerical Scheme

A

t = 0 t = T

x

Figure 5.1: Illustration of
the path integration princi-
ple. We integrate over all
possible paths form x to A
with an appropriate proba-
bility measure.

The generalized Cell Mapping method is a very intuitive
numerical scheme for approximating the joint probabil-
ity density function of Markov processes. The main ideas
are to discretize both the state space and the time, and
to approximate the original Markov process with a dis-
crete time/space process.
The state space is discretized into a countable number
of sets Ci, usually generalized squares, and a probability
mass pi(n) is allocated to set Ci at time step n. The size
of the sets is a tradeoff between computation efficiency
and desired accuracy. The master equation is nothing
but the law of total probability:

pi(n) =
∞∑

j=1

P
(n,n−1)
ij pj(n− 1). (5.7)

Notice that in numerically oriented schemes, it is com-
mon to work with the joint probability density function
of the process (here given as pi(n)) for all time steps.
Given (5.7) the process seems straight forward, but the

computation of the Pijs can in fact be very hard. Moreover if the dynamics have some
time-dependence, the Pijs have to be computed for each time-step. The short time
transition probabilities can be approximated by the following:

P
(n,n−1)
ij ≈

∫

Ci

p(x, nτ |xj , (n− 1)τ)dx (5.8)

where xj is the center of Cj and τ is the time step. Different approaches to estimate
(5.8) have been used, among them Monte Carlo methods. Sun & Hsu (1990) describes
an approach where the short time transition probabilities are Gaussian, with mean and
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variance determined by the underlying dynamics. However Sun & Hsu (1990) establish
more accurate approximations (but still Gaussian) based on sets of ordinary differen-
tial equations describing the two first moments of the transition probabilities, and can
therefore take longer time steps compared with similar schemes based on e.g. (5.2)

5.2 Path Integration in a Probabilistic Perspective

As we have seen in the previous section, there is freedom in the way we specify the
underlying dynamics of the system we are modeling. In the rest of this text we shall
specify the dynamics with time-homogeneous stochastic differential equations of the kind
discussed in section 3.2. In this case the measure we apply to each conceivable path from
x to S is just the transition kernel k defined for each S ∈ B(R):

P[Xt+τ ∈ S|Xt = x] =
∫

S
k(y, x, τ)dy ∀ t, τ ≥ 0 (5.9)

where Xt is the solution of a stochastic differential equation. We start by introducing
some notation.

5.2.1 Stochastic Semi-Groups

We define stochastic semi-groups of operators Pt : L1(R) → L1(R) (Lasota & Mackey
1994):

Definition 5.1: Let (X,F , µ) be a measure space. A Stochastic Semi-Group is a family
of operators Pt : L1(X) → L1(X) with the following properties:

1. Pt(αf + βg) = αPtf + βPtg, f, g ∈ L1(X), α, β ∈ R
2. Ptf ≥ 0 if f ≥ 0

3.
∫
X Ptf(x)µ(dx) =

∫
X f(x)µ(dx)

4. Pt+t′f = Pt(Pt′f)

In addition if
lim
t→t′

‖Ptf − Pt′f‖1 = 0 (5.10)

the family of operators is called a continuous stochastic semi-group.

This definition admits the path integration operator for a given stochastic differential
equation to be a stochastic semi-group. To see this, we define the probabilistic path
integration operator (from now on the PI-operator) to be
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Definition 5.2: The PI-operator PIt : L1(R) → L1(R) is defined for each initial prob-
ability density u0 as

ut = PItu0 =
∫

R
k(y, x, t)u0(x)dx (5.11)

where k is the transition kernel of a given stochastic differential equation.

It is straight forward to check that the PI-operator indeed is a stochastic semi-group:

Result 5.1: The path integration operator PIt forms a stochastic semi-group.

Proof. We check each property of the stochastic semi-group definition:

1. Linearity is obvious since the integral is linear.

2. Also obvious since k, u0 ≥ 0.

3. The conservation of probability mass follows from

∫

R
PItu0 =

∫

R

∫

R
k(y, x, t)u0(x)dxdy

=
∫

R
u0(x)

(∫

R
k(y, x, t)dy

)
dx =

∫

R
u0 (5.12)

since ∫

R
k(y, x, t)dy = 1 ∀ x ∈ R (5.13)

4. The last property follows from the Chapman-Kolmogorov Equation.

k(y, x, t + t′) =
∫

R
k(y, z, t′)k(z, x, t)dz (5.14)

hence

PIt+t′u0 =
∫

R
k(y, x, t + t′)u0(x)dx =

∫

R

∫

R
k(y, z, t′)k(z, x, t)dzu0(x)dx

=
∫

R
k(y, z, t′)

(∫

R
k(z, x, t)u0(x)dx

)
dz = PIt′(PItu0) (5.15)

To illustrate the principle of path integration we look at an example - the Langevin
equation:

Example 5.1: The Langevin equation is the Itô-stochastic differential equation given as

dXt = −aXtdt + bdBt, Xt ∈ R, a, b ∈ R+ (5.16)
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(a) Transition kernel for x = 3.
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(b) Transition kernel for x = −5.

Figure 5.2: The transition kernel given in (5.20) for x = 3, x = −5 with parameters
a = b = 1/2.

with initial condition X0 = x. This equation is known to have the strong solution (Kloeden
& Platen 1999)

Xt = exp(−at)
(

x + b

∫ t

0
exp(as)dBs

)
(5.17)

Due to the non-stochastic integrand in the Itô-integral it is easy to see that

L
[
x + b

∫ t

0
exp(as)dBs

]
= N(x, b2

∫ t

0
(exp(as))2ds) = N(x,

b2(exp(2at)− 1)
2a

) (5.18)

hence

L[Xt] = N(x exp(−at),
b2

2a
(1− exp(−2at))). (5.19)

Now from Itô-theory we know that the Itô-integral is a Markov process, hence we can give
an explicit expression for the transition kernel k for a general time increment t:

k(y, x, t) =
1√

2π b2

2a(1− exp(−2at))
exp

(
− (y − x exp(−at))2

b2

a (1− exp(−2at))

)
. (5.20)

The forward transition kernel is plotted in figures 5.2a and 5.2b. To illustrate the path
integration principle we use the initial density:

u0(x) =
1

2
√

2π
exp

(
−(x− 3)2

2

)
+

1
2
√

2π
exp

(
−(x + 5)2

2

)
, (5.21)
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Figure 5.3: The path integration solutions ut = PItu0 of the Langevin equation with
initial density u0 given in (5.21) and parameters a = b = 1/2.

namely two Gaussian densities with unit variance and means x = 3, x = −5. The resulting
densities ut = PItu0 for t ∈ [0, 10] with parameters a = b = 1/2 are plotted in figure 5.3.
The actual computation was performed using MAPLE. The path integration densities are
easily obtained since they are the convolution integrals between Gaussian densities, but the
explicit expression is omitted since it is somewhat complicated.

We have now developed the notion of path integration with exact transition kernels. At
this point it is clear that if we have the exact transition kernel at hand, our problem is
generally solved for any initial density u0. However there are only a few examples where
the exact kernel is known, and in general some sort of approximation procedure has to
be applied.

5.3 Time-Discrete Transition Kernels

The most obvious candidate for finding approximate transition kernels is time-discretization
of the underlying stochastic differential equation. The most basic discretization proce-
dure is the Euler method which we discussed in section 3.3.
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The idea is to approximate the continuous-time Markov process Xt which is the solution
of our stochastic differential equation by a Markov chain X̄ti where ti = iτ, i = 0, . . . , K.
For obvious reasons we denote τ the time step. Throughout this text we will only con-
sider the Euler scheme as our discretization procedure since it is the only scheme that,
to our knowledge, has been thoroughly explored for a general Lévy-driven stochastic dif-
ferential equation. For Brownian motion driven stochastic differential equations, many
more schemes are presented in Kloeden & Platen (1999), and Milstein type schemes for
some subclasses of Lévy-processes are described in Yan (2005)
The Euler scheme for the 1-dimensional stochastic differential equation

dXt = f1(Xt−)dt + f2(Xt−)dLt (5.22)

is given as

X̄t0 = x (5.23)
X̄ti = X̄ti−1 + f1(X̄ti−1)τ + f2(X̄ti−1)[Lti − Lti−1 ]. (5.24)

We denote the time-discrete transition kernel k̄(y, x, τ). Setting xi = X̄ti , we obtain
the characteristic function of the time discrete forward transition kernel conditioned on
xi−1:

Result 5.2: The characteristic function for an increment of the Euler-discretized sto-
chastic differential equation (5.22) is given as

Fxi k̄(xi, xi−1, τ) = ψτ (u) = exp(iu(xi−1 + f1(xi−1)τ))φLτ (f2(xi−1)u) (5.25)

where φLτ is the characteristic function of the Lévy-increment.

Proof.
ψτ (u) = E[exp(iu(xi−1 + f1(xi−1)τ + f2(xi−1){Lti − Lti−1}))]. (5.26)

Since the Lévy-increment {Lti − Lti−1} is independent of Fti−1 we can write

ψτ (u) = E[exp(iu(xi−1 + f1(xi−1)τ)]E[iu(f2(xi−1){Lti − Lti−1}))]
= exp(iu(xi−1 + f1(xi−1)τ))φτ (f2(xi−1)u) (5.27)

Hence we know the Fourier transform of the forward transition kernel. We continue the
Langevin equation example by finding the time discrete transition kernel:

Example 5.2: Recall the Langevin equation (5.16). It is easy to see that in the framework
(5.22) we have that

f1(x) = −ax (5.28)
f2(x) = b (5.29)

Lti − Lti−1 = Bti −Bti−1 (5.30)
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From stochastic analysis we know that L[Bti−Bti−1 ] = N(0, τ) (see e.g. Øksendal (2003)).
Moreover the characteristic function of a Gaussian variable L[Y ] = N(µ, σ2) is given as

φY (u) = exp
(

iµu− 1
2
σ2u2

)
(5.31)

If we plug this into (5.27) we get:

ψτ (u) = exp(iu(xi−1 − axi−1τ) exp(−1
2
τb2u2) = exp(iu(xi−1 − axi−1τ)− 1

2
(τb2)u2).

(5.32)
Hence the time-discrete forward transition kernel is Gaussian and is given as:

k̄(xi, xi−1, τ) =
1√

2πτb2
exp

(
−(xi − (xi−1 − axi−1τ))2

2τb2

)
. (5.33)

One important fact about the time-discrete transition kernel is that the corresponding
path integration operator forms a time-discrete stochastic semi-group.

Definition 5.3: The time-discrete path integration operator P̄Iτ is defined as

uτ (y) = P̄Iτu0 =
∫

R
k̄(y, x, τ)u0(x)dx. (5.34)

P̄Iτ obey the properties of definition 5.2 at discrete times ti. The proofs of properties
1-4 are identical to those in the proof of result 5.1, since the Chapman-Kolmogorov
equation holds for Markov chains as well.
It is natural to ask what the relation between the time discrete and the true transition
kernel is:

5.4 Convergence of the Time Discrete Transition Kernel

In this section we give some preliminary results on the convergence of the time discrete
transition kernel in different senses as the time step τ → 0. This is very much an
unfinished theory in the Lévy case and no theorems are given. When the driving noise is
Brownian motion, some theory can be found in Bally & Talay (1996) and Bally & Talay
(1995).

5.4.1 Forward Convergence

The more intuitive sense of convergence is in the forward sense. That is, keeping the
second argument in the kernel fixed, and taking the kernels as univariate functions of the
first argument. The following result relates the weak convergence of the discretization
with the forward convergence of the transition kernel.
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Result 5.3: Let 1 > ε > 0. Suppose that

1. f1, f2 ∈ C4 and Dif1, D
if2 ∈ L∞ for i = 1, 2, 3, 4.

2. The exact and time discrete transition kernels k(y, x, τ), k̄(y, x, τ) ∈ C4
y and Di

yk,Di
yk̄ ∈

L∞ for i = 0, . . . , 4 for all x ∈ R, τ ∈ (ε, 1).

Then there exists a constant Kε, not depending on τ such that

‖k(y, x, τ)− k̄(y, x, τ)‖y,2 ≤
√

Kετ(1 + |x|4) ∀ τ ∈ (ε, 1). (5.35)

Proof. The proof is based on theorem 3.6. A more accessible formulation of this theorem
is found in Jacod et al. (2005), which we will use in this proof. They state that for any
g ∈ C4, Dig ∈ L∞ for i = 0, . . . , 4 and under assumption 1 on the stochastic differential
equation we have that

|E[g(Xτ )]− E[g(X̄1)]| ≤ Kτ‖g‖4,∞(1 + |x|4) (5.36)

where ‖g‖4,∞ = max({‖Dig‖∞}4
i=0). Fix some ε > 0 and some initial point x0 ∈ R.

This implies that our initial density u0(x) = δ(x − x0), where δ(·) denotes the Dirac
delta function. Hence

∣∣E[g(Xτ )]− E[g(X̄1)]
∣∣ =

∣∣∣
∫

R
g(y)

∫

R
k(y, x, τ)δ(x− x0)dxdy

−
∫

R
g(y)

∫

R
k̄(y, x, τ)δ(x− x0)dxdy

∣∣∣ =
∣∣∣∣
∫

g(y)[k(y, x0, τ)− k̄(y, x0, τ)]dy

∣∣∣∣ . (5.37)

Now set gx0,τ (y) = k(y, x0, τ)−k̄(y, x0, τ). This can obviously be done due to assumption
2. Moreover set

Kε = K

(
sup

τ∈(ε,1)
‖gx0,τ‖4,∞

)

≤ K

(
sup

τ∈(ε,1)
‖k(y, x0, τ)‖4,∞ + sup

τ∈(ε,1)
‖k̄(y, x0, τ)‖4,∞

)
< ∞. (5.38)

Finally we compile the expressions to get
∫

R
[k(y, x0, τ)− k̄(y, x0, τ)]2dy = ‖k(y, x0, τ)− k̄(y, x0, τ)‖2

y,2 ≤ Kετ(1 + |x0|4) (5.39)

which proves the desired relation since x0 was taken arbitrarily.

The author realizes that this result does not show convergence in the L2 sense since Kε

is not controlled as ε → 0. This is due to the fact that derivatives of the kernels grows
as τ → 0. However for fixed ε, the result has some relevance. We illustrate this by
continuing our Langevin equation example:
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Figure 5.4: L2-norm of the difference between the exact and time-discrete forward tran-
sition kernels for x = −5, 0, 3. Also included is the function s(τ) = τ (1/4)/2 to illustrate
what seems to be roughly the decay as τ decreases.

Example 5.3: Since we have explicit expressions for both the exact and time-discrete
transition kernels, we can compute the L2-norm of their difference. The computation is
straight forward using MAPLE, but the explicit expressions are somewhat complicated and
therefore omitted. Figure 5.4 shows that for ε = 0.0001 the L2-norm of the difference seem
to decay asymptotically as O(τ (1/4)) for various x.

5.4.2 Backward convergence

The backward convergence is of more practical relevance since it is a key element of the
convergence proof of the numerical path integration procedure which we shall present
later in this chapter. In this proof we assume that

lim
τ→0

‖k(y, x, τ)− k̄(y, x, τ)‖x,2 = 0 ∀ y ∈ R (5.40)

which seems reasonable under regularity constraints on f1, f2. No hard results are given
here either, only the continuation of our Langevin equation example:

Example 5.4: In this example we explore the convergence of the backward kernels, keeping
the first argument in the kernel fixed. We compute the difference norm using MAPLE. The
results are presented in figure 5.5 for various values of y. Also here the decay of the norm
seems to be asymptotically of O(τ (1/4)).
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Figure 5.5: L2-norm of the difference between the exact and time-discrete backward
transition kernels for y = −5, 0, 3. Also included is the function s(τ) = τ (1/4)/2 to
illustrate what seems to be roughly the decay as τ decreases.

5.5 Numerical Path Integration

As alluded to before, one of the scopes for this chapter is to develop a numerical path
integration scheme that approximates the exact path integration operator PIt with ar-
bitrarily accuracy. The method is well-described in the case when the driving noise is
Brownian motion: see e.g. Naess (2001), Naess & Moe (2000) and references therein.
From now on we denote u the numerical path integration density and u∗ the exact
density. We start of with some remarks concerning the application of the semi-group
property of the path integration operator.

5.5.1 Evolution of Densities

The first important feature of the numerical path integration which we discuss here is
the application of the semi-group property of the time discrete path integration operator.
Since the time-discrete operator typically will deviate more from the exact operator as
we take larger time steps, it is essential to use small time steps. However we are often
interested in computing the density u∗T at some time T which is much larger than τ . We
start with a definition:

Definition 5.4: Take some integer M and set τ = T/M . We define the M -step time
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discrete PI-operator P̄IMT to be

P̄IMT = P̄Iτ ( P̄Iτ (· · · P̄Iτ ) · · · ))︸ ︷︷ ︸
M times

. (5.41)

Due to the Chapman-Kolmogorov equation, we can find the kernel k̄M corresponding to
P̄IMT :

k̄M (y, x, T ) =
∫

R

∫

R
· · ·

∫

R︸ ︷︷ ︸
M−1 times

k̄(y, xM−1, τ)k̄(xM−1, xM−2, τ)

· · · k̄(x1, x, τ)dx1 · · ·dxM−2dxM−1 (5.42)

So far so good: we have found the kernel corresponding to the M -step Euler approxi-
mation. However to do this numerically, it is common (Naess 2001) to propagate the
density u trough all the steps:

P̄IMT u0 =
∫

R
k̄M (y, x, T )u0(x)dx

=
∫

R
k̄(y, xM−1, τ)

(∫

R
k̄(xM−1, xM−2, τ)

(
· · ·

(∫

R
k̄(x1, x, τ)u0(x)dx

)
· · ·

)
dxM−2

)
dxM−1

(5.43)

rather then to compute the M -step transition kernel.

5.5.2 Spline Interpolation and Quadrature Integration

In order to be able to implement the numerical path integration procedure on a digital
computer, we have to discretize the spatial variables at each time step. Let {xk

i }Q
k=1 be

a suitable collection of equidistant nodes, where the density ui is close to numerical zero
outside this grid. We denote xi the spatial variable corresponding to time-step i. In
the computer memory we only store the values ui−1(xk

i−1), k = 1, . . . , Q. However, in
order to integrate the old density ui−1(xi−1), we generally need to be able to evaluate
it at each point in R. To do so, we interpolate the points using some sort of spline
interpolants, e.g. cubic splines (see e.g. Schultz (1973) or deBoor (2001)).
Only in a few cases is it possible to perform the actual integration of (5.43) analytically.
Generally the integration has to be performed by some sort of quadrature rule on a
digital computer.
Let us look a little closer on a single path integration step:

ui(xi) = P̄Iτui−1(xi−1) =
∫

R
k̄(xi, xi−1, τ)ui−1(xi−1)dxi−1. (5.44)

If we set xi = xk
i , the integral becomes a scalar, which may be approximated for each k by

a quadrature rule (see e.g. Burden & Faires (2000)). For a univariate continuous function
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f over a compact [a, b], the integral
∫ b
a f(x)dx can be approximated with arbitrary

precision by a sum:
∫ b

a
f(x)dx ≈

N∑

l=0

wlf(xl), xl ∈ [a, b]. (5.45)

The weights {wl} and point {xl} can be derived from the quadrature rule. As an example,
if we take xl = a + l(b− a)/(N + 1) and wl = (b− a)/(N + 1), we have the so-called left
endpoint rule. The integration procedures are treated in more detail in section 5.8

5.5.3 Algorithm and Further Issues of Implementation

We are now ready to give a pseudo-code for the numerical path integration procedure,
assuming that the same spatial grid is used for each time step: There are many details

Algorithm 1 Numerical Path Integration
1: Initialize spatial grids
2: Initialize the spline matrix
3: LU-decompose the spline matrix
4: Represent the initial density u0 as a spline function
5: i = 0
6: while i < M do
7: for k ∈ {1, 2, . . . , Q} do
8: approximate ui+1(xk

i+1) by a quadrature approximation to (5.44) using the
spline representation of ui

9: end for
10: Spline represent ui+1.
11: i = i + 1
12: end while

to fill in in algorithm 1. The problem of choosing appropriate spatial grids: being wide
enough to cover the significant part of the probability mass, but narrow enough to give
reasonable resolution when the number of grid nodes Q, is reasonably small. Dr.Ing
student Eirik Mo uses Monte Carlo simulation of a relatively small number paths in
his codes to make inference as to where the significant part of the probability mass is
situated (personal comm.). Using this information, the process of choosing spatial grids
can be automated as the stochastic differential equation varies. Another procedure for
choosing spatial grids would be to use thresholds on the probability mass at the tails,
making the computation area wider if the density ”smears” out.
Specification of the other simulation parameters (i.e. the number of grid points and
time steps) is very much a tradeoff between desired accuracy and computational cost.
We shall shortly explore in more detail how these parameters relates to the error in the
numerical path integral approximation to uT .
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5.6 Convergence of the Numerical Path Integration Method

This section is divided into two parts. First we state some lemmas which will be useful
for our convergence proof, and then state the convergence theorem.

5.6.1 Convergence Proof Lemmas

These results use the notation developed in subsection 2.2. We start of with a simple
analysis result:

Lemma 5.1: Let f ≥ 0, f ∈ L2(R) ∩ C0(R) and 0 ≤ a < b < Bf . Then
‖a ∧ f‖2 < ‖b ∧ f‖2.

Proof. Assume first that a > 0. Since f ∈ L2(R) we have that lim|x|→∞ f(x) = 0.
Moreover due to the continuity condition both f(x) = a and f(y) = b have at least two
solutions. Set

Sa = {x; f(x) ≥ a} (5.46)
Sb = {x; f(x) ≥ b}. (5.47)

Clearly we have the strict inclusion Sb ⊂ Sa. Define ∆ = Sa \ Sb, then

‖b ∧ f‖2
2 − ‖a ∧ f‖2

2 = b2µ(Sb) +
∫

R\Sb

f2 − a2µ(Sa)−
∫

R\Sa

f2

= b2µ(Sb) +
∫

R\Sa

f2 +
∫

∆
f2 − a2µ(Sb)− a2µ(∆)−

∫

R\Sa

f2

= (b2 − a2)µ(Sb) +
∫

∆
(f(x)2 − a2)µ(dx) > 0 (5.48)

The last strict inequality is obvious since b > a, Sb 6= ∅, and f(x) ≥ a∀x ∈ ∆.
In the case where a = 0 we have that a ∧ f = 0 ∧ f = 0, hence ‖a ∧ f‖2 = 0, and the
inequality ‖a ∧ f‖2 < ‖b ∧ f‖2 with b > 0 is obvious.

From the above it is easy to see that under the same assumptions on f we have that

lim
a↘0

‖a ∧ f‖2 = 0. (5.49)

Now a basic result from spline theory:

Lemma 5.2: Let f ∈ C2([L,R]), L, R ∈ R. Then there exist a cubic spline representa-
tion fs of f such that

‖f − fs‖2 ≤ (∆x)2Ks
√

R− L (5.50)

where Ks < ∞ and ∆x is the maximal grid step.
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Proof. By theorem 4.5 in (Schultz 1973) we have that

‖f − fs‖2 ≤ (∆x)2

(2π)2
‖D2f‖2 (5.51)

where D denotes the differential-operator. Since f ∈ C2([L,R]), D2f is bounded by
some constant BD2f ∈ R+. Using this we approximate the right hand side of (5.50):

‖f − fs‖ ≤ (∆x)2
BD2f

(2π)2
√

R− L. (5.52)

Now we state the first main lemma of this section:

Lemma 5.3: Let f, g ∈ D and fpt, gpt ∈ Dpt. Then there exists functions KI
1 (Lf , Rf ),

KI
2 (Lg, RG), KI

3 (Lf , Rf , Lg, Rg) with limit properties

lim
Lf↘−∞

lim
Rf↗∞

KI
1 = ‖f‖2 (5.53)

lim
Lg↘−∞

lim
Rg↗∞

KI
2 = ‖g‖2 (5.54)

lim
Lf↘−∞

lim
Rf↗∞

lim
Lg↘−∞

lim
Rg↗∞

KI
3 = 0 (5.55)

such that∣∣∣∣
∫

R
f(x)g(x)dx−

∫

R
fpt(x)gpt(x)dx

∣∣∣∣ ≤ εp
gK

I
1 + εp

fKI
2 + εp

f εp
g + KI

3 = εI (5.56)

Proof. Define

pf = f t − fptpg = gt − gpt (5.57)
tf = f − f ttg = g − gt (5.58)

It is clear that pf , pg, tf , tg, f
t, gt, fpt, gpt ∈ L2(R) hence the application of L2-innerproducts

is justified:
∣∣∣∣
∫

fg −
∫

fptgpt

∣∣∣∣ = |〈f, g〉 − 〈fpt, gpt〉| = |〈f, g〉 − 〈f, g〉

+ 〈f, tg〉+ 〈tf , g〉 − 〈tf , tg〉+ 〈f, pg〉 − 〈tf , pg〉+ 〈pf , g〉 − 〈pf , tg〉+ 〈pf , pg〉|
≤ ‖f‖2ε

t
g + ‖g‖2ε

t
f + εt

f εt
g + ‖f‖2ε

p
g + εt

f εp
g + ‖g‖2ε

p
f + εp

f εt
g + εp

f εp
g (5.59)

The inequality is justified by multiple applications of the Cauchy-Schwartz inequality.
A final reordering yields:∣∣∣∣

∫
fg −

∫
fptgpt

∣∣∣∣ ≤ εp
g (‖f‖2 + εt

f )︸ ︷︷ ︸
KI

1

+εp
f (‖g‖2 + εt

g)︸ ︷︷ ︸
KI

2

+εp
f εp

g + ‖f‖2ε
t
g + ‖g‖2ε

t
f + εt

f εt
g︸ ︷︷ ︸

KI
3

.

(5.60)
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Remark 5.1. The above proof is valid independently of the mutual configuration of the
truncation limits.
Remark 5.2. In the case that the functions are unperturbed, the absolute value signs
can be omitted, and it is clear that the truncated integral will always underestimate the
true integral.

Lemma 5.4: Let f, g, fpt, gpt be as in the previous lemma. Let N (fptgpt) be a quadrature
approximation of

∫
fptgpt such that

∣∣∣∣N (fptgpt)−
∫

fptgpt

∣∣∣∣ ≤ KN (∆I)β = εN (5.61)

for constants KN , β and maximal quadrature step ∆I. Then there exist truncation limits
and quadrature steps such that for each εN > 0 we have that

∣∣∣∣N (fptgpt)−
∫

fg

∣∣∣∣ ≤ εI + εN . (5.62)

Proof.
∣∣∣∣N (fptgpt)−

∫
fg

∣∣∣∣ ≤
∣∣∣∣N (fptgpt)−

∫
fptgpt

∣∣∣∣ +
∣∣∣∣
∫

fptgpt −
∫

fg

∣∣∣∣ ≤ εN + εI . (5.63)

Now it is time to explore the path integration operator

Lemma 5.5: Define the truncated path integration operator PItτ as

PItτui =
∫

R
kt(y, x, τ)ui(x)dx, y ∈ [L,R] (5.64)

where x → kt(y, x, τ) ∈ C2([y − C, y + C]), C ∈ R+ and ui(x) ∈ Dpt([A,B]). Then
ui+1(y) = PItτui ∈ Dpt([L,R]).

Proof. Set
ui+1 = PItτui. (5.65)

We check each property of Dpt([L,R]):

1. ui+1 ≥ 0: Obvious since k, ui ≥ 0.

2. ui+1 ∈ L2([L,R]): We denote u∗i , u
∗
i+1 ∈ D the exact time discrete densities with

respect to k. Then we have that for each y ∈ [L,R]

|ui+1(y)| ≤ |u∗i+1(y) + 2εI | (5.66)
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where εI < ∞ is given in (5.56). We approximate ‖ui+1‖2 by writing

‖ui+1‖2 ≤ ‖u∗i+1 + 2εI‖2 ≤
√
‖u∗i+1‖2

2 + 4(εI + (εI)2)(R− L) < ∞ (5.67)

3. ui+1 ∈ C0([L,R]): First we state a small sub-lemma. Let f(y, x) be continuous in
the first variable for all x ∈ [y −C, y + C], C ∈ R+ and g(x) be some Bg-bounded
function. Then
∣∣∣∣
∫ y+C

y−C
f(y, x)g(x)dx−

∫ y+h+C

y+h−C
f(y + h, x)g(x)dx

∣∣∣∣ ≤ 2γhBg(C − h) + 2hBfBg

(5.68)
where

γh = sup
x∈[y+h−C,y+C]

(|f(y, x)− f(y + h, x)|). (5.69)

Since f is continuous in the first variable it is clear that γh → 0 as h → 0. Hence
the integral is continuous in y when taken over compact [y−C, y + C]. Taken this
result in account, it is clear that ui+1 ∈ C0([L, R]) for each compact [L,R] when
we truncate x → k(y, x, τ) symmetrically around y.

4. ui+1 ∈ C1([L,R]): We simply compute Dui+1:

Dui+1 =
d
dy

∫ y+C

y−C
k(y, x, τ)ui(x)dx =

∫ y+C

y−C

∂

∂y
k(y, x, τ)ui(x)dx

+ k(y, y + C, τ)u(y + C)− k(y, y − C, τ)u(y − C) (5.70)

It is clear that

|
∫ y+C

y−C

∂

∂y
k(y, x, τ)ui(x)dx| ≤ BD1k‖ui‖1 (5.71)

where D1 denotes differentiation w.r.t. the first variable. Hence Dui+1 is finite and
in view of the sub-lemma above obviously continuous since y → k(y, x, τ) ∈ C2.

5. ui+1 ∈ C2([L,R]): Same arguments as above when

D2ui+1 =
d2

dy2

∫ y+C

y−C
k(y, x, τ)ui(x)dx =

∫ y+C

y−C

(
∂2

∂y2
k (y, x, τ)

)
ui (x) dx

+ 2 (D1 (k) (y, y + C, τ) + D2 (k) (y, y + C, τ))ui (y + C)
− 2 (D1 (k) (y, y − C, τ) + D2 (k) (y, y − C, τ))ui (y − C)
+ k (y, y + C, τ)D (ui) (y + C)− k (y, y − C, τ)D (ui) (y − C) (5.72)

Hence ui+1 ∈ Dpt.
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Remark 5.3. From (5.72) it is clear that D2ui−1 is bounded and is trivially in L2([L, R])
for compact [L,R].

Lemma 5.6: Lemma 5.5 is valid when the integral is approximated by some quadrature
rule when the same rule is used for all y ∈ [L, R].

The proof is simple when we consider a fixed integration rule: Given some integration
grid y−C ≤ z0 < z1 < · · · < zN ≤ y +C, we approximate the path integration operator
by

ui(y) ≈
N∑

j=0

wjk(y, zj)ui−1(zj) (5.73)

where {wj}j is the fixed weights associated with the quadrature rule. Using this relation
it trivial to show item 1-5 in the proof of lemma 5.5, and the complete proof is therefore
omitted.
Now we have to address the problem of whether the path integration operator is a map
P̄It : Dp → Dp, more precisely whether the solutions stay in L2 as the truncation limits

tend to infinity. It is tempting to look for some bound on the operator norm. The
classical result for a Fredholm type operator is the following:

Result 5.4: Given the path integration operator (5.11) and assume that

‖kτ‖2 =

√∫

R

∫

R
|k(y, x, τ)|2dxdy < ∞. (5.74)

Then ‖ui+1‖2 ≤ ‖kτ‖2‖ui‖2.

Proof.

‖ui+1‖2
2 =

∫

R

[∫

R
k(y, x, τ)ui(x)dx

]2

dy ≤
∫

R

[√∫

R
|k(y, x, τ)|2dx‖ui‖2

]2

dy

= ‖ui‖2
2

∫

R

∫

R
|k(y, x, τ)|2dxdy = ‖ui‖2

2‖kτ‖2
2 (5.75)

The inequality is justified by the Cauchy-Schwartz inequality.

The above result shows that the operator norm of the path integration operator is
bounded by ‖kτ‖2. However very little information lies in this result in our case, since
‖kτ‖2 = ∞ for most practical transition kernels. Both the exact and discretized kernels
in our Langevin example have this property.
To sort this out we use the conservation of probability mass property of the stochastic
semigroup.

Lemma 5.7: The time-discrete path integration operator is a map P̄Iτ : Dp(R) →
Dp(R).
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Proof. First we show that P̄Iτ : D(R) → D(R). This is clear due to the conservation of
probability mass property of the stochastic semigroup, lemma 5.5 and the non-negativity
of the kernel and ui ∈ D. Now assume that ui ∈ Dp(R) ⇒ ui ≥ 0. It is clear that

1
‖ui‖1 ui ∈ D. Hence

ui+1 = P̄Iτui = ‖ui‖1 P̄Iτ

(
ui

‖ui‖1

)
(5.76)

and

‖ui+1‖2 = ‖ui‖1

∥∥∥∥ P̄Iτ

(
ui

‖ui‖1

)∥∥∥∥
2

. (5.77)

Now we know that
∥∥∥ P̄Iτ

(
ui

‖ui‖1

)∥∥∥
2

< ∞ since P̄Iτ : D(R) → D(R). Hence P̄Iτ :

Dp(R) → Dp(R).

From the above we can conclude that the path integration procedure does not blow up
(in L2-sense) in finitely many steps.

5.6.2 Convergence Proof

Let Xt be the solution of the 1-dimensional Lévy-driven stochastic differential equation

dXt = f1(Xt−)dt + f2(Xt−)dLt, t ≥ 0, L(X0) = u0. (5.78)

We seek to approximate u∗T = L(XT ) by numerical path integration for some 0 < T < ∞.
Choose M ∈ N and define τ = T/M . Let us

i denote the ith spline represented numerical
path integration density corresponding to ti = iτ with time-discrete transition kernel
k̄(y, x, τ). Then we have the following theorem:

Theorem 5.1: The L2 numerical path integration error ‖u∗T − us
M‖2 can be made arbi-

trarily small provided that:

1. The time discrete transition kernel has the backward convergence property

lim
τ→0

‖k(y, x, τ)− k̄(y, x, τ)‖x,2 = 0 ∀ y ∈ R. (5.79)

2. u∗t ∈ D ∀ t ∈ [0, T ].

3. u0 is given.

4. All truncation limits (L, R) → (−∞,∞).

5. The spatial grid step ∆x → 0.

6. The quadrature grid step ∆I → 0.
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Proof. To ease notation we set u∗i = u∗ti . Consider first a single numerical path integra-
tion step where the kernel is truncated according to lemma 5.5 and approximated by
quadrature according to lemma 5.6. That is x → k̄t(y, x, τ) = k̄(y, x, τ)1[y−C,y+C]

ui+1(xi+1) = N (k̄t(xi+1, xi, τ)ui(xi)). (5.80)

Define ei = u∗i − us
i and Ei = ‖ei‖2. By lemma 5.5 ui+1 ∈ Dpt[Li+1, Ri+1] when ui ∈

Dpt[Li, Ri]. We write

‖ei+1‖2 = Ei+1 ≤ ‖u∗i+1 − u∗ti+1‖2 + ‖u∗ti+1 − ui+1‖2 + ‖ui+1 − us
i+1‖2 (5.81)

The first and last terms on the right hand side can be bounded according to lemmas 2.6,
5.2 and remark 5.3. That is, we choose Li+1, Ri+1 such that

‖u∗i+1 − u∗ti+1‖2 < εt
u∗i+1

(5.82)

and ∆x such that

‖ui+1 − us
i+1‖2 < (∆x)2Ks

√
Ri+1 − Li+1BD2ui+1

= εs
i+1 (5.83)

It is clear that these terms can be made arbitrarily small. The error ēi+1 = u∗ti+1 − ui+1

demand some more work. It is clear that we can use lemma 5.3 to get a bound for the
pointwise error, that is

|ēi+1(y)| ≤ εI
i+1 + εN

i+1 ∀ y ∈ [Li+1, Ri+1] (5.84)

where

εI
i+1 = Ei(‖k‖2 + εt

k) + Kτ (‖ui‖2 + εt
ui

) + KI
3 (εt

k, ε
t
u∗i

) (5.85)

Kτ = ‖k(y, x, τ)− k̄(y, x, τ)‖x,2. (5.86)

However this bound will gravely overestimate the error in the tails of u∗t. From lemmas
5.5 and 5.7 it is clear that ui+1 ∈ L2(R). Since ui+1, u

∗
i+1 ≥ 0, we have that

|ēi+1(y)| ≤ F (y) = ui+1(y) ∨ u∗i+1(y) ∀ y ∈ R. (5.87)

This constitutes our second error bound, and we can conclude that

‖ēi+1‖2 ≤ ‖(εI
i+1 + εN

i+1) ∧ F‖2. (5.88)

The function εI
i+1 + εN

i+1 ∧ F clearly obeys the assumptions in lemma 5.1, and we have
that ‖ēi+1‖2 can be made arbitrarily small if εI

i+1 + εN
i+1 can be made arbitrarily small.

We compile the preliminary results to get

Ei+1 ≤ εt
u∗i+1

+ εs
i+1 + ‖(εI

i+1 + εN
i+1) ∧ F‖2 (5.89)

where εI
i+1 → 0 as Kτ , Ei, ε

t
k, ε

t
u∗i
→ 0. Assuming analytical initial density we have that

E0 = 0 and the bounding recursion (5.89) can be made arbitrarily small.

The bounds (5.84) and (5.87) are illustrated in figures 5.6a and 5.6b. These results are
assumed to generalize to n dimensions, but time constraints have prevented further work
in this direction.
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(a) Illustration of the first bound (b) Illustration of the second bound

Figure 5.6: (a) illustrates the pointwise bound (5.84) as a function space ball around u∗i .
ui is guaranteed to lie inside this ball- corresponding to the unshaded part of the figure.
(b) illustrates the pointwise bound (5.87) on ē, where ē is guaranteed to lie below F .
(5.87) corresponds to the unshaded part of the figure.

5.7 Numerical Path Integration for Stationary Densities

This section is devoted to stationary densities, and we work out some results relating
the exact stationary density with the numerical path integration stationary density.

5.7.1 Stationary Densities

In many applications of stochastic processes, The primary interest lies in the properties
of the process when it has reached a stationary state. That is when the law of the process
is an eigenfunction of the path integration operator with eigenvalue 1.

Definition 5.5: We denote the eigenfunction π ∈ L1 satisfying

π = PItπ ∀ t ≥ 0 (5.90)

a stationary density.

We continue our Langevin example to illustrate, since it is rather easy to derive the
stationary density:
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Example 5.5: Recall the exact transition kernel

k(y, x, t) =
1√

2π b2

2a(1− exp(−2at))
exp

(
− (y − x exp(−at))2

b2

a (1− exp(−2at))

)
. (5.91)

Letting t →∞ we obtain the asymptotic density

d(y) =
1√
π b2

a

exp

(
−y2

b2

a

)
, (5.92)

namely a Gaussian density µ = 0 and σ2 = b2

2a . It is relatively easy to see that

d = PItd ∀ t ≥ 0. (5.93)

This teaches us an important heuristic lesson. The stationary density, if it exists, can often
be found by looking at limt→∞ PItu0 for any initial density u0.

From definition 5.5 it is clear that a stationary density is a fixed point of the path
integration operator PIt : L1 → L1. Since L1 is a Banach space - it might seem reasonable
to apply the Banach fixed point theorem:

Definition 5.6: Let T be an operator T : X → X where X is a normed space. Then T
is said to be a contraction if there exist some number c < 1 such that

‖Tx− Ty‖ ≤ c‖x− y‖ ∀ x, y ∈ X (5.94)

Theorem 5.2 (Banach Fixed Point Theorem): Let X be a Banach space and let T :
X → X be a contraction. Then there exist one and only one fixed point.

Proof. See e.g. theorem 9.23 in Rudin (1976).

Corollary 5.1: If the path integration operator is a contraction map on L1 (or a closed
subspace of L1), it has a unique stationary density.

Proof. Follows immediately from theorem 5.2

However these results are very much of theoretical interest since we generally do not
have an explicit expression for the path integration operator at hand. We proceed by
using the stochastic semigroup property of the path integration operator.

5.7.2 Stationary Densities of Stochastic Semigroups

We give the theorem given in Lasota & Mackey (1994), slightly rewritten:
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Theorem 5.3 (Theorem 7.4.1 in Lasota & Mackey (1994)): Let {Pt}t≥0 be a stochastic
semigroup of operators Pt : L1 → L1. Assume that there is an h ∈ L1, h(x) ≥ 0, ‖h‖1 >
0 such that

lim
t→∞ ‖(Ptf − h)−‖1 = 0 for every f ∈ D. (5.95)

Then there is a unique density π such that Ptπ = π ∀ t ≥ 0. Furthermore

lim
t→∞Ptf = π for each f ∈ D. (5.96)

Recall example 5.5. It is clear that for any 0 < α ≤ 1, h(x) = αd(x) does the job when
D is the family of Dirac delta functions. This family can be extended further. It is
e.g. relatively easy to see that h(x) = αd(x) does the job when D is the family of all
Gaussian densities, and that π = d

5.7.3 Stationary Densities of Time-Discrete Path Integration Operators

In this subsection we discuss the relation between the stationary densities of the path
integration operator and its time-discrete counterpart.

Definition 5.7: We say that π̄τ is a stationary density of the time discrete path inte-
gration operator if

π̄τ = P̄Iτ π̄τ . (5.97)

We address first the case when the path integration operator is a contraction for some
fixed t, i.e. we assume the existence of π = PItπ. The M -fold composite time discrete
path integration operator P̄IMτ is defined completely analogous to the exact operator
PIMτ . Moreover we define the error operator

Eτf =
∫

eτ (y, x)f(x)dx (5.98)

where eτ (y, x) = k̄(y, x, τ)−k(y, x, τ). We use the notation EM
τ for the M -fold composite

error operator.

Result 5.5: Let PIt be a contraction operator on L1(R). Set τ = t/M . Then there exists
M < ∞ such that the M -fold time discrete operator P̄IMτ is a contraction provided that
limτ→0 ‖eτ (y, x)‖1,∞ = 0.

Before we prove this recall that the mixed norm ‖f(x1, x2)‖1,∞ is defined as

‖f(x1, x2)‖1,∞ = inf{C ≥ 0;µ({x2;
∫
|f(x1, x2)|dx1 > C}) = 0}. (5.99)

This is not a very strong assumption since k, k̄ are probability densities in the first
argument.
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Proof of result 5.5: Assume f, g ∈ L1(R).

‖ P̄IMτ f − P̄IMτ g‖1 = ‖PItf − PItg + EM
τ f − EM

τ g‖1 (5.100a)

≤ ‖PItf − PItg‖1 + ‖EM
τ f − EM

τ g‖1 (5.100b)

Now

‖EM
τ f − EM

τ g‖1 =∫
|
∫

eτ (xM , xM−1)
∫

eτ (xM−1, xM−2) · · ·
∫

eτ (x1, x0)(f(x0)−g(x0))dx0 · · ·dxM−1|dxM

≤
∫ ∫

|eτ (xM , xM−1)|
∫
|eτ (xM−1, xM−2)| · · ·

∫
|eτ (x1, x0)||(f(x0)−g(x0))|dx0 · · ·dxM−1dxM

≤ (‖eτ‖1,∞)M‖f − g‖1 (5.101)

and ‖PItf − PItg‖1 ≤ c‖f − g‖1, c < 1 by assumption. The last inequality is justified
by Hölder’s inequality with p = 1, q = ∞ (see e.g. Stroock (1998)). Hence

‖ P̄IMτ f − P̄IMτ g‖1 ≤ [c + (‖eτ‖1,∞)M ]‖f − g‖1. (5.102)

Due to the limit property of ‖eτ‖1,∞ we have the desired relation since there exist M
such that (‖eτ‖1,∞)M < 1− c.

Remark 5.4. Notice that the converse is also true, that is, if P̄IMτ can be shown to be
a contraction operator, then PIt is also a contraction operator under the assumptions
in result 5.5. To see this; redo the proof with the error kernel êτ (y, x) = −eτ (y, x) =
k(y, x, τ)− k̄(y, x, τ). We have the obvious equality ‖eτ‖1,∞ = ‖êτ‖1,∞.

Now we turn to relation between the stationary densities of PIτ and P̄Iτ . As mentioned
before, in many applications such as mechanics and numerical solution of integro-partial
differential equations we are primarily interested in the stationary solutions. We give an
abstract bound for the two densities:

Result 5.6: Assume that limM→∞ P̄IMτ π = π̄τ for every τ > 0. Then ‖π − π̄τ‖1 can
be made arbitrarily small if limτ→0 ‖eτ (y, x)‖1,∞ = 0.

Proof. Fix some τ and choose M such that ‖ P̄IMτ π − π̄τ‖ < ετ . Then

‖π − π̄τ‖1 ≤ ‖π − P̄IMτ π‖1 + ‖ P̄IMτ π − π̄τ‖ (5.103a)

≤ ‖π − π − EM
τ π‖1 + ετ (5.103b)

≤ ‖π‖1(‖eτ‖1,∞)M + ετ (5.103c)

= (‖eτ‖1,∞)M + ετ (5.103d)

The details are analogous to those in the proof of result 5.5
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Figure 5.7: The L1 difference between the exact and time discrete stationary densities
of the Langevin equation with a = 1/2.

No explicit error bounds can be found using this technique, but the rate of convergence
can generally be estimated using some class of initial densities believed to contain the
stationary density.
To illustrate further the exact/time discrete stationary densities, we look once more at
the Langevin equation:

Example 5.6: It can be shown (Kolnes 2004) that the time discrete path integration
method with Euler discretization applied to the Langevin equation has a stationary density
given by:

π̄τ (y) =
1√

π b2

a+a2τ/2

exp

(
− y2

b2

a+a2τ/2

)
. (5.104)

We can compute the difference in stationary densities

‖π − π̄τ‖1 = 2erf

(√
2 + aτ

√
− ln (2) + ln (2 + aτ)√

2τa

)
− 2erf

(√
− ln (2) + ln (2 + aτ)√

τa

)
,

(5.105)
where erf denotes the error function defined as

erf(x) =
2√
π

∫ x

0
exp(−t2)dt. (5.106)

‖π − π̄τ‖1 is easily seen to converge and is plotted with a = 1/2 in figure 5.7.
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x y

Figure 5.8: Illustration of the direct integration method. We integrate over the x axis,
keeping y fixed in some grid node. Using this method demands that the transition
probability is given by k̄ is given for each x.

5.8 Time Stepping Procedures

This section describes three methods for actually evaluating the time discrete path in-
tegration integral

ui+1(y) =
∫

k̄(y, x, τ)ui(x)dx. (5.107)

The choice of method depends very much on the information about the time-discrete
transition kernel given for any concrete problem. Throughout this section we omit the
bars on the time-discrete path-wise variables to ease the notation. Moreover we look at
stochastic differential equations on the form

dXt = f1(Xt)dt + f2(Xt)dLt (5.108)

and use the standard Euler scheme and time discretization described before.

5.8.1 Direct Integration

The first time stepping method is the direct integration method. Having the complete
time discrete transition kernel k̄ at hand we approximate the integral (5.107) with a
quadrature rule and truncation (see figure 5.8). This is the most obvious way of doing
the time-stepping, but for it to be applicable, we need to know the transition kernel
which is not always the case. Another downside is that using this method we embed the
τ -dependent stability (we will look at numerical stability shortly) of the forward Euler-
scheme, forcing us to take short time-steps when the stochastic differential equation in
question has a stiff nature.
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x x* y
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Figure 5.9: Illustration of the split step forward integration method. We integrate over
the x∗ axis, keeping y fixed in some grid node. Being inefficient implementation-wise,
this method is not used in practice.

5.8.2 Split Step Forward Integration

The next method splits the time-discrete scheme into two stages, A and B. The first
stage is the deterministic flow A given as

X∗
i+1 = Xi + f1(Xi)τ. (5.109)

The second stage is the stochastic increment given as

Xi+1 = X∗
i+1 + f2(Xi)∆Li (5.110)

where ∆Li = Lti+1 − Lti . Using this method we integrate over the x∗-space, needing
only to know the density of the increment ∆L times a constant f2(Xi). This method is
illustrated in figure 5.9. If we have only given the density of ∆L on a discrete grid, which
is the case when we use iFFT-computed densities, this method is works poorly since one
generally have to solve an implicit equation for each evaluation of the old density ui.
Due to this, this method not used in practice in this text.

5.8.3 Split Step Backward Integration

This method uses the so-called split step backward Euler scheme (see (Higham, Mao &
Stuart 2002)). It can be thought of as the Euler scheme applied to a slightly altered
stochastic differential equation, which converges with the original stochastic differential
equation as τ → 0 (Higham et al. 2002).
This is also a two stage scheme, consisting of an implicit step for the deterministic part
(A) and the stochastic part (B) treated consecutively. The determining equation for
step A is given as

X∗
i+1 = Xi + f1(X∗

i+1)τ ⇔ Xi = X∗
i+1 − f1(X∗

i+1)τ (5.111)

and step B given as
Xi+1 = X∗

i+1 + f2(X∗
i+1)∆Li. (5.112)
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x x* y

A B

Figure 5.10: Illustration of the split step backward integration method. We integrate
over the x∗ axis, keeping y fixed in some grid node.

In the implementation we choose a grid, typically centered around y, in the x∗-space.
Using the right hand side of (5.111), we have an explicit formula for the corresponding
points in x-space, which we use to determine where to evaluate the old density. Finally
we add the noise in step B, using only the density of the increment multiplied by a
constant. In the case when we have additive noise, i.e. f2(x) = c, this method is very
efficient, since we need only compute the density of c∆L once. This method is illustrated
in figure 5.10.
The split step backward integral is easily seen to be

ui+1(y) =
∫

k∗(x∗)ui(x∗ − f1(x∗))[1−Df1(x∗)]dx∗ (5.113)

where the measure correction factor [1−Df1(x∗)] is needed since the spatial measure on
the x-space is deformed due to (5.111). It is relatively easy to see that k∗(x∗) = d(−x∗)
where d = L[f2(x∗)∆L]. In the case of additive noise, we have that d = L[c∆L], i.e. a
fixed probability density. This method is especially suitable for using the iFFT computed
forward transition kernels when we have additive noise. The approximate kernels are
computed over the x∗-space. In the code written for additive noise stochastic differential
equations, we invert φLτ (−cu) to obtain the x∗-spatial reflection. Moreover we discard
half the values computed (a quarter of the points in each tail), to reduce the relative
error introduced by the iFFT computations. In the examples in the next chapter, this
method is used on the additive noise equations.

5.8.4 A Brief Note on Stability

As in numerical analysis of ordinary differential equations, stability is a key attribute
to any numerical scheme. The path integration schemes inherit the stability of the
underlying time-discreteization scheme. Some theory on stability can be found in Kloe-
den & Platen (1999) and Milstein, Platen & Schurz (1998) for Brownian motion driven
equations. To our knowledge very little is written about stability for general Levy-
driven stochastic differential equations. The inclusion of this subsection is therefore
only a heuristic comparison of stability properties of the direct integration and split step
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Figure 5.11: Five steps with direct integration operator with τ = 0.2. The theoretic
mean is also included. Notice the unstable properties that generalize those of an unstable
numerical solution of an ordinary differential equation

backward integration methods. The direct integration method is based on the explicit
Euler-scheme, whereas the split step backward integration method is based on the semi-
implicit split step Euler scheme. From numerics on ordinary differential equations, we
know that implicit methods generally show better stability properties than explicit.
There is no standard formalism on the notion of stiff stochastic differential equations
(Milstein et al. 1998). In this text, we use a generalization of the notion of stiff ordi-
nary differential equations. That is, we say a stochastic differential equation is stiff if
the ordinary differential equation that arises when we set f2 = 0 is stiff. We illustrate
this with an example, comparing the direct integration method with split step backward
integration method. Again the Langevin method is under consideration.

Example 5.7: Consider the Langevin equation

dXt = −10Xtdt + bdBt. (5.114)

If we let b → 0 we obtain a stiff ordinary differential equation, hence we say that (5.114)
is a stiff stochastic differential equation. From now on we set b = 1. Kloeden & Platen
(1999) shows that the Euler scheme is stable is τ < 0.2. If we apply the direct integration
scheme on (5.114) with τ = 0.2 we get the results given in figure 5.11. We see that the
path integration solution contradicts the behavior we have gained intuitively through this
chapter. If we use the split step backward integration method, we get the results presented
in figure 5.12. We see that the computation is much more stable, supporting the hypothesis
that the split step backward integration method has better stability properties.

As this example implies, the split step backward integration method is thought to have
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Figure 5.12: Five steps with a split step backward integration operator with τ = 0.2.
The theoretic mean is also included. Notice the stability compared with the direct
integration operator.

better stability properties. A striking difference between ordinary and stochastic numer-
ics is however that the computational loads of two methods are approximately the same.
This is a clear argument for using the split step backward integration method in most
cases.

5.9 Concluding Remarks

Throughout this chapter we have worked trough stochastic dynamics in a path inte-
gration perspective. Moreover, we have seen that the time discrete path integration
method can be applied to approximate the path integration operator with arbitrary ac-
curacy when the transition kernels converge in various manners. In the next chapter we
apply these results on some real problems.
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Chapter 6

Numerical Examples

In this chapter we look at numerical examples of time discrete path integration applied on
various problems. Some of the Fortran 90 codes used in this chapter can be found in ap-
pendix B. All computations were performed on a Sun Fire V490 (sylow.math.ntnu.no)
server with 4 CPUs using the Sun Studio 10 Fortran 95 compiler. The spline library
used in the computations is (Burkardt 1999). We use B-splines (deBoor 2001) in all
the examples. The iFFT routine is (Sun Studio 11: Sun Performance Library Refer-
ence Manual - ZFFTD 2005). The chapter is laid out as follows: First we look at the
Langevin equation with various driving noises. Then Black-Scholes type equations are
treated. Finally we look at a nonlinear equation.

6.1 Path Integration for the Langevin Equation

In this section we look at the Langevin equation for various driving processes. In each
case we derive the Kolmogorov forward equation, which the numerical path integration
method solves approximately. Stringent derivations of the Kolmogorov equations can be
found in Hanson (2006) for the jump diffusion processes used below. In all the Langevin
equation codes we use the split step backward operator.

6.1.1 The Langevin Equation driven by Brownian Motion

Throughout the previous chapter we worked out many of the properties of the law of the
solution of the Langevin equation driven by Brownian motion. We can use these results
to measure the performance of the numerical path integration procedure also described
in the previous chapter. Even though the exact time-discrete transition kernel is at hand
we use the iFFT computed density so we can look at how the number of FFT-points
affects the accuracy.
From example 2.1 we know that the forward Kolmogorov operator is given as

A∗k(y) = aD(yk(y)) +
b2

2
D2k(y) (6.1)

and in the examples in the previous chapter we developed the basic solution, namely the
exact transition kernel.
First we look at the stationary density. Since the stationary density is known, we
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Figure 6.1: Stationary densities of the Langevin equation with a = 0.1, b = 0.3. (-) is
the numerical path integration density and (¤) is the exact stationary density (5.92).
The numerical path integration density is computed with 101 spatial grid points, τ = 0.1
and the integrals are computed with 24 points with 3.5 standard deviations at each side.
The plots show good accordance down to approximately 10−25.

start the numerical path integration with this initial density, and look for time-discrete
stationary densities. The program is run until it finds an exact fixed point. When
started in the stationary density, this occurs at roughly t ≈ 30. Figure 6.1 illustrates
the time-discrete versus the exact stationary density. We measure the error as

err =
1
Q

√√√√
Q∑

i=1

(u∗(xi)− u(xi))2, (6.2)

where u∗ is the exact stationary density, u the time-discrete stationary density and
{xi}Q

i=1 the computation spatial grid.
Fixing the time step τ = 0.1, we look at how the truncation of the transition probability
density and the number of FFT-points affect the accuracy. The results are plotted in
figure 6.2. We see that when we are working with approximate transition probabilities
it is not always optimal to let the truncation limits be too wide when the relative error
in the tails grows.
Next we study the error as the time step τ varies (see figure 6.3). Also here we see that
effects in the numerical implementation will at some point stop us from gaining more
accuracy by reducing τ when the spatial grid is kept fixed. Also included in figure 6.3
is a run using the exact transition kernel. We see that very little is gained comparing
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Figure 6.2: Error in the numerical path integration stationary densities for τ = 0.1, a =
0.1, b = 0.3. Each line corresponds to the number of points used in the quadrature
for approximating the integrals. We see that in this case, truncating at approximately
3.5 standard deviations seems close to optimal. This is explained by a balance between
including the significant part of the transition probability and not including the tails
where the relative error is large. Notice also that little is gained by using many points
in the quadrature, admitting very fast implementations.
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N = 24, Q = 51

N = 25, Q = 51

N = 24, Q = 101
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N = 25, Q = 151

N = 24, Q = 101, exact TPD

Figure 6.3: The stationary density error for various parameter settings with a = 0.1, b =
0.3. Here N denotes the number of quadrature points and Q is the number of spatial
grid points. We see that the optimal time step in this case is ∼ 0.1.

with the iFFT computed densities. Hence all of the increasing error effect is explained
by scaling problems. I.e. problems arising when the integration interval becomes small
compared to the spatial grid spacing. This amplifies the error introduced by the spline
interpolation and gives poorer resolution. We see that finer grids generally gives smaller
errors, supporting this observation. Hence to gain more accuracy we have to balance
the time and spatial steps. The CPU-times for various parameter settings are of some
interest. As always such measurements should be viewed upon as estimates since other
computational and administrative processes run on the same server. The CPU-times of
the runs described above are presented in figure 6.4.
Finally we include two illustrations, figures 6.5a and 6.5b, to show quantitatively how

the behavior of the solution process is. We use the initial density (5.21).

6.1.2 The Langevin Equation Driven by a Compound Poisson Processes with Gaussian
Jumps

Consider the 1-dimensional stochastic differential equation

dYt = −aYtdt + bdBt + bdXt, Y0 = y, a, b > 0 (6.3)

where Bt is standard Brownian motion and Xt a compound Poisson process. Existence
and uniqueness results for such equations can be found in e.g. Øksendal & Sulem (2005)
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Figure 6.4: Approximate CPU-times for the Langevin equation with a = 0.1, b = 0.3.
Here N denotes the number of quadrature points and Q is the number of spatial grid
points. The computions were performed ut to t = 50.
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Figure 6.5: Illustration of the time-evolution of the law of the solution to the Langevin
equation for various parameter settings.
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or Bass (2004). In this case we take the jumps to be Gaussian with zero mean. I.e
Xt =

∑Nt
i=1 Zi where L[Zi] = N(0, σ2

Z). Let λ denote the rate of the Poisson process Nt.
In our computation we collect the Levy process Ut = Bt+Xt. We have already computed
the density and characteristic function for these increments in subsection 4.2.
It is relatively easy to see, given equation 3.24, that the infinitesimal generator of the
solution process is given as

Ag(y) = ayDg(y) +
1
2
b2D2g(y) +

∫

R
g(y + bz)− g(y)− z(Dg(y))1[−1,1](z)ν(dz)

= ayDg(y) +
1
2
b2D2g(y)− λg(y) +

λ√
2πσ2

Z

∫

R
g(y + bz) exp

(
− z2

2σ2
Z

)
dz. (6.4)

Now it is natural to ask how the adjoint operator looks like. That is, we wish to find A∗

such that
∫

(Ag)h =
∫

g(A∗h) ∀ g, h ∈ C2
c . (6.5)

It is clear that A can be split into three parts:

Dg(y) = −ayDg(y) +
1
2
b2D2g(y) (6.6)

Ig(y) =
λ√

2πσ2
Z

∫

R
g(y + bz) exp

(
− z2

2σ2
Z

)
dz (6.7)

Cg(y) = −λg(y) (6.8)

and due to the linearity of the integral it is clear that (D + I + C)∗ = D∗ + I∗ + C∗.
Recall from example 2.1 that the differential operator D has the adjoint operator

D∗g(y) = −D(ay g(y)) +
1
2
b2D2g(y). (6.9)

The adjoint operator for the integral operator I is also easily obtained using the defini-
tion. Let g, h ∈ C2

c and set

n(z) =
λ√

2πσ2
Z

exp
(
− z2

2σ2
Z

)
. (6.10)
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Setting a b λ σ2
Z Y0 ∼ τ

1 0.1 0.3 3.5 0.92 N(−3, 0.1) 1/20
2 0.2 0.8 10.5 0.32 N(3, 4) 1/20

Table 6.1: Parameter settings for the jump diffusion (6.3).

Then
∫

(Ig(y))h(y)dy =
∫ [∫

g(y + bz)n(z)dz

]
h(y)dy (6.11a)

=
∫ ∫

h(y)g(y + bz)n(z)dydz (6.11b)

=
∫ ∫

h(y − bz)g(y)n(z)dydz (6.11c)

=
∫

g(y)
[∫

h(y − bz)n(z)dz

]
dy (6.11d)

=
∫

g(y)(I∗h(y))dy. (6.11e)

The constant operator C is trivially selfadjoint, i.e C = C∗. We compile the results to
find

A∗k(y) = −ayDk(y) +
1
2
b2D2k(y)− (λ + a)k(y) +

∫
k(y − bz)n(z)dz (6.12)

and our Kolmogorov forward equation becomes

∂

∂t
k(y, x, t) = A∗(y)k(y, x, t), y ∈ R, t ∈ (0,∞) (6.13)

with initial condition limt↘0 = δ(y − x). The subscript (y) indicates that A∗ operates
on the forward kernel.
The path integration code is easy to adapt to this process. All that is needed is to change
the characteristic function of the transition density. Solving the forward Kolmogorov
equation analytically seems hard, but the characteristic function of the forward transition
kernel is relatively easy to obtain. This is done in appendix A. Hence we use the iFFT
computed density from (A.12) as reference for the numerical path integration solutions.
Throughout this example we use Q = 101 grid points and N = 27 quadrature points.
Since the forward transition kernel has semi-heavy tails, the computations are performed
with l = 20. We do two runs with the parameters given in table 6.1. Figures 6.6,
6.7 show the path integration density along with the iFFT computed density at time
T = 10. We see that the path integration procedure yields good results at least down
to approximately 10−8. For density levels below this, the picture is somewhat blurry
since the relative error in the iFFT computed density grows. Finally we include plots
(figures 6.8a, 6.8b) of the time evolution of L[Yt], which coincides approximately with
the solution of the forward Kolmogorov equation (6.13).
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Figure 6.6: Path integration solution (¤) and iFFT computed density (-) with parameter
setting 1 at t = 10. The iFFT computation was done with N = 214 points.
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Figure 6.7: Path integration solution (¤) and iFFT computed density (-) with parameter
setting 2 at t = 10. The iFFT computation was done with N = 214 points.
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Figure 6.8: Illustration of the time-evolution of L[Yt].

6.1.3 The Langevin Equation Driven by a Compound Poisson Processes with Expo-
nentially Distributed Jumps

This is the last of our Langevin equation examples. Let our stochastic differential equa-
tion be given as

dYt = −aYtdt + bdBt + bdRt, Y0 = y, a, b > 0. (6.14)

It deviates from the examples above since the compound Poisson process is in this case
not a martingale. Let Rt be the usual compound Poisson process, but let L[Zi] =
EXP (1/β). We know that in this case the jumps take nonnegative values only, making
the transition kernel asymmetric. We derived the characteristic function of the transition
kernel in subsection 4.3.
Using the same arguments as in the previous case we see that the Kolmogorov Forward
operator becomes

A∗k(y) = ayDk(y) +
1
2
b2D2k(y)− (λ + a)k(y) +

∫
k(y − bz)E(z)dz (6.15)

where

E(z) = 1[0,∞](z)
1
β

exp
(
− z

β

)
. (6.16)

As we saw in subsection 4.3, this transition kernel has the asymmetric tails property.
Therefore the truncation of the kernel is done asymmetrically, discarding all points where
k ≤ 1e-14, which gives better numerical results. In this case we use 210 points in the
iFFT, and then discarding approximately half of these as false values. Due to the heavy
right hand side tail, we use l = 50 standard deviations in the iFFT computation of the
transition kernel. We run the path integration procedure with parameter settings given
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Setting a b λ β Y0 ∼ τ

1 1.1 0.9 1.5 1.1 N(3, 1.1) 1/20
2 0.5 0.9 1.5 1.1 UNIF ([−6, 6]) 1/20

Table 6.2: Parameter settings for the jump diffusion (6.14).
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Figure 6.9: Path integration solution (¤) and iFFT computed density (-) with parameter
setting 1 at t = 10. The iFFT computation was performed with N = 214 points.

in table 6.2, and compared with densities computed with iFFT from (A.15). The results
for T = 10 are presented in figures 6.9, 6.10 and plots of the time evolution of L[Yt]
are presented in figures 6.11a, 6.11b. Also here we see that there is good accordance
between the path integration procedure and the iFFT computed density down to 10−8.
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Figure 6.10: Path integration solution (¤) and iFFT computed density (-) with para-
meter setting 2 at t = 10. The iFFT computation was performed with N = 214 points.
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Figure 6.11: Illustration of the time-evolution of L[Yt].
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6.2 Black-Scholes Type Equations

In this section we look at stochastic differential equations on the form

dXt = aXtdt + bXtdLt, Xt, a, b ∈ R, t ∈ [0, T ] (6.17)

where Lt is the driving Levy process. First we look at the classic Black-Scholes model
(Øksendal (2003) or Karatzas & Shreve (1988)) where Lt = Bt.

6.2.1 The Classic Black-Scholes Model

This subsection is laid out as follows. First the exact transition kernel is derived. Then
we derive the forward Kolmogorov operator, and finally we present some results from the
numerical path integration method, using the exact transition kernel as our reference.
Any textbook (e.g. Øksendal (2003)) on Itô stochastic calculus gives the strong solution
of (6.17) when Lt = Bt. It is given as

Xt = X0 exp
((

a− b2

2

)
t + bBt

)
. (6.18)

We take X0 = x > 0 to be non-stochastic. It is clear that

L
[(

a− b2

2

)
t + bBt

]
= N((a− b2/2)t, b2t), (6.19)

hence the exponential has a Lognormal density (Casella & Berger 2002). Finally using
transformation of a stochastic variable with a constant map yields

k(y, x, t) =
1√

2πb2ty
exp

(
−(log(y/x)− µ(t))2

2b2t

)
(6.20)

where µ(t) = (a− b2/2)t.
The derivation of the forward Kolmogorov equation is also straight forward. We use
(2.35) to get

A∗k(y) = −Dy(ayk(y)) +
1
2
Dy,y(b2y2k(y)). (6.21)

It is easy to verify that (6.20) solves the forward Kolmogorov equation with operator
(6.21).
In the numerical implementations with multiplicative noise, we approximate the path
integration integral directly. In this case the time discrete transition kernel is given as

k̄(y, x, τ) =
1√

2π(xb)2τ
exp

(
−(y − x− axτ)2

2(bx)2τ

)
. (6.22)

We run the numerical path integration procedure with parameter settings given in table
6.3 and T = 1 in both cases. Q = 201 grid points and N = 26 quadrature points were
used. The densities at T are given in figures 6.12, 6.13. We see that the numerical
path integration solution is accurate at least down to density levels of order 10−8 in both
cases.
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Setting a b X0 τ

1 0.3 0.15 12 1/200
2 0.5 0.1 12 1/200

Table 6.3: Parameter settings for the Black Scholes equation driven by Brownian motion.
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Figure 6.12: Path integration solution (-) and analytical density (¤) with parameter
setting 1 at T = 1.
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Figure 6.13: Path integration solution (-) and analytical density (¤) with parameter
setting 1 at T = 1.
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characteristic NIG(δ, α, β)
mean δβ/

√
α2 − β2

variance α2δ(α2 − β2)(−3/2)

skewness 3βα−1δ−1/2(α2 − β2)(−1/4)

kurtosis 3
(

1 + α2+4β2

δα2
√

α2−β2

)

Table 6.4: Some characteristics of the NIG density.

6.2.2 The Black-Scholes Equation driven by a Normal Inverse Gaussian Process

In this example we look at the process determined by the stochastic differential equation

dXt = aXtdt + bXtdLt (6.23)

where Lt is a normal inverse Gaussian (NIG) process (Barndorff-Nielsen 1998), (Schoutens
2003). The NIG process is a three parameter process commonly used in mathematical
finance since heavy tails and skewness can be incorporated. Its characteristic function
is given as

φLt(u) = exp
(
−δt[

√
α2 − (β + iu)2 −

√
α2 − β2]

)
(6.24)

where δ > 0 can be thought of as a scale-parameter, α > 0 determines the tail behavior
and β, |β| < α the skewness. To gain a better understanding of the NIG density, some
characteristics are listed in table 6.4. In our numerical path integration implementation
we need the transition kernel of a process on the form L̂t = cLt where c ∈ R. We use
(6.24) to find the corresponding parameters of L̂t:

φL̂t
(u) = exp

(
−δt[

√
α2 − (β + icu)2 −

√
α2 − β2]

)

= exp
(
−δt[

√
c2α2/c2 − c2(β/c + iu)2 −

√
c2α2/c2 − c2β2/c2]

)

= exp
(
−δtc[

√
α2/c2 − (β/c + iu)2 −

√
α2/c2 − β2/c2]

)
. (6.25)

Hence L̂t has parameters δ̂ = |c|δ, α̂ = α/|c| and β̂ = β/c. From this is it relatively easy
to derive the time-discrete transition kernel suitable for direct integration. The density
of the NIG process with parameters (δ, α, β) is given as (Schoutens 2003)

dLt(y) =
αδt

π
exp(δt

√
α2 − β2 + βy)

K1(α
√

(δt)2 + y2)√
(δt)2 + y2

(6.26)
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Setting a b α β δ L[X0] τ

1 0.5 0.1 5.0 0.0 1.5 N(75, 0.5) 1/100
2 0.5 0.1 5.0 -1.0 1.5 N(75, 0.5) 1/100

Table 6.5: Parameter settings for the normal inverse Gaussian Black-Scholes model.

where K1 is the modified Bessel function of third kind with parameter 1 (Schoutens
2003). From (6.26) it is easy to see that the time-discrete transition kernel is given as

k̄(y, x, τ) =
αδτ

π
exp

(
δτ

√
α2 − β2 +

β(y − (1 + aτ)x)
bx

)

×
K1

(
α
bx

√
(δτbx)2 + (y − (1 + aτ)x)2

)
√

(δτbx)2 + (y − (1 + aτ)x)2
. (6.27)

The numerical path integration method is implemented using direct integration. In
fact we use the same code as for the previous Black-Scholes equation, only altering the
transition kernel (6.27). The modified Bessel function K1 is computed using tbessk.f90
(Moreau 2005). The code is tested using the parameter settings given in table 6.5 up
to time T = 1. As reference we use 1.0e8 Monte Carlo simulations using the Euler
scheme with 500 time-steps using MATLAB (Higham 2001). The random increments are
generated using randraw.m (Bar-Guy 2005). We use kernel density estimation with
Gaussian kernels and parameter h = 0.5 (Venables & Ripley 2003). Since the accuracy
of the kernel density estimate decays as fewer individual paths end in the tails of the
density, we only compute the kernel density estimate on the interval were 1000 paths
end outside on each side.
The results are presented in figures 6.14, 6.15 and images of the time-evolutions of the
densities are given in figures 6.16a, 6.16b. As seen in the figures, the numerical path
integration method seems to give accurate results in the high density region. What
happens in the low density regions is at this point hard to tell, since we need wast
amounts of Monte Carlo simulations to get accurate kernel density estimates. Figures
6.16a and 6.16b give a nice quantitative image about what happens when the driving
noise is not a martingale. We see that for parameter setting 2, the left-skewed transition
kernel approximately balances the positive drift.
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Figure 6.14: Numerical path integration solution (-) and kernel density estimate based
on Monte Carlo simulation (¤).
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Figure 6.15: Numerical path integration solution (-) and kernel density estimate based
on Monte Carlo simulation (¤).



6.3. A NONLINEAR EQUATION 85

t

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

(a) Parameter Setting 1

t

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

(b) Parameter setting 2

Figure 6.16: Illustration of the time-evolution of L[Xt] where Xt is given in (6.23).

6.3 A Nonlinear Equation
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Figure 6.17: Plot of the tran-
sition kernel (6.30).

Our last example is taken from Kloeden & Platen (1999).
It can be shown that the Itô stochastic differential equa-
tion

dXt = −a2Xt(1−X2
t )dt + a(1−X2

t )dBt,

Xt, a ∈ R, t ∈ [0, T ] (6.28)

has strong solution

Xt = tanh(aBt + arctanh(X0)). (6.29)

Since tanh is monotonous, it is easy to derive the tran-
sition kernel of the exact solution. Take X0 = x, −1 <
x < 1 to be non-stochastic. Then L[aBt +arctanh(x)] =
N(arctanh(x), a2t), and using that Xt is a mapped
Gaussian variable we obtain (Casella & Berger 2002)

k(y, x, t) =
1√

2πa2t(1− y2)
exp

(
−(arctanh(y)− arctanh(x))2

2a2t

)
, y ∈ [−1, 1]. (6.30)

It can be shown that

lim
|y|↗1

k(y, x, t) = 0 ∀ x ∈ (−1, 1), t < ∞ (6.31)

hence the forward transition kernel has compact support. The forward transition kernel
k(y, 0, 1) is plotted in figure 6.17 for a = 1. From figure 6.17 we see that the exact solution
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Setting a x τ

1 0.1 0 3/200
2 0.5 0 3/200
3 0.5 1/2 3/200

Table 6.6: Parameter settings for (6.28)

has two modes, which becomes increasingly sharp as t grows, making this problem harder
numerically.
The Forward Kolmogorov operator is easy to find given (2.35), i.e.

A∗(y) = −D(−a2y(1− y2)k(y)) +
1
2
D2(a2(1− y2)2k(y)). (6.32)

Also here it is easy to see that the transition kernel k satisfies the Forward Kolmogorov
equation corresponding to (6.32).
The numerical path integration method was applied to (6.28). The time discrete tran-
sition kernel is given as

k̄(y, x, τ) =
1√

2πτa(1− x2)
exp

(
−(y − x + a2x(1− x2))2τ

2(a(1− x2))2τ

)
(6.33)

and we used direct integration of the path integration integral. We do three runs with
parameters given in table 6.6. We set T = 3 and run the simulation with relatively short
time-steps, required by the nonlinearity of the model. We use Q = 151 grid-points and
N = 200 quadrature points. Numerical path integration densities and exact densities
are plotted in figures 6.18, 6.19 and 6.20. The final density from a run with parameter
setting 3 up to T = 10 is presented in figure 6.21. Images illustrating the time-
evolution of the densities are given in figures 6.22, 6.23 and 6.24. The code is not
altered to make the compact support embedded, and the computations are done on the
domain [−1.2, 1.2]. We see that the numerical path integration code performs well in
the domains where there is moderately high probability density when the exact density
is relatively smooth. As shown in figure 6.21, the numerical path integration method
has trouble following the dynamics when the densities are close to non-smooth. To cope
with this, finer spatial grids have to be considered.

6.4 Concluding Remarks

As we have seen in the examples above, the numerical path integration method gives
good results on a quite wide range of 1-dimensional problems. It is relatively easy to
write a path integration code for such problems, all the codes used in the examples
consist of approximately 150 lines, excluding spline-libraries, iFFTs and so on.
There are two other main methods for solving such problems - Monte Carlo simulations
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Figure 6.18: Numerical path integration solution (-) and analytical density (¤) with
parameter setting 1 at T = 3.
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Figure 6.19: Numerical path integration solution (-) and analytical density (¤) with
parameter setting 2 at T = 3.
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Figure 6.20: Numerical path integration solution (-) and analytical density (¤) with
parameter setting 3 at T = 3.
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Figure 6.21: Numerical path integration solution (-) and analytical density (¤) with
parameter setting 3 at T = 10. The right plot is just magnification of the left. Notice that
at this time, the sharp modes of the analytical density makes it hard for the numerical
path integration method to follow.
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Figure 6.22: Illustration of the time evolution of the numerical path integration density
with parameter setting 1.
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Figure 6.23: Illustration of the time evolution of the numerical path integration density
with parameter setting 2. Notice that we see form the strong solution that changing a
is equivalent to changing the time scale. Hence this figure 6.22 is just the first part of
this picture.
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Figure 6.24: Illustration of the time evolution of the numerical path integration density
with parameter setting 3.

(see e.g. Kloeden & Platen (1999) or Protter & Talay (1997)) and various kinds of finite
difference and finite element methods (see e.g. Briani, La Chioma & Natalini (2004)
or Cont & Voltchkova (2005)). The numerical path integration method is superior to
Monte Carlo methods in many cases since the CPU-times needed to get desired accuracy
is larger. In the example with the Black-Scholes model driven by a NIG-process, the
time consumption is ∼ 1−10 seconds, whereas the Monte Carlo simulation takes approx-
imately half an hour. The downside of the path integration method compared to Monte
Carlo methods is that the path integration method is somewhat more complicated to
implement, and has more parameters that needs to be tuned for best performance.
Little comparison with the finite difference and finite element methods has been done.
What seems clear is that the CPU-times are comparable with those of the path integra-
tion method. Upsides for the path integration method is that the codes can be reused
when the model changes, whereas the model generally is more embedded in finite differ-
ence methods. A downside comparing with methods from the integro-PDE tool box is
that more explicit convergence rates are at hand.
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Chapter 7

Conclusions

7.1 Conclusions

At the end of each previous chapter, we have given preliminary concluding remarks. This
conclusion is therefore relatively brief. What this thesis shows, is that the numerical
path integration method can, with relative ease, be extended to Lévy driven stochastic
differential equations. If a closed form expression for the time-discrete transition kernel
exits, the extension is straight forward. In cases where the Lévy process is specified
by a Lévy triplet, iFFT-methods can be applied to approximate the transition kernels.
However for models with multiplicative noise, this might amount to computing a vast
amount of densities, making the path integration method computationally inefficient.

7.2 Further Work

To finish of, we mention a few direction for further work:

1. Extending the numerical path integration method for Lévy driven stochastic dif-
ferential equations to higher dimensions. This is essential in many applications
since the models have an embedded n-dimensional nature.

2. Comparing the numerical path integration method with finite difference schemes
for integro-PDEs.

3. Using the numerical path integration method as basis for parameter estimation us-
ing maximum-likelihood. Automatic Differentiation might be applied to compute
gradients of the maximum-likelihood function.

4. Extending path integration in Fourier space (see appendix A) to nonlinear equa-
tions using FFT-methods.
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Appendix A

Path Integration in Fourier Space

A.1 Path Integration in Fourier Space for the Langevin Equation

This section is a digression from the path integration exposition in this text. In the case
when the stochastic differential equation is linear with additive noise, i.e. the Langevin
equation, it is simple to derive the characteristic function of the law of the time-discrete
solution. Letting τ → 0 we can in many cases obtain the characteristic function of the
exact solution as well.
We use the framework

dXt = −aXtdt + bdLt, Xt ∈ R, t ∈ [0, T ], a, b > 0 (A.1)

where Lt is some Levy process with characteristic function φLt(u) and X0 is a stochastic
variable with characteristic function ψX0(u). Then we have the following result:

Result A.1: The characteristic function of the n-th step in the Euler scheme applied
on (A.1) is given as:

ψX̄n
(u) = ψX0(c

nu)
n−1∏

j=0

φLτ (cjbu) (A.2)

where c = 1− aτ .

Proof. We start with the time-discrete Euler scheme with time discretization τ = T/K, ti =
iτ, i = 0, 1, . . . ,K:

X̄i+1 = X̄i − aτX̄i + b[Lti+1 − Lti ] = (1− aτ)X̄i + b[Lti+1 − Lti ]. (A.3)

We assume K to be large enough such that |1− aτ | < 1. The proof is of induction type.
It is clear from (A.3) that

ψX̄i+1
(u) = ψX̄i

(cu)φLτ (bu). (A.4)

hence the for i = 1 the induction hypothesis holds. Assume the induction hypothesis
holds for n = k. Then

ψX̄k+1
(u) = ψX̄k

(cu)φLτ (bu)

=


ψX0(c[c

ku])
k−1∏

j=0

φLτ (c[cjbu])


φLτ (bu) = ψX0(c

k+1u)
k∏

j=0

φLτ (cjbu). (A.5)
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We apply this result in some examples:

Example A.1: We can formally derive the exact transition kernel of the Brownian motion
driven Langevin equation using (A.2): We set X0 = x, i.e. non stochastic and ψX0(u) =
exp(iux). Further, the characteristic function of a Brownian increment is given as φBτ (u) =
exp(−τu2/2). Hence

ψX̄M
(u) = exp(iuxcM )

M−1∏

j=0

exp(−τ(bu)2c2j/2)

= exp


iuxcM − 1

2
τ(bu)2

M−1∑

j=0

(c2)j


 = exp

(
iuxcM − 1

2
τ(bu)2

1− c2M

1− c2

)
(A.6)

We now substitute τ = T/M and c = 1− aT/M :

ψX̄M
(u) = exp

(
iux(1− aT

M
)M − (bu)2

T

2M

1− (1− aT
M )2M

1− (1− aT
M )2

)

= exp

(
iux(1− aT

M
)M − (bu)2

1− (1− aT
M )2M

2(2a− T
M )

)
(A.7)

Now we use that (Rudin 1976)

lim
M→∞

(
1− k

M

)M

= exp(−k), (A.8)

hence by letting M →∞ we obtain

ψXT
(u) = exp

(
iu[x exp(−aT )]− u2

2

[
b2

2a
(1− exp(−2aT ))

])
. (A.9)

Clearly this is accordance with the results in example 5.1

Our next example is the Langevin equation driven by Brownian motion and a compound
Poisson process with zero-mean Gaussian jumps. We derived the characteristic function
for an increment of this process in subsection 4.2. The results from this example are
used in subsection 6.1.2.

Example A.2: Recall from subsection 4.2 that the characteristic function of the process
consisting of Brownian motion and a compound Poisson process with Gaussian jumps is
given as

φUτ (u) = exp
(

τ(
u2

2
+ λ(exp(−σ2

Zu2

2
)− 1)

)
(A.10)
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We take the initial condition to be deterministic, that is X0 = x. Using the derivation above
for the drift and Brownian part, we get that

ψX̄M
(u) = exp

(
iux(1− aT

M
)M − (bu)2

2(2a− T/M)
(1− (1− aT

M
)2M )

+ λ
T

M

M−1∑

j=0

[
exp

(
−(bσZu)2

2
(1− aT

N
)2j

)
− 1

] )
(A.11)

Letting M →∞ we obtain

ψXT
(u) = exp

(
iux exp(−aT )− (bu)2

4a
(1− exp(−2aT ))

+
√

2πλbσZu

8a

[
−erf

(
bσZu√

2

)
+ exp(−aT )erf

(
bσZu√

2
exp(−aT )

)])
(A.12)

Performing an inverse Fourier transform on this expression seem hard, but we can use the
methods described in chapter 4 to approximate the exact transition kernel.

Finally we derive the characteristic function of the solution Langevin equation driven by
the asymmetrical compound Poisson process described in subsection 4.3.

Example A.3: Recall that the characteristic function of the process consisting of Brownian
motion and a compound Poisson process with exponentially distributed jumps is given as

φUt = exp
(
−τ

2
u2 + λτ

(
1

1− iuβ
− 1

))
(A.13)

Again we assume non-stochastic initial condition x. Using the derivation in example A.1 we
have that

ψX̄M
(u) = exp

(
iux(1− aT

M
)M − (bu)2

2(2a− T/M)
(1− (1− aT

M
)2M )

+ λ
T

M

M−1∑

j=0

iubβ(1− aT
M )j

1− iubβ(1− aT
M )j

)
. (A.14)

Letting M → ∞ we obtain the Fourier transform of the transition kernel for the exact
solution:

ψXT
(u) = exp

(
iux exp(−aT )− (bu)2

4a
(1− exp(−2aT ))

+
λ

a
(log(1− iubβ exp(−aT ))− log(1− iubβ))

)
(A.15)

We use this as our reference for the numerical path integration solution presented in subsec-
tion 6.1.3.
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Using (A.8), it is in many cases relatively simple to introduce stochastic initial conditions.
E.g. Gaussian initial conditions lead to terms of form −(σ0u

2) exp(−2aT )/2 in the
exponent.
In a numerical setting, (A.2) might form a basis for a numerical method for small τ .
This is not explored here due to time constraints on this work.

A.2 Path Integration in Fourier Space for Nonlinear Additive Noise
Equations

In this section we propose a method for path integration in Fourier space with f1 being
nonlinear and f2(x) = b. The idea is basically the same as for the Langevin equation,
but analytical expressions seem harder to come by. First we assume that x + τf1(x) is
monotone.

Result A.2: The characteristic function of X̄i+1 can be computed recursively as

ψX̄i+1
(u) = ζi(u)φbLτ (u) (A.16)

where ζi is computed as follows:

g = (x + τf1(x))−1 i.e. the inverse (A.17a)

di = F−1ψX̂i
(A.17b)

Mi(x) = |Jg(x)|di(g(x)) (A.17c)
ζi = FMi (A.17d)

where J denotes the Jacobian.

Proof. The relation is obvious when looking at an Euler step

X̄i+1 = X̄i + τf1(X̄i) + b[Lti+1 − Lti ] (A.18)

where ζi is the characteristic function of the mapped variable X̄i + τf1(X̄i) (see e.g.
Casella & Berger (2002)).

This result might form the backbone of a fast numerical solver using the FFT extensively.
It is believed that the computationally expensive spline interpolation and evaluation can
be avoided, using rather piecewise linear or piecewise constant interpolants. This is due
to the fact that we can use very fine spatial grids. Moreover the inverse mapping g
and the Jacobian J are only computed once, admitting fast evaluations of the mapped
density M, given d. The computational cost is that of two FFTs and a few element-wise
vector multiplications for each time-step.
The monotonicity of x + τf1(x) is not absolutely necessary for applying this method.
Casella & Berger (2002) give an explicit formula for the mapped density M in the case
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that f1 is only piecewise monotone.
This method is also applicable in the n-dimensional case. An important feature of
the path integration in Fourier space method is then that it is easy to incorporate
degenerate transition kernels arising in models with noise terms in only some of the
scalar equations. This is often the case in mechanical systems - see e.g. Kolnes (2004).
To see the simplifications, assume that Lt ∈ Rm and Xt ∈ Rn. Letting the models be of
additive noise type, the coefficient-function f2 = B is a matrix, i.e. B ∈ Rn×m. From
the definition of the characteristic function we get

φBLτ (u) = E[exp(iu>(BLτ ))] = E[exp(i(u>B)Lτ )], u ∈ Rn. (A.19)

This shows that zero-rows in B correspond to setting the corresponding element in u
to 0. Hence zero-rows simplifies our computations, rather than making them harder to
implement as is the case when we path integrate in state space.
This method has not been implemented due to time constraints, and should be viewed
upon as a proposal for further work.
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Appendix B

Computer Codes

B.1 File PDFs.f90

These codes were used to compute probability densities. The subroutine iFFTpdfinit
is the one (in slightly altered forms) used to compute all the iFFT computed densities
presented in this text.

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Routines f o r computing p r o b a b i l i t y d e n s i t i e s
! Written by Tore S . Kleppe ( t o r e s e l l@ s t u d . math . ntnu . no )
! sp r ing semester 2006
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

! normal pdf
subroutine normalPDF (n , xx , yy ,mu, sigmaS )

implicit none
integer , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
real (kind=k8 ) , parameter : : p i = 3.1415926535897932 k8
integer , intent ( in ) : : n
real (kind=k8 ) , intent ( in ) : : xx (n)
real (kind=k8 ) , intent (out ) : : yy (n)
real (kind=k8 ) , intent ( in ) : : mu
real (kind=k8 ) , intent ( in ) : : sigmaS
yy = 1/ sq r t (2∗ pi ∗ sigmaS )∗ exp(−(mu − xx )∗∗2/(2∗ sigmaS ) )

end subroutine normalPDF

! uniform pdf
subroutine uniformPDF(n , xx , yy , min ,max)
implicit none

integer , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
real (kind=k8 ) , parameter : : p i = 3.1415926535897932 k8
integer , intent ( in ) : : n
real (kind=k8 ) , intent ( in ) : : xx (n)
real (kind=k8 ) , intent (out ) : : yy (n)
real (kind=k8 ) , intent ( in ) : : min
real (kind=k8 ) , intent ( in ) : : max
integer i
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real (kind=k8 ) dens
dens = (1 . 0 k8 )/ (max−min)
do i =1,n

i f ( ( xx ( i ) >= min) . and . ( xx ( i ) < max) ) then
yy ( i ) = dens

else
yy ( i ) = 0 .0 k8

end i f
end do

end subroutine uniformPDF

! iFFT computed pd f s
! S l i g h t changes o f t h i s code must be done to f i t o ther pd f s
! the code g iven here i s the one used f o r the symmetric jump−
! d i f f u s i o n increment .

subroutine iFFTpdf in i t (N, xx , dens , lambda , sigmaZ , b , t , s tdvs )
implicit none
integer , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
real (kind=k8 ) ,parameter : : h = 0.001 k8
real (kind=k8 ) ,parameter : : p i = 3.1415926535897932
complex(kind=k8 ) ,parameter : : im = (0 . 0 k8 , 1 . 0 k8 )

integer , intent ( in ) : : N ! number o f f f t po in t s
real (kind=k8 ) , intent (out ) : : xx (N) ! a b c i s s a
real (kind=k8 ) , intent (out ) : : dens (N) ! d en s i t y
real (kind=k8 ) , intent ( in ) : : lambda ! parameters
real (kind=k8 ) , intent ( in ) : : sigmaZ ! parameters
real (kind=k8 ) , intent ( in ) : : b ! parameters
real (kind=k8 ) , intent ( in ) : : t ! parameters
real (kind=k8 ) , intent ( in ) : : s tdvs ! number o f s tandard d e v i a t i on s

integer Nhalf , NhalfOne
integer i , i f a c (128) , i e r r
real (kind=k8 ) u(N/2+1) , t r i g s (2∗N) , work (N)
real (kind=k8 ) window ,Dx, Nreal , mean , var
complex(kind=k8 ) phi (N/2+1) , phi fd , im
Nhalf = N/2
NhalfOne = Nhalf + 1
Nreal = N

! compute var iance by the f i n i t e d i f f e r e n c e method

ca l l JUMPDIFFcharSym(0 ,h , phi fd , lambda , sigmaZ , b , t )

! use symmetry proper ty

mean = aimag ( ph i fd /h)
var = abs ( real (−( ph i fd − 2 .0 k8 + conjg ( ph i fd ) ) / ( h∗h) − mean∗∗2))
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! f f t window and f r equence s

window = stdvs ∗ s q r t ( var )
Dx = 2∗window/Nreal

ca l l l i nSpace ( ( p i /Dx) , 0 . 0 k8 , NhalfOne , u)

! compute c h a r t e r i s t i c f unc t i on

ca l l JUMPDIFFcharSym(N, u , phi , lambda , sigmaZ , b , t )

! i n v e r s e f f t

ca l l z f f t d (0 ,N, 1 . 0 , phi , dens , t r i g s , i f a c , work ,N, i e r r )

ca l l z f f t d (1 ,N, ( 1 . 0 / ( Nreal ∗Dx) ) , phi , dens , t r i g s , i f a c , work ,N, i e r r )

! r eorder da tapo in t s
xx ( 1 : Nhalf ) = dens ( 1 : Nhalf )
dens ( 1 : Nhalf ) = abs ( dens ( NhalfOne :N) )
dens (NHalfOne :N) = abs ( xx ( 1 : Nhalf ) )

! c r ea t e a b c i s s a

ca l l l i nSpace ((−window ) , ( window−Dx) ,N, xx )

end subroutine iFFTpdf in i t

! computation o f c h a r a c t e r i s t i c f unc t i on

subroutine JUMPDIFFcharSym(N, u , phi , lambda , sigmaZ , b , t )
integer , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
real (kind=k8 ) ,parameter : : p i = 3.1415926535897932
integer , intent ( in ) : : N
real (kind=k8 ) , intent ( in ) : : u (N/2+1)
complex(kind=k8 ) , intent (out ) : : phi (N/2+1)
real (kind=k8 ) , intent ( in ) : : lambda
real (kind=k8 ) , intent ( in ) : : sigmaZ
real (kind=k8 ) , intent ( in ) : : b
real (kind=k8 ) , intent ( in ) : : t
real (kind=k8 ) ,parameter : : h a l f = ( 1 . 0 k8 ) / ( 2 . 0 k8 )
complex(kind=k8 ) ,parameter : : im = (0 . 0 k8 , 1 . 0 k8 )
phi = exp(−t ∗ ha l f ∗(b∗u)∗∗2 + t ∗ lambda∗(1/(1−(− im∗u∗b/sigmaZ ))−1))

end subroutine JUMPDIFFcharSym
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B.2 A Split Step Backward Integration Code

This is the path integration code used in slightly altered forms for all the Langevin
equations. Split step backward integration is used.

program LangevinPI
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Path i n t e g r a t i o n f o r the s t o c h a s t i c d i f f e r e n t i a l equa t ion
!
! dXt = − a Xt dt + b dLt
!
! w r i t t en by Tore Se l l and Kleppe ( t o r e s e l l@ s t u d . math . ntnu . no )
! f e b 2006
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
implicit none
integer , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
real (kind=k8 ) , parameter : : p i = 3.1415926535897932 k8
integer , parameter : : g r i dPo in t s = 101 ! number o f po in t in the g r i d
integer , parameter : : t imeSteps = 500 ! number o f t imes t ep s
integer , parameter : : Q = 2∗∗7 ! number o f FFTpoints
integer , parameter : : i n tPo in t s = Q/2 ! number o f i n t e g r a t i o n po in t s
real (kind=k8 ) , parameter : : T = (30 . 0 k8 ) ! max time
real (kind=k8 ) , parameter : : s tdvs = 6 .5 k8 ! s t . dvs in i n t e g r a t i o n
real (kind=k8 ) , parameter : : lambda = 0 .0 k8 ! no i se parameter
real (kind=k8 ) , parameter : : sigmaZ = 0.9 k8 ! no i se parameter
real (kind=k8 ) , parameter : : a = 0 .5 k8 ! SDE parameter
real (kind=k8 ) , parameter : : b = 1 .5 k8 ! SDE parameter
real (kind=k8 ) , parameter : : mu0 = 3 .0 k8 ! i n i t i a l d en s i t y parameter
real (kind=k8 ) , parameter : : sigmaS0 = 0 .2 k8 ! i n i t i a l d en s i t y parameter
real (kind=k8 ) dt ! the t imes t ep
integer i , j , k ! counter v a r i a b l e s
integer quarte r
real (kind=k8 ) abc i s ( g r idPo in t s ) , tempPDF( gr idPo in t s ) , time
real (kind=k8 ) s u r f ( gr idPo ints , ( t imeSteps +1))
real (kind=k8 ) sp l ineV ( g r idPo in t s ) , f f t x x (Q) , f f t y y (Q)
real (kind=k8 ) intGr id ( i n tPo in t s ) , o ldVals ( i n tPo in t s ) ,
real (kind=k8 ) Euler ( i n tPo in t s ) , Xstar ( i n tPo in t s ) ,TPD( in tPo in t s )
real (kind=k8 ) kern ( ( i n tPo in t s ) ) , t e s t ( i n tPo in t s +1)
real (kind=k8 ) xmin , xmax , dx
real (kind=k8 ) di , border , L
real (kind=k8 ) mass , tempy ,dummy1,dummy2
real (kind=k8 ) mu0 , sigmaS0
real (kind=k8 ) temp , kk ,mu, c o e f f

dt = T/ timeSteps
write (∗ ,∗ ) ’ t imestep = ’ , dt
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! s e t su r f a c e to zero

s u r f ( 1 : g r idPo ints , 1 : t imeSteps+1) = 0 .0 k8

! i n i t i a l i z e g r i d
xmin = −10.00 k8
xmax = 10 .0 k8

ca l l linSpaceDX (xmin , xmax , gr idPo ints , abc i s , dx )

! i n i t i a l d i s t r i b u t i o n normal

ca l l normalPDF( gr idPo ints , abc i s , s u r f ( : , 1 ) ,mu0 , sigmaS0 )

! s p l i n e r ep r e s en t a t i on o f i n i t i a l d en s i t y

ca l l s p l i n e c u b i c s e t ( gr idPo ints , abc i s , s u r f ( : , 1 ) , 0 , 0 . 0 k8 , 1 , 0 . 0 k8 , sp l ineV )

! compute forward ke rne l used in the s p l i t s t e p backward s t e p s
! no t i c e t ha t we only use h a l f the po in t s

quarte r = Q/4
write (∗ ,∗ ) g r idPo in t s
ca l l symJUMPDIFFpdfinit (Q, f f t xx , f f t yy , lambda , sigmaZ&

,b , dt , s tdvs )

intGr id = f f t x x ( ( quarte r +1):(3∗ quarte r ) )
TPD = f f t y y ( ( quarte r +1):(3∗ quarte r ) )

! check i n i t a l d i s t r i b u t i o n

mass = sum( su r f ( : , 1 ) )
mass = mass∗dx
write (∗ ,∗ ) ’ i n i t i a l mass = ’ , mass

! master i t e r a t i o n loop
time = 0 .0 k8
do i =2, t imeSteps+1

time = time + dt
write (∗ ,∗ ) ’ t imestep # ’ , ( i −1) , ’ t = ’ , time

! g r i d I t e r a t i o n loop
do j =1, g r idPo in t s

! i n t e g r a t i o n i t e r a t i o n loop
Xstar = intGr id + abc i s ( j )
Euler = Xstar + dt∗a ∗( Xstar )
do k=2 ,( i n tPo in t s )

i f ( ( Euler ( k ) < xmax) . and . ( Euler ( k ) > xmin ) ) then
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ca l l s p l i n e c u b i c v a l ( gr idPo ints , abc i s , s u r f ( : , ( i −1)) , spl ineV ,&
Euler ( k ) , o ldVals ( k ) ,dummy1,dummy2)

else
o ldVals ( k ) = 0 .0 k8

endif
end do
kern = oldVals ∗TPD
dummy1 = sum( kern )∗ ( Euler (2)−Euler ( 1 ) )
s u r f ( j , i ) = max(dummy1, 0 . 0 k8 )

end do
! check / normal ize mass
mass = sum( su r f ( : , i ) )
mass = mass∗dx
write (∗ ,∗ ) ’mass = ’ , mass
s u r f ( : , i ) = ( ( 1 . 0 k8 )/mass )∗ s u r f ( : , i )
! new s p l i n e su r f a c e
ca l l s p l i n e c u b i c s e t ( gr idPo ints , abc i s , s u r f ( : , i ) ,&

0 , 0 . 0 k8 , 1 , 0 . 0 k8 , sp l ineV )
end do
ca l l dumpResult ( gr idPo ints , t imeSteps , abc i s , s u r f )

end program LangevinPI

! sub rou t ine f1 (n ,X,Y, c o e f f )
! in t e ge r , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
! in t e ge r , i n t e n t ( in ) : : n
! r e a l ( k ind=k8 ) , i n t e n t ( in ) : : X(n)
! r e a l ( k ind=k8 ) , i n t e n t ( out ) : : Y(n)
! r e a l ( k ind=k8 ) , i n t e n t ( in ) : : c o e f f
! Y = c o e f f ∗X
! end subrou t ine f1

B.3 A Direct Integration Code

This is the path integration code used in slightly altered forms for all the Black-Scholes
type equations. Direct integration is used.
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program BSPI
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! Path i n t e g r a t i o n f o r the s t o c h a s t i c d i f f e r e n t i a l equat ion
!
! dXt = a Xt dt + b Xt dLt
!
! w r i t t en by Tore Se l l and Kleppe ( t o r e s e l l@ s t u d . math . ntnu . no )
! f e b 2006
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
implicit none
integer , parameter : : k8 = s e l e c t e d r e a l k i n d (15 ,150)
real (kind=k8 ) , parameter : : p i = 3.1415926535897932 k8
integer , parameter : : g r i dPo in t s = 201 ! number o f po in t in the g r i d
integer , parameter : : t imeSteps = 200 ! number o f t imes t ep s
integer , parameter : : Q = 2∗∗7 ! number o f FFTpoints
integer , parameter : : i n tPo in t s = Q/2 ! number o f i n t e g r a t i o n po in t s
real (kind=k8 ) , parameter : : T = (1 . 0 k8 ) ! max time
real (kind=k8 ) , parameter : : s tdvs = 40 .5 k8 ! s t . dvs in i n t e g r a t i o n
real (kind=k8 ) , parameter : : a = 0 .50 k8 ! SDE parameter
real (kind=k8 ) , parameter : : b = 0 .1 k8 ! SDE parameter
real (kind=k8 ) , parameter : : X0 = 12 .0 k8
real (kind=k8 ) sigmaS0
real (kind=k8 ) dt ! the t imes t ep
integer i , j , k ! counter v a r i a b l e s
integer quarte r
real (kind=k8 ) abc i s ( g r idPo in t s ) , tempPDF( gr idPo in t s ) , time
real (kind=k8 ) s u r f ( gr idPo ints , ( t imeSteps +1))
real (kind=k8 ) sp l ineV ( g r idPo in t s ) , f f t x x (Q) , f f t y y (Q)
real (kind=k8 ) intGr id ( gr idPo ints , i n tPo in t s ) , o ldVals ( i n tPo in t s )
real (kind=k8 ) euro ( g r idPo in t s )
real (kind=k8 ) TPD( gr idPo ints , i n tPo in t s ) , var ( i n tPo in t s )
real (kind=k8 ) kern ( i n tPo in t s ) , t e s t ( i n tPo in t s +1)
real (kind=k8 ) xmin , xmax , dx
real (kind=k8 ) di , border , L
real (kind=k8 ) mass , tempy ,dummy1,dummy2
real (kind=k8 ) mu0, sigmaS0
real (kind=k8 ) temp , kk ,mu, c o e f f , put , c a l

dt = T/ timeSteps
write (∗ ,∗ ) ’ t imestep = ’ , dt

! s e t su r f a c e to zero

s u r f ( 1 : g r idPo ints , 1 : t imeSteps+1) = 0 .0 k8

! i n i t i a l i z e g r i d

xmin = 0.01 k8
xmax = 50 .0 k8
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ca l l linSpaceDX (xmin , xmax , gr idPo ints , abc i s , dx )

! i n i t i a l d i s t r i b u t i o n normal assuming d e t em in i s t i c i n i t i a l cond .
! X0

sigmaS0 = b∗b∗dt
ca l l normalPDF( gr idPo ints , abc i s , s u r f ( : , 1 ) , ( 1+ a∗dt )∗X0, sigmaS0 )

! i n i t i a l i z e s p l i n e

ca l l s p l i n e c u b i c s e t ( gr idPo ints , abc i s , s u r f ( : , 1 ) , 0 , 0 . 0 k8 , 1 , 0 . 0 k8 , sp l ineV )
! check i n i t a l d i s t r i b u t i o n

mass = sum( su r f ( : , 1 ) )
mass = mass∗dx
write (∗ ,∗ ) ’ i n i t i a l mass = ’ , mass

! compute backward t r a n s i t i o n d e n s i t i e s
do j =1, g r idPo in t s

c o e f f = stdvs ∗ s q r t ( dt )∗b∗ abc i s ( j )
ca l l l i n s p a c e ( ( abc i s ( j )− c o e f f ) , ( abc i s ( j )+ c o e f f )&

, intPo int s , intGr id ( j , 1 : i n tPo in t s ) )
do k=1, i n tPo in t s

i f ( intGr id ( j , k)>0.0 k8 ) then
TPD( j , k ) = 1/( sq r t (2∗ pi ∗dt )∗b∗ in tGr id ( j , k ) )
TPD( j , k ) = TPD( j , k )∗ exp(−( abc i s ( j )− (1+a∗dt )∗ in tGr id ( j , k))∗∗2&

/(2∗ dt ∗(b∗ in tGr id ( j , k ) )∗∗2 ) )
else

TPD( j , k ) = 0 .0 k8
endif

end do
end do

! master i t e r a t i o n loop
time = 0 .0 k8
do i =2, t imeSteps+1

time = time + dt
write (∗ ,∗ ) ’ t imestep # ’ , ( i −1) , ’ t = ’ , time

! g r i d I t e r a t i o n loop
do j =1, g r idPo in t s

do k=2 ,( i n tPo in t s )
i f ( ( intGr id ( j , k ) < xmax) . and . ( intGr id ( j , k ) > xmin ) ) then

ca l l s p l i n e c u b i c v a l ( gr idPo ints , abc i s , s u r f ( : , ( i −1)) , spl ineV ,&
intGr id ( j , k ) , o ldVals ( k ) ,dummy1,dummy2)

else
o ldVals ( k ) = 0 .0 k8
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endif
kern (k ) = oldVals ( k )∗TPD( j , k )

end do

! t r a p e z i o d a l i n t e g r a t i o n ru l e

kern ( 1 : ( in tPo int s −1)) = kern ( 1 : ( in tPo int s −1)) + kern ( 2 : i n tPo in t s )
dummy1 = 0 .5 k8 ∗sum( kern ( 1 : ( in tPo int s −1)))∗( intGr id ( j ,2)− in tGr id ( j , 1 ) )
s u r f ( j , i ) = max(dummy1, 0 . 0 k8 )

end do

! check / normal ize d e n s i t i e s
mass = sum( su r f ( : , i ) )
mass = mass∗dx
write (∗ ,∗ ) ’mass = ’ , mass
s u r f ( : , i ) = ( ( 1 . 0 k8 )/mass )∗ s u r f ( : , i )

! new s p l i n e su r f a ce

ca l l s p l i n e c u b i c s e t ( gr idPo ints , abc i s , s u r f ( : , i ) ,&
0 , 0 . 0 k8 , 1 , 0 . 0 k8 , sp l ineV )

end do
ca l l dumpResult ( gr idPo ints , t imeSteps , abc i s , s u r f )

end program BSPI


