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Abstract

The next generation marine control systems will, as a step towards increased autonomy, have more automatic functionality in
order to cope with a set of complex operations in unknown, challenging and varying environments while maintaining safety
and keeping operational costs low. In this paper a hybrid control strategy for stationkeeping and maneuvering of marine
vessels is proposed. The hybrid concept allows a structured way to develop a control system with a bank of controllers and
observers improving dynamic positioning (DP) performance in stationary dynamics, changing dynamics including enhancing
transient performance, and giving robustness to measurement errors. DP systems are used on marine vessels for automatic
stationkeeping and tracking operations solely by use of the thrusters. In this paper a novel method improving the transient
response of a vessel in DP is developed. The performance of the hybrid control system, including two observer candidates
and one controller candidate, is demonstrated in model-scale experiments and on full-scale field data. The hybrid system has
global stability properties.
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1 Introduction

Marine operations are moving into harsher environ-
ments, and as a consequence, requirements for the ves-
sel’s operational window, safety functions, and energy-
efficiency become stricter (Sørensen, 2011). As a result,
the level of autonomy in marine control systems is in-
creasing, with automatic performance monitoring and
switching. During marine operations, both variations in
stationary dynamics and transient behavior are impor-
tant to account for in an all-year operation philosophy
subject to changing weather, sea loads, and modes of
operation (Perez, Sørensen, and Blanke, 2006). There
are many unknown factors that may cause transients in
the vessel response, both from the environment (e.g.,
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Norway through the Centres of Excellence funding scheme,
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ber FA9550-15-1-0155.

wave trains and wind gusts) and triggered by the op-
eration taking place (e.g., heading changes or crane
operations of heavy goods). Figure 1 shows a marine
vessel with its operational conditions and a block dia-
gram of a general hybrid marine control system. The
vessel operational conditions with use mode, speed, and
environment indicates how the vessel performs different
tasks with varying speed in an unknown and changing
environment. The use mode includes algorithms that
satisfy different control objectives such as stationkeep-
ing, maneuvering, and target tracking, which is closely
linked with the vessel speed. Environment refers to the
state of the environment consisting of wind, waves and
current. Naturally, certain operations can only be per-
formed in calm conditions. Because different physical
effects matter for the various vessel operational condi-
tions, there are distinct models and control strategies
which are designed specifically for each operational con-
dition. Nguyen, Sørensen, and Quek (2007) proposed to
use supervisory switched control based on the method-
ology of Hespanha and Morse (2002); Hespanha, Liber-
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Fig. 1. Block diagram of a hybrid control system for a ma-
rine vessel in an unknown environment consisting of wind,
waves and current. Sensors measure the operational status
and vessel motions, and signal processing software filters,
weights and votes between redundant measurements. The
performance monitoring monitors the performance of the
different blocks, and the switching logic chooses which al-
gorithms to use in closed-loop control from the candidates.
Here two observers and one controller are used.

zon, and Morse (2003). In addition to handling different
speed regimes, use modes and changing sea states, the
proposed setup ensures redundancy in the (software)
design methodology so that faults (Blanke, Kinnaert,
Lunze, and Staroswiecki, 2003) may be detected early
and alarms may be raised to operators, who are either
on-site or remote. The performance monitoring and
switching logic block includes monitoring of the envi-
ronment, power system, observer performance, position
precision, signal health, and more. In order to ensure
safety, there are high requirements for system reconfig-
uration, fault tolerance and redundancy, and for testing
and verification of performance (DNV-GL, 2014). Test-
ing and verification of marine control systems with
higher levels of autonomy are faced with a large (when
not infinite) number of failiure modes (Smogeli, Vik,
Haugen, and Pivano, 2014); exhaustive testing is rarely
possible. Therefore having modular design and proofs
of subsystem properties may play a larger role in assur-
ing safety (Kapinski, Deshmukh, Jin, Ito, and Butts,
2016). Systems with a wide range of dynamics and dif-
ferent modes that also use hybrid control approaches
are for instance air traffic control (Sastry, Meyer, Tom-
lin, Lygeros, Godbole, and Pappas, 1995; Hu, Prandini,
and Sastry, 2005), adaptive cruise control for the auto-
motive industry (Girard, Howell, and Hedrick, 2005),

autonomous docking operations of spacecraft (Malladi,
Sanfelice, Butcher, and Wang, 2016), and in the marine
industry hybrid power plants (Miyazaki, Sørensen, and
Vartdal, 2016). The focus of this paper is on detecting
and improving the transient performance of the DP con-
trol system using the hybrid system framework as pro-
posed in Goebel, Sanfelice, and Teel (2012). As shown
in Figure 1, it is believed that the concept of hybrid
control can provide a scalable and stringent methodol-
ogy for the design of real industrial control applications
dealing with several control objectives and changing
environmental and operational conditions. A similar, or
alternative, method may be to consider robust control
by multiple model adaptive controllers as proposed by
Hassani, Sørensen, Pascoal, and Dong (2012); Hassani,
Sørensen, Pascoal, and Athans (2017).

The main scientific contribution of this paper is the
development of a hybrid control concept for proper
switching of candidate observers and controllers, cus-
tomized for transient and steady-state behavior of DP
vessels. For particular observer candidates, this work
combines a model-based observer (Fossen and Strand,
1999), a signal-based observer (Grip, Fossen, Johansen,
and Saberi, 2015), a controller, and switching logic into
a hybrid system with the goal of improving the transient
response. The model-based observer, including wave fil-
tering and bias force estimation, is especially suited in
steady state, while the signal-based observer is more re-
active during transients, even though it is more sensitive
to signal noise. Stability analysis of the hybrid system
applies results from Goebel, Sanfelice, and Teel (2009).
Performance of the proposed concept is demonstrated
experimentally through model-scale experiments with
the hybrid observer estimates used in closed-loop output
feedback control, and through estimation on full-scale
field data. The paper is a continuation of Brodtkorb,
Værnø, Teel, Sørensen, and Skjetne (2016), with the
signal-based observer exchanged with one that has
global stability properties, enhanced performance mon-
itoring and switching logic, and new hybrid stability
analysis.

The paper is organized as follows: The measurements
and notation is introduced in Section 2, and the candi-
date observers and control algorithms are presented in
Section 3. The hybrid system is assembled in Section 4,
and stability is discussed in Section 5. The experimen-
tal setup and results are shown in Section 6. Section 7
concludes the paper.

2 Preliminaries

Common instrumentation in DP vessels includes posi-
tion reference systems (typically GNSS 1 ), compass, and
inertial measurement units (IMU). The measurements,

1 Global Navigation Satellite System
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denoted with subscript m, are in this paper assumed to
be of the form

pnm = [N,E]> (1a)

ψnm = ψ (1b)

ωbm = ωb + bg (1c)

f bm = R>Θ(v̇n − gn), (1d)

where the measurements in the North-East-Down
(NED) frame (an Earth-fixed local reference frame as-
sumed to be inertial) have superscript n, and measure-
ments in the body-fixed frame have superscript b. For
the purpose of stability analysis, the system is assumed
to be deterministic such that noise is disregarded. This
follows similar approaches as Fossen and Strand (1999)
and Nguyen et al. (2007). The vector pnm ∈ R2 is the
measured position in North and East. A vertical mea-
surement may also be obtained through GNSS, but it is
typically of low quality, and is not used here; see Section
3.2. The measured angle ψnm ∈ R includes the low fre-
quency yaw angle ψ and the wave-induced heading oscil-
lations ψw, which are assumed to be small (Fossen and
Strand, 1999). The angular velocity ωb, which takes val-
ues in R3, is continuous and bounded, and the gyro bias
is constant with a known bound ||bg|| ≤Mb. The vector
f bm ∈ R3 is the measured specific force 2 , including the
acceleration of the vessel v̇n and the acceleration due to
gravity gn ∈ R3.RΘ ∈ R3×3 is the rotation matrix about
the z, y, x-axes (Fossen, 2011, Ch. 2). We assume f bm is
non-biased, bounded ||f bm|| ≤Mf , and the derivative of

the actual specific force ḟ b is continuous and bounded.
Furthermore, there exists a constant cobs > 0 such that
||cb × f bm|| > cobs, c

b = [cos(ψnm),− sin(ψnm), 0]>.

3 Candidate Observers and Controller

Two observers based on two philosophically different
models of the same vessel are presented in the next sec-
tions. The relationship between the models are as fol-
lows:

η + ηw ≡ [pn(1,1), p
n
(2,1),Θ(3,1)]

> (2a)

ν + νw ≡ [vb(1,1), v
b
(2,1), ω

b
(3,1)]

>, (2b)

with the subscript (i, j) denoting the elements of the
corresponding vectors. On the left-hand side we have
the position vector η + ηw ∈ R3 (North, East, yaw) and
velocity vector ν+ νw ∈ R3 (surge, sway, yaw) split into
low-frequency and wave-frequency components. η and ν
will later be estimated in the model-based observer and
marked with a hat. On the right-hand side we have the

2 Specific force is the physical acceleration experienced by
an object, consisting of the acceleration of the object and
the acceleration due to gravity, i.e., it is the measurable ac-
celeration, with unit [m/s2].

low-frequency and wave-frequency position pn(1:2) ∈ R2

(North, East) and yaw Θ(3,1), and velocity vb(1:2) ∈ R2

(surge, sway) and yaw ωb(3,1). Two consecutive elements

of a vector are denoted with subscript (1 : 2). pn and
vn := RΘv

b are estimated in the signal-based observer
and marked with a hat. Note that Θ(3,1) ≡ ψ+ψw ≈ ψ.

3.1 Model-based observer

We have chosen to work with the nonlinear passive ob-
server (Fossen and Strand, 1999) since it is an intuitive
observer to tune, and it has global stability properties.
This observer is based on the DP control plant model
(Sørensen, 2011), which is a simplification of the real
vessel dynamics. The inputs to the observer are the mea-
surement y = [pn>m , ψnm]> ∈ R3 and the control input
τ ∈ R3. The 3 degree of freedom (DOF) model-based
observer algorithm for a ship-shaped vessel in DP can
be written as (Fossen and Strand, 1999)

˙̂
ξ = Aω ξ̂ +K1,ω ỹ (3a)

˙̂η = R(ψnm)ν̂ +K2ỹ (3b)

˙̂
b = −T−1

b b̂+K3ỹ (3c)

M ˙̂ν = −DLν̂ +R>(ψnm)b̂+ τ +R>(ψnm)K4ỹ (3d)

ŷ = η̂ +Wξ̂, (3e)

where ξ̂ ∈ R6, η̂, ν̂, b̂ ∈ R3 are the state estimates. The
wave states ξ ∈ R6, low frequency position vector η
and velocity vector ν, and the bias force vector b ∈ R3.
ỹ := y − ŷ is the measurement estimation error, and
K1,ω ∈ R6×3,K2,K3,K4 ∈ R3×3

>0 are the observer gain-
matrices. Aω ∈ R6×6 is a Hurwitz matrix containing
wave parameters, R(ψ) ∈ R3×3 is the rotation matrix
about the z-axis (Fossen, 2011, Ch. 2),M = M> ∈ R3×3

is the inertia matrix including added mass,DL ∈ R3×3 is
the linear damping coefficient matrix including second-
order wave-induced damping, and Tb ∈ R3×3 is a diago-
nal matrix of bias time constants. The first-order model
(3c) accounts for slowly-varying environmental distur-
bances from mean wind, current, and second-order wave
loads, as well as unmodeled vessel dynamics.

(A1) The bias force dynamics (3c) are assumed to account
for only slowly-varying loads (Fossen and Strand,
1999).

This is a good assumption in steady state, but does not
capture rapid variations in the bias force due to tran-
sients, e.g., heading changes or wave trains. Wave filter-
ing is achieved by separating the wave-frequency motion

estimate η̂w = Wξ̂, W = [03×3, I3×3] from the low fre-
quency estimate η̂, giving the output from the model-
based observer η̂1 := η̂ and ν̂1 := ν̂. The model-based
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estimation error dynamics, can be written compactly as

ė1 = F1(e1), (4)

with state vector

e1 :=x1 − x̂1

=[(ξ − ξ̂)>, (b− b̂)>, (η − η̂)>, (ν − ν̂)>]> ∈ R15.

Claim 1: Under Assumption (A1), the origin of the es-
timation error dynamics (4) is uniformly globally expo-
nentially stable (UGES). 2

Proof: See Fossen and Strand (1999). 2

3.2 Signal-based observer

Grip et al. (2015) propose a nonlinear observer, for
GNSS-aided inertial navigation with biased gyro mea-
surements. It is based on the kinematic model (Fossen,
2011) with an angular and a translational part, relat-
ing the position, velocity, and acceleration of the vessel
in 6 DOF. The inputs to the signal-based observer are
pnm, ψ

n
m, ω

b
m, and f bm from (1). The rotation matrix RΘ

(about the z, y, x-axis) is estimated directly, giving

˙̂
RΘ = R̂ΘS(ωbm − b̂g) + σLpĴ (5a)

˙̂
bg = ProjMb

(b̂g,−LIvex(Pa(R̂>ΘsLP Ĵ))), (5b)

where R̂Θ is the rotation matrix estimate, b̂g is the gyro
bias estimate, and the angular rate estimate is ω̂b :=

ωbm−b̂g. The projection function ProjMb
(·, ·) (Grip et al.,

2015, Appendix) ensures that ||b̂g|| ≤Mb̂, and the S(·),
vex(·), and Pa(·) operators are defined in the footnote 3 .

R̂Θs, appearing in (5b), is saturated elementwise with

bound 1; R̂Θs := sat1(R̂Θ). The gain-matrices are LP ∈
R3×3
>0 , LI ∈ R3×3

>0 , and σ ≥ 1 is a scaling factor that is

tuned to achieve stability. Ĵ is a stabilizing term (Grip
et al., 2015, (3) and (5)) that takes ψnm measured by
the compass, and the specific force measurement f bm as
input. The translational observer algorithm is

˙̂pI = p̂n(3,1) + kpipip̃I (6a)

˙̂pn = v̂n + Cpe (6b)

˙̂vn = f̂n + gn + Cve (6c)

ξ̇f = −σLpĴf bm + Cξe (6d)

f̂n = R̂Θf
b
m + ξf , (6e)

3 For a vector x ∈ R3, S(x) denotes a skew-symmetric ma-
trix so that for any y ∈ R3, S(x)y = x× y, where × denotes
the cross product. The skew-symmetric part of a matrix X
is denoted by Pa = 1

2
(X−X>). The linear function vex(X),

with X skew symmetric is defined so that S(vex(X)) = X
and vex(S(x)) = x.

with estimates p̂I , p̂
n, v̂n and f̂n, R̂Θ is from (5), and

ξf is a correction term on the specific force estimate.
(6b-e) are standard kinematic observer equations, and
(6a) is an addition from Bryne, Fossen, and Johansen
(2015) that comes instead of using the vertical GNSS
position measurement height, as mentioned in Section 2.
The augmentation is motivated by the fact that a marine
vessel in normal operation oscillates in heave about the
mean sea surface. It may be assumed that:

(A2) The mean vertical position of the vessel over time is
zero (Godhaven, 1998), pI = 0.

pI is called the virtual vertical reference. In (6a) the verti-
cal position estimate p̂n(3,1) is integrated to give p̂I , which

is compared with pI and used as the driving error for
the vertical dynamics. For more details, see Bryne et al.
(2015). The driving error is e := [p̃I , p̃

>]> ∈ R3 with
p̃ := pnm − p̂n(1:2) ∈ R2, p̃I := pI − p̂I = 0− p̂I ∈ R. The

correction gain-matrices are

Cp =
[

02×1 Kpp
kppi 01×2

]
Cv =

[
02×1 Kvp
kvpi 01×2

]
Cξ =

[
02×1 Kξp
kξpi 01×2

]
.

The North and East gain components areKpp,Kvp,Kξp ∈
R2×2
>0 , and the down gains are kpipi, kppi, kvpi, kξpi ∈

R>0. The signal-based estimation error dynamics are
written compactly as

ė2 = F2(e2), (7)

with state vector

e2 :=x2 − x̂2 = [(r − r̂)>, (bg − b̂g)>, (pI − p̂I),
(pn − p̂n)>, (vn − v̂n)>, (fn − f̂n)>]> ∈ R22,

with r := [RΘ(1,:), RΘ(2,:), RΘ(3,:)]
> ∈ R9 and r̂ defined

accordingly. ‘:’ denotes all elements of the row/column.
Claim 2: Under Assumption (A2), with inputs as de-
scribed in (1), the origin of the signal-based estimation
error dynamics (7) is UGES. 2

Proof: See Grip et al. (2015) and Bryne et al. (2015).2
The output from the signal-based observer is written
using (2), so that η̂2 := [p̂n(1,1), p̂

n
(2,1), Θ̂(3,1)]

>, ν̂2 :=

[v̂b(1,1), v̂
b
(2,1), ω̂

b
(3,1)]

>, where the heading angle estimate

Θ̂(3,1) is extracted from R̂Θ, and v̂b = R̂>Θv̂
n. Because

this observer relies on the specific force measurements
instead of estimating the bias force, it reacts fast and
accurately to transients. Here, no wave filter is included
so η̂2 and ν̂2 capture the combined low-frequency and
wave-frequency motion. For shorter periods of time this
may be acceptable, which is the case during transients.

3.3 Controller

The control objective is to control the vessel to the de-
sired time-varying trajectory ηd(t) with the desired ve-
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locity trajectory νd(t). The proposed control law is

ζ̇s = η̂s − ηd
τ = −KpR

>(ψnm)(η̂s − ηd)−Kd(ν̂s − νd) (8)

−KiR
>(ψnm)ζs +Mν̇d +DLνd.

τ ∈ R3 is the commanded thrust vector, Kp,Kd,Ki ∈
R3×3
≥0 are gain-matrices, and η̂s and ν̂s are the estimates

from the model-based observer when s = 1, and from
the signal-based observer when s = 2. ζs compensates
for the unknown bias force vector b with dynamics ḃ =
−T−1

b b. The last two terms in (8) are feedforward terms
of the desired acceleration and desired velocity. For the
stability analysis of the controller, it is assumed that:

(A3) The yaw rate ωb(3,1) (also denoted ν(3,1)) is bounded,

|ωb(3,1)| < rmax, and Ki and Tb commute with R(ψ) 4

(Lindegaard and Fossen, 2003).

The following result is proven in Lindegaard and Fossen
(2003).
Claim 3: If Assumption (A3) holds, and the controller
gains are chosen so that the system matrixAc (see below)
is Hurwitz, the origin of the tracking error dynamics,
consisting of the control plant model using control input
with state feedback, (8) inserted the real states η, ν, is
UGES. 2

We note, for later use, that the tracking error dynamics
have the form ė0 = T>(ψ)AcT (ψ)e0 with

e0 = [ξ>, b>, (η − ηd)>, (ν − νd)>, ζ>]

Ac =

Aω 0 0 0 0

0 −T−1
b

0 0 0

0 0 0 I 0
0 I −M−1Kp −M−1(DL+Kd) −M−Ki
0 0 I 0 0

 ,
T (ψ) = blkdiag([I,R>(ψ), R>(ψ), I, R>(ψ)]),

where T (ψ) is a block diagonal matrix. A Lyapunov func-
tion of the form V0(e0, ψ) := e>0 T

>(ψ)PT (ψ)e0 with
P = P> > 0, where P satisfies the linear matrix in-
equality (LMI) PAc+A>c P < 0, that verifies the UGES
property asserted in Claim 3.

4 Hybrid system

In this paper we propose a new hybrid strategy for
DP systems in order to cope with both stationary
and transient dynamics. In general, a hybrid system

4 Ki = diag([k1, k1, k2]), Tb = diag([t1, t1, t2]) are used. The
North and East gains/time constants are equal, which for
a marine vessel is justified, since the environmental changes
have roughly the same dominating frequencies in surge and
sway.

H = (C,F,D,G) is written formally as

x ∈ C ẋ ∈ F (x) (9a)

x ∈ D x+ ∈ G(x), (9b)

where x is the hybrid state, C is the flow set, F is the
flow map, D is the jump set, and G is the jump map.
When x is in C, then the states are allowed to flow, and
when x is in D the states are allowed to jump (Goebel
et al., 2012). In this section the hybrid DP control sys-
tem is assembled, starting with the performance moni-
toring and switching logic that choose the appropriate
estimates to use in output feedback with (8). The per-
formance monitoring and switching logic dynamics can
be written as:

ṁi = 0, i = {1, ..., n} (10a)

ṫm = −1 (10b)

ṡ = 0 (10c)

m+
i =

{
||η̂1(1:2) − η̂2(1:2)||, for i = 1

mi−1, for i = {2, ..., n} (10d)

t+m = T (10e)

s+ =


1, if m̄ ≤ εss
2, if m̄ ≥ εtr
2, if νd(3,1) ≥ δ
s, otherwise,

(10f)

wheremi are monitoring states, tm is a timer, and s is the
switching signal. In order to evaluate the performance
of the observers, we choose to compute the difference in
estimation error in North and East (pnm− η̂2(1:2))−(pnm−
η̂1(1:2)) = (η̂1(1:2)− η̂2(1:2)), and take the Euclidean norm
of this difference, see (10d). This signal may oscillate a
lot, so we take the average of n of the past values that are
saved in the shift register of size nwith statem ∈ Rn, i.e.,
m̄ = 1

n

∑n
i=1mi. We call m̄ the performance monitoring

signal, and switch based upon this quantity in (10f).
m does not change during flows, (10a). During flows,
tm decreases with unitary rate (10b), and is reset to
T during jumps. A new jump is triggered when a new
position measurement is available, when tm = 0, so the
position measurement has sample time T . The jump map
for the switching signal s, including performance and
heading change monitoring is (10f), where εss ≥ 0 is the
estimation difference we expect to see in steady state,
and εtr ≥ 0 is the estimation difference we expect to see
during a transient. Choose εtr > εss with some margin to
provide hysteresis that suppresses unnecessary switching
back and forth. The signal-based observer is chosen in
closed loop if the desired yaw rate νd(3,1) is larger than
a threshold δ ≥ 0, as we know that the forces on the
vessel hull will change rapidly in this situation. s does
not change during flows (10c).

For later use, we look closer at the steady state behavior
of the performance monitoring states. Inserting for the

5



steady-state observer estimates we have that η̂1(1:2) =
η(1:2) (Claim 1), and η̂2(1:2) = pn(1:2) (Claim 2). During

steady state, the performance monitoring states mi, i =
{1, ..., n}, are

mi =
(
||η(1:2) − pn(1:2)||

)
i−1

=
(
||ηw(1:2)||

)
i−1

, (11)

corresponding to the norm of the wave-frequency mo-
tion ηw = Wξ in North and East, for each sample i in
the shift register. The wave states ξ go to zero during
steady state, since Aω in (3a) is Hurwitz. In this case m̄
is also zero, and we would like to use the model-based
observer estimates in output feedback with (8) during
steady state. This is because these estimates are wave fil-
tered, and hence reduce the wear and tear on the propul-
sion system. During a transient, the observers do not
agree, and then m̄ is larger. Since the signal-based ob-
server presumably performs better in transients, these
estimates are used in closed loop during these times.

The control plant model and the kinematic model repre-
sent, with some overlap, the same underlying dynamics
being the motion of the vessel. We assume that:

(A4) The solutions to the control plant model and kine-
matic model dynamics are forward complete 5 .

Then the solutions exist for all positive time. The track-
ing error analysis in Lindegaard and Fossen (2003)
(Claim 3) makes sure that x1 behaves as it is meant
to, i.e., η converges to ηd and ν converges to νd. From
the relation between the control plant model and kine-
matic model (2), we have that [pn>(1:2),Θ(3,1)]

> goes to

ηd, and [vb>(1:2), ω
b
(3,1)]

>, goes to νd. The heave, roll, and

pitch states in the kinematic model are not controlled,
and hence do not converge to a reference. Therefore the
kinematic model with state x2 is not included in the
hybrid analysis. We define the state vector of the hybrid
system as

x := (x1, ζs, x̂1, x̂2,m, tm, s) (12)

∈ R15 × R3 × R15 × R22 × Rn × [0, T ]× {1, 2},

consisting of the control plant model state x1, the inte-
gral state in the control law ζs, the model-based observer
estimates x̂1, the signal-based observer estimates x̂2, the
performance monitoring states m, the timer tm, and the
switching signal s. The flow dynamics of the hybrid sys-
tem constitutes the vessel described by the control plant
model, controller, observer, and timer dynamics. The
states x1, ζs, x̂1, and x̂2 do not change during jumps, i.e.,
x+

1 = x1, ζ
+
s = ζs, and so on. The dynamics for m, tm,

5 A solution with an unbounded time domain is called com-
plete, (Goebel et al., 2009, p. 41).

and s are given by (10). Flows are allowed when x ∈ C,
and jumps are allowed when x ∈ D, defined by

C := R55+n × [0, T ]× {1, 2} (13)

D := R55+n × {0} × {1, 2}. (14)

5 Stability

We are analyzing stability of the set

A := C ∩ ({x1d} × {0} × {x1d}
×{x2} × {0} × [0, T ]× {1, 2}) . (15)

This corresponds to the vessel tracking the desired tra-
jectory, with x1d = [0, 0, η>d , ν

>
d ]>, and the controller in-

tegral state ζs converging to zero. The model-based es-
timates being equal to the control plant model state x1,
which goes to x1d, and the signal-based estimates being
equal to the kinematic model state x2. The performance
monitoring statesm go to zero, as discussed around (11),
and the timer tm and the switching signal s stay within
A by design.

Theorem 1 Under Assumptions (A1-A4) the set A
given by (15) is GAS for the hybrid system given by the
control plant model, the observers (3), (5)-(6), the con-
troller (8), the performance monitoring and switching
logic (10), and the flow and jump sets (13)-(14). �

Proof: The proof follows from Goebel et al. (2009),
Corollary 19. By splitting the control law (8) into a state
feedback part and a part that is due to estimation error,
the tracking error dynamics and observer error dynam-
ics can be written in a cascaded structure,

ė0 = F0(e0) + g(e0, es) (16a)

ė1 = F1(e1) (16b)

ė2 = F2(e2) (16c)

e+
0 = e0, e

+
1 = e1, e

+
2 = e2. (16d)

(16a) is the tracking error dynamics with tracking er-
ror e0 = [ξ>, b>, (η − ηd)>, (ν − νd)>, ζ>]> and estima-
tion errors es, with s = 1 model-based estimation er-
ror, and s = 2 signal-based estimation error. g(e0, es)
is the additional control input due to estimation error,
where g(e0, es) = KpR

>(ψnm)(η − η̂s) + Kd(ν − ν̂s) +
KiR

>(ψnm)(ζ−ζs). The switching signal s decides which
observer perturbs the tracking error dynamics. (16b,c)
are the model-based and signal-based estimation error
dynamics. The rest of the observer error dynamics are
given by (10). The flow and jump sets for (10) and (16)
are:

C ′ := R55+n × [0, T ]× {1, 2} (17)

D′ := R55+n × {0} × {1, 2} (18)
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To prove Theorem 1, it is sufficient to prove global
asymptotic stability (GAS) of the set

A′ := {055+n} × [0, T ]× {1, 2}, (19)

for the hybrid system H := (C ′, F,D′, G) given by (10)
and (16)-(18). This is done in two steps.

Step 1. We prove GAS of A′ for Hβ := (Cβ , F,Dβ , G),
which is H with the flow and jump sets intersected with
βB × R37+n for β > 0 and unit ball B ∈ R18; Cβ :=
C ′∩(βB×R37+n) andDβ := D′∩(βB×R37+n). Firstly,
the compact set

A1 := {βB} × {037+n} × [0, T ]× {1, 2}, (20)

is GAS for Hβ . This follows from the analysis in Fossen
and Strand (1999), Bryne et al. (2015) and Grip et al.
(2015) resulting in UGES origin of the observer error
dynamics (Claim 1 and 2). Then, we prove GAS of A′
for H|A1

:= (C ′ ∩A1, F,D
′ ∩A1, G). When the solution

is in A1, we have state feedback so that (16a) is ė0 =
F0(e0), since es = 0, and g(e0, 0) = 0. The analysis in
Lindegaard and Fossen (2003) give UGES origin of the
tracking error dynamics with state feedback (Claim 3).
Applying Corollary 19 in Goebel et al. (2009), we have
that the compact set A1 is GAS for Hβ , and that the
compact set A′ ⊂ A1 is GAS for H|A1

. Then A′ is GAS
for Hβ .

Step 2. We use this preliminary result to prove GAS of
A′ for H without restrictions on e0 in the flow and jump
sets. The solutions of H are the solutions of Hβ when
e0 ∈ βB. The only thing left to prove is that the basin of
attraction is the entire space, so that for each solution,
β can be chosen large enough so that the βB intersection
has no effect. The observer solutions es can be bounded
by ||es(t)|| ≤ λ1||es(t0)||e−λ2(t−t0) for λ1, λ2 > 0 that
are dependent on initial condition es(t0). Integrating
es(t) over time, we get∫∞

t0
||es(t, t0, es(0))||dt ≤ φ(||es(t0)||), ∀t0 ≥ 0,

with φ(||es(t0)||) = λ1

λ2
||es(t0)||. g(e0, es) can be

bounded in terms of es by ||g(e0, es)|| ≤ γ||es||, γ ≥
||[Kp, Kd, Ki]

>||. Then, the only state that can grow un-
bounded is e0, but this is ruled out by the following. The
Lyapunov function V0(e0, ψ), defined below Claim 3, for
(16a) with g(e0, es) = 0 and F0(e0) = T>(ψ)AcT (ψ)e0

satisfies∣∣∣∣∣∣∣∣∂V0(e0, ψ)

∂e0

∣∣∣∣∣∣∣∣ ||e0|| ≤ c1||e0||2, ∀||e0|| ≥ µ (21a)∣∣∣∣∣∣∣∣∂V0(e0, ψ)

∂e0

∣∣∣∣∣∣∣∣ ≤ c2, ∀||e0|| ≤ µ (21b)

with c1 = 2λmax(P ) and c2 = 2λmax(P )µ, with
λmax(P ) being the largest eigenvalue of P . (21b) holds

for all headings ψ. (21) ensures that e0 stays bounded
(Loria, Fossen, and Panteley, 2000), so that each solu-
tion of H has to converge to A′ because it is a solution
to the system Hβ for large enough β and the solutions
of Hβ converge. Hence, A′ in (19) is GAS for the hybrid
system H given by (10) and(16)-(18), which concludes
the proof. 2

When applying Assumption (A1) we assume that the
control plant model is an exact deterministic model of
the real vessel dynamics. Then there may only be switch-
ing due to reference changes and due to transients during
initialization. However, as shown through experiments
in Section 6, switching based on performance is triggered
because Assumption (A1) of slowly-varying bias loads
does not hold during transients. Performing an analy-
sis of the hybrid system with randomness is a topic for
further work, see Teel et al. (2014).

6 Experimental setup, results and discussion

The model-scale experiments were conducted with C/S
Inocean Cat I Drillship, a 1:90 scale model with dimen-
sions (length, beam) = (2.578 m, 0.44 m) in the Ma-
rine Cybernetics Laboratory (MCLab) at NTNU. The
full-scale DP data was collected during the AMOS DP
Research Cruise 2016 (ADPRC’16) onboard R/V Gun-
nerus, see Skjetne et al. (2017) for details. The model-
based observer was in both cases tuned using tuning
rules in Fossen (2011), Ch. 11, for good steady state, and
adequate transient performance. The same IMUs were
used to provide input to the signal-based observer both
in model-scale and full-scale, showing that the proposed
hybrid observer setup is robust to large variations in
signal-to-noise ratio. In full-scale, the signal-based ob-
server tuning from Bryne et al. (2015) was tweaked to
work better for R/V Gunnerus, but in the MCLab the
tuning was found from scratch. Tuning of the controller
in the MCLab was found using standard PID tuning
rules (Fossen, 2011, Ch. 12), which were tweaked to work
well with both observer estimates in feedback. The al-
gorithms were coded in Matlab/Simulink and run in NI
Veristand 6 software.

6.1 Model-scale experiments

Wind loads constitute a lot of the mean forces on the
vessel hull, and since wind is not available in the MCLab,
the directional dependence of the bias force that is seen
in full-scale applications was less prominent in the lab.
Hence, switching based on observer performance was
triggered by pushing the model off setpoint using a boat-
hook, inducing an unknown, rapid transient, see Fig-
ure 2. The model is pushed off setpoint twice; at time

6 The Bogacki-Shampine solver (Matlab ode23) was used
with fixed step 0.01 s, www.ni.com/veristand/.
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Fig. 2. Closed-loop control: C/S Inocean Cat I Drillship is pushed off position using a boat-hook at time 170 s and 520 s.
North-East position track (left), heading, estimation error, monitoring signal and switching signal (middle), details of the
second transient (right). Position and heading trajectories are red when model-based estimates are used in closed loop, and
black for signal-based estimates. Environmental conditions corresponding to rough full-scale sea state with significant wave
height Hs = 3.6 m, peak period Tp = 10.4 s, head sea, no wind nor current, εtr = 0.02, εss = 0.005, δ = 0.05.
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waves with significant wave height Hs = 0.2 m, peak period Tp = 13.6 s, and direction 260◦. εtr = 0.5, εss = 0.03, δ = 0.2.
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170 s and 520 s. In the first transient, the observer is
fixed with the model-based observer in closed loop. The
vessel spends a long time coming back to the setpoint,
since the estimates from the model-based observer (es-
pecially the velocity estimate) is off during the tran-
sient. In the second transient the observer is allowed to
switch based on performance, and chooses the signal-
based observer in closed loop for most of the transient,
although there is some switching back and forth. The
heading reaches steady state somewhat faster when the
signal-based observer is in closed loop, although compar-
ison of the two pushes can be seen only as indications
of performance since the conditions were not identical.
Brodtkorb et al. (2016) and the section below compares
the model-based observer, signal-based observer and hy-
brid approach in closed loop and estimation performance
on full-scale data, respectively. Switching during head-
ing changes, based on desired yaw rate, worked well in
the MCLab. How large δ is chosen should be dependent
on the vessel size and the maximum desired yaw rate.
The thrust usage when the model-based or the signal-
based observer estimates were used in closed loop was
not significantly different, though the signal-based esti-
mates made the thrust more oscillatory, as expected.

6.2 Estimation based on full-scale measurements

Figure 3 shows estimation results on full-scale R/V Gun-
nerus data from a DP 4 corner maneuver, and that the
hybrid observer switches due to transients. If the third
and fourth parts of the maneuver were to be done close to
other offshore infrastructure, R/V Gunnerus may have
been required to either reduce the speed, or choose an-
other control strategy in order to stay on the desired
straight-line segments of the square. In the fifth ma-
neuver, a pure surge motion should not induce much
transients, however in this dataset the heading oscillates
±3◦, and therefore the signal-based observer is chosen
for most of the leg. Depending on the vessel size, propul-
sion system, and instrumentation, a smarter choice of
controller could make the vessel stay on the desired path
with a higher speed, reducing the vessel operation time.

Figure 4 and Table 1 show the cumulative estimation er-
rors over time when the model-based, signal-based and
hybrid observer (switching between the model-based and
signal-based) are used for estimation on full-scale data.
The hybrid observer has the lowest estimation error at
the end of the time series in surge and sway, a bit lower
than the signal-based observer, and much lower than the
model-based observer, which accumulates estimation er-
ror fast during transients. The signal-based observer has
the smallest estimation error in yaw; 34% lower than
the model-based observer, and 28% lower than the hy-
brid observer. A reason may be that the signal-based
observer uses more information about the yaw angle
through the yaw rate to construct the estimate. Keep in
mind that the maneuver R/V Gunnerus performs in this

case includes a lot of transients, and therefore favors the
signal-based observer over the model-based observer. In
the case where there are more periods of steady state,
the model-based observer and hybrid approach are more
beneficial.

Table 1
Cumulative estimation errors for the model-based, signal-
based and hybrid observers at the end of R/V Gunnerus’
DP 4 corner maneuver.

Observer Surge [m] Sway [m] Yaw [deg]

Model-based 1368.3 998.0 1372.7

Signal-based 964.3 949.9 902.9

Hybrid 945.1 901.3 1247.3
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Fig. 4. Cumulative estimation error when the model-based,
signal-based and hybrid observers are used for estimation on
full scale field data from R/V Gunnerus doing a DP 4-corner
maneuver.

7 Conclusion

A general hybrid control strategy for marine control sys-
tems providing a redundant design methodology for ro-
bustness to system errors was proposed in this paper. An
example of a such control system improving the transient
vessel response in dynamic positioning was given. Per-
formance was shown through model-scale experiments,
and estimation on full-scale field data.
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