
June 2009
Trond Kvamsdal, MATH
Knut-Andreas Lie, SINTEF

Master of Science in Physics and Mathematics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Mathematical Sciences

Sparse linear algebra on a GPU
with Applications to flow in porous Media

Audun Torp

Problem Description
This master thesis evaluates how Graphical Processing Units (GPUs) may be utilized to increase
the speed when performing numerical simulations. A physical problem is solved in parallel on a
normal desktop computer with Nvidia graphics processors.

The physical phenomenon simulated in this report is flow of a single fluid in a porous media. We
discuss simple mathematical models describing fluid reservoirs as well as some more complex
ones. The simple model is aimed towards Cartesian grids while the more elaborate models are
designed for general grids.

In this assignment we will perform the following:
 1. Analyze mathematical models describing the reservoir.
 (a) Explain the two point flux approximation method (TPFA) used in the specialization project.
 (b) Discretize flow in porous media with the mimetic method, mixed element method,
 or the O-method.
 2. Create a conjugate gradient (CG) solver for a linear system of equations in the CUDA
 programming language.
 (a) Improve the specialization project to support double precision.
 (b) Analyze numerical errors of the results.
 3. Look at different implementations of sparse matrices in CUDA.
 (a) CUDA data parallel primitives (CUDPP)
 (b) How CUBLAS can exploit matrix structure.
 i. Positive definite matrices.
 ii. Symmetric matrices.
 iii. Band matrices.
 4. If time allows it, look into:
 (a) The connection between Matlab and CUDA.
 (b) How to simulate the behavior of a reservoir over time.

Assignment given: 27. January 2009
Supervisor: Trond Kvamsdal, MATH

Abstract

We investigate what the graphics processing units (GPUs) have to offer
compared to the central processing units (CPUs) when solving a sparse
linear system of equations. This is performed by using a GPU to simu-
late fluid-flow in a porous medium. Flow-problems are discretized mainly
by the mimetic finite element discretization, but also by a two-point flux-
approximation (TPFA) method. Both of these discretization schemes are
explained in detail. Example-models of flow in porous media are simulated,
as well as CO2-injection into a realistic model of a sub-sea storage-cite.

The linear algebra is solved by the conjugate gradient (CG) method with-
out a preconditioner. The computationally most expensive calculation of this
algorithm is the matrix-vector product. Several formats for storing sparse
matrices are presented and implemented on both a CPU and a GPU. The
fastest format on the CPU is different from the format performing best on
the GPU. Implementations for the GPU is written for the compute unified
driver architecture (CUDA), and C++ is used for the CPU-implementations.
The program is created as a plug-in for Matlab and may be used to solve
any symmetric positive definite (SPD) linear system.

How a GPU differs from a CPU is explained, where focus is put on how
a program should be written to fully utilize the potential of a GPU. The
optimized implementation on the GPU outperforms the CPU, and offers a
substantial improvement compared to Matlab’s conjugate gradient method,
when no preconditioner is used.

ii

Preface

This thesis is my submission for a masters degree in the field of numerics
(TMA4910) at the Norwegian University of Science and engineering (NTNU).
The topic is proposed by SINTEF, as a continuation of the specialization
project TMA4500. My assignment is to use a graphics card to solve linear
algebra while broaden my knowledge of numerical methods.

This topic fascinates me, and inspired me to change direction of spe-
cialization. I was studying cryptography and number theory in Japan last
year, but have now switched to numerics. Getting the numerical knowledge
I wanted demanded a lot of work and delayed my start, but now it feels like
it was worth the effort.

My supervisor Trond Kvamsdal has provided me with valuable input
throughout this thesis. Being able to meet on a regular basis have helped
me through many of the small problems that appeared along the way. His
good mood, in spite of being busy most of the time, has made our meetings
pleasant and constructive, and I would like to thank him for his support.

The individuality that is required to write a thesis like this one, can make
the daily life very lonely. Having mathematical consultancy and contact with
my co-students have been vital to me. I would especially thank my girlfriend
Ingrid G. Dragset for being positive to my suggestion of meeting once a week
to exchange our progress in a mathematical and structured fashion. However,
our exchange of loving words and support outside the mathematical universe
has of-course been more important.

I would also like to thank Knut-Andreas Lie. He has taught me how
a report should be structured, and helped me set up the Matlab reservoir
simulation toolbox (MRST). This toolbox has been a useful bridge between
the linear algebra solver and the mathematics of discretizing flow in porous
media, so I am happy that such a software is available for free.

Stein Krogstad has a profound knowledge of the discretization techniques
used in this thesis. I am grateful for the input he has given to deepen my
mathematical understanding. I have at several occasions been able to visit
him, Knut-Andreas Lie, and the other researchers at SINTEF in Oslo, and
thank NTNU for covering my travelling expenses as well as providing me
with an awesome graphics card for my home computer.

Audun Torp
Trondheim, June 2009.

iii

iv

Contents

1 Introduction 1
1.1 Knowing the hardware . 1
1.2 Characterization of the problem 3
1.3 Outline of the thesis . 3

2 Hardware 5
2.1 What separates a GPU from a CPU? 5

2.1.1 Movement towards similar properties 6
2.1.2 Why use the GPU? . 7

2.2 The similarities of graphics and numerics 8
2.3 A brief history of GPU programming 8
2.4 Programming in CUDA . 9
2.5 Hardware structure . 10

2.5.1 Structuring threads for a kernel-launch 11
2.5.2 Latency hiding . 11
2.5.3 Coalescing . 12
2.5.4 Constant cache and texture cache 12
2.5.5 Output from profiling 13

2.6 Compiling a CUDA program 13

3 Physical background 15
3.1 Flow in porous media . 15
3.2 Conservation of mass . 16
3.3 Darcy’s law . 17
3.4 Assembling the elliptic PDE 18

4 Numerical methods 19
4.1 Two point flux approximation scheme 19

v

4.2 The O-method . 21
4.3 Mixed formulation . 23
4.4 Hybrid formulation . 24

4.4.1 Building the linear system 26
4.4.2 Schur-complement reduction 27

4.5 Mimetic finite element method 27

5 Linear algebra solvers 33
5.1 Choosing an appropriate solver 33
5.2 Overview of the CG method 34
5.3 Iterative smoothers and multi-grid 36

6 Implementations 38
6.1 Finding the kernels of the program 38
6.2 The CG algorithm . 39

6.2.1 Additions to the CG code 40
6.2.2 Solving in mixed precision 41

6.3 Sparse representations . 43
6.3.1 Sparse matrix libraries for CUDA 43
6.3.2 General sparse formats 45
6.3.3 Problem-specific sparse formats 46
6.3.4 Hybrid representation 47

6.4 Implementation of the matrix-formats 48
6.5 The Matlab reservoir simulation toolbox 49
6.6 Data transfer between Matlab and C++ 50
6.7 Compiling the program . 51
6.8 Implementing a kernel for CUDA 52
6.9 Using the CUDA profiler . 54

7 Numerical Experiments 58
7.1 Two-dimensional verification model 59
7.2 Models from the Matlab Reservoir

Simulation Toolbox . 60
7.2.1 The narrow passage example 60
7.2.2 The fault-crossing example 61

7.3 The Johansen data set . 62
7.4 Analyzing the matrix-structures 63

7.4.1 TPFA discretization 63
7.4.2 Mimetic discretization 64

7.5 Assembling the linear systems 66
7.6 Speed of the sparse formats 67

vi

7.7 Solving the Johansen formation 71
7.8 Using the mixed precision solver 75
7.9 Summary of the results . 76

8 Conclusions 78
8.1 Conclusions in more detail . 79
8.2 Further work . 80

vii

viii

Chapter 1
Introduction

For many decades, the performance of processors has been dictated by Moore’s
law [20], which states that the number of transistors per chip doubles roughly
every second year, and the performance is doubled around every 18th month.
Until recently, we have seen this performance growth in the form of higher
clock rates, and larger cache-sizes. However, the generation of heat and
increasing power consumption have stopped the clock frequency of proces-
sors from rising much above 4 GHz. Improvements are now realized as an
increasing number of processor-cores on the central processing units (CPUs).

Computer games and gaming consoles has rapidly market. The sales of
gaming hardware have doubled year after year. Nearly 41 million game con-
soles were sold in 2008 [44], and the demand for high-end computer graphic
cards is following the same trend. The race to improve realism in computer
games has pushed the Graphics Processing Units (GPUs) up to performances
of Terra-flops (trillion floating point operations per second). This perfor-
mance is achieved by focusing on the ability to perform pure calculations of
parallel nature. GPUs outperform CPUs on such tasks (see Figure 1.1), but
CPUs are also turning more parallel. Certainly, programmers have to write
parallel code in order to make benefit of current and coming hardware.

1.1 Knowing the hardware

The switch from sequential to parallel computing offers new challenges to a
programmer. Not all tasks are easy to solve in parallel, and a parallel im-
plementation has often a different approach than its sequential counterpart.
Some problems even have a sequential nature, making them unsuitable for
parallel implementation. It is therefore becoming more important for a pro-

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Performance of recent GPUs compared to CPUs in floating point
operations per second (flops), taken from the CUDA programming guide [29].

grammer to classify his problem, and be aware of the costly computations,
or the kernels, of his program.

A kernel is a (computational expensive) part of a program, which signif-
icantly contributes to its runtime. Kernels define the limits and possibilities
when it comes to optimizing a program for speed, since an improvement in
the runtime of a kernel process gives a noticeable change in runtime for the
whole program.

At the same time, a programmer needs to be aware of different avail-
able hardware and their characteristics. Available hardware can range from
personal computers, gaming consoles, and supercomputers, down to micro
controllers and cellular phones. The choices of hardware vary in price, acces-
sibility and hardware layout.

Where processors are located on the hardware and how the memory is
structured around them plays an important role in deciding how well the
hardware performs on a certain task. Knowledge of the design of the hard-
ware at hand is also vital when writing parallel code for it. At present,
different designs of parallel processors require different programming, and
even different languages, but a universal language OpenCL is released, and
compilers for different hardware is under development. Even though compil-
ers take over some of the optimization in the future, knowing the hardware
layout is crucial when implementing for top performance.

2

1.2. CHARACTERIZATION OF THE PROBLEM

A group of researcher met at Berkeley in 2006 to discuss the upcoming
challenges related to parallel computing. They categorized different compu-
tational tasks into what they called dwarfs [3]. Such a dwarf is a classification
of problems relying on the same type of calculations, and should run well on
the same type of hardware. Problems belonging to the same dwarf may also
be solved using the same type of kernel-implementation. Usually, however,
problem-specific kernels achieve better performance.

1.2 Characterization of the problem

In this thesis, the aim is to simulate fluid-flow in a porous medium when
a grid-structure and the flow-properties of the medium (the permeability)
are given. Fluid flow in porous media can be reduced to an elliptic partial
differential equation (PDE). We search for an approximate solutions to this
equation, satisfying a set of criteria on each cell in the grid. Then, the PDE
can be solved by a linear system of equation.

How the linear system is built from the PDE is called the discretization.
Such discretizations vary in complexity, but is generally calculated quickly
on a computer. The computational expensive operation is to solve the linear
system, and this is the kernel of our problem. This task is well described
by the second dwarf called sparse linear algebra, which the research group
presented in [3],

The challenge of this thesis, is to bridge the gap between the kernel of
solving sparse linear systems with the hardware of Nvidia’s programmable
graphics cards. (see illustration in Figure 1.2). This is achieved by writing
appropriate algorithms that are solving the kernels, while making the most
out of the hardware. Here, we need to match the problem of flow in porous
media with the hardware that is available for this thesis, which is Intel’s Core
2 Quad 6600 with a GeForce 260 graphics card.

1.3 Outline of the thesis

This thesis is organized as follows. First, we look at the characterizations
of a graphics card in Chapter 2. We explain the major differences between
a GPU and a CPU, and outline the important hardware properties that a
programmer needs to be aware of when programming for speed on a GPU.

Chapter 3 presents the physical problem, and we derive the elliptic equa-
tion describing flow through a porous medium. Techniques for discretiz-
ing the elliptic equation are explained in Chapter 4. We put extra em-

3

CHAPTER 1. INTRODUCTION

Figure 1.2: The challenge of parallel computing is illustrated by a bridge. We
have to bridge the gap between the kernel process at hand and its suitable hard-
ware. In this thesis, the kernel is to solve sparse linear algebra by the conjugate
gradient method and the hardware is a programmable graphics card supporting
CUDA. The picture is inspired by a group of researchers who met at Berkeley [3].

phasis on the mimetic finite element discretization and the two-point flux-
approximation (TPFA) method. A TPFA discretization results in a relatively
small system of linear equations, and is therefore solved quickly. The advan-
tage of the mimetic formulation is that it is able to discretize models with
complex geometries in a straight-forward manner.

The conjugate gradient (CG) method is a method to solve the system of
linear equation. We explain the method in Chapter 5, and implement it for
the GPU in Chapter 6. The linear system is represented by using a sparse
matrix-format. Several sparse matrix-formats exist, and the format which is
best suited for the CPU is not necessary the best format to implement for
the GPU.

In Chapter 7, we analyze the speed of the different sparse formats. We
create linear systems by mimetic discretizations of example models, as well
as a simplified model of an off-shore cite for CO2 deposit. These systems are
solved by the CG algorithm by using the sparse matrix-formats on both the
CPU and the GPU. We draw the conclusions of the result in Chapter 8.

4

Chapter 2
Hardware

In order to fully utilize the computational potential of GPUs, one have know
the hardware layout. In this thesis, we look at graphics cards with support
for the compute unified driver architecture (CUDA). Memory communica-
tion is usually the bottleneck of the applications running on such devices.
We therefore present the most important methods to maximize the memory
throughput in Section 2.5, but before that we explain the characterizations
of a GPU.

2.1 What separates a GPU from a CPU?

CPUs in modern computers are optimized for high performance on multiple
programs running sequential code. The main purpose of a CPU is to be
compatible with numerous instructions and perform well on general code.
The exponential growth in performance from both the CPU and the GPU is
not matched by the same increase in speed of the internal memory (RAM)
on the motherboard [23]. Because of this, a CPU has to employ methods
for handling memory in an efficient way. Many transistors on the CPU are
therefore devoted to advanced communication and administration techniques
like out-of-order execution and branch prediction [17].

Branch prediction is a method used to guess the memory address of fol-
lowing instructions. With good guessing, a CPU can request the instructions
from memory long before they are executed. This decreases the time the CPU
wastes on waiting for the memory to arrive.

Out-of-order execution is a queuing system for instructions on the CPU.
Supported instructions have their respective resources with a physical loca-
tion. If a processor is supporting out-of-order execution, instructions can line

5

CHAPTER 2. HARDWARE

up for their resource and run as soon as it becomes available. The results
are coordinated and synchronized automatically afterwards. Techniques of
handling memory together with the support of task switching makes a CPU
perform well when running operation systems.

In contrast to a CPU, a GPU focuses mainly on floating-point multipli-
cation and addition, together with the ability to execute many threads in
parallel. Memory is located physically closer to the processors and memory
transfer has a large bandwidth within the graphics card (111.9 GB/s on a
GeForce 260). Bandwidth is the maximum amount of data that can be trans-
ferred per second. It should not be confused with memory latency, which is
the time spent waiting from data is requested until it is received. A graphics
card has a particular structure of its memory which we discuss in Section 2.5.
However, it does not have the a system choosing how the memory should be
used for optimal performance [29]. Increased performance can therefore be
attained by programming specifically where and when memory should be
stored on the graphics card.

GPUs outperform CPUs on some tasks, but the arithmetic power of a
GPU results from a highly specialized architecture. Many applications exists
for which GPUs are not well suited, and probably never will be. A classical
example of such a program is a word processor, which is a pointer chasing ap-
plication, dominated by memory communication. Such a program is hard to
parallelize and performs better with access to advanced memory instructions
[31].

Other less suited applications for the GPU are cryptographic protocols
and programs working with integers. Current Nvidia GPUs do not support
logical operators and modulus calculations. Compilers have to translate these
instructions to a combination of supported operations that give the same
result [29].

2.1.1 Movement towards similar properties

Double precision (64-bit) floating points have until recently also been re-
placed at compile time, but graphics cards are starting to support addi-
tional instructions. The newest generation of graphics cards from Nvidia;
the GeForce 200-series, has full support for double precision [29], and GPUs
are showing a trend of becoming more general.

CPUs, on the other hand, have a tendency of becoming more parallel.
MMX [32] is a CPU implementation of an operation called single instruc-
tion multiple data (SIMD), which is a basic parallel instruction. A SIMD
operation is a technique for sending the same instruction to a multiple of
processing threads. The instruction is executed in parallel, increasing the

6

2.1. WHAT SEPARATES A GPU FROM A CPU?

amount of data that is processed per second.

Vector addition is a typical example of an instruction which is highly
parallel and runs well on SIMD machines. A standard implementation of
vector addition on a SIMD machine gives each thread the instruction to sum
its own index of the two input vectors. In this way multiple threads work
simultaneously, and several indexes get summed in one clock cycle. MMX was
released with integer support in 1997 by Intel. AMD answered by releasing
3DNow! in 1998, which is a SIMD instruction set supporting floating points
[21]. These have been followed by several SIMD implementations, giving
wider support for parallel implementations on CPUs.

A GPU code-named Larrabee is currently under development by Intel
[36]. This GPU is basically a multi-core CPU with tens of cores, supporting
the same instruction set as a normal CPU. This decreases the distinction
between CPUs and GPUs even more.

2.1.2 Why use the GPU?

Modern CPUs are operating at around 3 GHz, while most GPUs use clock
frequencies close to 600 MHz. As processors are pushing the limits of clock
frequencies the power consumption increase substantially [22]. Even though
GPUs are currently surpassing CPUs as the most power-consuming compo-
nent in a personal computer [39], GPUs can offer a higher performance per
watt. The cost of supplying power to a supercomputer is getting close to the
cost of the supercomputer itself. Performance per watt is therefore becoming
a more important benchmark of supercomputers. There is an official ranking
of the supercomputers delivering the most performance per Watt [10]. It is
created to encourage energy-efficient super-computing.

Even though both the CPU and the GPU enjoy the same technology of
semiconductors, the GPU is able to focus its technology on pure calcula-
tions. In this way, GPUs achieve a yearly growth in terms of flops that have
significantly outnumbered Moore’s law [31]. Comparing Nvidia’s top model
graphics cards with each other, reflects this. A new generation is released
roughly every 12 to 15 month and consists of a series of graphics cards based
on the same processor. The arithmetic throughput was almost tripled be-
tween both the 6- and 7-series, and the 7- and 8-series, while the improvement
between the 8- and 9-series was not as high. The 9-series achieved almost
doubling, rising from 387 Gflops for the GeForce 8800 Ultra to 768 Gflops on
the GeForce 9800 gx2 card [43]. The CPU is also staying a small step ahead
of Moore’s law at the moment, but as we can see in Figure 1.1, it is lagging
behind the GPU at calculation-expensive tasks.

7

CHAPTER 2. HARDWARE

2.2 The similarities of graphics and numerics

Creating graphical realism in games revolves around a set of standard op-
erations defined mainly by the interfaces of OpenGL (developed by Silicon
Graphics SGI [35]) and Direct3D (by Microsoft [5]). A technique of making
graphics in these frameworks is to create 3D-models consisting of triangu-
lar surfaces. These triangles are scaled, rotated, and translated into what
is displayed on the screen. Manipulations of a triangle are conducted as a
matrix-vector product and have analogues to methods for solving linear sys-
tems. Using GPUs for solving linear algebra has therefore been an active
field of research since the appearance of the first graphics cards [15].

Creating effects of light and shadow on a 3D surface is called shading.
These effects can be calculated independently of other surfaces in the same
scene, and the manipulations on a triangle are also well suited for parallel
implementation. Ray-tracing is the second most common way of creating 3D-
graphics, and consists also of many independent calculations [40]. Rendering
3D images is therefore regarded as a highly parallel operation. Thus, in order
to utilize this, graphics cards have evolved into special processors capable of
executing a large number of instructions in parallel.

Lately, these processors have become easier to program for more general
calculations other than just graphics. Competition in the market is pushing
the prices down, and many researchers have caught interest in using this
inexpensive and efficient processing power in new areas of computation.

2.3 A brief history of GPU programming

Initially, the GPU was fixed-function pieces of silicon, created to fulfill a
standard instruction interface defined mainly by OpenGL [35] and Direct-
3D [5]. Numerical calculations could be executed through the instructions
of these interfaces, but the process was often tedious. Numbers had to be
represented as textures, and instructions were limited to the known graph-
ical instructions. Nevertheless, general purpose programming for the GPU
(GPGPU) has been an active field of research for for many years.

The first programmable GPU was introduced in 2001, accepting programs
written in an assembly-like language. However, higher level languages fol-
lowed. Nvidia collaborated with Microsoft to create Cg [25] (C for graphics)
in 2003. Microsoft called it High Level Shading Language (HLSL), and spe-
cialized it for their Direct3D interface [11]. The language is the same, giving
control of the GPU through C language.

Nvidia’s competitor ATI, worked on an abstraction layer for their GPUs

8

2.4. PROGRAMMING IN CUDA

under the name Close-To-Metal [18] (CTM). It was supported by Brook+
[19], which is an open source compiler modified by ATI to support their
GPUs. CTM did not get an official release. Instead, another language called
Stream SDK [2] was released in 2007, with support for Brook+. Stream SDK
is still the best tool for high-level and low-level access to ATI’s, and AMD’s
graphics hardware.

When Nvidia released their GeForce 8-series in 2007, they included a
more general and simple language for programming their GPUs. It was
called compute unified device architecture (CUDA), and has the syntax of
C with a few extensions to handle parallel code [29]. CUDA enables full
control of the GPU and comes with a complete software development kit. An
important feature that is available in CUDA, but not in previous frameworks,
is high-speed synchronization and data sharing between processor threads on
the GPU. Although CUDA only supports Nvidia products, it aims to be a
generalized framework for many-core systems.

Another framework for multi-core processors that was released recently
is the open computing language (OpenCL) [30]. At present, code written for
a supercomputer, a GPU, or a parallel CPU has to be written in different
languages. OpenCL was defined to unify the languages of parallel computing
into one platform. The structure of OpenCL is quite similar to CUDA, aiming
to support various types of hardware. All the largest producers of processors
(AMD, Intel, and Nvidia) are collaborating on the OpenCL project [26], and
most parallel hardware, including GPUs and CPUs, will probably support
OpenCL in the future. However, at present there exists only one OpenCL
compiler [30]. It is built upon CUDA and supports only hardware from
Nvidia.

2.4 Programming in CUDA

CUDA is a good choice of language for parallel programming on a GPU,
especially for those who are new to GPGPU. The difference between CUDA
code and normal C code is easy to grasp if the programmer is familiar with
parallel programming. CUDA has also an emulation mode simulating the
behavior of a GPU on a CPU. This enables debugging, making it a lot easier
to check the code for errors. The programmer can therefore focus on creating
parallel code which is optimized for the hardware.

Graphics cards supporting CUDA has the ability to report back how
well the hardware structure was used on a given kernel-launch. This is called
profiling, and gives the programmer a hint on how the kernel may be changed
to better exploit its structure.

9

CHAPTER 2. HARDWARE

Figure 2.1: Hardware layout of a modern Nvidia graphics card with CUDA
support. A multiprocessor consist of several stream processors, and in current
high-end GPUs each multiprocessor is able to run 1024 concurrent threads [29].

2.5 Hardware structure

A device supporting CUDA consists of one or several multiprocessors as
illustrated in Figure 2.1. Each multiprocessor creates, manages, and executes
concurrent threads in the hardware without any scheduling overhead. This
allows us to do parallelism on a fine scale without loosing efficiency. For
example assigning each thread to do only one small operation, like we do for
the axpy calculation we present in Chapter 6, does not necessarily lead to an
inefficient implementation [29].

The multiprocessors share a common memory located on the graphics
card. If a CPU wants to communicate with the card, it has to read from
or write to this device memory. The device can structure its memory into a
read-only part and a global memory for both read and write.

In addition to this, each multiprocessor has its own shared memory, which
is situated closer to its processors as illustrated in Figure 2.1. Accessing this
shared memory is as fast as accessing the processor’s registers as long as
there are no bank conflicts as we describe in Section 2.5.5. Operating on the
shared memory has then approximately hundred times lower latency than
accessing the global device memory [29]. It is therefore often clever to load
all the data into the shared memory, before running calculations on it [14].

10

2.5. HARDWARE STRUCTURE

2.5.1 Structuring threads for a kernel-launch

Code running on the GPU needs to specify how many processing threads
it will execute simultaneously. The threads have to be structured in blocks.
All threads within a block run at the same time on the same multiprocessor
[29]. The threads are typically executing the same instruction on different
data or with different effect. Threads within a block are therefore structured
along one, two, or three dimensions, and get their own x, y, and z-coordinate
within the block. We use this coordinate to specify the correct data for the
thread, and to distribute the workload.

When an instruction for a block is sent to a graphics card, it is handled
by one of the multiprocessors. The multiprocessor distributes the work us-
ing an architecture called single instruction multiple threads (SIMT). It is
doing basically the same as SIMD (see Section 2.1.1), by sending the same
instructions to each thread in the block. The difference from SIMD is that
threads in a SIMT machine do not need to execute the same instructions at
exactly the same time.

Instead, processor-threads are divided into packs of 32 threads each, called
warps [24], and the workload is distributed among these warps. Every warp
in a block starts at the same place in the code, but is free to progress inde-
pendently of the other warps. We have the possibility to make them wait for
each other on a code-line by using the command syncthreads(). Inside a
warp however, every instruction is sent to all the threads simultaneously. So
if the threads diverge, they will have to wait for each other to finish. As a
worst case, this leads to sequential execution within a warp.

Each multiprocessor on a graphics card supporting CUDA has the ability
to execute at least 768 concurrent threads in parallel. Multiprocessors on
the GeForce 200 series and newer cards can execute 1024 threads [27]. The
maximum number of threads per block is 512. It is therefore necessary to
execute multiple blocks on each multiprocessor for efficiency. We have the
ability to organize the blocks in a grid, so threads has also a three-dimensional
grid-coordinate.

The multiprocessor optimizes the distribution of workload automatically,
by employing warps as soon as they become idle [29]. Warps become idle
either by finishing their instruction queue or while waiting for memory trans-
fers.

2.5.2 Latency hiding

It is often an advantage to load all the data at the same time. We then let
the multiprocessor ask for more data while waiting for the requested memory

11

CHAPTER 2. HARDWARE

Figure 2.2: Illustration of how memory latency is hidden, when loading more data
at once. After requesting data from device memory, threads execute instructions
which are independent of the incoming data, while waiting to receive it. These
instructions may for example be requests for more data.

to arrive as we illustrate in Figure 2.2. The GPU may perform any operation
while waiting to receive data, as long as the operations do not involve the
memory it is waiting for [29]. Utilizing the processor while waiting for data to
arrive is called latency hiding, since it decreases the negative effect of memory
latency.

2.5.3 Coalescing

The global memory space is not cached, so it is important to follow the right
access pattern to get maximum memory bandwidth, especially given how
costly accesses to device memory are. Memory bandwidth is most efficiently
used if the simultaneous memory access of half a warp (16 threads) can be
coalesced into a single transaction of 32, 64, or 128bytes [14].

Recent graphics cards have different requirements for when the memory
can be coalesced than older models. In our test we use a card of the GeForce
200-series (with compute capability 1.3). For a memory transaction to be
coalesced for this card (or later models), the data that is accessed has to lie
in one segment of twice the size of the requested memory [29]. For example,
if each thread loads a word with the size of a byte, the requested memory for
the half-warp has to lie in a segment of 32 bytes size. Similarly we require
segments of 64 bytes for two-byte loads, and 128 bytes for load-sizes of four
or eight bytes. If the requested memory is spread over n segments of the
respective size, n loads are performed.

2.5.4 Constant cache and texture cache

As Figure 2.1 illustrates, we have a constant cache and a texture cache lo-
cated on every multiprocessor. They are speeding up data-fetching from

12

2.6. COMPILING A CUDA PROGRAM

two constant-memory areas of the device memory called constant memory
and texture memory respectively. Accessing textures is highly optimized,
and reading from device memory through texture-fetching presents several
benefits [29].

Both texture fetching and reading through constant memory is cached,
potentially giving higher bandwidth when there is locality in the memory
fetch. The penalties for unstructured reads from global memory do not apply
to textures, as we discuss in Section 2.5.3. Also, memory latency is hidden
better for texture fetches and this might improve performance even more. In
Section 6.9 we analyze how the texture cache may be utilized for our kernels.

2.5.5 Output from profiling

How efficiently the multiprocessors are used on a kernel launch is reported
when profiling is activated. This is given as a occupancy factor telling the
fraction of the total available threads that is actually used. From the profile,
we may also read out the number of divergent branches we get when threads
diverge. These numbers are useful to consider when we look at which part
of a program we can change to avoid wasting time on idle threads.

Another important counter from CUDA profiling is the number of warps
which are serialized due to bank conflict. A bank conflict happens when
threads from the same block tries to access a shared memory in a wrong way.
There are two ways that the threads may use the shared memory correctly.
The access is performed for 16 threads (a half-warp) at the time, and they
may either all read the same value or access one distinct value each. If this
is not the case, the 16 operations are broken down into combinations of legal
access patterns. The access is therefore performed as several accesses instead,
and we have a bank conflict. Bank conflict may also happen if different warps
tries to access the same shared data at the same time.

2.6 Compiling a CUDA program

Code written for CUDA consists of three major parts: the GPU kernels,
CUDA specific code, and normal C or C++ code. The kernels are the func-
tions that run on the GPU. Code specific for CUDA are the instructions for
setting up block sizes, grid sizes, and calling the kernel functions. Both of
these types of code have to be compiled with Nvidia’s nvcc-compiler and can
be linked with the rest of the code by any C compiler. Both CUDA specific
code and normal C code are accepted by nvcc along with the majority of
C++ syntax including objects and templates. An extra compiler is therefore

13

CHAPTER 2. HARDWARE

not mandatory unless unsupported C++ code needs to be included.
Exception handling is one of the few features that are not supported

by the nvcc compiler. Several of the standard C++ libraries have built-in
exceptions, and can only be included in source code which is compiled with
a normal C++ compiler. The library iostream is an example of a commonly
used library implementing exceptions. It is therefore customary on large
programs, to separate the CUDA specific code from the rest of C++ code in
order to utilize such libraries.

14

Chapter 3
Physical background

To utilize the computational power of a GPU on a physical problem, we look
at how fluid flows in a porous medium. The porous medium can be any
substance, where there are pores formed in such a way that liquid or gas is
able to propagate through them. Finding how fast the fluids move through
the medium, and in which directions it propagates has several applications.

3.1 Flow in porous media

We briefly present some of the areas where simulation of flow in a porous
media is used.

Applications in medicine

Knowing how nutrients and blood flows through the body is useful. For ex-
ample, calculating the effect the blood-flow gets from blood-clot and other
abnormalities may increase the analysis and understanding of different dis-
eases. Looking at how medicine in water propagates through the tissue of the
body, may also be helpful for example to be able to more accurately choose
the dozes and to better simulate their effect.

Water-flow in tissue and in bones and blood-flow in capillary veins are
the flow-problems of the body which are best suited for the model we present
here. This is because the pores are relatively small and evenly distributed.
We can therefore look at their average behavior.

15

CHAPTER 3. PHYSICAL BACKGROUND

Analyzing oil-production

Simulating how oil behaves in rock formations is important to maximize the
outcome of oil production from reservoirs lying underground. To drill a well
is expensive, and the profit of extra production is high. A large amount of
research have therefore been conducted on numerical simulation of oil-flow
in reservoirs.

A reservoir consists of large formations of rock, formed over millions of
years, containing layers with organic material. These formations have been
twisted and shaped by the cracking of continental plates and volcanic activ-
ities, forming a complex porous rock structure in which oil is trapped The
pressures are usually high and fluids are able to flow within these sub-sea
reservoirs. This causes hydrocarbons to exist as both fluid and gas, and
makes parts of the oil shoot up by itself if a well is drilled. Such an au-
tomated production is called the primary production. Getting more out of
the oil-reservoir after this primary production, is where the simulation of
the reservoir becomes handy. We can then analyze the effect of different
approaches used to squeeze out more oil. Methods may for example be to
drill new wells, or to inject water or gas into the reservoir.

Determining ground-water flow

Finding how ground-water propagates in soil, earth, and rock can predict
how a possible release of hazardous waste in the ground-water will spread to
areas nearby. It gives indications on where water-polluting industry is best
located.

Predicting the behavior of CO2 storage

Injecting CO2 into rock formations is being used as a way to avoid polluting
the air when fossil fuel is used in for example power-plants. We simulate
the behavior of such a deposit in Section 7.3, were we look at how the CO2

propagates in a sub-sea site called the Johansen formation.

3.2 Conservation of mass

A porous medium is defined as a material volume consisting of a solid with
a interconnected void filled with a fluid or a gas. Porosity φ is given as the
ratio of void space.

Mass cannot appear or disappear. So if we look at a fixed volume Ω of the
porous medium, we know that a change in the fluid mass within this volume

16

3.3. DARCY’S LAW

is a result of a flux through the boundary ∂Ω of the volume, or a variation
in fluid density or medium porosity. This gives the relation

∂

∂t

∫
Ω

(φρ) dV +

∫
∂Ω

(ρ~v) · n̂ dA =

∫
Ω

q dV , (3.1)

where ρ is the mass density of the fluid, n̂ is the outward-pointing normal
vector of the control-volume, and q is the mass injected or ejected through
sources or sinks. In order to use information about the pressure in a porous
medium to solve this equation, we need a measure for the average flux ~v.
We therefore look at Darcy’s law, which relates the average flux with the
pressure gradient.

3.3 Darcy’s law

Through empirical results, the average flow ~v through a cross-section of a
porous medium is found to be linearly proportional to the applied pressure
difference. This linear relation is called Darcy’s law and is valid when the fluid
flows slowly without creating turbulence. In three dimensions it is expressed
as

~v =
−K(~∇p+ ρg~∇z)

µ
. (3.2)

Here, µ is the fluid’s viscosity, g is the gravitational constant, and z is the
upward vertical direction. Both ρ and g are constants. Thus, the expression
within the parenthesis ~∇u := (~∇p+ ρg~∇z) gives the driving forces for flow,
and points in the flow-direction when there are no obstacles. Obstacles and
special geometries in the medium is described by the permeability K which
is a 3 × 3 tensor field. It has dimension (length)2 and depends only on the
geometry of the porous medium. The porosity describes partially the prop-
erties of the medium, but the geometry of the porous medium is important
to describe how fluid will propagate through it, these geometric factors are
included in the permeability K.

Having good estimates for K gives a better characterization of the flow-
problem. On small scales, the permeability is a diagonal tensor field, and
is therefore represented as a diagonal matrix in most models. Commercial
reservoir simulators can seldom run simulations directly on the models when
they become large, and up-scaling has to be performed. The permeability is
then designed to represent the effects of small-scale structures on a coarser
grid. This effective permeability tensor field tries to model the principal
flow directions, which may not be aligned with the Cartesian coordinate

17

CHAPTER 3. PHYSICAL BACKGROUND

directions. We assume therefore only that the permeability K is symmetric
positive semi-definite. This means that if d̂ is a directional unit vector,
then d̂ ·Kid̂ gives a positive number describing how easily a fluid flows in d̂-
direction. The value zero means no flow at all. Parts of the model where fluid
is unable to flow, can therefore be represented by a cell with zero permeability
in all directions. Although finding the permeability is an important step when
simulating flow in porous media, we assume in this thesis that the geometric
structure and permeability is given.

3.4 Assembling the elliptic PDE

The first integral of equation (3.1) vanishes if we assume that the density and
porosity are constant in time. This is the same as assuming incompressible
fluid and that rock porosity φ does not change with the pressure. Then,
simplifying notation by writing f = ρ−1q results in∫

∂Ω

−µ−1(K~∇u) · n̂ dA =

∫
Ω

f dV , (3.3)

which is the origin of most finite volume discretizations. A finite volume
discretization is the technique of dividing the porous medium into grid-cells,
or control-volumes, and approximate this integral for every cell to get a linear
system.

Another way to represent the two equations (3.2) and (3.1) is to write
them separately as partial differential equations (PDEs) on the form

~v = −K~∇u
µ

~∇ · ~v = f .

(3.4)

This system is called the mixed formulation or the first order formulation.
To have a complete model, we also need boundary conditions. These can

be either Dirichlet conditions if the pressure u is given at the boundary, or
Neumann boundary conditions which is when we know the flux ~v · n̂ through
the boundary. In this thesis, we assume that the models are surrounded
by an impermeable matter if we do not specify boundary conditions. This
means that there are no flux in or out of the boundaries.

18

Chapter 4
Numerical methods

We assume that the geometry of the physical models we solve are partitioned
into grids with given permeabilities for each cell. Our task is therefore to
discretize such a model into a linear system of equations, solve the system,
and read back the results for analysis. In this chapter, we describe the first
task of reducing the elliptic PDE describing flow in porous media into a set
of linear equations.

The methods we present are two-point flux-approximation (TPFA) scheme,
the O-method, and a mixed finite-element method. TPFA finds the flux
through a cell-wall from the difference in pressure between the centers of two
cells sharing the cell-wall. In the O-method, we use several pressure-values
at neighboring cell-centers together with the geometry of the cells to get a
more accurate estimate for the flux.

Discretization of the mixed formulation is found by using a finite-element
approach on equation (3.4). It leads to an indefinite linear system which can
not be solved by the conjugate gradient method. Therefore, we introduce
a hybrid formulation to get a symmetric positive definite (SPD) system.
When we analyze geometrically one of the bilinear forms that makes up the
hybrid system we find an inner product that mimics its behavior. Exchanging
the bilinear form with this inner product yields the mimetic finite element
method, and we explain how to discretize general grids by this numerical
scheme.

4.1 Two point flux approximation scheme

The main idea in the first finite volume method we present is to approximate
the flux over an interface by the difference of the driving forces for flow u

19

CHAPTER 4. NUMERICAL METHODS

at the cell centers of the two neighboring cells sharing the interface. If we
look at an interface γij shared by cell i and cell j we approximate the driving
force

~∇u|γij
≈ δuij · d̂ij , where δuij =

uj − ui
Lij

. (4.1)

Here, d̂ij is the direction from the midpoint of cell i to the midpoint of cell
j and Lij = Li + Lj is the distance between them. Finding the change in u
in this fashion is called a two point flux approximation (TPFA).

To assure that the flux can be approximated from only two points, we
need Kn̂ij to be parallel to d̂ij. More precisely, the grid has to consist of
parallelepipeds satisfying n̂ik ·Kn̂ij = 0, where n̂ik and n̂ij are any two non-
parallel normal vectors of the cell. We call this a K-orthogonal grid, and
note that the contribution of ~∇u in the first integral of (3.3) comes in this
case only from changes in u along the direction d̂ij, and we get∫
γij

(−µ−1K~∇u) · n̂ dA ≈ −µ−1δuij

∫
γij

n̂TijKd̂ij dA = −µ−1δuij|γij|n̂TijKd̂ij.

(4.2)
A Cartesian grid is K-orthogonal if the permeability of each cell i is diagonal
Ki = diag(kix, kiy, kiz) in each cell. This is obvious since both the normal

vectors n̂ij and d̂ij is equal to the elementary direction-vectors, and Ki does
not change the direction of these when it is diagonal.

The permeability is usually defined as a constant matrix for each cell,
and is therefore undefined at the interfaces. So in order to use equation
(3.3) we need to approximate K. Since the volumetric flux ~v = −µ−1Ki

~∇u
is assumed to be a constant velocity in each cell, we can find the average
velocity by

v̄ =

∫ j
i
~v dt∫ j
i
dt

=

∫ j
i
d~x∫ j

i
1/~v d~x

=
Li + Lj
Li

~vi
+

Lj

~vj

=
−µ−1Lij
Li

Ki
~∇u

+
Lj

Kj
~∇u

=

(
−µ−1Lij
Li

kir
+

Lj

kjr

)
δuij êk,

where êk is the Cartesian unit vector in the direction from i to j. Hence,

we use the distance-weighted harmonic average Kij êk ≈ Lij

(
Li

kir
+

Lj

kjr

)−1

to

find the mean behavior of two neighboring cells in êk-direction.
The first integrand of (3.3) is in this case a constant and the integral over

cell Ωi is reduced to∫
∂Ωi

(−µ−1Ki
~∇u) · n̂ dA ≈

∑
j

tij(ui − uj) , where tij = µ−1|γij|(
Li
kir

+
Lj
kjr

)−1.

(4.3)

20

4.2. THE O-METHOD

From (3.3) combined with (4.3) we see that the TPFA method seeks a cell-
wise constant u, such that∑

j

tij(ui − uj) =

∫
∂Ωi

f dA , for all cells i. (4.4)

If we have a grid with n cells and Neumann boundary conditions, we get
n − 1 linearly independent equations with n unknowns and one degree of
freedom. Letting the first element of u be a reference with value zero adds
a necessary constraint to have a unique solution. In this case, we assemble
a linear equation A~u = ~b, where element i of ~b is the right-hand side of
equation (4.4). Except for the first diagonal element (which is adjusted for
the reference), the matrix A = [aij] has elements

aik =

∑

j tij if k = i,

−tik if k 6= i and cell k is adjacent to i,
0 otherwise.

(4.5)

This system is clearly symmetric, since tij = tji. The permeability cannot
be negative, so all tij are non-negative, hence A is positive definite. Adding
the positive constant to the first diagonal element a1,1 to account for the
reference pressure still makes the system symmetric positive definite.

The matrix A has a band-structure, with only 7 non-zero diagonals (5 in
2D). Optimizations using both the sparsity and the symmetry of A signifi-
cantly reduce the storage space needed. Such a compact form of A improves
runtime as well, since fewer elements of the matrix need to be evaluated.

Unfortunately, the structures of porous media are often better described
by grids that are not K-orthogonal, and TPFA is not guaranteed to converge
to the correct solution on these grids. In spite of this major shortcoming, the
TPFA is still the predominant method in industry simulators also on non-K-
orthogonal grids. The main reasons for this is its simplicity and speed. Multi-
point flux approximation (MPFA) schemes are generalizations of TPFA that
are constructed to amend the shortcomings of TPFA. The method we present
next is one example of a MPFA scheme.

4.2 The O-method

If we approximate the driving forces of flow ~∇u from more than two points, we
are able to handle more complex geometries and permeability-tensor-fields.
We assume that every grid cell have six quadrilateral cell-walls, and create a
control volume between eight neighboring cells like illustrated in Figure 4.1.

21

CHAPTER 4. NUMERICAL METHODS

3

4

5

7

8

1

2

6

~xc

~x1 ~x3

~x2

2

n̂3

n̂2

n̂1

Figure 4.1: Illustration of the control volume used in the O-method for eight cells
sharing a point. The dotted line outlines the cells and the solid lines represents
eight of the control-volumes. To the right we show the center position ~xc and the
three vectors ~x1, ~x2 and ~x3 of cell number 2. These vectors are used to find an
expression for ~∇U , and we have enough information to build a linear system of
equations if we also calculate the average normal vectors n̂j of each interface j of
the cell.

To study (3.3) we find the mid-points of the cell-walls ~x1, · · · , ~x6 and the
center-point ~xc of a cell. Then we seek an approximation of (3.3) that involves
values at these points. We assume u to be linear in each cell, by the relation
u = u0 + ~∇U · (~x− ~xc) where ~∇U is a constant vector approximating ~∇u for

the cell. We then get three relations defining ~∇U , that can be expressed as
matrices:

u1 − uc = ~∇U · ~x1

u2 − uc = ~∇U · ~x2

u3 − uc = ~∇U · ~x3

=⇒

u1 − uc
u2 − uc
u3 − uc

︸ ︷︷ ︸

~u

=

~xT1~xT2
~xT3

︸ ︷︷ ︸

X

~∇U (4.6)

We want to solve this for ~∇U , and seek an inverse of the matrix X. From
the definition of cross-product and dot-product we know that if we cross
two vectors and dot the result with a third vector following the right hand
rule, we get the volume of the parallelepiped spanned by the three vectors.
Together with the fact that the cross-product of two vectors is orthogonal to

22

4.3. MIXED FORMULATION

both of them, we find

X−1 =
1

(~x1 × ~x2) · ~x3︸ ︷︷ ︸
volume of parallelepiped

[
~y1

∣∣∣∣∣~y2

∣∣∣∣∣~y3

]
, where

~y1 = (~x2 × ~x3)
~y2 = (~x3 × ~x1)
~y3 = (~x1 × ~x2)

.

As a check, we see that

XX−1 =
1

(~x1 × ~x2) · ~x3

(~x2 × ~x3) · ~x1 0 0
0 (~x3 × ~x1) · ~x2 0
0 0 (~x1 × ~x2) · ~x3

 = I3.

We now have the expression ~∇U = X−1~u, and inserting this in our approxi-
mation of ~∇u in (3.3) for each cell Ωi gives∫
Ωi

(−Ki
~∇U)·n̂ dA =

3∑
j=1

−Ki
~∇U ·

∫
γij

n̂j dA =
1

V

3∑
k=1

3∑
j=1

|γij|~yTk Kin̂j(uc−uk).

Here, n̂j is the average normal vector 1
|γij |

∫
γij
n̂ dA and V is the volume of

the parallelepiped spanned by ~x1, ~x2 and ~x3 (see Figure 4.1). Parameterizing
the surface γij and mapping to a reference element, makes us able to find n̂j.
It is described in detail for corner-point grids in [1]. The result is a linear

system A~u = ~b, where each row of A has six non-zero elements (four in 2D).
Both the O-method and the TPFA discretization are finite volume schemes

that approximate the integrals in equation (3.3). In the rest of this chapter,
we present methods using finite elements to discretize the mixed formulation
in equation (3.4).

4.3 Mixed formulation

Equation (3.4) together with the no-flow boundary condition on a domain Ω
gives us the PDEs defining our problem

(I) ~v = −K~∇u
µ

on Ω

(II) ~∇ · ~v = f on Ω
(III) ~v · n̂ = 0 on ∂Ω.

(4.7)

A solution ~v must satisfy the boundary condition and is therefore an element
of the space Hdiv

0 (Ω) = {~v ∈ L2(Ω)3 | ~∇ · ~v ∈ L2(Ω), and ~v · n̂ = 0 on ∂Ω}.

23

CHAPTER 4. NUMERICAL METHODS

We find the weak form of equation (I) by multiplying it with a vector test-
function ~q1 from Hdiv

0 (Ω) and integrating over the domain using partial inte-
gration. Similarly, equation (II) is multiplied with a scalar test-function q2.
We obtain the mixed formulation for (I) and (II):∫

Ω

~q1 · µK−1~v dV −
∫
Ω

u~∇ · ~q1 dV = 0 ∀~q1 ∈ Hdiv
0 (Ω)∫

Ω

q2
~∇ · ~v dV =

∫
Ω

q2f dV ∀q2 ∈ L2(Ω)
(4.8)

We introduce three bilinear forms (·, ·) : L2(Ω)× L2(Ω) 7→ R,
b(·, ·) : Hdiv

0 (Ω)×Hdiv
0 (Ω) 7→ R, and c(·, ·) : Hdiv

0 (Ω)×L2(Ω) 7→ R representing
the integrals such that (4.8) can be written as

b(~q1, ~v) − c(~q1, u) = 0 ∀~q1 ∈ Hdiv
0 (Ω)

c(~v, q2) = (f, q2) ∀q2 ∈ L2(Ω).
(4.9)

A solution to the weak form is a pair (~v, u) ∈ Hdiv
0 (Ω) × L2(Ω) solving this

equation.
The solution is also a stationary point of the Lagrange functional:

L(~v, u) =
1

2
b(~v,~v)− c(~v, u) + (f, u). (4.10)

This is apparent from variational analysis setting dL = ∂L
∂~v
d~v + ∂L

∂u
du = 0,

and then letting the variation ~q1 = d~v and q2 = du be arbitrary. Looking at

the determinant of the Hessian matrix ∆L = ∂2L
∂~v2

∂2L
∂u2 −

(
∂2L
∂~v∂u

)2

= −c(~1, 1)2

we see that the stationary point of L is a saddle-point. This gives a linear
system with both positive and negative eigenvalues. Such indefinite systems
require special linear solvers and are often considered hard to solve. Next, we
present an alternate formulation that gives a positive-definite linear system.

4.4 Hybrid formulation

Positive-definite systems are easier to solve, and we modify equation (4.10)
by including continuity of flux as a Lagrange multiplier. This result is a
hybrid formulation which gives a positive definite system. The following way
of improving (4.10) is sometimes called the Lagrange multiplier technique.

Assume that we have a partitioning T = {T} of the domain Ω into cells.
Fluxes are calculated on each interface γ on the boundary ∂T of a cell T , and
we introduce the space H

1
2 (T) consisting of the traces on ∂T of functions in

24

4.4. HYBRID FORMULATION

H1(T). Setting ∂T = ∪T∈T ∂T gives us the integral representing flux as a

bilinear form d(·, ·) : Hdiv
0 (T)×H 1

2 (∂T)→ R where

d(~v, π) =

∫
∂Ω

π~v · n̂ dA. (4.11)

We include the constraint of flux-continuity, by adding this term to (4.10)
and get a new Lagrange functional

LM(~v, u) =
1

2
b(~v,~v)− c(~v, u) + (f, u) + d(~v, π). (4.12)

Finding the stationary point of the Lagrange functional LM corresponds
to finding (~v, u, π) ∈ Hdiv

0 (Ω)× L2(Ω)×H 1
2 (∂T \∂Ω) which satisfy

b(~q1, ~v)− c(~q1, u) + d(~q1, π) = 0 ∀~q1 ∈ Hdiv
0 (T) := ∪T∈THdiv

0 (T)
c(~v, q2) = (f, q2) ∀q2 ∈ L2(Ω)

d(~v, q3) = 0 ∀q3 ∈ H
1
2 (∂T \∂Ω).

(4.13)
In other words, we have included the flux in the equations and changed
the space for ~q1 to remove the constraint of continuous velocity across cell-
interfaces. Instead, we allow velocity-jumps at the cell-boundaries but ensure
continuity in the normal-component of the flux with the third equation of
(4.13).

The Hessian ∆LM of LM is here a 3 × 3 matrix, and we investigate its
eigenvalues to assert that the stationary point is a minima. We write b, c,
and d for b(~1,~1), c(~1, 1), and d(~1, 1) respectively (~1 is the vector with all
components set to one). Then the Hessian becomes

∆LM =

∣∣∣∣∣∣
b− λ c d
c −λ 0
d 0 −λ

∣∣∣∣∣∣ = λ(λ(b− λ)− c2 + d2) = 0,

which implies that λ is zero or

λ =
b

2
±
√
b2

4
− (d2 − c2).

Since b(·, ·) is positive definite and c = 0, we have that the eigenvalues λ are
bigger than or equal to zero. Hence, the system is positive semi-definite.

The reason why we have an eigenvalue equal to zero is the pure Neumann
boundary. A solution is only unique after we add an extra constraint like we
did for TPFA by having a reference value for u. Such a constraint makes the
system symmetric positive definite.

25

CHAPTER 4. NUMERICAL METHODS

4.4.1 Building the linear system

A straight-forward discretization of the hybrid formulation presented above
is to introduce finite dimensional subspaces V ⊂ Hdiv

0 (T), U ⊂ L2(Ω), and

Π ⊂ H
1
2 (Ω), and find a solution (~v, u, π) ∈ V ⊕ U ⊕ Π of (4.13). One such

choice of subspace V , suitable for grids consisting of tetrahedrons, is the
lowest order Raviart-Thomas elements [33] given by

V = {~v ∈ L∞(Ω)| ~v is linear on every T ∈ T ,
~v · n̂|γ is constant for every γ in ∂T and continuous on Ω}.

One half of a typical basis-functions for the Raviart-Thomas elements is
showed for two-dimensions in Figure 4.2. In three dimensions, the basis
function has the same property of being parallel to all the interfaces except
one. Joining this half with one in the neighboring cell, also being non-parallel
to the same interface γ, gives a basis function ~ψγ with support on the two
cells.

Subspaces U and Π can for example be chosen as the piecewise linear
functions on the cells T in T and the interfaces γ in ∂T respectively. The
solution vectors can be expressed as linear combinations of the basis-functions
on the form

~v =
∑
γ∈∂T

vγ ~ψγ, u =
∑
T∈T

uT ξT , π =
∑
γ∈∂T

πγηγ, (4.14)

where ξT gives a basis function for U with support on the cell T , and ηγ is
the basis function of Π with support on γ. Let the cells T and the interfaces

n̂3

n̂1

n̂2

Figure 4.2: Illustration of the half of a basis function (in red) for the lowest order
Raviart-Thomas elements in two dimensions on a triangular grid-cell. It is a linear
vector field which at two of the three edges is parallel to them. The dot product
between the unit normal vector and the basis function is one at the third edge.

26

4.5. MIMETIC FINITE ELEMENT METHOD

γ be numbered globally, with l being the total number of cells and m the
number of interfaces in Ω. The system (4.13) can now be written as a linear
system in the unknowns ~vh = [v1, v2, · · · , vm]T , ~uh = [u1, u2, · · · , ul]T , and
~πh = [π1, π2, · · · , πm]T on the formB CT DT

C 0 0
D 0 0

~vh~uh
~πh

 =

~0~fh
~0

 . (4.15)

Here, ~fh = [f1, f2, · · · , fl] where fT = (f, ξT). The matrix B = [bij] has ele-

ments bij = b(~ψi, ~ψj) and is block-diagonal if the basis functions are ordered
cell-wise.

4.4.2 Schur-complement reduction

The matrix B is also invertible since the system is positive definite. Mul-
tiplying the first row of the matrix-system in (4.15) with B−1 gives us
~vh = B−1(−CT~uh − DT~πh) which can be substituted into the second and
third line. Note that inverting B can be performed for each cell by itself
since it is block diagonal, and it is therefore not a time consuming opera-
tion to invert B. This reduction is called Schur-complement and leads to a
smaller linear system[

E −FT

F −DB−1DT

] [
−~uh
~πh

]
=

[
~fh
~0

]
, (4.16)

where E = CB−1CT and F = DB−1CT . The basis functions ξT of U are
usually chosen to be piecewise constants like the one we suggested above.
If ξT is set to be one on the cell T and zero everywhere else, then we get
a matrix C with the same form as the mimetic discretization in Figure 4.4.
Thus, E is a diagonal matrix. Another Schur-complement reduction can
therefore be performed, where E is computationally cheap to invert. The
final linear system becomes A~πh = ~b where A = DB−1DT − FE−1FT and
~b = FE−1 ~fh.

4.5 Mimetic finite element method

It is not trivial to find good subspaces V of Hdiv
0 (Ω) that make the bilinear

form b(·, ·) easy to compute for irregular grids. One solution to this is to
partition the cells of the grid into tetrahedrons, but this increases the number
of unknowns in the linear system and thus, increase the time needed to

27

CHAPTER 4. NUMERICAL METHODS

solve it. Mimetic method finds instead a replacement m(·, ·) that mimics the
behavior of b(·, ·). Similar to the hybrid formulation, the mimetic formulation
uses the bilinear forms in (4.13) in order to have a symmetric positive definite
system.

We present a geometric approach to find this inner product m(·, ·). This
technique is a type of finite difference method that uses a certain set of
discrete points within each cell, to get a system of equations in the same
form as equation (4.15). This system gives exact solution of the hybrid
formulation if u is linear and K is constant in each cell.

Consider the two-dimensional illustration of a grid-cell in Figure 4.3. The
flux is only used at the faces of the cell (edges in 2D). We can write the flux
~v|i that goes through face i as a scalar vi times an average unit normal vector
n̂i

~v|i = vin̂i =

∫
γi

~v · n̂ dA.

From (3.2) we know that the flux ~v is a linear transformation of ~∇u. Assume
therefore that the fluxes through each interface i of the cell can be written as
a linear transformation of the drops in driving force u at the face compared
to the mass-center of the cell. In other words, if we create a vector containing
the values vi at the n faces of a cell and call it ~vf = [v1, v2, · · · , vn]T , then
there is a matrix T such that

~vf = T(~uf − ~uc), (4.17)

where the right hand side gives the drops in driving force from the mass-center
~uc = uc~1 = [uc, · · · , uc]T of the cell to the centroid ~uf = [u1, u2, · · · , un]T of
each face.

In this way we consider only values for u and v at the places illustrated
in Figure 4.3, that is, the centroid at each interface i, and the mass-center c
of each cell. Although mimetic finite difference methods are able to handle
curved surfaces, we will henceforth consider only planar interfaces.

If we assume that u is linear and can be written on the form u = ~xT~a+ c,
for a position-vector ~x, we get

vi = −µ−1Ain̂
T
i K~∇u = −µ−1Ain̂

T
i K~a, (4.18)

where Ai is the area of interface i. Note that ui − uc = (~xi − ~xc)~a, where ~xi
and ~xc are the position-vectors to the centroid and the mass-center of face i
respectively. This gives us two equations for ~vf in each cell and we are able

28

4.5. MIMETIC FINITE ELEMENT METHOD

n̂4 ~x4
~x5

n̂5

n̂1

~x1

n̂2

~x2

n̂3

~x3

~xc

Figure 4.3: Two-dimensional illustration of the vectors used to establish the
mimetic formulation. The potential for flow u is discretized into uc at the mass-
center ~xc (cell centroid in 2D) of the cell and ui at the centroid of face i (edge
midpoint in 2D.) Each vector ~xi starts at the mass center and ends at the centroid
of interface i.

to find T from them since

~vf = T

X︷ ︸︸ ︷
(~x1 − ~xc)T
(~x2 − ~xc)T

...
(~xn − ~xc)T

~a = µ−1

N︷ ︸︸ ︷
A1n̂

T
1

A2n̂
T
2

...
Ann̂

T
n

K~a =⇒ TX = µ−1NK. (4.19)

Lemma 1. We find a valid solution of (4.19) by setting T = µ−1

V
NKNT+T2,

where T2X = 0 and V is the volume of the cell.

Proof. This is clearly the case if NTX = V I3 for the three-dimensional
identity-matrix I3. We therefore check index zij in the matrix NTX = [zij].

Writing N = [~n1|~n2|~n3] and X = [~x1|~x2|~x3] and using superscript n̂
(i)
k to

represent the i-th Cartesian coordinate of n̂k gives

zij = ~nTi xj =
n∑
k=1

Akn̂
(i)
k (~xk − ~xc)(j) (4.20)

We can expand n̂
(i)
k to be written as n̂

(i)
k = êi · n̂k, where êi is the Cartesian

unit vector in the i-th direction. Since (~xk − ~xc) is the average vector from

29

CHAPTER 4. NUMERICAL METHODS

the center to a cell-wall, we can use the divergence theorem to conclude

zij =
n∑
k=1

Akêi · n̂k
1

Ak

∫
γk

(~x− ~xc)(j) dA

=
n∑
k=1

êi ·
∫
γi

(~x− ~xc)(j) · n̂k dA

= êi ·
∫
Ω

(~∇ · ~x− ~∇~xc)(j) dV

= êi · êjV = δijV ,

and the proof is complete. The outline of this proof was given to the author
through private communications with Stein Krogstad at SINTEF.

Having an expression for T makes it possible to build a system of equa-
tions, while ensuring continuity in the driving force of flow u and in the flux
~vf at the centroids of the cell-walls. Equation (4.17) holds for this T, and
we get the following expression for each cell in the grid.

T−1~vf − ~uf + ~uc = 0 (4.21)

From this, we can build the system of equations in (4.15) as long as T
is invertible. However, T is positive semidefinite and not strictly positive
definite. We are therefore not guaranteed that T is invertible for any T2

satisfying Lemma 1. The following Theorem is presented by F. Brezzi in [7]
and gives a recipe for choosing T2 in a way to ensure positive definiteness.
Theorem 1. Let F be a n × (n − d) matrix whose columns span the null
space of the matrix XT , so that FTX = 0. Then for every (n− d)× (n− d)
symmetric positive definite matrix U we can set

T =
µ−1

V
NKNT + FUFT

which makes T symmetric positive definite (SPD), satisfying TX = µ−1NK.

Proof. Lemma 1 with T2 = FUFT states that TX = NK since T2X =
FUFTX = 0. The matrix T is positive definite by construction, and we
only need to show that it is non-singular.

If we assume that there exists a non-zero vector ~v 6= ~0 such that T~v = 0,
then we have

||µ
−1/2

V 1/2
K1/2NT~v||22 + ||U1/2FT~v||22 = 0.

30

4.5. MIMETIC FINITE ELEMENT METHOD

(a) Full linear system (b) Reduced system

Figure 4.4: Sparsity pattern of the linear systems coming from a 10 × 10 × 4
Cartesian grid, which is discretized by the mimetic finite element method. To the
left, the matrices B, C, and D are written together, like in equation (4.15), and
are separated by dotted lines. At the right, we have the sparsity pattern of A
coming from the reduced linear system after Schur decomposition.

This implies that NT~v = ~0 and FT~v = ~0, since both K1/2 and U1/2 are
positive definite. This means that ~v ∈ ker(FT) = {im(F)}T = {ker(X)}T =
im(X), and we can write ~v as a linear combination of the columns of X on
the form ~v = X~w for a vector ~w. Hence, NT~v = NTX~w. From Lemma 1
NTX = V Id, which implies that ~w has to be zero since NT~v = ~0 Thus, ~v is
also zero, which is a contradiction to our assumption of ~v. Hence, the matrix
T presented in this theorem is SPD.

Remember that (4.21) corresponds to a single cell, while equation (4.15)
is including the whole grid. Thus, to build the complete system, we have
to calculate T−1

i for each cell i. Then, B is block-diagonal and invertible,
B = diag(T−1

1 , T−1
2 , · · · , T−1

l). Building C and D of equation (4.15) is fairly
simple. They have value one on the places corresponding to the values of u
at the cell-centers and face-centroids, and value zero elsewhere. The sparsity
patterns of B, C, and D are illustrated for a Cartesian grid in Figure 4.4a.
The resulting system can be compressed by Schur-complement reduction,
just like we did in Section 4.4.2 for the hybrid system. This gives a system
A~x = ~b, where A have the structure of Figure 4.4b.

If we choose a SPD matrix U, we have all we need to build and solve the
linear system. When the system is solved by the CG-algorithm we present in
Chapter 5, or by other iterative solvers, the rate of convergence is typically
decided by the condition number κ. It is the ratio between the largest and the
smallest eigenvalue of the matrix A. The eigenvalues of A is strongly related

31

CHAPTER 4. NUMERICAL METHODS

to the eigenvalues of T, and we should choose U such that the eigenvalues
lie closely together. One common choice is to construct U from the normal-
vectors of the cell, in a way such that the mimetic discretization is equal to
the hybrid discretization on tetrahedral cells with Raviart-Thomas elements.
This approach is used in the toolkit we mention in Section 6.5.

The most apparent advantage of mimetic formulation is the ability to
handle complex polyhedral grid cells in a straight-forward manner. Stability
and convergence of mimetic finite difference methods are established by F.
Brezzi for very general grids in [6]. In this thesis, we discretize grids where
the cells not necessarily are aligned. The mimetic method is therefore used
to discretize most of our models.

32

Chapter 5
Linear algebra solvers

All the discretization techniques we described in the previous chapter con-
struct linear systems A~x = ~b and seek the solution ~x, when A is symmetric
positive definite (SPD). So our next task is to build these systems on a com-
puter, and find ~x numerically.

Constructing the linear system on a computer from a grid with perme-
ability values varies in complexity between the different discretizations. For
example, the TPFA method is only required to calculate the harmonic aver-
age of K, the length between the cell-centers, and the area of each interface
to estimate the flux. Building the resulting linear system is therefore simple
and calculated quickly. Irregular grids demand more calculations than the
K-orthogonal ones. The methods designed to handle irregular grids have to
consider more values when the system i built. In any case, the behavior in
one cell of the grid is usually fully described by the values of its neighboring
cells. Building the system has therefore in most cases a running time propor-
tional to the number of cells in the grid. We show this for our discretization
methods in Section 7.5.

Solving the linear system of equations is, however, asymptotically slower.
It is usually the most time-consuming part of analyzing a physical flow-
problem. We therefore look closer at techniques for solving linear systems
which are SPD.

5.1 Choosing an appropriate solver

Finding ~x = A−1~b is performed by either a direct method solving the system
exactly using matrix-calculus, or by iterative techniques. The most common
direct solver is Gaussian elimination. It carries out an Cholesky-factorization

33

CHAPTER 5. LINEAR ALGEBRA SOLVERS

LLT of A, where L is a lower-triangular matrix. Then, it solves ~z = L−1~b
and ~x = L−T~z by back substitution.

Gaussian elimination and other direct methods are not very effective on
sparse matrices. This is because they alter the matrices themselves when
solving the system. The matrices loose some of their sparsity and this effect
is called fill-in. Iterative techniques however, rely on repeatedly applying the
matrix (or parts of it) on vectors, and can therefore fully exploit the sparsity
of a linear system.

The fill-in of Gaussian elimination comes during the Cholesky-factorization.
If we have the matrix resulting from the TPFA discretization described in
Section 4.1, then all the values between the outer-most diagonals turn to
non-zero values (look at the top left corner of Figure 7.5 for an illustration
of the matrix). The complexity of Gaussian elimination on banded matrices
with bandwidth B is therefore O(B2n).

In spite of the fill-in effect, Gaussian elimination is faster than most iter-
ative techniques for two-dimensional problems where the bandwidth is typ-
ically of order B ≈

√
n. On three-dimensional problems however, several

iterative methods surpass Gaussian eliminations in both speed and storage-
requirements. The following method is an example of such an effective iter-
ative solver.

5.2 Overview of the CG method

The conjugate gradient (CG) method is an iterative technique, which has
become the most prominent method for solving sparse systems of linear equa-
tions. It was originally intended as an exact solver, which step by step found
the distance of the correct solution along A-orthogonal search directions, for
a SPD matrix A. Later, it was reinvented as an iterative method due to
a quick convergence rate. An excellent explanation of the CG method is
written in [38].

Two criteria make up the CG algorithm. The first is that the search
directions ~pk are kept A-orthogonal such that ~pTi A~pj = 0 for i 6= j. The

second is that the residuals ~rk = ~b − A~xk are orthogonal to each other.
These criteria are enough to pick the correct length αk to move along each
direction ~pk, and in this manner we cut down the error one component at
the time.

We start with an initial guess of ~x0 with search direction ~p0 parallel to
~r0. Then ~x should be updated along the search direction ~xk+1 = ~xk + αk~pk
by the correct scalar αk. The residual is therefore updated as well

~rk+1 = ~b−A(~xk + αk~pk) = ~rk − αkA~pk. (5.1)

34

5.2. OVERVIEW OF THE CG METHOD

Since the residual is set to be orthogonal, we find αk from

~rTk+1~rk = (~rk − αkA~pk)T~rk = 0 =⇒ αk =
~rTk ~rk
~rTk A~pk

. (5.2)

Next, we update the search direction as a linear combination of the following
residual and the current search direction ~pk+1 = ~rk+1 + βk~pk, where we need
to find βk. This expression can be used to simplify the denominator in (5.2)
into

~rTk A~pk = (~pk − βk−1~pk−1)TA~pk = ~pTkA~pk (5.3)

since ~pk−1 is A-orthogonal to ~pk.
We can calculate βk from the A-orthogonality of the search directions,

and use (5.1) to insert for one A~pk

~pTk+1A~pk = (~rk+1 + βk~pk)
TA~pk = ~rTk+1

1

αk
(~rk − ~rk+1) + βk~p

T
kA~pk = 0. (5.4)

The residuals are orthogonal, and we get βk by using the expression of αk
from (5.2)

βk =
~rTk+1~rk+1

αk~pTkA~pk
=
~rTk+1~rk+1

~rTk ~rk
. (5.5)

As we mentioned earlier, the initial error ~e0 can be expressed as a linear
combination of the A-orthogonal search directions ~e0 =

∑n
k=0−αk~pk and is

reduced one component at the time [38]. The error is therefore minimized
in the energy norm ||~ek||2A = ~eTkA~ek =

∑n
j=k−αj~pTj A~pj along the search

direction ~pk at each iteration.
The Euclidean norm is, however, not necessarily minimized. Small com-

ponents of the error may actually increase during the CG algorithm (though
never for a long time). For this reason, the CG is called a rougher [38].
Roughers stand in contrast to smoothers which reduce every component of
the error in each iteration. Jacobi and Gauss-Seidel iterations are examples
of smoothers, and we discuss them briefly in Section 5.3.

The condition number κ(A) = λmax

λmin
is descriptive when looking at conver-

gence of iterative methods. It is defined as the ratio between the largest and
smallest eigenvalues λmax and λmin of A. From [38] we have that ||~ei||A ≤
2
(√

κ−1√
κ+1

)i
||~e0||A, where e0 is the error in the initial guess of the solution. We

stop the iteration when the error is small compared to the initial error, that
is when ||ei||A

||e0||A
≤ t for a chosen relative tolerance t. This gives a convergence

order of O(
√
κn), where n is the number of non-zeros in A. The CG method

is therefore a good choice as solver for sparse systems.

35

CHAPTER 5. LINEAR ALGEBRA SOLVERS

The condition number κ usually increases with problem size, and high
values of κ substantially slow down the CG algorithm. It is therefore common
to use a preconditioner to lower the condition number. A preconditioner is an
operation that can be represented by an invertible matrix M, which mimics
A−1 and we solve MA~x = M~b instead of A~x = ~b. The number of iterations
in the CG algorithm is then dependent on the condition number of MA.

5.3 Iterative smoothers and multi-grid

Weighted Jacobi iteration is a simple iteration technique. It splits the diag-
onal D from the matrix A = 1

ω
D− (1

ω
D−A), for a weight ω between zero

and one. Utilizing this splitting, the system A~x = ~b is solved by the iteration
~xi+1 = D−1((ωA−D)~xi+~b). The initial error ~e0 of a guessed solution vector
can be written as a linear combination of the eigenvectors ~wk of A on the
form ~e0 =

∑
k e

(k)
0 ~wk. Dependent on the value of ω, Jacobi iteration reduces

some components of this error quickly while the others decrease slowly, and
might not even converge.

Jacobi iteration decreases all the components of the error in every step.
It is therefore a smoother. It is an especially useful when we want to de-
crease certain components of the error. Other well-known smoothers are
Gauss-Seidel iteration and successive over-relaxation. Gauss-Seidel iteration
is similar to Jacobi iteration, but it is in addition splitting out the lower tri-
angular part L of A such that A = (L+D)−(L+D−A). The iteration then

becomes ~xi+1 = (D+L)−1((A−(D+L))~xi+~b). Successive over-relaxation is a
weighted version of Gauss-Seidel iteration. All these smoothers are described
in detail by J. Saad in [34].

Multi-grid is an iterative solver that takes advantage of the ability a
smoother has to dampen specific components of the error. What a multi-
grid solver does, is to change the resolution of the grid that A is built from
and interpolate both the linear system and the partial solution between these
grid-resolutions. The eigenvectors of A change, and if we apply a smoother
at different resolutions, then it will reduce other components of the error.
This gives a faster convergence rate than what the smoother has by itself,
and is not very affected by high condition numbers κ(A).

A multi-grid solver may also be created without knowledge of the un-
derlying grid. Downscaling (contraction) and up-scaling (relaxation) can be
defined from the structure of A. This approach is called algebraic multi-grid
[41], and is well suited as a preconditioner to the CG algorithm for general
SPD matrices.

The CG algorithm performs substantially better with a preconditioner

36

5.3. ITERATIVE SMOOTHERS AND MULTI-GRID

like multi-grid. It is seldom used in industry without a good preconditioner.
In spite of this, we do not implement a preconditioner in this thesis, but leave
this as further work.

37

Chapter 6
Implementations

The conjugate gradient (CG) algorithm in the previous chapter finds αk and
βk from (5.2) and (5.5) and use them to update the residual, the search
direction, and the solution. To find these, it has to calculate a matrix-vector
product, a vector-vector product, and the axpy routine of finding ~y = a~x+ ~y
for a scalar a and vectors ~x and ~y. The axpy calculation is defined for single
precision (saxpy) and double precision (daxpy) as part of the library for basic
linear algebra subroutines (BLAS) [8].

Solving the linear system A~x = ~b is the most computationally costly
operation we do when we analyze the flow in porous media. We therefore
focus on optimizing the speed of the CG solver. To efficiently implement
the CG method, we need to locate and classify its kernels, or the expensive
calculations, of the algorithm.

6.1 Finding the kernels of the program

Vector-vector product and axpy calculation have sequentially a complexity
of O(n), where n is the number of cells in the grid and is proportional to
the number of elements in ~x. For a full matrix A, matrix-vector product
has complexity of O(n2), but for sparse matrices with Nnz non-zeros we can
reduce the complexity to O(Nnz).

For the linear systems we found in Chapter 4, the number of non-zeros
in A scales linearly with n. The matrix-vector product has therefore in
this case asymptotically the same complexity as the vector-vector product
and the axpy calculation. Thus, the kernels of our program are these three
operations.

The axpy operation is highly parallel, and a straight-forward implementa-

38

6.2. THE CG ALGORITHM

Listing 6.1: CG-system interface defining the functions that are needed to solve
a system with the conjugate gradient method.� �

1 #pragma once
2 #include ”commonHeader . h”
3
4 template <class ValueType>
5 class CGsystem{
6 public :
7 CGsystem () {}
8 ˜CGsystem () {} ;
9 virtual void i n i t (ValueType ∗∗x , ValueType ∗∗ r , ValueType ∗∗p , ValueType ∗∗Ap) = 0 ;

10 virtual ValueType vectorDotProduct (const ValueType∗v1 , const ValueType ∗v2) const = 0;
11 virtual void matrixVectorProduct (const ValueType ∗v , ValueType ∗ r e s u l t) const = 0;
12 virtual void axpy (const ValueType a , const ValueType ∗x , ValueType ∗y) const = 0;
13 virtual void s c a l e (const ValueType sca l a r , ValueType ∗v) const =0;
14 virtual void ge tSo lu t i on (ValueType ∗∗ s o l u t i on) const = 0;
15 virtual s i z e t y p e getN () const = 0;
16 virtual void pr intVector (const ValueType ∗v) const = 0;
17 virtual void pr intMatr ix () const = 0;
18 } ;� �

tion letting each thread calculate one index of the solution each is an optimal
implementation. Matrix-vector and vector-vector product have more poten-
tial for optimalization. We therefore mention, in Section 6.8, how the vector-
vector kernel is made optimal. In Section 6.3 we present different sparse
formats that we use to get optimal matrix-vector kernels, but before that,
we introduce the CG algorithm and how the different kernel-implementations
should be written to fit into a common framework.

6.2 The CG algorithm

The CG method is simple to implement if we have the functionality the
three kernels available. We therefore create an C++ interface defining the
necessary functions for a CG routine. We name the interface CG-system and
the code is shown in Listing 6.1. Note that we have included a function scale,
which scales a vector with a scalar. This function comes in handy when we
set vectors to zero and to ease the update of the search-direction.

An object implementing the CG interface holds the matrix A, the vector
~b, and functions for the operations that will be performed on them. In addi-
tion, a CG-system holds the temporary variables used in the CG algorithm,
and these are linked to local pointers by the call init(). This allows the
objects implementing the CG-system to store the vectors and matrices at
different memory spaces and in different formats.

For example, we have the possibility of letting one object solve with
matrix-vector multiplication for full matrices on the CPU, while another
is working on a sparse matrix with an optimized GPU-implementation of
matrix-vector product. The CPU implementation should store the matrix

39

CHAPTER 6. IMPLEMENTATIONS

Listing 6.2: The conjugate gradient algorithm finding ~x from the equation A~x = ~b
implemented in C++. The input to the algorithm is an object implementing the
CG-system of Listing 6.1. The input object has to contain a representation of the
matrix A and the vector ~b, stored in any format.� �

1 #pragma once
2 #include ”CGsystem . h”
3 #include ”math . h”
4
5 template <class ValueType> ValueType cg (
6 CGsystem<ValueType> ∗A, ValueType to l e rance , ValueType thre sho ld
7){
8 ValueType alpha , beta , rnorm , oldnorm , pTAp, endNorm ; // s c a l a r s
9 ValueType ∗x , ∗r , ∗p , ∗Ap; // v e c t o r s

10 A−>i n i t (&x , &r , &p , &Ap) ; // x = 0 , r = b , p = b
11 rnorm = A−>vectorDotProduct (r , r) ;
12 endNorm = to l e r an c e ∗ t o l e r an c e ∗rnorm∗ th r e sho ld ;
13 for (unsigned int k=0; (k < A−>getN ()) && (rnorm > endNorm) ; ++k){
14 A−>matrixVectorProduct (p , Ap) ; // Ap = A∗p
15 pTAp = A−>vectorDotProduct (p , Ap) ;
16 // I f pTAp == 0 , we have a l u c k y breakdown .
17 i f (pTAp == (ValueType) 0 . 0) break ;
18 alpha = rnorm / pTAp;
19 // The i t e r a t i o n s t a g n a t e s i f a l pha becomes ze ro
20 i f (alpha == (ValueType) 0 . 0) break ;
21 // axpy c a l c u l a t i n g x += a lpha ∗p and r −= alpha ∗Ap :
22 A−>axpy (alpha , p , x) ;
23 A−>axpy(−alpha , Ap, r) ;
24 oldnorm = rnorm ;
25 rnorm = A−>vectorDotProduct (r , r) ;
26 beta = rnorm / oldnorm ;
27 // Ca l c u l a t e t h e update p = be t a ∗ p + r .
28 A−>s c a l e (beta , p) ;
29 A−>axpy (1 . 0 , r , p) ;
30 }
31 return sq r t (rnorm) ;
32 }� �

and temporary variables on the motherboard RAM, while the GPU profits
from having temporary variables stored on the device memory which is closer
to the GPU. Both these objects can implement the CG-system interface and
their linear systems can be solved by the same CG algorithm. We use this
interface to write one object for every matrix format we implement.

Listing 6.2 shows the CG algorithm written for a CG-system. It starts
by a solution guess ~x0 = ~0 and sets ~r0 = ~b and ~p0 = ~b accordingly. Then,
it iterates until the norm has decreased with more than a given tolerance
factor, and accounts for lucky breakdown. Lucky breakdown is when the
search direction pk has A-norm zero, which means that we have an exact
solution if we do not account for round-off errors [34].

6.2.1 Additions to the CG code

As mentioned in Section 5.2, the conjugate gradient method exploits a smart
way of updating the search direction ~pk so that it is A-orthogonal to all the
previous search directions. Round-off errors may alter this behavior such that
the search-directions are only close to A-orthogonal, and this defect may lead

40

6.2. THE CG ALGORITHM

to larger errors in following steps. The CG algorithm presented here may
therefore not converge to the solution with full floating point accuracy at the
first try.

A way to fix the errors coming from limited floating point accuracy is
to restart the algorithm. This updates the first residual ~r0 and the search
direction ~p0 to the correct values, and starts the algorithm without round-off
errors, but closer to the solution.

We modify the code to recompute the norm when the main loop is fin-
ished, and assure that the real norm is still within the criteria of the toler-
ance. Restarting the algorithm means that we loose the information ensuring
A-orthogonality of the search directions. Because of this, we do not enjoy
as fast convergence towards the correct solution, in the first iterations after
a restart, as we do after several iterations. To make sure that we do not
restart more often than what is necessary, we decrease the endNorm by a
given threshold. For double precision decreasing the relative tolerance by a
factor of

√
0.8 gave good results. If restarting does not give a better result,

we let the algorithm terminate with the best solution found so far.
CG is a rougher and the error is not necessarily decreasing in every iter-

ation. The calculated solution starts moving away from the correct solution
when round-off errors builds up. We therefore modify the code to store a
backup of the solution with the lowest residual-norm so far. To avoid taking
backup too often, we only store the solution if the residual-norm ||rk+1||2 rises
from a previous norm which was the smallest so far. Line 22 in Listing 6.2 is
therefore moved to after line 25, so that the next norm is calculated before
the solution vector is updated.

Higher floating point accuracy also helps to decrease the effect of round-
off error. We therefore use a template ValueType when creating the CG
algorithm and objects implementing the CG-system interface. In this way,
we can use the same object and CG code for both single and double precision
floating point accuracy. This is handy since most GPUs support single preci-
sion, while only some newer cards support double precision. Single precision
is also faster to compute in some cases.

6.2.2 Solving in mixed precision

Solving the system A~x = ~b directly in the CG algorithm of Listing 6.2 does
not give a high accuracy with single precision floating point accuracy. When
the residual ~r becomes small compared to ~x, round-off errors become more
dominant. To compensate for this, we may solve for the increment ∆~x of
the current solution guess ~x, instead of finding ~x directly [12]. We call this
approach defection-correction.

41

CHAPTER 6. IMPLEMENTATIONS

The idea of defection-correction is to solve the system A(~x + ∆~x) = ~b
for ∆~x. This gives the linear system A(∆~x) = ~z where ~z is the residual of
the current solution candidate ~x. Two advantages of this method decrease
the round-off error. One is that the magnitude of ~x no longer affects CG
algorithm, the other is that we can scale the system so that the values of ~∆x
are close to one. The algorithm becomes as follows:

1. Make a guess of the solution ~xout.

2. Find the residual ~zout = ~b−A~xout.

3. Scale the residual by its norm: ~zin = ~zout/||~zout||2.

4. Solve A(∆~xin) = ~zin with respect to ∆~xin for example by the CG
algorithm.

5. Update ~xout = ~xout + ||~zout||∆~xin.

6. If the new residual ~zout = ~b−A~xout is smaller than the given tolerance
factor, then the solution is ~xout and we are finished. Otherwise, continue
from step 3.

This technique for solving for the residual is presented by Göddeke and
Strzodka in what they call a mixed precision solver [12]. A mixed precision
solver solves the inner system A(∆~x) = ~z of the algorithm in a lower preci-
sion, while the other steps are calculated in a higher precision. The algorithm
is designed to use a co-processor, which performs better in lower precision,
to achieve as high accuracy as one would with a full implementation in the
higher precision.

This suits the GPU since many GPUs does not support double precision.
However, it can also offer speed-up to GPUs which do support double pre-
cision. This is mainly because the amount of memory that is transferred to
the GPU is halved in single precision compared to double precision, but also
because single precision operations may be computed faster on some GPUs.

The relative tolerances for the inner and outer iteration need to be pro-
vided when this algorithm is started. In the mixed precision (MP) imple-
mentation we let two CG-systems specify the matrix-formats. Using the CSR
format on the CPU for the outer system and single precision HYB format
for the GPU as the inner is typical for a GPU that does not support dou-
ble precision However, the best performance is achieved by using two HYB
implementations on the GPU, where the outer system uses double precision
while the inner uses single precision. This is used in Chapter 7 to represent
the MP solver.

42

6.3. SPARSE REPRESENTATIONS

The number of solvers we have implemented for the GPU is three:

• The straight forward CG algorithm in Listing 6.2 with the improve-
ments of Section 6.2.1

• The algorithm using defection-correction (DC) as explained above

• The mixed precision (MP) solver.

6.3 Sparse representations

All the discretization methods we have investigated in Chapter 4 builds the
matrix A from local dependencies between neighboring cells in a grid. A
discrete value in one cell is fully determined from discrete values in the same
cell or in neighboring cells. In other words, a row in A which corresponds to
one discrete value has a limited number of non-zero entries.

For the mimetic finite element, the number of non-zeros of a row is at
most twice the number of neighboring cells (actually one less). Thus, A is
sparse with O(n) non-zero values, where n is the number of cells in the grid.
The other discretizations presented here have also this property, containing
O(n) non-zero values. Both storage space and computation time is saved if
we store the matrices in a sparse format.

6.3.1 Sparse matrix libraries for CUDA

The current release of CUDA and its source development kit (SDK) version
2.1 have support for matrices and matrix operations in the basic linear al-
gebra subroutines (BLAS) called the CUBLAS library [28]. CUBLAS has
mainly support for full matrices, but may also be used to represent sym-
metric and band matrices in storage-efficient ways. Symmetric matrices can
be stored as just their upper or lower triangular part in a compact array.
Band matrices have the possibility to store only the values between the two
outer-most non-zero diagonals. CUBLAS has also support for a combination
of symmetric- and band-matrices.

There are two drawbacks of these formats: One is that they are currently
only supported in single precision. The other is that when used with the
diagonal matrices we get from TPFA and the O-method in Chapter 4, the
band structure stores many zero-valued diagonals between the non-zero ones.
These matrices are more efficiently stored in the sparse diagonals (DIA) for-
mat we present in Section 6.3.3. We therefore restrict us to implement the

43

CHAPTER 6. IMPLEMENTATIONS

5 1 2 4 2 1 7 7

147326265

5 6 2 12 2 3 7 17

2973212265

Mask

Data5 7 724 2 4 2 1 31

(a) Up-sweep

127320265

7225 0 6 1512

5 6 2 12 2 3 7 0

22148650 12 15

(b) Down-sweep

5 1 2 4 2 1 7 7

2 1 7 79 1116 13

2 1 7 77 2 9 11

2 1 7 79 111329

(c) Reduction pattern

Figure 6.1: Illustration of the segmented scan with addition as its binary oper-
ation. A mask tells which elements to consider and the cumulative partial sum is
found by first doing a up-sweep of calculating a segmented reduction (a) and finish
with setting the last element to zero and do a down-sweep (b) to get the desired
result. For matrix-vector multiplication we only need the segmented reduction,
and it is better implemented for a GPU if we use the index-pattern illustrated in
(c).

format for full matrices in CUBLAS, and use it as a reference for speed and
correctness.

A library for sparse matrices is unfortunately not yet included in the
current CUDA SDK. However, employers at Nvidia have written a paper on
sparse matrices [4] which, according to the forum where it was released, will
be included (probably a modified version) in a future SDK release.

A sparse matrix-vector multiplication is also presented in a CUDA data
parallel primitives (CUDPP) library [37]. This library includes a parallel
reduction method called segmented scan or prefix-sum. The sparse matrix-
vector multiplication included in CUDPP is implemented as a demonstration
of how this segmented scan may be utilized. Segmented scan calculates the
cumulative sum of elements prior to each element in an array, and is described
in detail by M. Harris in [16]. The algorithm uses a bit-mask to tell which
elements to include in the computation (see Figure 6.1), and can exchange
the sum operation with any other binary operation.

The operation of sparse matrix-vector multiplication is better performed
by segmented reduction which are simply to find the sum of an array. Seg-
mented reduction can be implemented more efficiently since we only need
to find the final sum and not every partial sum along the way. Optimiz-
ing the segmented reduction for the GPU is described by A. Torp in [42],
and results in a reduction illustrated in Figure 6.1c. This segmented reduc-

44

6.3. SPARSE REPRESENTATIONS

tion is designed as a vector-vector product, and we use that code as our
kernel-implementation. For matrix-vector product, we implement the sparse
formats which are presented in [4]. Matrix-vector product can be viewed
as a calculation of many vector-vector products. Segmented reduction is an
efficient way of calculating the sparse vector-vector products if we have many
non-zeros per row. It performs best when the number of non-zeros is larger
than the warp-size, and we comment further on this in Section 6.9.

6.3.2 General sparse formats

There are a multitude of a sparse matrix representations. Some formats are
created for matrices with special patterns or regularities while others focus on
handling general matrices of any form. The formats have different storage
requirements, computational characteristics and methods of accessing and
manipulating entries of the matrix.

In this thesis, we assume that building the matrix is quick compared to
the amount of time used on matrix-vector multiplication, and we use matrix
formats with little optimization for insertions of values. We present different
sparse formats and discuss how well suited they are for solving our system.

The simplest sparse format for A = [aij] is the coordinate (COO) format.
Here, three arrays row, col, and data make up the i-coordinate, j-coordinate
and the value aij respectively. This is a general sparse representation since
any matrix can be stored in this format with storage requirements propor-
tional to the number of nonzero elements in the matrix. In the implemen-
tation we present, the row-array is sorted to ensure that entries of the same
row are stored contiguously in memory. This is to increase the number of
coalesced reads when matrix-vector multiplication is performed on the GPU.

The COO format can easily be compressed when the row-array is sorted,
and when there are (in average) more than one non-zero element in each row.
This is achieved by storing the row-wise cumulative number of elements in
row instead of storing the index. We choose to start the cumulative row array
on zero. In this way, row has (n+ 1) elements, where the last element holds
the number of non-zero elements in A. This compression is called compressed
sparse row (CSR) and is a widely used format.

Matlab uses the compressed sparse column (CSC) format, which is the
same as CSR, but compressing col instead of rows. For a symmetric matri-
ces, swapping row with col changes format from CSR to CSC. This comes
in handy when we import symmetric matrices from Matlab into the CSR
format for C++. An example of a matrix stored in COO, CSR, and CSC is
showed in Figure 6.2.

45

CHAPTER 6. IMPLEMENTATIONS

A =

5 −1 0 0
0 2 0 0
−1 0 2 −1
0 −1 0 2

row 0 0 1 2 2 2 3 3
COO col 0 1 1 0 2 3 1 3

data 5 -1 -1 2 -1 2 -1 2
row 0 2 3 6 8

CSR col 0 1 1 0 2 3 1 3
data 5 -1 2 -1 2 -1 -1 2
row 0 2 0 1 3 2 2 3

CSC col 0 2 5 6 8
data 5 -1 -1 2 -1 2 -1 2

Figure 6.2: A symmetric matrix A and it’s sparse representations in coordi-
nate (COO), compressed sparse row (CSR), and compressed sparse column (CSC)
format.

A =

5 −1 0 0
0 2 0 0
−1 0 2 −1
0 −1 0 2

 data =

∗ 5 −1
∗ 2 0
−1 2 −1
−1 2 ∗

 offset =
[
−2 0 1

]

Figure 6.3: An example of the sparse diagonal (DIA) format. The matrix data
contains the diagonals of A, and offset holds their index relative to the main
diagonal. The values marked ∗ can be any value. They are allocated in memory
but never read or modified.

6.3.3 Problem-specific sparse formats

The TPFA method presented in Section 4.1 is aimed on structured grids.
For Cartesian grids or K-orthogonal grids, we have that each cell has exactly
six neighbors (except at the boundary). Each row of A in TPFA has in this
case seven or less non-zero entries. The matrix gets a band structure, like
the top left part of Figure 7.5, if we number the cells in the standard way
of Cartesian grids. The sparse diagonals (DIA) format is intended for these
types of matrices where the non-zero entries lay in a confined number of sub-
or super-diagonals. This format stores the vectors representing the diagonals
in a two-dimensional matrix data and the corresponding location relative to
the main diagonal in an offset vector. An example of the DIA format is
shown in Figure 6.3.

The mimetic discretization results in the three matrices B, C and D,

46

6.3. SPARSE REPRESENTATIONS

A =

5 −1 0 0
0 2 0 0
−1 0 2 −1
0 −1 0 2

 data =

5 −1 ∗
2 ∗ ∗
−1 2 −1
−1 2 ∗

 col =

0 1 z
1 z z
0 2 3
1 3 z

Figure 6.4: An example of the ELLPACK/ITPACK (ELL) format. The matrix
data contains the non-zeros of A, and col holds their column indices. The values
marked ∗ can be any value, and the value z represent a number which tells that
the corresponding value is zero, and should not be read.

which after Schur decomposition is reduced to one matrix A. This A does
not have a diagonal structure, even with a structured grid. The DIA format
will therefore in this case store more zero-values than non-zero values, and
becomes ineffective. The pattern of such a reduced matrix from a Cartesian
grid is showed in Figure 4.4b.

Even though its not diagonal, the matrix still has a limited number of
non-zeros per line. The ELLPACK/ITPACK (ELL) format exploits this [13].
It stores the non-zeros of an M -by-N matrix in an M -by-K dense matrix
data, where K is the maximum number of non-zeros per line. The rows with
less than K non-zeros are zero-padded. The corresponding column indices
are stored in a matrix col which is also padded with a sentinel value. An
example of the ELL format is showed in Figure 6.4.

The ELL format is an efficient sparse matrix representation when the
maximum number of non-zeros does not substantially differ from the aver-
age. This is the case for the discretizations presented herein as long as the
grid is structured such that each cell has approximately the same number of
neighboring cells. For this situation, the ELL format performs very well.

6.3.4 Hybrid representation

From the geometry of a three-dimensional grid, we have that the average
number of neighboring cells is six, independent of the grid-structure. Grids
which are badly suited for ELL format are those with a few cells having
substantially more than six neighbors. These cause rows in the matrix A to
contain several more non-zero values than the average. A remedy is to store
the excess non-zero values from these rows in a different format.

The COO format has performance and storage requirement which is pro-
portional to the number of non-zero elements, and is invariant of the number
of non-zeros per row. N. Bell presents in [4] a hybrid (HYB) format as a
mixture between ELL and COO. The HYB format relies on an estimate for

47

CHAPTER 6. IMPLEMENTATIONS

A =

5 −1 0 0
0 2 0 0
−1 0 2 −1
0 −1 0 2

 Edata =

5 −1
2 ∗
−1 2
−1 2

 Ecol =

0 1
1 z
0 2
1 3

 Crow = 2
Ccol = 3
Cdata = −1

Figure 6.5: An example of the hybrid (HYB) format. The matrix Edata and
Ecol contains the ELL part, and Crow, Ccol, and Cdata holds the COO part.

how well ELL performs compared to COO, and uses this ratio to decide the
ideal number of non-zeros per row in the ELL format. Assuming that the
ELL format is three times faster than the COO format gave good results for
the implementations in this thesis. The elements which do not fit into this
ELL format are then stored in the COO format instead. An example of a
matrix in the HYB format is in Figure 6.5.

The standard matrix-vector product ~y = A~x + y is computed two times
in the HYB format, once for the ELL representation of A and once for the
COO representation. The CG algorithm we presented in Listing 6.2 asks for
the computation of ~y = A~x (without the update of ~y). In this case, the
matrix-vector product of HYB is calculated by first setting ~y = AELL~x for
the ELL part, and then update it by setting ~y = ACOO~x + ~y for the COO
part.

6.4 Implementation of the matrix-formats

To analyze the different matrix-formats, we create one C++ object for each
that we implement for the GPU. This gives a total of six systems for the GPU
and three for the CPU. The first we implement is the CUBLAS system which
uses the native support CUDA has for full matrices [28]. This class reads
matrices coming from Matlab, and stores them directly into GPU memory in
the CUBLAS format. The implementation of the DIA format is taken from
the specialization project [42].

The sparse formats DIA, COO, ELL, HYB, and CSR also get one object
each that implements the CG-system interface. They store the matrix and
all other variables in the device memory close to the GPU. Sparse matrices
coming from Matlab can be stored in either of the sparse formats, as we
illustrate in Figure 6.6. Matlab is therefore required to specify the format
when calling the C++ program. We also implement the CSR format and the
HYB format on the CPU for comparison.

48

6.5. THE MATLAB RESERVOIR SIMULATION TOOLBOX

CSC

CUBLAS

CSR

COO

ELL

HYB

DIA

CPUHYB

CPUCSR

CPUDIA

naive CG

DC CG

ML CG

permeability grid

CG−system
Sparse matrix

Dense matrix

MATLAB

Solution vector and residual estimate

MAT−file

Figure 6.6: Schematic showing how the data flows through the program. Matlab
sends either the permeability grid or a matrix which is either full or sparse to the
C++ program. The program converts it to one of the objects listed. This object
is passed to one of the CG algorithms which finds the solution and sends it back
to Matlab for visualization.

When the linear system is built from a grid by the C++ program, Matlab
has to specify if the grid is K-orthogonal or not. A K-orthogonal grid will be
discretized by the TPFA method and stored in the DIA format. Otherwise,
the linear system is found by the mimetic formulation, and is stored in the
HYB format. Converting the K-orthogonal grid is performed by the code
attached to the specialization project [42], and the mimetic discretization is
carried out by the Matlab reservoir simulation toolkit.

6.5 The Matlab reservoir simulation toolbox

The Matlab reservoir simulation toolbox (MRST) consists of a set of rou-
tines and data types used to process and represent unstructured grids. It is
especially designed for the corner-point grid-format which is commonly used
in the petroleum industry.

The corner-point grid-structure uses the idea that rock-formations con-
sists of sediment layers that have approximately the same height everywhere.
When these formations of rock were twisted and shaped by the forces of
nature, the formation changed from an initial position that would be well
described by a Cartesian grid. The corner-point grid uses this initial grid
to describe the current formation. Vertical pillars are kept straight, and di-

49

CHAPTER 6. IMPLEMENTATIONS

Figure 6.7: Height-map of the 100×100×11 part of the Johansen formation. The
formation is partitioned into a corner-point-grid, where vertical pillars separate the
cells of the model. It is evident that there is what we call a fault in the model.

vides up the model. All cells have edges that are located along these vertical
pillars. Each cell has therefore six or less interfaces.

When the rock-formation has a vertical crack, we call it a fault. Such a
fault cause cells which belong to the same sediment layer to be misaligned
like in Figure 7.9b. In Figure 6.7 we see a height-map of a representation of
a rock-formation in the corner-point grid. We can see a crack formed in the
center of the formation, which is represented as a fault in the grid-model.

The Matlab reservoir simulation toolbox contains functions for creating
grids with permeability values, but is also able to process corner-point grids
stored in the Eclipse format. Discretizing the grids are performed by either
the mimetic method, the TPFA discretization, or by the hybrid method using
Raviart-Thomas elements. The toolbox contains also functions performing
up-scaling to reduce the size of the linear system. However, we will not use
this technique here. Nevertheless, our solver is designed to handle all types
of SPD linear systems created in MRST. In order to be able to solve these
systems, the C++ program has to communicate with Matlab.

6.6 Data transfer between Matlab and C++

Sending information between Matlab and C++ can be done in two ways.
One way is to keep the Matlab program and the C++ program separate
and let Matlab store data in a file which is later read by the C++ program.

50

6.7. COMPILING THE PROGRAM

Allowing Matlab to execute the C++ program is the second option. This is
possible if we compile the C++ program into a Matlab executable (MEX)
file. Matlab is then able to send pointers to data stored in memory when the
MEX file is started.

One advantage of creating a MEX file is that we avoid wasting time on
storing the data before reading it back. We also get a user-friendly interface,
since users are able to utilize our program in the same way as they use any
other custom-made function in Matlab.

The main disadvantages of compiling to a MEX file is that debugging
and analysis of the program becomes harder. Using a debugger on a normal
program is quite easy. If the program is compiled with the debug-flag set,
then we can simply let the debugger execute the program and start stepping
through the code. For a MEX file, however, we have to start Matlab and
attach the debugger to the Matlab application before executing the program
from Matlab. Matlab is not compiled for debugging and will usually crash
with this approach.

A better way of debugging the MEX file is therefore through writing
variables with the mexPrintf() function and then look for when the program
starts to produce faulty output. This method can be time-consuming when
the bug we are looking for is hard to localize.

Another problem is that we do not have the possibility to run the CUDA
Visual Profiler that is provided by Nvidia (see Section 6.9). This program an-
alyzes a CUDA program and give reports about the used memory bandwidth,
how threads diverge, how memory is coalesced, and other useful benchmarks.

It is therefore nice to create support for both approaches: The read and
write to file method for debugging and analysis of the code, and the MEX
file for user-friendliness, for speed, and to be able to compare the program
with similar Matlab programs.

6.7 Compiling the program

To easily let the program be compiled as both Matlab executable (MEX) file
and a normal program, we create a make-file that sets up the environment.
The make-file is based on Nvidia’s make-file for the CUDA SDK, and accepts
a few extra parameters. One parameter is telling if we are creating a MEX
file or not. If a MEX file is created, the libraries for Matlab executables are
included, and the resulting program is put into the correct folder ready to
be used by MRST. The other compile-flags we create is one which enables
double-precision support for newer graphic cards, one specifying if we are
manipulating files stored by Matlab, and one including the CUBLAS library.

51

CHAPTER 6. IMPLEMENTATIONS

Except from the compile options, creating a MEX file is not very different
from a normal C++ program. The main difference is that we use another
entry point in the code. Normally a C++ program starts by calling the
function main(). Matlab is instead starting the mexFunction() when a
MEX-file is started.

The entry point mexFunction() is called like any other function in Mat-
lab. However, to ensure that the function is called correctly, and to make it
easier to use, it is wise to create wrapper-functions. In the implementation
presented here, we have one MEX-file which is called mexMaster and has two
functionalities. One is to solve a linear system, the other is to build and solve
a linear system from a Cartesian permeability grid. The main purpose of the
wrapper-function is to make sure that all the input and output variables are
provided before the MEX file called.

The mexFunction is started with four parameters when the following
command is executed from Matlab.
[x , nrm] = mexMaster (A, b , to l e rance , sparseType , maxIterat ions) ;

The left hand side [x, nrm] is parsed to the function in the form of an
integer nlhs giving the number of left hand side elements, in this case two.
Matlab’s data-type is called an mxArray, and the data of the left hand side
is passed in an array plhs of length nlhs containing mxArrays. The right
hand side is passed in the same manner, with nrhs being the number of
parameters (in this case five) and prhs the array containing them.

In the MEX file, we use functions from Matlab’s C++ library to assert
that the input has the correct format. The library is well documented in
Matlab’s help-files for external interfaces. Matlab also offers a C++ library
for manipulating MAT files. This is the format Matlab uses to store variables
to a file, and we utilize this when the C++ program and the Matlab program
run separately.

6.8 Implementing a kernel for CUDA

To describe some of the syntax in CUDA programming language, we present
in Listing 6.3 the kernel calculating vector dot-product from the special-
ization project [42]. The code calculates the sum s =

∑N−1
i=0 aibi, where

a = [a0, · · · , aN−1]T and b = [b0, · · · , bN−1]T are the two input vectors.
On line eleven, we do a loop such that each thread is calculating several

products and summing them together. This is done both to hide memory
latency, and to minimize the number of idle threads during execution. After
this, a segmented reduction is performed on the result. To get a resource
usage complexity of O(n), the number of loads for each thread should be of

52

6.8. IMPLEMENTING A KERNEL FOR CUDA

Listing 6.3: The kernel for vector-vector product written for CUDA.� �
1 template <unsigned int blockS ize , class ValueType , bool useCache>
2 g l o b a l void vec to rVec to r ke rne l (
3 const ValueType ∗a , const ValueType ∗b , const s i z e t N, ValueType ∗ s
4)
5 {
6 extern s h a r e d ValueType sdata [] ;
7 int t i d = threadIdx . x ;
8 int i = (blockIdx . x ∗ b lockS i z e) + threadIdx . x ;
9 int g r i dS i z e = gridDim . x ∗ b lockS i z e ;

10 // l oad the data from g l o b a l t o shared memory a number o f t imes to h i d e l a t e n c y .
11 sdata [t i d] = 0 .0 f ;
12 do{
13 sdata [t i d] += fetch x <useCache >(i , a) ∗ f e t ch y <useCache >(i , b) ;
14 i += g r i dS i z e ;
15 }while (i < N) ;
16 sync th r eads () ;
17 //maximum b lock−s i z e i s 512
18 i f (b l o ckS i z e >= 512){
19 i f (t i d < 256) sdata [t i d] += sdata [t i d + 256] ; s ync th r eads () ;
20 }
21 i f (b l o ckS i z e >= 256){
22 i f (t i d < 128) sdata [t i d] += sdata [t i d + 128] ; s ync th r eads () ;
23 }
24 i f (b l o ckS i z e >= 128){
25 i f (t i d < 64) sdata [t i d] += sdata [t i d + 6 4] ; s ync th r eads () ;
26 }
27 // a l l o p e r a t i o n s w i t h i n a warp i s e x e cu t ed s imu l t a n i o u s l y (SIMD) ,
28 //and do not r e q u i r e s y n c r on i z a t i o n .
29 i f (t i d < 32){
30 i f (b l o ckS i z e >= 64){ sdata [t i d] += sdata [t i d + 32] ;}
31 i f (b l o ckS i z e >= 32){ sdata [t i d] += sdata [t i d + 16] ;}
32 i f (b l o ckS i z e >= 16){ sdata [t i d] += sdata [t i d + 8] ; }
33 i f (b l o ckS i z e >= 8){ sdata [t i d] += sdata [t i d + 4] ; }
34 i f (b l o ckS i z e >= 4){ sdata [t i d] += sdata [t i d + 2] ; }
35 i f (b l o ckS i z e >= 2){ sdata [t i d] += sdata [t i d + 1] ; }
36 }
37 // f i r s t t h r ead s t o r e s t h e r e s u l t
38 i f (t i d == 0) s [b lockIdx . x] = sdata [0] ;
39 }� �

order log(n) [42]. In order to hide memory we would typically assign little
more to each thread.

Most of the syntax that are special for CUDA are written on the first
six lines of the code. The prefix global to the kernel-function tells the
compiler that the code should be executed on the GPU, and can be called by
the CPU. Shared memory is used by the prefix extern shared on line
three, which says that sdata is a pointer to the start of the shared memory
for the block. The values threadIdx and blockIdx hold the x, y, and z-
coordinates in the thread-block and in the grid of blocks respectively. The
dimensions of the grid is stored in gridDim.

Both of the input-vectors are held constant throughout a kernel-execution.
We therefore use a template-parameter useCache to tell if these should be
fetched through the texture-memory. If this is the case, then we have to
bind the variables to a texture before the kernel launch. We create in-line
functions for binding, fetching and unbinding the textures to increase the
readability and since the procedure is different between single and double
precision.

The block-size of the kernel is also parsed as a template parameter to

53

CHAPTER 6. IMPLEMENTATIONS

make the segmented reduction as quick as possible. Since blockSize is a
template parameter, the if-tests of the blockSize is performed on compile-
time and not when the kernel is executed on the GPU. The segmented re-
duction exploits the threads best when the block-size is a power of two.
For large vectors, an efficient implementation has grid-size larger than one.
We then execute another kernel, doing another segmented reduction. When
a CG-system is created, we make sure that the grid-size and block-size of
vector-vector product are powers of two, as well as ensuring that each thread
is performing more than log(n) loads into the shared memory.

The kernel can be started by writing the following command in a program
which is compiled by nvcc.
vec to rVecto r ke rne l <bs , ValueType , uc> <<<gs , bs , sharedMemory>>> (v1 , v2 , n , s o l u t i o n)

The parameters within the first ¡¿-brackets are the template parameters.
Parameters special for CUDA are the ones inside the triple brackets. Here,
the block-size is given by bs, the grid-size is set by gs, and the size of the
shared memory needed for each block is given by sharedMemory. The normal
function parameters are given between the parenthesis as usual. We may also
give the dimensions of the grid-size and the block-size in three dimensions,
but except for this, all CUDA programs are called in this manner with the
triple brackets.

6.9 Using the CUDA profiler

Getting the most out of the graphics card, requires careful handling of mem-
ory. How memory is organized and in which order it is read determine an
important part of a kernel’s running time.

To describe the tools we have for optimizing the running time of our
kernels, we look at two different implementations of the CSR format. The
first is assigning one thread to each row of the matrix and we call it the
scalar kernel. The second is distributing the workload further by assigning
one warp (32 threads) to each row, and we call it a vector kernel. Simplified
algorithms for the two are presented in Listing 6.4 and Listing 6.5. Note
that the vector implementation uses segmented reduction on line twenty to
twenty-two. This is the same procedure that we use on the vector-vector
implementation, with the difference that we sum over the whole vector-size
instead of only one warp-size.

For our problem, the number of non-zeros are below the warp-size, and
the vector implementation will give idle threads. It is therefore less efficient
than the scalar implementation. We use this to show how the CUDA profiler
is used to pick up such inefficiencies.

54

6.9. USING THE CUDA PROFILER

Listing 6.4: The CSR scalar approach� �
1 g l o b a l void CSRsca lar kerne l (
2 const int n , const int ∗row , const int ∗ col , const f loat ∗data , const f loat ∗x ,
3 f loat ∗y
4)
5 {
6 int rowForThisThread = blockDim . x ∗ blockIdx . x + threadIdx . x ;
7 i f (rowForThisThread < n){
8 f loat dot = 0 ;
9 int r ow s ta r t = row [rowForThisThread] ;

10 int row end = row [rowForThisThread + 1] ;
11 for (int i = row s ta r t ; i < row end ; i++)
12 dot += data [i] ∗ x [c o l [i]] ;
13 y [rowForThisThread] += dot ;
14 }
15 }� �

Listing 6.5: The CSR vector method� �
1 g l o b a l void CSRvector kernel (
2 const int n , const int ∗row , const int ∗ col , const f loat ∗data , const f loat ∗x ,
3 f loat ∗y
4)
5 {
6 s h a r e d f loat sdata [] ;
7 int th r ead id = blockDim . x ∗ blockIdx . x + threadIdx . x ; // g l o b a l t h r ead index
8 int warp id = thread id / 32 ; // g l o b a l warp index
9 int l ane = thread id & (32 − 1) ; // index w i t h i n t h e warp

10 // one warp per row
11 int rowForThisWarp = warp id ;
12 i f (rowForThisWarp < n){
13 int r ow s ta r t = row [rowForThisWarp] ;
14 int row end = row [rowForThisWarp + 1] ;
15 // compute running sum per t h r ead
16 sdata [threadIdx . x] = 0 ;
17 for (int i = row s ta r t + lane ; i < row end ; i += 32)
18 sdata [threadIdx . x] += data [i] ∗ x [c o l [i]] ;
19 // segmented r e du c t i on in shared memory
20 i f (lane < 16) sdata [threadIdx . x] += sdata [threadIdx . x + 1 6] ;
21 i f (lane < 8) sdata [threadIdx . x] += sdata [threadIdx . x + 8] ;
22 i f (lane < 4) sdata [threadIdx . x] += sdata [threadIdx . x + 4] ;
23 i f (lane < 2) sdata [threadIdx . x] += sdata [threadIdx . x + 2] ;
24 i f (lane < 1) sdata [threadIdx . x] += sdata [threadIdx . x + 1] ;
25 // f i r s t t h r ead w r i t e s t h e r e s u l t
26 i f (lane == 0)
27 y [rowForThisWarp] += sdata [threadIdx . x] ;
28 }
29 }� �

If we profile a CUDA program, we get a status report from the hardware.
It tells us the number of uncoalesced reads from memory, how often threads
diverge, number of bank conflicts and other informative benchmarks. To
enable profiling we need to set a few environment variables in the operation
system before a CUDA program is executed. These variables tells where a log
will be created, and which counters we are interested in recording. Enabling
profiling may slow down the program, and should not be enabled except for
when we are profiling a program. An alternative way of profiling is to use
the CUDA Visual Profiler provided by Nvidia. This program works only for
independent program, and not on MEX-files. It offers additional tools for
visualizing, and calculating averages of the results coming from a profile run.

We execute the kernels on a linear system, and note some of the important

55

CHAPTER 6. IMPLEMENTATIONS

Table 6.1: Some counters from the CUDA profiler, found when we solve the linear
system coming from the 100 × 100 × 11 cells version of the Johansen formation
explained in Section 7.3. We use two implementations of CSR as examples, and
compare with the optimized ELL format.

Format Time Occupancy Branches
Divergent Warps
branches serialized

CSR scalar 2018 1 3906 235 0
CSR vector 3448 0.75 103304 22128 56376
ELL 776 1 3680 0 0

profile measures in Table 6.1. The occupancy column represents the ratio
between used threads and the available threads. We see that the vector
implementation leaves 25% of the treads idle. The same behavior is reflected
by the divergent branches, which is 6% for the scalar kernel and 21% for the
vector kernel. Divergent branches is when two or more threads of the same
warp execute different instructions and have to wait for each other. The warp
serialize counter is recording the number of reads from shared memory that
cause bank conflicts. This counter does not apply to the scalar kernel, since
it is not using shared memory.

We also modify our kernels to be able to fetch data through the texture
memory. This is possible for constant data, so we improve all our kernels with
a template parameter specifying if data, that remains unchanged throughout
the kernel execution, should be fetched through the texture memory. As an
example, we solve a linear system with the HYB format with and without
texture fetching. The average running time of the kernels is recorded by
CUDA Visual Profiler, and is plotted in Figure 6.8. Using texture fetching
decreases the running time of the ELL kernel by around 20% and the other
kernels with approximately 10%. The timing result we perform from here
on is therefor using texture cache, to speed up the calculations. The graph
with the total time used confirms that matrix-vector product, vector-vector
product, and the axpy kernel are the functions that contributes the most to
the running time.

56

6.9. USING THE CUDA PROFILER

(a) Average time used without fetching data through texture memory

(b) Average time used when fetching data through texture memory

(c) Total time used by the kernels on a seven minutes test-run

Figure 6.8: Comparison done by CUDA Visual Profiler between the kernels which
do not use texture memory (at the top) and the kernels using texture fetching (in
the center). The graph at the bottom shows how big portion of the total running
time each kernel use when texture fetching is turned on. The time is given in
milliseconds.

57

Chapter 7
Numerical Experiments

Analyzing the correctness of a numerical simulator is usually performed in
three steps. First, we validate the discretization and the solver with a well-
known example. It should have a simple structure where errors are easy to
locate. Secondly, we make sure that the simulator is able to handle more
complex models to find its potential and its limitations. After this, a vali-
dation of the numerical simulator is performed on a real physical problem.
The simulator is correct if it reproduces the same results as we observe in
real life.

In Section 7.1, we perform the verification with a test-problem called the
quarter-five spot problem. Then, the performance and the limitations of the
simulator are tested on two example models that we describe in Section 7.2.
We call the first example for the narrow passage. It has a simple geometry
with one fault, creating a narrowing of the permeable area. The second
example have two faults and a more irregular geometry. We call it the fault-
crossing. The fault-crossing example give high condition numbers of the
linear system, which makes the model harder to solve by the CG algorithm.

Validation of our simulator is not performed in this thesis, since we do
not have output-data from a real physical problem. However, we have a field
model of a CO2 deposit-cite called the Johansen formation. This is a large
model, which is time-consuming to solve without up-scaling. We introduce
it in Section 7.3 and use it to describe what the GPU has to offer in terms of
speed on realistic problems. Correctness of the solver is only verified on the
linear system by checking that the CG algorithm is producing results within
the relative tolerance given. We sum up the results in Section 7.9 to get an
overview of the running time the implementations use to solve the models at
different grid-sizes.

58

7.1. TWO-DIMENSIONAL VERIFICATION MODEL

7.1 Two-dimensional verification model

First, we would like to test for correctness. We do this by considering a
test-case in R2 with homogeneous and isotropic permeability such that K
is the identity matrix everywhere. We place an injection well at the origin
and production wells at the positions (±1,±1) making a five-spot pattern.
Repeating this pattern to infinity produces the same results as imposing no-
flow boundary conditions on the unit box in the first quadrant Ω = [0, 1] ×
[0, 1], and a reference solution here gives a pattern for the global solution.
This problem is called the quarter-five spot problem, and is a standard test-
case for simulators of flow in porous media.

We build a TPFA discretization of this test-case by using a Cartesian grid,
which is K-orthogonal since K is diagonal. The linear system is constructed
by A from equation (4.5) and ~b becomes zero everywhere except at the two
well-positions. A contour-plot of the solution to the quarter-five spot problem
is in Figure 7.1a.

Using the MEX-file explained in Section 6.4 we can build the system
directly from the permeability grid into the DIA format in C++. However,
we create a Matlab-script, in addition, to be able to use this verification
model for all the other formats we have implemented (see Figure 6.6). This
test-case is simple, and therefore well-suited when we want to debug the
various formats and compare them with the built-in solvers in Matlab.

(a) quarter-five spot solution (b) Computation time

Figure 7.1: Running times for a verification model called the quarter-five spot
problem. To the left is a surface plot of the pressure solution with a 8 × 8 grid.
This is a nice and simple example-size for debugging. To the right is a log-log-plot
of timing data compared with the grid-size.

59

CHAPTER 7. NUMERICAL EXPERIMENTS

We run the test-case with different grid-sizes to get a preview of how well
the DIA format works for a TPFA discretization. Matlab’s preconditioned
conjugate gradient method, pcg(), is running without a preconditioner as a
CG solver for Matlab. It is compared with the CG algorithm in C++ which
can run the sparse formats on the CPU or the GPU. Gaussian elimination is
represented by Matlab’s matrix left divide, mldivide().

We can see indications that the GPU implementation is faster than pcg

when the problem size gets large, but it is not able to surpass the direct solver.
This supports the assumption that Gaussian elimination is quicker than CG
on structured two-dimensional grids, where matrices have a small bandwidth.
We investigate the performance of the solvers and the sparse formats further
in Section 7.6, where we analyze the three dimensional examples.

7.2 Models from the Matlab Reservoir

Simulation Toolbox

Three-dimensional problems make the advantage of CG more visible. The
Matlab Reservoir Simulation Toolkit (MRST) we mentioned in Section 6.5 is
a toolbox for reading, processing, and visualizing grids in the eclipse format.
It also includes some routines for creating example problems. We use two
of these example-models at different resolutions. Increasing the resolution
of a grid increases the size of the resulting linear system. Changes in the
permeability changes the condition number. This gives us several linear
systems that we use to analyze our CG solver.

7.2.1 The narrow passage example

The first model we look at is created from the unit cube in a Cartesian
domain, where we give the vertical pillars wave-formed perturbations and
create a fault at a cross-section to get the geometry in Figure 7.2. One
horizontal well is added on each side of the model. The red one is injecting
fluid at a fixed rate of 1 m2/day at each cell it passes through, the flux out of
the blue well is controlled by the bottom pressure, which we set to be fixed
at 100 kPa. The values here are not important, they are just chosen to get
a model we can use to test the speed of our solvers.

When we add wells cell-wise, like we do in this example, the wells are
added by modifying the matrix A. The amount of elements in A that turns
non-zero is five times the number of cells with sources or sinks. These values
are inserted into the last column and the last row of A. The ELL matrix-

60

7.2. MODELS FROM THE MATLAB RESERVOIR
SIMULATION TOOLBOX

(a) Geometric structure (b) Pressure profile (c) Flux intensity

Figure 7.2: Illustration of the narrow passage example. The left picture shows
the geometric structure of an 24× 24× 6 grid created from the example function
simpleGrdecl() in MRST. Cells are colored red where fluid is injected. At the
blue cells, the pressure is set to be 100 kPa and the out-flow is adjusted accordingly.
The calculated pressure profile is shown in the center, and the square root of the
flux intensity through the cell walls is illustrated to the right.

format is therefore not well suited for solving this system, and runs quickly
out of memory.

In order to use the ELL format on some of the example models, we also
create models without sources and sinks. Instead we use Neumann bound-
aries to create a constant flow through the model, entering from the west
boundary and exiting out the east boundary. Illustrations of the Neumann
boundaries are showed in Figure 7.3a and in Figure 7.9a.

Initially, we are interested in creating a simple model which does not
change much when we increase grid-size. Having the same permeability in
each cell gives this effect, so we choose the permeability to be diagonal with
value K = diag(10, 20, 1) in milliDarcy for every cell. The pressure profile
and flux intensity that we find for this model is illustrated in Figure 7.2.

7.2.2 The fault-crossing example

The next model we consider has a more irregular geometry. It contains two
faults that cross each other twice, like we see in Figure 7.3, and we therefore
call it the fault-crossing example. The boundary of the model is flat at the
east side, but has a jagged oval-shaped boundary in the north and south.

The geometric complexity of the model increase the condition number
of the resulting linear system of equations. The condition-numbers are high
compared to the narrow passage at the same grid-size. Hence, the linear
system from this model is harder to solve with the CG algorithm.

61

CHAPTER 7. NUMERICAL EXPERIMENTS

(a) Boundary condition (b) Pressure profile (c) Flux intensity

Figure 7.3: Illustration of the fault-crossing model. The boundaries with in-flow
(red) and out-flow (blue) are colored in the left picture. Pressure profile of the
solution is in the center, and the square root of the flux intensity is illustrated to
the right.

7.3 The Johansen data set

The Johansen formation is a candidate site for sub-sea CO2 storage, located
offshore the south-west of Norway close to the Troll oil-platform. A number
of seismic measurements has been performed of the formation, and the model
has been analyzed by several companies.

A strategic research program has been founded by the Climate program at
the Research Council of Norway together with the companies Norsk Hydro,
Statoil, and Shell. It aims so improve the knowledge of how CO2 flows in
sub-sea deposits to better analyze the success or failure of storage operations.
The Johansen formation has been analyzed as part of this research program.

A geological model of the Johansen formation is publicly available in the
eclipse format. The permeable part of the Johansen model, where CO2 can
flow, is discretized by a 149 × 189 × 16 grid. This is a quite large data
set representing the approximately 75km by 100km formation. To limit the
number of active cells in simulation, grids representing a 100 × 100 section
of the cells are also available for download. The section is situated around
a suitable position for an injection-well, and is available with three different
resolutions in the vertical direction. This gives us four models with realistic
geometries at different resolutions, which we can use to challenge the solvers
on the GPU. The 100 × 100 × 11 section is illustrated in Figure 6.7 and in
Figure 7.4.

We use a simplified simulation model that is motivated by Eigestad et al
[9]. The Johansen formation is proposed as a deposit site for the CO2 waste
from two gas power plants, with a total production of 3.3 Mt CO2 per year.
A simulation is carried out where this injection is carried out over a period

62

7.4. ANALYZING THE MATRIX-STRUCTURES

Figure 7.4: Permeability plot of the 100 × 100 × 11 section of the Johansen
formation. We see that there are permeable layers surrounded by impermeable
rock.

of 110 years, and followed by 440 years after injection-stop to simulate the
effects of buoyancy-driven flow. This simulation is carried out in the Eclipse
100 simulator, and we recreate the simulation using MRST with the help of
a code provided by Knut-Andreas Lie at SINTEF.

7.4 Analyzing the matrix-structures

To get more insight in how MRST builds the linear system, we analyze the
matrices created from our models. How the boundary conditions are included
is important to the size as well as the structure of the system. Looking at
the sparsity pattern of the matrices gives also an indication on which matrix-
format is best suited when the matrix is stored on the GPU.

7.4.1 TPFA discretization

The discretization of a Cartesian grid mentioned in Section 7.1 incorporate
boundary conditions into the vector ~b of the linear system. The MRST,
however, adds these to the matrix A, and increases the size of the system.
If for example we discretize the quarter-five spot example, Then A gets the
the sparsity pattern in Figure 7.5. In this figure, the original system is the
upper-left 256 × 256 corner, where A consists of seven diagonals. The rest
of the matrix comes from the boundary-conditions. Some of the reason why
the boundary conditions take up so much space is that the model is created
in three dimensions, and we get no-flow boundary conditions on the top and
bottom of each cell in the grid. Still, the boundary conditions is increasing
the problem size, and therefore the time it takes to solve it.

63

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.5: The sparsity pattern of a matrix A coming from a TPFA discretiza-
tion by MRST of the quarter-five spot problem.

The implementation we use for the quarter-five spot problem stores only
this upper-left corner as A. It is therefore smaller, and faster to solve. It
is also well-suited for the DIA format, while the MRST discretization is less
suited due to several diagonals with only one non-zero value.

7.4.2 Mimetic discretization

When we discretize the narrow passage and the fault-crossing with the mimetic
discretization, we get a different sparsity pattern than the Cartesian grid we
presented in Figure 4.4. Most of the cells in our example models are quadri-
lateral, and C has therefore similar structure to the Cartesian example. The
matrix B will have the same structure of being block-diagonal with quadratic
blocks of the same size as the number of faces of the cell it corresponds to.
The difference in pattern is coming mainly from the matrix D which holds
the connections at the cell-interfaces.

The different patterns of D are illustrated in Figure 7.6, and after Schur-
decomposition we obtain the matrices in Figure 7.7. Production- or injection-
wells are added to the model by treating them in the same way as interfaces
between cells. They are therefore included in the matrices before the Schur-
decomposition. The number of extra equations in this system is the same
as the number of cells with sources or sinks. After the Schur-decomposition,
the number of non-zeros per row is at most twice the number of neighboring
cells, except for the rows in A which depends on the sources and sinks.

Adding boundary conditions in the form of reference-pressure or flow
through the boundaries does not change the number of non-zeros per row in
A. The exception is when we add wells, like we do for the narrow passage
example. This creates one row and one column in A, with several non-zero

64

7.4. ANALYZING THE MATRIX-STRUCTURES

(a) the narrow passage (b) the fault-crossing (c) the Johansen formation

Figure 7.6: The sparsity pattern of the D matrix found before Schur-
decomposition, when a mimetic discretization is performed.

(a) the narrow passage (b) the fault-crossing (c) the Johansen formation

Figure 7.7: The sparsity pattern of A in the linear systems after the Schur-
complement reduction has been performed.

65

CHAPTER 7. NUMERICAL EXPERIMENTS

values. On the problem-sizes we operate with here, this typically increases
the maximum number of non-zeros per row from around 20 to around 300.
Thus, the efficiency of the ELL format is decreased.

7.5 Assembling the linear systems

Building the systems A~x = ~b in MRST is quite fast. Time needed to build
the system is proportional to the number of cells in the grid. We double-
check this by noting the time used to assemble the linear system from grids
with permeabilities belonging to the different-sized models of the Johansen
formation. The time used is listed in Table 7.1, and we see that it is increasing
close to linearly with the number of cells. At the most, we use 53 seconds to
build the mimetic discretization. this is short compared to the time spent on
solving the linear system, and moving this operation to the GPU gives little
improvements in the running time.

Building the system on the GPU may also have another purpose. There
are two ways to create a multi-grid preconditioner for the CG algorithm.
One is to use the grid-structure to create different levels of coarser grids.
The other is to use the matrix-structure, to create the different levels. When
implementing multi-grid using the grid-structure, the coarsening of the grid
relies on the discretization. In this case, to avoid too much memory communi-
cation between the graphics card and the motherboard RAM, the discretiza-
tion should be implemented on the GPU. However, the algebraic multi-grid
approach can handle more general discretizations, and makes the solver more
independent from the rest of the program. Since the solver is designed to
handle different discretizations, the algebraic multi-grid is the recommended
preconditioner for the CG solver presented herein.

Table 7.1: Time used to assemble the linear system for the different sized models
of the Johansen formation.

Number of cells Mimetic discretization TPFA discretization

100× 100× 11 11.9s 8.5s
100× 100× 16 20.1s 14.3s
100× 100× 21 28.3s 20.3s
149× 189× 16 53.3s 39.3s

66

7.6. SPEED OF THE SPARSE FORMATS

7.6 Speed of the sparse formats

When simulating flow in models of sub-sea rock-formations, the relative tol-
erance is typically set to 10−6. Picking this number is a trick-of-the-trade,
and give reasonable results. We analyze how fast the different sparse formats
are by solving the models with this precision.

The narrow passage

Solving the fluid flow for the narrow passage with the different sparse formats
gives the time plotted in Figure 7.8a. As expected, we see that the HYB
format gives the best overall performance, followed by COO and CSR. The
ELL format is unsuitable for this example, because it runs out of memory
already on a grid-size of 40× 40× 10 cells.

Jumps appear in the log-log plot and we assume that these are due to
variations in the condition number κ(A) of the linear system. To assert this,
we plot in Figure 7.8b estimates for the condition number at some of the
small problem-sizes. We see that the condition number follows the same
pattern as the jumps in time used.

In Figure 7.8c, we compare the CG solvers with the direct method of
Gaussian elimination. The difference between the solvers is not substantial
until the matrix A has around three hundred thousand rows an columns.
Storing a full matrix of the same size is then demanding many times the
amount of available memory, which in this test is 4 GB. The program is there-
fore using swap-memory on the hard-drive to store the Schur-decomposition.
Most of the running time is therefore used on memory-communication, and
mldivide is unable to solve the systems when they become too large.

We can also see that the Gaussian elimination is following a straight curve
before the memory-communication starts to slow it down. The steepness of
this curve reflects the asymptotic running time of O(n3). We may also see
that the CG algorithms follows a less steep tendency, and would out-perform
Gaussian elimination on large problems even if we had an infinite amount of
low-latency memory available.

We have two matrix-formats implemented in C++ for the CPU. These
are the CSR format and the HYB format. Here, we see that the CSR format
runs better on the CPU than the HYB format, and this is also the case for the
other models. We therefore use only the fastest, which is CSR, to represent
the CPU on the other tests we perform.

The speedup we get compared to Matlab’s pcg can be explained in two
steps. First, the speedup between pcg and the CSR format on the CPU,
which gives the speedup we gain from using C++ instead of Matlab. Then,

67

CHAPTER 7. NUMERICAL EXPERIMENTS

(a) Runtime of the CG solvers on the GPU

(b) Condition numbers

(c) Comparing HYB with the solvers for the CPU

Figure 7.8: Time used solving the narrow passage example illustrated in Fig-
ure 7.2 on different grid-sizes. At the top, we plot the different sparse formats,
and see that the HYB format performs best. At the bottom, we compare it with
the implementations for the CPU and the Matlab functions mldivide and pcg.
The condition numbers at some of the problem-sizes is shown in between.

68

7.6. SPEED OF THE SPARSE FORMATS

(a) Neumann boundary (b) Permeability (c) Flux intensity

Figure 7.9: The narrow passage example with Neumann boundaries and three
layers of a log-normal distributed permeability. The boundary condition is illus-
trated to the left, fluid enters at the red boundary and exits at the blue. The
permeability values are illustrated in the center, and the calculated flux intensity
to the right. The permeability has here three layers representing sediment layers of
a rock-formation, and we see that a fault has caused them to no longer be aligned.

the extra increase between the CPU and the GPU explains the speedup due
to hardware differences.

Log-normal distributed permeability layers

In Section 3.1 we presented four examples of problems which are solved by
simulation of flow in porous media. Three of these are problems where fluid
propagates through layers of soil, earth, or rock. The corner-point-grid struc-
ture aim to reflect the structure of such formations, where each layer in the
vertical direction typically represent a sediment layer where the materials
have similar properties. To get a model that mimics this, we pick perme-
ability values from a log-normal probability-distribution and let the mean of
the distribution vary between the layers. In this way, we pick values from
the same distribution for cells having the same vertical cell-coordinate in the
corner-point grid. An example of such a permeability having three distinct
layers is illustrated in Figure 7.9b.

Variations in the permeability of this kind increases the condition number
of the linear system slightly. Time needed to solve the system is therefore
increased, as we can see from Figure 7.10. The grid-size needs to be larger
than before in order for the CG algorithm to become faster that Gaussian
elimination.

Here, we have used Neumann boundary conditions, like shown in Fig-
ure 7.9a, instead of adding wells to the model. The ELL format is therefore
solving this system well. The HYB format will in this case not use it’s COO
part at all, and has therefore approximately the same running time as the

69

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.10: Running time for the narrow passage example with layered log-
normal distributed permeability values. The condition numbers are plotted below
for comparison.

ELL format. Running time of the COO format and the CSR format are
also approximately the same. We therefore only plow the ELL and the CSR
format, since they represent the fastest and slowest of the formats running
on the GPU.

The fault-crossing

Limitations of our linear solver becomes most visible when we solve the fault-
crossing model, even if we use a homogeneous permeability fore each cell. The
geometry of the model is creating irregularity in the boundary conditions and
in the linear system. This cause higher variation in the condition number,
and the problem-size does not have to be large before the solver is getting
slow. Figure 7.11 illustrates these running times. We even experience that
when we solve with defection-correction, the solver is unable to converge to
the relative tolerance of 10−6. This happens already on a problem-size of

70

7.7. SOLVING THE JOHANSEN FORMATION

Figure 7.11: Running time for the fault-crossing example, with plot of the con-
dition numbers.

87500 cells, and we stop the test-runs at this point.

7.7 Solving the Johansen formation

Finding the fluid flow in the Johansen formation gives more insight into
how the solver performs on a realistic model. We start by investigating
the smallest model of the Johansen formation, having a height of eleven
cells. Reference pressure is used as boundary condition around the permeable
grid, and we look at the saturation of CO2 in the formation, assuming that
it initially is filled with water. Flow of CO2 is calculated by first finding
the fluxes through the cell-walls by solving the linear system resulting from
a mimetic discretization. A new saturation representing one year later is
calculated based on these fluxes, and the pressure at the cells are updated
to be ready for the next iterate. Figure 7.12 shows a few of the calculated
saturations, when the linear system is solved with the HYB format on the

71

CHAPTER 7. NUMERICAL EXPERIMENTS

(a) CO2 saturation after 1 year (b) CO2 saturation after 20 years

(c) CO2 saturation after 50 years

Figure 7.12: Saturation distribution in the Johanson formation for a injection
well injecting 10 000 m2 CO2/day. The flux is calculated with CG algorithm with a
precision of 10−6, and we can see small, but visible errors appearing. These errors
comes when the flux is calculated, and accumulates in the simulator at succeeding
timesteps.

72

7.7. SOLVING THE JOHANSEN FORMATION

GPU with a relative tolerance of 10−6 at each time step.
We notice that there are some small errors that become visible after a

few time-steps. The initial guess of solution is zero flux throughout the
whole grid, which is the correct value for the cells outside the area with CO2.
However, the CG algorithm may alter the values which already are correct.
This illustrates the side-effects of a rougher that we mentioned in Section 5.2,
and we also see that error accumulates when the solver is used for succeeding
time steps.

Even though the error is noticeable in the plot, these errors are small.
We can decrease them further by demanding a higher relative tolerance of
the CG algorithm, or by running a few iterates with a smoother that damp
down errors of high frequency.

Decreasing the relative tolerance

Demanding a higher relative accuracy increases the running time of the
solver. The straight-forward CG algorithm uses the times plotted in Ta-
ble 7.2 to achieve the different relative tolerances without restart. This CG
algorithm is using close to the same number of iterations for all the sparse
matrix formats. Matlab’s pcg is also using close to the same number of it-
erations, but we see that the speed is different. The GPU implementation
achieves here a speedup of between seven and fourteen compared to the CPU
implementation, and is around twenty times as fast as pcg.

Such a CG algorithm without restart can only reach a certain tolerance.

Table 7.2: Number of iterations k and time t used to achieve different levels of
relative tolerance on the 100× 100× 11 cells large Johansen model. Here, we use
the straight-forward implementation of the CG algorithm. The speedup column
gives the CPU implementation compared with the GPU implementation. We show
the speedup compared to Matlab’s pcg in parenthesis.

Relative pcg() on CPU CSR on CPU HYB on GPU
tolerance k t k t k t Speedup

10−1 235 8.51s 277 2.84s 280 1.27s 2.2x (6.7x)
10−2 2414 70.9s 2867 28.2s 2986 3.91s 7.2x (18x)
10−3 9906 291s 10164 101s 10587 13.6s 7.4x (21x)
10−4 46800 1390s 49119 630s 46794 62.7s 10x (22x)
10−5 95324 2830s 99548 934s 96012 128s 7.3x (22x)
10−6 - - 143934 1340s 137518 184s 7.3x
10−7 - - 349573 3240s 177036 237s 14x

73

CHAPTER 7. NUMERICAL EXPERIMENTS

Figure 7.13: Iterations used to achieve the different relative tolerances. It is mea-
sured on a 64000 cells large version of the narrow passage example, with mimetic
discretization.

When the relative tolerance is set to 10−8, we iterate as many times as the
number of rows in A. In order to achieve higher precision, and faster conver-
gence, we have to use defection-correction with restart. However, standard
relative tolerance for these type of simulations is 10−6, so we manage to stay
within this accuracy.

An example of the number of iterations used to achieve different levels of
accuracy is shown in Figure 7.13. Here, we plot the residual norm compared
to the number of iterations when we solve a medium sized model of the
narrow passage. In such an example we achieve a residual which is close to
the precision of double floating points, which is 10−16. The algorithm reports
on the relative tolerance 10−13 that trying to correct the defect further leads
to worse results. It has at this point achieved a residual of 3.4 · 10−16.

Solving the full model of the Johansen formation in the same manner,
gives the iterations listed in Table 7.3. The algorithm restarts once to achieve
the relative tolerance of 10−6. When the algorithm restarts, we have iterated
through as many iterations as there are rows in A. If we did not have round-
off errors, we would have the exact solution at this point. Reducing the
residual further after this is demanding substantially more iterates per level
of precision achieved than before the restart. We see this behavior for all the
linear systems solved with restarts. Most probably, the round-off errors are
becoming more dominant after this point.

74

7.8. USING THE MIXED PRECISION SOLVER

Table 7.3: Time used to solve the full Johansen formation model of grid-
dimension 149 × 189 × 16. The CPU performance is calculated from the CSR
implementation in C++, and we use the HYB format for the timing results on the
GPU. The speedup is here the ratio between the CPU and the GPU.

Tolerance CPU GPU Speedup

10−1 71.0s 5.67s 13x
10−2 941s 85.7s 11x
10−3 3430s 354s 10x
10−4 7960s 715s 11x
10−5 18800s 1720s 11x
10−6 - 5620s -

7.8 Using the mixed precision solver

The main idea of the mixed precision (MP) solver is to use single precision for
the inner loop of the algorithm is Section 6.2.2 to gain speed. This modifica-
tions makes the algorithm loose accuracy and it has to perform restarts more
frequent than its double-precision counter-part. However, it performs well
since the gained speed often surpass the time lost due to the extra iterations
that are needed.

Round-off errors becomes a problem in the MP solver even when we
normalize the residual vector. The inner loop of the algorithm is stopped
by a relative tolerance. This stopping criterion will make the loop iterate
through as many iterates as there are rows in the matrix when the errors
dominate. An improvement to the MP algorithm could therefore be to have
control-points after a fixed number of iterations. At these control-points we
can check that round-off errors are not too large and perform a restart if they
are. Fine-tuning of the number of iterations between each such check-point
may then improve the speed further, but this is not performed in this thesis.
We have only adjusted the relative tolerance of the inner loop. In single
precision, the inner tolerance of 10−4 gave good results.

The MP solver used herein is having trouble on the more complex mod-
els. It is slower than the double-precision on the fault-crossing examples,
and is unable to solve the full version of the Johansen model because the
iterations stagnate. This shows that the MP solver is more limited than
than the defection-correction. A suggestion for further work is to implement
a solver using single precision in the inner loop as long as it is possible, and
then increase the precision of the inner loop to double. Still, the MP solver

75

CHAPTER 7. NUMERICAL EXPERIMENTS

performs quite well without improvements, at least on simple models. The
next section summarize the running times and include a MP solver using the
HYB format.

7.9 Summary of the results

To get an overview on the speedup the GPU has compared to the CPU, we
list our test-models and their running time for the different sparse formats
in Table 7.4. We present a speedup multiplier for the HYB format on the
GPU compared with the solvers for the CPU. The CPU-solvers are pcg

representing Matlab, and CSR representing C++. We see that the HYB
format on the GPU is between six and eleven times faster than the CPU
implementation. Compared to Matlab it achieves a speedup multiplier close
to twenty.

The mixed precision (MP) solver is faster on most of the models where
it can be used. It achieves speedups of around eleven times the CPU-speed
on the large models. However, the MP solver is unable to solve the full
Johansen model. Therefore, the defection-correction version of the HYB
format is used to represent the GPU. This model is more robust, solving all
the models relatively fast.

76

7.9. SUMMARY OF THE RESULTS

T
ab

le
7.

4:
Su

m
m

ar
y

of
th

e
di

ffe
re

nt
m

od
el

s
an

d
th

ei
r

ru
nn

in
g

ti
m

e
w

it
h

re
la

ti
ve

to
le

ra
nc

e
of

10
−

6
.

H
er

e,
N

P
an

d
N

P
P

re
pr

es
en

t
th

e
na

rr
ow

pa
ss

ag
e

ex
am

pl
es

w
it

h
ho

m
og

en
eo

us
an

d
lo

g-
no

rm
al

pe
rm

ea
bi

lit
y

re
sp

ec
ti

ve
ly

.
T

he
fa

ul
t-

cr
os

si
ng

is
ab

br
ev

ia
te

d
as

F
C

,a
nd

J
st

an
ds

fo
r

th
e

Jo
ha

ns
en

fo
rm

at
io

n.
T

he
sp

ee
du

p-
m

ul
ti

pl
ie

rs
gi

ve
th

e
fr

ac
ti

on
be

tw
ee

n
th

e
ru

nn
in

g
ti

m
e

of
p
c
g

or
th

e
C

SR
fo

rm
at

on
th

e
C

P
U

co
m

pa
re

d
w

it
h

th
e

H
Y

B
fo

rm
at

on
th

e
G

P
U

.

N
P

sm
a
ll

N
P

P
sm

a
ll

F
C

N
P

b
ig

N
P

P
b

ig
J

sm
a
ll

J
b

ig
J

fu
ll

n
24

39
93

24
39

92
10

39
38

96
53

28
96

53
27

17
70

36
41

89
24

75
71

46
κ

10
6

10
1
4

10
1
1

-
-

10
1
7

-
-

C
P

U
:

p
c
g

16
9s

34
8s

95
2s

24
20

s
64

40
s

43
00

s
-

-
C

S
R

54
.0

s
11

2s
29

1s
82

0s
24

90
s

23
00

s
85

40
s

59
10

0s

G
P

U
:

C
S
R

24
.1

s
31

.5
s

12
0s

21
6s

51
5s

37
7s

19
30

s
-

C
O

O
11

.9
s

24
.2

s
94

.0
s

10
5s

32
4s

31
9s

14
50

s
-

E
L

L
-

16
.5

s
69

.1
s

-
29

2s
22

7s
16

10
s

-
M

P
H

Y
B

6.
83

s
13

.6
s

68
.1

s
97

.3
s

21
9s

15
7s

77
9s

-
H

Y
B

8.
83

s
16

.3
s

48
.7

s
10

2s
27

7s
19

6s
90

5s
56

20
s

S
pe

ed
-m

u
lt

ip
li

er
:

M
at

la
b

19
x

21
x

20
x

24
x

23
x

22
x

-
-

C
+

+
6.

1x
6.

9x
6.

0x
8.

0x
9.

0x
12

x
9.

4x
11

x

77

Chapter 8
Conclusions

In this thesis, we have created a linear algebra solver using the conjugate
gradient method. It was implemented for graphic processing units (GPUs)
that support the compute unified device architecture (CUDA) designed by
Nvidia. Todays graphics cards consist of parallel processors capable of cal-
culating close to a trillion floating point operations per second (Tflops).

Programming for these graphics cards is becoming easier. The program-
ming language of CUDA is similar to C language, and there are available
tools for debugging and analyzing how the program performs on the specific
hardware. General compilers for parallel processors are under development,
but knowing the layout of the hardware is crucial when optimizing a pro-
gram for speed. Transferring memory to and from the graphics card has a
high latency, and should be avoided as much as possible. Data is transferred
faster when special access patterns are followed, and when the workload can
be divided among many parallel threads.

Trying to follow these guidelines, we created a Matlab executable (MEX)
file, solving a linear systems on the GPU. Numerical experiments show that
it is around ten times faster than the corresponding implementation for the
central processing unit (CPU). Compared with Matlab’s conjugate gradient
solver, which does not use a preconditioner, it is between twenty and thirty
times faster on large systems. The comparison is carried out on a single
core of an Intel Core Quad 6600 running on 3,53 GHz and the GeForce 260
graphics card running at 650 MHz.

78

8.1. CONCLUSIONS IN MORE DETAIL

8.1 Conclusions in more detail

The solver is used to simulate flow in a porous medium. We created such
a simulator in three steps: Discretization, solving the discretization, and
optimize the solver for the GPU.

Discretization

Discretizing physical problems into linear systems can be performed by differ-
ent methods. As examples, we considered the two-point flux-approximation
(TPFA) scheme, the O-method, and finite element discretizations. The
mimetic finite element scheme is a finite element discretization, which is
able to handle grids with very complex geometries. The Matlab reservoir
simulation toolkit (MRST), which is created by SINTEF, can be used to
discretize models into linear systems by the mimetic discretization. It can
be used to simulate CO2-propagation in a sub-sea formation.

Linear algebra solver

The CG method is an iterative algorithm that performs well on three-dimensional
problems. It has low storage requirements, and is well suited for parallel im-
plementation. The CG algorithm should be used with a preconditioner, but
the CG algorithm in this thesis does not.

High condition numbers of the linear system increases the number of
iterations used by CG, and therefore the running time. The condition number
is mainly dependent on the geometry and permeability of the model, but also
on the problem size, and the discretization technique.

Restarting the algorithm and solving for defection-correction increase the
precision we were able to obtain. We also gained speed, since round-off
errors became less dominant. Additional speed was also achieved when the
problems could be solved in a mixed precision between single and double.
However, the solver used here was not able to use mixed precision on all the
models considered in this thesis.

Small and high-frequent errors appeared because of the rougher-behavior
of the CG method. A smoother may be applied to dampen these errors, for
example, as a preconditioner.

Optimizing for the GPU

The most important calculations of the CG algorithm are the axpy calcu-
lation, vector-vector product and matrix-vector product. The matrix-vector

79

CHAPTER 8. CONCLUSIONS

product was improved by choosing appropriate matrix formats. The com-
pressed sparse row (CSR) format was the best suited format for the CPU. A
hybrid (HYB) matrix-format between the ELLPACK (ELL) format and the
sparse coordinates (COO) format gave the best best overall performance on
the GPU.

The essence of optimizing a format for the GPU is to make sure that
data that are read consecutively are stored in that same order in memory.
Further run-time improvements are achieved by avoiding bank conflicts or
idle threads, and use texture memory when it is possible.

Creating a link between Matlab and C++ is done by creating a MEX
file. The technique is well documented, but such a program is not easy to
debug. It is therefore smart to also create a normal program which reads
from a Matlab (MAT) save-file for debugging purposes.

8.2 Further work

The mixed precision solver gave good results, but the implementation was not
able to handle complex models, were the round-off errors became too large.
Fine-tuning of this algorithm may fix this. One idea that was not tested is
to calculate the true residual at some checkpoints in the inner iteration. In
this way, we may register when the round-off errors are becoming dominant.

Creating visualization for C++ using for example OpenGL would make
the program less dependent on Matlab. A Matlab license is not free, and it
would be nice to have a program which is more independent. For this cause,
the discretization process should be written in C++ and use the GPU to
speed up the linear algebra.

Adding extra boundary conditions or sources and sinks to a model created
in MRST may increase the size of the linear system. The system would be
solved faster if these additions were included into the right hand side of the
linear system A~x = ~b instead.

A preconditioner should be implemented for the GPU. The algebraic
multi-grid would be a nice choice for this job, using a smoother to dampen
error-components at different resolutions. Having such a preconditioner
would decrease the number of iterations, improve the accuracy, and thus
increase the speed further.

80

Bibliography

[1] I. Aavatsmark. An introduction to multipoint flux approximations for
quadrilateral grids. Computational Geosciences, 6(3):405–432, 2002.

[2] Advanced Micro Devices Inc. GPU technology for accelerated com-
puting. http://ati.amd.com/technology/streamcomputing/index.html,
2008.

[3] K. Asanovic, R. Bodik, et al. The Landscape of Parallel Computing
Research: A View from Berkeley. Electrical Engineering and Computer
Sciences, 18(2006-183):19, 2006.

[4] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication
on CUDA. Nvidia technical report NVR-2008-004, Dec. 2008.

[5] D. Blythe. The Direct3D 10 system. In ACM SIGGRAPH 2006 Papers,
pages 724–734.

[6] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of mimetic finite
difference method for diffusion problems on polyhedral meshes. Conver-
gence, 43(5):1872–1896.

[7] F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite
difference methods on polygonal and polyhedral meshes. Mathematical
Models and Methods in Applied Sciences, 15(10):1533–1552, 2005.

[8] I. S. Duff, M. A. Heroux, and R. Pozo. An overview of the sparse basic
linear algebra subprograms: The new standard from the BLAS technical
forum. ACM Trans. Math. Softw., 28(2):239–267, 2002.

[9] G. T. Eigestad, H. K. Dahle, B. Hellevang, F. Riis, W. T. Johansen,
and E. Øian. Geological modeling and simulation of CO2 injection in
the Johansen formation. draft, 2009.

81

BIBLIOGRAPHY

[10] W. Feng and K. Cameron. The Green500 list: Encouraging sustainable
supercomputing. Computer, 40(12):50–55, 2007.

[11] R. Fernando and M. Kilgard. The Cg tutorial: The definitive guide to
programmable real-time graphics. Addison-Wesley Longman Publishing
Co., 2003.

[12] D. Göddeke, R. Strzodka, and S. Turek. Performance and accuracy
of hardware-oriented native-, emulated-and mixed-precision solvers in
FEM simulations. International Journal of Parallel, Emergent and Dis-
tributed Systems, 22(4):221–256, 2007.

[13] R. Grimes, D. Kincaid, and D. Young. ITPACK 2.0 User’s Guide. Center
for Numerical Analysis, University of Texas at Austin, 1979.

[14] M. Harris. Optimizing CUDA. In Supercomputing, 2007.

[15] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-
based visual simulation on graphics hardware. In HWWS ’02: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on graph-
ics hardware, pages 109–118. Eurographics Association, 2002.

[16] M. Harris, S. Sengupta, and J. Owens. Parallel prefix sum (scan) with
CUDA. GPU Gems, 3, 2007.

[17] J. Hennessy and D. Patterson. Computer architecture: a quantitative
approach. Morgan Kaufmann, 2003.

[18] J. Hensley. AMD CTM overview. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 courses.

[19] A. Inc. Brook+ SC07 BOF session. In Supercomputing 2007 Conference,
2007.

[20] Intel Corporation. Excerpts from a conversation with Gordon Moore:
Moore’s Law, 2005.

[21] H. Kalish and J. Isaac. The AMD-K6 3D Processor. Abacus Software,
1998.

[22] K. Kettler. Technology trends in computer architecture and their im-
pact on power subsystems. Applied Power Electronics Conference and
Exposition, pages 7–10 Vol. 1, March 2005.

82

BIBLIOGRAPHY

[23] J. Larus and J. Larus. Spending Moores Dividend. Technical report,
Microsoft Research, 2008.

[24] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A
unified graphics and computing architecture. Micro, IEEE, 28(2):39–55,
2008.

[25] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: A
system for programming graphics hardware in a C-like language. In
SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages 896–907.

[26] A. Munshi. OpenCL - Parallel Computing on the GPU and CPU. In
SIGGRAPH 2008.

[27] Nvidia Corporation. 200 GPU architectural overview, second-generation
unified GPU architecture for visual computing. Technical report, 2008.

[28] Nvidia Corporation. CUBLAS Library version 2.0. 2008.

[29] Nvidia Corporation. Nvidia CUDA Programming Guide version 2.2.
NVIDIA, October, 2009.

[30] Nvidia Corporation. OpenCL for Nvidia.
http://www.nvidia.com/object/cuda opencl.html, 2009.

[31] J. Owens, D. Luebke, et al. A survey of general-purpose computation
on graphics hardware. In Computer Graphics Forum, volume 26, pages
80–113. Blackwell Publishing Ltd, 2007.

[32] A. Peleg, S. Wilkie, and U. Weiser. Intel MMX for multimedia PCs.
Commun. ACM, 40(1):24–38, 1997.

[33] P. Raviart and J. Thomas. A mixed finite element method for 2nd order
elliptic problems. Lecture notes in mathematics, 606:292–315, 1977.

[34] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for In-
dustrial Mathematics, 2003.

[35] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification
(Version 2.0). Jon Leech and Pat Brown, 2004.

[36] L. Seiler, D. Carmean, et al. Larrabee: a many-core x86 architecture
for visual computing. ACM Trans. Graph., 27(3):1–15, 2008.

[37] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for
GPU computing. In Graphics Hardware 2007, pages 97–106. ACM.

83

BIBLIOGRAPHY

[38] J. Shewchuk. An introduction to the conjugate gradient method without
the agonizing pain. Computer Science Tech. Report, pages 94–125.

[39] A. Shilov, A. Stepin, and Y. Lyssenko. The grand clash for watts:
power consumption of modern graphics cards.
http://www.xbitlabs.com/articles/video/display/gpu-
consumption2006.html.

[40] P. Shirley and R. Morley. Realistic ray tracing. AK Peters, Ltd., 2003.

[41] J. Sun and P. Monk. An adaptive algebraic multigrid algorithm for
micromagnetism. Magnetics, IEEE Transactions on, 42(6):1643–1647,
2006.

[42] A. Torp. Reservoir simulation on a gpu. Specialization project at Nor-
wegian University of science and engineering, 2008.

[43] D. Triolet. Product review: The Nvidia GeForce GTX 280 and 260,
2008.

[44] VG charts. Americas sales for the week ending december 27, 2008.
http://news.vgchartz.com/news.php?id=2730.

84

	Title Page
	Problem Description
	masteroppgave.pdf

