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Abstract

This article contains discussions of the algorithms used for the construction of the continuation

software implemented in this thesis. The aim of the continuation was to be able to perform contin-

uation of equilibria and periodic solutions originating from a Hopf bifurcation point. Algorithms

for detection of simple branch points, folds, and Hopf bifurcation points have also been imple-

mented. Some considerations are made with regard to optimization, and two schemes for mesh

adaptation of periodic solutions based on moving mesh equations are suggested.
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CHAPTER 1

Introduction

Numerical continuation as a tool for analyzing nonlinear equations has proven very useful espe-

cially in the past decades as computers and algorithms has constantly involved. Even though the

use of continuation techniques can be traced back to works of Poincarè(1881-1886), Klein (1882-

1883) and Bernstein (1910) [6], and the use of deformations to solve nonlinear equations may be

traced back at least to Lahaye (1934), the golden age for these methods began in the late 1970’s.

Perhaps to some degree triggered by Keller’s pseudo-arclength continuation technique (1977), and

implemented by Eusebius Doedel in the program AUTO (1980).

There are two main branches for continuation software, namely those based on predictor-corrector

(PC) methods, and those based by piecewise linear continuation techniques (PL). In general, it

may be stated that PC-methods have performed best when high accuracy is needed, while PL-

methods are perhaps better suited for a more qualitative global study. There have been devel-

oped several software packages for continuation. Most notably is perhaps, AUTO, MATCONT

(or CL_MATCONT) (Govaerts et.al) which is a successor of CONTENT (Kuznetsov et.al), LOCA

(Sandia Corp.) and PDDE-CONT (Szalai). Wikipedia’s list of continuation software packages

currently contains 13 entries, whereof many are open source projects.

There may not be an immediate need for adding yet another program to this list, as we have not

tested other programs than CL_MATCONT for the specific test examples that motivated this work,

but it is an interesting topic, and it also provides much insight to the mechanisms and particular

problems that needs to be addressed.

The dispositionof this thesis is as follows; in the second chapter we shall briefly discuss the concept

of numerical continuation and review basic terminology important results of the subject of dynam-

ical systems, and in particular those originating from autonomous systems of ordinary differential

equations. In the third chapter we introduce PC methods in general, and in the fourth chapter we

formulate the systems for continuation of equilibria and periodic solutions, as well discuss methods

of detecting folds, simple branch points and Hopf bifurcations along solution branches of equilib-

ria. Chapter 5 addresses topics regarding optimization and implementation that were not explained

elsewhere, and a brief user manual is contained in chapter 6. In chapter 7 the software is tested on

some numerical examples.
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CHAPTER 2

Preliminaries

This chapter aims at presenting the basic theorems, notation and terminology that will be used

in the rest of this text. The reader is assumed to be familiar with elementary linear algebra and

dynamical systems at an introductory level. The reader may consult [10],[9], [6] and [2] for a more

detailed account of the preliminaries.

1. Notation

We shall employ the following notation throughout this paper:

R denotes the set of real numbers

Z denotes the set of integers

id denotes the identity map

A� means the complex conjugate of a matrix or a vector A

In denotes the n � n identity matrix

0n�m denotes the n �m zero matrix

O denotes the Landau big-O symbol

2. Numerical Continuation

We shall consider equations of the form

f .x/ D 0;(1)

where f W Rn � R ! Rn. We shall occasionally write x in decomposed form;

x D .u; �/;(2)

where u 2 Rn can be though of as a variable and � 2 R as a parameter. Although this distinction

is not necessary, it adds meaning since we can regard (1) as a dynamical system. Suppose that x0 is

a root of f , the purpose of the analysis here is then to investigate how the the set f �1.0/ changes

locally about x0 � .u0; �0/as the parameter � change. Let U be a sufficiently small neighborhood

of x0, then from the implicit function theorem 1 it can be found certain conditions for which the set

f �1.0/ \ U is a curve. The purpose of numerical continuation is to trace out this curve.

THEOREM 1 (Implicit function theorem ). Let f be as above (1) and suppose

� f .u0; �0/ D 0,

3



4 2. PRELIMINARIES

� fu.u0; �0/ is nonsingular

� f and fu are smooth near u0

Then there is a neighborhood, U , of �0 such that for � 2 U , there is a unique smooth function

u.�/ satisfying

f .u.�/; �/ D 0(3)

and

u.�0/ D u0:(4)

Moreover, if f 2 Cm, then u.�/ 2 Cm.

REMARK 2. In this paper the smoothness conditions are always assumed to hold.

The curve u.�/ of theorem 1 is called a solution branch of f .

DEFINITION 3. A point x is called a regular point of f if the Jacobian fx has maximal rank. A

value y 2 Rn is called a regular value of f if x is a regular point of f for all x 2 f �1.y/. Points

and values are called singular if they are not regular.

The following reformulation of the implicit function theorem 1 provides the foundation for numer-

ical continuation.

THEOREM 4. Let x0 D .u0; �0/ be a regular solution of f .x/ D 0, f W Rn �R ! Rn. Then, near

x0, there exists a unique one-dimensional continuum of solutions x.s/, called a solution branch,

with x.0/ D x0.

The proof of this is basically based on interchanging the columns of the Jacobian, and using the

implicit function theorem. A complete proof can be found in [3]. It is also evident from the

implicit function theorem that the solution branch can be parameterized locally by some element

of the vector x. It is clear from the theorem 4 that each regular point in R
nC1 has a neighborhood

in which every point is regular. We may therefore suspect that most points in R
nC1 are regular.

The proper justification for this suspicion is due to Sard:

THEOREM 5 (Sard’s Theorem). Let f W Rn ! Rm be C k, k times continuously differentiable,

where k > maxfn�mC 1; 1g. Let X be the critical set of f , i.e the set of points x 2 Rn at which

the Jacobian matrix of f has rank < m. Then f .X/ has Lebesgue measure 0 in Rm.

By differentiating

f .x.s// D 0

with respect to s, we obtain

fx.x.s//x
0.s/ D 0:
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Thus

x0.s/ 2 kerfx ;

and the solution branch proceeds in the direction of a null vector of fx . For a regular point the null

vector is unique up to scalar multiplication. Note that this makes sense since x.s/ is a contour curve
in RnC1. This direction vector x0.s/ gives us an orientation of the curve, with respect to increasing

parameter values s, and it is clear that this orientation depends on the parameterization of the curve.

Another commonly used orientation of the curve that do not depend on the parameterization is the

tangent:

DEFINITION 6. Let A be an n�.nC1/-matrix with rankfAg D n. The unique vector t .A/ 2 R
nC1

satisfying the three conditions

(1) At D 0;

(2) k t kD 1;

(3) det

�

A

t�

�

> 0;

is called the tangent vector induced by A.

LEMMA 7. The set M of all n � .nC 1/-matrices A having maximal rank n is an open subset of

Rn�.nC1/, and the map A 2 M 7! t .A/ is smooth.

PROOF. [6] �

PROPOSITION 8. The function k W RnC1 ! RnC1 defined by k D fx ı t is smooth in a neighbor-

hood of a regular point x.

PROOF. The Jacobian function fx is already assumed to be smooth in a neighborhood of x,

and since t also is smooth the composition k must also be smooth in a neighborhood of x. �

Note that

�

A

t

�

can only be zero if the Jacobian A is singular, hence if we consistently trace the

curve x.s/ in the direction of the tangent, we are ensured to trace the curve in one direction. Note

that this argument is no longer valid if we cross singular points.

3. Dynamical Systems

The purpose of this section is to establish the terminology and basic results that are used in this

paper. Most of the definitions and theorem in the first part of this section can be found in [9].

DEFINITION 9. A dynamical system is a triple fT ;B; �tg, where T is a time set, B is a state

space, and �t W B ! B is a family of evolution operators parameterized by t 2 T and satisfying

the properties
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(1) �0 D id ,

(2) �tCs D �t ı �s .

Note that the state space B in the context of this paper can be thought of as a Banach space.

DEFINITION 10. An orbit starting at u0 is an ordered subset of the state space B,

Or.u0/ D fu 2 B W u D �tu0;8t 2 T such that �tu0 is definedg:

DEFINITION 11. The phase portrait of a dynamical system is a partitioning of the state space into

orbits.

DEFINITION 12. A point u0 2 B is called an equilibrium point (fixed point) if �tu0 D u0 for all

t 2 T .

DEFINITION 13. A cycle is a periodic orbit, namely a non-equilibrium orbit L0, such that each

point u0 2 L0 satisfies �tCT0u0 D �tu0 with some T0 > 0, for all t 2 T . The minimal T0 with

this property is called the period of the cycle L0.

DEFINITION 14. A cycle of a continuous-time dynamical system, in a neighborhood of which there

are no other cycles, is called a limit cycle.

DEFINITION 15. An invariant set of a dynamical system fT ;B; �tg is a subset S � B such that

u0 2 S implies �tu0 2 S for all t 2 T .

THEOREM 16. An invariant set S0 is stable if the two following conditions hold;

(1) for any sufficiently small neighborhood U � S0 there exists a neighborhood V � S0

such that �tu 2 U for all u 2 V and all t > 0;

(2) there exists a neighborhoodU0 � S0 such that �tu ! S0 for all u 2 U0, as t ! C1.

Condition (1) of the above theorem is also called Lyapunov stability, and the second condition is

called asymptotic stability. Note that an equilibrium point (fixed point) is an invariant set.

In this section we shall assume that the function of our continuation problem (1) arises from a

system of autonomous ordinary differential equations:

Pu D f .u; �/, u 2 R
n, � 2 R,(5)

where � can be thought of as a parameter. The parameter is often regarded a fixed value, hence we

often write (5) as

Pu D f .u/:(6)

We shall see that the system (6) can be regarded as a dynamical system.

THEOREM 17. Consider a system of ordinary differential equations

Pu D f .u/; u 2 R
n;

where f W Rn ! Rn is smooth in an open region U � Rn. Then there is a unique function

u D u.t; u0/, u W R � Rn ! R, that is smooth in .t; u0/, and satisfies, for each u0 2 U , the

following conditions:



3. DYNAMICAL SYSTEMS 7

(1) u.0; u0/ D u0I

(2) there is an interval I D .�ı1; ı2/, where ı1;2 D ı1;2.u0/ > 0, such that, for all t 2 I,

y.t/ D u.t; u0/ 2 U

and

Py.t/ D f .y.t//:

The function u.t; u0/ gives rise to two objects; a solution curve

Cr.u0/ D f.t; u/ W u D u.t; u0/; t 2 Ig � R � R
n

and an orbit

Or.u0/ D fu W u D u.t; u0/; t 2 Ig � R
n:

Note that the orbit is the projection of the solution curve onto the state space R
n. The evolution

operator �t W R
n ! R

n can thus be written

�tu0 D u.t; u0/:

Thus we can regard the system of ordinary differential equations (6) as a dynamical system.

THEOREM 18. Consider a dynamical system (6), where f is smooth. Suppose that it has an

equilibrium u0, then u0 is stable if all eigenvalues �1; �2; : : : ; �n of fu.u0/ satisfy Re.�/ < 0.

DEFINITION 19. A dynamical system fT ;Rn; �tg is called locally topologically equivalent to a

dynamical system fT ;Rn;  tg if there exists a homeomorphism h W R
n mapping orbits of the first

system to orbits of the second system preserving the direction of time.

DEFINITION 20. A dynamical system fT ;Rn; �tg is called locally topologically equivalent near

an equilibrium u0 to a dynamical system fT ;Rn;  tg near an equilibrium y0 if there exists a

homeomorphism h W Rn ! Rn that is

(1) defined in a small neighborhoodU 2 R
n of u0

(2) satisfies y0 D h.u0/

(3) maps orbits of the first system in U onto orbits of the second system in V D h.U / � R
n,

preserving the direction of time.

DEFINITION 21. The appearance of a topologically nonequivalent phase portrait under variation

of parameters is called a bifurcation.

DEFINITION 22. The codimension of a bifurcation system (5) is the difference between the dimen-

sion of the parameter space and the dimension of the corresponding bifurcation boundary.

Bifurcations can be divided into two principal classes:
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� Local bifurcations, which can be analyzed through changes in the local stability properties
of equilibria, periodic orbits or other invariant sets as parameters cross through critical

thresholds;

� global bifurcations, that cannot be detected purely by a stability analysis of the invariant

set.

In this paper, we shall be concerned with local bifurcations only detecting local bifurcations along a

solution branch of (5), and we shall use the term bifurcation point for points on the solution branch

where the stability properties change.

3.1. Hyperbolic equilibria.

DEFINITION 23. An equilibriumu0 of (6) is called hyperbolic if there are no eigenvalues of fu.u0/

on the imaginary axis.

For the system (5) we shall say that .u0; �0/ is hyperbolic if u0 hyperbolic for � D �0.

PROPOSITION 24. Consider the system (5) where f and fu are smooth near u0. If .u0; �0/

is a hyperbolic equilibrium point of (5) then there exists a smooth curve .u.s/; �.s// such that

f .u.s/; �.s// D 0 and u.�0/ D u0 for jsj sufficiently small. Furthermore, for sufficiently small

values of s, each point on the curve .u.s/; �.s// is hyperbolic.

PROOF. Note that a hyperbolic point is a regular point. The implicit function theorem therefore

guarantees the existence of a smooth regular curve in some neighborhood of .u0; �0/. What is

left to prove is that for sufficiently small values of s, the curve contains only hyperbolic points.

Since u varies smoothly with respect to s, and fu varies smoothly with respect to u, fu varies

smoothly with respect to s. The eigenvalues of fu.s/ are determined by the characteristic equation

det.fu.s/ � �I/ D 0. This is is a polynomial in � , where the coefficients are smoothly dependent

of s. Since the roots of a polynomial depends continuously on the coefficients of the polynomial,

the proposition is true. �

The above proposition states in other words that hyperbolic points persist for sufficiently small

perturbations of the parameter �.

3.2. Non-hyperbolic equilibria. The real part of an eigenvalue can reach zero in two ways;

either � D 0, or a complex conjugate pair of eigenvalues reach the imaginary axis, � D ˙ai . The

first case corresponds to the appearance of a fold bifurcation and the second to a Hopf bifurcation.

These are the two generic bifurcations we expect to meet at a one parameter analysis of (5). Another

bifurcation that we shall consider occur at singular solution points. We shall limit our discussion

to the simplest case where kernel of the Jacobian at the point is two dimensional.
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Simple Folds. We shall restrict our discussion of folds to simple folds:

DEFINITION 25 (Simple fold). A solution .u0; �0/ is called a simple fold if

dim ker.f 0
u / D 1 and f 0

� … Rangeff 0
u g:

THEOREM 26. Suppose .u0; �0/ is a simple fold. Then the equation

f .u; �/ D 0;

has, for small s, a unique solution branch

.u.s/; �.s// D .u0 C s� C v.s/; �.s//

with

v.0/ D 0; �.0/ D 0; ��v.s/ D 0:

Moreover, if f is k times differentiable near .u0; �0/ then so is .u.s/; �.s//.

PROOF. A proof of this can be found in [3]. �

DEFINITION 27. A simple fold is called a simple quadratic fold if �00.s0/ ¤ 0.

A simple quadratic fold is also often called a turning point. Note that a fold can be detected by

monitoring the eigenvalues of the Jacobian.

Branch Points.

DEFINITION 28. A point x0 is called a branch point for the continuation problem (1) if f .x0/ D 0

and there are at least two different smooth curves satisfying (1) and passing through x0.

Note that branch points must happen at singular points. The simplest case of a singular point is the
case of a simple singular point:

DEFINITION 29. A solution x0 � x.s0/ along a solution branch x.s/ of (1) is called a simple

singular point if fx.x0/ has rank n � 1.

The question naturally arises if a simple singular point can be a branch point? A criteria will be

derived here. Suppose that x.s/ is a smooth solution branch of f .x/ D 0. Differentiation with

respect to s yields

fx.x.s//x
0.s/ D 0:

Assume that the direction vector x0.s/ is normalized, i.e k x0.s/ kD 1. Let x0 � x.s0/ be a simple

singular point with kerf 0
x D Spanf�1; �2g and ker..f 0

x /
�/ D Spanf g. The direction vector

x0.s/ holds in particular at x0, thus x0.s/ must be of the form

x0.s/ D ˛�1 C ˇ�2;(7)
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for some constants ˛ and ˇ. Let us denote these by ˛1 and ˇ1, respectively. If there is another
branch passing through x0 then there must be another pair of constants .˛2; ˇ2/ such that (7) hold.

By differentiating f .x.s// D 0 twice, and evaluating at x0 we obtain

f 0
x x

00
0 C f 0

xxx
0
0x

0
0 D 0:

Multiplying this by  � we get

 �f 0
xx.˛�1 C ˇ�2/.˛�1 C ˇ�2/ D 0;

which may be written as

c11˛
2 C 2c12˛ˇ C c22ˇ

2 D 0; cij D ��f 0
xx�i�j :(8)

This equation (8) is called the algebraic branching equation. Suppose that ˛ ¤ 0 then we can

write (8) as

c11 C 2c12
ˇ

˛
C c22.

ˇ

˛
/2 D 0:

Hence, we see that if the discriminant �0 � c2
12 � c11c22 is positive then (8) has two distinct

real nontrivial solution pairs .˛1; ˇ1/ and .˛2; ˇ2/ which are unique up to scaling. Note that the
discriminant cannot be negative, since we already have one real root .˛1; ˇ1/ corresponding to the

direction vector x0
0. Thus if �0 > 0 we expect a second branch to pass through x0.

DEFINITION 30. A simple singular point x0 having a positive discriminant�0 is called a simple

branch point.

LEMMA 31. Let x.s/ be a solution branch of (1). Consider the matrix

D.s/ D

�

fx.x.s/

x0.s/�

�

:

Then the scalar function

d.s/ D detD.s/

has a regular zero at s D s0.

PROOF. A proof can be found in [9]. �

Note that this gives us means for detecting branch points.

Hopf Bifurcations.

THEOREM 32 (The Hopf Bifurcation Theorem). Suppose that along a stationary solution branch

.u.�/; �/, of (5) a complex conjugate pair of eigenvalues

˛.�/˙ iˇ.�/;

of fu.u.�/; �/ crosses the imaginary axis transversally, i.e., for some �0,

˛.�0/ D 0; ˇ.�0/ ¤ 0; and
d˛.�0/

d�
¤ 0:
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Also assume that there are no other eigenvalues on the imaginary axis.

Then there is a Hopf bifurcation, i.e., a family of periodic solutions bifurcate from the stationary

solution at .u0; �0/.

PROOF. The theorem is stated in [3]. No references to the proof is given there. �

A Hopf bifurcation point can therefore be detected by monitoring the eigenvalues.

3.3. Periodic Solutions. A solution v.t/ of (5) is called periodic if v also satisfies

v.0/ D v.T /;

for some period T 2 R. Note that a periodic solution is a cycle. Suppose that v.t/ denotes a

periodic solution of (5) of period T , and let ı.t/ denote a perturbation from the periodic solution.

We shall consider the curve w.t/ D v.t/C ı.t/. By linearizing (5) about v.t/ we obtain

Pw.t/ D f .v.t/C ı.t// D f .v.t//C fu.v.t/.w.t/� v.t//C O.k w.t/ � v.t/ k2/

D A.t/u.t/C O.k u.t/ k2/:
(9)

Truncating O.k u.t/ k2 terms results in the linear T -periodic system

Pv D A.t/v; v 2 R
n;

where A.t/ D fu.v.t//; A.t C T / D A.t/. The system (3.3) is called the variational equation

of the periodic solution v.t/. It is clear that the stability of v.t/ depends on the properties of the

variational equation.

DEFINITION 33. The time-dependent matrixM.t/ is called the fundamental matrix solution of (5)

if it satisfies

PM D A.t/M;

with the initial conditionM.0/ D In.

Note that any solution v.t/ of (3.3) satisfies

v.T / D M.T /v.0/:

The matrixM.T / is called the monodromy matrix of the periodic solution v.t/, and its eigenvalues

are called the Floquet multipliers. Note that 1 is always a Floquet multiplier since M.T /u.0/ D

u.0/. Bifurcation points of branches of periodic solution can be studied by monitoring the Floquet

multipliers along the solution branch. We will not go into the types of bifurcations that arise in the

context of periodic solutions, as it is not part of the scope of this paper. Further details on the topic

can be found in [9].





CHAPTER 3

Predictor-Corrector Methods

There are at least two different approaches for obtaining the solution curve x.s/, namely the tech-

niques of piecewise linear continuation and predictor-corrector methods. Only predictor-corrector

(PC) methods will be discussed in this paper.

A predictor-corrector method generally consists of the following steps

(1) prediction of the next point,

(2) correction,

(3) step-size control,

which will be described in the below sections.

1. Prediction

Suppose that a solution point x0,the direction vector v0 and some initial step-length h0 is known,

then the next point, Qx point may be guessed by the Euler prediction.

Qx D x0 C h0v0:

Let A D fx.x0/. To obtain an initial direction vector note that A� can be factored into

A� D Q

�

R

0

�

;

hence if z denotes the last column ofQ, then Az D 0, and sinceQ�Q D I and k z kD 1, z can be

used as an initial direction vector. In fact, if we wish that z should be the tangent vector it suffices

to note that

.A�; z/ D Q

�

R 0

0� 1

�

;

hence

det

�

A

z�

�

D det.A�; z/ D detQdetR:

13
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Subsequent direction vectors can be obtained by solving

�

f 1
x

v0�

�

�

v1

�

D

�

0

1

�

or by normalizing

vi D
xi � xi�1

hi�1

Also note that higher order predictors can also be used. See [6] for a discussion of higher order

predictors based on interpolation polynomials and corresponding steplength strategies.

2. Correction

The purpose of the correction step is to iteratively obtain better and better approximation of the

next point until some predefined tolerances are met. Generally it is advantageous to utilize Newton

(or Newton-like) methods to obtain better approximations. Two methods are considered in this

paper, namely the pseudo-archlength continuation and the Gauss-Newton method.

2.1. Newton’s method. Let F W Rk ! Rk , x 7! y, be a smooth function, and let Qx be an

approximation of a root of F . Linearizing F about Qx we obtain

F. Qx/C Fx. Qx/.x � Qx/ D 0:(10)

If the matrix Fx is invertible the linear system will have the solution

x D Qx � F �1
x . Qx/F. Qx/:(11)

Note that we can define the following Newton iterations

N . Qx/ D Qx C�x;(12)

where the displacement vector �x is obtained by solving

Fx. Qx/�x D �F. Qx/:

THEOREM 34. Suppose the system F W Rk ! Rk, x 7! y, is smooth and has an equilibrium

x D Ox with no zero eigenvalue of the Jacobian matrix Fx. Ox/. Then there is a neighborhoodU of

Ox such that the Newton iterations (12) converge to Ox from any initial point Qx 2 U . Moreover

k N j C1. Qx/ � Ox k� � k N j . Qx/ � Ox k2; j D 0; 1; 2; : : : ;

for some � > 0, uniformly for Ox 2 U .
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2.2. Pseudo-arclength continuation. The pseudo-arclength approach can be considered a
part of a more general class of methods where the basic approach is to append an equation g.x/ D 0

to the system f .x/ D 0 such that the Jacobian of the extended system (13) has full rank.

F.x/ D

�

f .x/

g.x/

�

D

�

0

0

�

(13)

Geometrically, the idea of the pseudo-arclength continuation, is that the predicted point is projected

orthogonally to the unit direction vector v0 of the previous solution point x0 onto the solution curve.

Mathematically this may be stated by

g.x/ D hx � Qx; v0i D .x � Qx/�v0:(14)

Often the predictor step is incorporated into the pseudo-arclength equation ,

g.x/ D hx � x0 C hv0; v0i:

If k v0 kD 1, then we obtain

g.x/ D hx � x0; v0i � h

or

g.x/ D hu � u0; Pu0i C .� � �0/ P�0 � h

D .u � u0/
� Pu0 C .� � �0/ P�0 � h:

THEOREM 35. The Jacobian of the pseudo-arclength system (13) is nonsingular at a regular solu-

tion point.

PROOF. A proof can be found in [2]. �

2.3. Gauss-Newton method. The Gauss-Newton method is another projection of the predic-

tor Qx onto the solution branch x.s/ 2 f �1.0/. More specifically we seek to find the point on

Ox 2 x.s/ such that

Ox D arg min
w

fk Qx � w k jf .w/ D 0g:(15)

Using the theory of Lagrange multipliers we get that Ox must satisfy

f . Ox/ D 0

Ox � Qx D fx. Ox/��;

where � is the Lagrange multiplier. The second condition can be seen to be equivalent to

t .fx. Ox//�. Ox � Qx/ D 0:

Linearizing about Qx, and ignoring higher order terms, we obtain:

f . Ox/ � f . Qx/C fx. Qx/. Ox � Qx/

t.fx. Ox//�. Ox � Qx/ � t .fx. Qx/�. Ox � Qx/
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Hence we are left with solving the system

f . Qx/C fx. Qx/. Ox � Qx/ D 0(16)

t .fx. Qx/�. Ox � Qx/ D 0:(17)

We shall see that this system can be solved in a Newton like manner, in terms of using the Moore-

Penrose inverse.

DEFINITION 36. Let A be an n � .n C 1/ matrix with maximal rank. Then the Moore-Penrose

inverse of A is defined by AC D A�.AA�/�1.

LEMMA 37. Let A be an n� .nC 1/ matrix with maximal rank, and let t .A/ be its tangent vector.

Then the following statements are equivalent for all b 2 R
n and x 2 RnC1:

(1) Ax D b and t .A/�x D 0;

(2) x D ACb;

PROOF. See [6] for a proof. �

Hence if Qx is a regular point of f . Then we can obtain the next Gauss-Newton point G. Qx/ by

G. Qx/ D Qx � fx. Qx/Cf . Qx/:(18)

THEOREM 38. Let f W R
nC1 ! R

n be a smooth map having zero as a regular value. Then there

exists an open neighborhoodU � f �1.0/ such that the following assertions hold.

(1) The solution map Qx 7! S Qx 2 f �1.0/ such that S. Qx/ solves the minimization problem

(15) is uniquely defined and smooth.

(2) For each x 2 U the Gauss-Newton sequence fGi . Qx/g1
i converges to a point in f �1.0/.

(3) The following estimates hold locally uniformly for x 2 U

(a) k G2. Qx/ � G. Qx/ kD O.k G. Qx/ � Qx k2/;

(b) k G1. Qx/ � G. Qx/ kD O.k G1. Qx/ � Qx k2/;

(c) k G. Qx/ � S. Qx/ kD O.k Qx � S. Qx/ k2/;

(d) k G1. Qx/ � S. Qx/ kD O.k Qx � S. Qx/ k2/.

(4) The relation G.U / � U holds.

PROOF. Proof of this can be found in [6]. �

It is numerically inefficient to obtain the matrix fx. Qx/C at each iteration step. Allgower et.al [6]

describes a method for the calculation of the gauss-newton step based on QR or LU factorizations

of the Jacobian, such that the Moore-Penrose inverse do not explicitly need to be calculated. The

approach taken in CONTBIF is to use Newton’s method directly on the equations (16) and (17)
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instead. The advantage of doing this is that we can employ sparse solvers to the system (16) and
(17), which we expect to be more effective with regard to the computation time.

2.4. Convergence criteria. There are several possibilities for acceptance criteria for Newton’s

or Gauss-Newton’s method. We shall list some possibilities here

k �x k< �x;(19)

k f .x1/ � f .x0/ k< �f ;(20)

k �x k1< �x;1(21)

k f .x1/ � f .x0/ k1< �f;1(22)

j��j

1C j�j
< ��(23)

k �u k1

1C k u k1
< �u:(24)

The reader should observe that (19) and (20) are more sensitive to the dimension n of the problem.

In CONTBIF all of the above criteria are implemented, and the user may select which should be

active for a particular continuation.

3. Stepsize control

There are many ways to introduce steplength adaption. These are mainly based on the performance

of the Newton iterations. A simple scheme may be that we increase the steplength whenever few

Newton iterations were needed to compute the last point, and conversely we decrease the steplength

when the previous point needed many Newton iterations. In CONTBIF there is a limit to the

number of Newton iterations that are allowed in the corrector process. Roughly the steplength

is increased if the number of iterations were bigger than 2=3’s of the limit, and decreased if the

number of iterations were less that a factor of 1=3 of the limit. Otherwise the previous steplength

is kept. The increase and decrease factors may be chosen by the user. Other methods such as

asymptotic expansion and Den Heijer & Reinbolt steplength adaption are discussed for Newton-

Gauss iterations in [6].

4. Computing the initial equilibrium point

If an initial root .u0; �0/ of f , is not known we need a way to approximate it. This may be done

by Newton iterations on the system f .u/ D 0. This however requires that our guess is within the

region of attraction for the Newton method. A second approach is to define a smooth homotopy

function H W Rn � R ! Rn such that H.u; 1/ D G.u/ and H.u; 0/ D f .u/ where G.u/ is a

trivial smooth map having known zero points [6], and attempt to trace out the implicitly defined
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curve c.s/ 2 H�1.0/ from a starting point .u1; 1/ to a solution point .u0; 0/. As an example we
may consider a convex homotopy function such as

H.u; �/ D �G.u/C .1 � �/f .u/:

5. Computing special points on the curve

Suppose that we have a smooth scalar test function �.x/, and we wish to compute point x 2

f �1.0/ such that �.x/ D 0. Suppose that xi and xiC1 are two consecutive point on the curve

x.s/ 2 f �1.0/, and let si ; siC1 be such that x.si / D xi and x.siC1/ D xiC1. If

�.xi/�.xiC1/ < 0;

a zero of � has been detected for some point on the curve x.s/ 2 f �1.0/ for some value s such

that si < s < siC1. In order to approximate the special point the following system may be solved

f .x/ D 0

�.x/ D 0

using Newton iterations. The drawback of using this method is that we need to calculate derivatives

of �.x/ which is not always easy to do. Instead the special point can be solved by using a one-

dimensional secant method in combination with newton correction ensuring that f .x/ D 0 at each

point. Note that the one dimensional Newton method can be written as

�0.x.siC1//�s D ��.x.siC1//:(25)

The secant method is essentially a discrete version of (25):

�s D �
siC1 � si

�.x.siC1// � �.x.si //
�.x.siC1//:

The predictor for the next point thus becomes QxiC2 D xiC1 C �sx0.s/, and we must perform

successive correction steps to find xiC2.



CHAPTER 4

Deriving the basic continuation equations

The focus of CONTBIFis to be able to perform a one parameter bifurcation analysis of autonomous

dynamical systems, in explicit equations of the form

Pu D f .u; �/(26)

where � 2 R is a parameter.

1. Continuation of equilibria

Setting up the system for continuation of equilibria is trivial, the problem to be regarded is simply

f .u; �/ D 0:(27)

1.1. The initial point. Generally CONTBIFassumes that an initial equilibrium point is known

for a fixed parameter value to within the radius of Newton convergence. If this is not the case, the

user could define a homotopy function and using numerical continuation to obtain an initial point.

1.2. Detection of special points. Generally we are interested in detecting the following spe-

cial points; simple fold, Hopf bifurcation point and a simple branch point. To detect a fold it is

enough to keep an eye on the number of eigenvalues in CC and C�, however to be able to take

advantage of the secant approach the following function may be considered

�1
F .u; �/D

Y

i

�i.u; �/;(28)

where �i are the eigenvalues of fu.u; �/. Noting that the function (28) is simply the determinant

of fu.u; �/, we may suggest the test function

�2
F D detfu.u; �/:(29)

If are interested in simple quadratic folds the following test function may also be considered

�3
F .�/ D �0.s/:(30)

Another approach that we will not discuss here is to monitor for extremal values of �.

19
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Detection of Hopf bifurcations may be done by considering the real parts of the eigenvalues by
defining the test function:

�1
H D

Y

i>j

.�i .u; �/C j .u; �//(31)

A second approach that does not require evaluation of eigenvalues is suggested in [9] and imple-

mented in CL_MATCONT.

Recalling the lemma 31, we see that a test function for a simple branch point is

�B D det

�

fx.x/

x0.s/

�

:(32)

Another suggestion is to use the above described test functions for detecting the bifurcation points,

and then to use the function

� D min
i

jRef�i gj;

to locate the bifurcation points more precisely. Note that this function is not smooth, however we

may expect it to be smooth in a sufficiently small neighborhood of the bifurcation point. This

function has been tested to work for the low dimensional examples in this paper. Also note that
this test function converges to any bifurcation point, hence if two of more bifurcation points are

close (with respect to the steplength) this test function may fail to converge. Also note that it is

not necessary to evaluate the test functions at each point of the continuation process. Generally, a

bifurcation point may be detected by counting the number of stable eigenvalues at each point. A

change in this number, indicates that a bifurcation point has been passed, and we may use the test

functions above to determine the type of bifurcation point to look for.

Also note that the function (32) is sufficient for detecting the existence of a simple branch point,

but difficulties may arise if we use the secant approach to locate it more accurately. This is because

both the pseudo-arclength system (13) and the Gauss-Newton system (16) and (17) are singular

at the branch point. In fact it can be shown that the domain of convergence for the Newton (or

Gauss-Newton) corrections shrinks as one approaches the branching point, see [6]. To overcome

this obstacle, we need to extend the system such that the branch point becomes a regular point of

the extended system. Moore [11] suggested using Newton iterations on the following system

f .u; �/C �� D 0I

fu.u; �/
�� D 0I

��f�.u; �/D 0I

��� � 1 D 0:

Initial estimates for this system is obtained by letting � D 0, and setting � to be the eigenvector of

fu. Qx/ that corresponds the eigenvalue of the smallest absolute value. Here Qx is simply some point

close to the branch point.

We must also address the task of switching branch at a simple branch point. Recall that the kernel

of fx at a simple branch point x0 is two dimensional. The basis vectors of the kernel can therefore
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be chosen such that �1 D t .f 0
x /, and �2 ? �1. Then .˛1; ˇ1/ D .1; 0/ is a root of (8) and c11 D 0.

Under the assumption that �0 > 0 we also have that c12 ¤ 0. Thus we find that the second root

satisfies
˛2

ˇ2

D �
c22

2c12

:(33)

To evaluate c12 and c22 we need to find �2 and  . Since we have defined �2 ? �1, �2 is a null

vector of
�

f 0
x

t .f 0
x /

�

�

:(34)

Similarly it can be seen that  can be computed by
�

f 0
x

t .f 0
x /

�

�� �

 

0

�

D 0(35)

We are free to choose one value of a2 and hence ˇ2 can be determined. The resulting new direction

vector thus becomes

x0
0 D ˛2�1 C ˇ2�2;(36)

and as always we must remember to normalize it. Generally we may prefer to avoid the calculation

of f 0
xx , in such cases the orthogonal direction method can be used. The idea behind this method is

to use �2 as an approximation of the tangent vector x0
0. The point of convergence for the branch

detection algorithm is only an approximation of a branch point, hence the matrix (34) is generally

non-singular. In practice the system (35) must therefore be replaced by a minimization problem

min
�2

fk f 0
x �2 k2 C.��

1�2/
2j��

2�2 D 1g:

Let A denote the matrix

�

f 0
x

t .f 0
x /

�

. Then a solution to the above minimization problem is the unit

eigenvector of A�A corresponding to the smallest eigenvalue [6].

2. Continuation of Periodic Solutions

In this section we shall assume that an initial periodic solution, v.t/, of (5) is known, and we

discuss how to obtain the next periodic solutionw.t/. Certainly, a periodic solution must satisfy

Pw.t/ D f .w.t/; �/(37)

and

w.0/ D w.T /;(38)

where T is the period of the periodic solution. The period is fixed by rescaling

t 7!
t

T
(39)
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hence the equations (37) and (38) becomes

w.t/ D Tf .w.t/; �/;(40)

w.0/ D w.1/:(41)

The above equations do not uniquely determine w and T , since if w.t/ is a periodic solution, then

w.t C ı/ is also a periodic solution for any real number ı. Thus a phase condition is needed. The

phase can be ’anchored’ by the Poincarè orthogonality condition

.w.0/ � v.0//� Pv.0/ D 0:(42)

By plotting the curves v.t/ and w.t/ in the same diagram, it can be seen that this condition (42)

allows sharp peaks in the solution to move in the continuation [4]. Although theoretically unimpor-

tant, numerically this is unfortunate the the mesh must be re-adapted more often in order to obtain

the best accuracy. To remedy this, one may consider obtaining the solution Qw.t C O�/ such that

O� D arg min
�

fg.�/g;

where

g.�/ D

Z 1

0

k Qw.t C �/ � v.t/ k2
2 dt:

Which by differentiation and integration by parts becomes
Z 1

0

w.t/� Pv.t/dt D 0;(43)

where we have made the substitutionw.t/ D Qw.t C O�/.

Together the equations (40), (41) and (43) form a boundary value problem. There are several

techniques that can be used for solving this system, including those of single shooting, multiple

shooting and finite differences. However the most reliable choice has proven to be orthogonal

collocation [9].

2.1. Orthogonal Collocation. Introduce a mesh

f0 D t1 < t2 < � � � < tN C 1 D 1g;

where

hj � tj C1 � tj ; .1 � j � N/;

and define the space of vector piecewise polynomials Pm
h

as

Pm
h D fph 2 C Œ0; 1� W phjŒtj �1; tj � 2 Pmg;

where Pm is the space of vector polynomials of degree < m.

REMARK 39. Note that Pm is a vector space.
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The first idea is to limit the space of solution functions w.�/ to that of Pm
h

. We need to locally
construct a polynomial of maximal degree � m in each interval Œt�1; tj �. To uniquely define such

a polynomial we need to knowmC 1 points in this interval, which we shall denote by tj D tj;1 <

� � � < tj;i < � � � < tj;mC1 D tj C1 For simplicity we shall assume they are distributed uniformly, i.e

tj;i � tj C
i

m
hj :

With this settled we can introduce the Lagrange basis polynomials, flj;i W j D 1; � � � ; N i D

1; 2; � � � ; mC 1g, on each subinterval Œtj ; tj C1�, defined by

lj;i D

mC1
Y

kD1;k¤i

t � tj;k

tj;i � tj;k

:

The local polynomials may thus be written

pj .t/ D

mC1
X

iD1

lj;iwj;i ;

where wj;i � w.tj;i /.

The next step is to select m collocation points, zj;i in each interval, such that tj < zj;1 < � � � <

zj;m < tj �1. In particular, the collocation points must be chosen to be Gauss points in the particular

interval to obtain the best accuracy of the method [9]. Our problem is then reduced to finding the

piecewise polynomial p D [jpj such that

pj .zj;i /
0 � Tf .pj .zj;i /; �/D 0;

for j D 1; : : : ; N , and i D 1; : : : ; m, and such that p satisfies the boundary condition (38) and the

integral constraint (43).

The problem is well defined [2], and the order of accuracy of the orthogonal collocation method

is k ph � w k1D O.hm/, while at the meshpoints tj there is super-convergence: maxj jph.tj / �

w.tj /j D O.h2m/.

To obtain a discrete version of the phase condition (43) a natural choice is to used closed Newton-

Cotes quadrature formulas, in explicit we can write

Z 1

0

w.t/ Pv.t/dt D

N
X

j D1

Z tj;mC1

tj;1

w.t/ Pv.t/dt

�

N
X

j D1

mC1
X

iD1

!j;iwj;i Pvj;i D 0;

(44)

where !j;i , i D 1 : : :mC 1; j D 1 : : :N are the quadrature weights.
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To summarize the discrete system to be analyzed takes the form

p0
j .zj;i/ � Tf .pj .zj;i ; �// D 0;(45)

w1;1 � wN;mC1 D 0;(46)

N
X

j D1

mC1
X

iD1

!j;iw.tj;i/
� Pv.tj;i / D 0:(47)

2.2. Obtaining an initial limit cycle from a Hopf bifurcation point. Near a Hopf bifuration

.u0; �0/ of (5), the following asymptotic estimates hold [3]:

v.t I �/D u0 C ��.t/C O.�2/;(48)

T .�/ D T0 C O.�2/;(49)

�.�/ D �0 C O.�2/;(50)

where � locally parameterizes the branch of periodic solutions. T .�/ denotes the period, and

T0 D
2�

 0
;

where ˙i 0 are the only eigenvalues on the imaginary axis. The function � is the normalized

nonzero periodic solution of the linearized constant coefficient problem

�0.t/ D fu.u0; �0/�.t/;

�.0/ D �.T /:

The above equation must be replaced by its time-scaled variant

�0.t/ D Tfu.u0; �0/�.t/;(51)

�.0/ D �.1/:(52)

Let �c ˙ i�s denote the complex eigenvectors associated with the eigenvalues ˙i 0, then it is

straightforward to check that a solution of (51) is

�.t/ D cos.2�t/�c � sin.2�t/�s:(53)

By the approximations (48),(49), and (50) the choice for an initial periodic solution v is given by
0

@

v.t/

Tv

�v

1

A D

0

@

u0 C ��.t/

T0

�0

1

A :

Similarly the tangent vector t .v/ D v0.�/ is approximated by

t .v.t// D

0

@

�.t/

0

0

1

A :
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In practice, it is advised to choose a small amplitude � for the inital periodic solution. The first
accepted periodic solution will be determined by a predictor-corrector step to the initial periodic

solution. Also note that the phase condition for the zeroth step is modified to

N
X

j D1

mC1
X

iD1

!j;iw.tj;i /
� P�.tj;i/ D 0:(54)

3. Mesh adaptation

A look ahead at the examples 4 and 5 in the next chapter reveals the need for mesh adaptation.

Generally, once would suspect that a mesh that is uniformly distributed with respect to the arclength

would perform much better than a fixed mesh in time. Some attempts have been made to utilize the

theory of moving mesh techniques to adapt the mesh. A few considerations will be made here.

We shall briefly review some moving mesh equations derived from the equidistribution principle.

The general idea is to equidistribute some measure of the discretization error uniformly within

each element. The measure of the error in the element .ti ; tiC1/can be formulated as
Z tiC1

ti

M.t; s/dt;(55)

where M is some monitor function. For the present discussion we shall use the following monitor

function

M.t; s/ Dk Pu.t; s/ k;(56)

where s can be taken to be the arclength parameter of the solution branch of the discrete system

(45). The equidistribution principle can then be formulated as
Z tiC1

ti

M.t; s/dt D
1

N

Z 1

0

M.t; s/dt:(57)

In order to formulate equations for continuous mesh adaption, we introduce a computational do-

main � 2 Œ0; 1�, such that the mesh is uniformly distributed on the computational domain, and

introduce the mesh function t .�; s/. Note that the boundary conditions

t .0; �/ D 0I(58)

and

t .1; �/ D 1;(59)

must also be satisfied. We must also choose the initial mesh t .�; 0/. In the implementation the

initial mesh is chosen to be uniformly distributed, i.e t .�; 0/ � 1. The equidistribution principle

can now be reformulated as
Z t.�;s/

0

M.t; s/dt D ��.s/,(60)
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where

�.s/ D

Z 1

0

M.t; s/dt .(61)

From this principle, discrete versions of moving mesh equations can be deduced [8]. We shall

consider the following

�
Ei

�
D

1

2h2

h

.MiC1 CMi /.t
0
iC1 � t 0i / � .Mi CMi�1/.t

0
i � t 0i�1/

i

,(62)

�
Ei

�
D �t 0i ,(63)

�
Ei

�
D
t 0
iC1

� 2t 0
i

C t 0
i�1

h2
,(64)

�
Ei

�
D

1

2h2

h

.MiC1 CMi /.t
0
iC1 � t 0i/ � .Mi CMi�1/.t

0
i � t 0i�1/

i

�2Ei

t 0iC1 � t 0i�1

tiC1 � ti�1
,

(65)

where

Ei D
1

2h2

h

.MiC1 CMi /.tiC1 � ti / � .Mi CMi�1/.ti � ti�1/
i

:(66)

Note that t 0 � t 0.s/ in the above equations. Also note that � is a relaxation constant with respect

to s, due to a time scaling s 7! s C � , 0 < � << 1. The key impact of introducing the relaxation

parameter is that the mesh will be driven towards equidistributioneven though the monitor function,

and hence u does not vary with s. Also note that h is the length of the interval of an element in the

computational domain, in explicit h D �iC1 � �i for any i D 1 : : :N � 1. The above equations

(62) to (65) can generally be expressed in the form

B.t; s/t 0 D �
E.t; s/

�
:(67)

The matrix B is invertible and hence we can write

t 0 D
1

�
B.t; s/�1E.t; s/:(68)

The first thought was to append the equation (68) to the system (45) to incorporate the moving mesh

equation into the system. More precisely this amounted to recalculating the internal nodes and

collocation points every time the system was evaluated, as well as to interpolateu. Suppose that an

initial periodic solution has been computed, then we can evaluate the interpolation approximation

of u with respect to t . The challenge is that we do not generally know u as a function of s. However

since the equation (67) does not strictly depend on s the hope was that the mesh would be driven

towards equidistribution anyway. This approach was tested on the Brusselator (example 5), but

without satisfactory results. A second approach was therefore considered instead; namely to use

the equation (68) to adapt the mesh at each step after a new periodic solution had been computed,

and then to interpolate the already obtained solution onto the new mesh before continuing the
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continuation process. Note that the mesh is assumed to be equistributed if the speed t 0.s/ D 0.
Using this we see that (67) reduces to the requirement that

E.t; s/ D 0:(69)

The idea was then to use Newton’s method on this equation (69) to obtain a good mesh for the

current periodic solution before advancing to the next solution point. This method worked a little

better than the moving mesh approach above, but still in the case of the example 5 it performed

worse than the fixed mesh. The reason for this is related to the steplength for the continuation

process, if the steplength is too big we risk that the mesh used on the new solution is outside the

region of convergence for Newtons method. We have tested this technique on the Brusselator in

example 5 in chapter 7.

REMARK 40. Note that the first approach is not included in the current version of CONTBIF, but

the second is.





CHAPTER 5

Special topics regarding the implementation

In this chapter we shall discuss the choices that are made for the implementation of CONTBIF as

well as some aspects conserning optimization of the code.

1. Strategy for direction vector

There have been presented two strategies for the direction vector. Either the next direction vector

can be aligned with the previous one, which seems to be the choice in programs such as AUTO and

MATCONT, or we may calculate the tangent direction at each point and use dt.fx/, where d D ˙1

is a scalar deciding the direction we want to traverse the solution branch. This implementation

falls in line with the first approach uses the first approach. The main reason for doing this is

with regard to the computation of limit cycles, where there are no detection of bifurcation points
are implemented. However, the reader should note that using the tangent direction simplifies the

detection of branch points as the following test function is applicable:

t .fx1
/�t .fx0

/ < 0:(70)

This follows directly from lemma 31 and the definition of the tangent vector 6, but it also requires

that the tangent direction is obtained at each step. Allgower & Georg [6] describes two methods

based on QR-factorization and LU-factorization of the Jacobian f 0
x , respectively, such that both

the tangent vector and the Moore-Penrose inverse can easily be obtained from this factorization.

2. Linear solvers

The above mentioned approach using matrix factorizations is suitable for dense systems, but for

large and sparse systems, iterative solvers should be considered. CONTBIF uses MATLAB’s back-

slash operator ’n’, which uses the structure of A D f 0
x to decide on the best specific algorithm for

solving the equation Ax D b, with respect to x. The systems that needs to be solved, for both

equilibrium continuation and continuation of periodic solutions, have a special sparse structures

which can be exploited to obtain more special and efficient solvers for the systems. In particular,

AUTO uses bordering algorithms to solve the systems, see [5] and [4]. Such special solvers have

not been implemented at the current stage of the program.
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3. Calculating derivatives

All derivatives in CONTBIFare calculated by a central difference scheme

@f

@xi
D
f .x C �ei/ � f .x � �ei/

2�
;(71)

where � is a user chosen constant and ei is the vector

0

B

@

x1
:::

xnC1

1

C

A
with

xj D

�

1 for j D i

0 otherwise
.

For the numerical examples considered in this paper, continuation of equilibria works satisfactory

with respect to computational time, but the computation of periodic solutions needs optimization.

For example, since the structure of the Jacobian is known, see [2], we should avoid computing all

the zero elements of the matrix. The computation time can also be reduced by replacing Newton’s

method by a dampened version. This means that we only evaluate the Jacobian after a certain

number of iterations has been completed. Implemented in CONTBIF and the dampening constant

is chosen by the user.

4. Other aspects regarding optimization

At the first ’naive’ implementation of CONTBIF the Lagrange polynomials were constantly reeval-

uated, and by profiling the program it was noticed that considerable time was spent evaluating the

Lagrange polynomials. However, given a mesh, the polynomials are not evaluated for other points

than the collocation points. And as long as we keep the mesh fixed, the collocation points stay con-

stant. Hence it suffices to evaluate the polynomials for each collocation point once, and storing the

result in a vector. On example 4 in chapter 4, the cost of computing a branch of periodic solution

were reduced by a factor of approximately 0:5. This in addition to not naively calculate Jacobian is
discussed above reduced the computation time for a specific test example reduced the computation

time from 38s to 5s. If an adaptive mesh scheme as discussed in the previous chapter is selected

there could also be some gain in evaluating the speed at each node and storing the result in a vector

since it has to be calculated both by the monitor function and the phase condition.



CHAPTER 6

User Manual

The purpose of this chapter is to highlight the how the theory in the preceding chapters are imple-

mented in CONTBIF and to be a user’s guide to the program. For specific examples the reader is

referred to the next chapter, and the scripts in the appendix.

1. General program overview

Before starting any scrips, the function initcont() must be invoked. The model problem must be

specified in a separate MATLAB file according to the description given in 2. The basic sequence

of CONTBIFis to run an initializer for the problem first and secondly run the continuer.

2. The input file

The input file shall have the following structure. Its return value must be a cell of two entries. The

first entry are shall contain a pointer to a function, hereafter referred to as the init function. The

purpose of the init function is to store problem specific parameters such as the initial point, and

perhaps specific choices for parameters related to the continuation process. The second entry shall

contain a pointer to the system that is to be solved, hereafter called the vector field. See table 1 for

a summary.

3. Initializers

Three initializers are provided with the program; initEP_EPcont and initBP_EPcont which ini-

tializes equilibrium continuation from an equilibrium point or a branch point respectively, and

initH_LC which initializes limit cycle continuation starting from a Hopf bifurcation point. The

purpose of the initializers are to validate the initial points, compute an initial direction vector, and

to set the global variables used by the continuer. Thus initializer must always be invoked before

TABLE 1. Input functions

Function Input Output

Init Optional Optional

Vector field Œu; �� f .x; �/
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starting the continuer. Basically the assumption is made that the continuation process starts near a
regular point on the solution branch, and that bifurcation points detected by equilibrium continu-

ation. Thus the syntax differs between the initializers. The initializer initEP_EPcont is called by

initEP_EPcont(funct,u,p,ap,opts), where funct is the input file, u is an approximation of an initial

equilibria, p is a vector containing the parameters of the system, and ap is the index of the active

parameter. The input argument opts are optional and is an option structure containing the options

for the continuation process. See section 4 for further details on opts. In particular, note that the

option orientationdetermines the direction of the initial predictor step, i.e if orientation D C1,

the step is taken in the tangent direction, and vice versa. The syntax for starting an equilibrium

computation of a new branch is done by calling; initBP_EPcont(funct,sys,point,amp,opts), where

funct and opts are as above, and sys is the output structure returned by the continuer (see section

5, and point is the index for the branch point in this structure. The initializer computes a second

null vector and the first point on the new branch is predicted by taking a step of length amp in the

direction of this null vector. The direction in which the new curve is traced is determined by the

option orientation. Note that the concept of the tangent vector is not applicable at a bifurcation

point, hence the sign of orientation simply determines if the curve is traced in the direction of the

computed direction vector (whatever direction that may be). The initial direction, may however

be inspected before starting the continuer by accessing the global variable curve (see section 6).

Similarly a branch of periodic solutions may be started from a Hopf bifurcation point by calling;

initH_LCcont(funct,out,point,amp,opts). The argument are the same as for initBP_EPcont. Also

note that the orientation is irrelevant in the context of computing a periodic solution starting at a

Hopf point, since there is only one direction in which the periodic solutions persists.

For each type of initializers there are model files which defines the functions to be considered for
the continuer, such as the test functions and corresponding labels and the system to be evaluated.

They are named EP, BP and LC accordingly.

4. Options for the continuation process

Options are changed by creating a structure opts and setting opts: < option >D< newvalue >.

The options that can be changed is listed in table 2. For some variables the symbol 1/0 is listed, the

option is then a boolean indicating on/off, respectively. The variable orientation is special in this

context since the valid arguments are ˙1.

5. The continuer

The continuer can be called without arguments, as the initial conditions are set by the initializers.

However, it can take the arguments funct and opts (in this order), if the options are to be altered.

The continuer returns a structure out containing the following information

� out.x contains the points of the solution branch. More precisely out.x(:,i) displays the

point i , and the point looks like Œu; ��� for equilibrium continuation and Œu; T; ��� for

continuation of periodic solutions.
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TABLE 2. Options

Option Description Default value

h initial steplength 10�3

hmin minimum steplength 10�6

hmax maximum steplength 10�3

hinc steplenght increase factor 1:3

hdec steplength decrease factor 0:5

orientation the orientation(˙1) of the initial step C1

secanttangent secant prediction of the tangent 1/0 1

jacincr perturbation for Jacobian calculations 10�5

maxNewtIter maximum number of newton iterations 20

detectBifurcationPoints on/off 1/0 1

maxBifIter maximum number of PC-steps for locating a bifurcation 20

toll tolerance for new point j��j
1Cj�j

< tol l 10�6

tolu tolerance for new point k�uk1

1Ckuk1
< tolu 10�6

tolxinf tolerance for new point k �x k1< tolxinf 10�6

tolfinf tolerance for new point k f .x1/ � f .x0/ k1< tolf inf 10�6

tolx tolerance for new point k �x k< tolx 10�6

tolf tolerance for new point k f .xi / � f .xi � 1/ k< tolf 10�6

accepanceCriteria vector indicating which of the above tolerances are active Œ1; 1; 0; 0; 0; 0�

correctortype 0=gauss-newton, 1=pseudoarchlength 0

testtol tolerance for accepting special points 10�5

testsing tolerance for accepting singular points 10�5

ntst Number of elements for the collocation method 4

ncol Number of collocation points 3
printprogress on/off 1/0, prints the progress of the continuation process 0

adaptmesh on/off 1/0 mesh adaptation 0

smoothing smoothing of monitor function on/off 1/0 0

� out.v contains the direction vector. The structure of this matrix is the same as for out.x.

� out.s.index contains the indices of the start point, the bifurcation points, and the end point.

� out.s.label contains the labels of the start point, bifurcation point, and end point.

� out.mesh contains the mesh if a mesh adaptation is active.

After a solution branch have been computed, the continuer can be started without an initializer

in order to proceed further along the solution branch. However, when doing this the new output

should be received by a different variable, as it does not incorporate the old solution into the new.

Merging of solution structures may however be done by the function mergecont, which takes as

input the two outputs out1 and out2 and merges them into one large output.
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TABLE 3. Plotters

Property Description

plotsys (x,v,s,e*,f*)

plotperiodic (x,n,e*)

plotpermaxmin2d (out,coord)

TABLE 4. Input arguments

Property Description

x is the solution matrix (out.x)

v is the matrix of direction vectors (out.v)

s is the structure of special points (out.s)

e* is a 2 or 3 dimensional vector defining which entries of x shall be plotted

f* is the matrix of eigenvalues

n* is the dimension of the ODE

out is the entire output structure returned from the continuer

coord is the coordinate that will be plotted against the active parameter

REMARK 41. The user should access the global variable curve and set curve.spstart = 0 before

continuing a continuation of periodic solutions. Spstart is a flag marking that the initial phase

condition (54) is to be used, hence if we merely wish to continue an already existing one this flag

should not be active. Also the output structure of the continuer has been made a global variable

(out). This enables us to abort the continuer during the continuation process without loosing the

already calculated data.

6. Global variables

There are two global variables in use; copt and curve. They are both in the form of a structure.

Generally the variable copt contains the options and references to the functions in the system file,

while curve at any time contains the information needed by the continuer.

7. Plotting

The table 3 list the plotters and the table 4 lists the input arguments. Note that an (*) indicates that

the input argument is optional. The plotter plotsys uses a full line for stable equilibria and a dotted

line for unstable equilibria, while the function plotpermaxmin2d used small squares to denote limit

cycles. The labels ’F’, ’H’ and ’B’ are used to denote folds,Hopf bifurcations and branch points,

respectively.



CHAPTER 7

Numerical examples

In this chapter we test the software on some examples. The purpose is to show that the program

works well with regard to equilibrium continuation, and detection of bifurcation points, branch

switching and to highlight some issues with regard to computation of periodic solution branches.

Example 1. We shall consider the dynamical system

Px D �2x C y C ˛ex

Py D ey˛C x � 2y;

starting at the inital point x D y D ˛ D 0. The system has a fold where the stability of the solution

branch changes, as well as a branch point where two unstable solution branches meet. It may be of

interest that the second branch cannot be stable as long as the first branch do not shift stability as it

passes through the branch point. See [6] or [9] for further details of why this is so.

Example 2. We shall consider the dynamical system

Px D �x � y � x.x2 C y2/

Py D x C �y � y.x2 C y2/

starting at the initial point x D y D 0, and � D �1. The curious reader may note that this system

is known as the normal form of the Hopf bifurcation. Thus it is a good example for testing the

computation of periodic solution branches. The system has a Hopf bifurcation at � D 0, where the

stability of the equilibrium branch changes. The branch of periodic solutions emerging from the

Hopf bifurcation point is stable, but since we have not implemented algorithms for obtaining the

Floquet multipliers, this cannot be verified by the program.

Example 3. We shall consider the famous Lorenz system

Px D �.y � x/

Py D �x � y � xz

Pz D xy � ˇz;

starting at the inital point x D y D z D 0, � D 10,ˇ D 8
3

and � D 0, using � as an active

parameter. We see that the system is symmetric about the �-axis. The system contains a branch

point and two Hopf bifurcation points, one of which a continuation of a solution branch of periodic

solution has been computed. The bifurcation diagram is presented in figure 3 and the periodic

solutions are shown in the subspace spanned by �; x and y in 4.
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FIGURE 1. Example 1

Example 4. We shall consider the Van der Pol’s equation;

Ry � .2�� y2/ Py C y D 0;

which can also be written as a system of first order ordinary differential equations

Pu1 D u2;

Pu2 D �u1 C 2�u2 � u2
1u2:

We shall set the start point to u1 D u2 D 0, and � D 1, and start a continuation in the negative

direction with respect to the tangent vector. There is a Hopf bifurcation point for � D 0, and the

figure 5 show the computed branch of periodic solutions originating at this point with an initial

uniform mesh and ntst D 10, and ncol D 4. This is the first example that indicates the need

of some mesh adaptation, as the nodes become unevenly distributed with respect to the arclength.

This is also the case for the next example, in which we shall consider this in more detail.

Example 5. In this example we consider the Brusselator

Px D z.x; y; A; B/� xI

Py D �z.x; y; A; B/I
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FIGURE 2. Example 2; Bifurcation diagram

where z D Bx C A2y C B
A
x2 C 2Axy C x2y. The initial point is set to x D y D 0 and

A D B D 1, and B is set as the active parameter. The bifurcation diagram 6 shows the existence

of a Hopf bifurcation point. The figures 7 and 8 shows the computation of the periodic solution

branch with ntst D 10 and ncol D 4 on a fixed mesh. It is clearly visible on the figures that

the nodes are unevenly distributed in space, and hence the solution looses accuracy. In order to

improve on this we tested the mesh adaptation technique described in section 3 of chapter 4 for this

particular problem. In general the performance was bad. The reason is that for this example a mesh

that is closely equidistributed at one peridic solution does not translate well over to the next for

reasonable small steplengths. The figures 9(a) and 9(b) shows the results for a small test example,

with maximum steplength set to 0:1, ntst D 8 and ncol D 4. The two figures show the computed

solutions for the same values of B except from the last periodic solution where the mesh did not

converge and the steplength were reduced. The mesh tolerance was set to k t k1< 10�5. Similar

results were also obtained for the Van der Pol system in example 4.

Example 6: We shall consider one example similar to those examples discussed in the project

work [14].

u.x; t/D te
� .x�a/2

2�2 .

This function represents a spike centered at a and where the thickness depends on �. Note that

the height of the spike at t D t0 is t0. The mesh as computed by ode15i in MATLAB is shown
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FIGURE 3. Example 3 Bifurcation diagram for the Lorenz system

TABLE 1. Parameters for example 5

Parameter Value

� 10�6

� 0:300145

a 0:0144

N 19

in figure 10 for the parameters listed in table 5. Note that N in this case refers to the number of

internal nodes in the (moving) mesh, and � is a relaxation constant for the MMPDE. In this case

MMPDE4, that is equation (52) in [14], is used. A continuation of the periodic solution branch

originating in the first Hopf bifurcation started for ncol D 4 and ntst D 20. The result is plotted

for the node x10 in 12. As is obvious from the figure, the branch did not get very far before the

corrector failed (� D 0:083/.
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FIGURE 4. Example 3: Periodic solutions of the Lorenz system

FIGURE 5. Example 4; Periodic solutions of the Van der Pol system
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FIGURE 8. Example 5; alternate angle



7. NUMERICAL EXAMPLES 43

−0.1 −0.05 0 0.05 0.1 0.15

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

H

x

y

B

(a) No mesh adaptation

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

H

x

y

B

(b) With mesh adaptation

FIGURE 9. Example 5; Test of mesh adaptation
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CHAPTER 8

Conclusions

The numerical examples in the last chapter, shows that CONTBIF works fairly well for continuation

of equilibria, detection of bifurcation points, and branch switching. In general for systems having

regions of high density of bifurcation points relative to the steplength, there may be problems with

detection of bifurcation points. Bifurcation points may not be detected or be wrongly identified if

a step in the continuation process steps over more than one bifurcation point. Especially for large

systems, some experimenting is needed to determine appropriate values for the maximum and

minimum steplengths, in order to optimize with respect to the quality of the bifurcation diagram,

and computation time. There is also an example where the branch switching and equilibrium

continuation algorithms does fails to converge. This example is the predator-prey example

Px D 3x.1 � x/ � xy � �.1� e�5x/

Py D �y C 3xy;

for which a bifurcation diagram have been computed by AUTO in [2]. Specifically the computation

were started at the origin, with � D �5. It may be that we would get better result by computing

more accurate direction vector for the branch switching algorithm, but this have not been tested.

The continuation of periodic solution branches works well for the examples where the speed along

the periodic solution is approximately constant at each periodic solution as a fixed uniform mesh is

then evenly distributed in space. Although the attempts for mesh adaptation presented earlier did
not work very well for the examples considered in this text, it would be interesting to study this in

more detail. Another issue that should be considered is further optimization especially in the case

of computation of periodic solution branches. Generally, it is our belief that algorithms for this in

general should be compiled, and not interpreted as in this case. MATLAB offers the possibility

of using mex-files, which essentially is C code, that may reduce the computation time tenfold.

Other approaches is to implement specific linear solvers, and replace as many finite difference

calculation by exact derivatives as possible. It would be interesting to see the impact of using the

bordered method presented in [4] versus MATLABs backslash operator. It would also be interesting

to be interesting to study how a conjugate gradient corrector would perform versus the Newton

methods. In fact, the conjugate gradient solver as presented in [6] was implemented in CONTBIF,

but was excluded from this project work since it did not provide significant improvements over

the Newton methods for the test examples that were considered. Partly this was because we may

expect that a larger number of corrector steps must be performed before the convergence criteria

are met. The maximum number of corrector steps should therefore be modified accordingly, for

otherwise the steplength algorithm will cause the steplength to decrease and hence increase the
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overall computation time as more points needs to be computed. However, the performance of
conjugate gradient correctors would be worthwhile to study further. Another interesting prospect

would be to implement a Fourier spectral method for computation of periodic solutions, this has

the additional advantage that the Floquet multipliers are easily obtained. Moore [12] discuss the

method, and argues that for the particular problem of computing periodic solution in a continuation

process they do not require the solution of linear systems with non sparse coefficient matrices,

which is generally considered the main disadvantage of the method. Finally, it would also be

interesting to implement higher order predictors, to see if there is gain in either accuracy or in the

overall computation time. Perhaps, higher order predictors will perform better than Euler prediction

when periodic solutions are to be computed.

The general feeling at the end of this thesis is that we closer to the beginning than at the end of

the project. There is much that is needed to be included in the program in order for it to be a

fully fledged continuation software, and the problem of computing periodic solution branches still

persists.
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