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Abstract

Common cause failures (CCFs) have been an important issue in reliability analysis for several

decades, especially when dealing with safety instrumented systems (SIS). Different approaches

have been used in order to describe this CCFs, but the topic is still subject to much research

and there does not exist a general consensus as to which method is most suitable for dealing

with CCFs. The β-factor model is the most popular method today, even though this method

has some well-known limitations. Other, more complicated methods, are also developed to de-

scribe situations where the β-factor model is inadequate.

The purpose of this thesis is to develop a strategy to suggest in which situations the different

CCF methods are applicable. This is done by making a survey which includes several of the ex-

isting methods, before applying these in concrete SIS-examples. Observing the specific system

in operation is a valuable tool and may help in acquiring feedback data to describe the life-

time of specific components and the number of failed components conditioned on the fact that

the total system is failed. Since such feedback data usually are scarce and in our case totally

absent, assessing whether the obtained results are accurate is difficult. Thus, the numerical re-

sults obtained from the analysis are compared to each other with respect to the assumptions

of the particular model. For instance, the PDS method, a method developed for the Norwegian

offshore industry, contains some assumptions which are different from the assumptions of the

β-factormodel, and the report provides a studywith respect to how these different assumptions

lead to different results.

Although other methods are introduced, most focus is given to the following four, the β-factor

model, the PDS method, Markov analysis and stochastic simulation. For ordinary M out of N

architectures with identical components, the PDS method is assumed adequate, and for N = 2,

the β-factor model works well. Markov analysis and stochastic simulation are also well suited

for modelling ordinary M out of N SIS, but because of the higher level of complexity, these ap-

proaches are not deemed necessary for simple systems. The need for Markov analysis becomes

evident when working with SIS of a more complex nature, for instance non-identical compo-

nents. Both the β-factor model and the PDS method are not able to describe the system in full

when dealing with certain types of systems that have different failure rates.

An evenmore complex SIS is also included to illustratewhen stochastic simulation is needed.
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This SIS is modelled by designing a computer algorithm. This computer algorithm describes

how the system behaves in the long run, which in turn provides the estimate of interest, namely

the average probability of failure on demand (PFD).

Finally, it is always important to remember that if there exist any feedback data or expert knowl-

edge describing the distribution of the number of components that fail in a CCF, this is vital in

deciding the most descriptive CCF model. By the term “descriptive model”, we mean a model

that both describes the architecture of the system as accurately as possible, and also makes as

few assumptions as possible. If it is known, either by applying expert opinion or from feedback

data, that if a CCF occurs, all components of the SIS will always be disabled, then the β-factor

model is an adequate way of modelling most systems. If such knowledge does not exist, or it is

known that a CCF may sometimes disable only a part of the SIS, then the β-factor model will

not be the most descriptive model.
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Chapter 1

Introduction

Common cause failures (CCFs) are an important part of reliability analysis, and engineers have

been aware of these types of failures since the mid-seventies (Fleming, 1974). Today numer-

ousmodels exist which explain this concept and which attempt tomodel the impact such CCFs

have on different systems. Even though this topic has been given much attention, it is still con-

sidered to be difficult and of a complex nature. CCFs are difficult to quantify correctly, i.e. it

is difficult to know if a component fails due to a common root cause that affects several com-

ponents, or if it fails because it is old and worn out. Usually, not much feedback data exist, so

modelling this properly has proven difficult. When referring to feedback data as in the previous

sentece, wemean recorded times of when the system fails and the reason for this failure, as well

as which components failed. In addition, different systems have different properties meaning

that a model that may work for one system, does not necessarily work for another.

The report at hand focuses on the impact CCFs have on safety instrumented systems (SIS),

i.e. systems whose purpose is to maintaining the safety of some physical structure (see Section

2.1 for definition). If a critical situation occurs, it is important that the systems which provide

the safety are able to function properly.

The objective

The overall aim of the present report is to propose a strategy on how to treat CCFs for different

types of SIS. Different SISmay have different architectures, and it is not certain that one method

proves adequate to handle the vast variety of different architectures. Secondary goals are in-

troduced below as a means to achieve the superior aim, namely proposing a CCF strategy. The

primary (·) and secondary (numbered) goals are as follows

• Propose a strategy on how to handle CCFmodelling for various types of SIS.

1. Carry out a literature survey of CCF modelling and present the results from the sur-

vey.
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2. Assess the quality and the area of application of the different models given in the

survey.

3. Introduce different examples and apply selected CCF-models.

4. Compare results obtained from themodelling process, and assess the quality (if pos-

sible) of the results.

Limitations

The present thesis aims at presenting a strategy for handling CCFs when working with SIS. This

is done by analyzing several systems and architectures which all have different assignments

and architectures. As is shown, specific methods may work well for certain architectures, but

the samemethodmay prove less suitable when dealing with other architectures.

Within the given framework, i.e. with respect to the goals that are set, there are some limitations.

Firstly, not all CCF-models are introduced in the present report. Some of the probably most

well-known are included, but other methods are also available.

Sadly, no records of the physical behaviour of the current systems in operation exist. This

makes it difficult to assess the quality of the results. As well as lacking behavioural informa-

tion, other information is also lacking. This includes for instance any registered failure rates

and failure rate distribution. As a result, failure rates are collected from different data bases,

e.g. OREDA (2002) or Hauge et al. (2006b). For each system introduced in the report, the only

information given, was the architecture and the time between periodic testing. In addition, esti-

mates of the failure rates and an estimate of the CCF-rate were applied. As such, all calculations

and assessments are based on the mathematical procedure alone with little information about

the physical system itself. As such, the report focuses more on the methods and how to apply

the mathematics and not so much on the results.

The structure of the report

Some prior knowledge about reliability analysis and the mathematical background required to

carry out such analyzes is necessary when reading the following report. Even so, most of the

applied methods are described in detail, or references for further reading are provided.

Chapter 2 introduces a few definitions of the expression, "CCF". In addition, mathematical

tools and methods which are used in later chapters, are given. Chapter 3 describes some of the

existing models that deal with CCFs. Perhaps the most famous model is the β-factor model,

and this model is introduced. As is described, the β-factor model has limitations, but different

generalizations of the β-factor model exist, and some of these are explained. In particular, the

multiple β-factor method is a generalization of the β-factor model that should be applicable for
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all different M out of N (MooN ) architectures. The procedure given by the MBF model is later

formulated into a method called the PDSmethod.

There are also other models which may be applied when dealing with CCFs, for instance

Shock models and the Unified Partial method. These methods are also described in Section 3.7

and Appendix A.4, respectively.

In some cases the notation used in the present report differs from the notation used in the

references. This is done in order to make the notation used in the present report as consistent

as possible.

Part II includes several examples where the methods described in Part I are applied. Different

methods are applied depending on the architecture, and these examples will hopefully give an

indication of which methods are suited for which architectures. For most of the examples sev-

eral different solutions are provided in order to compare results.

In Part III the obtained results are analyzed more thoroughly. Chapter 7 takes a close look at

all the examples given in Part II and provides ideas as to which methods are considered to be

reliable for the different examples. Such claims are naturally not easy to make, and the author’s

opinion is reflected.

Chapter 8 introduces general strategies on how to deal with CCFs. All the derived models

and all the examples previously analyzed are presented in order to create a general strategy on

how to deal with CCFs for different architectures and with different numerical values. To make

a short summary of the most important parts of the report, Chapter 9 includes some closing

remarks and final conclusions.

Finally, a section describing different methods of obtaining a “plant-specific” β is also in-

cluded in Appendix A. This chapter is not applied directly throughout the rest of the report, and

it was considered reasonable to move it to the Appendix.
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Part I

Basic concepts and methods
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Chapter 2

Definitions and mathematical tools

The present chapter describes a few of the tools used when quantitatively analyzing CCFs. First,

the concept of CCF is defined. This is followed by methods helping to describe the system in

question in order to gain a good overviewwhen applying differentmethods. Finally, a fewmath-

ematical definitions widely used in reliability analysis are introduced.

2.1 Safety instrumented systems and functions

The present report report considers the safety of different systems or components. A safety

instrumented system (SIS) is a system which consists of sensors, logic solvers and actuating

items. The sensors may for instance be gas detectors, the logic solver could be a computer and

the actuating itemsmay be shut down valves. A fire and gas detection systemwith an alarm or a

sprinkler system is an example of a SIS. A SIS is constructed to take the process into a safe state

if a dangerous event occurs.

A safety instrumented function (SIF), however, is a function that is implemented by a SIS. A

SIS may consist of several SIFs. An example where a SIS consists of two SIFs is given in Chapter

6. Each SIF has to fulfill a requirement which is called safety instrumented level (SIL). Safety

integrity is defined as

the probability of a safety-related system satisfactorily performing the required safety

functions under all the stated conditions within a stated period of time.

IEC 61508 (2000, Part 4)

The measure is classified into four different discrete levels defined as Safety Integrity Levels

(SIL). The SILs are given in Table 2.1. The values stated in the Low demand column represent

the average probability of failure to perform its design function on demand, while the values

represented in the High demand mode equals the probability of a dangerous failure per hour.

The terms low and high demandmode are defined as
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• Low demand mode: The frequency of demands for operation made on a safety-related

system is no greater than one per year and no greater than twice the proof-test frequency.

• High demand mode: The frequency of demands for operation made on a safety-related

system is greater than one per year or greater than twice the proof-test frequency.

Table 2.1: The different SIL levels for Low demandmode and High demandmode.

SIL Low demandmode High demandmode

4 ≥ 10−5 to < 10−4 ≥ 10−9 to < 10−8

3 ≥ 10−4 to < 10−3 ≥ 10−8 to < 10−7

2 ≥ 10−3 to < 10−2 ≥ 10−7 to < 10−6

1 ≥ 10−2 to < 10−1 ≥ 10−6 to < 10−5

If a demand occurs, the probability of the SIS being unable to perform as required equals the

probability of failure on demand (PFD), see Section 2.4. By calculating the PFD, we obtain the

SIL. Many systems are required to meet a certain SIL. Results later in the report are assigned

the corresponding SIL. The examples given in this thesis all belong to the low demand mode

category, i.e. shut down valves, heat detectors and the like. We do not expect these systems to

be activated very often.

An example of a SIF working in a high demand mode is the braking system of a car. A de-

mand is placed upon this SIF quite frequently, so the SIL is required to bemuch higher for these

types of systems.

2.2 Common cause failures

There are many definitions describing CCFs. Smith and Watson (1980) studied nine different

definitions and concluded that there is no “correct” definition, but the best definition depends

on the field of use. If a company is to apply CCF modelling, they should use a working CCF

definition that is easily understood and readily applied. To that end, they proposed their own

definition for CCF.

Inability of multiple, first-in-line items to perform as required in a defined critical

time period due to a single underlying defect or physical phenomena such that the

end effect is judged to be a loss of one or more systems.

Smith andWatson (1980)

Naturally, this leads to more definitions like, how long is a critical time period, and what is

an underlying defect of physical phenomenon. Rausand andHøyland (2004) proposes a shorter,

alternative definition toCCF. This definition is quite similar to the above, but perhaps a bit easier

to comprehend.
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A dependent failure in which two or more component fault states exist simultane-

ously, or within a short time interval, and are a direct result of a shared cause.

Rausand and Høyland (2004)

In the present report, the latter of the two definitions is used.

Other papers also attempt to describe the CCF-concept and also defence strategies against

these failures (Lundteigen and Rausand, 2007). The present thesis focuses on the modelling

process and not somuch on defence strategies, but these strategies are nevertheless important.

Another definition which may be equally adequate, is the following given by the standard

IEC 615011 (2003).

A failure, which is the result of one or more events, causing failures of two or more

separate channels in a multiple channel system, leading to system failure.

IEC 615011 (2003)

Furthermore, a channel is defined as element or group of elements that independently perform(s)

a function. This definition does not include the concept of “a limited time interval”, and may in

some occasions prove to be inaccurate.

2.3 Fault tree analysis

A fault tree is a well arrangedmethod ofmodelling the failure of a certain (top) event. The failure

of a top event depends on other basic (physical) components. The dependencies between the

components are modelled in a tree structure using AND- or OR-gates. As an example, consider

a systemof two components, 1 and 2. A fault tree with an AND-gate is used in the casewhere the

top event (system) fails if both component 1 and 2 fail. This is similar to the parallel structure

in a reliability block diagram (see e.g. Rausand and Høyland (2004)). The OR-gate describes

the event that the system fails if either component A or B fails. This corresponds to the series

structure in a reliability block diagram. There are also other possible gates when dealing with

fault trees, but these are not included in the present report. An example of a simple AND- and

OR-gate is plotted in Figure 2.1. The fault tree method is thoroughly explained in Vesley et al.

(2002).

2.4 Probability of Failure on Demand (PFD)

A common way of measuring the quality of a SIF is to calculate the probability of failure of de-

mand (PFD). This is the estimate which all the models presented in Chapter 3 calculates. Some

approximations are usually made when calculating the PFD, and one such is that we are only

13



Figure 2.1: An example of an AND gate (left) where both components have to fail in order for the

system to fail, and an OR gate (right) where the system fails if one of the two components fail.

considering dangerous undetected (DU) failures, i.e. failures that remain undetected until a de-

mand is made upon the system. This simplification, and others, are more thoroughly explained

in Section 3.1. The following introduction to the concept of PFD is similar to that of Rausand

and Høyland (2004).

First, we define the safety unavailability A(t ) of the SIF. We are, in the present report, only inter-

ested in the availability in an interval (t ,τ+ t ) so the formula is thus given for an interval. Since

we work with systems that are assumed to be as good as new after time τ, we will for simplicity

only consider the time interval (0,τ).

A(t )= P (a failure has occurred at, or before, time t )

= P (T ≤ t )= F (t )
(2.1)

F (t ) is the cumulative density function of the component or system. If the SIF is tested at a

regular time interval τ and the component is considered to be as good as new after each test, the

PDF is

PF D =
1

τ

∫τ

0
A(t )d t =

1

τ

∫τ

0
F (t )d t = 1−

1

τ

∫τ

0
R(t )d t (2.2)

where R(t ) is the survivor function (R(t )= 1−F (t )).

The PFD is usually calculated using an approximation. In order to show this, consider a com-

ponent which has constant failure rate with respect to DU failures, i.e. z(t )=λDU . This implies
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that R(t )= e−λDU t . After inserting this expression into Equation (2.2) and integrating, we obtain

PF D = 1−
1

λDUτ

(
1−e−λDUτ

)
. (2.3)

By making use of the Taylor expansion for e−λDUτ (Rottman, 1995) the following expression is

obtained.

PF D = 1−
(
1−

λDUτ

2
+
(λDUτ)2

3!
−
(λDUτ)3

4!
+ ...

)
(2.4)

If λDUτ is sufficiently small1, we use the approximation

PF D ≈
λDUτ

2
. (2.5)

The approximation in Equation (2.5) is widely used and the result is always conservative. This

result is used throughout the present report as well. Table 2.2 shows PFD approximations for

different architectures (MooN ). A similar table is also found in Rausand and Høyland (2004,

Chapter 10). The results of Table 2.2 are also obtained through the following general formula

Table 2.2: A numerical table for PFD approximations of different architectures.

MooN N = 1 N = 2 N = 3 N = 4

M = 1
λDUτ
2

(λDUτ)2

3
(λDUτ)3

4
(λDUτ)4

5

M = 2 − λDUτ (λDUτ)2 (λDUτ)3

M = 3 − − 3λDUτ
2

2(λDUτ)2

M = 4 − − − 2λDUτ

PF DMooN ≈
(

N

N −M +1

)
(λDUτ)N−M+1

N −M +2
. (2.6)

Note that the PFD is calculated for the SIF and not the SIS. Thismeans that if the system consists

of N SIFs, N PFDs have to be calculated.

1Sufficiently small meaning λDU ·τ≤ 0.2, (Hauge et al., 2006a)
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Chapter 3

Existing models for CCF modelling

3.1 Introduction

The concept of CCFs has been addressed by several authors, and different models have been

created to attempt to model the impact CCFs have on SIS. The present chapter describes some

of these models and the mathematical foundation on which they are based. Naturally the β-

factor model, along with its generalizations is included, but other models are also introduced.

IEC 61508 (2000) plays an important role in reliability analysis, so notes about this standard is

included. The PDSmethod, which differs slightly from the IEC-standard, is explained alongwith

Markov analysis, which, for reliability analysis, is derived in ISA (2002). In addition Shock mod-

els are explained in Hokstad (1988), and the Square-Root method originally given in NUREG-

75/014 (1975) is also included to get an overview of some of the first attempt which was made

to model dependent failures.

Different types of failures may be classified into different sub-groups. Wemay for instance con-

sider some types of failures to be dangerous (D), while others are considered safe (S). In addition

failures can either be detected (D) or remain undetected (U). This gives the four main groups of

failures mentioned in the current thesis, DD, DU, SD and SU. Other types of failures also exist,

for instance Spurious Trips, but these are not treated in the present report. Such failures receive

well-earned attention in Lundteigen and Rausand (2008).

When describing the following models, dangerous undetected (DU) failures have been fo-

cused on, and DU-failures are usually the main focus of authors when dealing with reliabil-

ity analysis. The reason for this is the fact that detected failures are usually repaired relatively

quickly and do not contribute significantly to the unavailability. When the repair time is as-

sumed to be long, DD failures are not neglected, and this is further discussed in Section 3.9.

Another assumption usually made is that following an inspection (at time τ) the SIF is as-

sumed to be “as good as new”. This assumption is also applied in the current report.
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3.2 The Square-Root method

The Square-Root Method, originally presented in NUREG-75/014 (1975), but also recited in

Rausand and Høyland (2004), is a simple bounding technique used to estimate the effect of

CCFs on a system. Since this model perhaps was the first model to deal with CCFs, an example

is included for illustrative purposes. Consider a parallel system consisting of two components

A1 and A2. Let Ai be the situation that component i is in a failed state at time t . The unavail-

ability of the system is defined as A = P (A1∩ A2). We have the identity

P (A1∩ A2)≤min{P (A1),P (A2)} (3.1)

which is an upper bound i f A1 and A2 are positively dependent
1. If A1 and A2 are independent,

then

P (A1∩ A2)≤ P (A1) ·P (A2) (3.2)

This gives an upper and lower limit of the unavailability A.

P (A1) ·P (A2)︸ ︷︷ ︸
qL

≤ A ≤min{P (A1),P (A2)}︸ ︷︷ ︸
qU

(3.3)

The unavailability A
∗
of the system is then approximated using the geometric mean of these

limits.

A
∗ =

p
qL ·qU (3.4)

This method has its weaknesses since there is no mathematical support for applying Equation

(3.4). The Square-Root Method does not take into account the various degrees of coupling be-

tween the components. The Square-Root Method is not used in practice today.

3.3 The β-factor model

The β-factor model is the most commonly used CCF model today, and it was originally pro-

posed by Fleming (1974). This model assumes that a certain percentage of all failures are CCFs.

In order to describe the β-factormodel, consider a system of N identical components with con-

stant failure rate with respect to DU-failures as λDU . Using the definition proposed by Rausand

and Høyland (2004), a component may fail either due to

• circumstances that concern only that specific component, or

• occurrences of external events which consequently lead to all components failing simul-

taneously.

1Positively dependent means that P (A1|A2)≥ P (A1).
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Denote λ(i )
DU

as the failure rate with respect to a single failure and λ(c)
DU

as the failure rate due to

a CCF. The total failure rate of a component is written as a sum of the two failure rates

λDU =λ(i )
DU

+λ(c)
DU

(3.5)

β is called the common cause factor and is defined as

β=
λ(c)

DU

λ(c)
DU

+λ(i )
DU

=
λ(c)

DU

λDU
(3.6)

The value β can also be expressed as

β= P (CCF|Failure), (3.7)

i.e. β equals the conditional probability that there is a CCF given that there is a failure.

An example of relating the β-factor model and fault tree analysis is given in Figure 3.1. This

particular system consists of three redundant and independent components which are exposed

to CCFs. The independent- and the CCF-component are separated by an OR-gate, while the

independent components are separated by an AND-gate.

The following, simple example is provided in order to illustrate the properties of the β-factor

model.

Example 1.

Consider a system with two independent components connected in parallel. Both components

have failure rate λDU . By using a reliability block diagram, the situation can be modelled as in

Figure 3.2. The failure rate function of components 1 and 2 is z1 = z2 = (1−β)λDU , and for com-

ponent C the failure rate function is zC =βλDU . The corresponding survivor function, defined as

R(t )= exp
(
−

∫t
0 z(u)du

)
, is

R(t )= (1− (1−R1(t )R2(t ))) ·RC (t ) (3.8)

By inserting the correct failure rate functions, the survivor function in Equation (3.8) becomes

R(t )= 2e−λDU t −e−(2−β)λDU t (3.9)

The measure of interest is now the PFD and this would for the present example give

PF D =
1

τ

∫τ

0
R(t )d t .

If we use the approximated results in Table 2.2, we obtain, since we have a 1oo2 system followed

by a 1oo1 system.

PF D ≈
((1−β) ·λDU ·τ)2

3
+
β ·λDU ·τ

2
(3.10)

The mean time to failure, defined as MT T F =
∫∞
0 R(t )d t, is

MT T F =
2

λDU
−

1

(2−β)λDU
(3.11)
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Figure 3.1: A fault tree with three independent components in parallel and a CCF term.

Figure 3.2: Reliability block diagram of two components that are exposed to CCF.
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Note: The previous example considered two identical components, but this is not always the

case. For instance, two valves in parallel may be subject to different environments or be of dif-

ferent fabricates. This may consequently lead to different failure rates of the two valves. Hauge

et al. (2006a, Appendix D) suggests using the geometric mean for the different failure rates in

order to handle this problem when the failure rates are very different, with for instance a factor

of 10.

If the two components in the previous example had failure rates λ(1)
DU

and λ(2)
DU

with λ(1)
DU

6=λ(2)
DU

,

the calculations should be carried out by using λDU =
√
λ(1)

DU
·λ(2)

DU
. Generally, for N redundant

components where at least one has different failure rate than the others, the suggested λDU to

be used in general calculations is λDU = (λ(1)
DU

·λ(2)
DU

· · ·λ(N )
DU

)
1
N .

A weaknesses of the β-factor model: If we have a system consisting of more than two com-

ponents, the β-factor model does not allow for the possibility that more than one, but not all

components fail due to a CCF. If a systems consists of 3 components, the β-factor model can

not be used to model the event that 2 out of 3 components fail. This is illustrated in Figure 3.3.

Figure 3.3: The β-factor model of a system consisting of 3 components. The components may

either fail independently, or due to a CCF in which all components fail.
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3.4 The multiple β-factor model

The multiple β-factor (MBF), described both in Hokstad and Corneliussen (2004) and Hokstad

et al. (2006), is a generalization of the β-factor model. As explained in the previous Section, a

weakness in the β-factor model becomes evident when we have more than two components in

a system. The MBFmodel, however, allows for the possibility of independent failures and CCFs

that destroy j out of N components for j ≤ N . For N = 2 the two models are identical, but they

differ when N ≥ 3.

The MBF model assumes complete uniformity, meaning that all N components have the same

constant failure rate independent of time. In addition, all specific combinations of failed com-

ponents j and not failed components N − j have the same probability of occurring. A further

assumption of the MBF model is that removing j of the N components does not influence the

failure rate of the remaining components.

In the present model, β j is defined as

β j = P (A j+1|A1∩ ...∩ AN ) (3.12)

i.e. the probability that component AN+1 fails given that components A1, ...,AN have just failed

due to a CCF. The probability that j out of N components have failed due a CCF is written as

g j ,N = P (A1∩ A2∩ ...∩ A j ∩ A∗
j+1∩ ...∩ A∗

N )

where A∗
j
is the event that component j has not failed in a CCF. This indicates that the proba-

bility of exactly j out of N components fail in a CCF is

f j ,N =
(

N

j

)

g j ,N (3.13)

We introduce a few new expressions, namely

Q Failure probability of one component.

QMooN The probability that a MooN configuration is in a failed state.

Using Equation (3.13), the probability of a CCF for a MooN system is

QMooN = P (at least N −M +1 components failed due to a CCF)

=
n∑

j=N−M+1
f j ,N

(3.14)

The parameter CMooN is introduced as a configuration factor which accounts for the architec-

ture of the system in question. The probability that a MooN configuration is in a failed state, is

given as

QMooN =CMooN ·β ·Q.
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If the expression G j ,N = g j ,N

(Q·β) is introduced, we obtain

G j ,N =
g j ,N

(Q ·β)
=

N− j∑

i=0
(−1)i

(
N − j

i

)
j−1+i∏

l=2
βl (3.15)

for M = 2,3, ..,N . This gives an explicit expression for the configuration factor CMooN .

CMooN =
N∑

j=N−M+1

(
N

j

)

G j ,N for M = 1,2, ...,M (3.16)

The expressionG j ,N can be found recursively when starting withGN ,N =
∏N−1

j=2 β j . Next it is pos-

sible to findG j ,N =G j ,N−1−G j+1,N for j = N −1,N −2, ...,1. This approach, including examples,

are studied in Hokstad et al. (2006). The expression forCMooN is also available in an easier form,

which is found in Hauge et al. (2006a), but that expression is derived from Equation (3.16).

3.5 IEC 61508

IEC 61508 (2000) is an international standard which is widely used when handling functional

safety for SIS, and IEC 61508 (2000, Part 6) studies the concept of CCFs.

Failures in systems, and thus CCFs are assumed to arise from two different causes which are

• random hardware failures, and

• systematic failures.

Random hardware failures are caused by general wear and tear. These failures are assumed to

occur independently of each other.

The systematic failures, however, may occur as a result of bad design or external stress,

which in turn could lead to an early random hardware failure. Such failures are more likely

to affect more than one component (in a multi-component system), so CCFs are likely to be a

significant factor when addressing the SIL of such systems.

On a qualitative scale, the standard suggests threemeasures that can bemade in order to reduce

the probability of dangerous CCFs. These are

1. Reduce the number of random hardware and systematic failures overall.

2. Maximize the independence of the components (separation and diversity).

3. Reveal non-simultaneous CCFs while only one, and before a second, component has been

affected, i.e. use diagnostic tests or proof test staggering1.

Quantitatively, the standard suggests the use of the β-factor model, but states that for many

redundant components, this may be inadequate.

1Staggered testing is explained in Rausand and Høyland (2004, Chapter 10.3.4)
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3.6 The PDS method

Introduction

PDS is a Norwegian acronym for “Reliability and availability of computer based systems”. The

PDS method is developed for the Norwegian offshore industry, and it differs somewhat from

the IEC 61508 standard. Themethod is considered to be realistic and relatively simple. The PDS

method is described in two books published by SINTEF. Hauge et al. (2006a) contains both qual-

itative and quantitative tools in which to deal with reliabilities regarding safety instrumented

systems and thus also common cause failures. Hauge et al. (2006b) contains a short description

of the PDS method and how it differs from IEC 61508 (2000). It also contains estimated values

for different parameters, such as failure rates (λDU s) and a few estimated βs to be used in CCF

calculations.

Hauge et al. (2006a), which describes the PDS method, includes a classification of failures sim-

ilar to that of IEC 61508 (2000), but it includes an expansion. This failure structure is found in

Figure 3.4. It is assumed as a general rule that random hardware failures are denoted as inde-

Figure 3.4: The failures considered in the PDS method. The systematic failures are divided into

three groups and thus the method differs from the IEC61508 approach.

pendent failures while systematic failures may lead to CCFs. A more thorough description of
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the failure modes and what they imply is found in Hauge et al. (2006a).

IEC 61508 (2000, Part 6, Annex D) states that only random hardware failures should be quan-

tified. The PDS method also includes the systematic failures even though they may be hard

to predict. Systematic failures may for instance be detected by using automatic self-tests or

through functional (manual) testing. This is further explained in Section 3.9.

The PDS method introduces something called the total critical safety unavailability (C SUT OT )

which is

the total probability that the module/safety system will fail to automatically carry

out successful safety action on the occurrence of a hazardous/accidental event.

Hauge et al. (2006a)

The C SUT OT is given as

C SUT OT = PF D +PT I F +DTU . (3.17)

PT I F is not included in the present report, but it is a measure describing the probability that the

systemwill fail due to systematic, latent errors. DTU is briefly introduced in Section 3.9 and the

DTU measures the “known” downtime unavailability. DTUT is the planned downtime due to

maintenance while DTUR is the downtime caused by detected failures. DTUT is not included

in the present report and it is, as such, assumed that DTU ≈ DTUR .

The PFD, however, is given much attention in the preceding chapters.

PDS formulas

The PDSmethod applies the same calculations for CCFs as theMBFmodel discussed in Section

3.4. The PDS method accounts for different architectures with respect to CCFs. Opposed to the

β-factor model given in Figure 3.3, the structure given in Figure 3.5 treats a 2oo3 architecture

different than a 1oo3 architecture with respect to CCFs. The PDS method provides a formula

for calculating the configuration factor CMooN . This formula is a paraphrased version of the

formulas obtained in Section 3.4. Assuming βk = θ,k ≥ 3, the configuration factor is expressed

as

CMooN =β2

N∑

j=N−M+1

(
N

j

)

θ j−3(1−θ)N− j , M = 1,2, ...,N −2. (3.18)

and

C(N−1)ooN =
(

N

2

)(
1−

β2

θ

)
+β2

N∑

j=2

(
N

j

)

θ j−3(1−θ)N− j (3.19)

β2 (and θ) is defined in Equation (3.12). A numerical table for CMooN is presented with input

values β2 = 0.3 and θ = 0.5 The same table is also presented in Hauge et al. (2006a).
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Figure 3.5: The PDSmodel for 3 components.

Table 3.1: A numerical table for the parameters CMooN , CN and HN with β2 = 0.3 and θ = 0.5.

CMooN M = 1 M = 2 M = 3 M = 4 M = 5 CN HN

N = 2 1.00 − − − − 1.0 1.0

N = 3 0.30 2.40 − − − 2.7 1.7

N = 4 0.15 0.75 4.00 − − 4.9 2.2

N = 5 0.08 0.45 1.20 6.00 − 7.7 2.7

N = 6 0.04 0.26 1.60 1.60 8.10 10.8 3.2
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Hauge et al. (2006a) calculates the PFD for the different voting logics. Using the simplified for-

mulas derived in Section 2.4, the PFD as a consequence of CCFs for an MooN architecture is

PF Dcc f ≈CMooN ·β · (λDU ·
τ

2
), M < N (3.20)

where CMooN is a configuration factor that depends on the architecture. For the special case

M = N , i.e. a NooN structure, the expression becomes

PF D ≈ N ·λDU ·
τ

2
. M = N (3.21)

Note that Equation 3.20 does not include independent failures. The contribution from indepen-

dent failures is given as

PF Di ndep =
N !

(N −M +2)! · (M −1)!
· (λ(i )

DU
τ)N−M+1, M < N ;N = 2,3, ... (3.22)

Equation (3.21) includes both independent failures and CCFs since the system needs only one

component to fail for an NooN system to fail.

Recall that for the β-factor model, λ(i )
DU

= (1−β)λDU . For the PDS method the expression

becomes slightly different with

λ(i )
DU

= (1−HNβ)λDU (3.23)

where HN is given as

HN =
1

N

(
CN +C(N−1)ooN

)
(3.24)

The term C(N−1)ooN is given in Equation (3.19) and CN is

CN =
N−1∑

M=1
CMooN . (3.25)

Table 3.1 provides values for both CN and HN .

3.7 Shock models

There are also other methods of treating CCFs which differ from the various β-factor models.

Shock models, described by (Hokstad, 1988), is a slightly different approach. Three shock mod-

els, TheMultinomial Failure Rate (MFR)model, The Binomial Failure Rate (BRF)model and The

Random Probability Shock (RPS) model are discussed in the following sections.
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3.7.1 The Multinomial Failure Rate model

In the MFRmodel, two different causes for failures exist. Components may fail individually, for

instance from aging or other causes. The individual failure rate without specifying the type of

failure, of component i , is denoted by λ(i ). The system is also susceptible to shocks caused by

external events. Such external shocks, denoted ν, may cause damage to all the components in

the system. There is a probability fk that exactly k out of N components fail due to such a shock.

The obvious bound
N∑

k=1
fk = 1

applies to these probabilities. Now it is possible to assign the rate for failures of exactly k com-

ponents of the system s.

λs(1) =N ·λ(i )+ν f1

λs(k) =ν fk k = 2,3, ...,N
(3.26)

The total failure rate for one specific component i is

λs(N )

N
=λ(i )+

ν f1

N

and the total rate of dependent failures, λ(c) is

λ(c) = ν
∑

k

k

N
fk =

∑

k

k

N
λs(k).

By adjusting the parameters in the MFR model, we are able to obtain both the β-factor model

and the Greek letter model (Apostolakis and Moieni, 1987). An advantage when using the MFR

model is the possibility of choosing the probabilities fk so they fit observed data (if there is any).

3.7.2 The Binomial Failure Rate model

The Binomial Failure RateModel (BFR) assumes that all components have the same probability

p to fail in a shock. If a shock occurs, the components thus fail independently of each other.

The number of failed components k is assumed to be binomially distributed with parameters p

and N .

fk =
(

N

k

)

pk (1−p)N−k (3.27)

The rate at which shocks occur, is still νwhich provides

λ(c) = νp

for the failure rate of a component with respect to shocks. The total failure rate of one compo-

nent, when including the possibility of independent failures, is

λ=λ(i )+νp
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3.7.3 The Random Probability Shock model

Aspreviously discussed, theβ-factormodel assumes that aCCFdisables all components. Shocks

are the equivalent to a CCF, but all components are not necessarily disabled by a shock. If a

shock occurs when using the BFRmodel, components fail independently. Hokstad (1988) intro-

duced a new model, the Random Probability Shock (RPS) model, which allows for various de-

grees of dependency between the components. In fact, the β-factor model and the BFR model

are special (extreme) cases of the RPS model.

The RPS model assumes that the parameter p in the BFR model is itself a random variable

with a probability distribution. This follows from the assumption that p may vary from shock to

shock. It is further assumed that p is beta-distributed as follows.

g (p)=
Γ(r + s)

Γ(r )Γ(s)
pr−1(1−p)s−1 (3.28)

r and s are parameters which can be estimated from a suggested mean and variance (Rydén

and Rychlik, 2006, Chapter 6). Further, it is assumed that x conditioned on a certain p, i.e.

f (x|p), has a binomial distribution. By integrating out p we are able to obtain the unconditional

probability distribution for f (X = x)

f (X = x)=
(

N

x

)
Γ(r + s)Γ(x + r )Γ(N −x + s)

Γ(r )Γ(s)Γ(r + s +N )
(3.29)

This gives the RPS model, and information is only needed about the parameters r and s. Hok-

stad (1988) also presents a different parametrization which is more comprehensible. By intro-

ducing the two new parameters

O =
r

r + s
and D =

1

r + s +1

we acquire amore understandablemodel sinceO is the probability that a component fail due to

a shock averaged over all possible shocks, and D describes the correlation between the different

components with respect to shocks. If D = 1 and a shock occurs, all components share the same

fate, i.e. if one component fails, all fail. The situation D = 1 equals the β-factormodel. If a shock

occurs with the other extreme, D = 0, components fail independently, i.e. as in the BFRmodel.

Failure rates for failures of multiplicity k is

λ(1)= N ·λi +ν f1 (3.30)

λ(k)= ν · fk (3.31)

Another method which could be modified to include the different “environments” the compo-

nents were exposed to is given by Hughes (1987). As elegant as this method is mathematically

speaking, it requires information about the systemwhich is rarely available and is thus not given

further attention in the present report.
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3.8 Markov analysis

Markov analysis represents a different angle of reliability modelling for SIS. A complete intro-

duction to Markov models is considered too extensive to be given in this report, but certain

concepts relating to CCFs are explained. An advantage when using Markov models is the great

diversity these methods are able to provide. It is possible to model different repair strategies

and fairy dynamic models while the downside is the complexity which becomes evident when

the number of components increases. For instance, if the model includes both DD- and DU-

failures, the number of states are nearly doubled. For each state or component susceptible to

both dependent and independent failures, we need one state for detected failures and one for

undetected failures.

Much focus has previously been given to model production systems, like for instance pumps

or generators which keep production going (Rausand and Høyland, 2004). These systems (or

components of the system) fail at a certain rate and are repaired again at another rate. This is

somewhat different when dealing with DU-failures where all repairs are performed at regular

time intervals τ.

As such, this report will focus mostly on DU-failures when dealing with Markov analysis.

When dealing with DU failures, the system is repaired at regular time intervals τ and not at

once. In order to be able to model this by a Markov model, the repair rate is given as the mean

downtime E(D) in a test interval[t , t +τ] . A derivation of this formula is found in Rausand and

Høyland (2004, Chapter 10) and the result is approximated with

E(D)=
τ

F (τ)
·PF D. (3.32)

When the repair rate is found by using Equation (3.32), the system can be modelled by using

standard Markov analysis. By observing Equation (3.32), much information is needed in order

to calculate E(D). We will for instance need to calculate the PFD before it is possible to describe

the repair rate. This makes this strategy complicated so it is not pursued further.

It is possible, however, to useMarkov analysis to obtain the PFD directly. As explained in ISA

(2002, Part 4), it can even be done in two different fashions. One way is to transform the rates

into discrete time steps, while the other solves the differential equations which follow directly.

3.8.1 The Matrix Multiplication method

The first approach, named the Matrix Multiplication method is by far the most practical for

large systems. Thismethod transforms the rates into discrete time-steps and calculates the PFD

directly. In order to illustrate, an example is employed.

Example 2.

We have a system of two identical components in parallel that are also exposed to CCFs. Only DU-

failures are included when working with the following example. Assuming the Markov property

30



Table 3.2: The different states in which the systemmay reside for the 1oo2 system.

Assigned number Condition

1 Both components are able to function.

2 One component has failed while the other works.

3 Both components have failed.

holds, and also assuming the system is as good as new following a periodic inspection at time τ,

the following numerical values are given.

λDU =1.0 ·10−6 hours−1

β=0.05
τ=8760 hours

∆t =1 hour

(3.33)

The 1oo2 system with periodic repair may reside in 3possible states. These states are given in Table

3.2. Based on the states in Table 3.2, we construct the transition diagram given in Figure 3.6. The

Figure 3.6: Transition diagram for a system of two identical components which are also exposed

to CCFs.

next step is to construct a transition matrix which includes the rates in Figure 3.6. In order to

make the system more suitable for reliability calculations , we “transfer” the rates in Figure 3.6

into probabilities. This is done by multiplying the rate by an interval ∆t , with ∆t small enough so

that the probability of multiple failures within same the interval can be neglected. For calculation

simplicity, the value ∆t = 1 hour is chosen2. This procedure means that we move from continuous

time Markov analysis to discrete time Markov analysis.

2
∆t = 1 hour is coincident with ISA (2002)
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Transferring the values from Figure 3.6 when including ∆t and making sure the diagonal is

one minus the rest of the current row, the transition matrix becomes.

T =





1− (2−β)λDU∆t (2(1−β)λDU )∆t βλ∆t

0 1−λDU∆t λDU∆t

0 0 1



 (3.34)

If we assume that both components are able to function when put into operation, i.e. P (0) =
[1,0,0], the probability of the system being in either state 1, 2 or 3 at time t is given by

P(t )= P(0)Tt . (3.35)

The value Tt is in practice impossible to calculate by hand for large values of t , for instance t = τ,

but it is easily obtained by using a computer. For the present example, we obtain

P(τ)=
[
9.831 ·10−1,1.643 ·10−2,5.065 ·10−4

]

which is the probability of the system being in state 1, 2 or 3 at time τ.

The average PFD is, which is the measure of interest, is

PF D =
1

τ

∫τ

0
P3(t )d t (3.36)

Since state 3 equals the fact that the system is down, the PFD is obtained when studying the mean

time spent in this state. The value is obtained through numerical integration, namely having a

computer calculate P3(t ) for all t ∈ (0,τ).

PF D =
1

τ

τ∑

t=1
P3(t )= 2.42 ·10−4 (3.37)

The MTTF can be found by applying the Fourier analysis-method suggested in Rausand and Høy-

land (2004, Chapter 8). This derivation is not included in the present thesis, but the result is

MT T F =
3−2β

(2−β)λDU
(3.38)

Markov models are also easily applied when dealing with detected failures and the repair

rate is known as is usually the case for production systems, i.e. not SIS. There is a lot of literature

dealingwith such cases, for instance Rausand andHøyland (2004, Chapter 8) or Ross (2003). The

aim of the previous example was to apply Markov analysis through a less common approach.

A similar introduction to the one presented in the current section which follows the same

principles as Example 2 is given in Bukowski and Goble (1995). In that paper the flexibility of

Markov methods is argued, and it is also stated that the ISA 84.02 subcommittee has chosen

Markov analysis as the preferred technique for safety and availability evaluation.
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3.8.2 The differential equations method

The system given in Example 2 will now be solved without transforming the failure rates into

discrete probabilities. The method applies the continuous rates directly and thus makes less

assumptions than the previous one. An example of the same manner is given in ISA (2002,

Part 5) but in that example, the differential equations are solved by making use of the Laplace

transformation (Rausand and Høyland, 2004, Appendix B). In the present paper, however, the

differential equations are solved directly.

At time t = 0, we know that the system is in state 1, i.e. P1(t = 0) = 1. In addition we are

aware of the fact that

P1(t )+P2(t )+P3(t )= 1, (3.39)

i.e. the process must always be in one of the three states. We are thus able to use the state-

equations derived from theKolmogorov forward equations found inRausand andHøyland (2004,

p. 312) or Ross (2003, p. 367). The steady state equation is for state j , assuming we have r dif-

ferent states, given as
dP j (t )

d t
= Ṗ j (t )=

r∑

k=1
ak j Pk (t ) (3.40)

where ak j is the rate at which the system goes from state k to j . For k = j , a j j becomes

a j j =
r∑

i=0
i 6= j

−a j i .

By applying Equation (3.40) to the components in Figure 3.6, we obtain the following equations

Ṗ1(t )=− (2−β)λDU ·P1(t ) (3.41)

Ṗ2(t )=2(1−β)λDU ·P1(t )−λDU ·P2(t ) (3.42)

Ṗ3(t )=βλDU ·P1(t )+λDU ·P2(t ) (3.43)

Since we have three unknowns, we need only chose two of the above equations in addition to

Equation (3.39). Equation (3.41) is solved easily, andwhen also applying the fact that P1(t = 0)=
1 we obtain

P1(t )= e−(2−β)·λDU ·t (3.44)

We now choose to solve Equation (3.42). This equation is more complicated so we apply a tech-

nique called “an integrating factor”. For this linear first order differential equation, we want the

left side of the equation to be equal to the derivative of a product. This technique is described

in several introductory calculus books, e.g. Edwards and Penny (1990).

With this in mind the equation is rearranged, the value for P1(t ) obtained in Equation (3.44)

is inserted, and the expression is multiplied by eλDU · t . This gives

eλDU ·t · Ṗ2(t )+eλDU ·t ·λDU ·P2(t )= eλDU ·t ·2(1−β) ·λDU ·e−(2−β)·λDU ·t
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The left side of the equation is now the derivative of a product, and after integrating with respect

to t on both sides, we obtain

eλDU ·t P2(t )=−2 ·e−(1−β)λDU ·t +C ,

where C is an integrating constant we need to determine. It is assumed that the system is as

good as new at time t = 0 which makes P2(t = 0)= 0. Isolating the P2(t )-term on the left side of

the equation, we are finally able to obtain P2(t ).

P2(t )= 2
(
e−λDU ·t −e−(2−β)λDU ·t

)
(3.45)

P3(t ) is found by inserting the values for P1(t ) and P2(t ) into Equation (3.39). This produces the

estimate

P3(t )= 1−2 ·e−λDU ·t +e−(2−β)λDU ·t . (3.46)

The average PFD is calculated by taking the average of P3(t ) over the time interval (0,τ) and

using λDU from Equation (3.33) . This gives

PF D = 2.42 ·10−4. (3.47)

The result obtained through this approach is equal (within a factor of 10−6) to that of Equation

(3.37). At least for the studied example, we may “safely” use the discrete-time approximation

instead of the differential equations. The discrete-time approximation is also used in the fol-

lowing chapters and the this approximation is assumed to provide sufficient results. The same

approximation is also assumed throughout ISA (2002, Part 4). Figure 3.7 shows the difference of

PF D(t ) for each t in the interval (0,τ) of the two methods. As seen, the difference between the

twomethods are in the order of 10−9.

3.9 Non-negligible repair time and diagnostics testing

The current section explains a bit closer the difference between DU-failures and DD-failures

and the tools which are being used to detect some of the failures, namely diagnostics testing.

In the previous chapters, it has been assumed that MT T R << τ. This consequently leads to

the fact that detected failures are ignored. We now address the case where DD-failures are not

neglected.

Including diagnostics testing

Many different SIS have a “built-in” diagnostics system which frequently perform tests. This

comes in addition to the periodic tests performed at time x ·τ for x = 1,2, .... These diagnostic

safe-tests are performed frequently and are assumed to discover a certain percentage of the

failures. This is called diagnostic coverage (DC). Applying the DC is done straight forward by

adding the term to the failure rate.
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Figure 3.7: The difference obtained for PF D(t ) when applying the matrix multiplication

method and the differential equation method, i.e. PF DMatrix multiplication method(t ) −
PF DDifferential equations method(t )∝ 10−9.

Both Hokstad (2005) and IEC 61508 (2000, Part 6) give examples of diagnostics testing. The

concept is handled slightly different in the two literatures, so themain concept of both are given

below. IEC 61508 (2000) operates with the diagnostic coverage

λDU =
λ

2
(1−DC ); λDD =

λ

2
DC .

When dealing with CCFs, (IEC 61508, 2000) introduces βD to account for the detected common

cause failures. In addition if the repair time is not neglected, the mean time to repair must be

included, i.e. MT T R must be included in the PFD calculation for detected failures.

The PDS method (Hauge et al., 2006a, Appendix E) does not use the notation βD , only the

standard β. Instead it includes the possibility for different diagnostic coverage with respect to

individual failures and CCFs. This makes the rate for DU failures

λ(i )
DU

=(1−DC (i )) · (1−β) ·λD

λ(c)
DU

=(1−DC (c)) ·βλD

(3.48)

We observe that this is a way to calculate the fractionλDU ofλD . The remaining part thusmakes

up λDD , i.e. dangerous failures which are detected in a diagnostic test. For systems with very

good DC, most dangerous failures are DD-failures and only a small part are DU-failures. For

more on this topic, there is an introduction given in Rausand and Høyland (2004, Chapter 10).
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Non-negligible repair time

We now investigate the case where we do not disregard DD-failures, but include these in the

reliability calculations. Both IEC 61508 (2000, Part 6) and Hauge et al. (2006a) give examples on

how to treat these types of failures, and the main difference between the two is that the PDS

method includes the specific voting logic while the IEC-method does not. In addition, the PDS

method separates the expressions so that the contribution obtained from when repairing DD-

failures, called Downtime Unavailability (DTUR ), is calculated separately.

This separation makes, according to the author’s opinion, the procedure much more sur-

veyable and is therefore chosen in the present report. The PFD is calculated normally, but in

addition an additional term, DTUR , is included.

If a DD-failure occurs in a safety system, we are aware of this fact, and in some cases the

system may be shut down or put into a safe state at once. In some situations, however, this is

either impossible (an airplane in the air), or it is considered to be too expensive. If the SIS has

good redundancy the system is still able to provide safety even though some components have

failed due to a DD-failure. For instance if we have a 1oo2 system, and one component is being

repaired due to a DD-failure, the system is still able to perform its designated function since

one component is functional. A DU-failure to the component not being repaired component,

however, would leave the system unable to function if a demand occurs. If DD-failures occur to

both components of a 1oo2 safety system, one would be wise to shut down the operation since

the system is unprotected if a demand occurs. Consequently it is assumed that if a DD-failure

occurs in a NooN system, operation is shut down until the failure is repaired.

If given an MooN system and the aim is to calculate the DTUR , we need to include the

fact that a DD-failure has occurred AND the possibility of DU failures disabling the rest of the

Moo(N − 1) system. Naturally, the DU-failures must occur while the DD-failed component is

under repair, i.e. in a time interval of length MT T R. For a 1oo2 system, we thus have

DTUR = 2λDD ·MT T R ·λDU ·τ/2 (3.49)

which is the probability that a DD failure has occurred multiplied by the PFD of a 1oo1 system.

If we have a 2oo3 system and a DD failure occurs, we now have a degraded 2oo2 system which

handles the safety function. DTUR is now the probability that a dangerous failure has occurred,

multiplied with the PFD for a 2oo2 system.

DTUR = 3λDD ·MT T R ·λDU ·τ. (3.50)

As Hauge et al. (2006a) points out, certain 2oo3 systems may be designed to function as 1oo1

systemand is able to provide safety even though two components have failed due toDD-failures.

Such systems are, however, not given any attention in the present report. Also, we do not include

a CCF-term for the DD-failures since we assume the strategy that if all components fail due to

DD-failures, production is shut down since the safety system is no longer able to provide pro-
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tection.

If deemed possible, Equation (3.50) also allows for different failure rates for DU failures when

a DD-failure has occurred. It may for instance be that if a repair crew is working on repairing

one component, they are more aware of DU-failures on the remaining. Consequently, λDU is

in reality lower in the time interval of repair. The other case may also be true. By repairing one

component, the remaining components are more vulnerable to damage during this time inter-

val. This is an issue which has to be assessed for the specific system and not on a general basis.

In order to illustrate this concept and what sort of numerical values we may expect, we make

us of an example where we include DD-failures. The values for λDD and λDU are obtained from

Hauge et al. (2006b).

Example 3.

We assume we have two pressure switches connected in parallel which are also subject to CCFs.

Yearly inspections are performed, and the system is assumed to be as good as new following such

an inspection. If a DD-failure is discovered, repair is commenced and the mean time to repair

MTTR is assumed to be significant. If we consider the following numerical values,

λDU =1.6 ·10−6 hours−1

λDD =0.7 ·10−6 hours−1

β=0.02
MT T R =730 hours

τ=8760 hours,

(3.51)

we see that the mean time to repair is one month. The C SUR is found by inserting the numerical

values into Equation (3.49). This gives

DTUR = 2 ·0.7 ·10−6 ·730 ·1.6 ·10−6 ·8760/2≈ 7.16 ·10−6 (3.52)

We observe that, the total PFD for the entire system is

PF D =
(
(1−β)λDU ·τ

)2

3
+
β ·λDU ·τ

2
≈ 2.03 ·10−4 (3.53)

which is large (28 times larger) in comparison. (C SUT OT ) is thus given as

C SUT OT = PF D +DTUR = 2.03 ·10−4+7.16 ·10−6 ≈ 2.10 ·10−4. (3.54)

Note If we want to calculate the DTUR for a 2oo4 system, we must include the possibility of

one DD-failure and two DD-failures and the two degenerated systems respectively

DTUR =P
(
0 components have failed due to a DD-failure

)
·4λDD ·MT T R ·PF D2oo3

+P
(
1 component has failed due to a DD-failure

)
·3λDD ·MT T R ·PF D2oo2

(3.55)
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where PF D2oo3 and PF D2oo2 are the PFD a 2oo3 and a 2oo2 architecture, respectively. The first

term of Equation (3.55) is usually the most dominant since the probability of 0 components

having failed due to DD-failure is usually much greater than the probability of one component

having failed.

3.10 Summarizing the derived models

The models that are derived in the present chapter, are all applied in reliability analysis to a

greater or lesser degree. For instance the Square-Root method (NUREG-75/014, 1975) is not

widely used today because of the lacking proper mathematical foundation and its limited area

of application.

The shock models are thoroughly derived (Hokstad, 1988), but these models are not widely

used in practice today. Initial information is needed about the shock-rate and the probability

of different components being disabled if a shock occurs. Such information is usually not avail-

able, and this makes the simpler models more preferable.

The β-factor model is the most popular model today, and the simplicity of the model con-

tributes to this fact. Since this model is widely used, a lot of data has been collected to describe

the input parameters λ and β, e.g. OREDA (2002). The β-factor model is assumed to be ade-

quate for 1oo2 systems but it is insufficient for systems with N > 2.

For larger, more complicated systems, a slightly more complicated model is preferred. The PDS

method is built on the same foundation as the β-factor method, and in addition it accounts

for different architectures, i.e. different Ms in MooN architectures. This is a well documented

method which is widely used in the offshore industry, (Hauge et al., 2006a). The PDS method

also uses the same input values as the β-factor model and should thus be considered as a better

alternative for large MooN systems where little information is provided. Exceptions may natu-

rally be made if expert knowledge leads one to believe that when a CCF occurs, all components

will always be disabled.

Markov analysis is yet another approach, slightly more complicated than the aforementioned.

It is highly capable of modelling a variety of systems, and it is the preferred method of the stan-

dard ISA (2002). In addition to MooN systems, the method is also highly capable of modelling

more advanced systems. Two alternative derivations were introduced in Section 3.8, and for the

purpose of reliability analysis we saw in Section 3.8 that the matrix multiplication method is, at

least for the studied example, by far adequate.

Markov analysis is slightly more complicated than the β-factor model and the PDSmethod,

but when using thematrix multiplicationmethod we have seen that it is quite straight-forward.

It is, however, not very complicated when using the matrix multiplication method. In addition,

some approximation formulas for the PFD, analogous to the approximation formulas of Sec-
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tion 2.4, are introduced in Bukowski (2005). Markov analysis may also be applied when dealing

with systems of repairable components, and the repair time is assumed not to be exponentially

distributed. Bukowski (2006) addresses this issue.
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Part II

Assessing specific systems with respect

to CCF modelling
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Introduction

The present part discusses working examples where CCF modelling is applied. The examples

are collected from actual systems, and an estimate for the PFD when including CCFs is needed.

The presented examples are quite different in architecture and functionality, and this is done on

purpose in order to show which strategy is best suited to model different types of problems.

For the different examples, numerousmethods are applied, and because of the lack of feed-

back data it is difficult to claim that some results are more accurate than others. It is, however,

possible to investigate how the results differ when using different methods and then assess this

variation.

The following examples include most of the methods given in Chapter 3, but not all. For in-

stance, the Square-Root method was included to illustrate the first attempts of modelling CCFs

and will not be included in the examples of Part II.

Necessary assumptions for Part II

A few assumptions are needed when calculating the PFD for the following examples. Some of

these assumptions are already mentioned when deriving the formulas. These and other as-

sumptions are summarized in the current section.

For all models

• The failure rates of all components are assumed constant with respect to time.

• Reparations occur at time intervals τ, and all components are assumed to function as

good as new following a repair.

• The test period at time τ, and eventual repairs, are assumed to be short compared to τ

and is thus neglected.

• The state of one component is independent from the state of the others, i.e. if one com-

ponent fails, this will not affect the other components. (This can be modified when using

Markov models).

• DD-failures are assumednot to contribute to the safety unavailability either because MT T R <<
τ or the system is placed in a safe state if a DD-failure occurs. (This assumption is not in-

cluded in Section 3.9.)

• If a SIS consists of more than one SIF, the PFD is calculated separately for each SIF.

• All the systems in the following examples are systemsworking in a low demandmode (see

Section 2.1).
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For the PDS method and the β-factor model

• The PFD formula given in Section 2.4 is assumed, i.e. λDU · τ is small enough to allow

eλDU ·τ ≈ 1−λDU ·τ. For this assumption to be valid we must, according to Hauge et al.

(2006a), have λDU ·τ≤ 0.2.

• The contributions from different PFD-terms, for instance PF Dcc f and PF Di ndep are as-

sumed to be small enough for 1− (1−PF Dcc f ) · (1−PF Di ndep )≈ PF Dcc f +PF Di ndep .

For Markov analysis

• The Markov assumption is assumed to hold, i.e. the probability of in which state the sys-

tem resides in the next time step (t +∆t ), depends on the current time step only (t ) and is

independent of previous ones (t −x ·∆t for x = 1,2,3, ...) .

• The fail states are absorbing states, i.e. when the system has failed, it stays failed until it is

repaired at time τ.
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Chapter 4

A system to detect low oil pressure

Consider a function designed to detect if lube oil pressure is low. The architecture of this func-

tion given in Figure 4.1 and it consists of four components and one logic unit. The logic unit also

activates an actuating item, but this is not included here. Components 1 and 2 are in a parallel

structure, called an inner system, while components 3 and 4 are connected in parallel to the

inner system. The logic unit shuts down the system if it receives 2 warnings of low lube oil pres-

sure. Component 1 is a pressure detector, while components 2, 3 and 4 are pressure switches.

The logic unit is assumed to work perfectly.

Figure 4.1: A system designed to detect if lube oil pressure gets low.

4.1 Applying the β-factor model

The current architecture can not be treated as a normal 2oo3 system since components 1 and 2

are in a separate parallel structure. To that end, we define two concepts which are used in the

present Chapter.

• Inner system: Components 1 and 2 in a parallel (1oo2) structure.
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• Outer system: The total 2oo3 system in which the inner 1oo2 system is treated as a single

component.

For the present system testing is conducted once a year, i.e. τ= 8760 hours, and the different λs

are

λ(1) =1.7 ·10−6 hours−1

λ(2) =6.0 ·10−6 hours−1

λ(3) =3.4 ·10−5 hours−1

λ(4) =3.4 ·10−5 hours−1.

Component 3 and 4 are identical, while 1 and 2 are different. We assume that both the inner and

outer systems are prone to CCFs. It is possible that the inner system fails due to a CCF without

disabling the functionality of the system. It is also possible to have a CCF when looking at the

outer system, i.e. treating the inner system as one component. A CCF on the outer system could

knock out components {1,2,3}, {1,2,4}, {3,4} or {1,2,3,4}. The fraction of failures that are caused

by a CCF is assumed to be 5%, i.e. β= 0.05.

The inner system

The purpose of the current Section is to find the failure rate function z(t ) for the inner system

when including CCFs and then using this information to evaluate the PFD for the outer system.

The inner system consists of two components in parallel and a CCF term. This is essentially

the same system as the one given in Figure 3.2. The only difference in the present case is the

different failure rates, i.e. λ(1) 6=λ(2). According toHauge et al. (2006a, AppendixD), this problem

can be solved by using the geometric mean of the λs. This gives the failure rate for the inner

system as λ(i s) =
p
λ(1) ·λ(2).

The failure rate function is defined by its survivor function as

z(t )=−
d

d t
R(t )

R(t )
(4.1)

The survivor function is similar to the one found in Equation 3.9, with λ(i s) instead of λ. After

differentiatingR(t ), inserting the expression into Equation 4.1 and simplifying the result slightly,

we obtain the failure rate for the inner system

z(t )=
λ(i s)

(
2− (2−β)e−(1−β)λ

(i s)t
)

2−e−(1−β)λ
(i s)t

(4.2)

This function is a monotonely increasing function and taking the limit yields

lim
t→∞

z(t )=λ(i s).
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Figure 4.2: Plot of the failure rate function z(t ) for the inner system (solid-drawn line) and the

independent failure rate for component 2 (dotted line).

This function increases very slowly, and with β= 0.05 and τ= 8760 hours, z(τ) is nowhere near

its limit. For the period of one year, z(t ) is not even close to λ(1) = 1.7 ·10−6, the more reliable of

the two components. This can be observed in Figure 4.2. The function z(t ) reaches itsmaximum

at t = τ, and the maximum value is

z(τ)= 3.15 ·10−7 hours−1. (4.3)

The complete failure rate function in Equation 4.2 is too complex to be used in practical appli-

cations when calculating the PF D for the outer system. It is, however, required that an estimate

is used. Naturally one could use the conservative estimate obtained in Equation (4.3), but since

the estimate of interest is the average PFD, the average value for z(t ) over the time interval (0,τ)

is used. This gives

zmean(t )= 2.38 ·10−7 hours−1. (4.4)

The outer system

We are now faced with a normal 2oo3 system which is prone to CCFs. At least two obvious

methods present themselves for calculating the PFD. Theβ-factormethod and the PDSmethod.

The failure rate for the outer system is, as previously, assumed to be the geometric mean of the
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failure rates of the three components 2. This yields

λ(os) =
(
λ(i s) ·λ(3) ·λ(4)

) 1
3 = 6.51 ·10−6 hours−1 (4.5)

The β-factor model does not differ between a 2oo3 voting and a 1oo3 voting with respect to

CCFs. The PFD is calculated by assuming that a hypothetical CCF term is connected in series

with the 2oo3 architecture. By making use of Table 2.2, we obtain

PF D =
βλ(os)τ

2
+ ((1−β)λ(os)τ)2

= 1.42 ·10−3+2.93 ·10−3

= 4.36 ·10−3

(4.6)

For a 2oo3 system, the survivor function is given as

R2oo3(t )= 3e−(2−β)λt −2e−(3−2β)λt . (4.7)

The mean time to failure is thus

MT T F =
∫∞

0
R2oo3(t )d t =

3

(2−β)λ
−

2

(3−2β)λ
. (4.8)

Using λ=λ(os) and β= 0.05, the mean time to failure is

MT T F = 130460 hours (4.9)

4.2 The PDS approach

By investigating Figure 4.1, we see that the system is in a failed state if three components fail,

regardless of which components fail. The system is also in a failed state if component 3 and 4

fail, but any other of the five possible combinations of two failed components will not disable

the system. This means that if two components fail, the system fails with probability 1
6
. The sys-

tem can thus be treated as a 3oo4 system with probability 1
6
and a 2oo4 system with probability

5
6
. The PFD for DU failures with respect to CCFs, PF Dcc f is

PF Dcc f = (
1

6
C3oo4+

5

6
C2oo4) ·

βλDUτ

2
. (4.10)

For the current system we have β = 0.05, τ = 8760 hours and λDU = (λ(1) ·λ(2) ·λ(3) ·λ(4))
1
4 =

1.04 ·10−5 hours−1, and the values for CMooN are given in Table 3.1. This provides the estimate

PF Dcc f = 2.94 ·10−3 (4.11)

2The inner system treated as a component and components 3 and 4.
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The contribution from independent failures is calculated as in Section 3.6. Firstly, we need to

obtain λ(i )
DU

, and by using values given in Table 3.1, we have

λ(i )
DU

= (1−HNβ)λDU = 9.256 ·10−6 hours−1

Proceeding similarly as in Equation (3.22) yields,

PF Di ndep =
1

6

4!

3! ·2!
(λ(i )

DU
τ)2+

5

6

4!

4! ·1!
(λ(i )

DU
τ)3 = 2.64 ·10−3. (4.12)

The total PF D is thus

PF D = PF Di ndep +PF Dcc f = 5.58 ·10−3 (4.13)

As shown, the PDSmethodmodifies the β-factor model. For further reading, an example with 3

components in parallel is given in Hokstad et al. (2006).

4.3 A shock model approach

In addition to the two preceding models, the shock model approach is also applied to the inner

system. For the shockmodel approach, it is assumed that a shock occurs according to a Poisson

process with rate ν = βλ. The probability that a component fails in a shock averaged over all

possible shock is assumed to be 0.25, and the correlation between the components is assumed

to be 0.5. This gives the parameters O = 0.25 and D = 0.5.

There are a few difficulties when applying shock models. Shocks are assumed to be Poisson

distributed with parameter ν. This indicates that the waiting time between shocks is exponen-

tially distributed with the same parameter, ν. When a shock occurs, Equation (3.29) gives the

probability that exactly X = x components fail. These results, especially for the values of O and

D chosen above, implies that many of the shocks go unnoticed. Nevertheless, estimates are ob-

tained using the shock model and stochastic simulation with the numerical values previously

given.

PF Dcc f = 5.70 ·10−4 (4.14)

For the independent failures, we recall Equation (3.30). The last part of that equation, ν · f1,

is already included in the simulation that leads to the result obtained in Equation (4.14), but

the first part must be included. When looking at the first part, it is clear that this is the same

as independent failures in the β-factor model so we have PF Di ndep = 2.93 ·10−3. This gives the
total PFD of

PF D = 2.93 ·10−3+5.70 ·10−4 = 3.50 ·10−3 (4.15)

4.4 Markov approach

An alternative methodology is to apply Markov analysis as derived in Section 3.8. As previously,

DD-failures are ignored. First, we begin by initially classifying all the different states. Initially
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Table 4.1: The different states of the lube oil pressure system when including the aforemen-

tioned simplifications.

Assigned number Condition

1 All components are able to function.

2 Comp. 3 or 4 has failed.

3 Comps. 1 and 2 have failed.

4 Comps. 3 and 4 have failed.

5 Comps. 1 and 2 and 3 or 4.

6 All components have failed.

we see that we can ignore all the states where either component 1 or 2, but not both have failed

since this does not influence the functionality of the SIF. This means that we need to make use

of the ”inner system“ used in Section 4.1. This gives the average failure rate for the system of

two components in parallel. This simplification is by no means necessary (if the system was

constructed differently), but it simplifies the calculations without changing the result. The dif-

ferent states are given in Table 4.1. Since components 3 and 4 are identical, the notation used to

describe these is λ∗
DU = 3.4 ·10−5. The matrix which provides the instantaneous transition rates

is given as

T =





1−x 2λ∗
DU (1−β) λ(i s)

DU
βλ∗

DU 0 0

0 1− (λ∗
DU +λ(i s)

DU
) 0 λ∗

DU λ(i s)
DU

0

0 0 1− (2−β)λ∗
DU 0 2λ∗

DU (1−β) βλ∗
DU

0 0 0 1−λ(i s)
DU

0 λ(i s)
DU

0 0 0 0 1−λ∗
DU λ∗

DU

0 0 0 0 0 1





(4.16)

where

x = ((2−β)λ∗
DU +λ(i s)

DU
)

is simply introduced for aesthetic reasons. Similar to Equation (3.34), the term ∆t = 1 hour is

introduced to transform the rates into probabilities. ∆t = 1 is assumed to be small enough so

that the probability of more than one error in the same 1 hour interval may be neglected. In

practice, the transformation is done by multiplying ∆t by every term in T except the 1s on the

diagonal. When ∆t = 1, no changes are actually made to the matrix T, but the values are now

probabilities and not rates. We have moved from continuous time Markov analysis to discrete

timeMarkov analysis.

If a demand occurs and the system is in either state 4, 5 or 6, it is unable to perform its desig-
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nated function. We assume that the system is fully functional at t = 0, i.e. P0 = [1,0,0,0,0,0]. In

addition, we have the assumption P (t ) = P0T t . By saving the value for all values t ∈ (0,τ), we

obtain the plot given in Figure 4.3. The mean value of the PFD over the interval (0,τ) is

Figure 4.3: The probability of failure on demandwhen applyingMarkov analysis plotted against

the number hours in operation.

PF D = 2.61 ·10−2 (4.17)

Notice that this result is significantly higher than all the previous ones. When taking a closer

look at the different states and how much they contribute to the PFD, we see that at time t = τ

the probability that the system is residing in any of the failed states is

P4(τ)=6.95 ·10−2

P5(τ)=7.83 ·10−4

P6(τ)=1.45 ·10−4.
(4.18)

State 4, i.e. when components 3 and 4 have failed, is by far the main contributor to the PFD

since it is approximately 100 times larger than the other two.
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Chapter 5

A system of speed sensors

Consider a system of speed sensors which is mounted to an engine and is designed to turn off

the engine if the recorded speed is too high. A reliability block diagram of the system is given in

Figure 5.1. The system consists of two 2oo3 systems in parallel. All six components are identical.

The numerical values for the present system are.

β=0.02
λDU =2.3 ·10−6 hours−1

τ=8760 hours.
(5.1)

5.1 A PDS approach

The aim is as always to calculate the PF D for the entire system, and this can be done similarly

as in Section 4.2. An identical example is given in Hauge et al. (2006a, Appendix D.2) although

that example ignores the contribution which comes from independent failures. This is called

a 2oo3×1oo2 architecture. If five or six components fail, the system fails. If four components

fail, then the system fails if two are located on one cluster, and the other two are located on the

other cluster. This means that the system is in a failed state if either four or five components

fail. The system can be considered as a 2oo6 system with probability 6
15

and 3oo6 system with

probability 9
15
. The probability 6

15
is found by counting the different ways four components can

fail in the current architecture.

The CCF-part of the PFD is thus

PF Dcc f = (
6

15
C2oo6+

9

15
C3oo6) ·

βλDUτ

2
= 1.21 ·10−4 (5.2)

For the individual failures we can use the same logic. By using Equation (3.22), we obtain the

general formula for independent failures. The last step is to assign λ(i )
DU

according to Equation
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Figure 5.1: A system of speed sensors.

(3.23).

λ(i )
DU

= (1−HNβ) ·λDU = 2.15 ·10−6 hours−1

provides the rate for independent failures which is in turn employed when calculating the PFD

for independent failures.

PF Di ndep =
6

15

6!

6!1!
(λ(i )

DU
τ)5+

9

15

6!

5! ·2!
(λ(i )

DU
τ)4 = 2.29 ·10−7 (5.3)

This gives in total PFD of

PF D = PF Di ndep +PF Dcc f ≈ 1.21 ·10−4. (5.4)

With such high degree of redundancy and λDU ·τ<< 1, independent failures contribute little to

the total PFD.

Mathematically, this is amore precise way of handling the current problem than by using the β-

factor model, which has no way of accounting for the current architecture. The β-factor model

is included, however, in order to further illustrate the differences.

5.2 A β-factor approach

It seems natural to calculate the PFD when using the β-factor model as in Section 4.1, namely

by introducing an ”inner system“ and then treat these two super-components as a 1oo2 system.
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But, we need to stop and think about what we are actually calculating before we progress. Ac-

cording to the β-factor model, a component is exposed to CCFs with a certain fraction (β). This

means that we must calculate this percentage from the original failure rate, λDU . Taking 2% of

the failure rate of the 2oo3 system is far too optimistic. In accordance to the β-factor model one

should calculate the CCF term based on λDU and the independen failures by the same manner

as in Equation (5.3).

The preceding reasoning provides, for the CCF term,

PF Dcc f =
βλDUτ

2
= 2.015 ·10−4,

for the independent failures, we know that λ(i )
DU

= (1−β)λDU ,

PF Di ndep =
6

15

6!

6!1!
(λ(i )

DU
τ)5+

9

15

6!

5! ·2!
(λ(i )

DU
τ)4 = 2.75 ·10−7

which makes the total PFD

PF D = PF Di ndep +PF Dcc f = 2.018 ·10−4 ≈ 2.02 ·10−4 (5.5)

5.3 A Markov approach

The architecture given in Figure 5.1 is also applicable for Markov analysis. As previously, we be-

gin to assess the different states of the system. Since the components are identical, this process

is mostly straightforward. State 5 and 6 includes the same situation as treated in Equation (5.2)

Table 5.1: The different states of the speed sensor system.

Assigned number Condition

1 All components are able to function.

2 1 component has failed.

3 2 components have failed.

4 3 components have failed.

5 4 components have failed, but the system still works.

6 4 components have failed and the system is down.

7 5 components have failed.

8 All components have failed.

in Section 5.1. As previously, the focus is given to DU-failures.

For the handling of CCFs, we may chose several strategies. For instance when in state 1,

independent failures with rate 6λDU (1−β) lead to state 2, and if using the β-factor method,

a CCF term with rate βλDU leads to state 8. It is naturally possible to assume that CCFs only

disable some components and not all. When in state 1, the CCF term can for instance be split
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into 5 parts with rates
βλDU

5
leading to states 3, 4, 5 or 6, 7 and 8. Another possibility is to assume

a tenancy in these CCF probabilities, i.e. if a CCF occurs, the probability of knocking out all

components is greater than the probability of disabling only 2 components. Since not much is

known about the system, the assumption that a CCF disables 2,3, ...,8 with the same probability

is applied. This gives the following transition matrix

T =





a1,1 6λ(i )
DU

1
5
λ(c)

DU
1
5
λ(c)

DU
6

15·5λ
(c)
DU

9
15·5λ

(c)
DU

1
5
λ(c)

DU
1
5
λ(c)

DU

0 a2,2 5λ(i )
DU

1
4
λ(c)

DU
6

15·4λ
(c)
DU

9
15·4λ

(c)
DU

1
4
λ(c)

DU
1
4
λ(c)

DU

0 0 a3,3 4λ(i )
DU

6
15·3λ

(c)
DU

9
15·3λ

(c)
DU

1
3
λ(c)

DU
1
3
λ(c)

DU

0 0 0 a4,4
3·6
15

λ(i )
DU

3·9
15

λ(i )
DU

λ(c)
DU

2

λ(c)
DU

2

0 0 0 0 a5,5 0 2λ(i )
DU

λ(c)
DU

0 0 0 0 0 a6,6 2λ(i )
DU

λ(c)
DU

0 0 0 0 0 0 a7,7 λDU

0 0 0 0 0 0 0 1





(5.6)

with

λ(i )
DU

=(1−β)λDU

λ(c)
DU

=βλDU

ai ,i =1−
8∑

j=i+1
ai , j

(5.7)

As previously, the rates are multiplied by ∆t = 1 hour, ignoring the probability of more than one

failure (1 CCF counts as one failure) within an interval of 1 hour. The system fails to function if

it enters ether state 6, 7 or 8. In order to obtain a smaller transition matrix these 3 states could

have been combined into one state and lead to the same answer for the PF D , namely

PF D = 1.07 ·10−4 (5.8)

The PF D value is thus a little smaller, but not unlike the one obtained through the PDSmethod

given in Equation (5.4). Combining failed states as mentioned above is done in Section 6.2.3.
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Chapter 6

A complex system of heat detectors

The current Chapter considers a gas outlet surrounded by 24 heat detectors. These heat detec-

tors have two different tasks to perform, i.e. there are two different SIFs present.

1. Detect if there is a significant temperature difference throughout the gas.

2. Detect if the temperature is higher than a 120◦C.

SIF 1 is treated separately from SIF 2.

6.1 Temperature distribution in gas

A SIF which makes sure that the temperature is constant throughout the exhaust gas is mod-

elled by assuming that the SIF fails if three adjacent components fail. This can not be modelled

as a standard MooN system. If so, what would M be? Another question is how CCFs should

be modelled in this situation. The PDS method is applicable for MooN systems, but this is an

architecture where M is not specified. It is naturally possible to make simplifications, and one

such conservative simplification is to assume that the function has a 22oo24 structure. Since

the SIF fails if three adjacent components fail, a 22oo24 architecture only allows for two failures.

This is, however, a conservative estimate and the aim is to find something more exact.

A simple solution is to use stochastic simulation when solving the current problem. The failure

rate λDU is given (identical components), and the time between each inspection τ is also pro-

vided. As previously, all components are assumed to be as good as new after each inspection.

The complex structure of the systemmakes it difficult to find a precise way of modelling the

CCFs. For this reason the β-factor model is applied so that all components fail if a CCF occur.

The β-factor gives a conservative estimate since the possibility of a CCF only disabling a few of
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the components, is excluded. The numerical values applied for the present system are

β=0.02
λDU =5.8 ·10−6 hours−1

N =24
τ=8760 hours.

(6.1)

The algorithm that was used to perform the modelling is given below. tG and tB represent the

amount of time the system is working and the amount of time it is not working, respectively.

The number of iterations is represented by i t .

Algorithm 1.

1. Assign initial values τ,λDU ,N , i t = 0,β, tG = 0 and tB = 0.

2. tG = tG +τ

3. Draw N waiting times t w
N from the distribution exp((1−β)λDU ).

4. Check if 3 adjacent waiting times, t w
i−1, t

w
i
, t w

i+1 are smaller than τ (waiting time 1 is adja-

cent to waiting time 24). If so, t̂ w = τ−max{t w
i−1, t

w
i
, t w

i+1} otherwise t̂ w = 0.

5. Draw 1 waiting time t c from exp(βλDU ).

6. Check if t c < τ. If true, t̂ c = τ− t c , otherwise t̂ c = 0.

7. If t̂ w > 0 or t̂ c > 0. tB = tB +max{t̂ w , t̂ c } and tG = tG −max{t̂ w , t̂ c }.

8. i t = i t +1 and return to Step 2 until sufficient iterations are performed.

9. Calculate PDF = tB

tG+tB
.

For the given initial values and for 1000000 iterations, the PDF was calculated to be

PDF = 1.21 ·10−3. (6.2)

Next, the algorithm is run two additional times, one time where the CCF-term is left out and

another where the individual term is left out. This is done in order to see which part contribute

the most to the PFD. The results were

PF Di ndep = 7.06 ·10−4

and

PF Dcc f = 5.07 ·10−4.

The consistency of the different results is assured by drawing the exact same random numbers

in all three simulations.
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6.2 Detecting high temperature

The SIS also detects if the temperature increases above 120◦C (SIF2). In this case, four blocks,

each consisting of three components, have to function. Each block is made up of three specific

components that all have to function for the block to function. This SIF thus consists of eight

blocks where four have to function for the system to function. One block is modelled as a series

structure of three individual components. The failure rate for one block is then obtained by

adding the failure rates for the three components which give a 4oo8 structure.

A 4oo8 structure can be handled numerous ways. Recall Equation (2.6) which provided the

general formula for MooN systems for calculating the PFD with respect to DU-failures.

PF DMooN ≈
(

N

N −M +1

)
(λDU ·τ)N−M+1

N −M +2
(6.3)

The following sections present three different methods of modelling this SIF, known as SIF 2.

Firstly, we look at the PDSmethod before stochastic simulation andMarkov analysis is applied.

6.2.1 A PDS approach

The PDS approach introduced in Chapter 3.6 is easily applied for the present problem. We have

a 4oo8 system with numerical values

β=0.02
λDU =3 ·5.8 ·10−6 = 1.74 ·10−5 hours−1

N =8
M =4
τ=8760 hours.

(6.4)

The suggested values for β2 and θ and Equation (3.18) yield C4oo8 = 0.87. The PF Dcc f is calcu-

lated by using Equation (3.20) and is

PF Dcc f = 1.33 ·10−3 (6.5)

When calculating the independent failures, λ(i )
DU

given in Equation (3.23) should be applied.

After determining the correct value for HN , the PF Di ndep is given by Equation (3.22). When

inserting the numerical values we find that HN = 3.99 for N = 8 which in turn gives

λ(i )
DU

= (1−3.99 ·0.02)1.74 ·10−5 = 1.60 ·10−5 hours−1.

Finally we are able to obtain

PF Di ndep =
8!

(8−4+2)!(4−1)!
(1.60 ·10−5 ·8760)8−4+1 = 5.05 ·10−4 (6.6)
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The total PFD is thus

PF D = PF Di ndep +PF Dcc f = 1.835 ·10−3 ≈ 1.84 ·10−3 (6.7)

6.2.2 Stochastic simulation

Another method is found by using stochastic simulation. The algorithm is quite simple and

can be modified both to different architectures and different failure rates. As it is formulated in

Algorithm 2, it is similar to the β-factor model so the values when using the β-factor model are

also included to illustrate the similarity.

Constant failure rates, as assumed in the present case, give exponential waiting times, but

the algorithm can easily be modified to draw from other distributions. The stochastic simula-

tion given in Algorithm 2 assumes a β-factor model when handling CCFs.

Algorithm 2.

1. Assign initial values to N ,M ,λDU ,τ, i t = 0, tG = 0 and tB = 0.

2. Set tG = tG +τ.

3. Draw N random numbers t w
i
, i = 1, ...,N from the distribution exp(λDU ).

4. Draw one random number t c from the distribution exp(β ·λDU ).

5. Check if more than N−M of the numbers t w
i

are smaller than τ. If so, t̂ w = the Mth smallest value.

6. If the last point was true, tG = tG − (τ−min{t̂ w , t c }) and tB = tB + (τ−min{t̂ w , t c }).

7. i t = i t +1 and go back to Step 2 until sufficient iterations are done.

This provided the estimate

PF D = 1.84 ·10−3. (6.8)

As in Section 6.1, the algorithm is run two additional times with the same random numbers in

order to isolate the contribution from independent failures and CCFs. This gives

PF Di ndep = 3.81 ·10−4

and

PF Dcc f = 1.42 ·10−3.

By using standard β-factor analysis, the estimate

PF Di ndep = 6.94 ·10−4

and

PF Dcc f = 1.52 ·10−3
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Table 6.1: The different states of the speed sensor system when applying Markov analysis.

Assigned number Condition

1 All components are able to function.

2 1 component has failed.

3 2 components have failed.

4 3 components have failed.

5 4 components have failed.

6 5, 6, 7 or 8 components have failed and the system is down.

are also obtained. The total average PFD for the standard β-factor model is thus

PF D = PF Di ndep +PF Dcc f ≈ 2.22 ·10−3. (6.9)

The stochastic simulation gave basically an identical value for the PFD as the PDS method

did, while the calculated β-factor model gave a slightly greater value. The PDSmethod includes

the fact that a CCF not necessarily disable all components. A 4oo8 structure has good redun-

dancy which means that the PDS estimate is lower than the β-factor estimate.

The reason for the stochastic simulation estimate being lower than the β-factor estimate is

simply that the approximation formulas produce a conservative estimate, while the stochastic

simulation does not.

6.2.3 Markov analysis

A regular 4oo8 system is naturally applicable to Markov analysis. As in Section 5.3, a CCF is

assumed to have the same probability of knocking out 2,3, ...,N components. As always, the first

step is to assign the different states as done in Table 6.1. In order to reduce the complexity and

increase the speed of the computation process, the different states where the system is unable

to function, is combined into a single state. From Table 6.1 we see that state 6 is made up of four

different failure possibilities, and this is accounted for when defining the transition rates. The

transition matrix is

T =





a1,1 8λ(i )
DU

λ(c)
DU

7

λ(c)
DU

7

λ(c)
DU

7

4λ(c)
DU

7

0 a2,2 7λ(i )
DU

λ(c)
DU

6

λ(c)
DU

6

4λ(c)
DU

6

0 0 a3,3 6λ(i )
DU

λ(c)
DU

5

4λ(c)
DU

5

0 0 0 a4,4 5λ(i )
DU

λ(c)
DU

0 0 0 0 a5,5 4λDU

0 0 0 0 0 1





(6.10)
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with

λ(i )
DU

=(1−β)λDU

λ(c)
DU

=βλDU

ai ,i =1−
6∑

j=i+1
ai , j

(6.11)

As previously, the ratematrix is transformed into probabilities bymultiplying∆t = 1 by all terms

except the 1s on the diagonal. ∆t is assumed to be small enough for the probability ofmore than

one failure in the duration of one hour to be of importance. The system is assumed to be fully

functioning at time t = 0 so in accordance with the formulas of Section 3.8, P(0)= [1,0,0,0,0,0]

and P(t )= P(0)Tt . PF D is for the system in question; the average amount of time spent in state

6 during the time interval (0,τ). With the help of a computer, the result of interest is

PF D = 1.35 ·10−3. (6.12)

The result in Equation (6.12) is not very different from the one obtained through the PDS ap-

proach given in Equation (6.7). Both the PDS method and the Markov approach yield signifi-

cantly lower values for the PFD than when using stochastic simulation. The reason is simply

that when using simulation, we assumed a β-factormodel which, compared to the PDSmethod

and theMarkovmethod, punishes systems with good redundancy when assuming that all CCFs

disable all components.
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Part III

Assessing the results and proposing

strategies for dealing with CCFs
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Chapter 7

Discussion

The following chapter assesses the results obtained in Chapters 4, 5 and 6. As previously stated,

it is difficult to know which results are the most ”correct“ for these particular systems since no

feedback data exist. The aim is then to study which results are obtained with respect to which

assumptions that are made. For instance, the β-factor always assumes that all components fail

in a CCF while the PDS method does not. These different assumptions lead to different results

when dealing with various architectures.

Throughout the report, except in Section 3.9, it is assumed that MT T R << τ, which makes

DTUR << PF D . Section 3.9 shows that even with MT T R = 730 hours, the term DTUR is still

small compared to the PFD. This will naturally also depend on the failure rate λDD and λDU but

wemay in general disregard DTUR for systems wheremost failures are repaired within a couple

of days or a week. If MT T R is much longer than this, we may still be able to neglect the term

DTUR , but some extra consideration is needed.

7.1 The methods of Chapter 4

Table 7.1 summarizes the values obtained for the PFD in Chapter 4. These values are divided

into contributions from independent and dependent failures, except when using Markov anal-

ysis. As seen in Table 7.1, nomethod provides the same exact result. The Shockmodel provided

the smallest value for the PFD, and this is especially due to the CCF-part of the PFD. The inde-

pendent part is equal to theβ-factor, but the values applied for shocks, ν=βλDU were too small

to provide values in the same range as for the PDSmethod or the β-factor. This comes as a nat-

ural consequence since many of the shocks go unnoticed. Even when adjusting the parameters

Y and D , there is still a relative large probability of zero components failing due to a shock, and

this probability is not accounted for in the estimated failure rates applied in the other models.

The shock model is easily expanded to account for all MooN architectures1, but if one wants

1Adjust n in Equation (3.29)
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Table 7.1: The numerical values obtained for the PFD of the lube oil pressure system when ap-

plying different methods.

Method PF Di ndep PF Dcc f PF D SI L

β-factor 2.93 ·10−3 1.42 ·10−3 4.36 ·10−3 2

PDSmethod 2.64 ·10−3 2.94 ·10−3 5.58 ·10−3 2

Shock model 2.93 ·10−3 5.70 ·10−4 3.50 ·10−3 2

Markov approach - - 2.61 ·10−2 1

it to provide the same results as the β-factor model or the PDS method, the rate ν should be

increased.

The β-factor model follows next with the second smallest value, but the result is quite similar to

that of the PDS method. Even though the β-factor method and the PDS method are quite simi-

lar, the applied strategies used in Chapter 4 are quite different. In Section 4.1 the average failure

rate function for the ”inner system“ is obtained while in Section 4.2, since the PDS method is

able to distinguish between different architectures to a greater degree, applies the probability of

the system either being either a 2oo4 or a 3oo4 system. When working with a system with rela-

tively bad redundancy, (3oo4) the PDS method ”punishes“ such systems since there in the PDS

method is a relatively larger probability of a CCF occurring. For a 3oo4 system, only 2 compo-

nents need to fail for the system to fail, so this system does not have a great deal of redundancy.

The largest value for the PFD was obtained when using Markov analysis. We notice that for

this method, we are not able to distinguish between independent and dependent failures. This

follows as a natural consequence of the Markov assumption2.

There is one simplificationwhichwasmade for allmethods exceptwhen usingMarkov anal-

ysis, and this proves to be of some consequence. The simplification in question is that all other

methods apply the geometric mean and thus use one estimated failure rate instead of the ac-

tual ones. For the current example this simplification proves to be decisive when determining

the SIL, since the system fails if components 3 and 4 (see Figure 4.1) fail. These two components

have failure rates equaling 3.4·10−5 and not 1.04·10−5 as estimatedwhen using the PDSmethod

or 6.51 ·10−6 as estimated in Section 4.1.

TheMarkov analysis does in this case present amodel which bear the closest resemblance to the

real, physical system. As a consequence the estimate provided byMarkov analysis is considered

to be the most reliable.

The β-factor model, the PDS method and the Shock model use a simplification which pro-

2The probability of the system being in state i +1 is only dependent of state i and independent of state i −1, see

(Rausand and Høyland, 2004, Chapter 8).
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vides severely different values for the PFD compared to the Markov analysis, namely the ge-

ometric mean between the different components when calculating the “average” failure rate.

This leads to a series of strange results. The average failure rate for the inner system was cal-

culated to be zmean(t ) = 2.38 ·10−7 hours−1. After taking the geometric mean, the total failure

rate for the entire system was obtained, λ(os) = 6.51 ·10−6 hours−1. When applying the β-factor

model, the system is susceptible to CCFs at a rate of β ·λ(os) = 3.26 ·10−7 hours−1. This means,

according to this model, that CCFs will disable the components of the inner systemmore often

than the actual failure rate of the inner system. This must be incorrect and the geometric mean

is thus not ideal when working with failure rates which are very different from one another. In

such situations, Markov analysis seems to be a more sensible approach.

7.2 The methods of Chapter 5

Chapter 5 studies the system given in Figure 5.1 and proposes a few different strategies on how

to handle CCFs. The same strategies as in Chapter 4 are applied, except Shock models. The

Shock model was not included based on the fact that the rate at which shock occurs ν=β ·λDU

is not comparable with the rest of the models. If the shock model is to be applied, a different

value must be utilized.

Table 7.2 shows the results obtainedby applying theβ-factormodel, the PDSmethod andMarkov

analysis. Chapter 5 first applied the PDS method before continuing with the β-factor model.

Table 7.2: The numerical values obtained for the PFD of the speed sensor systemwhen applying

three different methods.

Method PF Di ndep PF Dcc f PF D SI L

β-factor 2.75 ·10−7 2.015 ·10−4 2.02 ·10−4 3

PDSmethod 2.29 ·10−7 1.21 ·10−4 1.21 ·10−4 3

Markov approach - - 1.07 ·10−4 3

These methods are handled similarly, except for the fact that a CCF when applying the β-factor

model always disables all components. Finally Markov analysis is applied with respect to the

system in Chapter 5 and the PFD value given in Table 7.2 is obtained by using a similar CCF

technique as the PDSmethod applies. As previously mentioned, Markov analysis is flexible and

by adjusting Equation (5.6), a number of different tactics could have been applied for dealing

with CCF.

Table 7.2 indicates that the PDSmethod and theMarkov analysis gave relatively similar answers

while the β-factor provided an answer almost twice as large. This is explained by the CCF-tactic

employed by the different methods. Since the system in question has good redundancy, a rela-
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tive large number of components (four or five) need to fail in order for the system to fail. As a

natural consequence, the β-factor model produces a higher value for the PFD.

It is difficult to state bombastically that any of thesemethods ismore correct than the others

without analyzing feedback data from the actual system in operation. If the CCFs are observed

to be of the same nature described by the β-factor model, then there is no need for any of the

other models. If on the other hand, CCFs occur at different multiplicities, the β-factor model is

not the right choice and one of the other models would fit better. These evaluation needs to be

made for each system based on feedback data or previous knowledge.

We also observe that the contribution to the PFD from independent failures is negligible when

we have this many components. This is not the case for the oil pressure system in Chapter 4

where the independent failures and CCFs are of the same order.

7.3 The methods of Chapter 6

The SIS which is given in Chapter 6 consists of two SIFs, one which controls the temperature

distribution and another which makes sure the temperature stays beneath a set limit. The SIF

in Section 6.1 is much more complicated than the one in Section 6.2, since the latter of the two

is treated as a regular MooN system.

7.3.1 Temperature distribution

The first SIF is of such complex structure that a customized simulation algorithm is created in

order to compute the PFD. Algorithm 1 is a recipe on how to create this function in a computer

program. The algorithm draws 24 waiting times from the exponential distribution and checks

if three adjacent waiting times are smaller than τ. If three adjacent waiting times are smaller

than τ, the time the system was unable to function is recorded as well as the time it was able to

function. This is repeated many times in order to see the general behaviour of the system in a

long time perspective.

The procedure described just now will, however, only provide the independent failures and not

CCFs. The method for handling CCFs, which is also described in Algorithm 1, is similar to that

of the β-factor model. The algorithm may be modified if one wishes to chose a different CCF

tactic.

A waiting time is drawn from the exponential distribution with parameter β·λDU , and if this

waiting time is smaller than τ, a CCF occurs. This CCF may knock out all components, or some

condition can be placed upon it. One may for instance assume that the CCF disables a compo-

nent by a certain probability. In practice, this is accomplished by drawing 24 random numbers

between 0 and 1 and see how many of these numbers are lower than the probability of failure.

Such a method gives the number of failed components as well as which specific components
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fail. The last step is to combine independent and CCFs over the time interval τ and see if 3

adjacent have failed.

As shown in Chapter 6, by simulating the system for 106 years, we are able to obtain

PDF = 1.21 ·10−3 (7.1)

PF Di ndep = 7.06 ·10−4 (7.2)

PF Dcc f = 5.07 ·10−4 (7.3)

which equals SIL 2. Even though PF Di ndep +PF Dcc f 6= PF D since there sometimes are over-

laps, i.e. in some iterations there are both independent failures and a CCF. This difference is so

small that it may be disregarded, so it is safe to use

PF D ≈ PF Di ndep +PF Dcc f .

By comparison, we may perform standard PFD analysis on a 22oo24 system and see the differ-

ence. The PDSmethod provides the estimate

PF Dcc f =C22oo24
βλDU ·τ

2
≈ 1.22 ·10−3

and

PF Di ndep =
24!

4! ·21!

(
(1−HN ·β)λ(i )

DU
·τ

)3
≈ 3.30 ·10−2

which results in the total PFD of

PF D = PF Di ndep +PF Dcc f ≈ 3.42 ·10−2 = SIL 1 (7.4)

We see that when assuming a 22oo24 structure, the PFD given by the PDS method is high com-

pared to the stochastic simulation. The greatest contributor to this part comes from indepen-

dent failures. By studying the CCF-term when using the regular β-factor model we are able to

see that

PF Dcc f =
λDUβ ·τ

2
≈ 5.08 ·10−4

which is essentially the result obtained through stochastic simulation in Equation (7.3). As ex-

pected, the stochastic simulation provides similar results as the approximation formula, but the

estimates from the approximation formula are a bit higher (more conservative).

7.3.2 Detecting high temperature

Four different approaches were applied when calculating the PFD for det safety system which

detects high temperature. The system is modelled as a normal 4oo8 system with eight identical

components. Themodelling resulted in the estimates repeated in Table 7.3. We observe that the

highest value for the PFD is given by the standardβ-factormodel. The simulated version, i.e. the

less conservative β-factor approach, provides the same result as the PDS method. The Markov
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Table 7.3: The numerical values obtained for the PFD for the SIF that detects high temperature.

Four different methods are applied.

Method PF Di ndep PF Dcc f PF D SI L

β-factor 6.94 ·10−4 1.52 ·10−3 2.22 ·10−3 2

Simulated β-factor 3.81 ·10−4 1.42 ·10−3 1.84 ·10−3 2

PDSmethod 5.05 ·10−4 1.33 ·10−3 1.84 ·10−3 2

Markov approach - - 1.35 ·10−3 2

approach, which assumes a similar CCF-strategy as the PDS method, provides the lowest esti-

mate. The reason why the Markov estimate gives a lower estimate than the PDS method, orig-

inates in the fact that the PDS method also uses a conservative approximation formula. Even

though the PDSmethod accounts for different voting logics, the approximation formula in Sec-

tion 2.4 is still employed.

It is naturally difficult to evaluate which estimate is themost correct when there are no feedback

data and in addition, the difference between the estimates is not especially large.

Again the CCFs are treated differently for the β-factor model and the PDS method with re-

spect to the number of components that fail when a CCF occurs. If some previous knowledge

of the system exists with respect to CCFs, this should naturally be utilized in deciding the cor-

rect strategy. If nothing is known about the system, the Markov approach and the simulated

β-factor model are mathematically more correct than both the PDS approach and the β-factor

model since no approximation formula is used.

The simulated β-factor model provides different estimates from time to time since random

numbers are drawn even though the difference from time to time is relatively small. TheMarkov

approach however, provides a fixed estimate and is a more flexible model.
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Chapter 8

Recommendations when applying

CCF-modelling

8.1 Introduction

The present thesis has introduced different methods of handling CCFs and examples where

these models are applied. Chapter 4 provided an example with different failure rates and an

inner and outer system (see Figure 4.1), while Chapter 5 involved two 2oo3 architectures in

parallel (Figure 5.1). Chapter 6 introduced two different SIFs, one where three adjacent compo-

nents out of 24 had to fail for the system to fail, and another which is treated as a regular 4oo8

system.

The present chapter reviews the assessments in Chapter 7 and aims at providing advice on how

to model CCFs for different systems. As previously mentioned, there is not one model which is

best suited for all situations. If more than one approach is possible, it may also be difficult to

claim that one is better than the other especially when feedback data are absent. Since no feed-

back data are available for the current examples, the previously obtained results are not verified

in anyway, and the suggested strategies reflect the author’s personal opinion. Firstly, if feedback

data are available, the data should be considered and taken into account when performing reli-

ability analysis. Feedback data may be helpful when determining variables such as, λDU , β and

so forth. Additionally, if there are any data or expert opinion available to describe the nature of

the CCFs, this may help in choosing the most descriptive model.

8.2 Reviewing the models

Chapter 3 introduced several of the existing models that deal with CCFs. Some of these models,

and others, are also covered in the PhD. thesis (Zitrou, 2006).
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8.2.1 Models not included

The Square-Root model in Chapter 3 is only included for illustrative purposes and not applied

to the examples in Part II. The Square Root method has a poor mathematical foundation, and it

is difficult to handle advanced structures when using this method.

The Shock model was introduced and also applied in Chapter 4 for the system that detects

low oil pressure. This model has not been subject to much previous research, and it is difficult

to assess whether the general values available (λ and β) apply for this model since many shocks

go unnoticed. It is, however, an interesting model, but for systems where little information is

available, it is perhaps not preferable.

8.2.2 The main models

Four of the introduced models were deemed relevant for some, or all, of the selected examples.

The simplest of these areβ-factormodel. The remainingmodels employ the same input param-

eters, namely λ, β, M and N .

To summarize the difference between these models shortly with respect to CCF modelling, one

may say that the β-factor model and the PDS method work for standard MooN system but only

the latter of the two account for different values of M. Stochastic simulation and Markov methods

may be used to “copy” either the β-factor model or the PDS method but without the approxima-

tion made in Section 2.4. In addition, stochastic simulation and Markov methods may also be

used to model other, more complicated structures more accurately.

More generally, the β-factor model is undoubtedly applicable for for N = 2 components. The

question becomes evident when the number of components increase and the architectures dif-

fer, i.e. architectures such as 2oo9, 4oo9, 8oo9 and so forth. Preferably, one should know the

distribution of number of components that fail due to a CCF, but this is usually not the case.

Intuitively, one would think that a 2oo9 system should not be treated similarly as a 8oo9 system

with respect to CCFs. Since the 2oo9 system has greater redundancy than the 8oo9 system, it

seems less likely for the 2oo9 to be as prone to CCFs as the 8oo9 system. Thus, the PDSmethod

is preferable instead of the β-factor model when N > 2. As seen in the different examples, the

calculus involved when applying the PDSmethod is relatively simple. The independent failures

are slightlymore complicatedwhen dealingwith the PDSmethod, but thesemay be disregarded

if the system has good redundancy.

Both stochastic simulation and Markov methods are applicable for general MooN meth-

ods, and both models are, in fact, mathematically more accurate since none of these make the

conservative assumption derived in Section 2.4. This claim is supported by the results obtained

in for instance Section 6.2 where the stochastically simulated β-factor model and the Markov

approach provided a lower result than the β-factor model and the PDSmethod, respectively.

The downside when using these models (stochastic simulation or Markov) is that they are
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slightly more complicated than the β-factor model and the PDS method. For Markov methods,

when “converting” from continuous time to discrete time, the complexity severely decreases

and even large systems may be treated with relative ease. This simplification does, however,

introduce the need for a computer and the knowledge of a programming language (for instance

MATLAB or R) since the procedure involves calculating the power of a matrix numerous times.

Stochastic simulation naturally also includes the use of a computer and programming skills

to implement the algorithms previously presented. This is not particularly difficult for someone

who knows a suitable programming language, but it may prove a challenge for someone who is

not familiar with programming.

When applying Markov methods, it is naturally necessary to investigate whether the system in

question fulfills the Markov assumption. This should, however, be the case for most regular

systems and thus not cause great difficulties, but it is important to be aware of this fact. When

dealing with the PDS method and the β-factor model, the size of λDU ·τ is critical since these

methods assume an approximation formula. For smallλDU s, this approximationdoes not cause

significant deviations, but a Markov approach or stochastic simulation omits this approxima-

tion entirely.

A downside which presents itself for Markov approaches is when we are dealing with both

detected and undetected failures. This vastly increases the complexity of the transition matrix

and the number of states.

For non-identical failure rates, as the for the system in Chapter 4, it is important to proceed

with care, especially when the difference is large. In such cases, Markov analysis is valuable and

preferable compared to the β-factor model and the PDS method. Chapter 4 presented a 2oo3

system where two of the components had a significantly higher failure rate than the ones given

in the “inner system”. Since only the two components with high failure rate need to fail for the

system to fail, the strategy of taking the geometric mean of all components result in a too low

PFD. Markov analysis is thus better at accounting for the diversity of such systems.

In some situations, stochastic simulation is definitely preferable instead of any of the other pre-

sented approaches. When dealing with architectures like the one presented in Section 6.1, even

though an analytic solution probably exists, the easiest approach is to program the behaviour

of the system in the long run. Since the system in question is not a regular MooN system, other

approaches are not able to model its complexity.

Independent failures

For simplicity, Hauge et al. (2006a) suggested not to include independent failures for N > 3.

This is not always adequate as seen in Section 7.3.1 where a 22oo24 system was introduced

to compare results with the stochastic simulation. On the other hand, the contribution from

independent failures for the system in Chapter 5 is small compared to that of the CCFs (see
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Table 7.2). As previously stated, the system in Chapter 5 may be treated as a combination of a

2oo6 system and a 3oo6 system and has as such good redundancy. This is certainly not the case

for a 22oo24 system which has relatively poor redundancy.

As a first approximation to investigate whether independent failures are relevant, compare

Equation (3.20) with Equation (3.22) when using λDU instead of λ(i )
DU

in Equation (3.22). As a

rule of thumb for general MooN systems, one may ignore independent failures if the system

has very good redundancy. It is up to each individual to decide when the system has good re-

dundancy, but since the procedure of including independent failures only requires a minimal

amount of work, it is strongly suggested that this is done.

The consideration of when to include and when not to include independent failures is not

needed for Markov analysis. This follows naturally since, if proceeding in the same manner as

presented in the present report, one only obtains the total PFD and not the different contribu-

tions.

DD-failures

Section 3.9 introduced DD-failures and non-negligible repair time. This is included to account

for systems with very long repair time and as seen in the example, not even a repair time of 1

month had a significant impact onC SUT OT in the derived example. This naturally also depends

on the choice λDD and λDU . For a large value of λDD the DTUR becomes more relevant than

with a small value.

In general, the inclusion of the DTUR is not deemed necessary because the contribution

to C TUT OT is negligible compared to the PFD. As such, the DTUR is only necessary for special

systems when the repair rate of DD-failures is extremely long. This may for instance be the case

for different sub-sea equipments or other systems that are not accessible for repair. It is, how-

ever, necessary to be aware of this fact because the system has reduced protection in this time

interval. In addition if for instance two components in a 2oo3 system have failed dangerously,

the system is unable to provide the necessary safety if a demand occurs.
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Chapter 9

Final conclusions

The present report deals with reliability modelling for SIS and focuses on calculating the PFD,

and special attention is given to CCFs. The strategy chosen in doing so, is to survey a few of the

existingmodels that deal with CCFs, apply thesemodels for various examples, and based on the

obtained results, propose strategies for how to deal with CCFmodelling. Real-life examples with

very different architectures are chosen to account for the great variety of SIS found in different

industries.

After reviewing a large number of existing models, some of whom are presented in Chapter 3,

four “models” were given more careful attention, namely the β-factor model, the PDS method,

Markov analysis and stochastic simulation.

We may conclude that for regular MooN systems, the β-factor fails to describe the system

properly when N > 2. The PDSmethod yields relatively similar results asMarkov analysis except

for the fact that the PDS method uses an approximation that is not included when applying

Markov analysis. This fact ensures that the PDS method provides a more conservative estimate

for the PFD. For standard MooN systems with identical components it is the author’s belief that

the PDS method is adequate. If any data exist which indicate the distribution of the number of

failed components in a CCF, the parameter θ may be changed to account for this.

For systemswith additional properties, for instance different failure rates or other attributes that

require amore dynamicmodel,Markov analysis (if possible) is preferred. Workingwith a system

consisting of multiple failure rates may give strange results when applying the geometric mean

as an estimate (see Table 7.1). Two differentmethods of applyingMarkov analysis is introduced,

and for the example in Chapter 3.8, the results were very similar.

In special circumstances we may need to design a specific algorithm in order to correctly

handle the complexity of the system in question. Section 6.1 provides such an example where
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the other approaches are inadequate.

Even though the β-factor model and the PDS method are not applicable for all architectures

where Markov analysis or stochastic simulation is used, the opposite is not the case. Both

Markov analysis and stochastic simulation are very well suited for modelling general MooN

architectures (see e.g. Section 6.2).

Finally it is always important to retrieve as much information as possible about the system in

question. Operating with a failure rate that correctly reflect the reliability of the components in

the system is important when calculating the PFD. The distribution of CCFs are also important

since this provides clues in deciding the parameters used in CCF-modelling.
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Appendix A

Methods of estimating β

The methods described in Chapter 3 introduced different methods for modelling CCFs. These

methods, like the β-factor model and the generalizations of the β-factor model require the use

of a given β. IEC 61508 (2000) suggest, based on experience, that the best case scenario for the

value of β is β= 0.01 while the worst case scenario is β= 0.3. The current chapter suggests a few

methods of deciding a suitable plant specific β.

In addition, a method called The Unified Partial method, which is somewhat different from

the methods previously mentioned, is introduced in Section A.4.

The present chapter is not directly applied in the report since assigning a plant specific β re-

quires some knowledge about the physical system. Since such information is not available in

the present case, this chapter moved to the Appendix and may be applied when dealing with

a specific system where both expert opinion and (or) feedback data are available. In addition

to the methods presented below, there are other more general descriptions available on how to

reasonably apply expert knowledge of a system, e.g. Wisse et al. (2008). The following reviews

are not to be considered complete, and the provided references should be consulted for further

reading.

A.1 Partial β-factor model

Johnston (1987) proposed a method of estimating the β which is combined with qualitative

analysis. Not much information was obtained with respect to this approach, but the main facts

are mentioned here. The following points are qualitative measures which can be taken to mini-

mize the risk of CCFs. The points are merely suggested facts to be aware of.

• Development of system logic.

• Identification of components affected by common attributes/environments.

• Check whether any cutset of the fault tree contains two or more affected components.
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• Assessment of component defences against the cause of the dependency.

• Evaluation of the effect on system reliability, reflecting as much as possible, the detailed

qualitative analysis.

Theβ-value derived from the partialβ-factormethod (PBF) is constructed through expert opin-

ions of the defences of the model at hand. The different aspects of the model is broken down in

parts (partial βs), and each part is considered separately. All the different defences are assigned

with a numerical value, and the product yields the β. The different defences which are assigned

values, are given in Table A.1.

Table A.1: The partial β-factor method listing different defences and the assigned reference val-

ues. The product of all 19 values yield the specified β.

Defences Reference values

Design control 0.6

Design review 0.8

Functional diversity 0.2

Equipment diversity 0.25

Fail-safe design 1.0

Operational interfaces 0.8

Protection and segregation 0.8

Redundancy and voting 0.9

Proven design and standardization 0.9

Derating and simplicity 0.9

Construction control 0.8

Testing and commissioning 0.7

Inspection 0.9

Construction standards 0.9

Operational control 0.6

Reliability monitoring 0.8

Maintenance 0.7

Proof test 0.7

Operations 0.8∏19
i=1βi = 0.001

The partial β-factor model may thus be a tool of qualitatively gaining an estimate for the β that

is used e.g. in the β-factor model.

This model is not the most rigorous, mathematically speaking, but it might be helpful if

there is no information available regarding CCFs. For more information about this model and
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the strengths and weaknesses is found in Johnston (1987).

The model may be difficult to quantify correctly since not much information other than John-

ston (1987) is available. For instance, what does the values of Table A.1 signify? If the system is

deemed “better” than average with respect to, for instance design control, the value (0.6) should

be reduced, but by howmuch? This uncertainty makes this method difficult to apply.

A.2 The IEC method for determining a plant specific β

IEC 61508 (2000, Part 6, Annex D) provides a method of finding a plant specific β. This method

is based on engineering judgement when inspecting the system in question. A score function

S = X +Y is used to obtain a plant specific β. For each of the topics listed below, a number of

questions are given and the user should sum the Xs and Ys if the question applies to the system

in question.

1. Separation/segregation

2. Diversity/redundancy

3. Complexity/design/application/maturity/experience

4. Assessment/analysis and feedback data

5. Procedures/human interface

6. Competence/training/safety culture

7. Environmental control

8. Environmental testing

The ratio X : Y represent to which extent diagnostic testing (explained in Section 3.9) would

improve the defence against CCFs. In some cases there is no value given for X. This indicates

that diagnostic testing have no influence for that particular measure, and the Y-value should be

chosen.

As an example we choose the first question for the topic Separation/segregation. The question

is as follows:Are all signal cables for the channels routed separately at all positions?

If the answer for the system in question is yes, we need to know if that system has diagnos-

tics testing. If the system does not have diagnostics testing, we add the term X into our score

function. If the answer to the question is yes, and the system in question also has diagnostics

testing, we add the term Y. The same question is asked both for the logical sub system of the

SIS and the sensors and final elements of the SIS. After repeating this process for all questions

given under all the different topics, we end up with a sum, S = X +Y for all X and Y. The value
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for βmay then be decided by using the values in Table A.2. This table is also found in IEC 61508

(2000, Part 6, Annex D).

Table A.2: The plant specific value for β calculated by the corresponding score function S.

S Logic subsystem Sensors or final elements

120 or above 0.5% 1 %

70 to 120 1 % 2 %

45 to 70 2% 5%

Less than 45 5% 10 %

A.3 The PDS approach for determining a plant specific β

The PDS method suggests a way of determining an application specific value for β. Firstly,

Hauge et al. (2006b) lists several “average” β values for different safety instrumented systems.

However, this value may not be valid for all systems. The notation β∗ is used for the application

specific β, and the relationship

β∗ = kβ ·β

is assumed. kβ is a parameter describing the system’s protection against CCFs and β represent

an “average” value for the protection for a SIS of the type in question. Section A.2, (IEC 61508,

2000, Part 6, Annex D, Table D1) presented a number of topics to take into consideration when

determining β∗. The PDS method argues that only the first two topics, Separation/segregation

and Diversity/redundancy are relevant for the current calculation. The remaining topics are only

relevant for determining the application specificλDU . The two relevant topics are to be assessed

by expert engineering judgement and quantified according to Table A.3. Other values than the

Table A.3: Typical values for kβ when applying the PDS method of finding the application spe-

cific β, i.e. β∗.

kβ Protection Comments

0.1 Very high protection Separation/segregation and diversity/redundancy

fully implemented

0.5 Extended protection Some additional protection implemented

and documented

1.0 Normal protection Average level of protection - current practice

5.0 Reduced protection Less protection than typically implemented

ones presented in Table A.3may naturally be utilized, but as themethod states, kβ = 0.1 requires

extrememeasures of protection and does not seem likely in practice. A more thorough descrip-
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tion of the two topics considered (separation/segregation and diversity/redundancy) is given in

Hauge et al. (2006a, Appendix C).

A.4 The Unified Partial method

The Unified Partial method (UPM) is the main approach for modelling CCFs in the UK. The

method is given in Zitrou and Bedford (2003), but the notation is somewhat modified in Zitrou

et al. (2007), so a review of the latter of the two approaches is given in the present report. UPM is

based on the β-factor method in the sense that a CCF disables all components in the system. In

the UPM eight different defences are suggested. These are listed in Figure A.1. The defences are

Figure A.1: The different UPM defences numbered from 1 to 8.

denoted D1, ...,D8 and each Di is assigned a value xk , xk ∈ {1, ...,5} by consulting experts. Each

defence is then given a score, si which indicates the importance of each defence. In addition, a

scaling factor d is introduced. This gives an estimator for β.

β̂=
s1(x1)+ ...+ s8(x8)

d
(A.1)

A.4.1 An ID extension of UPM

An extension of the UPM applies Influence Diagrams (IDs). IDs are an extension of Bayesian

Belief Networks. A more general introduction to Bayesian Belief Networks is given in Quigley

et al. (2001).

The ID extension method, (Zitrou et al., 2004), assumes that there are two main factors that

result in the occurrence of a CCF. The first is the occurrence of a root cause while the second is

the existence of a coupling factor that creates dependency conditions among the components

and induces these to fail due to the same root cause. The two types of failures have the following

sub-groups

• Root cause events

design

81



human

internal to component

maintenance

procedures

external environment

• Coupling factor events

operational

hardware

environment.

In addition, the ID extensionmodel considers different defensivemeasures which can be taken,

see Figure A.1. Defence actions may be applied at reducing root causes, coupling factors or

both.

The variables in the ID network are now given as:

• The root causes which lead to CCFs

• The coupling factors that create the conditions for CCFs to occur

• The defence actions

• A chosen reliability rate or CCF rate

The ID network will portray the cause-and-effect relationship between the root causes and the

coupling factors with the CCF rate. In addition, there are also the defence measures against the

root causes and/or the coupling factors. The defence parameters are deterministic variables

representing different decision alternatives. These variables may be adjusted according to later

improvements or such.

The UPM further assumes that failures occur independently and with a constant rate. The fail-

ure events caused by root cause i is given as a Poisson process with rate Ri , i = 1, ...,6. The

probability of a failure event due to root cause i resulting in a CCF through a coupling mecha-

nism j , j = 1,2,3, is expressed as

Pi j = P (CCF via coupling mechanism j |event due to root cause i ).

The CCFs that result from a root cause i occur according to an independent Poisson process

with rate

Λi = Ri

3∑

j=1
Pi j . (A.2)
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The next assumption is that a CCF event occurs due to only one root cause event and through

only one couplingmechanism. Based on this assumption, the total rate for CCF events becomes

Λ=
6∑

i=1
Λi . (A.3)

The construction of the ID network is done by consulting experts. This includes deciding which

defences are relevant (and applied) for the different root causes or coupling factors. The level of

defence also has to be addressed. In addition, the dependencies between the different defences

must be investigated. Zitrou et al. (2007) provides a thorough description of the different aspects

that are relevant and the process of designing the network.

The quantitative analysis which follows once the network is constructed, is perhaps the

most complicated. The Phd.Thesis by Zitrou (2006, Chapter 5 and 6), describes the quantita-

tive Bayesian approach in detail. The Bayesian model produces an estimate for λ(c), i.e. the

failure rate at which common cause failures occur. The ID extension does not estimate β, but

instead the method estimates the failure rate directly.
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