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Abstract. After introducing the general machinery needed, we consider Landweber
exact cohomology theories and prove a result by H. Miller [Mil89]. This enables us

to manufacture multiplicative natural transformations of said theories. In particular,
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Introduction

In the eighties topologists constructed a cohomology theory called elliptic cohomol-
ogy [Fra92, LRS95]. This theory was constructed from complex cobordism by means
of a criterion called the Landweber exact functor theorem [Lan76], and as such, was not
geometrically defined. Coming up with a satisfactory geometric interpretation of this co-
homology theory was, and still is, an unresolved problem, and this is a major disadvantage
in understanding the theory. However, elliptic cohomology is still very useful. It does
a better job than both K-theory and singular cohomology in telling spaces apart, and
can therefore be used to attack problems out of reach of the more classical cohomology
theories.

Work by several people (see for instance [Zag88]) suggested that the coefficient ring
of elliptic cohomology should be interpreted as a ring of modular functions. This enabled
Haynes Miller [Mil89], via a result of his (see Theorem 2.6.1 below), to produce a multi-
plicative natural transformation of cohomology theories relating elliptic cohomology and
real K-theory. Applying the topological Riemann–Roch theorem he recovered formulas
that Ed Witten obtained by physical considerations in [Wit88].

Purpose

The goal of this thesis was to study the construction of elliptic cohomology and
H. Miller’s paper [Mil89], and in particular account for Miller’s construction of the el-
liptic character. Another point was to apply this construction in different settings and
thereafter compute the Riemann–Roch correction classes that arise.

Overview of thesis

First I will say a few words about the general style of the thesis. Throughout the text I
have made considerable effort trying to make things come in a natural order. Chapter 1
and the generalities about formal group laws are meant to give a solid foundation for the
later parts. For the parts that does not make up the core of the thesis, I have tried to say
just enough to give the reader an idea of what is going on. Most of the material I have
had to study and that has been relevant for the results has been included in some form.

Chapter 1 will be devoted to introducing terminology and notation. We will briefly
discuss orientations of vector bundles and manifolds, and state a topological version of the
Riemann–Roch theorem which will play an important role later. We introduce real and
complex K-theory, as well as the theories obtained by localizing away from the prime 2.
We then devote some time introducing operations in K-theory, and we will use the Adams
operations to give a criterion for telling when an element lies in the image of the complex-
ification c : KO [ 1

2 ]∗(−) → K [ 1
2 ]∗(−). Thereafter spectra will be introduced, and we take

a rough and ready approach, avoiding most technicalities. We mention how spectra give
rise to (co)homology theories, and vice versa. We end this chapter by giving an example
of a very important spectrum which gives rise to complex bordism.
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2 INTRODUCTION

Chapter 2 consists of material related to formal group laws. After having made the
preliminary definitions, we turn our attention to the complex oriented cohomology theo-
ries, because they come equipped with formal group laws. Next follows a discussion about
universal formal group laws. Manufacturing a ring with a universal formal group law is not
hard, but determining the structure of the ring is complicated. This is Lazard’s theorem
(Theorem 2.4.2 below). Quillen’s theorem now states that the formal group law attached
to complex cobordism is in fact the universal formal group law. We state Landweber’s
exact functor theorem (Theorem 2.5.2) which gives a criterion enabling us to produce new
homology theories from complex bordism, and we point out that Landweber exactness is a
property independent of the choice of orientation. We end this chapter by proving a theo-
rem of H. Miller (see Theorem 2.6.1) which was stated without proof in [Mil89]. Coming
up with a proof of this theorem (together with the necessary preliminaries) constitutes a
considerable portion of the work with this thesis.

In Chapter 3 we introduce elliptic genera from which we obtain various elliptic coho-
mology theories via the exact functor theorem; the verification of the Landweber conditions
relies on properties of elliptic curves. Next we turn to introducing modular functions, be-
cause the coefficient rings of the elliptic cohomology theories can be interpreted as rings
of such functions.

Chapter 4 is devoted to computations. Specifically, we compute the correction classes
that are part of the Riemann–Roch theorem for several multiplicative natural transforma-
tions. Notably, we use the theorem of Miller to obtain transformations from the newly
acquired elliptic cohomology theories to singular cohomology, and compute their correction
classes. We conclude by looking at how the Weierstrass ℘-function gives rise to the elliptic
genera we have considered, and thereby relates the calculations we have performed.

Prerequisites, notation and conventions

Throughout the text we will assume familiarity with (generalized) homology and co-
homology theories for (pointed) CW-complexes. The suspension isomorphism in reduced
cohomology theories will always be denoted by

σ : h̃∗(X)→ h̃∗+1(ΣX).

When we speak of a natural transformation of cohomology theories we mean a degree 0
stable natural transformation h∗(−)→ k∗(−); stable meaning that it commutes with the
coboundary homomorphism (or the suspension isomorphism if the theory is reduced). A
natural transformation of cohomology theories with products is called multiplicative if it
respects the external products. The coefficient ring of a multiplicative cohomology theory
is a graded ring, and we say that its grading is cohomological. The ring with the grading
reversed is said to have homological grading.

Further, we assume basic knowledge of vector bundles. Once and for all we remark
that when we speak of the canonical line bundle η over CP∞, we mean the complex line
bundle with total space {(l, x) ∈ CP∞ × C∞ | x ∈ l}, and not its dual. A trivial vector
bundle of rank n over a space X is denoted by n. The context (or a subscript) will make
it clear if we are speaking of real or complex rank. When ξ is a complex vector bundle,
we write ξ̄ for its complex conjugate. We also assume that the reader is familiar with the
classifying spaces BO(n), BSO(n) and BU (n), resp., for real, oriented and complex vector
bundles, resp.

Recall that a power series f(x) ∈ R[[x]] over a commutative ring has a multiplicative
inverse if and only if it is of the form f(x) = u + · · · and a functional inverse if and only
if f(x) = ux + · · · ; here u ∈ R is some unit. Whenever elementary functions appear
in the text, it is to ease notation; we really mean their power series expansions about
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0. Furthermore, we expect the reader to interpret expressions in such a way that they
make sense. For instance, even though sinh(x) = x+ · · · has no multiplicative inverse, the
expression x/ sinh(x) is meaningful. In particular, differentiation and integration of some
function always denote formal differentiation and integration of the corresponding power
series expansions.

Finally, the one-point space will be denoted by pt and we let X+ := X t pt .





CHAPTER 1

Review

1. Orientations of manifolds

By means of the tangent bundle of a smooth manifold one can speak about orientations
with respect to a cohomology theory h∗(−), as well as orientations of maps between mani-
folds. We will see that oriented maps give rise to covariant homomorphisms in cohomology,
which do not necessarily commute with natural transformations. The Riemann–Roch the-
orem will tell us how to modify the maps to obtain commutativity.

1.1. Orientations of vector bundles. Let ξ ↓ X be a vector bundle over a CW-
complex. The Thom space is defined by Xξ := Dξ/Sξ (also written Th(ξ)), where Dξ
and Sξ are the associated disk and sphere bundles. Let ξ′ ↓ Y be another vector bundle
and f : ξ → ξ′ a bundle map. The Thom spaces are canonically pointed, and f induces a
pointed map on Thom spaces,

Th(f) : Xξ → Y ξ
′
.

We recall that there is a homeomorphism

(1.1.1) ψ : Xξ ∧ Y ξ
′ ≈−→ (X × Y )ξ×ξ

′
.

We recall what it means for a vector bundle to be oriented with respect to a cohomology
theory.

Definition 1.1.2. Let h∗(−) be a multiplicative cohomology theory. A real vector
bundle of rank n, ξ ↓ X, is said to be h-orientable if there is an element uξ ∈ h̃n(Xξ)
such that for all x in X, the inclusion of the fiber

jx : (Dn, Sn−1)→ (Dξ, Sξ),

pulls uξ back to an h̃∗(S0)-module generator j∗xuξ ∈ h̃n(Sn) ∼= h̃0(S0).
The element uξ is called a Thom class for ξ, and when a specific choice of Thom

class for ξ has been made, we say that ξ is h-oriented.

Let g : Y → X be a continuous map. For ξ ↓ X, we get an induced bundle map
ḡ : g∗ξ → ξ. This in turn gives a map of Thom spaces Th(ḡ) : Y g

∗ξ → Xξ called the
Thomification of g. We will often denote the Thomification of g simply by g to ease
notation.

Lemma 1.1.3. Let g : Y → X be continuous and ξ ↓ X an h-oriented vector bundle
of rank n with Thom class uξ ∈ h̃n(Xξ). Then g∗ξ ↓ Y is h-oriented with Thom class
g∗uξ ∈ h̃n(Y g

∗ξ).

Proof. This follows from the commutativity of the diagram

h̃n(Xξ)

h̃n(Sn).

h̃n(Y g
∗ξ)

j∗g(y)

g∗

j∗y

�

5
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The projection map π : ξ → X for a vector bundle restricts to a map Dξ → X which we
also denote by π. This map and the cup product give h̃∗(Xξ) an h∗(X)-module structure
by the composition

hm(X)⊗ h̃n(Xξ) π
∗⊗1−→ hm(Dξ,∅)⊗ hn(Dξ, Sξ)

`−→ hm+n(Dξ, Sξ)
∼=−→ h̃m+n(Xξ).

We write x · y = π∗x ` y for this product. For h-oriented vector bundles, this module
structure gives a very important isomorphism, described in the following theorem. See
[Swi02] for a proof.

Theorem 1.1.4 (Thom Isomorphism). Let ξ ↓ X be an h-oriented vector bundle with
Thom class uξ. The h∗(X)-module homomorphism

ϕξ : h∗(X)→ h̃∗+n(Xξ)

defined by
ϕξ(x) = x · uξ

is an isomorphism. �

Remark. Let ξ ↓ X be an h-oriented vector bundle with Thom class uξ, and assume
that for each g : Y → X the vector bundle g∗ξ has Thom class g∗uξ, i.e. g∗uξ = ug∗ξ, then
the diagram

h∗(X) h̃∗+n(Xξ)

h∗(Y ) h̃∗+n(Y g
∗ξ)

ϕξ

g∗ g∗

ϕg∗ξ

commutes. Thus assuming we have such a system of Thom classes, the Thom isomorphism
is natural in ξ ↓ X. As we will see, this is always the case in the examples we will
investigate.

Let h∗(−) be a cohomology theory, and let ξ ↓ X be a rank n h-oriented vector bundle
with Thom class uξ in h̃n(Xξ). We take z to be the zero section into the Thom space
given by the composition z : X ↪→ Dξ → Xξ. The first map sends each point to the zero
vector in the corresponding fiber while the second collapses Sξ to a point.

In cohomology this induces a ring homomorphism

h̃n(Xξ) ⊆ hn(Xξ) z∗−→ hn(X),

and we define the Euler class of ξ to be

(1.1.5) e(ξ) = z∗uξ ∈ hn(X).

This class clearly depends on the h-orientation chosen for ξ.

1.2. The Pontrjagin–Thom construction and umkehrs. Let f : Mm → Nn be a
smooth map of closed manifolds of dimension m and n, and put d = m− n. Fix a smooth
embedding e : M ↪→ Rp, for p sufficiently large, and define the diagonal embedding,
ef : M → N × Rp, as the composition

M
∆−→M ×M f×e−→ N × Rp.

The normal bundle of this embedding, ν(ef ), is of rank p−m+ n = p− d.
Still letting h∗(−) be a multiplicative cohomology theory, we now can speak of orien-

tations of manifolds.



1. ORIENTATIONS OF MANIFOLDS 7

Definition 1.1.6. Mm is called h-orientable if there is some smooth embedding
e : M ↪→ Rp such that the normal bundle of this embedding, ν(e), is h-orientable. An
h-orientation of M is a specific choice of embedding and a choice of Thom class uν(e) in
h̃p−m(Mν(e)).

In the same vein, a smooth map of manifolds f : M → N is h-orientable if for
some smooth embedding e : M ↪→ Rp, the normal bundle of the diagonal embedding ef
is h-orientable. An h-orientation of f is a choice of embedding e and a Thom class for
ν(ef ).

Remark. In the following sense, Section I.D of [Dye69] tells us that the choice of
orientation of M does not depend on the embedding chosen: the normal bundles of any
two embeddings are stably equivalent, i.e. if e : M → Rp and e′ : M → Rp′ are smooth
embeddings, then there are integers q and q′ such that ν(e)⊕ q ∼= ν(e′)⊕ q′. This bundle
isomorphism gives a correspondence of Thom classes by passing to Thom spaces. Because
of this, we suppress the choice of embedding from the notation, and write νM to denote
the normal bundle of some embedding.

Similar comments hold for orientations of f : M → N , and thus we often will speak of
an h-orientation without specific mention of a diagonal embedding.

It is shown in [Dye69] that the h-orientations of

(1) νM and the tangent bundle τM
(2) f and νM ⊕ f∗τN

correspond bijectively.

Consider the disk bundle Dν(ef ) as a tubular neighborhood of ef (M) contained in
N ×Dp ⊆ N × Rp. By collapsing N × Sp−1, one can view the tubular neighborhood as a
subset

Dν(ef ) ⊆ ΣpN+.

The Pontrjagin–Thom construction is the “collapse map”

c : ΣpN+ →Mν(ef ),

defined by

c(x) =

{
x, x ∈ intDν(ef )
∗, x ∈ ΣpN+ − intDν(ef ),

where ∗ is the base point of Mν(ef ).

We now construct the homomorphism mentioned in the introduction at the beginning
of this section.

Definition 1.1.7. Let f : Mm → Nn be smooth and h-oriented, and let ef : M →
N × Rp be a choice of diagonal embedding with normal bundle ν = ν(ef ). The umkehr
homomorphism associated to f is denoted by f !, and is defined as the composition in
the diagram below.

h∗(M) h∗−d(N)

h̃∗+p−d(Mν) h̃∗+p−d(ΣpN+)

f !

ϕν∼=

c∗

σ−p∼=

Here c∗ is the map induced by the Pontrjagin–Thom construction, and d = m− n.
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It is clear that f ! depends on the choice of h-orientation for f , but the choice of
diagonal embedding is irrelevant. For properties concerning the umkehr homomorphisms,
see [Dye69].

1.3. Riemann–Roch. Let h∗(−) and k∗(−) be multiplicative cohomology theories
and let λ : h∗(−)→ k∗(−) be a multiplicative natural transformation. We first show how
this transformation makes h-oriented vector bundles k-oriented.

Lemma 1.1.8. Let ξ ↓ X be a rank d vector bundle with Thom class uξ in h̃d(Xξ).
Then λuξ is a Thom class orienting ξ in k-cohomology.

Proof. By Definition 1.1.2, we need to check that for all x in X, j∗x(λuξ) is a generator
of k̃d(Sd), where jx is the fiber inclusion

(Dn, Sn−1) ↪→ (Dξ, Sξ).

Since λ is multiplicative, it becomes a ring homomorphism on coefficient rings and
thus takes units (which are precisely the generators) of h̃0(S0) to units of k̃0(S0). The
diagram

h̃d(Xξ) h̃d(Sd) h̃0(S0)

k̃d(Xξ) k̃d(Sd) k̃0(S0)

j∗x

λ λ

∼=

λ

j∗x ∼=

commutes because λ commutes with both induced maps and the suspension isomorphism.
The result follows. �

Suppose now that ξ ↓ X has both an h- and a k-orientation given by the Thom classes
uhξ and ukξ respectively. From the Thom isomorphism theorem 1.1.4,

ϕkξ = − · ukξ : k∗(X)→ k̃∗+d(Xξ)

is an isomorphism of k∗(X)-modules, so in particular, there is a unique element ρξ in
k0(X) such that

(1.1.9) ρξ · ukξ = π∗ρξ ` u
k
ξ = λuhξ .

We see that

ρξ = (ϕkξ )−1(λuhξ ) = (ϕkξ )−1λϕhξ (1),

and this indicates that the diagram

h∗(X) h̃∗+d(Xξ)

k∗(X) k̃∗+d(Xξ)

ϕhξ

∼=

λ λ

ϕkξ

∼=

(1.1.10)
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does in general not commute. In fact, ρξ is the class repairing this defect. That is, the
diagram

h∗(X) h̃∗+d(Xξ)

k∗(X) k̃∗+d(Xξ)

k∗(X)

ϕhξ

∼=
λ

λ

ϕkξ

∼=

− ` ρξ

commutes. This is shown by the following calculation:

λϕhξ (x) = λ(π∗x ` uhξ )

= π∗(λx) ` ρξ · ukξ
= π∗(λx ` ρξ) ` ukξ
= ϕkξ (λx ` ρξ)

One therefore refers to ρξ as the correction class of ξ with respect to λ.
Just as (1.1.10) is non-commutative, the following diagram relating multiplicative nat-

ural transformations and umkehr homomorphisms does not commute.

h∗(M) h∗−d(N)

k∗(M) k∗−d(N)

f !
h

λ λ

f !
k

It turns out that ρ again does the job as a correction class. We make this precise in the
theorem below. A proof can be found in [Dye69].

Theorem 1.1.11 (Riemann–Roch). Let λ : h∗(−) → k∗(−) be a multiplicative trans-
formation of cohomology theories, and let f : M → N be an h-oriented map of smooth and
closed manifolds. Then for all α in h∗(M)

λf !
h(α) = f !

k(λα ` ρν),

where ν = ν(ef ) is the normal bundle orienting f , and ρν is the correction class for this
vector bundle. �

The correspondence between h-orientations of f and νM⊕f∗τN in the remark following
Definition 1.1.6 is actually given by a stable equivalence between this vector bundle and
ν(ef ). This allows us to restate the theorem in the following form.

Corollary 1.1.12. Let λ : h∗(−) → k∗(−) be a multiplicative transformation of co-
homology theories, and let f : M → N be map of smooth manifolds such that νM ⊕ f∗τ is
h-oriented. Then f has a corresponding orientation, and

λf !
h(α) = f !

k(λα ` ρνM⊕f∗τN ),

for all α ∈ h∗(M). �

It is clearly important to get some hold on what this correction class is. This will be
investigated in Chapter 4, where we compute specific examples of these classes.



10 1. REVIEW

2. Characteristic classes

Let BU (n) be the classifying space for complex vector bundles of rank n and let ξn ↓
BU (n) be the universal bundle. There are canonical inclusions jn : BU (n) ↪→ BU (n + 1)
classifying ξn⊕1 ↓ BU (n), for all n. From these maps, one obtains inclusions in : BU (n) ↪→
BU = colimn→∞ BU (n).

Definition 1.2.1. Let f : X → BU (n) classify a rank n complex vector bundle ξ over
X.

Any element γ ∈ h∗
(
BU (n)

)
gives a class

γ(ξ) := f∗γ ∈ h∗(X)

which is called a characteristic class for ξ.
A universal characteristic class for complex vector bundles is an element γ ∈

h∗(BU ). Such an element gives rise to a characteristic class

γ(ξ) := f∗i∗nγ ∈ h∗(X),

which is an example of a stable characteristic class, i.e. for all ξ ↓ X, γ(ξ) = γ(ξ ⊕ 1).

Remark. If f : X → BU (n) classifies ξ, then jn ◦ f : X → BU (n+ 1) classifies ξ ⊕ 1.
Hence it follows that if γ ∈ h∗(BU ) is a universal characteristic class, then

γ(ξ ⊕ 1) = f∗j∗ni
∗
n+1γ = f∗i∗nγ = γ(ξ),

so that γ is stable.
Two isomorphic complex vector bundles ξ ∼= ξ′ are classified by homotopic maps.

Therefore the induced maps coincide, and it follows that the characteristic classes of ξ and
ξ′ coincide.

The characteristic classes are natural. More precisely, let ξ ↓ X be a rank n complex
vector bundle classified by f : X → BU (n) and let g : Y → X be continuous. Then f ◦ g
classifies the pullback bundle g∗ξ ↓ Y , and hence

γ(g∗ξ) = (f ◦ g)∗i∗nγ = g∗f∗i∗nγ = g∗γ(ξ).

In other words, characteristic classes are certain cohomology classes which we associate
to vector bundles over a space X. They help us tell two vector bundles apart, since two
vector bundles with different characteristic classes necessarily must be non-isomorphic.

Recall that in singular cohomology H∗(−),

(1.2.2) H∗(CP∞) ∼= Z[ω],

where ω ∈ H̃2(CP∞) is the generator chosen such that j∗ : H̃2(CP∞) → H̃2(S2), where
j : S2 ≈ CP 1 ↪→ CP∞, sends ω to the suspension σ2(1).

This choice of ω determines very important examples of characteristic classes for com-
plex vector bundles, namely the Chern classes. They are uniquely determined by the
following theorem. A proof can be found in for instance [Swi02, Theorem 16.2] and
[Sto68, p. 63].

Theorem 1.2.3. Let ξ be a complex vector bundle over the CW-complex X. There
are unique cohomology classes ci(ξ) in H2i(X), determined by the isomorphism class of ξ
such that for all complex vector bundles

(1) c0(ξ) = 1.
(2) c1(η) = ω, where η is the canonical line bundle over CP∞.
(3) ci(ξ) = 0, for i < 0 and i > rank ξ.
(4) The ci are natural, i.e. given f : Y → X, ci(f∗ξ) = f∗ci(ξ).
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(5) Whenever ξ and ξ′ are complex vector bundles over the same base space, ck(ξ ⊕
ξ′) =

∑
i+j=k ci(ξ) ` cj(ξ

′). �

ci is called the ith Chern class of ξ. The sum

c(ξ) =
∑
i≥0

ci(ξ)

is the total Chern class. Note that this is a well-defined sum, since ci(ξ) = 0 when
i > rank ξ. Considering the total Chern class, the last characterizing property in the
theorem above takes the form

(1.2.4) c(ξ ⊕ ξ′) = c(ξ) ` c(ξ′).

We make the following convention: We speak of sums of characteristic classes as a
“characteristic class” as well. In particular, the total Chern class will be called a charac-
teristic class.

A characteristic class κ (possibly a sum) is called exponential if it satisfies κ(ξ⊕ξ′) =
κ(ξ) ` κ(ξ′) for all complex vector bundles ξ and ξ′.

Example 1.2.5. The total Chern class is such an exponential characteristic class.
Let n ↓ X be any trivial complex vector bundle. Then ci(n) = 0 for i > 0, because

n is the pullback of a rank n bundle over pt , and H∗(pt) is 0 in positive degrees. This
implies that c(n) = 1, so in particular c(ξ ⊕ 1) = c(ξ) ` c(1) = c(ξ). Therefore the total
Chern class is stable. For the same reasons, each ci is stable as well.

For a complex vector bundle ξ of rank n, denote by ctop(ξ) = cn(ξ), the top Chern
class. By the properties of the Chern classes, we see that

ctop(ξ ⊕ ξ′) = cn+m(ξ ⊕ ξ′) = cn(ξ) ` cm(ξ′) = ctop(ξ) ` ctop(ξ′),

i.e. ctop is exponential. However, ctop is not stable, since

ctop(ξ ⊕ 1) = cn(ξ) ` c1(1) = 0.

When dealing with complex vector bundles, and in particular when considering char-
acteristic classes of vector bundles, the following theorem is of great importance. Note
that we are a bit ahead of ourselves; we shall state the theorem for so-called “complex
orientable cohomology theories” which we define in Chapter 2. In particular, the theorem
holds for H∗(−). A proof can be found in for instance [LM89, Sto68].

Theorem 1.2.6 (Splitting Principle). Let E∗(−) be a complex orientable cohomology
theory. For any complex vector bundle ξ over a CW-complex X, there is a continuous map
f : Y → X such that

(1) f∗ξ is isomorphic to a sum of complex line bundles over Y ,

f∗ξ ∼= `1 ⊕ · · · `n,
where n = rank ξ,

(2) f∗ : E∗(X)→ E∗(Y ) is a monomorphism. �

To illustrate why this principle is helpful, consider a characteristic class κ of a complex
vector bundle ξ, and by the theorem, write

f∗κ(ξ) = κ(f∗ξ) = κ(`1 ⊕ · · · ⊕ `n).

Since f∗ is a monomorphism, κ(`1 ⊕ · · · ⊕ `n) uniquely determines κ(ξ). This allows us
to view any complex vector bundle as a sum of complex line bundles when working with
characteristic classes. We will frequently do so from now on.

If κ is an exponential characteristic class, then κ(ξ) = κ(`1) ` · · · ` κ(`n), so κ(ξ) is
determined by the value on the line bundles. Appealing to naturality and the universality
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of the canonical line bundle η ↓ CP∞, one sees that κ(ξ) is in fact determined by κ(η) for
all complex vector bundles ξ. Most characteristic classes we encounter will be exponential,
and so are determined by their value on η.

Example 1.2.7. As an illustration, let ξ = `1 ⊕ · · · ⊕ `n, and put xi = c1(`i). By
exponentiality of the total Chern class,

c(ξ) =
∏

c(`i) =
∏

(1 + xi),

and hence, for reasons of dimension, one sees that cj(ξ) = σj(x1, . . . , xn), the jth symmet-
ric polynomial in the xi.

Since c1(¯̀) = −c1(`) (see [MS74, Lemma 14.9]), we immediately obtain that for any
complex vector bundle ξ

(1.2.8) ci(ξ̄) = σi(−x1, . . . ,−xn) = (−1)iσi(x1, . . . , xn) = (−1)ici(ξ).

There is a classical approach to making new exponential characteristic classes from
Chern classes, namely via “multiplicative sequences”; see [Hir66, LM89]. For brevity we
will present a reverse engineered account that is sufficient for our purposes.

To this end, let ξ = `1 ⊕ · · · ⊕ `n, and xi = c1(`i). Let Q(x) ∈ Q[[x]] be a power series
with leading term 1. We shall refer to this as the characteristic power series, but in
the literature it is often also called the “Hirzebruch Q-series”. We define a characteristic
class

FQ(ξ) ∈
∏
n≥0

H2n(X; Q)

by letting it take the value FQ(`) = Q
(
c1(`)

)
on a complex line bundle, and then extending

to all vector bundles by exponentiality and naturality. Specifically, viewing ξ as a sum of
line bundles, we define FQ by

FQ(ξ) = FQ(`1 ⊕ · · · ⊕ `n) =
∏

FQ(`i) =
∏

Q(xi) ∈
∏
n≥0

H2n(X; Q).

Definition 1.2.9. The exponential characteristic class FQ is called the total FQ-
class.

These characteristic classes are stable.

Example 1.2.10. Let Q(x) = 1 + x. Clearly, FQ(ξ) = c(ξ).
Define the power series t(x) = x

1−e−x . The associated characteristic class,

td(ξ) =
∏ xi

1− e−xi
∈
∏
n≥0

H2n(X; Q),

is called the total Todd class.

Any complex vector bundle ξ has an underlying real bundle ξR. This assignment is
called realification, and if ξ is a complex vector bundle of rank n, then ξR has (real) rank
2n. This is a canonically oriented vector bundle. Conversely, if ξ is real, we get a complex
vector bundle ξ ⊗ C by tensoring each fiber with C (over R). This assignment is called
complexification. Let ξ be a complex and ζ be a real vector bundle. Then there are
natural isomorphisms ([Kar78, Sto68])

ζ ⊗ C ∼= ζ ⊗ C
(ζ ⊗ C)R ∼= ζ ⊕ ζ
ξR ⊗ C ∼= ξ ⊕ ξ̄.

(1.2.11)
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We would like to define characteristic classes for vector bundles that are not necessarily
complex, and to do so, we will need the following variant of the splitting principle.

Theorem 1.2.12 ([LM89]). Let E∗(−) be a complex orientable cohomology theory
and let ξ be a real oriented vector bundle of rank 2n over a CW-complex X. Then there is
a map f : Y → X such that

f∗(ξ ⊗ C) ∼= `1 ⊕ ¯̀
1 ⊕ · · · ⊕ `n ⊕ ¯̀

n,

where the `i are complex line bundles, and the induced map

f∗ : E∗(X)→ E∗(Y )

is a monomorphism. �

This means that we can think of the complexification of a rank 2n oriented real vector
bundle as a sum of conjugate pairs of complex vector bundles. Note that this is consistent
with the first version of the splitting principle, for if ξ is a complex vector bundle of rank
n we have from (1.2.11) that ξR⊗C ∼= ξ⊕ ξ̄, and splitting ξ into complex line bundles thus
makes ξR ⊗ C split into conjugate pairs of line bundles.

Fix an oriented, real vector bundle ζ of rank 2n, and by the splitting principle write

ζ ⊗ C = `1 ⊕ ¯̀
1 ⊕ · · · ⊕ `n ⊕ ¯̀

n.

Let Q(x) ∈ Q[[x]] be an even power series with leading term 1. On a rank 2 oriented, real
vector bundle ζ2 (with ζ2⊗C = `⊕ ¯̀) define FQ(ζ2) = Q

(
c1(`)

)
. By forcing exponentiality

and naturality as in the complex case, we obtain the total FQ-class

FQ(ζ) =
∏

Q(xi) ∈
∏
n≥0

H4n(X; Q),

where xi = c1(`i). Since c1(¯̀) = −c1(`), we are dependent on the fact that Q(x) is even
for this to be well-defined.

Example 1.2.13. For further reference, we give some important examples of charac-
teristic classes. Let ζ be as above, that is, real and oriented of rank 2n.

A(ζ) =
∏ 2xj

sinh(2xj)

Â(ζ) =
∏ xj

2 sinh(xj/2)

L(ζ) =
∏ xj

tanh(xj)

L̂(ζ) =
∏ xj

2 tanh(xj/2)

(1.2.14)

The first three classes have a central role in the literature, but the total L̂-class is somewhat
non-standard. It is given its name because it is related to the L-class in a similar way Â
is related to the A-class.

3. K-theory

In this section we briefly review some basic facts about K-theory and establish the
notation that will be used later. We will also describe a few constructions on vector bundles
that give rise to operations in K-theory. Unless stated otherwise, the vector bundles of
this section may both be real or complex.
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3.1. Generalities. Any multiplicative (unreduced) cohomology theory h∗(−) comes
equipped with an external cross product

× : hm(X)⊗ hn(Y )→ hm+n(X × Y ).

The reduced cohomology theory h̃∗(−) then has a corresponding external smash product

∧ : h̃m(X)⊗ h̃n(Y )→ h̃m+n(X ∧ Y ).

This product is characterized by the commutative diagram

h̃m(X)⊗ h̃n(Y ) h̃m+n(X ∧ Y )

h̃m+n(X × Y )

hm(X)⊗ hn(Y ) hm+n(X × Y )

∧

q∗

×

(1.3.1)

where X and Y are pointed spaces, the unnamed vertical arrows are induced by the
inclusions and q is the projection q : X ×Y → X ∧Y collapsing X ∨Y . This characterizes
the product, for if x ∈ h̃m(X) and y ∈ h̃m(Y ) then there is a unique element x ∧ y ∈
h̃m+n(X ∧ Y ) such that q∗(x ∧ y) = x× y. (Cf. [May99].)

Now recall (from [Bot69] for instance) real and complex K-theory. These are con-
travariant functors from the category of finite CW-complexes into the category of rings,
defined by

K(X) := K
(

Vect(X)
)
.

Here Vect(X) denotes the set of isomorphism classes of (either real or complex) vector
bundles over X. It is a commutative semiring under the operations of Whitney sum (⊕)
and tensor product (⊗). Applying Grothendieck’s K-construction then gives a ring. A
continuous map f : X → Y is taken to a ring homomorphism f∗ : K(Y ) → K(X) which
is induced by the pullback of vector bundles. We will not make any notational difference
between an honest vector bundle and the class it represents in K(X). By definition, the
elements of K(X), called virtual bundles, are of the form ξ − ξ′. The addition and
multiplication in K(X) is usually denoted by + and juxtaposition, but we will sometimes
take the liberty to use the symbols ⊕ and ⊗. We write KO(X) to denote real, and K(X)
to denote complex K-theory of a space X. When there is no need to differ, we will just
use K(X) to denote either.

For a pointed finite CW-complex X with basepoint x0 the reduced K-theory group
K̃(X) is (as usual) defined as the kernel of the homomorphism K(X)→ K({x0}) induced
by the inclusion {x0} ↪→ X. The geometric interpretation of these groups is that they
consist of virtual bundles ξ − ξ′ where ξ and ξ′ are of the same rank. We keep in mind
that we can always pass back to unreduced K-theory by K(X) = K̃(X+).

The complexification and realification now gives additive homomorphisms

r : K̃(X)→ K̃O(X)

c : K̃O(X)→ K̃(X)
(1.3.2)

and in fact, c is a ring homomorphism, since tensoring by C distributes over tensor products
over R. One also sees that c and r are natural in X.
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For vector bundles ξ ↓ X and ξ′ ↓ Y define the external tensor product to be the
vector bundle over X × Y given by

ξ ⊗̂ ξ′ := pr∗X ξ ⊗ pr∗Y ξ
′,

where prX and prY are the obvious projections. This is the external cross product in this
cohomology theory;

⊗̂ : K (X)⊗K (Y )→ K (X × Y ).
In light of the discussions above, we get a corresponding external smash product.

So far we have treated real and complex K-theory simultaneously, but when describing
their periodic properties, we are forced to consider them separately. See [Bot69] for a proof
of the following theorem.

Theorem 1.3.3 (Periodicity theorem). Let X be a pointed finite CW-complex. In
complex K-theory, the homomorphism

K̃(X)⊗ K̃ (S2)→ K̃ (X ∧ S2)

defined by x⊗ y 7→ x ∧ y is an isomorphisms of rings. Analogously,

K̃O(X)⊗ K̃O(S8)→ K̃O(X ∧ S8)

is an isomorphism of rings in real K-theory.
Both K̃ (S2) and K̃O(S8) are infinite cyclic, and fixing generators u and v8 gives group

isomorphisms for all finite pointed CW-complexes,

β : K̃ (X)→ K̃ (X ∧ S2)

by x 7→ x ∧ u and
βR : K̃O(X)→ K̃O(X ∧ S8)

by x 7→ x ∧ v8. �

The isomorphisms β and βR are called the Bott isomorphisms, and the elements u
and v8 are called Bott elements. For complex K-theory we make a specific choice for u:
Let η1 ↓ CP 1 be the restriction of η ↓ CP∞ and put u = 1 − η1 ∈ K̃(S2). It is shown in
[Bot69] that this really is a generator.

The K-theories are concentrated in degree 0. One extends to non-positive degrees by
putting K̃−n(X) := K̃(ΣnX) for n ≥ 0, and

K̃](X) :=
⊕
n≥0

K̃−n(X).

The external smash product gives an external product on K̃](X) by

(1.3.4) K̃−m(X)⊗ K̃−n(Y ) ∧−→ K̃(X ∧ Sm ∧ Y ∧ Sn) ∼= K̃−n−m(X ∧ Y ),

which in turn makes K̃](X) into a graded ring.
Restricting to complex K-theory (the real case is similar), the Bott isomorphism allows

the extension to positive degrees, by inductively putting K̃n(X) = K̃n−2(X) as groups.
Then

K̃∗(X) :=
⊕
n∈Z

K̃n(X)

can be made into a cohomology theory and we will refer to this cohomology theory as
(Z-graded) K-theory. The composition in (1.3.4) gives K̃∗(X) both a ring structure and
a K̃∗(S0)-module structure. We denote both products by juxtaposition. The coefficient
ring is

K̃∗(S0) = Z[u, u−1],
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and by virtue of the Bott isomorphism, we can (and shall often) write any element of
K̃−2n−ν(X), where ν = 0, 1, on the form unx where x ∈ K̃−ν(X). One should think of
multiplication by u (or u−1) as a shift of degree.

Similarly, we have the (Z-graded) real K-theory. In this case the coefficient ring is
([ABS64])

K̃O∗(S0) = Z[v1, v4, v8, v
−1
8 ]/(2v1, v

3
1 , v1v4, v

2
4 − 4v8),

where vi ∈ KO−i(S0) are some particular choices of elements. In particular, v4 ∈ KO(S4)
complexifies to 2u2, as shown in [ABS64].

Proposition 1.3.5. The complexification c : K̃O(X)→ K̃(X) extends to a multiplica-
tive natural transformation

c : K̃O∗(−)→ K̃∗(−)
of cohomology theories.

Proof. We have already seen that c is natural and multiplicative with respect to the
tensor product. It follows that it also preserves the external smash product, since

c(x ∧ y) = c
(
q∗(pr∗1 x⊗ pr∗2 y)

)
= q∗

(
pr∗1 c(x)⊗ pr∗2 c(y)

)
= c(x) ∧ c(y).

It only remains to show that c commutes with the Bott isomorphisms, that is

K̃O(X) K̃(X)

K̃O(X ∧ S8) K̃(X ∧ S8)

c

c

− ∧ v8 − ∧ u4

commutes. This follows from

c(v8) = c

(
1
4
v2

4

)
= c

(
1
2
v4

)2

= u4,

using that c(v4) = 2u2. �

From these cohomology theories we produce two more by localizing away from 2.
Define

K̃ [ 1
2 ]∗(−) := K̃∗(−)⊗Z Z[ 1

2 ]
and

K̃O [ 1
2 ]∗(−) := K̃O∗(−)⊗Z Z[ 1

2 ].
These are indeed cohomology theories, since localizations are flat. Clearly,

K̃ [ 1
2 ]∗(S0) = Z[ 1

2 ][u, u−1],

and inverting 2 in the real case kills v1, and one has v8 = 1
4v

2
4 . Put

u2 :=
1
2
v4 ∈ K̃O [ 1

2 ]−4(S0).

Then the coefficient ring is generated by u2 and is periodic with period 4:

(1.3.6) K̃O [ 1
2 ]∗(S0) = Z[ 1

2 ][u2, u−2].

The reason for choosing to call this generator u2 is apparent when we note that the
complexification

(1.3.7) c : K̃O [ 1
2 ]∗(−)→ K̃ [ 1

2 ]∗(−)

then sends u2 to u2.
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3.2. Operations. In this section we describe some constructions on vector bundles.
As a rule of thumb, it will be sufficient to do the construction on vector spaces and extend
fiberwise. The following discussion holds in both the complex and real case unless otherwise
noted.

Let V be a finite dimensional vector space over some field k. For n ≥ 0, denote by
TnV = V ⊗ · · · ⊗ V the n-fold tensor product over k. Note that T 0V = k. Let In ⊆ TnV
be the subspace

〈v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n) | vi ∈ V, σ ∈ Σn〉,
where Σn is the symmetric group on n letters. Define the nth symmetric power of V
to be

SnV = TnV/In.

Similarly, we define the nth exterior power of V to be

ΛnV = TnV/Jn,

where Jn is the subspace

〈v1 ⊗ · · · ⊗ vn − sign(σ)vσ(1) ⊗ · · · ⊗ vσ(n) | vi ∈ V, σ ∈ Σn〉.

We note that dimSnV =
(

dimV+n−1
n

)
and dim ΛnV =

(
dimV
n

)
.

Both the symmetric and exterior power has a multiplicative property.

Proposition 1.3.8. Let V and W be vector spaces. There are natural isomorphisms

(1.3.9) Sn(V ⊕W ) ∼=
⊕
i+j=n

SiV ⊗ SjW

and

(1.3.10) Λn(V ⊕W ) ∼=
⊕
i+j=n

ΛiV ⊗ ΛjW.

Proof. See Propositions XVI.8.2 and XIX.1.2 of [Lan02]. �

These constructions, as well as the proposition, carry over to vector bundles. In
particular, for any vector bundle ξ

(1.3.11) T 0ξ = S0ξ = Λ0ξ = 1,

and

(1.3.12) T 1ξ = S1ξ = Λ1ξ = ξ.

We now extend these operations to K-theory. Form power series in the indeterminate
t,

stξ =
∑
n≥0

Sn(ξ)tn, λtξ =
∑
n≥0

Λn(ξ)tn,

which, by (1.3.11), are both elements of 1 + tK(X)[[t]], the abelian group of power series
with leading term 1 under multiplication. By Proposition 1.3.8 the maps

st, λt : Vect(X)→ 1 + tK(X)[[t]]

are monoid homomorphisms into an abelian group, and thus, by the universal property of
the K-construction, factors uniquely through K(X) to give group homomorphisms

st, λt : K(X)→ 1 + tK(X)[[t]].

For any element x ∈ K(X) one then defines snx to be the coefficient of tn in stx, and
similarly for λnx.
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By tracing through the definitions, one can see that st and λt are both natural, i.e.
for x ∈ K(X) and f : Y → X continuous, f∗stx = st(f∗x) and f∗λtx = λt(f∗x).

Lemma 1.3.13. Let x, y ∈ K(X). Then st(x + y) = st(x)st(y) and λt(x + y) =
λt(x)λt(y).

Proof. We consider only the “symmetric” case. By writing both x and y as differ-
ences of vector bundles one sees that it sufficient to show this for sums of vector bundles,
since st is a group homomorphism (and therefore st(−ξ) = st(ξ)−1). Now

st(ξ + ξ′) =
∑
n≥0

sn(ξ + ξ′)tn

and

st(ξ)st(ξ′) =
(∑
m≥0

sm(ξ)tm
)(∑

n≥0

sn(ξ′)tn
)

=
∑
k≥0

( ∑
m+n=k

sm(ξ)sn(ξ′)
)
tk,

which are equal by Proposition 1.3.8. �

The operations λt and st are closely connected, as the following results indicate.

Lemma 1.3.14. Let ` be a line bundle. Then st(`) = λ−t(`)−1 = λ−t(−`).

Proof. Since ` is 1-dimensional, λn` = 0 for all n > 1, and thus λt` = 1 + `t. We
remark that sn` = `n, the n-fold tensor product. It follows that

st(`) =
∑
n≥0

`ntn =
1

1− `t
= λ−t(`)−1. �

Corollary 1.3.15. Any element of complex K-theory, x ∈ K(X), satisfies st(x) =
λ−t(x)−1 = λ−t(−x).

Proof. Write x = ξ − ξ′. Choose a map f : Y → X such that both f∗ξ and f∗ξ′

splits as complex line bundles. The result follows from the two lemmas and naturality. �

The following theorem determines some important operations in complex K-theory.
See [Kar78, Theorem IV.7.13] for a proof.

Theorem 1.3.16 (Adams operations). For all integers k, there are uniquely deter-
mined natural maps

ψk : K (X)→ K (X)

which are ring homomorphisms and additionally satisfy

ψk(`) = `k,

when ` is the class of a complex line bundle over X. �

ψk is called the kth Adams operation. Naturality of these operations give rise to
natural ring homomorphisms

ψk : K̃ (X)→ K̃ (X).

The Adams operations respect the external products, as is readily shown by using natu-
rality and multiplicativty with respect to the tensor product.

The following proposition is a standard fact, but we include the proof because of its
importance in the following discussion.

Proposition 1.3.17. ψk : K̃ (S2n)→ K̃ (S2n) is multiplication by kn.
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Proof. We prove this using induction. Let x ∈ K̃ (S2) ∼= Z. Then x = mu, for some
integer m, and

ψk(x) = mψk(1− η1) = m(1− ηk1 ) = m
(
1− (1− u)k

)
= m(ku) = kx.

Here we used that the internal product in reduced K-theory on a suspension is trivial.
Assume that ψk(x) = kn−1x for x ∈ K̃ (S2(n−1)). The external product

∧ : K̃ (S2(n−1))⊗ K̃ (S2)→ K̃ (S2n)

is an isomorphism, and since the Adams operations respect it, we obtain

ψk(x) = ψk(mun−1 ∧ u) = ψk(mun−1) ∧ ψk(u) = kn−1(mun−1) ∧ ku = knx. �

Corollary 1.3.18. For any x ∈ K̃ (X), the kth Adams operation

ψk : K̃ (Σ2nX)→ K̃ (Σ2nX)

satisfies ψk(xun) = knψk(x)un. �

Returning to the relation of real and complexK-theory, (1.2.11) shows that r : K(X)→
KO(X) and c : KO(X)→ K(X) satisfy r ◦ c(x) = 2x and c ◦ r(x) = x+ x̄.

Let K (X)0 = {x ∈ K (X) | x̄ = x} be the subgroup of K(X) consisting of the elements
that are left invariant under the Z2-action of complex conjugation, and let K (X)1 = {x ∈
K (X) | x̄ = −x}. The following result describes the image of the complexification away
from 2.

Proposition 1.3.19. c : KO(X)→ K (X) induces a group isomorphism

KO(X)⊗ Z[ 1
2 ]→ K (X)0 ⊗ Z[ 1

2 ].

Proof. If ξ is a real vector bundle, then ξ⊗C ∼= ξ ⊗ C, so an element x of KO(X) is
mapped to c(x) ∈ K (X)0. As before r ◦ c(x) = 2x, and taking an element y ∈ K (X)0 we
see that c ◦ r(y) = y + ȳ = 2y. Since we localize away from 2, c (and r) induces additive
isomorphisms. �

Using `⊗ ¯̀∼= 1 for complex line bundles ` and Theorem 1.3.16 we see that

ψ−1(`) = `−1 = ¯̀

in K(X). Thus, by Theorem 1.2.6, for any x ∈ K̃ (X) we have ψ−1(x) = x̄. It follows from
Proposition 1.3.19 that the image of the complexification

c : KO [ 1
2 ](X)→ K [ 1

2 ](X)

is precisely those elements invariant under the action of ψ−1

From the above corollary, one sees that ψ−1(xun) = (−1)nx̄un on K̃ (Σ2nX), and we
obtain the following more general result.

Proposition 1.3.20. The image of

c : K̃O [ 1
2 ]∗(X)→ K̃ [ 1

2 ]∗(X)

is the elements invariant under ψ−1 on K̃ ∗(X), or equivalently those elements fixed under
the Z2-action of x 7→ x̄, u 7→ −u.
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Proof. It is clear that invariance under the Z2-action and ψ−1 is equivalent.
We describe the image in one degree at a time, say −2n. From Proposition 1.3.19

im c = K̃ (Σ2nX)0 ⊗ Z[ 1
2 ].

By [Kar78, Proposition III.2.10], the Bott isomorphism induces isomorphisms

βi : K̃ (X)i → K̃ (Σ2X)i+1

for i ∈ Z2, so multiplication with un induces the isomorphism

K̃ (X)ν
∼=−→ K̃ (Σ2nX)0,

where ν is the mod 2 reduction of n. From this the following equivalences follow,

unx ∈ im c ⇐⇒ x ∈ K̃ (X)ν ⊗ Z[ 1
2 ] ⇐⇒ x̄ = (−1)nx,

and hence unx lies in the image of c if and only if unx = (−u)nx̄. Said differently; if and
only if the element is invariant under the Z2-action described. The result then follows for
each even degree, and the odd degrees can be treated similarly. �

4. Spectra and their relation to cohomology theories

In this section we will give a brief introduction to spectra. Rather than getting into
the fine-grained details, we shall agree on notation and list formal properties that will be
relevant later. Most results are collected from [Ada95, Rud98, Swi02].

Definition 1.4.1. A spectrum E is a sequence {En, sn : ΣEn → En+1}n∈Z of pointed
CW-complexes along with pointed maps sn embedding ΣEn as a subcomplex of En+1.
The maps sn are called the structure maps. A spectrum is called an Ω-spectrum if the
adjoint maps σn : En → ΩEn+1 of sn are homotopy equivalences for all n.

A spectrum F is a subspectrum of E if Fn is a pointed subcomplex of En and the
structure maps are the restrictions of those in E for all n.

For a spectrum E, let the kth suspension of E to be spectrum denoted by ΣkE and
defined by (ΣkE)n = En+k where the structure map Σ(ΣkE)n → (ΣkE)n+1 is sn+k.

The suspension spectrum of a pointed CW-complex X is written Σ∞X and defined
by (Σ∞X)n = ΣnX for n ≥ 0. For n < 0 we take (Σ∞X)n = pt . The structure maps
are identities for n ≥ 0 and just the inclusion of the base point otherwise. The suspension
spectrum will often just be denoted by X, when there is low risk of confusion. In particular,
let the sphere spectrum S0 be defined as the suspension spectrum Σ∞S0. Note also
that we shall use the notation Sn to denote ΣnS0.

A spectrum E is called finite if it is of the form

E = ΣkΣ∞X,

for some finite CW-complex X and an integer k.

The spectra constitute the objects of a category, so we should look for morphisms. For
this we refer the reader to [Ada95, Rud98, Swi02], but we note that the naive definition,
i.e. demanding that a morphism E → F should be a sequence of pointed, cellular maps
{fn : En → Fn} such that fn+1 ◦ sn = tn ◦Σfn for all n greater than some n0, is not good
enough. A morphism should be a particular equivalence class of such sequences.

We can take the smash product between a spectrum E and a pointed CW-complex
X, by defining (E ∧X)n = En ∧X and letting the structure maps be the obvious ones. In
particular this allows us to form E ∧ I+, where I+ is the unit interval with a disjoint base
point, which in turn will lead to the notion of homotopy. In effect, one gets the notion of
homotopy classes of morphisms, and the set of these from E to F will be denoted [E,F ].
We say that E and F are equivalent, and write E ' F , if there are morphisms E → F
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and F → E such that both compositions are homotopic to the identities. It can be shown
that E ∧ S1 ' ΣE; the spectrum obtained from spacewise suspension is equivalent to the
suspended spectrum.

Example 1.4.2. Let En be the nth space of a spectrum E. We have a canonical
morphism of spectra Σ∞En → ΣnE represented by the sequence of maps fk : (Σ∞En)k →
(ΣnE)k, where

fk =


idEn , k = 0
sn+k−1 ◦ · · · ◦ sn, k > 0
∗, k < 0.

This morphism is usually denoted by just En → ΣnE.

Define the wedge of two spectra E ∨ F by putting (E ∨ F )n = En ∨ Fn and letting
the structure maps be sn = sEn ∨ sFn . One could hope that a similar definition would work
for smash products as well, but it turns out that defining a good smash product in this
category is nontrivial to say the least. Several constructions exist, and we recollect the
formal properties in the following theorem. (See [Rud98, II.2]).

Theorem 1.4.3. There is an assignment sending spectra E and F to a spectrum E∧F
such that it is an equivalence-preserving covariant functor in each argument. Moreover,
for any spectra E, F , G and pointed CW-complexes X, there are natural equivalences

a : (E ∧ F ) ∧G→ E ∧ (F ∧G)
τ : E ∧ F → F ∧ E
Σ: ΣE ∧ F → Σ(E ∧ F )

s : E ∧X → E ∧ Σ∞X

and natural equivalences S0 ∧ E ' E ' E ∧ S0. �

We are interested in spectra with additional structure.

Definition 1.4.4. A ring spectrum E is a spectrum equipped with a unit ι : S0 → E
and a multiplication µ : E ∧ E → E, such that the following diagrams commute up to
homotopy.

(E ∧ E) ∧ E E ∧ E

E ∧ (E ∧ E) E ∧ E E

S0 ∧ E E ∧ E E ∧ S0

E

µ ∧ 1

a µ

1 ∧ µ µ

ι ∧ 1

'
µ

1 ∧ ι

'

A ring spectrum E is called commutative if the diagram

E ∧ E E ∧ E

E

τ

µ µ

is homotopy commutative.
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A ring morphism ϕ : E → F of ring spectra is a morphism such that

E ∧ E F ∧ F

E F

S0

E F

ϕ ∧ ϕ

µE µF

ϕ

ιE ιF

ϕ

commute up to homotopy.
Let E be a ring spectrum. F is called an E-module spectrum if it comes equipped

with a morphism m : E ∧ F → F such that the diagrams

S0 ∧ F E ∧ F

F

(E ∧ E) ∧ F E ∧ F

E ∧ (E ∧ F ) E ∧ F F

ι ∧ 1

'
m

µ ∧ 1

a m

1 ∧m m

commute up to homotopy. g : F → F ′ is an E-module morphism if the following diagram
commutes up to homotopy,

E ∧ F E ∧ F ′

F F ′

1 ∧ g

m m′

g

where m and m′ give F and F ′ their respective E-module structures.
Let E be a commutative ring spectrum. F is an E-algebra spectrum if it is a ring

spectrum and a module spectrum over E.

To simplify diagrams, we will from now on omit mention of a : (E ∧ F ) ∧ G '−→
E ∧ (F ∧G) and write just E ∧ F ∧G for both of these spectra.

Example 1.4.5. The sphere spectrum S0 is a ring spectrum. The multiplication is
given by the homotopy equivalence S0 ∧ S0 '−→ S0 and the unit S0 → S0 is just the
identity.

For any ring spectrum E, the unit ι : S0 → E is a ring morphism. Furthermore, if
ϕ : E → F and ϕ′ : E′ → F ′ are ring morphisms, then ϕ ∧ ϕ′ : E ∧E′ → F ∧ F ′ is as well.
In particular, assuming that E and F are ring spectra, the compositions

E ' E ∧ S0 1∧ιF−→ E ∧ F
and

F ' S0 ∧ F ιE∧1−→ E ∧ F
are ring morphisms.

For any pair E,F of spectra, the composition

[E,F ]× [E,F ] ∼= [E ∧ S2,Σ2F ]× [E ∧ S2,Σ2F ] ∼= [E ∧ (S2 ∨ S2),Σ2F ]

→ [E ∧ S2,Σ2F ] ∼= [E,F ],

induced by the pinch map S2 → S2 ∨ S2, gives [E,F ] the structure of an abelian group.
In particular, the abelian group πnE := [Sn, E] is called the nth homotopy group of E.
Analogous to the case with spaces, there is the concept of (co)homology theories on the
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category of spectra. We do not repeat the definition here, and refer the reader to [Rud98,
Definition III.3.10]. Every spectrum gives rise to both a homology and a cohomology
theory:

Theorem 1.4.6. For any spectrum E, the covariant functor from the category of
spectra to the category of abelian groups defined by

En(X) := πn(E ∧X),

for all n, gives rise to a homology theory denoted by E∗(−). Similarly, the contravariant
functors

En(X) := [X,ΣnE]
define a cohomology theory E∗(−). �

Example 1.4.7. If E is a ring spectrum and X is any spectrum, the morphism X '
S0∧X ι∧1−→ E∧X induces a homomorphism π∗(X)→ E∗(X) which is called the Hurewicz
homomorphism.

If X is merely a pointed CW-complex, we define

Ẽ∗(X) := E∗(Σ∞X),

and Ẽ∗(−) becomes a reduced cohomology theory for pointed CW-complexes. We simi-
larly define Ẽ∗(−) for pointed CW-complexes, and this becomes a homology theory. (See
[Rud98, Construction 3.13].)

Demanding that E is a ring spectrum, the associated homology and cohomology the-
ories get external products. Specifically, let X and Y be spectra and let f ∈ Ep(X),
g ∈ Eq(Y ). The external product f ∧ g ∈ Ep+q(X ∧ Y ) is defined as the element induced
by the composition

Sp ∧ Sq f∧g−→ E ∧X ∧ E ∧ Y ' E ∧ E ∧X ∧ Y µ∧1∧1−→ E ∧X ∧ Y.
The product in cohomology is given in a similar way: For f ∈ Ep(X) and g ∈ Eq(Y ), the
product f ∧ g ∈ Ep+q(X ∧ Y ) is induced by

Σ−pX ∧ Σ−qY
f∧g−→ E ∧ E µ−→ E.

It is immediate that the coefficient groups are related by (interpreting S0 as a CW-
complex)

Ẽ∗(S0) = π∗E = Ẽ−∗(S0),
and that π∗E becomes a ring under these products, as is seen by setting X = Y = S0. It
is unital, and ι : S0 → E represents 1 in the ring. If the ring spectrum is commutative,
then π∗E is as well. We will use the notation E∗ as a synonym for π∗E, while E−∗ is π∗E
with the grading reversed.

Any morphism of spectra ϕ : E → F induces natural transformations of both homology
and cohomology theories; specifically by

Ep(X) = [Sp, E ∧X]
(ϕ∧1)∗−→ [Sp, F ∧X] = Fp(X)

and
Ep(X) = [Σ−pX,E]

ϕ∗−→ [Σ−pX,F ] = F p(X).
Moreover, if ϕ is a ring morphism, then it preserves external products.

The Kronecker pairing in E-theory is the homomorphism

(1.4.8) 〈−,−〉 : Ep(X)⊗ Eq(X)→ πq−pE

defined by letting 〈g, f〉 be the element induced by the composition

S−p ∧ Sq 1∧f−→ S−p ∧ E ∧X ' S−p ∧X ∧ E g∧1−→ E ∧ E µ−→ E.
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Lemma 1.4.9. Let ϕ : E → F be a ring morphism. Then the Kronecker pairing com-
mutes with ϕ, that is, ϕ〈g, f〉 = 〈ϕg, ϕf〉.

Proof. By definition ϕ〈g, f〉 is the upper and 〈ϕg, ϕf〉 the lower row in the following
diagram.

S−p ∧ Sq S−p ∧ E ∧X S−p ∧X ∧ E E ∧ E E F

S−p ∧ Sq S−p ∧ F ∧X S−p ∧X ∧ F F ∧ F F

1 ∧ f ' g ∧ 1 µE ϕ

(ϕ ∧ 1)∗f ' ϕ∗g ∧ 1 µF

= 1 ∧ ϕ ∧ 1 1 ∧ 1 ∧ ϕ ϕ ∧ ϕ =

All squares commute up to homotopy; the rightmost because ϕ is a ring morphism. �

We now introduce some examples that will be important later.

Example 1.4.10. For all abelian groups A and all n ≥ 1, there are CW-complexes
K(A,n) called Eilenberg–Mac Lane spaces, which satisfy

πm
(
K(A,n)

)
=

{
A, m = n

0, m 6= n.

(Here πm denotes ordinary homotopy of a space.) There are homotopy equivalences
K(A,n)→ ΩK(A,n+ 1), so these spaces make up an Ω-spectrum with nth space K(A,n)
which we denote by HA. This is the Eilenberg–Mac Lane spectrum. When R is a
ring, HR can be given the structure of a ring spectrum. (See [Ada95, Part 3].)

We note that for pointed CW-complexesX, we have natural isomorphisms H̃∗(X;R) ∼=
HR∗(Σ∞X), so the spectrum HR induces singular cohomology with coefficients in R.

Example 1.4.11. There is a homotopy equivalence Ω2(BU ×Z) ' BU ×Z ([Swi02]).
This allows us to define an Ω-spectrum by letting E2n = BU×Z and E2n+1 = ΩBU , where
the structure maps are given by the adjoints of the homotopy equivalences. This is a ring
spectrum, and for finite pointed CW-complexes it is known that K̃∗(X) ∼= E∗(Σ∞X),
so the cohomology theory obtained from E coincides with complex K-theory. Therefore
we rename E and call it K. This spectrum extends K-theory to both the category of
CW-complexes and spectra, and thus when speaking of K-theory from now on, we will
speak of this extended theory obtained from the spectrum K. We are therefore no longer
restricted to the category of finite CW-complexes.

Similarly, there is a spectrum denoted KO which has period 8 extending real K-theory.
The zeroth space of this spectrum is BO × Z.

4.1. Representability. We just saw that we can construct a homology and a coho-
mology theory from a spectrum. In addition, the examples of the previous section show
that some familiar theories can actually be defined from spectra. It turns out that this
is true in general: To a (co)homology theory, there is a spectrum which gives rise to the
same (co)homology theory. The theorems are recalled below, and are often called the
Brown–Adams representability theorems.

We start by considering cohomology theories defined on different categories, namely
those having as objects pointed CW-complexes (C ), finite pointed CW-complexes (Cf ),
spectra (S ) and finite spectra (Sf ). For C and Cf , we demand that the cohomology
theory is reduced. We use D to denote any of these four categories.

A cohomology theory h∗(−) on D is additive if for any collection {Xα} of objects
from D the homomorphism induced by the inclusions

h∗(
∨
Xα)→

∏
h∗(Xα)
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is an isomorphism, provided that ∨Xα is again an object of D . A cohomology theory h∗(−)
on D is represented by the spectrum E if there is a natural isomorphism h∗(−) ∼= E∗(−)
of cohomology theories on D .

Theorem 1.4.12. Let h∗(−) be an additive cohomology theory on D . There is a
spectrum E representing the cohomology theory, i.e. h∗(−) ∼= E∗(−), and this spectrum is
unique up to equivalence.

Proof. See e.g. [Rud98, III.3] �

Theorem 1.4.13. Let E∗(−) and F ∗(−) be cohomology theories on D represented by
the spectra E and F respectively. Then any natural transformation E∗(−)→ F ∗(−) can be
induced by a morphism of spectra E → F . For cohomology theories on S this morphism
is unique up to homotopy. On Sf this morphism is unique up to weak homotopy, i.e. if g
and g′ are two morphisms inducing this natural transformation, then for all finite spectra
X and all morphisms f : X → E the compositions g ◦ f and g′ ◦ f are homotopic.

Proof. Again, see [Rud98, III.3]. �

So in the case of cohomology theories on finite spectra, the representability theorem
only provides a morphism that is “nearly” unique up to homotopy. The obstruction to
guarantee uniqueness up to homotopy is the following class of morphisms.

Definition 1.4.14. A morphism of spectra ϕ : E → F is a phantom if for all finite
spectra X, any composition X → E

ϕ−→ F is nullhomotopic. Write Phn(X,Y ) for the set
of homotopy classes of phantoms X → ΣnY .

In terms of homotopy classes in [E,F ], two weakly homotopic morphisms g, g′ satisfy
h∗[g − g′] = 0 for all h : X → E where X is finite. Under the assumption that there are
no phantoms except the null-homotopic morphisms, we may conclude that [g− g] = 0 and
hence g ' g′. Therefore the non-existence of (non-trivial) phantoms, that is Ph0(X,Y ) =
0, will imply that weakly homotopic morphisms are homotopic.

A duality between the spectra X and Y is a morphism e : S0 → X ∧ Y such that for
any spectrum W , the homomorphisms [X,W ] → [S0,W ∧ Y ] and [Y,W ] → [S0, X ∧W ]
defined by f 7→ (f ∧ 1) ◦ e and g 7→ (1∧ g) ◦ e are isomorphisms. X and Y are called dual
if such a duality exists.

Theorem 1.4.15. Let X be a finite spectrum. There is up to homotopy a unique finite
spectrum DX which is dual to X. Furthermore we have

(1) DDX ' X
(2) If both X and Y are finite spectra, then there is an equivalence

h : D(X ∧ Y ) '−→ DX ∧DY,

and this equivalence makes the diagram, where the e’s are the indicated dualities,

S0 ' S0 ∧ S0 X ∧DX ∧ Y ∧DY

X ∧ Y ∧D(X ∧ Y ) X ∧ Y ∧DX ∧DY

eX ∧ eY

eX∧Y 1 ∧ τ ∧ 1

1 ∧ 1 ∧ h

homotopy commutative.

Proof. See [Rud98, II.2] and [Ada95, (II.5.6)]. �
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We call DX the Spanier–Whitehead dual of X.
Let E be any spectrum. The Spanier–Whitehead dual gives a way to pass from E-

homology to E-cohomology and vice versa. Using only properties of suspensions and
smash products along with properties of the Spanier–Whitehead dual, we see that for a
finite spectrum X

En(DX) = [Sn, E ∧DX] ∼= [S0,Σ−n(E ∧DX)] ∼= [S0,Σ−nE ∧DX]
∼= [X,Σ−nE] = E−n(X).

We say that a homology theory on D is additive if for any collection {Xα} of objects
from D such that ∨Xα is an object of D , the inclusions induce an isomorphism⊕

h∗(Xα)→ h∗(
∨
Xα).

Moreover, if h∗(−) is an additive homology theory on Sf , then h∗(X) := h−∗(DX) defines
an additive cohomology theory on Sf . There are some technical points to made here; see
[Rud98, Proposition II.2.10]. The point is that this cohomology theory is represented by
a spectrum, and that this spectrum extends the homology and cohomology theories to S .

We remark that Spanier–Whitehead duality behaves nicely with respect to the ex-
ternal products. To see this, assume that α : E∗(−) → F∗(−) is a multiplicative natural
transformation of represented homology theories. By Spanier–Whitehead duality, one ob-
tains a natural transformation of cohomology theories on the category of finite spectra as
the composition

β : E∗(X) ∼= E−∗(DX) α−→ F−∗(DX) ∼= F ∗(X).
From the diagram in Theorem 1.4.15 one readily sees that β is multiplicative as well, since
the diagram

E∗(X)⊗ E∗(Y ) E∗(X ∧ Y )

E−∗
(
D(X ∧ Y )

)
E−∗(DX)⊗ E−∗(DY ) E−∗(DX ∧DY )

∧

∼=

∼=

∼=h∗

∧

commutes. This implies that Spanier–Whitehead duality is compatible with the exter-
nal products, and that β : E∗(−) → F ∗(−) is a multiplicative natural transformation of
cohomology theories on finite spectra.

We conclude this section with the following remark. In light of the preceding com-
ments, we will from now on treat the homology theory h∗(−), the cohomology theory
h∗(−) and the representing spectrum as one. The convention will be to name the spectra
according to the names of the (co)homology theories. In particular, the spectra repre-
senting the cohomology theories K [ 1

2 ]∗(−) and KO [ 1
2 ]∗(−) will be named K [ 1

2 ] and KO [ 1
2 ]

respectively.

5. Bordism theories

We start this section by describing the representing spectra of some very important
(co)homology theories.

Example 1.5.1. Consider the classifying spaces BU (n). For each n there is a universal
vector bundle ξn ↓ BU (n), such that for any complex rank n vector bundle ξ ↓ X, there is
a map g : X → BU (n) which is unique up to homotopy and classifies ξ, i.e. g∗ξn ∼= ξ. We
write MU (n) := BU (n)ξn for the associated Thom space.
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In particular, the universality gives maps cm,n : BU (m)×BU (n)→ BU (m+n), unique
up to homotopy, such that c∗m,nξm+n

∼= ξm×ξn. Thomifying and using the homeomorphism
(1.1.1) gives maps

(1.5.2) λm,n : MU (m) ∧MU (n)→ MU (m+ n).

The inclusion pt ↪→ BU (1) classifies the trivial complex line bundle 1 ↓ pt . We get a
map

j : S2 ≈ pt1 → BU (1)ξ1 = MU (1),

and we form the composition

(1.5.3) Σ2MU (n) = MU (n) ∧ S2 1∧j−→ MU (n) ∧MU (1)
λn,1−→ MU (n+ 1).

We now define the spectrum MU . Let MU 2n = MU (n) and MU 2n+1 = ΣMU (n).
The structure maps s2n are the identities and the s2n+1 are as in (1.5.3). This becomes
a commutative ring spectrum, and it is the maps (1.5.2) that glue together to form the
multiplication µ : MU ∧MU → MU . The resulting (co)homology theory is called complex
(co)bordism.

The same constructions carries over to give ring spectra MO and MSO from the
classifying spaces BO(n) and BSO(m). Here the universal bundles are real, so every
structure map is of the form (1.5.3), but with a single instead of a double suspension.
Respectively, these spectra represent unoriented and oriented (co)bordism. Spectra
obtained this way are called Thom spectra. See [Rud98, Swi02] for several more
examples.

We take some time to mention that there is a canonical morphism of spectra MU →
MSO . We will outline how to obtain it, as it will be used later. The underlying real vector
bundle of the universal bundle ξUn ↓ BU (n) is canonically oriented and of real rank 2n.
Thus it is classified by a map fn : BU (n) → BSO(2n), and this map can be taken to be
the map of Grassmanns induced by taking a complex n-plane in C∞ to the underlying
oriented 2n-plane of R∞. (I.e. this map forgets the complex structure.) One can check
that the diagram

BU (n)× pt BU (n)× BU (1) BU (n+ 1)

BSO(2n)× pt BSO(2n)× BSO(2) BSO(2n+ 2)

fn × 1 fn × f1 fn+1

commutes up to homotopy, where the horizontal maps on the right classify the Cartesian
product of the universal bundles, and the ones on the left classify ξUn × 1C and ξSO

2n × 2R.
Applying Th(−) to the fn, we get vertical maps gn : MU (n) → MSO(2n) which by this
diagram commute with the structure maps. This collection of maps gives the desired
morphism of spectra ψ : MU → MSO .

Things are even better. One can show that this morphism is really a ring morphism.
The clue to realizing this is to consider the homotopy commutative diagram

BU (m)× BU (n) BU (m+ n)

BSO(2m)× BSO(2n) BSO(2m+ 2n)

fm × fn fm+n

where the horizontal maps classifies the products of universal bundles. Again, after Thomi-
fication one sees that the maps gn : MU (n)→ MSO(2n) are compatible with the λm,n for
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both MU and MSO . The resulting ring morphism ψ : MU → MSO induces a multiplica-
tive natural transformation in homology and cohomology, which we will call the forgetful
natural transformation.

Analogously, one can obtain “forgetful” ring morphisms MU → MO and MSO → MO .

Historically, the theories in this example arose geometrically in connection with smooth
manifolds. We will discuss this geometric construction briefly, in the case of complex
bordism. This construction carry over to give a lot of interesting variants of bordism (see
[Sto68, Swi02]). In particular one can obtain unoriented and oriented bordism this way,
but we note that in these two cases, one can do the construction more directly. This is
done in [Con79, Swi02].

Any real vector bundle ζ ↓ X of rank k is classified by a map ζ : X → BO(k), which is
unique up to homotopy. Here we have adopted the convention of using the same letter to
denote both the vector bundle and the classifying map. As we remarked earlier, [Dye69]
shows that any two normal bundles of a smooth manifold are stably equivalent, meaning
that ν′ : M → BO(k′) and ν′′ : M → BO(k′′) followed by the inclusions into BO(l), for
some l ≥ max{k′, k′′}, become homotopic. This yields a well-defined homotopy class of
maps M → BO , i.e. an element νM ∈ [M,BO ] called the stable normal bundle of M .

There are maps fn : BU (n) → BO(2n) analogous to those described in the example
above, and these give a map f : BU → BO which can be taken to be a fibration.

Definition 1.5.4. Let M be a compact, smooth manifold with stable normal bundle
νM . Assume that νM admits a lifting ν̃M : M → BU such that f ◦ ν̃M = νM . The
homotopy class of ν̃M , [ν̃M ], is called a stable complex structure on M . The pair
(M, [νM ]) is called a stably complex manifold.

We will on occasions write just M to denote the pair (M, [ν̃M ]).
The fact that f : BU → BO is a fibration is what guarantees that a stable complex

structure is independent on the representative chosen for ν : M → BO . To see this, consider
homotopic representatives ν0 and ν1 via the homotopy H : ν0 ' ν1 and a lifting ν̃0 of ν0.
Then the outer diagram commutes in

M

BU

M × I BO ,

ν̃0

i0

f
H̄

H

(1.5.5)

and since f is a fibration, H lifts to H̄ : M × I → BU . One thus obtains a lifting of ν1,
and this lifting is homotopic to ν̃0.

Definition 1.5.6. A closed stably complex manifold (M, [ν̃M ]) of dimension m is
called null-bordant, written (M, [ν̃M ]) ∼ ∅, if there is a compact m + 1-dimensional
manifold W having M as boundary, such that the stable normal bundle νW of W lifts in
the diagram

M

BU

W BO .

ν̃M
f

ν̃W

νW
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We have omitted some technicalities regarding transversality from this definition; see
[Swi02].

The set of stably complex manifolds of a fixed dimension is closed under disjoint union:

(M, [ν̃M ]) t (N, [ν̃N ]) := (M tN, [ν̃M t ν̃N ])

Given (M, [ν̃M ]) one obtains a stable complex structure on M×I by choosing the constant
homotopy H : νM ' νM in (1.5.5). The stable complex structure H̄ restricts to give a new
lifting of νM by which we denote −ν̃M and which is defined by the composition

−ν̃M : M i1−→M × I H̄−→ BU .

From this and ∂(M × I) = M t M , it follows from the previous definition that
(M, [ν̃M ])t (M, [−ν̃M ]) ∼ ∅. If M has stable complex structure given by [νM ], we use the
notation −M to denote (M, [−ν̃M ]). Now define a relation on the set of stably complex
manifolds of dimension n by letting M ∼ N if and only if M t −N ∼ ∅. If this is the
case, we say that M and N are bordant. By convention, one views ∅ as a stably com-
plex manifold of any dimension, equipped with its unique stable complex structure. By
[Swi02, Lemma 12.22] ∼ is an equivalence relation on this set, and we write ΩUn for the
set of equivalence classes with respect to ∼. Write [M ] for the equivalence class of M . The
following result is [Swi02, Lemma 12.23].

Proposition 1.5.7. For all n, disjoint union makes ΩUn into an abelian group. The
addition is given by [M ]+[N ] = [MtN ], the neutral element is [∅] and −[M ] = [−M ]. �

We remark that the graded group ΩU∗ :=
⊕

n≥0 ΩUn actually becomes a ring, where
the multiplication is induced by the Cartesian product of stably complex manifolds (see
[Swi02, (13.89)]).

Definition 1.5.8. A singular (stably complex) manifold in a topological space
X is a pair (M,f) where M is stably complex and f : M → X is a continuous map. A
singular manifold (M,f) is null-bordant if there is a pair (W,F : W → X), where W is
a smooth, compact manifold such that M is null-bordant with respect to W in the sense
of Definition 1.5.6, and F is a continuous map such that F |M = f .

As above, the set of singular stably complex manifolds of dimension n is closed under
disjoint union (M,f) t (N, g) :=

(
M t N, (f, g)

)
, where (f, g) is the composition M t

N
ftg−→ X tX → X. The manifold (M,f) t (−M,f) is null-bordant. We say that (M,f)

and (N, g) are bordant, and write (M,f) ∼ (N, g), if and only if (M,f) t (−N, g) is
null-bordant. Again, this is an equivalence relation, and the set of equivalence classes
[M,f ] is written ΩUn (X). As before, this becomes an abelian group, where the addition is
[M,f ] + [N, g] = [M tN, (f, g)], [∅,∅] acts as a neutral element, and the inverse is given
by −[M,f ] = [−M,f ]. Write

ΩU∗ (X) :=
⊕
n≥0

ΩUn (X)

for the graded abelian group.

Theorem 1.5.9 (Thom). There is a natural isomorphism

ΩU∗ (X) ∼= MU∗(X).

In particular, ΩU∗ ∼= π∗MU . �

We shall only sketch the construction of the homomorphism, as this makes use of the
Pontrjagin–Thom construction. For details, see [Swi02, Theorem 12.30].

Let (M,f : M → X) be a singular n-dimensional manifold in X. The stable normal
bundle ν : M → BO lifts to ν̃ : M → BU , and so there is some p such that ν : M → BO(2p)
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lifts to ν̃ : M → BU (p). Here we are abusing notation and use ν (resp., ν̃) to denote both
the stable normal bundle and the representative (resp., the lifting and a representative of
the lifting). The composition

M
∆−→M ×M ν̃×f−→ BU (p)×X

induces bundle maps

ν
∆̄−→ ν × ν

¯̃ν×f ′−→ ξp × 0
where ξp is the universal bundle over BU (p), 0 is really just X and f ′ is the projection
map ν →M followed by f : M → X. Applying Th(−) yields

(1.5.10) Th
(
(¯̃ν × f ′) ◦ ∆̄

)
: Mν →

(
BU (p)×X)ξp×0 ≈ MU (p) ∧X+.

We now apply the Pontrjagin–Thom construction to the smooth map M → pt and
the embedding e : M → Rn+2p with normal bundle ν. The collapse map becomes

c : Sn+2p →Mν .

Composing with the map Mν → MU (p) ∧X+ we obtain

Sn+2p → MU (p) ∧X+.

It is possible to show that the choice of p is not critical; had one started with p + 1 one
would obtain a map Sn+2p+2 → MU (p+ 1) ∧X+, which makes the diagram

Σ2Sn+2p Σ2MU (p) ∧X+

Sn+2p+2 MU (p+ 1) ∧X+

≈ s2n+1 ∧ 1

commute. Thus these maps represent a morphism gf : Sn → MU ∧X+ which is an element
of πn(MU ∧X+) = MU n(X). The set map (M,f) 7→ gf induces the isomorphism above.

As we mentioned in the discussion following Example 1.5.1, the construction of ΩU∗ (X)
can be done for other structure groups as well, and the obvious analogues for Theorem 1.5.9
hold. This means that elements of bordism theories can be viewed as singular manifolds,
and this is useful from time to time. In particular the coefficient rings π∗MU and π∗MSO
are known:

Theorem 1.5.11. The coefficient ring for complex bordism is a polynomial ring

π∗MU ∼= ΩU∗ ∼= Z[x2, x4, . . .]

with one generator in each even, positive dimension. Tensoring with Q, it is the polynomial
ring

π∗MU ⊗Q ∼= ΩU∗ ⊗Q ∼= Q
[
[CP 1], [CP 2], . . .

]
.

The coefficient ring for oriented bordism has only 2-primary torsion, and

π∗MSO/torsion ∼= ΩSO
∗ /torsion ∼= Z[x4, x8, . . .]

with one generator in each positive dimension divisible by 4. Tensoring with Q, it is the
polynomial ring

π∗MSO ⊗Q ∼= ΩSO
∗ ⊗Q ∼= Q

[
[CP 2], [CP 4], . . .

]
.

Proof. See [Ada95], [Sto68] and [Swi02]. �



CHAPTER 2

Formal group laws

1. Definitions and properties

In this section we will define formal group laws and look at some of their general
properties. These are formal power series, so we will not worry about convergence, and all
functions we mention are identified with their power series expansion about 0.

Definition 2.1.1. Let R be a commutative ring with 1. A (commutative) formal
group law over R is a power series

F (x, y) =
∑
i,j≥0

aijx
iyj ∈ R[[x, y]]

subject to the following conditions:
(1) F

(
F (x, y), z

)
= F

(
x, F (y, z)

)
(associativity)

(2) F (x, 0) = x = F (0, x) (identity)
(3) F (x, y) = F (y, x) (commutativity)

Some comments are in order. From the identity axiom of the above definition, it
follows directly that the coefficients ai0 = δi1 and a0j = δj1. In other words we may write
F (x, y) = x+ y +

∑
i,j≥1 aijx

iyj . From the commutativity axiom, we have that aij = aji,
for all i and j.

Note that commutativity is usually not a part of the definition of a formal group law.
We will only encounter commutative formal group laws, however, and therefore we include
this as an axiom. In our applications, R will always be a graded ring, and whenever this is
the case, we demand that x and y are of homological degree 2 and that the formal group
law is homogeneous. This means that the coefficients aij lie in R2(i+j−1).

Given a formal group law F , there is a unique power series i(x) =
∑
i≥1 a

′
ix
i in R[[x]],

called the inverse of F such that F
(
x, i(x)

)
= 0. The proof of this is straight forward:

consider

F (x, y) = x+
∑
k≥1

a′kx
k +

∑
i,j≥1

aijx
i

(∑
k≥1

a′kx
k

)j
.

Setting this equal to 0, we see that the coefficients a′k are uniquely determined by the aij
and lower a′k. In particular note that the leading term of i(x) is −x. If need be, we will
use the notation iF (x) to indicate which formal group law this power series is the inverse
to.

Example 2.1.2. The additive formal group law, denoted by Fa, is the simplest
possible formal group law and is given by Fa(x, y) = x+ y. The inverse is clearly ia(x) =
−x.

The multiplicative formal group law, Fm, is given by Fm(x, y) = x+ y + axy, for
some a ∈ R. Its inverse is im(x) = −x+ ax2 − a2x3 + · · · .

To a formal group law F over R and any integer n ≥ 0 one associates the n-series,
denoted by

[n]F (x) ∈ R[[x]],

31
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and defined recursively as

[n]F (x) :=

{
F
(
[n− 1]F (x), x

)
, n > 0

0, n = 0
(2.1.3)

When there is only one formal group law around, we take the liberty to denote the n-series
by [n](x).

The n-series extend to negative integers as well, by letting

[−n](x) := [n]
(
i(x)

)
.

These power series satisfy the formulas

[−n](x) = i
(
[n](x)

)
[m+ n](x) = F

(
[m](x), [n](x)

)
[mn](x) = [m]

(
[n](x)

)
for all integers m and n. We also note that [n](x) has leading term nx.

Example 2.1.4. The n-series associated to Fa is simply [n]a(x) = nx, and a simple
calculation shows that the n-series for Fm(x, y) = x+ y + axy is

[n]m(x) =
(1 + ax)n − 1

a
.

Let two formal group laws F and F ′ over R be given. A power series f(x) of R[[x]] is
said to be a homomorphism of formal group laws from F to F ′, written f : F → F ′, if
it satisfies

f
(
F (x, y)

)
= F ′

(
f(x), f(y)

)
.

If in addition f(x) has an inverse under composition, we say that f(x) is an isomorphism
of formal group laws. If f(x) has leading term x, we call it a strict isomorphism. A
homomorphism f : F → F is called an endomorphism of F .

Whenever f(x) is an invertible power series over R, we may “twist” the formal group
laws over R by it. We define

F f (x, y) := f
(
F
(
f−1(x), f−1(y)

))
,

and f becomes an isomorphism of formal group laws F → F f . Note that by definition,
F g◦f = (F f )g.

Example 2.1.5. The n-series of a formal group law F is an endomorphism of F . We
prove this using induction. Clearly,

[0]
(
F (x, y)

)
= 0 = F

(
[0](x), [0](y)

)
,

so assume that [n− 1] is an endomorphism. Then, using the properties of a formal group
law, the calculation

[n]
(
F (x, y)

)
= F

(
[n− 1]

(
F (x, y)

)
, F (x, y)

)
= F

(
F
(
[n− 1](x), [n− 1](y)

)
, F (y, x)

)
= F

(
F
(
[n− 1](x), [n](y)

)
, x
)

= F
(
[n](y), F

(
[n− 1](x), x

))
= F

(
[n](x), [n](y)

)
completes the proof.

The following proposition describes homomorphisms in characteristic p, where p is any
prime.



1. DEFINITIONS AND PROPERTIES 33

Proposition 2.1.6. Let R be a commutative Fp-algebra. Let f(x) be a non-zero power
series such that f : F → F ′ is a homomorphism of formal group laws. Then f(x) = g(xp

n

),
with g′(0) 6= 0, for some n ≥ 0. In particular, f(x) has leading term of degree pn.

Proof. (See [Rav86, A2].) We construct a power series fn(x) by induction such that
f ′n(0) 6= 0. Assume that we may write f(x) = fi(xp

i

) for some i ≥ 0. For i = 0 this is
trivial: take f0(x) = f(x). If f ′(0) 6= 0, then we are done, so assume that this is not the
case, i.e. f ′i(0) = 0.

Every term of F (x, y)p
i

is a monomial in xp
i

and yp
i

, so we may define a power series
F (i)(x, y) by

F (i)(xp
i

, yp
i

) := F (x, y)p
i

.

This becomes a formal group law over R, and fi is a homomorphism of formal group laws
F (i) → F ′ since

fi
(
F (i)(xp

i

, yp
i

)
)

= fi
(
F (x, y)p

i)
= f

(
F (x, y)

)
= F ′

(
f(x), f(y)

)
= F ′

(
fi(xp

i

), fi(yp
i

)
)
.

Setting u = xp
i

and v = yp
i

and differentiating both sides of the previous equation with
respect to v, we obtain

f ′i
(
F (i)(u, v)

)
F

(i)
2 (u, v) =

∂

∂v
fi
(
F (i)(u, v)

)
=

∂

∂v
F ′
(
fi(u), fi(v)

)
= F ′2

(
fi(u), fi(v)

)
f ′i(v).

Now we evaluate in v = 0, and see that the right hand side is 0 because f ′i(0) = 0. Further
note that F (i)

2 (u, 0) has leading term 1 and is therefore non-zero in R. This shows that
f ′i(x) = 0 over R, and thus fi(x) is a polynomial in xp.

Put fi+1(xp) = fi(x). Then f(x) = fi+1(xp
i+1

), and we repeat the process. Since
f(x) 6= 0, this process must stop, and thus we produce a power series fn(x), for some n,
such that f(x) = fn(xp

n

) and with f ′n(0) 6= 0. This is the desired g(x). �

Since [p](x) = px+ · · · , the following corollary is immediate.

Corollary 2.1.7. With R a commutative Fp-algebra, the p-series associated to a
formal group law over R is a power series in xp

n

, for some n ≥ 1. �

The number n is called the height of the formal group law over Fp. By convention,
one says that the formal group law has height ∞ if [p](x) = 0.

Sometimes there is a strict isomorphism l : F → Fa over R from a formal group law
to the additive, but in general it does not exist. To see this, assume that l(x) has leading
term x and satisfies l

(
F (x, y)

)
= l(x) + l(y). Differentiating with respect to y, and then

putting y = 0 yields

l′(x)F2(x, 0) = l′
(
F (x, y)

)
F2(x, y)|y=0 = l′(y)|y=0 = 1.

One obtains the unique solution

l(x) =
∫ x

0

dt
F2(t, 0)

which in general is a power series over R⊗Q (but not necessarily over R).
By analogy to calculus, one calls this power series the logarithm of F , and writes

logF (x) = x+ · · · ∈ (R⊗Q)[[x]]. The inverse under composition is written expF and called
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the exponential function associated to F . These functions provide strict isomorphisms
logF : F → Fa and expF : Fa → F over R⊗Q. In particular,

F (x, y) = expF
(

logF (x) + logF (y)
)
,

and starting with any power series l(x) = x+ · · · over R⊗Q, one can make a formal group
law by defining

G(x, y) = l−1
(
l(x) + l(y)

)
∈ (R⊗Q)[[x, y]].

This discussion leads to the following observation.

Lemma 2.1.8. Assume that R is a Q-algebra. There is a one-to-one correspondence
between formal group laws over R and power series l(x) with leading term x in R[[x]]. �

Example 2.1.9. We find the logarithms and exponential functions of our two familiar
examples.

(1) The logarithm and exponential function of the additive formal group law is
loga(x) = x = expa(x).

(2) Let Fm(x, y) = x+y+xy be the multiplicative formal group law with a = 1. We
have

log(1 + x+ y + xy) = log(1 + x) + log(1 + y)
where log(x) is (the power series expansion of) the natural logarithm. Hence

logm(x) = log(1 + x) =
∑
n≥0

(−1)n

n+ 1
xn+1.

A substitution shows that logm(x) = a−1 log(1 + ax) for arbitrary a in R. It
follows that the exponential function is expm(x) = a−1(eax − 1).

Having established some facts about about formal group laws over rings, the natural
thing to do next is to examine how they behave under ring homomorphisms. Let g : R→ S
be a homomorphism of commutative rings. It has canonical extensions to ring homomor-
phisms R[[x1, . . . , xn]] → S[[x1, . . . , xn]] by pushing the coefficients of a power series to S.
Explicitly, let

F (x, y) = x+ y +
∑
i,j≥1

aijx
iyj

be a formal group law over R and define a power series over S by

gF (x, y) :=
∑
i,j≥0

g(aij)xiyj .

The following properties follows readily from the definitions and uniqueness of inverses
and logarithms.

Proposition 2.1.10. Let g : R → S be a ring homomorphism, and let F be a formal
group law over R. Then the following statements are true.

(1) gF (x, y) is a formal group law over S.
(2) Let iF (x) =

∑
i≥1 a

′
ix
i be the inverse of F (x, y). The inverse of gF (x, y) is given

by
igF (x) =

∑
i≥1

g(a′i)x
i.

(3) The logarithm of gF (x, y) is given by

loggF (x) =
∑
i≥0

(g ⊗ 1)(mi)xi ∈ (S ⊗Q)[[x]],

where logF (x) =
∑
i≥1mix

i ∈ (R⊗Q)[[x]].
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(4) If f : F → F ′ is a homomorphism of formal group laws over R, then by pushing
the coefficients of f(x) one obtains a homomorphism gF → gF ′ over S. �

2. Complex orientations of cohomology theories

We now introduce the main object of study, namely the complex orientable cohomology
theories. We will recall some very important results from [Ada95].

Definition 2.2.1. A ring spectrum E (and the cohomology theory it represents) are
called complex orientable if there is an element ω ∈ Ẽ2(CP∞) such that the inclusion
j : S2 = CP 1 ↪→ CP∞ induces the restriction

j∗ω = σ2(1) ∈ Ẽ2(S2).

ω is called an orientation class and E (and E∗(−)) along with a choice of such an element
are called complex oriented.

The choice of ω has some remarkable implications which we will soon get to. First we
list a few examples, and these choices of orientations will be fixed throughout.

Example 2.2.2. In singular cohomology theory H∗(−) we choose ωH = c1(η), where
η ↓ CP∞ is the canonical line bundle. This is an orientation class by Theorem 1.2.3.

Complex K-theory is complex orientable, and we choose the orientation class to be
ωK = 1−η

u where u ∈ K̃(S2) is the Bott element. It becomes an orientation class because
u = 1− η1 where η1 is the pullback of η by j.

Let the zero section be given by the map CP∞ → Dη → Dη/Sη = MU (1). It induces
a canonical morphism of spectra CP∞ '→ MU (1)→ Σ2MU . This morphism represents the
orientation class ωMU in M̃U 2(CP∞) (where CP∞ is regarded as a space). j∗ωMU is the
composition CP 1 ↪→ CP∞ → Σ2MU , which by desuspension becomes the unit S0 → MU .

One of the advantages of complex orientable theories is that spectral sequences often
provide an efficient means of computing the cohomology of different spaces. For instance,
we have analogues of (1.2.2) in such theories.

Theorem 2.2.3. Let E be complex oriented by ω. Then as E∗-algebras

E∗(CP∞) ∼= E∗[[ω]]

and
E∗
(
(CP∞)n

) ∼= E∗[[ω1, . . . , ωn]],
where ωi = pr∗i ω is the pullback along the projection pri : (CP∞)n → CP∞ onto factor i.

Proof. See [Ada95, (II.2.5)]. �

We will later need to know the E-homology of CP∞ and MU . We state this now as
the following theorem.

Theorem 2.2.4. If E is complex oriented with orientation class ω, then
(1) E∗(CP∞) is the free E∗-module generated by βn, n ≥ 0, where βn ∈ E2n(CP∞)

is the unique dual element of ωn with respect to the Kronecker pairing (1.4.8)

〈−,−〉 : E∗(CP∞)⊗ E∗(CP∞)→ π∗E,

that is, 〈ωm, βn〉 = δmn for all m.
(2) The morphism of spectra CP∞ → Σ2MU induces a homomorphism

Ẽk(CP∞)→ Ek−2(MU ).

Define bn ∈ E2n(MU ) to be the image of βn+1. Then b0 = 1 and

E∗(MU ) ∼= E∗[b1, b2, . . .]
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as E∗-algebras.

Proof. See (II.4.1) and (II.4.5) of [Ada95]. �

Given one orientation of E∗(−), it is easy to describe all orientations.

Lemma 2.2.5. Let E be a ring spectrum oriented by ω. The orientations of E are in
one-to-one correspondence with the homogeneous power series f(x) over E∗ with leading
term x.

Proof. By Theorem 2.2.3 any element of Ẽ2(CP∞) is of the form f(ω) = a0ω +
a1ω

2 + a2ω
3 + · · · , where ai ∈ E−2i. Now j : S2 ↪→ CP∞ induces a ring homomorphism

in cohomology, so j∗f(ω) = a0j
∗ω + a1(j∗ω)2 + · · · . The product in Ẽ2(S2) is trivial, so

j∗f(ω) = a0j
∗ω = a0σ

2(1), and hence f(ω) is an orientation class if and only if a0 = 1. �

Now we state a remarkable result which characterizes all ring morphisms of ring spectra
MU → E up to homotopy.

Theorem 2.2.6. Given an orientation ωE of E there is up to homotopy a unique ring
morphism of ring spectra ϕ : MU → E such that ϕ : M̃U 2(CP∞)→ Ẽ2(CP∞) maps ωMU

to ωE.

Proof. See [Ada95, (II.4.6)]. �

Therefore, agreeing that ωMU is to be kept fixed, choosing an orientation of E is
equivalent to choosing such a homotopy class of ring morphisms.

MU ∗(−) carries universal Thom classes in a natural way. Specifically, the canonical
morphisms MU (n)→ Σ2nMU represent elements

un ∈ M̃U 2n
(
MU (n)

)
,

that are Thom classes for the universal bundles ξn ↓ BU (n). Extending by naturality, one
obtains Thom classes for all complex vector bundles.

These universal Thom classes are multiplicative in a specific sense. Recall from Ex-
ample 1.5.1 the maps

λm,n : MU (m) ∧MU (n)→ MU (m+ n).

Then the induced map acts on Thom classes by

λ∗m,n(um+n) = um ∧ un.

(See [KT06].) Extending by naturality, we have the following:

Lemma 2.2.7. Let ξ ↓ X and ξ′ ↓ Y be complex vector bundles. Then the Thom classes
in MU -theory satisfy

(2.2.8) ψ∗uξ×ξ′ = uξ ∧ uξ′ .

where ψ : Xξ ∧ Y ξ′ → (X × Y )ξ×ξ
′

is as in (1.1.1).

Proof. Let f : X → BU (m) and g : Y → BU (n) classify the respective vector bun-
dles. Then cm,n ◦ (f × g) classifies ξ × ξ′, and thus

ψ∗uξ×ξ′ = ψ∗(f × g)∗c∗m,num+n = (f ∧ g)∗λ∗um+n = (f ∧ g)∗(um ∧ un) = uξ ∧ uξ,

completing the proof. �
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A ring morphism of spectra ϕ : MU → E therefore gives E∗(−) Thom classes uEξ =
ϕ(uξ) which satisfy (2.2.8).

We briefly explain how a morphism of spectra can be constructed from a choice of ωE ∈
Ẽ2(CP∞): By the homotopy equivalence CP∞ ' MU (1) the element uE1 in Ẽ2

(
MU (1)

)
corresponding to ωE serves as a Thom class for the canonical line bundle η ↓ CP∞. Using
the splitting principle and universality, one can choose Thom classes uEn for the universal
bundles ξn ↓ BU (n) such that

λ∗m,n : Ẽ∗
(
MU (m+ n)

)
→ Ẽ∗

(
MU (m) ∧MU (n)

)
takes uEm+n to uEm ∧ uEn (as in the MU -case). Each of the uEn define homotopy classes
[MU (n),Σ2nE] and the multiplicative property ensures that these maps patch together to
make a ring morphism MU → E. See [KT06] for details.

2.1. Euler classes revisited. Let E be complex oriented, such that all complex
vector bundles have Thom classes. Since we have defined Thom classes from the universal
case, they are automatically natural, and we are in the setting of the remark following
Theorem 1.1.4.

The existence of Thom classes for all complex vector bundles implies the existence of
Euler classes. Moreover, we have the following

Proposition 2.2.9. Let E be complex oriented. The Euler classes are both natural
and multiplicative with respect to the external product, i.e. e(ξ × ξ′) = e(ξ)× e(ξ′).

Proof. This follows from the properties of Thom classes in E-theory. Specifically,
let g : Y → X be continuous and let ξ be a vector bundle over X. The diagram, where z
is the zero section

Y X

Y g
∗ξ Xξ

g

z z

g

commutes and this implies that

e(g∗ξ) = z∗g∗uξ = g∗z∗uξ = g∗e(ξ),

so the Euler classes are natural.
Now let ξ ↓ X and ξ′ ↓ Y be complex vector bundles, and denote by z the zero

sections in all the Thom spaces Xξ, Y ξ
′

and (X × Y )ξ×ξ
′
. Further, let q denote the

projection A × B → A ∧ B of based spaces which relates the external products × and ∧
by q∗(a ∧ b) = a× b as in (1.3.1). We have a commutative diagram

X × Y (X × Y )ξ×ξ
′

Xξ × Y ξ′ Xξ ∧ Y ξ′ ,

z

z × z

q

ψ

and by it we see that

e(ξ × ξ′) = z∗(uξ × uξ′) = (z × z)∗q∗ψ∗(uξ × uξ′) = (z × z)∗(uξ × uξ′) = e(ξ)× e(ξ′),
which shows the multiplicative property. �

Letting X = Y and using naturality with respect to the diagonal map ∆: X → X×X,
one has:
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Corollary 2.2.10. The Euler class is exponential, that is, for ξ and ξ′ complex vector
bundles over X, the Euler class satisfies e(ξ ⊕ ξ′) = e(ξ) ` e(ξ′). �

In particular this means that the Euler classes in E-theory are determined by naturality
and the splitting principle from e(η) = ωE .

Example 2.2.11. In singular cohomology, the Euler class of a line bundle is given by
eH(`) = c1(`). Applying the splitting principle on a rank n complex vector bundle ξ, one
readily sees that eH(ξ) = cn(ξ) ∈ H2n(X).

The Euler class in K-theory on a line bundle is eK(`) = 1−`
u = u−1λ−1(`). Since λt is

natural and exponential (Lemma 1.3.13) the splitting principle now yields

eK(ξ) = u−nλ−1(ξ) = u−n
(
1− Λ1(ξ) + Λ2(ξ)− · · ·+ (−1)nΛn(ξ)

)
∈ K2n(X)

for any complex vector bundle of rank n.

3. Formal group laws associated to cohomology theories

We are about to see that we can associate formal group laws to complex orientable
cohomology theories. This is really due to Theorem 2.2.3, which told us that

E∗(CP∞ × CP∞) ∼= E∗[[ω1, ω2]]

where the ωi are pullbacks of the orientation class ω.
Since CP∞ is the classifying space for complex line bundles, one may in particular

find a map
m : CP∞ × CP∞ → CP∞

(unique up to homotopy) classifying the line bundle η1⊗ η2, where ηi as usual denotes the
canonical line bundle over the ith factor CP∞. Any choice of representative for this map
induces the same E∗-algebra homomorphism

m∗ : E∗[[x]]→ E∗[[x1, x2]]

where we have written x for ω = e(η). m∗ is uniquely determined by its value on the
generator x of E∗(CP∞), and

m∗(x) =
∑
i,j≥0

aijx
i
1x
j
2 =: F (x1, x2)

is a homogeneous power series of cohomological degree 2. We claim that F (x1, x2) is
actually a formal group law.

Lemma 2.3.1. Assume that ` ↓ X and `′ ↓ Y are complex line bundles. The power
series F obtained from the orientations of E∗(−) satisfies

e(` ⊗̂ `′) = F
(
e(`), e(`′)

)
as elements of E∗(X × Y ), where e(−) is the Euler class associated to the orientation.

Proof. In the universal case, we have

e(η1 ⊗ η2) = e(m∗η) = m∗
(
e(η)

)
= m∗(x) = F (x1, x2) = F

(
e(η1), e(η2)

)
using naturality of Euler classes. Letting f × g : X × Y → CP∞ × CP∞ pull η ⊗̂ η back
to ` ⊗̂ `′, we see that

e(` ⊗̂ `′) = e
(
(f × g)∗(η ⊗̂ η)

)
= (f × g)∗F

(
e(η1), e(η2)

)
= F

(
e((f × g)∗η1), e((f × g)∗η2)

)
= F

(
e(`), e(`′)

)
and this completes the proof. �
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Proposition 2.3.2. Every complex oriented cohomology theory E∗(−) determines a
formal group law

FE(x, y) = x+ y +
∑
i,j≥1

aijx
iyj ,

which is homogeneous of cohomological degree 2 in E∗(CP∞ × CP∞) and determined by
m∗(x). The coefficients aij lie in E2(1−i−j).

Proof. Everything except that F is a formal group law is clear. The calculation

F
(
x1, F (x2, x3)

)
= F

(
e(η1), e(η2 ⊗ η3)

)
= e
(
η1 ⊗ (η2 ⊗ η3)

)
= e
(
(η1 ⊗ η2)⊗ η3

)
= F

(
e(η1 ⊗ η2), e(η3)

)
= F

(
F (x1, x2), x3

)
shows that F is associative, using associativity of the tensor product. Similarly, commu-
tativity follows from commutativity of tensor products. The identity axiom is verified by
using the trivial line bundle over CP∞. �

Remark. It may be convenient to view an associated formal group law as a power
series over E∗ rather than E∗. In this case, let x and y have homological degree −2 and
let the coefficients aij lie in E2(i+j−1).

We will often use the following corollary.

Corollary 2.3.3. Let E∗(−) be a complex orientable cohomology theory. If ω and
ω′ = θ(ω) are orientations giving rise to formal group laws F and F ′ respectively, then
θ : F → F ′ is a strict isomorphism of formal group laws.

Proof. Let e and e′ denote the respective Euler classes. It follows that

θ
(
F (ω1, ω2)

)
= θ
(
e(η1 ⊗ η2)

)
= e′(η1 ⊗ η2) = F ′(ω′1, ω

′
2) = F ′

(
θ(ω1), θ(ω2)

)
,

and since θ(x) = x+ · · · the result follows. �

We make the following useful observation, which is a consequence of the universality
of MU ∗(−) as a complex oriented cohomology theory.

Proposition 2.3.4. Let E∗(−) be complex oriented and let ϕ : MU → E be the cor-
responding ring morphism. The induced map on coefficients ϕ : MU ∗ → E∗ classifies the
formal group law determined by the orientation class of E∗(−).

Proof. This is shown by the calculation

ϕFMU

(
eE(η1), eE(η2)

)
= ϕ

(
FMU

(
eMU (η1), eMU (η2)

))
= ϕ

(
eMU (η1 ⊗ η2)

)
= eE(η1 ⊗ η2)

= FE
(
eE(η1), eE(η2)

)
. �

We end this section with two examples.

Example 2.3.5. As H∗ only has non-zero coefficients in degree 0, the associated formal
group law must be the additive; FH(x, y) = x+ y.

Recall that the Euler class for complex K-theory is eK(`) = u−1(1− `) on a complex
line bundle. As the ring structure in K-theory is given by tensor product of vector bundles,
we obtain

eK(η1 ⊗ η2) =
1− η1η2

u

=
(1− η1) + (1− η2)− (1− η1)(1− η2)

u
= eK(η1) + eK(η2)− ueK(η1)eK(η2).
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In other words, the formal group law associated to K-theory is the multiplicative formal
group law:

FK(x, y) = x+ y − uxy.

4. The universality of complex bordism

We have seen that MU ∗(−) is the universal complex oriented cohomology theory, and
that a consequence of this is that the ring morphism ϕ : MU → E orienting E classifies the
formal group law associated to E∗(−) with this orientation. A surprising fact is that not
only does FMU determine all formal group laws associated to complex oriented cohomology
theories, FMU determines all formal group laws. This is the main result in [Qui69], and
it is stated below in Theorem 2.4.8. Unfortunately, the proof of this important theorem
is not in the scope of this thesis. However, we will consider the algebraic side of things,
and construct such a universal formal group law, which must necessarily be the same (up
to isomorphism). This will reveal to us valuable information about MU∗ and its formal
group law.

4.1. Lazard’s ring. We construct the universal ring for formal group laws.

Theorem 2.4.1. There is a commutative ring L and a formal group law Fu over L,
with the following universal property: For any unital commutative ring R and G any formal
group law over R, there is a unique ring homomorphism g : L→ R such that gFu = G.

Remark. The standard argument shows that any ring equipped with a formal group
law with this universal property must be isomorphic to L and that this isomorphism is
unique. The isomorphism preserves the formal group law, and so it makes sense to talk
about the universal formal group law. Moreover, if g : L→ R is an isomorphism of rings,
R and gFu attains this universal property.

Proof. We construct this ring directly. Let P be the polynomial algebra

P = Z[a11, a12, a21, a13, a22, a31, . . .],

and let F be the power series over P defined by

F (x, y) = x+ y +
∑
i,j≥1

aijx
iyj .

This is not a formal group law (it is neither associative nor commutative), but we can
make it become one over a certain quotient ring.

Write
F
(
F (x, y), z

)
− F

(
x, F (y, z)

)
=

∑
i,j,k≥1

cijkx
iyjzk,

where each cijk is a polynomial in aij . We let I be the ideal of P generated by the cijk
and all polynomials of the form aij − aji. Now we form the quotient ring L = P/I, and
by pushing the coefficients with the projection P → L, F becomes the formal group law
Fu over L.

To see that Fu is the universal formal group law, let R be any ring and G a formal
group law over R. We write

G(x, y) = x+ y +
∑
i,j≥0

bijx
iyj .

In order for g to be a ring homomorphism L→ R such that gFu = G, we have no choice
but to send 1 to 1 and the aij to bij . Thus g exists and is unique. �
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L is known as Lazard’s ring, and we call Fu the universal formal group law. The
above construction is done without mention of grading. We will usually impose a grading
on L by choosing the aij to be of homological degree 2(i + j − 1), making the universal
formal group law homogeneous of homological degree −2.

The construction of L in the proof above gives explicit generators and relations in the
different degrees, so we may in principle compute the structure of L in each degree. In
particular we immediately note that L0

∼= Z (generated by 1). Assuming Lemma 2.4.3
below, we shall prove:

Theorem 2.4.2 (Lazard). L is a polynomial algebra over Z,

L ∼= Z[x1, x2, . . .],

where the generators xn have homological degree 2n.

The proof will be done in several intermediate steps. First we recall a fact about
binomial coefficients ([Fin47]). If dn := gcd

((
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1

))
, then

dn =

{
p, n = ps

1, otherwise.

For n ≥ 1, we define homogeneous power series by

Cn(x, y) :=
1
dn

(
(x+ y)n − xn − yn

)
,

which evidently are primitive (i.e. the greatest common divisor of the coefficients is 1).

Lemma 2.4.3 (Lazard Comparison Lemma). If F and G are formal group laws over
R such that F ≡ G (mod (x, y)n) then there exists an element a ∈ R such that

F ≡ G+ aCn (mod (x, y)n+1).

Proof. See [Rav86, A2.1.12]. �

Let R = Z[b1, b2, . . .] where bn is of homological degree 2n, and write exp(x) =∑
n≥0 bnx

n+1 where b0 = 1. The reason for the name exp is clear in light of the fol-
lowing lemma: exp will become the universal exponential function for formal group laws
strictly isomorphic to the additive.

Lemma 2.4.4. The formal group law F exp
a over R is universal for formal group laws

G ↓ S over any commutative ring which are strictly isomorphic to Fa ↓ S.

Proof. Let g : Fa → G be the isomorphism in question, and write

g(x) =
∑
n≥0

cnx
n+1,

where c0 = 1. There is a unique ring homomorphism ψ : R→ S mapping 1 to 1 and bn to
cn. Let log = exp−1. Then

ψF exp
a (x, y) = ψ

(
exp

(
log(x) + log(y)

))
= ψ exp

(
ψ log(x) + ψ log(y)

)
= g
(
g−1(x) + g−1(y)

)
= G(x, y). �

This lemma allows us to determine L⊗Q, which in turn will be an important ingredient
to finding the structure of L:

Proposition 2.4.5. L⊗Q is isomorphic to the polynomial ring Q[b1, b2, . . .].
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Proof. Let L→ R⊗Q ∼= Q[b1, b2, . . .] be the unique ring homomorphism classifying

F exp
a . This homomorphism factors uniquely as L→ L⊗Q f−→ R⊗Q to give fFu = F exp

a .
We now recall that over Q-algebras, every formal group law is strictly isomorphic to the
additive, and so there is a unique homomorphism ψ : R⊗Q→ L⊗Q such that ψF exp

a = Fu.
By uniqueness of the classifying homomorphisms, fψ = 1 and ψf = 1. �

For any abelian group A, and n > 1, let A[2n− 2] be the graded abelian group having
A in degree 2n − 2 and 0 in all other degrees. One makes Z ⊕ A[2n − 2] into a graded
commutative ring by defining the multiplication to be (m, a)(n, b) = (mn, na + mb). By
considering degrees, one sees that any formal group law over this ring is of the form

F (x, y) = x+ y +
∑
i+j=n

aijx
iyj .

Using the comparison lemma, we will make a much sharper statement.

Lemma 2.4.6. Every formal group law F over Z⊕A[2n− 2] is of the form

F (x, y) = x+ y + aCn(x, y),

where a is some element in A. In effect, there is a bijection between the elements of A and
formal group laws over Z⊕A[2n− 2].

Proof. Taking an arbitrary formal group law F (x, y) = x+ y+
∑
i+j=n aijx

iyj over
Z ⊕ A[2n − 2] one has F ≡ Fa (mod (x, y)n). By the comparison lemma, there is an
element a in A such that F ≡ Fa + aCn (mod (x, y)n+1).

We now show that the right hand side of this congruence is a formal group law. We
view F as a formal group law over the ring localized away from dn (the greatest common
divisor of the coefficients of Cn(x, y)). For b ∈ A, define the power series

gb(x) = x+ bxn ∈ (Z⊕A[2n− 2])[d−1
n ][[x]],

and note that g−b = g−1
b . We produce a formal group law over this localized ring by

F gba (x, y) = gb
(
g−b(x) + g−b(y)

)
= x+ y + b

(
(x+ y)n − xn − yn

)
.

In particular, for the element a ∈ A from above,

F
ga/dn
a (x, y) = x+ y +

a

dn

(
(x+ y)n − xn − yn

)
,

which actually has coefficients in Z⊕A[2n− 2] and hence is a formal group law over this
ring. Furthermore, it coincides with Fa + aCn. This implies that F = Fa + aCn, as we
wanted to show. �

Let R be a graded ring which has R0 = Z and Rk = 0 for k < 0. Such a ring is called
a connected graded ring. The ideal of positively graded elements I is the kernel of the
augmentation R→ Z. Define the indecomposable module of R to be the graded module
Q∗(R) := I/I2. Examples of connected graded rings are L and Z⊕A[2n− 2]. Denote by
ε : L→ Z and ε2n−2 : Z⊕A[2n− 2]→ Z the respective augmentation homomorphisms.

Lemma 2.4.7. The graded ring homomorphisms L→ Z⊕ A[2n− 2] correspond bijec-
tively to the group homomorphisms Q2n−2(L)→ A.

Proof. Assume that a group homomorphism Q2n−2(L) → A has been given. The
composition

L→ Z⊕Q2n−2(L)→ Z⊕A[2n− 2]
gives a map of graded rings, where the first map is the projection of generators and the
second is induced in the obvious way from the group homomorphism.



4. THE UNIVERSALITY OF COMPLEX BORDISM 43

For any graded ring homomorphism f : L→ Z⊕A[2n− 2] the diagram

L Z⊕A[2n− 2]

Z

f

ε
ε2n−2

commutes and induces a homomorphism I → A[2n − 2] of the kernels of ε and ε2n−2.
Since A[2n − 2]2 = 0, the map factors via Q∗(L) = I/I2 to give a group homomorphism
Q2n−2(L)→ A.

These assignments are inverse to one another, as is seen by unraveling the definitions.
�

The previous lemmas and the universal property of L imply that for any abelian group
A we have one-to-one correspondences of sets:

(1) Elements of A.
(2) Formal group laws over Z⊕A[2n− 2].
(3) Ring homomorphisms L→ Z⊕A[2n− 2].
(4) Group homomorphisms Q2n−2(L)→ A.

Proof of Theorem 2.4.2. For all abelian groups A and all n > 0, there is a bijection
of sets HomZ(Q2n(L), A) ≈ A. Q2n(L) is finitely generated, so putting A = Z/(p) for all
primes p shows that Q2n(L) ∼= Z.

L→ Q∗(L) is graded and an epimorphism, so we can pick an xn ∈ L2n projecting to
a generator of Q2n(L) for all n. This gives a ring homomorphism

f : Z[x1, x2, . . .]→ L.

R := Z[x1, x2, . . .] is also a connected graded ring, so we can form Q∗(R). By construction,
f induces an epimorphism Q∗(R) → Q∗(L), and it is known that this implies that f is
an epimorphism itself. (For a proof, see [NS02, Appendix A].) Tensoring with Q gives
another epimorphism

Q[x1, x2, . . .]→ L⊗Q ∼= Q[b1, b2, . . .].
In each degree, this is a linear surjection of vector spaces over Q having the same dimension,
and hence this is an isomorphism. The diagram

Z[x1, x2, . . .] L

Q[x1, x2, . . .] L⊗Q
∼=

commutes, showing that Z[x1, x2, . . .] → L must be injective. From this follows that
L ∼= Z[x1, x2, . . .]. �

4.2. Universality of MU∗ and MU∗MU . The next theorem tells us that Lazard’s
ring can be identified with MU∗. For a proof see [Qui69, Ada95].

Theorem 2.4.8 (Quillen). The unique ring homomorphism L→ MU∗ characterizing
FMU is an isomorphism. �

Remark. This theorem implies that the MU formal group law is universal. More-
over, by Theorem 2.4.2, the coefficient ring of MU has the structure of an evenly graded
polynomial algebra over Z. (This was also claimed in Theorem 1.5.11.) The coefficient
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ring is actually generated by the coefficients of FMU , by construction of the Lazard ring.
We adopt the notation Fu to denote the universal formal group law over MU∗ (and MU ∗).

In his proof, Quillen used the following theorem characterizing the logarithm of the
formal group law for MU . We shall make use of this result later. A proof can be found in
[Ada95].

Theorem 2.4.9 (Mischenko). The logarithm of the universal formal group law Fu is
given by

logMU (x) =
∑
n≥0

[CPn]
n+ 1

xn+1

viewed as an element of (MU∗ ⊗Q)[[x]]. �

Recall from Theorem 2.2.4 that E∗(MU ) ∼= E∗[b1, b2, . . .]. Define the exponential
function associated to E to be the power series

expE(x) =
∑
n≥0

bnx
n+1 ∈ E∗(MU )[[x]].

It should not be confused with the exponential function expE , which is a power series
defined on π∗E ⊗Q associated to the formal group law of E∗(−). As usual, the inverse of
expE is called the logarithm and denoted by logE .

The canonical morphisms from Example 1.4.5

E −→ E ∧ E′ ←− E′

induces ring homomorphisms ηL : E∗ → E∗(E′) and ηR : E′∗ → E∗(E′) in homotopy. When
E and E′ are complex oriented, this procedure yields two formal group laws over E∗(E′),
namely ηLFE and ηRFE′ .

If E′ = MU we are able to say a lot about how these formal group laws are connected.

Theorem 2.4.10. Let E∗(−) be complex oriented. expE is a strict isomorphism
ηLFE → ηRF

u of formal group laws over E∗(MU ) ∼= E∗[b1, b2, . . .].

Proof. [Ada95, (6.5)]. The diagram

[CP∞,ΣkMU ] [CP∞, E ∧ ΣkMU ]

Homπ∗E

(
E∗(CP∞), E∗(ΣkMU )

)α p

where α(f)(h) = f∗(h) and p(g)(h) is given by the composition

Sp
h−→ E ∧ CP∞ 1∧g−→ E ∧ E ∧ ΣkMU

µ∧1−→ E ∧ ΣkMU

commutes. E ∧ MU is a module spectrum over E the obvious way, and then we may
apply [Ada95, (4.2)] to conclude that p is an isomorphism. In particular, we may choose
ωMU : CP∞ → Σ2MU and go around the diagram. By definition of the bi, we have
α(ωMU )(βi+1) = bi, so we obtain p(ω̄MU )(βi+1) = bi where we have written ω̄MU for the
image of ωMU in [CP∞, E ∧ Σ2MU ].

On the other hand, (by definition of the βi) we have p(ω̄jE)(βi) = δij , so

p(ω̄MU ) =
∑
j≥0

bjp(ω̄
j+1
E ).

Since p is an isomorphism, ω̄MU = expE(ω̄E), hence expE is the desired strict isomorphism.
�
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Now we put E = MU . ηR is the Hurewicz homomorphism, and it gives MU∗MU a
right MU∗-module structure. Similarly, ηL gives MU∗MU a left MU∗-module structure.
ηL sends elements a of MU∗ to the constant polynomial a in MU∗MU ∼= MU∗[b1, b2, . . .].
(See [Rav86] for more on this.)

We are now ready to discuss the universality of MU∗MU in the context of formal group
laws. Consider the commutative ring R and two ring homomorphisms f, g : MU∗ → R,
classifying the formal group laws F and G respectively. We assume further that these
formal group laws are related by a strict isomorphism θ : F → G.

Proposition 2.4.11. The strict isomorphism expMU : ηLFu → ηRF
u is universal

amongst strict isomorphisms of formal group laws; specifically:
Let two formal group laws F and G over R be classified by f and g and strictly

isomorphic via θ : F → G. Then there is a unique ring homomorphism ρ : MU∗MU → R
such that ρ expMU (x) = θ(x) (by pushing coefficients) and such that

MU∗ MU∗MU

R

MU∗
ηL

f
ρ

ηR

g

commutes.

Proof. Write
expMU (x) =

∑
n≥0

bnx
n+1 ∈ MU∗MU [[x]]

and
θ(x) =

∑
n≥0

cnx
n+1 ∈ R[[x]].

For this proof we put exp = expMU and log = logMU to simplify notation.
We construct ρ directly. Since MU∗MU ∼= MU∗[b1, b2, . . .] is a polynomial algebra, it

is sufficient to specify what ρ does to the coefficients and the indeterminates. In order to
take exp to θ, it must necessarily send bn to cn. Since ηL embeds MU∗ as the constant
polynomials in MU∗MU , commutativity of the left triangle implies that ρ(a) = f(a) for
all a ∈ MU∗. This uniquely determines a ring homomorphism ρ : MU∗MU → R.

It remains to show that this ρ also makes the right triangle commute. The idea is to
show that ρηRFu = G. If this is the case, then both g and ρηR are ring homomorphisms
MU∗ → R classifying G, and by uniqueness of the classifying homomorphism, we may
conclude that ρηR = g. This is shown by the following calculation,

ρηRF
u(x, y) = ρ

(
exp

(
ηLF

u(log x, log y)
))

= ρ exp
(
ρηLF

u(ρ log x, ρ log y)
)

= θ
(
F (ρ log x, ρ log y)

)
= G

(
θ(ρ log x), θ(ρ log y)

)
= G

(
ρ
(

exp(log x)
)
, ρ
(

exp(log y)
))

= G(x, y). �

5. The exact functor theorem

Take a homology theory E∗(−) and an E∗-module G. Then we can define a candidate
for a new homology theory by putting

G∗(−) = G⊗E∗ E∗(−).
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This will in general not be a homology theory, because tensor product does not preserve
exactness. However, if E = MU , Theorem 2.5.2 below will provide us with a purely alge-
braic criterion for when G∗(−) behaves correctly on cofiber sequences, and the candidate
functor actually is a homology theory.

Let R be a commutative graded ring with 1 which is concentrated in even degrees and
is a MU∗-module via the ring homomorphism ϕ : MU∗ → R. Then ϕ classifies the formal
group law F over R obtained by pushing the coefficients of Fu over MU∗. Fix a prime p
and let un ∈ R be the coefficient of xp

n

in the p-series

(2.5.1) [p]F (x) = px+ · · ·+ u1x
p + · · ·+ u2x

p2 + · · · .

Recall that a sequence of elements (a1, a2, . . .) from R is said to be regular if multi-
plication by a1 in R and an+1 in R/(a1, . . . , an) is injective for all n ≥ 1.

We now state the exact functor theorem.

Theorem 2.5.2 (Landweber exact functor theorem, [Lan76, LRS95]). As above,
let ϕ : MU∗ → R be a ring homomorphism, where R is graded and concentrated in even
degrees. If the sequence (p, u1, u2, . . .) is regular in R for all primes p, then the functor

R∗(−) = R⊗MU∗ MU∗(−)

is a homology theory with coefficients R. �

Remark. The theorem is still valid without the assumption that R is concentrated
in even degrees, but this restriction does not exclude any examples that are relevant to
us. Additionally, this assumption allows us to make use of some nice results obtained in
[HS99].

The homology theory produced is multiplicative; R∗(−) gets the external product from
MU∗(−), namely by (r⊗x)∧ (s⊗ y) = rs⊗ (x∧ y). The canonical natural transformation
MU∗(−)→ R∗(−), x 7→ 1⊗ x, is multiplicative.

Spanier–Whitehead duality and Theorem 1.4.12 now gives a representing spectrum R.
We note that the corresponding cohomology theory is explicitly given on finite spectra by

R∗(X) ∼= R−∗(DX) = R⊗MU∗ MU−∗(DX) ∼= R• ⊗MU∗ MU ∗(X),

where R• is the ring R with the grading reversed. The Milnor short exact sequence [Swi02,
(10.4)] applied to the system CP 1

+ ↪→ CP 2
+ ↪→ · · · ↪→ CP∞+ is

0→ lim1R∗−1(CPn)→ R∗(CP∞)→ limR∗(CPn)→ 0,

and the lim1-term can be seen to vanish by the Mittag-Leffler condition, since for all n,
the induced map

R∗(CPn+1) ∼= R• ⊗MU∗ MU ∗(CPn+1)→ R• ⊗MU∗ MU ∗(CPn) ∼= R∗(CPn)

is an epimorphism. It follows that

R∗(CP∞) ∼= limR∗(CPn)
∼= limR• ⊗MU∗ MU ∗(CPn)
∼= limR• ⊗MU∗ MU ∗[[ω]]/(ωn+1)
∼= limR•[[ω]]/(ωn+1)
∼= R•[[ω]]
∼= R• ⊗MU∗ MU ∗(CP∞).

Proposition 2.20 of [HS99] now guarantees the existence of a unique commutative
ring spectrum structure on the representing spectrum R, such that R is a complex oriented
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MU -algebra spectrum and such that the multiplication µ : R∧R→ R induces the external
product in homology:

R∗(X)⊗R∗(Y )→ R∗(X ∧ Y ).
An orientation class for R∗(−) is ωR := 1 ⊗ ω, and we write ϕ : MU → R for the ring
morphism corresponding to this orientation class. The associated multiplicative natural
transformation on finite spectra (and CP∞) is the composition

(2.5.3) MU ∗(−) ∼= MU ∗ ⊗MU∗ MU ∗(−)
ϕ⊗1−→ R• ⊗MU∗ MU ∗(−) = R∗(−).

Also note that by Corollary 2.3.4, this implies that FR(x, y) = ϕFu(x, y).
A ring homomorphism ϕ : MU∗ → R satisfying the theorem will be called Landweber

exact. We shall also occasionally call the resulting (co)homology theories Landweber
exact. We remark that the coefficient ring of any Landweber exact (co)homology theory
has no torsion. This is obvious from the requirement that multiplication by p should act
injectively for all primes.

The exact functor theorem will be crucial when constructing elliptic cohomology the-
ories in Chapter 3. We now give a couple of examples of how the theorem gives rise to
homology theories that are already familiar to us.

Example 2.5.4. Let ϕ : MU∗ → Q classify the additive formal group law Fa(x, y) =
x+ y. Multiplication by p on Q is an isomorphism, so Q/(p) = 0. Thus the criteria of the
exact functor theorem are met, so Q⊗MU∗ MU∗(−) is a homology theory. By taking X to
be a point, we see that the coefficient ring is Q.

On the other hand, consider the Thom homomorphism µ : MU∗(X) → H∗(X). By
definition, it takes equivalence classes [Mn, f : M → X] of singular manifolds in MU n(X)
to f∗([M ]) ∈ Hn(X). Here [M ] ∈ Hn(X) is the fundamental class of M . The Thom
homomorphism is natural in X, and composing with H∗(−) → HQ∗(−) we obtain a
natural transformation MU∗(−)→ HQ∗(−). This natural transformation factors through
the natural transformation t : Q⊗MU∗ MU∗(−)→ HQ∗(−) defined by q ⊗ x 7→ q · µ(x). t
is an isomorphism for X a point, and thus t is a natural isomorphism of homology theories

Q⊗π∗MU MU∗(−) ∼= HQ∗(−).

Example 2.5.5. As a second example, let ϕ : MU∗ → Z[u, u−1] classify the multi-
plicative formal group law Fm(x, y) = x + y − uxy. We see that [p]m(x) = px + · · · +
(−u)p−1xp. Further, multiplication by p on Z[u, u−1] is injective, and so is multiplica-
tion by the unit (−1)up−1 on Zp[u, u−1]. We apply Theorem 2.5.2 and conclude that
Z[u, u−1]⊗MU∗ MU∗(−) is a homology theory.

Again, evaluating on a point reveals that the coefficient ring coincide with the coeffi-
cients π∗K of K-theory. As in the case with rational cohomology above, there is a natural
transformation

Z[u, u−1]⊗MU∗ MU∗(−)→ K∗(−),
which is an isomorphism on a point. See [Lan76] for details.

Example 2.5.6. Example 3.4 in [Lan76] shows that KO [ 1
2 ]∗(−) is a Landweber exact

homology theory. This fact will be crucial later, and we consider some of the details in
Corollary 3.1.25. We also note that KO∗(−) is not Landweber exact, since the coefficient
ring has torsion. (In fact, it is not even complex orientable.)

If E∗(−) is a complex orientable cohomology theory oriented by ω, we have seen
that homogeneous power series of the form θ(x) = x + · · · give every complex orienta-
tion of E∗(−). It is natural to ask if a Landweber exact cohomology theory gotten from
ϕ : MU∗ → R stays Landweber exact upon change of orientation. This is indeed the case.
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More precisely, denote by t the multiplicative natural transformation t : MU ∗(−)→ R∗(−)
such that t(ωMU ) = ωR. Further, let tθ be the multiplicative natural transformation
tθ : MU ∗(−) → R∗(−) sending ωMU to the orientation class θ(ωR). By assumption,
t : MU∗ → R is Landweber exact, and we will show that this implies that tθ : MU∗ → R is
Landweber exact as well.

t classifies the formal group law FR(x, y) = tFu(x, y). Moreover, Corollary 2.3.3 shows
that the formal group law classified by tθ : MU∗ → R is precisely

F θR(x, y) = θ
(
FR
(
θ−1(x), θ−1(y)

))
.

Lemma 2.5.7. Let F and F ′ be strictly isomorphic formal group laws over a ring R
via f : F → F ′. Then the n-series are related by

f
(
[n]F (x)

)
= [n]F ′

(
f(x)

)
.

Proof. This is obviously true for n = 0, so we assume that it also holds for n − 1
with n ≥ 1. Then

f
(
[n]F (x)

)
= F ′

(
f
(
[n− 1]F (x)

)
, f(x)

)
= F ′

(
[n− 1]F ′

(
f(x)

)
, f(x)

)
= [n]F ′

(
f(x)

)
,

and so the claim holds by induction. �

It follows from this lemma that

[p]F θR(x) = θ
(
[p]FR

(
θ−1(x)

))
,

and so Landweber exactness of tθ : MU∗ → R will follow from the fact that the specific
sequence of coefficients from [p]FR(x) stays regular in R under the conjugation with a strict
isomorphism.

Proposition 2.5.8. If a complex oriented cohomology theory R∗(−) is Landweber
exact, then R∗(−) is Landweber exact for all complex orientations.

Proof. Fix an arbitrary prime p and denote by ω the chosen orientation class for
R∗(−). With everything as above, we have, by assumption of Landweber exactness, that
the sequence (p, u1, u2, . . .) of coefficients from [p]FR(x) is regular in R. We want to show
that for a homogeneous power series θ(x) with leading term x, the sequence (p, uθ1, u

θ
2, . . .)

is regular in R, where uθi is the coefficient of xp
i

in [p]F θR(x).
Recall from Example 2.1.5 that the p-series are endomorphisms of formal group laws.

R/(p) is a commutative Fp-algebra and since the p-series remain endomorphisms after
taking quotients, we may apply Corollary 2.1.7 to see that [p]FR(x) (resp., [p]F θR(x)) is a
power series in xp over R/(p) with the coefficient of xp being u1 (resp., uθ1). As θ(x) has
leading term x, we may conclude that u1 = uθ1 in R/(p).

We proceed inductively. Assume that ui = uθi in R/(p, u1, . . . , ui−1) for 1 ≤ i ≤ n− 1.
Again using Corollary 2.1.7, [p]FR(x) is a power series in xp

n

over R/(p, u1, . . . , un−1).
It has no lower terms, since we have forced the coefficients of the lower xp

i

to be zero.
Furthermore, the coefficient of xp

n

is un.
Similar considerations hold for [p]F θR(x): the coefficient of xp

n

is uθn and lies in the ring
R/(p, uθ1, . . . , u

θ
n−1), which by induction is equal to R/(p, u1, . . . , un−1). Thus in this ring,

un = uθn, since θ(x) has leading term x.
It follows that the sequence (p, uθ1, u

θ
2, . . .) is regular. Since this holds for all primes p,

R∗(−) is Landweber exact with the orientation class θ(ω). �
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6. A natural transformation of Landweber exact theories

In this section we shall review the construction of a natural transformation which is
due to [Mil89]. Miller states, without giving a proof, that this natural transformation
has certain properties. In this section we shall provide proofs, using results of [HS99].
Specifically, we shall prove:

Theorem 2.6.1 (Miller [Mil89]). Let R and S be commutative graded rings with 1
that are concentrated in even degrees. Assume that ϕR : MU∗ → R and ϕS : MU∗ → S are
ring homomorphisms which are Landweber exact and let FR and FS denote the associated
formal group laws. Assume further that λ : R → S is a ring homomorphism and that
θ(x) = x + · · · ∈ S[[x]] is a strict isomorphism of formal group laws θ : FS → λFR. Then
there is a multiplicative natural transformation

λ̂ : R∗(−)→ S∗(−),

which is induced by a unique ring morphism of representing spectra R→ S, subject to the
following requirements:

(1) On coefficients, λ̂ = λ : R∗ → S∗.
(2) On orientation classes, λ̂(ωR) = θ(ωS).

To this end, let the setting be as in the theorem. Note that the assumption that R
and S are concentrated in even degrees is essential for our proof, but was not assumed in
[Mil89].

Using the universality of MU∗MU , we construct a candidate for the natural transfor-
mation in homology. The idea is then to dualize with Spanier–Whitehead duality to get a
natural transformation in cohomology with the desired properties.

By Proposition 2.4.11, we obtain a unique ring homomorphism ρ : MU∗MU → S
pushing expMU (x) to θ−1(x) such that the diagram commutes.

MU∗ MU∗MU MU

R S

ηL

ϕR ρ

ηR

ϕS

λ

(2.6.2)

Recall from [Ada69, Lecture 3] the existence of a “coaction map”

ψX : MU∗(X)→ MU∗MU ⊗MU∗ MU∗(X),

defined for all spectra X. We give its definition here. Firstly, the composition

MU ∧X ' MU ∧ S0 ∧X 1∧ι∧1−→ MU ∧MU ∧X

induces a homomorphism h : MU∗(X)→ MU∗(MU ∧X). Secondly, the homomorphism

m : MU∗MU ⊗MU∗ MU∗(X)→ MU∗(MU ∧X)

defined by sending f ⊗ g to

Sp ∧ Sq f∧g−→ MU ∧MU ∧MU ∧X 1∧µ∧1−→ MU ∧MU ∧X

is an isomorphism by [Rav86, Lemma 2.2.7]. One defines ψX := m−1 ◦h, which is natural
in X. ψX is a left MU∗-module homomorphism.
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We now use ψ = ψX to produce a natural transformation between the Landweber
exact homology theories. Consider the diagram

MU∗(X) MU∗MU ⊗ηR MU∗(X)

MU∗ ⊗MU∗ MU∗(X)

R⊗ϕR MU∗(X) S ⊗ϕS MU∗(X)

ψ

ϕR ⊗ 1

ρ⊗ 1

λ̂

∼=

(2.6.3)

where all the tensor products are over MU∗, and the indices on the tensor products reflects
which module structure is being used. Define λ̂ to be the composition (ρ⊗1)◦ψ on MU∗(X)
extended linearly to all of R⊗ϕR MU∗(X). Explicitly, put

(2.6.4) λ̂(r ⊗ x) = λ(r) · (ρ⊗ 1) ◦ ψ(x).

Lemma 2.6.5. λ̂ : R∗(X)→ S∗(X) is well-defined.

Proof. Let x ∈ MU∗(X) and m ∈ MU∗. Write ψ(x) =
∑
pi ⊗ xi, and use that ψ is

a left MU∗-module homomorphism to get

λ̂(r ·m⊗ x) = λ
(
rϕR(m)

)
· (ρ⊗ 1)

(∑
pi ⊗ xi

)
= λ(r)λ

(
ϕR(m)

)∑
ρ(pi)⊗ xi

and

λ̂(r ⊗m · x) = λ(r) · (ρ⊗ 1)ψ(m · x)

= λ(r) · (ρ⊗ 1)
(
m ·

∑
pi ⊗ xi

)
= λ(r)

∑
ρ
(
ηL(m)pi

)
⊗ x

= λ(r)ρ
(
ηL(m)

)∑
ρ(pi

)
⊗ x.

By (2.6.2) we see that they are indeed equal. �

Lemma 2.6.6. λ̂ : R∗(−)→ S∗(−) is a multiplicative natural transformation.

Proof. It is clear that λ̂ is a natural transformation, since ψ is natural in X. We will
therefore only have to show that it respects the external product in homology. Consider
the diagram

MU∗(X)⊗MU∗(Y ) MU∗(X ∧ Y )

(
MU∗MU ⊗MU∗ MU∗(X)

)
⊗
(
MU∗MU⊗MU∗MU∗(Y )

) MU∗MU ⊗MU∗ MU∗(X ∧ Y )

(
S ⊗MU∗ MU∗(X)

)
⊗
(
S ⊗MU∗ MU∗(Y )

) S ⊗MU∗ MU∗(X ∧ Y ),

∧

ψX ⊗ ψY ψX∧Y

Φ

(ρ⊗ 1)⊗ (ρ⊗ 1) ρ⊗ 1

∧
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where Φ: (a⊗ b)⊗ (c⊗d) 7→ ac⊗ (b∧d). The commutativity of the upper square is shown
in [Ada69, Lecture 3], and the lower commutes because(

ρ(a)⊗ b
)
∧
(
ρ(c)⊗ d

)
= ρ(a)ρ(c)⊗ (b ∧ d) = ρ(ac)⊗ (b ∧ d).

This shows that (ρ ⊗ 1)ψ : MU∗(−) → S∗(−) is a multiplicative natural transformation.
Extending to λ̂ we see that

λ̂
(
(r ⊗ x) ∧ (s⊗ y)

)
= λ̂

(
rs⊗ (x ∧ y)

)
= λ(rs)⊗ (ρ⊗ 1)ψX∧Y (x ∧ y)

=
(
λ(r)⊗ (ρ⊗ 1)ψX(x)

)
∧
(
λ(s)⊗ (ρ⊗ 1)ψY (y)

)
= λ̂(r ⊗ x) ∧ λ̂(s⊗ y)

and this completes the proof. �

Let R and S be spectra representing R∗(−) and S∗(−). Recall from earlier discus-
sions that R∗(−) and S∗(−) are complex oriented with orientation classes ωR = 1 ⊗ ω ∈
R̃2(CP∞) and ωS = 1⊗ω ∈ S̃2(CP∞). The associated formal group laws are FR and FS .

Lemma 2.6.7. The natural transformation λ̂ : R∗(−) → S∗(−) is induced by a mor-
phism λ : R → S of spectra which is unique up to homotopy. This morphism is a ring
morphism.

Proof. Propositions 2.12 and 2.18 and Corollary 2.15 of [HS99] show that

Phn(R,S) =

{
0, n = 2k,
[R,Σ2k+1S], n = 2k + 1,

and

Phn(R ∧R,S) =

{
0, n = 2k,
[R ∧R,Σ2k+1S], n = 2k + 1.

In particular, there are no phantoms R→ S and R ∧R→ S.
There is a morphism λ : R → S inducing λ̂ : R∗(−) → S∗(−) which is unique up to

weak homotopy. Due to the non-existence of non-trivial phantoms, it follows it is actually
unique up to homotopy.

By Lemma 2.6.6 the morphism λ : R → S is a “quasi-ring morphism” in the sense of
[Rud98, Definition III.7.1]. Since Ph0(R ∧R,S) = 0, [Rud98, Proposition III.7.5] shows
that λ : R→ S is a ring morphism. �

Remark. We note that the idea to prove that λ is a ring morphism is itself simple.
We know that the two possible compositions in

X ∧ Y R ∧R S ∧ S

R S

f ∧ g λ ∧ λ

µ µ

λ

are homotopic whenever X and Y are finite spectra. The trick is show that this implies
that the square commutes up to weak homotopy. Then the non-existence of phantoms
guarantees that it actually commutes up to homotopy.

Proof of Theorem 2.6.1. We are almost done. The only thing remaining is to
check that λ̂ acts as claimed on coefficients and on the orientation class.
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Recall that the coaction

ψX : MU∗(X)→ MU∗MU ⊗MU∗ MU∗(X)

is induced from the composition

MU ∧X ' MU ∧ S0 ∧X 1∧ι∧1−→ MU ∧MU ∧X,

so in the case X = S0, we see that ψ = ηL : MU∗ → MU∗MU . Thus diagram (2.6.3)
reduces to the square in (2.6.2), and hence λ̂ = λ on coefficient rings.

We now show that in cohomology

λ̂ : R̃2(CP∞)→ S̃2(CP∞)

takes ωR to θ(ωS). Write

λ̂(ωR) =
∑
i≥0

ciω
i+1
S

and
θ−1(t) =

∑
i≥0

dit
i+1,

where c0 = 1 = d0. By [Ada95, (11.4)], the coaction map for X = CP∞ is determined by

ψ(βm) =
∑
j≤m

bj(m−j) ⊗ βj ,

where b = b0 + b1 + · · · is the formal sum of the bi (cf. Theorem 2.2.4) and the subscript
(m− j) denotes the homogeneous part of weight m− j. (bi has weight i.)

By Lemma 1.4.9 the Kronecker pairing commutes with multiplicative natural trans-
formations, so

〈λ̂(ωR)n, λ̂(βRm)〉 = λ〈ωnR, βRm〉 = δnm,

where βRm = 1⊗ βm. We also find that

λ̂(βRm) = (ρ⊗ 1)ψ(βm) =
∑
j≤m

ρ(bj(m−j))⊗ βj =
∑
j≤m

dj(m−j)β
S
j ,

where d = d0 + d1 + · · · is the formal sum of the coefficients of θ−1(x).
In particular, we see that

δ1m = 〈λ̂(ωR), λ̂(βRm)〉

=
〈∑
i≥0

ciω
i+1
S ,

∑
j≤m

dj(m−j)β
S
j

〉
=
∑
i≥0

∑
j≤m

cid
j
(m−j)〈ω

i+1
S , βSj 〉

=
∑

1≤j≤m

cj−1d
j
(m−j).

Introducing the indeterminate t,

δ1mt =
∑

1≤j≤m

cj−1d
j
(m−j)t

m =
∑
j≥0

cj
(
θ−1(t)

)j+1

(m)
.

Summing over all m, we see that t =
∑
j≥0 cj

(
θ−1(t)

)j+1, so by uniqueness of inverse
power series one has that θ(t) =

∑
j≥0 cjt

j+1, and therefore λ̂(ωR) = θ(ωS). �
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Note that Theorem 2.6.1 only guarantees the existence of a multiplicative natural
transformation with the desired properties by means of an explicit construction. This
raises a natural question: Do these properties uniquely determine such a multiplicative
natural transformation? Unfortunately the answer to this question is at present unknown
to the author.

We make some comments about this problem, and we first consider an alternative
construction of multiplicative natural transformations. Let R∗(−) be Landweber exact via
the ring homomorphism ϕ : MU∗ → R and let E∗(−) be a complex oriented cohomology
theory with orientation class ωE . Assume as above that we have a ring homomorphism
λ : R → E∗ such that θ : FE → λFR is a strict isomorphism of formal group laws. This
means that λFR = F θE , the formal group law associated to E∗(−) with orientation class
θ(ωE). Let tθ : MU → E be the corresponding ring morphism. We have a commutative
diagram

MU ∗(−) E∗(−)

R∗(−)

tθ

ϕ⊗ 1
λ̂

where λ̂ is defined by λ̂(r ⊗ x) := λ(r)tθ(x). It is not hard to verify that this becomes a
multiplicative natural transformation. Returning to the question; we can now ask if one
can choose s 6= s′ : MU ∗(−)→ E∗(−) agreeing on the image of ϕ⊗ 1. Since ϕ : MU∗ → R
is not in general surjective, the author sees no reason why this should not be the case.

On the other hand, Landweber exact cohomology theories with coefficients in even
degrees are very well-behaved. In fact, if one in addition assume that E∗(−) is Landweber
exact, as is indeed the case in our situation, there are indications in the litterature that
under some further assumptions the multiplicative natural transformations are uniquely
determined by their action on CP∞. Our reference here is [Kas94], where T. Kashiwabara
studies unstable natural transformations and shows that they, under certain conditions,
are determined by how they behave on finite Cartesian products consisting of copies of
CP∞ and S1. It seems to the author that it should be possible to make his arguments fit
our situation, making use of multiplicativity and stability of the natural transformations
we consider, but he has not worked out the details.

It thus remains an interesting question to decide whenever there is only one multi-
plicative natural transformation with the prescribed action on coefficients and on the Euler
class. We remark that for purely topological reasons, this is the case if R∗(−) is complex
K-theory: Suppose given two multiplicative natural transformations s, t : K∗(−)→ E∗(−)
agreeing on coefficients and on ωK = 1−η

u . Then s(η) = t(η) and in effect s(x) = t(x) for
any x ∈ K∗(X) by naturality and the splitting principle.





CHAPTER 3

Elliptic cohomology

1. The construction of the cohomology theory

The main goal of this section is to introduce the so-called elliptic genus and show that
it satisfies the exact functor theorem of the previous chapter. By definition, this is a ring
homomorphism MSO∗ → R into a Q-algebra. One cannot apply the exact functor theorem
directly, since this is a criterion for homomorphisms MU∗ → R, but we will see that in this
particular setting, we may precompose with the forgetful homomorphism MU∗ → MSO∗
without losing any information, and thus obtain a ring homomorphism MU∗ → R to which
the exact functor theorem applies.

Definition 3.1.1. A complex genus is a ring homomorphism MU∗ → R. An ori-
ented genus is a ring homomorphism MSO∗ → R. In both cases we demand that the
ring homomorphisms preserve 1.

Let ϕ : MU∗ → R be a complex genus into a Q-algebra R. Since ϕ factors in the
diagram

MU∗ R

MU∗ ⊗Q R⊗Q

ϕ

ϕ⊗ 1

∼=

it is determined by the image of MU∗ in MU∗ ⊗Q. By Theorem 1.5.11

MU∗ ⊗Q ∼= Q
[
[CP 1], [CP 2], . . .

]
,

hence any ϕ : MU∗ → R is uniquely determined by its value on the CPn for n ≥ 0. By
Mischenko’s theorem 2.4.9, logMU (x) is pushed by ϕ to the power series

logϕ(x) =
∑
n≥0

ϕ(CPn)
n+ 1

xn+1 ∈ R[[x]].

(Here we are interpreting CPn as the class it represents in MU∗, and we will continue
to do so throughout this section whenever it simplifies the notation.) This motivates the
following:

Definition 3.1.2. The power series logϕ(x) is called the logarithm of the complex
genus ϕ : MU∗ → R. The inverse under composition is called the exponential function
of ϕ and is denoted by expϕ.

Since we are working over a Q-algebra R, there is a one-to-one correspondence of power
series l(x) with leading term x and genera ϕ : MU∗ → R, by demanding that

l(x) =
∑
n≥0

ϕ(CPn)
n+ 1

xn+1,

55
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so that l(x) = logϕ(x). This power series gives rise to a formal group law over R the usual
way;

Fϕ(x, y) = expϕ
(

logϕ(x) + logϕ(y)
)
.

Also note that Fϕ = ϕFu, so that over R it is equivalent whether we choose a formal group
law, a logarithm or a genus.

Recall from Example 1.5.1 the forgetful natural transformation

ψ : MU∗(−)→ MSO∗(−),

coming from a ring morphism of ring spectra. It provides a complex orientation of
MSO∗(−), and thus FMSO is classified by ψ : MU∗ → MSO∗. In particular, the loga-
rithm is

(3.1.3) logMSO(x) =
∑
n≥0

ψ(CPn)
n+ 1

xn+1 =
∑
n≥0

[CP 2n]
2n+ 1

x2n+1 ∈ (MSO∗ ⊗Q)[[x]],

because [CP 2n+1] is 0 in MSO∗. This can be proved using characteristic numbers; see
[Sto68].

Based on this, we make an analogous definition for the logarithm of an oriented genus.
Recall, again from Theorem 1.5.11, that MSO∗ ⊗Q = Q

[
[CP 2], [CP 4], . . .

]
.

Definition 3.1.4. Let ϕ : MSO∗ → R be an oriented genus into a Q-algebra. The
logarithm of ϕ is defined to be

logϕ(x) =
∑
n≥0

ϕ(CP 2n)
2n+ 1

x2n+1 ∈ R[[x]].

Just as in the case of a complex genus, ϕ is uniquely determined by where it sends
the CP 2n. Conversely, any odd power series with leading term x can be chosen to be the
logarithm, and thus determine an oriented genus MSO∗ → R.

Now the total FQ-classes of Chapter 1 provide concrete examples of genera. First con-
sider a closed, oriented n-dimensional manifold with tangent bundle τM and fundamental
class [M ]. For any even power series Q(x) = 1 + · · · ∈ Q[[x]] we define

ϕQ(M) :=

{
〈FQ(τM ), [M ]〉, 4 | n
0, otherwise.

This function can be shown to be bordism invariant, and it respects disjoint union and
Cartesian product (see [HBJ92, 1.6]), and so ϕQ : MSO∗ → Q is actually an oriented
genus.

Now let M be a compact, stably complex manifold of real dimension n. The stable
normal bundle lifts to BU , so there is a normal bundle ν that lifts to BU (p), for some
p. We choose a complementary complex vector bundle ξ such that ν ⊕ ξ ∼= pC. M has
tangent bundle τ , and the direct sum τ ⊕ ν is a trivial bundle of real rank n + 2p. Let ε
denote the trivial bundle of real rank 0 if n is even and of real rank 1 if n is odd. Then,
as real vector bundles,

τ ⊕ pC ⊕ ε ∼= τ ⊕ ν ⊕ ξ ⊕ ε ∼= ξ ⊕ nR ⊕ ε⊕ pC,

which shows that τ⊕pC⊕ε admits a complex structure. In other words, the stable tangent
bundle τM : M τ−→ BO(n) ↪→ BO admits a lifting to BU . One can show that any power
series Q(x) = 1 + · · · ∈ Q[[x]] defines a complex genus ϕQ : MU∗ → Q by

ϕQ(M) := 〈FQ(τM ), [M ]〉,
where τM is the stable tangent bundle.
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The following result is proved in [Hir66].

Proposition 3.1.5. Let ϕQ be the genus obtained from the power series Q(x) = 1+· · ·
and write Q(x) = x/f(x). Then

f−1(x) =
∑
n≥0

ϕQ(CPn)
n+ 1

xn+1,

i.e. the exponential function of ϕQ is expϕQ(x) = f(x). �

Example 3.1.6. Let M be a closed, stably complex manifold. Let Td(M) be the
complex genus obtained from the characteristic power series t(x) = x

1−e−x as in Example
1.2.10. This is called the Todd genus. To calculate the value of Td on complex projective
spaces, we see that expTd(x) = 1− e−x, so

logTd(x) = − log(1− x) =
∑
n≥0

1
n+ 1

xn+1

and hence Td(CPn) = 1 for all n. In fact, Td: MU∗ → Q takes only integer values. To see
this, we first modify Td to be a grading preserving ring homomorphism. This can be done
by starting with the power series t(x) = ux

1−e−ux , where |u| = 2. The resulting logarithm is
logTd(x) = −u−1 log(1 − ux). On the other hand one has a ring morphism ϕ : MU → K
which on coefficients classify the formal group law FK(x, y) = x+ y − uxy over Z[u, u−1].
Since logTd = logK , Td(CPn) = ϕ(CPn) for all n, so Td and ϕ coincide on MU∗. Since ϕ
maps into π∗K = Z[u, u−1] it follows that Td is integral. Another proof is given in [Hir66,
Theorem 24.5.4].

Example 3.1.7. For a closed, oriented manifold M , we take the L-genus to be the
genus gotten from the characteristic power series l(x) = x

tanh(x) of Example 1.2.13. As the
case was with the Todd genus, knowledge about the power series expansion of tanh−1(x)
reveals that L(CP 2n) = 1 and L(CP 2n+1) = 0. Thus the geometrically defined signature
(see for instance [May99]) coincides with the L-genus on the CPn. Since an oriented genus
is uniquely determined by its value on the CPn, it follows that L(M) equals the signature
of M , for any closed, oriented manifold. In particular, this implies that L : MSO∗ → Q
is integral, since this is true for the signature. (This is known as Hirzebruch’s signature
theorem.)

We remark that similar integrality results exist for the Â- and A-genera as well. (See
[Hir66, LM89].)

We will now make a specific choice of genus, or rather, a class of genera. Let r(t) be
the polynomial

r(t) = 1− 2δt2 + εt4.

Definition 3.1.8. An elliptic genus is an oriented genus ϕ : MSO∗ → R into a
Q-algebra such that

logϕ(x) =
∫ x

0

r(t)−1/2 dt,

for some choices of δ and ε in R.
If δ and ε are algebraically independent over Q and R = Q[δ, ε], then we call ϕ a

universal elliptic genus.

The following observation gives an equivalent characterization of elliptic genera.
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Lemma 3.1.9. Let h(x) = x+· · · be an odd power series over R, a Q-algebra containing
the elements δ and ε. h satisfies the differential equation

(h′)2 = 1− 2δh2 + εh4

if and only if h is the exponential function of the elliptic genus with parameters δ and ε.

Proof. Note that h−1(x) is an odd power series with leading term x and that
(h−1)′

(
h(x)

)
· h′(x) = 1. For y = h(x), we see that

(h−1)′(y) =
1

h′(x)
=
(
h′(x)2

)−1/2 =
(
1− 2δh(x)2 + εh(x)4

)−1/2

= (1− 2δy2 + εy4)−1/2.

Integrating shows that h−1(x) =
∫ x

0
(1− 2δt2 + εt4)−1/2 dt, since h−1(x) is odd. The other

direction is proved by differentiation. �

The formal group law obtained from an elliptic genus is called the Euler formal
group law and denoted by FEll . By definition, FEll is determined by the fact that it
should be an addition formula for the elliptic integral as made precise by∫ FEll (x,y)

0

r(t)−1/2 dt =
∫ x

0

r(t)−1/2 dt+
∫ y

0

r(t)−1/2 dt.

FEll is non-trivial to determine, and we state its formula as the next theorem. A proof
is given in the appendix of [Lan88].

Theorem 3.1.10. The elliptic genus ϕ : MSO∗ → R has associated formal group law

FEll(x, y) = expϕ
(

logϕ(x) + logϕ(y)
)

which is given explicitly by the formula

(3.1.11) FEll(x, y) =
x
√
r(y) + y

√
r(x)

1− εx2y2
,

where r(t) = 1− 2δt2 + εt4. �

We may now reconstruct the genera obtained from the characteristic series in (1.2.14)
as (non-universal) elliptic genera.

Example 3.1.12. For δ2 = ε, we see that the elliptic genus degenerates to a genus
with expϕ(x) = 1√

δ
tanh(

√
δx). The formal group law becomes

Fϕ(x, y) =
x(1− δy2) + y(1− δx2)

1− δ2x2y2
=

x+ y

1 + δxy
,

which is the addition law for tanh when δ = 1. In particular, δ = ε = 1 yields the L-genus
and δ = 1/4, ε = 1/16 yield the L̂-genus.

Similar considerations show that for δ = −γ/2 and ε = 0, the genus in question has
expϕ(x) = 1√

γ sinh(
√
γx), with associated formal group law

Fϕ(x, y) = x
√

1 + γy2 + y
√

1 + γx2.

δ = −2, ε = 0 corresponds to the A-genus, while δ = −1/8, ε = 0 yield the Â-genus.

From (3.1.11), it is clear that the coefficients of FEll lie in Q[δ, ε], but later in this
section, it will be important to know that they are contained in a particular subring.

Proposition 3.1.13. The formal group law FEll has coefficients in Z[ 1
2 ][δ, ε].
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Proof. The Taylor series expansion of (1 + x)−1/2 is easily computed and found to
be

1√
1 + x

=
∑
n≥0

(−1)n
(2n− 1)!!
n!2n

xn,

where ‘!!’ denotes the multifactorial notation. Inserting r(t) for 1 + x we have

r(t)−1/2 =
∑
n≥0

(−1)n
(2n− 1)!!
n!2n

( ∑
0≤k≤n

(
n

k

)
(−1)k(2δt2)k(εt4)n−k

)

=
∑

0≤k≤n<∞

(−1)n−k
(
n

k

)
(2n− 1)!!(2n)!!

(n!)222n−k δkεn−kt4n−2k

=
∑

0≤k≤n<∞

(−1)n−k
(
n

k

)(
2n
n

)
2k−2nδkεn−kt4n−2k.

We see that the coefficient of the powers of t are polynomials from Z[ 1
2 ][δ, ε]. Moreover,

r(t)−1/2 has leading term 1, and thus its multiplicative inverse
√
r(t) exists and lies in

Z[ 1
2 ][δ, ε][[t]]. It follows that FEll(x, y) ∈ Z[ 1

2 ][δ, ε][[x, y]]. �

The reason we considered the power series expansion of r(t)−1/2 and not
√
r(t) directly

is the following application: We can find the coefficient of t2m (which by definition is
ϕ(CP 2m)) by setting 4n − 2k = 2m in the last expression above. After some minor
rearrangements, we find that(

r(t)−1/2
)

2m
=

∑
m/2≤n≤m

(−1)m−n
(

n

2n−m

)(
2n
n

)
1

2m
δ2n−mεm−nt2m.

Setting m = 1 and m = 2 respectively, we obtain ϕ(CP 2) = δ and ϕ(CP 4) = 3
2δ

2− 1
2ε.

Solving for ε, we get (in the oriented bordism ring MSO∗) that

ε = ϕ(3[CP 2]2 − 2[CP 4]).

It is possible to show, using characteristic numbers (see [Sto68]), that the bordism classes
3[CP 2]2 − 2[CP 4] and [HP 2] coincide in MSO∗ ⊗Q. This leads to the following

Proposition 3.1.14. Let ϕ : MSO∗ → R be an elliptic genus. Then ϕ(CP 2) = δ and
ϕ(HP 2) = ε. �

Corollary 3.1.15. An elliptic genus is determined by its image on CP 2 and HP 2.

Proof. Let ϕ : MSO∗ → R be an elliptic genus. It has logarithm

logϕ(x) =
∫ x

0

(1− 2δt2 + εt4)−1/2 dt =
∑
n≥0

ϕ(CP 2n)
2n+ 1

x2n+1,

so each ϕ(CP 2n) is a polynomial in δ and ε. Since ϕ is determined by its image on the
CP 2n, the result follows. �

We need the following result, found in [Sto68, p. 180].

Theorem 3.1.16. Let ψ : MU∗(−) → MSO∗(−) be the forgetful natural transforma-
tion. The composition

MU∗
ψ−→ MSO∗

π−→ MSO∗/torsion
is onto. �

Proposition 3.1.17. An elliptic genus ϕ : MSO∗ → R maps into Z[ 1
2 ][δ, ε].
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Proof. Since R is a Q-algebra, it is torsion-free and therefore all torsion elements of
MSO∗ go to 0 under ϕ, so we can factor through MSO∗/torsion.

MU∗ MSO∗ R

MSO∗/torsion

ψ

π ◦ ψ

ϕ

π

ϕ̄

By Theorem 3.1.16,

imϕ = im ϕ̄ ◦ π = im ϕ̄ ◦ π ◦ ψ = imϕ ◦ ψ,
and ϕ◦ψ classifies FEll . Since MU∗ is generated by the coefficients of the universal formal
group law, the image of the composition ϕ ◦ ψ is generated by the coefficients of FEll ,
which all lie in Z[ 1

2 ][δ, ε] by Proposition 3.1.13. �

Let ϕ : MSO∗ → R be a universal elliptic genus. In light of this proposition, we from
now on view the universal elliptic genus as mapping into Z[ 1

2 ][δ, ε],

ϕ : MSO∗ → Z[ 1
2 ][δ, ε],

where δ and ε are indeterminates. Moreover, we assign degrees |δ| = 4 and |ε| = 8. Define
the discriminant to be the element ∆ = ε(δ2 − ε)2 of degree 24. To ease notation, let

M∗ := Z[ 1
2 ][δ, ε],

whenever δ and ε are given homological degree 4 and 8. M∗ will be taken to denote this
ring with cohomological grading.

We set out to show that certain localizations of M∗ give rise to homology theories via
the universal elliptic genus. We want to prove

Theorem 3.1.18. With γ equal to either ∆, ε or δ2 − ε, the functor

(3.1.19) M∗[γ−1]⊗MSO∗ MSO∗(−)

is a multiplicative homology theory with coefficient ring M∗[γ−1].

Remark. Franke proved a better version of this theorem in [Fra92]: one can take γ
to be any homogeneous element of M∗ of positive degree and obtain a homology theory.
For our purposes, however, it will be convenient to restrict our attention to these three
choices.

The idea is apply the Landweber exact functor theorem 2.5.2, and therefore we must
relate the functors (3.1.19) to MU∗(−).

It is shown in [Lan76] that the forgetful natural transformation

ψ : MU∗(−)→ MSO∗(−)

induces an isomorphism

MU∗(−)⊗MU∗ (MSO∗ ⊗ Z[ 1
2 ])

∼=−→ MSO∗(−)⊗ Z[ 1
2 ].

Thus it follows that we have natural isomorphisms

M∗[γ−1]⊗MU∗ MU∗(−) ∼= M∗[γ−1]⊗MSO∗ MSO∗ ⊗MU∗ MU∗(−)
∼= M∗[γ−1]⊗MSO∗ MSO∗(−),

(3.1.20)

since 2 is already inverted in M∗[γ−1]. This implies that the proof of exactness of the
functor in (3.1.19) is equivalent to showing that

M∗[γ−1]⊗MU∗ MU∗(−)
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is a homology theory, and this can be done using the exact functor theorem.
For the proof of Theorem 3.1.18, we will need the following facts, collected from

[Lan88].

Theorem 3.1.21. Let FEll be the Euler formal group law over M∗, and let un be the
coefficients of the p-series of FEll as in (2.5.1). Then

u2 ≡ (−1)
p−1
2 ε

p2−1
4 (mod p, u1)

ε
p2−1

4 ≡ (δ2 − ε)
p2−1

4 (mod p, u1)

for all odd primes p. �

Proof of Theorem 3.1.18. We verify that the sequence (p, u1, u2, . . .) of elements
from R := M∗[γ−1] is regular for all primes p. Since 2 is a unit, the sequence is regular for
p = 2, so we need only consider odd primes.

Fix a prime p > 2. It is clear that p acts injectively on R by multiplication. Next we
must show that u1 is not a zero-divisor in R/(p) = Fp[δ, ε, γ−1]. First we consider FEll

modulo ε, which becomes the formal group law

F (x, y) = x
√

1− 2δy2 + y
√

1− 2δx2

over Z[ 1
2 ][δ]. Its logarithm is

logF (x) =
1√
−2δ

sinh−1(
√
−2δx) =

1√
−2δ

log(
√
−2δx+

√
1− 2δx2).

View this as a power series over the bigger ring Z[ 1
2 ][
√
−2δ], and compose this logarithm

with the power series

expm(x) =
1√
−2δ

(e
√
−2δx − 1),

which is the exponential function associated to Fm(x, y) = x+ y+
√
−2δxy. This compo-

sition is a strict isomorphism f : F → Fm, explicitly given by

f(x) =
1√
−2δ

(
√
−2δx+

√
1− 2δx2 − 1).

Hence f
(
[p]F (x)

)
= [p]m

(
f(x)

)
. Over Fp[

√
−2δ], [p]F (x) and [p]m(x) thus shares the

coefficient in degree p, as in the proof of Proposition 2.5.8. This coefficient is (
√
−2δ)p−1,

and we conclude that for the Euler formal group law

(3.1.22) u1 ≡ (−2δ)(p−1)/2 6≡ 0 (mod (p, ε)).

In particular, u1 6= 0 in R/(p), so multiplication by this element is injective.
This conclusion also follows by considering the case δ2 = ε. Then the Euler formal

group law degenerates to F (x, y) = x+y
1+δxy , and over Z[ 1

2 ][
√
δ] this formal group law is

strictly isomorphic to Fm(x, y) = x+ y +
√
δxy. As above, it will follow that

(3.1.23) u1 ≡ δ(p−1)/2 6≡ 0 (mod (p, δ2 − ε)).

If ∆ = ε(δ2− ε)2 is a unit of R/(p, u1), then so are ε and δ2− ε. Conversely, by virtue
of the last congruence in the previous theorem, ε is a unit of R/(p, u1) if and only if δ2− ε
is. Therefore, inverting any of ε, δ2 − ε or ∆ in R automatically implies the existence of
an inverse of the other two in R/(p, u1).

We combine the two congruences of the previous theorem to get

u2 ≡ (−1)
p−1
2 (δ2 − ε)

p2−1
4 (mod p, u1).
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Therefore u2 is a unit in R/(p, u1), so R/(p, u1, u2) = 0 and consequently (p, u1, u2) is a
regular sequence for all primes p. Invoking Theorem 2.5.2, we see that

M∗[γ−1]⊗MU∗ MU∗(−) ∼= M∗[γ−1]⊗MSO∗ MSO∗(−)

is a homology theory, for all of our choices of γ. �

Remark. This proof relies heavily on the congruences found by Landweber. This
is a non-trivial result, and Landweber uses the theory of elliptic curves to arrive at his
conclusion. There is another, more conceptual proof of the fact that u2 is a unit in
R/(p, u1). This proof also uses elliptic curves, and we will sketch this proof; see [Fra92,
LRS95].

Following Franke, we will assume that γ = γ(δ, ε) is any homogeneous element of
positive degree in M∗. In anticipation of a contradiction, assume that u2 is not a unit in
R/(p, u1). Then it is not a unit in R, and thus there is a maximal ideal m ⊆ R containing
p, u1 and u2. m cannot contain ∆ = ε(δ2 − ε)2, however, because then either ε or δ2 − ε
would lie in this ideal. Then the congruences (3.1.22) and (3.1.23) show that δ ∈ m (since
u1 ∈ m), and consequently γ(δ, ε) ∈ m. But γ is a unit in R, so ∆ /∈ m.

Therefore ∆ 6= 0 in the residue field R/m. It is known that the equation

y2 = 1− 2δx2 + εx4

can be considered an elliptic curve over R/m, because the discriminant ∆ is non-zero, and
that the formal group law of this elliptic curve (see [Sil09]) is FEll(x, y). But in R/m,
u1 = u2 = 0, so the height of the formal group law is greater than 2. This contradicts the
fact that for any elliptic curve over a field of characteristic p > 0, the height is either 1 or
2. It follows that u2 must be a unit in R/(p, u1). See [Fra92] for references on the claims
put forward in this discussion.

Definition 3.1.24. The homology theory

Ell∗(−) = M∗[γ−1]⊗MU∗ MU∗(−)

with γ equal to ε, δ2 − ε or ∆ is called elliptic homology with coefficient ring M∗[γ−1].
The associated cohomology theory, which on finite spectra is given by

Ell∗(−) = M∗[γ−1]⊗MU∗ MU ∗(−),

is called elliptic cohomology.

We write Ell for the representing ring spectrum, and thus usually suppress the choice
of γ from the notation. As the elliptic cohomology theories we have constructed are
Landweber exact theories, they are complex orientable, and we choose the orientations

ωEll := 1⊗ ω ∈ Ẽll2(CP∞).

In the sections that follow, we will identify the coefficient ring of this cohomology theory
with a graded ring of complex-valued functions.

The following is a corollary to the proof of Theorem 3.1.18.

Corollary 3.1.25. KO [ 1
2 ]∗(−) is Landweber exact via the Â-genus

ϕÂ : MSO∗ → Z[ 1
2 ][u2, u−2]

which has been modified to keep track of grading, i.e. M4n 7→ Â(M)u2n.
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Proof. Since 2 is inverted, (3.1.20) and the comments following justify that we only
have to check the Landweber condition for this oriented genus. Recall that Â(CP 2) = −1/8
and Â(HP 2) = 0. It follows that the Euler formal group law in this case becomes

F (x, y) = x

√
1 +

1
4
u2y2 + y

√
1 +

1
4
u2x2.

The aforementioned proof carries over to show that in Fp[u2, u−2], the coefficient of xp in
the p-series is u1 = (u2/4)(p−1)/2 which is a unit, and therefore the Landweber conditions
are satisfied.

It remains to exhibit a natural transformation

Z[ 1
2 ][u2, u−2]⊗MSO∗ MSO∗(−)→ KO [ 1

2 ]∗(−)

which is an isomorphism on coefficients. We leave this to [ABS64]; see also [LRS95,
Proposition 4.9] and [Lan76, Example 3.4]. �

2. Modular forms and functions

Recall the Möbius functions f : C̄→ C̄, defined by

f(τ) =
aτ + b

cτ + d
,

and where a, b, c and d are complex coefficients such that ad − bc 6= 0. Instead of fixing
the coefficients, we may fix τ and obtain a group action of GL2(C) on C̄ by

(3.2.1)
(
a b
c d

)
τ =

aτ + b

cτ + d
.

In the current section, we will consider this action to describe a special class of complex-
valued functions. The exposition given here is heavily influenced by [Sil09] and [HBJ92],
and one should confer these sources for details.

Recall that SL2(Z) is the group of 2-by-2 matrices with integer coefficients and de-
terminant 1. Consider a subgroup G ⊆ SL2(Z) of finite index. We will assume that it
contains the element −I2 = (−1 0

0 −1 ) throughout. Let

H := {τ ∈ C | Im τ > 0} ⊆ C

denote the upper half-plane, which we view as embedded H ↪→ CP 1 by τ 7→ (τ, 1). The
canonical left action on CP 1 is matrix multiplication, and upon restriction to elements
from SL2(Z), the upper half-plane is invariant. This action is precisely the one given in
(3.2.1). In CP 1 we put ∞ = (1, 0) and 0 = (0, 1).

The action restricts to QP 1 ⊆ CP 1, and we call the orbits under the action of G the
cusps of G. Note that we will also call a representative for each orbit a cusp. We further
note that SL2(Z) acts transitively on QP 1, so every element s ∈ QP 1 may be written
s = S∞ for some S ∈ SL2(Z), and thus SL2(Z) has only the cusp ∞.

Let f : H → C be a meromorphic function. Define, for all A = ( a bc d ) ∈ SL2(R) and all
integers k,

f |kA(τ) := (cτ + d)−kf(Aτ).

Note that this is a right action on the set of meromorphic functions H → C; we have
(f |kA)|kA′ = f |kAA′ .

Definition 3.2.2. Let G ⊆ SL2(Z) be a subgroup of finite index and k an integer. A
meromorphic function f : H → C is called a modular function of weight k for G if

(1) f |kA = f for all A ∈ G; i.e. f(Aτ) = (cτ + d)kf(τ), for all τ ∈ H.
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(2) for all S ∈ SL2(Z) one can write

f |kS(τ) =
∑
n≥nS

anq
n/N ,

for some an ∈ C, N ∈ N and nS ∈ Z, and where q = q(τ) := e2πiτ . This power
series is called the q-expansion at the cusp S∞.

If a q-expansion exists at a cusp S∞ and nS ∈ Z (that is, we do not allow an 6= 0 for
arbitrarily small n), one says that f is meromorphic at the cusp S∞. If nS ≥ 0, f is said
to be holomorphic at S∞. If nS > 0 (resp., nS < 0) we say that f has a zero (resp.,
pole) of order |nS | at S∞.

If f is a modular function of weight k for G which is in addition holomorphic on H
and holomorphic at each cusp, we say that f is a modular form of weight k for G.

Lemma 3.2.3. Let G and H be subgroups of SL2(Z). If f is a modular function (resp.,
form) of weight k for G, and S ∈ SL2(R) such that H ⊆ S−1GS, then f |kS is a modular
function (resp., form) of weight k for H.

Proof. Let A ∈ H ⊆ S−1GS. Then with B ∈ G such that A = S−1BS,

(f |kS)|kA = f |kSA = f |kBS = (f |kB)|kS = f |kS . �

Lemma 3.2.4. Let S ∈ SL2(Z) and f a modular function of weight k for G. Then f |kS
is periodic with period N , for some N ∈ N. In other words,

f |kS(τ +N) = f |kS(τ).

Proof. ( 1 1
0 1 ) is one of the generators of SL2(Z) (see [Sil09]). Hence for every sub-

group of finite index, there must be some N such that ( 1 N
0 1 ) = ( 1 1

0 1 )N is contained in
this subgroup. In particular, S−1GS has finite index, so we can choose an N such that
( 1 N

0 1 ) ∈ S−1GS.
Put A = ( 1 N

0 1 ). The lemma gives

f |kS(τ +N) = (f |kS)|kA(τ) = f |kS(τ). �

This shows that the existence of an N in the q-expansion (nS = −∞ allowed) follows
from the assumption on the finiteness of the index of G in SL2(Z). Thus (2) in the definition
could be replaced with the requirement that f is meromorphic at each cusp. Moreover, if
S∞ and S′∞ lie in the same orbit of QP 1 under the action of G, then there exists some
constant c > 0 such that nS = cnS′ , so in order to show that f is a modular function
(resp., modular form) it is sufficient to check that f is meromorphic (resp., holomorphic)
at only one representative for each cusp. (See [HBJ92, Appendix I] for a discussion of
this fact.)

We will mainly be concerned with modular forms and functions for some specific
subgroups of SL2(Z).

Example 3.2.5. Let Γ0(2) = {( a bc d ) | c ≡ 0 (mod 2)} be the subgroup of matrices
where the lower left entry is an even integer. This is a non-normal subgroup of index 3 in
SL2(Z), and it has two cusps, namely ∞ = (1, 0) and 0 = (0, 1) = ( 0 −1

1 0 )∞.
Note that since ( 1 1

0 1 ) ∈ Γ0(2), we have that for any modular function f of weight k
for Γ0(2),

f(τ + 1) = f
(
( 1 1

0 1 )τ
)

= f(τ),
so the q-expansion of f at ∞ is of the form

f(τ) =
∑
n≥n∞

anq
n.
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Since 0 = S∞ where S = ( 0 −1
1 0 ) and S( 1 2

0 1 )S−1 = ( 1 0
−2 1 ) ∈ Γ0(2), it follows from the

lemma above that
f |kS(τ + 2) = f |kS(τ),

so that the q-expansion of f at 0 = S∞ can be written in the form

f |kS(τ) =
∑
n≥n0

bnq
n/2.

We will frequently write

(3.2.6) f0 := f |kS
to denote the expansion at 0.

We remark that f0 is not a modular function for Γ0(2); rather it is a modular function
for the group

Γ0(2) := S−1Γ0(2)S = {( a bc d ) | b ≡ 0 (mod 2)}

by Lemma 3.2.3. If one now puts T = (
√

2 0

0 1/
√

2
), and let A ∈ Γ0(2), then a simple

calculation shows that T−1AT ∈ Γ0(2) so if g is any weight k modular function for Γ0(2)
then g|kT is a modular function for Γ0(2). In particular, this shows that

g(2τ) = g
(
(
√

2 0

0 1/
√

2
)τ
)

= 2−k/2g|kT (τ)

is a modular function for Γ0(2).

Observe that for a modular function f of weight k for G, we have

f(τ) = f
( τ + 0

0τ + 1

)
= f

( −τ − 0
−0τ − 1

)
= (−1)kf(τ),

since −I2 ∈ G. In effect, there are no non-zero modular functions of odd weight.
Write Mk(G) for the vector space over C of weight k modular forms for G, where

pointwise addition gives the group structure. Pointwise multiplication of modular forms
gives a pairing Mm(G)⊗Mn(G)→Mm+n(G) and this makes

M∗(G) =
⊕
k∈Z

Mk(G)

a commutative graded ring. The same way one can make rings of modular functions.

2.1. Relating elliptic cohomology and modular functions. Consider the lattice
L = Zω2 + Zω1, where ω2/ω1 = τ ∈ H, and a function f which is elliptic with respect to
L. The order of f , np, at a point p is defined to be

np =


n, f has a zero of order n at p
−n, f has a pole of order n at p
0, otherwise.

A divisor of C/L is an element of the free abelian group Div(C/L) generated by the points
of C/L. We write an element as d =

∑
p∈C/L np ·(p), where the notation (p) is to emphasize

that · is not scalar multiplication. The divisor of f is the sum div f :=
∑
p∈C/L np · (p),

where p runs over all points in C modulo L and np is the order of f at the point p.
The following theorem is proved in Section 5 of [HBJ92, Appendix I].

Theorem 3.2.7. Let d =
∑
p∈C/L np · (p) be a divisor such that

∑
p∈C/L np = 0 and∑

p∈C/L np · p ∈ L (this is scalar multiplication). Then there is an elliptic function f with
respect to L, unique up to normalization, such that div f = d. �
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For τ ∈ H, let as usual q = q(τ) = e2πiτ , let L be the lattice 4πi(Zτ + Z), and choose
the divisor d = (0) + (2πi) − (2πiτ) −

(
2πi(τ + 1)

)
. By the previous theorem there is a

unique elliptic function f(z) = z+ · · · with respect to L having this divisor. [Zag88] now
gives the following.

Theorem 3.2.8. This function f(z) is odd, and is the exponential function of an
elliptic genus ϕ : MSO∗ → Z[ 1

2 ][δÂ, εÂ]. The characteristic power series Q(z) := z/f(z) is
an element of Q[[q]][[z]] given by both of the following formulas

Q(z) =
z/2

sinh(z/2)

∏
n≥1

(
(1− qn)2

(1− qnez)(1− qne−z)

)(−1)n

,

Q(z) = z/ expϕ(z),

where δÂ and εÂ are explicitly given by

δÂ = −1
8
− 3

∑
n≥1

( ∑
2-d|n

d

)
qn,

εÂ =
∑
n≥1

( ∑
d|n

2-n/d

d3

)
qn.

δÂ and εÂ are modular forms for Γ0(2) of weight 2 and 4, respectively. The coefficient of
z2k in Q(z) is a homogeneous polynomial in δÂ and εÂ of weight 2k, and so a modular
form of weight 2k for Γ0(2). �

The subscript Â decorating the δ and ε is meant to reflect the fact that the constant
term of the q-expansions are precisely those values yielding the Â-genus. In particular,
when τ → ∞ (q → 0) this elliptic genus degenerates to the Â-genus. These formulas will
be essential in the following discussion. For now we will just apply them, but at the end
of Chapter 4 we will comment on how they are related to the Weierstrass ℘-function.

The modular forms δÂ and εÂ are algebraically independent and it is known that (see
[LRS95, HBJ92])

(3.2.9) M∗
(
Γ0(2)

)
= C[δÂ, εÂ].

Thus letting MR
∗
(
G) denote the ring of modular forms with coefficients in R, one can show

that MQ
∗
(
Γ0(2)

)
= Q[δÂ, εÂ]. It follows that the elliptic genus of the previous theorem

takes values in this ring. We obtain a sharper result:

Lemma 3.2.10. Let R be a ring such that Z ⊆ R ⊆ Q. Then

MR
∗
(
Γ0(2)

)
= R[8δÂ, εÂ].

Proof. First we note that from Theorem 3.2.8, 8δÂ and εÂ are modular forms with
q-expansion coefficients in Z, and so the inclusion ⊇ follows.

Now take a modular form in MR
∗
(
Γ0(2)

)
of, say, weight 2k. Then, by (3.2.9),

f =
∑

0≤j≤k/2

aj(−8δÂ)k−2jεj
Â

for some complex numbers aj , and −8δÂ = 1 +
∑
n≥1 dnq

n, εÂ =
∑
n≥1 enq

n, where dn
and en are integers. Let f =

∑
bnq

n be the q-expansion at ∞ with bn ∈ R. Using this,
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we have that ∑
n≥0

bnq
n =

∑
0≤j≤k/2

aj(−8δÂ)k−2jεj
Â

=
∑

0≤j≤k/2

aj

(
qj +

∑
m>j

c(j)mqm
)

=
∑
n≥0

(
anq

n +
∑
j<n

ajc(j)nqn
)
,

for integers c(j)m. Picking out the coefficients in degree n, we have

bn = an +
∑
j<n

ajc(j)n.

Because c(j)n ∈ Z, bn ∈ R and a0 = b0, this shows that an ∈ R by induction, and in effect
we have shown ⊆. �

Proposition 3.2.11 ([LRS95, Proposition 5.7]). The modular form εÂ is non-zero
on H, at 0 and has a simple zero at ∞. δ2

Â
− εÂ is non-zero on H, at ∞ and has a simple

zero at 0. ∆Â := εÂ(δ2
Â
− εÂ)2 thus is non-zero on H with zeros at the cusps. �

The previous two results allows us to describe the coefficient ring of elliptic cohomology.

Theorem 3.2.12. M∗ = Z[ 1
2 ][δÂ, εÂ] is the ring of modular forms M

Z[
1
2 ]

∗
(
Γ0(2)

)
.

M∗[ε−1

Â
], M∗[(δ2

Â
− εÂ)−1] and M∗[∆−1

Â
], respectively, are the rings of modular functions

with q-expansion coefficients of Z[ 1
2 ] which are holomorphic on H and which may only have

poles at ∞, 0 and both ∞, 0, respectively.

Proof. The first claim was proved in the lemma. We turn to the second part, but
we only prove this for one of the localizations. The proofs for the other two are analogous.

For M∗[∆−1

Â
], recall from Proposition 3.2.11 that ∆Â is a modular form with q-

expansion coefficients from Z[ 1
2 ] which is non-zero on H and zero at the cusps. Hence

formally inverting ∆Â introduces what we may consider a modular function of negative
weight with poles at the cusps. Thus the elements of M∗[∆−1

Â
] can be viewed as modular

functions with q-expansion coefficients in Z[ 1
2 ] that are holomorphic on H and possibly

have poles at the cusps (but nowhere else). Conversely, if f is such a modular function,
the poles (if they exist) have finite order, and so we may kill them by multiplying with the
modular form ∆Â a sufficient number of times. So for some N ,

f∆N
Â
∈M

Z[
1
2 ]

∗
(
Γ0(2)

)
= M∗

and it follows that f ∈M∗[∆−1

Â
]. �

Therefore, letting δÂ and εÂ be the modular forms above, the elliptic homology and
cohomology theories of Definition 3.1.24 have rings of modular functions as coefficient
rings. This will be a useful point of view in the sections to come.





CHAPTER 4

Computing correction classes

1. Riemann–Roch for complex orientable theories

In anticipation of explicit computations, we restate the Riemann–Roch theorem for
cohomology theories with complex orientations. In these theories we have a firm grasp on
how the Thom classes behave, as we discussed in Chapter 2, and it is fair to believe that
this behavior should be reflected in the correction classes. Before stating the special case
of the Riemann–Roch theorem, we will show that the correction classes indeed act nicely.

Lemma 4.1.1. The correction classes for multiplicative natural transformations

λ : E∗(−)→ F ∗(−)

of complex orientable cohomology theories are natural. That is, for continuous maps
g : Y → X and complex vector bundles ξ ↓ X of rank n,

g∗ρξ = ρg∗ξ.

Proof. Naturality of the Thom classes for E∗(−) and F ∗(−) along with the natu-
rality of λ implies that the following diagram commutes. (Recall that we write g for the
Thomification of the induced bundle map Th(ḡ).) The diagram

E∗(X) Ẽ∗+2n(Xξ) F̃ ∗+2n(Xξ) F ∗(X)

E∗(Y ) Ẽ∗+2n(Y g
∗ξ) F̃ ∗+2n(Y g

∗ξ) F ∗(Y )

ϕEξ

∼=
λ ϕFξ

∼=

ϕEg∗ξ

∼=
λ ϕFg∗ξ

∼=

g∗ g∗ g∗ g∗

commutes, and taking 1 ∈ E0(X) and going to F 0(Y ) along the top and along the bottom
proves the claim. �

Lemma 4.1.2. The correction class is multiplicative: Let ξ ↓ X and ξ′ ↓ Y be complex
vector bundles and let λ : E∗(−)→ F ∗(−) be a multiplicative natural transformation. Then

ρξ×ξ′ = ρξ × ρξ′ ∈ E0(X × Y ).

Proof. Recall that in any complex oriented cohomology theory ψ∗(uξ×ξ′) = uξ ∧uξ′ ,
where ψ : Xξ ∧ Y ξ′ ≈−→ (X × Y )ξ×ξ

′
. Using this, one sees that

(ρξ × ρξ′) · uFξ×ξ′ = π∗ξ×ξ′(ρξ × ρξ′) ` (ψ−1)∗(uFξ ∧ uFξ′)
= (ψ−1)∗

(
(π∗ξρξ ` u

F
ξ ) ∧ (π∗ξ′ρξ′ ` u

F
ξ′)
)

= (ψ−1)∗(λuEξ ∧ λuEξ′)
= λ(ψ−1)∗(uEξ ∧ uEξ′)
= λuEξ×ξ′ .

Here π denotes the projection from the indicated disc bundle. This shows that ρξ × ρξ′
acts as a correction class for ξ × ξ′, and is thus equal to ρξ×ξ′ by uniqueness. �
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Lemma 4.1.3. The correction class of a multiplicative natural transformation of com-
plex oriented cohomology theories is a stable, exponential characteristic class.

Proof. Using the diagonal ∆: X → X ×X and the previous two lemmas, one sees
that ρξ ` ρξ′ = ρξ⊕ξ′ , so ρ is exponential.

Denote the natural transformation by λ : E∗(−) → F ∗(−). Since the cohomology
theories are assumed to be complex oriented, the Thom class of the trivial line bundle
1 ↓ pt is σ2(1). The trivial line bundle 1 ↓ X is isomorphic to the pullback of 1 ↓ pt along
the projection p : X → pt , so uE1↓X = p∗σ2(1) ∈ Ẽ2(X1), and similarly for F . Since λ
commutes with both induced maps and suspensions,

λuE1 = λp∗σ2(1) = p∗σ2
(
λ(1)

)
= uF1 ,

thus ρ1 = 1. So ρξ⊕1 = ρξ, i.e. ρ is stable. �

A consequence of this lemma is that ρ is determined by its value on the canonical line
bundle over CP∞.

From now on, we shall consider the following setting. Let Dd, M and Nn be smooth,
closed manifolds and p : M → N a smooth map such that p : M → N becomes a fiber
bundle with fiber D. Then p is a smooth fiber bundle, and consequently, M is n + d-
dimensional. The normal bundle of D, τD, can be viewed as a subbundle of τM , and then
one has that

τD ⊕ p∗τN ∼= τM .

Let νM denote the tangent bundle of M and consider

τD ⊕ νM ⊕ p∗τN ∼= τM ⊕ νM ∼= p.

The embedding can be chosen such that p ↓ M is even dimensional and therefore can
be endowed with a complex structure. Therefore it is E-orientable, and by Theorem 6,
Section I.C.3 of [Dye69], νM ⊕ p∗τN is E-orientable if and only if τD is. Assuming this is
the case, we obtain

ρτD ` ρνM⊕p∗τN = ρp = 1.

Hence we may formulate the Riemann–Roch theorem the following way.

Corollary 4.1.4. Let λ : E∗(−)→ F ∗(−) be a multiplicative transformation of com-
plex oriented cohomology theories, and let p : M → N be a smooth fiber bundle with fiber
D as before. Assume that D is a stably complex manifold, with tangent bundle τ . Then
for all α ∈ E∗(M)

λp!
E(α) = p!

F (λα ` ρ−1
τ ),

where ρ−1
τ denotes the multiplicative inverse of the correction class ρτ . �

We remark that these Riemann–Roch formulas may be “composed” the obvious way:
Let multiplicative natural transformations λ : E∗(−)→ F ∗(−) and µ : F ∗(−)→ G∗(−) be
given. In the setting of Corollary 4.1.4 we get

µλp!
E(α) = µp!

F (λα ` ρ−1
τ )

= p!
G(µλα ` µρ−1

τ ` σ
−1
τ ),

(4.1.5)

where ρ and σ are the correction classes for λ and µ respectively. Thus the correction class
of the composition µλ : E∗(−)→ G∗(−) is µρ−1

τ ` σ
−1
τ .

We make a final observation. As one specifies an orientation for a complex orientable
cohomology theory by choosing an Euler class for η ↓ CP∞, it would be convenient to
express the correction class for vector bundles directly in terms of Euler classes.



2. EXAMPLES OF CORRECTION CLASSES 71

Lemma 4.1.6. The correction class for the canonical line bundle with respect to the
multiplicative natural transformation λ : E∗(−)→ F ∗(−) is ρη = λωE

ωF
.

Proof. By definition, ρη is the unique element satisfying ρη · uFη = λuEη . With the
notation of Chapter 1, we get that

ρη ` eF (η) = z∗π∗ρη ` z
∗uFη = z∗(ρη · uFη ) = z∗λuEη = λeE(η).

Note that λωE is an orientation class of F ∗(CP∞), and so it is a power series with leading
term ωF , and thus the division makes sense. �

2. Examples of correction classes

From now on, we will assume the setting from Corollary 4.1.4. In other words, we
consider complex oriented cohomology theories E∗(−) and F ∗(−) and a multiplicative
natural transformation λ : E∗(−)→ F ∗(−). By the last lemma of the previous section, it
suffices to compute ρ−1

η = ωF
λωE

and extend by the splitting principle to all (stably) complex
vector bundles; such as the tangent bundle of the fiber D, as above.

In what follows, we compute several examples of correction classes.

Example 4.2.1 (Chern character). The first example we consider is associated to the
Chern character, which by definition is the ring morphism of ring spectra

ch : K ' S0 ∧K ι∧1−→ H ∧K.
In cohomology it induces a multiplicative natural transformation (see [Swi02])

ch : K∗(−)→ H∗(−;H∗K)

where H∗K ∼= Q[u, u−1] and u is the Bott element of cohomological degree −2. Explicitly,
the Chern character is determined by the splitting principle and naturality by

ch(η) = e−uc1(η)

ch(u) = u.

Recall that for rational cohomology we have chosen the orientation class ωH = c1(η)
in H2(CP∞;H∗K), while we for K-theory chose ωK = 1−η

u . Thus,

ch(ωK) =
1− ch(η)

u
=

1− e−uc1(η)

u
=

1− e−uωH
u

,

so the correction class ρη is

ρη =
ch ωK
ωH

=
u−1(1− e−ux)

x
,

where we have put x = ωH .
Thus ρη is the inverse of the Todd class td(η) which has been modified by u to be

a homogeneous element of degree 0 in H∗(CP∞;H∗K). Appealing to Corollary 4.1.4 we
conclude that the Chern character has associated Riemann–Roch formula

ch p!
K(α) = p!

H

(
ch α ` td(τ)

)
,

where td(η) = ux
1−e−ux ∈ H

0(CP∞;H∗K).
Because multiplicative natural transformations K∗(−) → H∗(−;H∗K) are deter-

mined by their action on coefficients and on the orientation class, we could have de-
scribed the Chern character with an application of Theorem 2.6.1: Let λ : Z[u, u−1] ↪→
Q[u, u−1] ∼= H∗K be the inclusion of the coefficient ring of K∗(−) into the coefficient
ring of H∗(−;H∗K). We saw in Example 3.1.6 that the Todd genus classifies the formal
group law FK of K-theory. Let ϕ : MU∗ → H∗K classify the additive formal group law
FH . These are the ring homomorphisms realizing K-theory and singular cohomology as
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Landweber exact theories. Thus expK : FH → FK is a strict isomorphism of formal group
laws over H∗K, and by Theorem 2.6.1 there is a multiplicative natural transformation
λ̂ : K∗(−) → H∗(−;H∗K) such that λ̂(ωK) = expK(ωH). Since ch(ωK) = expK(ωH), it
follows that λ̂ = ch.

Recall from Chapter 1 the multiplicative natural transformation

c : KO [ 1
2 ]∗(−)→ K [ 1

2 ]∗(−)

given by complexification of vector bundles. We showed in Proposition 1.3.20 that an
element lies in the image of c if and only if it is invariant under ψ−1; that is ξ 7→ ξ̄ and
u 7→ −u. We are interested in choosing an orientation class for KO [ 1

2 ]∗(−), so in particular
this class must map to an element of K [ 1

2 ]2(CP∞) invariant under this action. We see
that the orientation class for K [ 1

2 ]-theory,

ωK =
1− η
u
∈ K [ 1

2 ]2(CP∞),

is not invariant under ψ−1 and thus does not lie in the image of c, so in particular it is not
the image of an orientation class for KO [ 1

2 ]∗(−).
In fact,

ψk(ωK) = ψk
(

1− η
u

)
=

1− ηk

ku
=

1
k

(1− uωK)k − 1
−u

=
1
k

[k]K(ωK)

(using Example 2.1.4), so in particular we have

(4.2.2) ψ−1(ωK) = −[−1]K(ωK) =
ωK

1− uωK
.

Example 4.2.3 (Characterizing an orientation of KO [ 1
2 ]∗(−)). In what follows we

shall characterize an Euler class e(ξ) of KO [ 1
2 ]∗(−) by considering its complexification,

ce(ξ). Again using Proposition 1.3.20, we see that the class

eK(`)eK(¯̀) =
(1− `)(1− ¯̀)

u2
∈ K [ 1

2 ]4(X),

where ` is a complex line bundle over X, is in the image of c since it is invariant under the
Z2-action in question. Trying to get a hold of ce(ξ), we demand both that

ce(`)ce(¯̀) = eK(`)eK(¯̀)

and that ce is odd, i.e.
ce(¯̀) = −ce(`).

Combining these two equations with (4.2.2), we now obtain

ce(η)2 = −eK(η)eK(η̄) = ωKψ
−1(ωK) =

ω2
K

1− uωK
.

Taking square roots, we get the expression

(4.2.4) ce(η) =
ωK√

1− uωK
=

1− η
u
√
η
.

We have ce(η) = ϕ(ωK), where ϕ(x) = x√
1−ux is a homogeneous power series with leading

term x in π∗K [ 1
2 ][[x]]. Therefore, ce(η) is another orientation class for K [ 1

2 ]∗(−). To see
that this really is the image of a class from KO [ 1

2 ]2(CP∞) under complexification, we
apply the usual criterion:

ψ−1
(
ce(η)

)
= ψ−1

(
1− η
u
√
η

)
=

1− η̄
−u
√
η̄

=
η − ηη̄
−uη
√
η̄

=
1− η
u
√
η

= ce(η)
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Since the complexification is injective (Proposition 1.3.19), e(η) is uniquely determined by
(4.2.4). This class is actually an orientation class for KO [ 1

2 ]∗(−); to see why this is true,
consider the computation

c
(
j∗e(η)

)
= j∗

(
ce(η)

)
= j∗

(
ϕ(ωK)

)
= σ2(1) = σ2

(
c(1)

)
= c
(
σ2(1)

)
,

where j : S2 ↪→ CP∞, and then use injectivity of c.
Write ωKO := e(η) ∈ KO [ 1

2 ]2(CP∞) for this orientation class and eKO(ξ) for the Euler
class e(ξ). Although this uniquely determines the orientation class, we seek to extract
information more suitable for our purposes.

We write F for the formal group law over π∗K [ 1
2 ] determined by the Euler class ceKO .

As ϕ transforms the Euler class eK into ceKO , we have a strict isomorphism of formal
group laws ϕ : FK → F . In particular, the exponential function associated to this formal
group law is given by

expF (x) = ϕ ◦ expK(x) = ϕ

(
1− e−ux

u

)
=

1− e−ux

ue−ux/2

= 2u−1 sinh(ux/2) ∈ (π∗K [ 1
2 ]⊗Q)[[x]].

As c expKO = expF , this gives the exponential series obtained from the KO [ 1
2 ]-orientation:

(4.2.5) expKO(x) = 2u−1 sinh(ux/2) ∈ (π∗KO [ 1
2 ]⊗Q)[[x]].

We note that this makes sense; this power series is odd, and therefore there will only be
occurrences of even powers of u.

Example 4.2.6 (Complexification). Consider the complexification

c : KO [ 1
2 ]∗(−)→ K [ 1

2 ]∗(−),

where the cohomology theories have Euler classes eKO and eK respectively. The Riemann–
Roch theorem takes the form

cp!
KO(α) = p!

K

(
cα ` ρ−1

τ

)
,

where the characteristic class ρ−1
τ is given by

ρ−1
η =

ωK
cωKO

=
√
η,

on the canonical line bundle η ↓ CP∞.

Example 4.2.7 (Complexified Chern character). Composing the Chern character and
the complexification, we now obtain a multiplicative natural transformation we call the
complexified Chern character

chc : KO [ 1
2 ]∗(−)→ H∗(−;H∗K).

Using (4.1.5), we see that the correction class of this composition is given on the canonical
line bundle by

ρ−1
η = ch(

√
η) ` td(η)

=
√

ch(η)
ux

1− e−ux

= e−ux/2
ux

1− e−ux

=
x

2u−1 sinh(ux/2)

where x = c1(η).
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Thus the correction class for chc : KO [ 1
2 ]∗(−)→ H∗(−;H∗K) is the total Â-class from

(1.2.14) modified to land in degree 0. This shows that the Riemann–Roch theorem in this
case reads

chc p!
KO(α) = p!

H

(
chc α ` Â(τ)

)
,

where the subscript H denotes singular cohomology with coefficients H∗K. Because of this
occurrence of Â, we shall refer to this specific orientation of KO [ 1

2 ] as the Â-orientation.
We will write ωÂ for this orientation class and eÂ for the corresponding Euler class from
this point on.

3. The elliptic character

In this section we return to elliptic cohomology, and the goal of is to compute the
correction class for a multiplicative natural transformation between elliptic and rational
cohomology. This natural transformation is the “elliptic character”, and it is produced
using Theorem 2.6.1.

Recall that Theorem 3.2.12 enables us to view the ring M∗ = Z[ 1
2 ][δÂ, εÂ] as the ring

of modular forms for Γ0(2) with coefficients in Z[ 1
2 ]. Theorem 3.2.8 gave explicit formulas

for δÂ and εÂ as modular forms, and their constant terms motivates us to try relating
elliptic cohomology and KO [ 1

2 ]∗(−) with the Â-orientation.
Any modular form f in Z[ 1

2 ][δÂ, εÂ] has a q-expansion f̃(q) = f(τ) at ∞ which is an
element of Z[ 1

2 ][[q]]. Recall from (1.3.6) that with 2 inverted, π∗KO [ 1
2 ] = Z[ 1

2 ][u2, u−2],
where u has cohomological degree −2. Giving δÂ and εÂ homological degrees 4 and 8
respectively, we construct a grading preserving ring homomorphism

λ : Z[ 1
2 ][δÂ, εÂ]→ π∗KO [ 1

2 ][[q]]

by sending a weight 2k modular form f to u2kf̃(q) ∈ π4kKO [ 1
2 ][[q]], its q-expansion at ∞

which has been shifted by u to land in the correct degree.
We make the following easy observation.

Lemma 4.3.1. λ factors through π∗Ell to give a ring homomorphism on coefficient
rings

(4.3.2) λ : π∗Ell → π∗KO [ 1
2 ][[q]]

if and only if we choose the localization π∗Ell = M∗[(δ2
Â
− εÂ)−1].

Proof. The q-expansion of εÂ has no multiplicative inverse in π∗KO [ 1
2 ][[q]] as it has

no constant term. Thus for λ to factor through π∗Ell we must choose a localization where
εÂ is not inverted. This excludes γ = εÂ and γ = ∆Â = εÂ(δ2

Â
− εÂ)2. �

Let λ denote the ring homomorphism (4.3.2). Since Z[ 1
2 ][δÂ, εÂ] is generated by δÂ

and εÂ, λ is determined by the q-expansions of δÂ and εÂ. From Theorem 3.2.8,

λ(δÂ) = u2

(
− 1

8
− 3

∑
n≥1

( ∑
2-d|n

d

)
qn
)
,

λ(εÂ) = u4

(∑
n≥1

( ∑
d|n

2-n/d

d3

)
qn
)
.

(4.3.3)

We have found Ell∗(−) = Ell∗ ⊗MU∗ MU ∗(−) to be a Landweber exact cohomology
theory via the ring homomorphism ϕ : MU∗ → Ell∗ classifying the Euler formal group law.
By Corollary 3.1.25 also KO [ 1

2 ]∗(−) is Landweber exact, with formal group law FÂ given
by the exponential power series expÂ(x) in (4.2.5). Setting the stage for Theorem 2.6.1,
we have:
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Proposition 4.3.4. The power series θ(x) over π∗KO [ 1
2 ][[q]] given by

θ(x) = x
∏
n≥1

(
1− qnu2x2

(1− qn)2

)(−1)n

is a strict isomorphism of formal group laws θ : FÂ → λFEll .

Proof. It is equivalent to show that the diagram

Fa

FÂ λFEll

expÂ λ expEll

θ

commutes.
Recall that the logarithm of the elliptic genus ϕ : MSO∗ → Z[ 1

2 ][δÂ, εÂ] is logϕ(x) =∫ x
0

dt√
1−2δÂt

2+εÂt
4
. As λ merely introduces the appropriate power of u2 and identifies the

modular forms with their q-expansions at∞ we see that (by slightly abusing notation and
writing δÂ, εÂ for both the modular forms and their q-expansions)

λ logEll(x) =
∫ x

0

dt√
1− 2δÂu2t2 + εÂu

4t4
=

1
u

∫ ux

0

dt√
1− 2δÂt2 + εÂt

4
=

1
u

logϕ(ux).

Thus λ expEll(x) = u−1 expϕ(ux), and by applying Theorem 3.2.8 we now obtain

λ expEll(x) = 2u−1 sinh(ux/2)
∏
n≥1

(
(1− qneux)(1− qne−ux)

(1− qn)2

)(−1)n

= 2u−1 sinh(ux/2)
∏
n≥1

(
1−

qnu2
(
2u−1 sinh(ux/2)

)2
(1− qn)2

)(−1)n

= expÂ(x)
∏
n≥1

(
1−

qnu2 expÂ(x)2

(1− qn)2

)(−1)n

.

This shows that θ ◦ expÂ = λ expEll , i.e. the diagram commutes. �

Now we are in a position to apply Miller’s construction: By Theorem 2.6.1 there is a
multiplicative natural transformation

eh := λ̂ : Ell∗(−)→ KO [ 1
2 ]∗(−)[[q]]

such that eh(ωEll) = θ(ωÂ) and identifying modular forms with their q-expansion on
coefficients. This natural transformation is called the elliptic character. Clarke and
Johnson justifies this name in [CJ92], where they show that this natural transformation
is induced by the ring morphism of spectra

Ell ' S0 ∧ Ell → KO ∧ Ell

by analogy with the Chern character.
With the chosen orientations, the Riemann–Roch theorem states that

eh p!
Ell(α) = p!

KO

(
eh α ` ρ−1

τ ),

where (on the canonical line bundle)

(4.3.5) ρ−1
η =

ωÂ
eh(ωEll)

=
ωÂ
θ(ωÂ)

=
∏
n≥1

(
1−

qnu2ω2
Â

(1− qn)2

)(−1)n+1

.
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Composing eh with the complexified Chern character, we obtain a Riemann–Roch
formula for the multiplicative natural transformation

chc eh : Ell∗(−)→ H∗(−;H∗K)[[q]],

where the correction class is
chc ρ−1

ξ ` Â(ξ).
This expression can be better appreciated in an alternative form. Specifically we use

the constructions λtξ and stξ of Chapter 1 and their exponentiality to compute cρ−1
ξ in

complex K-theory. Since the complexification is both additive and multiplicative, we get
that

c

(
1−

qnu2ω2
Â

(1− qn)2

)
= 1−

qnc(u2)c(ωÂ)2

(1− qn)2

= 1−
qnu2

(
1−η
u
√
η

)2

(1− qn)2

= 1− qnη̄(1− η)2

(1− qn)2

=
(1− qnη)(1− qnη̄)

(1− qn)2

=
λ−qnη ⊗ λ−qn η̄

(λ−qn1)2

= λ−qn(η − 1)⊗ λ−qn(η − 1)

= λ−qn
(
(η − 1)R ⊗ C

)
Using Lemma 1.3.14,

cρ−1
η = c

(⊗
n≥1

sq2n(η − 1)R ⊗ λ−q2n−1(η − 1)R

)
,

so via the splitting principle, we get the following correction class for any complex vector
bundle ξ:

RÂq (ξ) := cρ−1
ξ = c

(⊗
n≥1

sq2n(ξ − dim ξ)R ⊗ λ−q2n−1(ξ − dim ξ)R

)
We conclude that with the orientations chosen as above, the multiplicative natural

transformation
chc eh : Ell∗(−)→ H∗(−;H∗K)[[q]]

gives rise to the Riemann–Roch formula

chc eh p!
Ell(α) = p!

H

(
chc eh α ` ch RÂq (τ) ` Â(τ)

)
.

4. Choosing another orientation of KO [ 1
2 ]

It is interesting to see what happens to the formulas of the previous section if one tries
to change the orientations. Specifically, we try to characterize another orientation class
for KO [ 1

2 ], as we did in the preceding discussion.
For a complex line bundle ` ↓ X consider the class f(`) = 1

u
1−`
1+` of K [ 1

2 ]2(X). It
is easily seen to be invariant under the Z2-action ψ−1, and so lies in the image of the
complexification. One can verify that

f(`⊗ `′) =
f(`) + f(`′)

1 + u2f(`)f(`′)
,
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which is (up to correction with u) the addition law for tanh.
It may seem that we have characterized the L-genus, but unfortunately this class does

not give an orientation of K [ 1
2 ]. One sees this by expressing f(`) in terms of eK(`); with

ϕ(x) = x
2−ux one has

ϕ
(
eK(`)

)
=

1
u

1− `
1 + `

= f(`).

This is a power series of π∗K [ 1
2 ][[x]], but its leading term is 1

2x, so f(η) is not an orientation
class for K [ 1

2 ]∗(−). This problem is only a minor one, however, and starting with 2f(η) in
place of f(η) corrects this.

Thus we characterize an Euler class eL̂ in KO [ 1
2 ]∗(−) by demanding that on line

bundles

ceL̂(`) =
2
u

1− `
1 + `

.

Applying the Chern character to this, we see that

chc eL̂(η) =
2
u

1− e−ux

1 + e−ux
= 2u−1 tanh(ux/2),

where x = eH(η). It follows that the correction class is given by

ρ−1
η =

eH(η)
chc eL̂(η)

= L̂(η),

where L̂(η) is modified by u to land in degree 0. We put ωL̂ = eL̂(η) and call this the
L̂-orientation for KO [ 1

2 ]∗(−). Using this orientation, the Riemann–Roch formula is

chc p!
KO(α) = p!

H

(
chc α ` L̂(τ)

)
.

Recall from Corollary 3.1.25 that KO [ 1
2 ]∗(−) is a Landweber exact cohomology theory

with the Â-orientation. Now the formal group laws FL̂ and FÂ are strictly isomorphic over
π∗KO [ 1

2 ], for

θ(x) := expÂ
(

logL̂(x)
)

= 2u−1 sinh
(

tanh−1(ux/2)
)

=
x

1− (ux/2)2

is a power series of π∗KO [ 1
2 ] with leading term x. By Proposition 2.5.8, KO [ 1

2 ]∗(−) is
Landweber exact with respect to the L̂-orientation as well.

In light of Theorem 2.6.1 and by analogy to the case with the Â-orientation, we try
to describe a ring homomorphism

λ : π∗Ell → π∗KO [ 1
2 ]

for a suitable choice of localization.
Again, [Zag88] provides useful formulas.

Theorem 4.4.1. Let δL̂ and εL̂ be modular forms of weight 2 and 4 for Γ0(2), defined
by the q-expansions at ∞;

δL̂ =
1
4

+ 6
∑
n≥1

( ∑
2-d|n

d

)
qn

εL̂ =
1
16

+
∑
n≥1

(∑
d|n

(−1)dd3

)
qn.
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The exponential series of the elliptic genus ϕ : MSO∗ → Z[ 1
2 ][δL̂, εL̂] satisfies

z

expϕ(z)
=

z/2
tanh(z/2)

∏
n≥1

(1 + qnez)(1 + qne−z)/(1 + qn)2

(1− qnez)(1− qne−z)/(1− qn)2
.

The coefficient of z2k is a weight 2k modular form for Γ0(2). �

Again, the subscript L̂ reflects the constant terms of these q-expansions.
The analogue of Lemma 4.3.1 shows that we have a ring homomorphism

λ : π∗Ell → π∗KO [ 1
2 ][[q]]

identifying modular forms with their q-expansions, if and only if we choose the localization
where εL̂ is inverted. This is because the q-expansion of δ2

L̂
− εL̂ has no constant term,

and therefore no multiplicative inverse.
Letting FL̂ be the formal group law over π∗KO [ 1

2 ][[q]] with exponential series expL̂(x) =
2u−1 tanh(ux/2), we get a result analogous to Proposition 4.3.4.

Proposition 4.4.2. The formal group laws FL̂ and λFEll over π∗KO [ 1
2 ][[q]] are strictly

isomorphic, and an isomorphism θ : FL̂ → λFEll is explicitly given by

θ(y) = y
∏
n≥1

(
1− 8qn(1 + q2n)u2y2

4(1− q2n)2 − (1− qn)4u2y2

)
.

Proof. Arguing as we did in Proposition 4.3.4,

λ expEll(x) = 2u−1 tanh
(
ux

2

)∏
n≥1

(1− qneux)(1− qne−ux)/(1− qn)2

(1 + qneux)(1 + qne−ux)/(1 + qn)2
,

where we have used the previous theorem.
Now we put y = expL̂(x) = 2u−1 tanh(ux/2). It is easily verified that

eux =
2 + uy

2− uy
,

and so the expression becomes

(4.4.3) θ(y) := λ expEll(x) = y
∏
n≥1

(1− qn 2+uy
2−uy )(1− qn 2−uy

2+uy )/(1− qn)2

(1 + qn 2+uy
2−uy )(1 + qn 2−uy

2+uy )/(1 + qn)2
.

The proof can be completed by a gruesome expansion. �

As in the previous case, Theorem 2.6.1 shows that there is a multiplicative natural
transformation

eh : Ell∗(−)→ KO [ 1
2 ]∗(−)[[q]]

with the specified orientations which coincides with λ on coefficients and satisfies eh(ωEll) =
θ(ωL̂). The correction class for this natural transformation thus satisfies

ρ−1
η =

ωL̂
eh(ωEll)

=
ωL̂
θ(ωL̂)

.

Again we complexify and use the operations of K-theory to express the correction
class in a nicer way. The most suitable form of θ(y) for this purpose is the one in (4.4.3).
Putting y = ωL̂ = eL̂(η) and complexifying, the nth factor becomes(

1− qn 2+uc(ωL̂)

2−uc(ωL̂)

)(
1− qn 2−uc(ωL̂)

2+uc(ωL̂)

)
/(1− qn)2(

1 + qn
2+uc(ωL̂)

2−uc(ωL̂)

)(
1 + qn

2−uc(ωL̂)

2+uc(ωL̂)

)
/(1 + qn)2

.
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Recalling that c(ωL̂) = 2
u

1−η
1+η and then using that

2− uc(ωL̂)
2 + uc(ωL̂)

=
1− 1−η

1+η

1 + 1−η
1+η

= η,

the nth term is seen to be
1−qnη̄
1−qn

1−qnη
1−qn

1+qnη̄
1+qn

1+qnη
1+qn

=
λ−qn(η − 1)⊗ λ−qn(η − 1)
λqn(η − 1)⊗ λqn(η − 1)

= c

(
λ−qn

(
(η − 1)R

)
λqn
(
(η − 1)R

) ).
It follows that

cρ−1
η =

c(ωL̂)
θ
(
c(ωL̂)

) = c

(⊗
n≥1

λqn
(
(η − 1)R

)
⊗ sqn

(
(η − 1)R

))
.

Consequently, for any complex vector bundle ξ, the correction class is

RL̂q (ξ) := cρ−1
ξ = c

(⊗
n≥1

λqn
(
(ξ − dim ξ)R

)
⊗ sqn

(
(ξ − dim ξ)R

))
.

The Riemann–Roch formula for chc eh : Ell∗(−)→ H∗(−;H∗K)[[q]] with these choices
of orientations thus becomes

chc eh p!
Ell(α) = p!

H

(
chc eh α ` ch RL̂q (τ) ` L̂(τ)

)
.

5. Comparing the calculations

In the preceding sections we blindly used formulas of [Zag88] without providing any
insight. There are some things that should be said about how these formulas are related,
however, and it will be the goal of this section to shed some light on this. To do so, we
consider an explicit construction of the universal elliptic genus.

Let L = 2πi(Zτ + Z) be a lattice depending on τ ∈ H. The Weierstrass ℘-function
for the lattice L is given by

℘(τ, x) :=
1
x2

+
∑

0 6=ω∈L

1
(x− ω)2

− 1
ω2
.

We recall some standard facts about this function. Proofs can be found in [HBJ92].
℘(τ, x) is elliptic in x with respect to L and has poles of order 2 precisely at every lattice
point. Now let

d1(τ) := πi, d2(τ) := πiτ, d3(τ) := πi(τ + 1)

be the half-division points of the lattice. Putting ei(τ) := ℘
(
τ, di(τ)

)
for i = 1, 2, 3, it can

be shown that ℘(τ, x) takes these values with order 2, i.e. ℘(τ, x)− ei(τ) has a double zero
at di(τ), and this is thus the only zero modulo L.

See [HBJ92, Chapter 2] for a proof of the following theorem.

Theorem 4.5.1. The function f(τ, x) := 1/
√
℘(τ, x)− e1(τ) = x + · · · is odd and

elliptic for the lattice 2πi(Z · 2τ + Z). It has divisor

div f = (0) + (2πiτ)− (πi)−
(
πi(2τ + 1)

)
.

Moreover, f is the exponential function of an elliptic genus; it satisfies

(f ′)2 = 1− 2δff2 + εff
4

where δf = − 3
2e1 and εf = (e1 − e2)(e2 − e3) (as functions of τ). �

The analogous result with e2 in place of e1 is as follows.
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Theorem 4.5.2. The function g(τ, x) := 1/
√
℘(τ, x)− e2(τ) = x + · · · is odd and

elliptic for 2πi(Zτ + Z · 2), and the divisor of this function is

div g = (0) + (2πi)− (πiτ)−
(
πi(τ + 2)

)
.

g satisfies
(g′)2 = 1− 2δgg2 + εgg

4,

with δg = − 3
2e2 and εg = (e2 − e1)(e1 − e3). �

The dependence on τ begs the question: What happens when τ varies? From [HBJ92,
Theorem I.3.6] we collect several facts regarding the modular properties of the ei.

Theorem 4.5.3. The functions e1(τ), e2(τ) and e3(τ), resp., are modular forms of
weight 2 for Γ0(2), Γ0(2) = ( 0 1

−1 0 )Γ0(2)( 0 −1
1 0 ) and ( 1 1

−1 0 )Γ0(2)( 0 −1
1 1 ), resp. Their respec-

tive q-expansions are

e1(τ) := −1
6

(
1 + 24

∑
n≥1

( ∑
2-d|n

d

)
qn
)

e2(τ) :=
1
12

(
1 + 24

∑
n≥1

( ∑
2-d|n

d

)
qn/2

)

e3(τ) :=
1
12

(
1 + 24

∑
n≥1

(−1)n
( ∑

2-d|n

d

)
qn/2

)
,

and for all A ∈ SL2(Z) the ei are permuted by the |2A-action; e1 is fixed under the action
of Γ0(2) and e2 is fixed under the action of Γ0(2). Recalling the notation from (3.2.6), we
have e0

1 = e2 and e0
3 = e3, that is, the expansion at 0 interchanges e1 and e2, but keeps e3

fixed. �

By comparing q-expansions, it for instance immediately follows that e1 + e2 + e3 = 0
and e1(τ) = −2e2(2τ). Recalling that δf = − 3

2e1, shows that δf is the same modular
form as δL̂ given in Theorem 4.4.1. Furthermore, the expansion of εf can be shown to
coincide with εL̂. Thus it follows that the elliptic genera of Theorem 4.4.1 and Theorem
4.5.1 coincide.

By the theorem above, δ0
f = δg and ε0

f = εg, which are modular forms for Γ0(2). We
get back to Γ0(2) by τ 7→ 2τ , and by comparison of q-expansions with Theorem 3.2.8 one
finds that δg(2τ) = δÂ(τ) and εg(2τ) = εÂ(τ). This shows that

δÂ(τ) = δ0
L̂

(2τ) and εÂ(τ) = ε0
L̂

(2τ).

In other words, the elliptic genera with parameters δL̂, εL̂ and δÂ, εÂ are the same, but
expanded at the two different cusps of Γ0(2) interchanged by τ 7→ −1/2τ .

6. Final remarks

Through the course of the last two chapters we have seen how elliptic integrals, curves,
functions and modular forms are all important aspects of elliptic cohomology. We have
focused heavily on the algebraic topological side of things, but it is interesting to remark
that (notably) Witten [Wit88] shows that there also is a tight connection between elliptic
cohomology and differential geometry. In fact, the correction classes of the type RÂq and
RL̂q are often accredited him, as he shows how they arise in connection with the equivariant
index of the Dirac operator; see the survey article by Segal [Seg88] and also [HBJ92].

As a last remark, we try to compensate for the fact that so far, we have not motivated
the use of the Riemann–Roch theorem. We end this section by expressing the elliptic
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genus in another way, more true to the setting of Witten, et. al. The basic observation is
as follows.

Lemma 4.6.1. Let ϕ : MU → E be a ring morphism giving E a complex orientation.
Then the genus on coefficients, ϕ : MU∗ → E∗ coincides with the assignment

M 7→ p!
E(1),

where p : M → pt is the projection, and p!
E : E∗(M)→ E∗−m(pt) = πm−∗E. �

There is a ring morphism ϕ : MU → Ell orienting elliptic cohomology and classifying
the Euler formal group law, where Ell is the representing spectrum of elliptic cohomology
with coefficient ring

Z[ 1
2 ][δÂ, εÂ][(δ2

Â
− εÂ)−1].

Let p : Mn → pt , where M is closed, stably complex; this is a smooth fiber bundle with
fiber M , and this fiber in turn has tangent bundle τ . We previously have investigated the
non-commutative diagram

Ell0(M) Ell−n(pt)

H0(M,H∗K)[[q]] H−n(pt , H∗K)[[q]]

p!Ell

chc eh chc eh

p!H

where the correction class is RÂq (τ) ` Â(τ). The right vertical arrow is the embedding of
coefficients

Z[ 1
2 ][δÂ, εÂ][(δ2

Â
− εÂ)−1] ↪→ Q[u, u−1][[q]]

in degree n, where δÂ and εÂ are sent to their q-expansions multiplied with u2 and u4

respectively. In particular, if n = 4k, then chc eh p!
Ell(1) = ϕ(M)u2k, where ϕ(M) is

identified with its q-expansion. Going the other way in the diagram, and using the fact
that p!

H(−) = 〈−, [M ]〉, the Kronecker pairing with the fundamental class of M , we see
that

ϕ(M) = p!
H

(
ch RÂq (τ) ` Â(τ)

)
u−2k = 〈ch RÂq (τ) ` Â(τ), [M ]〉u−2k ∈ Q[u, u−1][[q]].

We define the twisted Â-genus of M by ξ as

Â(M, ξ) := 〈ch(ξ) ` Â(τ), [M ]〉
where ξ ↓ M is a complex vector bundle and τ is the tangent bundle of M . Thus we can
express the elliptic genus by means of an Â-genus twisted in RÂq (τ):

ϕ(M) = Â
(
M,RÂq (τ)

)
∈ Q[[q]].

Here we have omitted the Bott element.
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defined by elliptic curves, The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181,
Amer. Math. Soc., Providence, RI, 1995, pp. 317–337. MR MR1320998 (96i:55009)

83



84 BIBLIOGRAPHY

[May99] J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University

of Chicago Press, Chicago, IL, 1999. MR MR1702278 (2000h:55002)
[Mil89] Haynes Miller, The elliptic character and the Witten genus, Algebraic topology (Evanston,

IL, 1988), Contemp. Math., vol. 96, Amer. Math. Soc., Providence, RI, 1989, pp. 281–289.

MR MR1022688 (90i:55005)
[MS74] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press,

Princeton, N. J., 1974, Annals of Mathematics Studies, No. 76. MR MR0440554 (55 #13428)
[NS02] Mara D. Neusel and Larry Smith, Invariant theory of finite groups, Mathematical Surveys and

Monographs, vol. 94, American Mathematical Society, Providence, RI, 2002. MR MR1869812

(2002k:13012)
[Qui69] Daniel Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull.

Amer. Math. Soc. 75 (1969), 1293–1298. MR MR0253350 (40 #6565)

[Rav86] Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied
Mathematics, vol. 121, Academic Press Inc., Orlando, FL, 1986. MR MR860042 (87j:55003)

[Rud98] Yuli B. Rudyak, On Thom spectra, orientability, and cobordism, Springer Monographs in Math-

ematics, Springer-Verlag, Berlin, 1998, With a foreword by Haynes Miller. MR MR1627486
(99f:55001)

[Seg88] Graeme Segal, Elliptic cohomology (after Landweber-Stong, Ochanine, Witten, and others),
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