Agent Based Modelling and Simulation of Plug-in
Electric Vehicles Adoption in Norway

Sondre Flinstad Harbo
Salman Zaferanlouei
Magnus Korpés
Department of Electric Power Engineering
Norwegian University of Science and Technology
Trondheim, Norway
{sondrefh, salman.zaf, magnus.korpas}@ntnu.no

Abstract—This paper looks into the consumption side of the
power balance, and more specifically on the effects of utilizing
an increasingly larger fleet of Plug-in electric vehicles (PEVs)
for personal transportation. To asses this, an Agent Based
Model of PEVs has been extended and developed with different
charging strategies. The model simulates power demand from
a given number of PEVs in a given area, and may be useful
for policymakers and researchers alike. Simulations ran for the
city of Trondheim reinforce the notion that the rising adoption
of PEVs might not only pose a substantial challenge due to
the relative size of the power demanded, but more critically
also because of the variability that the charging profiles exhibit.
On the other hand, the different behaviour of the PEV agents,
as modelled through different charging strategies, indicate that
incentives such as price signals might effect how much the agent
charge at different times. Hence it may even lend the PEVs
batteries as assets to help stabilize the power balance in the
electric grid.

Index Terms—Agent Based Modelling, Plug-in Electric Vehi-
cles, Power Demand Variability

I. INTRODUCTION

The transition to a more sustainable society and economy
imposes a challenge for the power system due to raising
variability in the system. It is induced by an increasing share of
renewable energy sources on the supply side, and the growing
adoption of Plug-in Electric Vehicles (PEVs) on the demand
side. The focus of this paper is on the latter. The adoption
of PEVs has seen a tremendous rise throughout the last
decade, facilitated by batteries seeing a steady improvement
for both cost and energy density [1]. As such, Norway poses
an interesting case study, as the country is one of the greatest
PEV adopters to date with PEVs at 3,7% of the total fleet
and market share of new car sales above 15% [2]. Hence, it
is increasingly crucial to understand how the rising adoption
of PEVs will impact the energy system, especially from
a Norwegian perspective. Publications from the Norwegian
Water Resources and Energy Directorate (NVE), [3] and [4],
shows how the PEV adoption will pose challenges especially
for transformer stations, transmission lines and voltage quality
in Norway. Yet, a challenge when analyzing the electricity
consumption of PEVs is the complexity added by human
decisions. However, one accredited method to analyze such
complex, socio-technical systems[5] is that of Agent Based
Modelling (ABM), from the field of Complexity Science.

There is abundant research done on understanding the
challenges that arise as an increasing PEV fleet demand more

energy, as well as modeling how flexible charging might aid
the integration of PEVs to the power system. The reports of
[1] and [6] gives a great overview and outlook on the adoption
of PEVs. As for analyses based on real data and surveys,
the paper of [7] is to recommend. It present information
from the “The EV Project” which gathered PEV driving
and charging data in the US. In [8] it is discussed how the
PEVs will impact the grid. For the Norwegian case, there
are other studies to take note of, besides the two mentioned
NVE reports.For instance, [9] discusses charging behaviour in
Norway specifically, based on survey data from a few hundred
PEV owners. There are also many papers who discusses how
to smooth out PEV charging variability. Many of these presents
optimization methods which may be used for peak shaving
and valley filling. Examples of such are [10] who uses game
theory and Nash equilibrium for decentralized charging, [11]
who utilizes transition matrix for decentralized charging, [12]
and [13] who are solving AC-OPF with Wind, Hydro Power
and PEV scheduling, and [14] who gives an assessment of the
need for flexibility for PEV integration in Norway.

As for work that has utilized the methodology of ABM
in the context of Power Systems, the work of [15] offers
a great introduction to the possibilities of AMBs for grid
systems. Other important work is that of [16] and [17], which
both utilizes the MATSim[18] ABM software to simulate
PEV driving and charging behaviour. The former uses game
theoretical perspectives to analyze competition for power and
the benefits and possibilities with an aggregated PEV manager,
the latter parking. Where these works are dependent on a much
bigger model built for transport simulations in general, the
work of [19] develops a custom-made ABM for PEVs driving
and charging.

This paper looks into the effects of utilizing an increasingly
larger fleet of Plug-in electric vehicles (PEVs) for personal
transportation, by extending the fundamental ABM model of
[19], analyzing different PEV behaviour and power system
implications. None of the previous work has yet, in the authors
opinion, fully utilized the most valuable feature of ABM -
namely the possibility to analyze the uprising of extreme
events from complex behaviour - to assess the key question of
power demand variability. The charging behaviour of PEVs
that we want to analyze, may due to human influence be
characterized as Socio-technical systems. Hence the use of
ABM is a well-suited method to cope with the complexities of
our task. Through the implementation of an ABM mimicking



the basic characteristics and interactions of the individual
components of a PEV charging system, and the heterogeneous
nature of an ABM, we should not only be able to simulate
the PEV charging behaviour, but also observe the rise of
seemingly unpredictable and complex patterns[20] in their
power consumption. The paper is organized as follows; part II
presents general information, assumptions and specific charg-
ing strategies, gathered information on how PEV charging
behaviour, discusses how this may be utilized for an ABM,
before defining rules for the agents to operate after based
on the presented material. part III an overview of the model
and the case of Trondheim, presents a brief overview of the
implementation of the model, as well as the case study of
Trondheim for which the model was further customized. part
IV presents some of the main results from the simulation
and analysis, of the Trondheim case study, and discusses the
findings. part V discusses the findings, and part VI concludes
the paper.

II. AGENT BASED MODELLING OF PEV BEHAVIOUR

A few empirical studies have been made that collects data
from existing populations of eclectic vehicles, and analyze
them to get a sense of their behaviour. In [7], they present
the Fig. 1, showing that most EVs are charged once per day
and start charging with 20-80% SOC.
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Fig. 1: Charging in terms of SOC and frequency. [7]

However, despite observable profile characteristics, the
charging behaviour is still rather volatile, and can also
change from different times of year and different locations
[21]Contrasting the daily profiles presented in [4], with [21]
and [8], it is clear that there are a lot of variation in the
charging profiles across different regions.

Agent Based Models are generally bottom-up computational
programs where the set of agents all have certain charac-
teristics, and where one specifies certain interaction rules
between them and also with the environment. To simulate the
fundamental behaviour of the agents, we develop a few basic
rules that allows the reproduction of the real observed phe-
nomena and data. From this we may change the parameters,
or add a new rule, to observe how it effects the system. It
should be noted that by using an ABM one seeks insights on
complex problems that is not possible to gain through explicit
techniques. As a result, the mathematics here is by itself not
very advanced.

To build an ABM of PEVs, we start by making similar
assumptions as [19], namely that:

a) The charging of the agent vehicles happens either when
they are at home, or at a charging station within a certain
distance from their working place in the city.

b) For simplicity, we let the agents decide whether to start
charging or not when they arrive either at home or at work.
Thus, if they don’t connect at first, they will wait until the
next arrival at a charging station to charge.

c) Every agent has a home location and work location, which
for the sake of simplicity is assigned randomly within some
defined areas outside the city.

d) There is a chance that each agent has an errand after work.

e) Every agent has the possibility to charge its car at home.

With these ground rules we may begin building an ABM of

PEV energy demand. It is of course possible to alter these

assumptions, yet for instance assumption b) simplifies some

of the details required to build a the model.

In addition, it is also important to define further the exact
mechanism of how the agent decides to charge its car. We
need to define a few charging strategies or charging behaviour
that the agents should adhere to. The strategies are what will
have the most impact on the results, and will give insights on
how PEV agents may behave given certain conditions.

The charging strategies that are used in this work is pre-
sented below:

1. ”Dumb” charging: The agents charge whenever they have
the need and there is a free charging spot close by.

2. Probabilistic charging based on SOC: As seen in Fig. 1, most
PEV owners charge when their battery has between 0,2-0,8
SOC. With this strategy the agents do not start charging
as soon as they have the need. Instead they will charge
according to a certain probability that becomes higher and
higher the less power they have left on their battery. For
the sake of simplicity, we hence assume a linear probability
function, such that

Prsoc(SOC;, SOCyin) = 1 — 5325=558min_ (1)

that is, the probability of charging, Prsoc at a given time
instance with a corresponding SOC; of agent n’s battery is
given by the difference to the desired minimum SOC,,,;,
scaled with the difference to the maximum SOC,,.,(=1).

3. Probabilistic charging strategy based on SOC and price:
Where the first two strategies allow for minimal interaction
between the agents, the agents here take into account the
price of electricity as well. The higher the price, the less
likely they are to charge. This approach allows indirect
communications through their response to the price, that
here change according to power demanded.
The price in our model may for simplicity determined by
how much of a specified maximal power capacity is used,
in a linear fashion. More formally the price, 7 (t) at time ¢
is given as

EN () pPEV

i=1 7
== - 2
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where C is a scaling constant, N(t) is the number of
connected vehicles at time step ¢, PV is the power charged
by PEV i, and P,,,, is the maximum charging capacity of
the power system. If C' = (Tmaz — Tmin ), then Tp,q, and
Tmin Simply defines the range for the price.

We also add the assumption that all agents have available
electricity at a given price at their homes, 7,4, Which is

w(t) = Tpmin + C -



higher than 7,,;,. This reflect that many home owners in
Norway don’t buy their electricity on spot at their homes,
but with monthly contracts. To develop a probability model
based on price and SOC, we may start out with price alone.
To make the probability 0.5 for 7y = mjome, We may use
a function of the form

1+ s
PTprice (ﬂ't) = %(t) 3)
where f1(7Thome) = 0. Moreover, if we let
(ﬂ-home - ﬂ-t)s
= 4
fl (7Tt) (7Thome)n ( )
where
_ 3- ln(ﬂ'home - 7Tmin) (5)

ln(ﬂ-home)

A function describing likelihood to charge based on price
to be 0 at highest price and 1 at lowest, and fairly flat
at the middle, refer to Fig. 2, it will need to be of a
polynomial with a higher than 2. Hence cubic power in the
numerator of Eq.(4) is the easiest. we have a third order
polynomial function where Pry,ice(Tmin) = 1, and hence
Pryrice(my = 2(Thome — Tmin)) = 0. However, we also
want the function to be less curved when 7; > Thome,

to charge, see Fig. 2. To calculate the probability affected
by both price and SOC, we multiply these together and
multiply them by 2,

PTSOC&price(Wt) =2- PTSOC('/Tt) . Prprice('frt) 9)

so that if they are both at their middle case (50% SOC and
T = Thome), then the joint probability will still be 50%
for charging.

III. CASE: IMPLEMENTING AN ABM OF PEVS FOR
TRONDHEIM

The simulation of the Agent Based Model has been im-
plemented in JAVA, as it is a widely used object-oriented
programming language. It facilitates the use of classes of
objects that intact, a native part of ABM. It is also fairly
straight forward to get to interact with Internet APIs.

To get a general impression of how the ABM, it is here
presented a UML class diagram. The Fig. 3 shows the model
architecture used. To get more information about the details of
this particular ABM, see [19] for the underlying model, and
[22] for the specifics of the model implemented here.

Overview of the ABM simulating PEV behaviour
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We multiply f; by fo to make the curve less curved above

Prabability for charging with a given price, =,

Prob__ (%)

Price, =,

Fig. 2: Probability for charging based on price.

T = Thome. It means it is less important how much the
electricity price is over home price, than how cheaper it is.
This is to reflect that many agents will be eager to be at
the margin, than to loose extra money if they really have

Fig. 3: Overview of high-level architecture of the agent based model[19].

The city of implementation in this model has been chosen
to be Trondheim, the city of residence of the Norwegian
University of Science and Technology (NTNU). The charging
stations used in the model, as displayed in Fig. 4, are the ones
actually excising in the city. An up-to-date list of stations and
their characteristics may upon request be accessed from [23]
and downloaded using their API. An API to Google Maps
was also used to find the distance and time for all the agent’s
driving routes, laying the basis for all the energy consumption
calculations.

At the heart of this model we have the PEV agents. To
introduce some diversity to the electric vehicle agents, it is
possible to include many types of cars, as well as different
agent characteristics (eg. different working times) etc, to make
the model more realistic or reach a desired level of detail.
Therefore a few different types of cars implemented as specific
types of electric vehicles for a certain agent, such as Tesla



Google

Fig. 4: Map of charging stations in Trondheim as of 12.06.2017.

Model S, Volkswagen eGolf and Nissan Leaf as can be seen
in table I. For this simulation each agent has a probability of
1/3 to have each of the cars.

Brand Nissan  Tesla Volkswagen
Model Leaf Model S E-Golf
Consumption Rate [kWh/km] 0,174 0,198 0,179
Charge Rate [kW] 6,6 10 7,2

Battery size [kWh] 30 100 24

TABLE I: Variety of cars implemented in simulation, data from [24] and [25]
IV. RESULTS FROM THE CASE

This section presents results from the simulations of the
ABM for the city Trondheim. It also presents the observed
variation in simulation data for two of the cases, and at the
end prognosis for PEV power demand in the future based on
this model.

A. Daily profiles of total demand and SOC for the ABM with
different charging strategies

After implementing the ABM in Java with different strate-
gies, a number of different simulation runs was conducted,
from which to compare the four different strategies. The
simulation runs were each done with 1500 agents over 10
days, with the maximum power of the grid set to 4500kW in
most cases. One should also keep in mind that all simulations
are based on several random realizations, and such one could
run even more iterations to get better insights in the results.

1) Dumb charging: Fig. 5 depicts the total demanded power
by both home and public chargers from the grid with the
dumb charging strategy. The graph shows that the charging
has a characteristic pattern, with larger amount of charging in
the evening at the home stations, indicating there are too few
chargers in the city. In Fig. 6 we see how the State of Charge
(SOC) of the battery of 100 out of the 1500 agents during
a 10-day period. We may observe that the agents, by design,
charge as soon as they have the opportunity, maintaining their
battery level close to maximum.

2) Probabilistic charging strategy based on SOC: Fig. 7
depicts the total demanded power from the grid. Again, it
shows that the power used for charging is almost twice as
much power from the home-stations compared to the city
ones. However, we observe that the graph has a more gradual
increase and decrease.Fig. 8 shows how 100 of the 1500 agents
store energy in their batteries during the simulation. As can be
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Fig. 6: SOC during 10 days for 100 to 1500 EVs with dumb charging

observed from the graph, this strategy clearly makes it more
probable that the agents wait a while before charging their
batteries. However, it does not seem to generate a almost even
distribution around 80%-20% of SOC, as in Fig. 1.

Fig. 7: Total power demand from 1500 EVs during 10 days with charging strategy based
on SOC

Fig. 9 shows the power demand from the different charging
stations. Notably, charging station with ID: 0 with the highest
peak, corresponds to the agents charging at their homes. Two
of the other stations with quite high peaks are the stations
of ID: 1309 and ID: 66, corresponding to the largest charging
stations at Sirkus Shopping Mall and IKEA in Trondheim with
10 and 12 charging spots respectively.

3) Probabilistic charging strategy based on SOC and price:
The graph in Fig. 10 shows the total demanded power from
the grid when the maximum desired power level is set to 4500
kW. We here observe that the graph shows some of the main
characteristics of the previous cases, just more smoothed out,
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and with pikes in the first period due to more complex agent
indirect interaction.

The results shown here, is not to emphasise that smoothing
is possible through different charging strategies, but rather to
assess the short-term variation and volatility that is present in
scenarios with different charging strategies.
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Fig. 10: Total power demand from 1500 EVs during 10 days with charging strategy
based on SOC and price and Py, q,=4500 kW

B. Variability in simulated scenarios

In Figs. 11 and 12 we may observe the profiles of the runs
simulation 40 days with 1500 agents. In the former the agents
utilize the 2nd strategy, that is charging based solely on SOC,
whereas in the latter the agents are influenced by both their
SOC and the energy price with a P,,,, = 1500kW. A feature
with these graphs is that they present the average, 5%, 25%,
75% and 95% percentiles for the data in the same minute
for the 40 days. Hence, we may better observe the variability
within the data. From the Figs. we can see it is clear that
there is a considerable variability band especially in Fig. 11
representing the SOC scaled charging strategy.
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Fig. 11: Total power demand from 1500 EVs during 40 days with charging based on
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Fig. 12: Total power demand from 1500 EVs during 40 days with charging strategy
based on SOC and price and Py, 4,=1500 kW

Additionally, the same statistics was computed for the whole
aggregated time series over all the 40 days. The results are
presented, along with the standard deviation (SD) in table
II. From table II, we see that the maximal value of power
demanded is about the same, however the average value seems
to be higher in the latter case. However, contrary to what the
graphs seem to display, we also see that the standard deviation,
a measure of variability in a time series, is slightly higher in
the latter case as well. However, the standard deviation on
relative changes is high in the second, but astonishing in the
first.

TABLE II: Statistics for 40 day simulation statistics with 1500 agents with different
charging strategies

Stats [/kW] Q95 Avg Q05 | SD SD of prof.av.
SOoC 522 137 0 163 38,66
SOC&Price, 1500P,,q, | 537 161 3 167 17,88

C. Prognosis of power demand

With the reports of [3] and [4] from NVE, and data from
Statistics Norway (SSB), we surmise make a prognosis for
PEV adoption, as presented in table III.

Data for Norway 2015 2030 2050
Inhabitants 5100 000 5900 000 6 300 000
Personal vehicles 2 600 000 2900 000 3 300 000
Electric vehicles 73 000 1500 000 3 300 000
Power to EVs [TWh] 0,2 4 79

TABLE III: Prognosis of Population, Cars and EVs in Norway, (NVE)

One thing that stands out from this table, is the amount
of energy demanded from the electrical vehicles is expected



TABLE IV: Projections of vehicle fleet and power demand [kW]

Base case Vs in Nor. PEVs Trhm. | Avg dmnd Q95 dmnd
2030 2900 000 61 921 6 147 22 106
2050 3 300 000 131 481 13 052 46 939
Today’s rate | Vs in Nor. PEVs Trhm. | Avg dmnd Q95 dmnd
2030 2 900 000 111 539 11 073 39 820
2050 3 300 000 131 999 13 104 47 124
Lower rate Vs in Nor. PEVs Trhm. | Avg dmnd Q95 dmnd
2030 2900 000 39 496 3921 14 100
2050 3300 000 98 204 9 749 35 059

only to be 4 TWh in 2030 and a maximum of 7,9 TWh in
2050. Compared to the total amount of energy of 43 TWh
that went to transportation using personal vehicles in 2015
(see [26]), that reduction is quite substantial. The lowered
energy consumption from transportation will be thanks to the
efficiency gain of not having to convert energy to another
energy carrier than electricity.

Another analysis conducted was to compare the results
of the data insight from the last section IV-B, with the
outlook presented in table III.To do this, we first had to make
projections for the adaption of PEVs in Norway, and then make
some scenarios based on this. One alternative here is to use a
System dynamic approach. A simple System Dynamic model
was implemented in VENSIM[27]. However, the tuning of the
parameters in the model did not yield realistic enough results.
Instead we use an S-curve, or logistic function,

constructing a base case based on the prognosis of NVE
presented in Table III, a high case which uses the growth rate
of the last couple of years as the starting point of its S-curve,
and a low case where we assume full electrification will not
happen.

To make the projected adoption cases relevant to our model,
we assume that the PEV adoption in Trondheim scales simi-
larly. Hence, based on the fact that in 2016 SSB accounts a
total 4190 PEVs in Trondheim in 2016, and the NVE prognosis
for vehicle adoption displayed in table III, we may scale the
average statistical data from table II and make a prognosis for
power demand in Trondheim due to PEV, presented in table
v

From table IV we see that there is quickly a high demanded
power from the PEVs, reaching above 10 MW already in 2030
in all cases. However, if one compares these results with the
energy consumption calculation of NVE from table III, we
find that the number presented in the projections of table IV
are a little low. Indeed, if one multiplies the number of PEVs
in each scenario with an average driving distance of 12 300
km/year (assuming it will be the same as the 2015 statistics
from SSB) and an average energy consumption of 0,2 kWh/km
for the PEVs, we find that the base case in 2030 should have
had an average power demand of 17 389 kW and similarly 36
923 kW for 2050.

The lower value of energy demand from out model may
be well explained by the fact that we only simulate driving
to and from work and errands on weekdays, and do not
include transportation back and forth to cabins for instance in
weekdays and holidays. However, our bottom-up model seems

to do a fairly good job in predicting the power demand within
a reasonable range of the top down calculation.

Comparing the figures of 17 389 kW and 36 923 kW to
the total energy consumption of about 3,5 TWh in Trondheim
yearly, see [28], corresponding to an average of 400 MW per
hour, the power demand is about 4% and 9%, in 2030 and
2050 respectively, of average demanded power in Trondheim,
or 6% and 13% of average electricity demand.

Hence, a substantial electrification of the car fleet will
demand a significant amount of available power from the grid.
If we take this trail of though further and scale the Q95 results
also, it seems probable that the grid in Trondheim also has to
supply a peak power demand that will be about 22% and 43%
of average power demand from electricity.

V. DISCUSSION

The ABM built in this project allows for a few more in
depth insights as well. Since this model was simulated using
real data for Trondheim, the analysis provides take-aways for
policy makers in this city.

Firstly, regarding the spatial distribution of charging de-
mand. The amount of charging stations installed in the city
center of Trondheim is somewhat limited forcing many of the
agents to charge at home instead. Yet, this is not really a
consumer problem, since most cars are more that capable of
riding back and forth to job and charge at home. What might
be a problem, is that the distribution grid of areas outside the
city might not be dimensioned for having many PEVs charging
simultaneously. Coupling this with the fact that the average
chairing power for home charging is assumed to rise from an
average of 3,1 kW today to 5,6 kW [3] with full electrification,
we see that there might be even greater issues with the grid
in home areas in the skirts of the city.

A key question from the introduction was the magnitude of
power demand. Whereas the model and simulations here give
an average demand of power of about 6 MW in 2030 and 13 in
2050, the revised numbers shows us a electric power demand
of about 6% and 13% and peaks routinely be about 22% and
43%. If one is to take account for extreme charging event after
holidays which again is not captured in these simulations, the
maximum charging demand would be even greater. In any case
this would be a challenge for the grid to handle if it happens
uncontrollably, and some mechanisms will be needed to guide
or incentivise when the PEVs should charge.

The other main inquiry we wanted to make was on the
variability as the personal transportation system develops to an
electrified one. From the general charging profiles, we see that
there are not only considerable peak-to-trough variations intra-
day at in these simulations. Moreover, one specific charging
profile may also vary considerable from the average profile,
and the minute to minute variations are also substantial.
However, due to the nature of the model with only weekdays
in consideration, the coincidence of these simulations is at
most about 20%. Again, with more extreme cases eg after
weekends, the absolute variability may be even higher if more
cars are charging at the same time.

Coupling the findings mentioned above, of substantial spa-
tial and temporal variability and a rinsing magnitude of



demand, it is clear that the power grid may face challenges
when serving a ever growing number of PEVs. However, the
models also show that price signals might work in order to
incentivise PEV owners to charge at times more beneficial to
the power system. Moreover, a even more connected system,
both in terms of energy and information through the rise of
Smart Grids, might enhance the possibly to achieve peak-
shaving and valley-filling.

VI. CONCLUSION

To conclude, we have developed an PEV fleet model
that captures the uncertainty and complexity of agents with
different probability scenarios and then tested it on a real
case-study which is city of Trondheim with existing public
charging stations. it seems clear that the rising adoption of
PEVs pose a challenge due to both the relative size of the
power demanded but also the variability that the charging
profiles exhibit. On the other hand, the different agent, or
PEV owner, behaviour, as modelled through different charging
strategies, indicate that incentives such as price signals might
effect how much the agent charge at different times. As such,
a development towards Smart Grid might even lend the PEVs
as assets to help stabilize the power balance.
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