
1 INTRODUCTION 

Many of the state-of-the-art soil models today, in par-
ticular for clays, are based on the critical state (CS) 
concept (Schofield and Wroth, 1968) with the Modi-
fied Cam-Clay (MCC) model (Roscoe and Burland, 
1968) as formulation basis. New features have been 
added such as rotational hardening. A common for-
mulation defines a yield and potential surface which 
when rotated changes its shape and become 
“sheared”, as first proposed by Dafalias (Dafalias, 
1986) (Figure 1). This model is often referred to as 
the Anisotropic Modified Cam Clay Model 
(AMCCM). The formulation was originally derived 
considering plastic dissipation in triaxial coordinates. 
In general, stress space the yield surface may be given 
by: 
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Where σd and αd are the deviatoric stress and rota-
tional vector respectively (see appendix), p' is the 
mean effective stress and pmi is the size of the surface 
and represents the pre-consolidation pressure. The 
function g(θα,α) is the subject of this paper. The mod-
ified Lode angle, θα, is defined as: 
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where J2
α and J3

α is the second and third invariant of 
the modified deviatoric stress vector, σd – p' ⋅ αd. The 
function, g(θα, α), represents the shape of the surface 
in a plane normal to the α-line (Figure 2, eq. (3)) and 
includes a dependency of a critical state ratio, M. If M 
is a constant then the shape will be circular, but most 
often it varies in accordance with a failure criteria 
such as Mohr-Coulomb, Matsuoka-Nakai (Matsuoka 
and Nakai, 1974), Lade-Duncan (Lade and Duncan, 
1975), or a generalized form (Grimstad et al., 2018). 
In general M must be a function of the modified Lode 
angle, M = M(θα). 
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Figure 1 Yield surface for AMCCM in p’-q space 
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ABSTRACT: This article shows that a common formulation often used for an anisotropic modified cam clay 
yield and potential surface with a modified Lode angle dependency may become concave for high values of 
anisotropy. Concave surfaces are undesirable in plasticity theory and could lead to numerical problems. To 
remediate this problem the article suggests a formulation for the Lode angle dependency that will not suffer 
from concavity. The suggested formulation is discussed. The formulation does not introduce any additional 
parameters for Lode angle dependency than that used to describe Lode angle dependency of an isotropic yield 
surface. In this paper, a generalized continuous Mohr–Coulomb criterion is used that allows a π-plane cross-
section to take the shape of several criteria including Mohr-Coulomb, Matsuoka-Nakai and Lade-Duncan.  



 

 
 
Figure 2 Typical projected cross section of the yield surface in 
the translated π-plane. Here ŝi = σi – αi ⋅ p. 

 
 
 
 

 
Figure 3 Yield surface for AMCCM in principal stress space for 
high values of α 

2 PROBLEM DESCRIPTION 

In many formulations found in the literature the func-
tion g2(θα, α) , from eq. (1), is defined as: 

   
2

2 2

1
,g

M



 

 



 (4) 

In this expression, M is directly a function of the mod-
ified Lode angle, while α might change due to kine-
matic hardening. It can be seen in the equation above 
that whenever α approaches M (i.e. due to kinematic 
hardening) the expression g(θα, α) becomes very large 
and approaches infinity as a limit. As stated in 
(Crouch and Wolf, 1995) the introduction of a de-
pendency of the anisotropic bounding surface on the 
Lode angle is not straightforward. In the work on this 
subject it is discovered that due to the specific form 
of eq. (4) and (1), the shape of the surface could actu-
ally become concave as it is “sheared” (Figure 3 and 
Figure 4). This may happen even if the shape is con-
vex for α equal to zero. In general, concave surfaces 
are undesirable in plasticity theory and could lead to 
numerical problems. 

It can be shown that convexity is ensured if eq. (5) 
is satisfied. 
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Solving this equation at the limit, for any θα, gives the 
maximum rotation, i.e. the limit for α, for which the 
surface remains convex. For the Lade-Duncan crite-
rion the solution will follow the line LD in Figure 5. 
For other criteria such as generalized Mohr-Coulomb, 
the curve may be lower or higher up, this is dependent 
on the shape parameters used. Typically, for sharper 
corners and straighter segments the curve is lower 
than the one for LD. 
 

 
Figure 4 Cross section of the Modified Lode angle dependent 
AMCCM yield surface in the π-plane 
 



 
Figure 5 Limit value for α using the LD criterion for critical state 
description, the line for “Triangular” to refer to eq. (10), restrict-
ing the required shape to not be “beyond” triangular. 
 
In order to investigate if the concavity is a problem in 
practice one need to see if typical material parameters 
for a typical clay material could lead to concavity. 

It is common to use the earth pressure coefficient 
at rest under virgin loading, K0

NC, to define the initial 
value of α. Dafalias provided an exact expression for 
the initial value α0 corresponding to virgin compres-
sion, which, when disregarding elastic strain contri-
butions, simplifies to: 
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For soft Scandinavian clays typical values for K0
NC is 

in the range 0.55 to 0.65, which for an effective fric-
tion angle of 25° to 32° might, in a worst case combi-
nation, give a value of α0 ~ 0.465 ⋅ MTXC, where MTXC 
is the value of M for θα = -π/6 (i.e. for triaxial com-
pression). For such an extreme case, concavity of the 
surfaces may develop initially. However, a low effec-
tive friction angle will normally results in higher 
value for K0

NC, and a value of α0 ~ 0.2 will be a typical 
case. Then concavity does not have to be a problem. 
If this is the case or not will depend on the type of 
critical state (failure) criterion used. For boundary 
value problems where soil is to failure in shear, con-
cavity will normally increase as loading is applied 
since α increases due to kinematic hardening. Con-
cavity may be totally avoided, or eventually become 
negligible for volumetrically dominated deformation, 
i.e. a state resulting in α → 0. One should notice that 
concavity would often not be experienced for K0 load-
ing since the rotational hardening is modest in this 
case, α ≈ α0 (if this is the case or not is again depend-
ent on the failure criterion deployed). 

3 PROPOSED SOLUTION 

Some simple adjustments are suggested to avoid con-
cavity. Eq. (7) is proposed as an alternative to eq. (4) . 
In Eq. (7) the triaxial compression value, MTXC, is 
used instead of the function M(θα) (in eq. (4)). The 
function h(θα,α) (eq. (8)) can ensure that the ratio be-
tween the critical state line for compression and ex-
tension states remains constant when the function 
M(θα,α) is carefully selected.  
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Where: 
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In order to find a proper function h(θα,α) (i.e. 
M(θα,α)), that is consistent with critical state in triax-
ial extension, one need to establish a relation between 
the input value of MTXE and the value for M at θα = π/6 
(mod. Lode angle equivalent to triaxial extension). 
Eq. (9) gives the required value of M(θα = π/6, α) such 
that the critical state line in triaxial extension is equal 
to the desired value MTXE. If limiting oneself to a 
shape of the failure criterion reproducible in six sec-
tors (i.e.  defined in the sector −π/6 < θα < π/6), the 
ratio between triaxial compression (TXC) and triaxial 
extension (TXE) strengths are limited by a triangular 
shape in order not to become concave. This means 
that it will be impossible to maintain a convex surface 
if the ratio between M(θα = π/6) and M(θα = -π/6) is 
less than ½. Eq. (10) gives the limit for MTXE in this 
case. Figure 5 gives a graphical representation of eq. 
(10), separating admissible from inadmissible (dotted 
line). 
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For moderate values of α there is moderate difference 
between the necessary M(θα = π/6) and the value for 
MTXE. Hence, it might be practical to leave the formu-
lation without this correction, and instead directly ap-
ply the Lode angle dependency to M(θα, [α = 0]), eq. 
(11). The great benefit in doing this is that the yield 
surface will never become concave as long as it is not 
concave for the isotropic MCCM (α = 0).  
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By using this function the maximum ratio between 
the input values M in extension and compression, 
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MTXE/MTXC, is as “normal” the factor of ½. The down-
side of eq. (11) is an over-prediction of the experi-
enced critical state line in extension (when compared 
to the input value of MTXE). Eq. (12) gives the ratio 
between the experienced triaxial extension critical 
state, MTXE

exp, compared to the input value, MTXE
inp, 

when eq. (11) is used for the function h. 
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The equation for M(θα) can be selected to provide sur-
faces like Mohr-Coulomb (MC), Lade-Duncan (LD) 
or Matsouka-Nakai (MN), or other surfaces.  

Graphical illustrations of eq. (7) with use of eq. 
(11) are given in Figure 6 and Figure 7. Here param-
eters in the generalized criterion (Grimstad et al., 
2018) equivalent to the Lade-Duncan criterion are 
used. 

Figure 8 shows a graphical representation of eq. 
(12). As seen in the figure, for “normal” input, the 
difference is typically less than 10% between MTXE

exp 
and MTXE

inp. 

 
Figure 6 Modified yield surface for AMCCM in principal stress 
space 
 

 
Figure 7 Cross section of the Modified Lode angle dependent 
AMCCM yield surface in the π-plane with proposed modifica-
tion 
 

 
Figure 8 Graphical representation of eq. (12), showing the 
experienced value of critical state in extension compared to the 
input value as a function of α 

4 FINAL FORMULATION 

As mentioned above the equation for M(θα) can be se-
lected to provide surfaces like Mohr-Coulomb (MC), 
Lade-Duncan (LD) or Matsouka-Nakai (MN), or 
other surfaces. In the following the GMC criterion 
from (Grimstad et al., 2018) is used to provide a de-
scription of the h(θα). Eq. (13) to (15) is taken from 
Grimstad et al. where the terms cθ ans sθ is modified 
to be a function of the Modified Lode angle, θα. 
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Where sinφ0 is the friction angle for modified Lode 
angle of 0° and the two new parameters a1 and a2 are 
used to control the shape of the cross section in the π-
plane (the Lode angle dependency). 

In order to use the criterion the parameter sinφ0 
must be linked to the value of MTXC used in eq. (11). 
By inserting the lode angle for triaxial compression 
into eq. (13) the following relationship is obtained: 
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Then inserting eq. (16) into eq. (13) gives: 
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Finally inserting eq. (17) into eq. (11) gives: 
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The parameters a1 and a2 can be selected based on 
knowledge of the actual Lode angle dependency. 
However, in most cases such information is not avail-
able for other states than triaxial compression and tri-
axial extension. In cases where only information on 
MTXC is available e.g. the Matsouka-Nakai criterion 
could be employed. Then eq. (19) and (20) gives the 
parameters. 
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One may also express the relation between the param-
eters as: 
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If one decides to use the GMC criterion with parame-
ters equal to a rounded Mohr-Coulomb (instead of the 
MN formulation), then: 
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Giving: 
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5 CONCLUSION 

This paper shows that when considering the aniso-
tropic Modified Cam Clay (AMCC) type of yield sur-
face and introducing a modified Lode angle depend-
ency for critical state, the yield/potential surface 
might become concave for high values of anisotropy. 
Therefore, this paper proposes a function, g(θα, α), 
that ensures convexity, for the Lode angle dependent 
AMCCM, for any α < M, as long as the surface itself 
is convex for α = 0. Avoiding concave yield/potential 
surfaces is important and the proposed remedy offers 
a simple solution to solve this problem. The simpli-
fied modification proposed will match the input value 
for the critical state line in triaxial compression. How-
ever, it will result in higher experienced values for 
critical state in extension that the value given for 
α = 0. Typically, the difference is in the order of up to 
10%. 

Finally a generalized form of the function h(θα) is 
proposed that allow a variety of shapes of the sur-
faces. The formulation is shown to depend on the ra-
tio between MTXC and MTXE. If the GMC criterion is 
used to give a rounded Mohr-Coulomb, then one ad-
ditional parameter (that is just below 1.0) is needed.  
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APPENDIX 

Mean effective stress: 

 ' ' '
11 22 33

1
'

3
p        (27) 

Deviatoric stress vector: 

'
11
'
22
'
33

'
12

'
23

'
13

'

'

'

2

2

2

d

p

p

p











 
  
    
 
 
 
  

σ   (28) 

Rotational vector: 
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For cross ansiotropic condition (major direction as z-
direction): 
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