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Abstract—This paper addresses localization and mapping
of flexible ocean structures. The methodology is based on a
network of low cost acoustic transmitters on the structure and
receivers stationed in the vicinity of the structure. The position
of the receivers is assumed to be known. The position of each
transmitter is estimated and represents a point position on
the structure. All of the point positions are interpolated and
applied in the mapping software Octomap, to build a digital
map representation of the whole flexible structure. This map
can serve as an environment model for underwater robots
navigating close to such structures. An example is underwater
robots operating close to or within a flexible ocean structure
such as a fish cage.

I. Introduction
Today, unmanned underwater vehicles (UUVs) are seeing

increased use in underwater operations, especially in the oil
and gas industry. Utilization of remotely operated underwater
vehicles (ROVs) has also spread to the aquaculture indus-
try [1]. Currently, the lack of robust navigation, guidance,
control and planning regimes require human control of
most of the vehicles’ actions. Both perception of and self-
localization within the environment are critical components
for autonomous solutions in aquaculture [2], [3]. This paper
presents a novel method for dynamic mapping of flexible
underwater structures. The method uses acoustic telemetry
transmitter tags and time synchronized hydrophones placed
in a long baseline (LBL) network that receives the transmitter
signals.

It is challenging to plan operations near flexible un-
derwater structures when there is a lack of environmental
information, and the representation of this information is
therefore crucial. Octomap [4] is an open-source efficient
mapping software that models a 3D world based on octrees.
An illustration of how the software looks like is given in
Figure 1, which shows a typical small size inspection class
ROV within a fishcage. An octree stores a representation
of a 3D world in a tree-based structure, where each parent
node has eight child nodes. Each node in the tree represents
a block (voxel) of the 3D world and each child node is a
sub-voxel of its parent, thus giving higher resolution in the
lower layers of the tree. The reasons for using Octomap are
mainly based on its integration of measurement uncertainties
in terms of probabilistic properties, modeling of unmapped
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Fig. 1. An occupancy grid map of a fish cage in Octomap - A probabilistic
3D occupancy grid mapping software [4]. The digital map is a framework
for visualization and a tool for achieving higher degrees of autonomy for
robotic vehicles. The object to the left is the origin of a North-East-Down
reference frame, and the object to the right is an underwater vehicle.

areas and its high computational efficiency due to the internal
architecture. It uses a grid based approach for mapping
objects in 3D, where each grid cell has one property; a
value between 0 and 1 that determines the probability of
that a cell being occupied. Initially, Octomap generates an
unknown environment as a 3D map, and updates the map by
taking both sensor measurements and uncertainties of these
measurements into account. The result is a digital map that is
efficient in memory, that is possible to update, and that gives
a realistic representation of the environment in which the
robot will travel. Octomap is not used much for underwater
applications, but it has been utilized to some extend, e.g., in
[5] and [6].

The use of acoustic-based positioning with transmitter tags
and hydrophone receivers for a flexible structure has been
conducted previously, e.g., [7] and [8]. However, the discus-
sion of position estimate uncertainty is omitted. Transmitter
tag position data are obtained by adopting the time differ-
ence of arrival (TDOA) method [9], [10]. This technique
calculates the position of a transmitter based on the signal
TDOA at multiple receivers at different, but known locations
and the velocity of the signal. The map of a structure can
be produced by interpolating tag positions in smart ways,
which in turn can be used for visualization purposes or be
part of a digital map aiding in robotic vehicle navigation.



Keeping track of where the vehicle is and where it is going is
necessary in order to perform path-following and trajectory
tracking for underwater vehicles [11], [12], or to perform
intervention operations where the location of certain objects
and structures are of importance [13].

A. Problem Description

This paper is concerned with estimating the position of
a flexible structure that is located below the sea surface.
A set of transmitter tags are distributed over a structure in
key locations. The tags send signals that are received by
hydrophones stationed just below the surface. The location
of the structure is mapped by estimating the position of
the tags, and interpolating between these. Measurement and
estimation uncertainties are combined in a mapping software
named Octomap for visualization of a probability based
occupancy grid map in 3D space.

B. Contribution

The contribution of this paper is a method for estimating
the position of a flexible structure below the sea surface. The
structure is plotted in a digital map in the software Octomap.
This map can serve as a tool for robotic vehicles that seek to
plan and execute operations autonomously within and around
the structure and for visualization purposes.

II. Instrumentation

The presented work is based on the TBR700-RT digital hy-
drophone receivers [14] and acoustic transmitter tags of type
ADT-HP16 [15] (Thelma Biotel AS, Trondheim, Norway).
The equipment is normally used as a fisheries research tool
for remote monitoring of the position, behavior and health
of fish. Information is transmitted by the tags regularly using
acoustic telemetry. The hydrophones are time synchronized
through a surface synchronization module (SSM) by utilizing
global navigation satellite system (GNSS) signals. By placing
a hydrophone directly beneath an SSM at a known depth, the
SSM provides estimates of the hydrophone’s position.

Table I contains the specification of the equipment, while
Figure 2 gives an overview of the hardware setup. The
telemetry tags transmit a modulated acoustic signal con-
taining the unique tag id number and hydrostatic pressure.
When the signal is received, it is given a time stamp by
the hydrophones, which again are time synchronized by the
SSMs.

III. Preliminaries and Notation

A. Reference Frame

In this work, the North-East-Down (NED) reference frame
has been chosen to represent position estimates below the
sea surface, while the remaining position estimates uses
the global navigation satelite system (GNSS) in an Earth-
centered-Earth-fixed (ECEF) reference frame. More informa-
tion about reference frames and how they relate to each other
can be found in [17].

Fig. 2. Conceptual description of equipment setup and signal flow.
Transmitter tag signals are received by a network of hydrophones with
position updates from GNSS satellites. Tag signals are time synchronized
by the SSMs, before they are forwarded to a receiver and a processor to
estimate the position of the transmitter tags.

TABLE I
Instrumentation Specification

ADT-HP16
Size Length x Diameter = 70 mm x 15 mm
Weight 15 g in water, 29 g in air
Signal Strength 157-160 dB
Transmit Frequency Transmit every 60 s
Battry Life 2-3 years
Operating Freq. 69 kHz
Data Pressure, Tag-ID
TBR700-RT with SSM
Size Length x Diameter = 230 mm x 75 mm
Weight 0.26 kg in water, 1.14 kg in air
Operating Freq. 60-80 kHz
Interface USB, Bluetooth, RS-485
Data Storage 1.5 million detections
Battery Life 8-9 Months
Time stamp resolution milliseconds
SSM
GNSS Module NEO-7P [16]
Data Synchronized time, Position fix

B. Underwater Acoustics
Electromagnetic waves from GNSS signals, such as the

Global Positioning System (GPS), can be used to estimate
the position of objects. However, this only works above
the sea surface, due to strong subsurface attenuation of
electromagnetic waves. On the other hand, sound waves
(acoustics) are pressure differences/oscillations generated by
mechanical vibrations. These vibrations can be modulated to
transmit data, and subsequently demodulated to extract the
data. The speed of the wave propagation is determined by the
properties of the medium in which it travels. For sea water,
sound velocity can be represented by the empirical formula
[18]

c =1448.6 + 4.6418T − 0.0523T2

+ 1.25(S − 35) + 0.017D,
(1)

where T, S, c, D corresponds to temperature [◦C], salinity



[‰], speed of sound [m/s] and depth [m], respectively.
Sound speed gradients lead to bending effects of the sound
wave [19]. Sound intensity is usually measured in decibel,
with a reference to a sound pressure level (the pressure
induced by the sound wave) of 1µPa (or [dB re 1µPa]).
The formula is given as:

dB = 20 log10

( pd

pd
0

)
, (2)

where pd is the root mean square (RMS) pressure and pd
0

is a reference pressure.

C. Received Signal Strength
The signal to noise ratio (SNR) describes the received

signal strength (RSS) relative to the average background
noise [18]:

SNR = 20 log10

(Average peak signal amplitude
Average noise amplitude

)
(3)

The average peak signal amplitude can be viewed as the
RSS, while the average noise amplitude is the variance of the
RSS signal, provided by the receivers. As can be seen from
(3), the SNR is higher the closer the source is to the receiver.
The signal strength decreases with range, mainly due to
absorption and geometrical spreading loss. Absorption is due
to energy loss to the environment and depends on many
variables, such as temperature, wave frequency, salinity, pH
level and depth. Geometrical spreading occurs because of
the increased area over which the sound energy is distributed
as the wave propagates. The received signal strength (RSS)
is dependent on the distance from the source, and can be
formulated according to [20] as the following equation

RSS (r) = SL0 − α(r − r0) − 20log
( r
r0

)
+ εRSS, (4)

where r is the distance from the source, r0 is the reference
distance where the signal strength is measured, α is the
absorption coefficient and εRSS is the Gaussian white noise
of the signal. Furthermore, SL0 represents the source level
at the reference distance. The distance r , which is given as
r = | |p − pi | |, represents the distance between a tag position
p and a hydrophone position pi . By inserting r = | |p − pi | |
into (4) and setting the reference distance r0 = 1, the RSS
measurement equation for hydrophone no. i for a given tag
is obtained as

RSSi (r) = SL0−(||p−pi | |−1)α−20log(| |p−pi | |)+εRSSi (5)

D. Time Difference of Arrival
The time difference of arrival (TDOA) at different receiver

locations can be utilized to determine the position of the
source of a transmitted signal, given that the positions of the
signal receivers are known [9], [20], [21]. A sound signal
is sent from a transmitter tag in position p, and received at

locations pi at time ti for receiver number i = 1, 2, 3, where
ti is calculated as

ti =
| |p − pi | |

c0
i = 1, 2, 3 (6)

Note that (6) is an approximation, since the speed of
sound generally will vary depending on the properties of
water between transmitter and receiver (see (1)). Choosing
the sound speed to be constant is a reasonable approximation
over short distances. From (6), an expression estimating the
TDOA between a receiver at position i and j can be obtained
as

dti j =
1
c0
(| |p − pi | | − | |p − pj | |) + εdti − εdtj (7)

The term dti j is the time-difference between a signal that
was received at receiver i and j. Furthermore, εdti and εdtj
represents Gaussian white noise. These terms incorporate
errors, such as timing errors due to clock drift, limitations
on synchronization accuracy, or limitations in resolution on
the time stamp, bending effects of the sound wave, and so
forth.

E. Depth - Pressure Measurement
The static pressure measurement made locally by the

transmitter tag is highly valuable, as it can be used to
determine its depth with centimeter accuracy, and is given
by equation

Pm = ρgz + Ps + ρgεz (8)

The depth measured from the surface is given by z, where
Pm is pressure measured by the pressure sensor, Ps is the
pressure at the surface corresponding to 1 atm, ρ is the
density of sea water, g is the gravitational constant and εz is
pressure sensor measurement noise.

IV. Position Estimator
To estimate the transmitter tag positions based on TDOA

measurements, RSS data and depth measurements, an ex-
tended Kalman filter (EKF) was implemented to fuse the
available sensor measurements together in a probabilistic
manner, in line with [22]. The filter assumes that all noise
terms are independent of each other. The discrete process and
measurement model for estimating the TDOA is designed as

pk+1 = pk + εp1:3 (9)
yk = h(pk, pi, ε) (10)

where pk , pk+1 ∈ R3×1 are state vectors at time instants k
and k + 1, respectively, containing the North, East and Down
position. The random variable εp1:3 ∈ R3×1 is Gaussian dis-
tributed noise by N(0,Q), where Q ∈ R3×3 is the covariance
matrix of the probability distribution. This model is also
known as a random walk process, which is used to model
slowly varying processes [23]. Furthermore, yk ∈ R2m×1 in
(10) is the measurement vector at time instant k, where m
is the number of signal receivers. The measurements can



be described by the nonlinear function h(pk, pi, ε) ∈ R2m×1,
where pi is a random variable of the receiver position with a
distribution N(0,Σ2

pi
), where i = 1, . . . ,m denotes the signal

receiver number. The parameter Σ2
pi
∈ R3×3 represents the

uncertainty of the receiver position, and ε = {εdti , εRSSi , εz}
corresponds to the random variable noise terms in (5), (7)
and (8). Based on the measurement in (5), (7) and (8), yk in
(10) is found as

dt12
...

dt(m−1)m
RSS1
...

RSSm
(Pm−Ps )

ρg

︸       ︷︷       ︸
yk

=



1
c0
( (r1 − r2) + εdt1 − εdt2 )

...
1
c0
( (rm−1 − rm) + εdtm−1 − εdtm )

SL0 − 20 log(r1) − α(r1 − 1) + εRSS1
...

SL0 − 20 log(rm) − α(rm − 1) + εRSSm

z + εz

︸                                                ︷︷                                                ︸
h(pk,pi,ε )

(11)

where r is the distance from the source, as before, now
re-defined as ri = | |pk − pi | |.

A. Covariance and Measurement Model Linearization
The function h(pk, pi, ε) is nonlinear, and cannot be used

directly in an EKF. Therefore, it is necessary to linearize the
measurement matrix and the covariance matrix. These can
be linearized with the position predicted by the filter, i.e.,
p̄k . The linearization of of the covariance matrix Rk at each
time step k can be approximated with a Taylor expansion
[24], given as

Rk = Var(h(pi, ε)) ≈ SkΣ2STk , (12)

where Sk =
∂h(p,pi,ε )
∂{ε,pi }

|pk=p̄k ∈ R2m×(5m+1) is the Jacobian
of (11), computed as

Sk =



∂h1
∂εp1:m

∂h1
∂εdt1:m

0 · · · 0 0
...

... ... · · ·
...

...
∂hm−1
∂εp1:m

∂hm−1
∂εdt1:m

0 · · · 0 0
∂hm

∂εp1:m
0 · · · 0 ∂hm

∂εRSS1:m
0

... ... · · ·
...

...
...

∂h2m−1
∂εp1:m

0 · · · 0 ∂h2m−1
∂εRSS1:m

0
0 · · · 0 0 · · · 0 0 · · · 0 ∂h2m

∂εz


(13)

where the calculations of the derivatives are given in the
Appendix. Σ2 is the covariance matrix given by

Σ
2 = diag(Σ2

p1, . . . , Σ
2
pm
, σ2

dt1
, . . . , σ2

dtm
,

σ2
RSS1

, . . . , σ2
RSSm

, σ2
z ) ∈ R5m+1×5m+1 (14)

The parameter Σpi = diag(σp1, σp2, σp3 ) denotes the covari-
ance matrix for the position of receiver no. i, obtained by
the accuracy of the calibration procedure of the receivers.

σ2
dti
∈ R denotes variance on the time stamp for each

receiver, σ2
RSSi

∈ R is the noise on the estimated RSS and
σ2
z ∈ R represents noise from the pressure sensor. Moving on

with the linearization procedure, the linearized measurement
matrix Ck is obtained by taking the Jacobian of (11) as
follows

Ck =
∂h(pk, pi, ε)

∂pk
|pk=p̄k

=



1
c0
(
(pk−p1)

T

r1
−
(pk−p2)

T

r2
)

...
1
c0
(
(pk−pm−1)

T

rm−1
−
(pk−pm)

T

rm
)

−α
(pk−p1)

T

r1
−

20(p−p1)
T

r2
1 ln(10)

...

−α
(p−pm)

T

rm
−

20(p−pm)
T

r2
m ln(10)

0 0 1

 pk=p̄k

(15)

The algorithm applied for estimating the transmitter source
and receiver positions can be found in Algorithm 1. Here,
Q ∈ R3×3 and Rk ∈ R2m×2m are the process and measurement
covariance matrices, respectively, where m is the number of
hydrophones. Kk is the Kalman gain and P̂k is the estimated
covariance matrix.

Data: Intial estimate p̄0, Init Covariance matrix P̄0,
Result: Tag position, Tag position uncertainty
if Measurement yk Received then

Rk = SkΣ2STk

Ck =
∂h(pk, pi, ε)

∂pk
|pk=p̄k

Kk = P̄kCT
k (Ck P̄CT

k + Rk)
−1

p̂k = p̄k + Kk(yk − h(p̄k))

P̂k = (I3×3 − KkCk)P̄k(I3×3 − KkCk)
T + KkRkKT

k

p̄k+1 = p̂k
P̄k+1 = P̂k +Q

end
Algorithm 1: EKF algorithm

V. Case Study: Position of an Anchor Line
Numerical Simulations

This section presents a case study where the goal is to
estimate the position of a rope / anchor line, which represents
a typical flexible underwater structure. A numerical simula-
tion study is conducted in a static environment with three
hydrophones (receivers) and four transmitter tags distributed
over the rope. First, transmitter tag positions are estimated,
before they are interpolated in order to map the position of
the anchor line. The estimated uncertainties are incorporated
in the position estimates based on the covariance matrix from
the EKF as confidence intervals in 3D space. Numerical
simulations are based on a static data set with noises and



uncertainties that aim to replicate uncertainties encountered
in the real world, as presented in Sections II-III.

A. Structure Modelling: Anchor Line
In this subsection, the modelling technique of the anchor

line is studied. An initial assumption about the anchor line
is made:

Assumption 1: The anchor line can be assumed to be fully
stretched between two neighboring tags.

Two neighboring points (tag positions) are marked on the
line, p0 =

[
x0 y0 z0

]T and p1 =
[
x1 y1 z1

]T . Due
to Assumption 1, a straight-line parametrization s can be
parametrized by a variable t as s(t) = A(t)x, s(t) ∈ R3. By
letting the parameterization variable t run between 0 and 1,
A(t) and x can be defined as

A =

(1 − t) 0 0 t 0 0

0 (1 − t) 0 0 t 0
0 0 (1 − t) 0 0 t

 (16)

x =
[
x0 y0 z0 x1 y1 z1

]T (17)

B. Confidence Interval Representation
The uncertainty of a position estimate needs to be incor-

porated with the position estimates, as estimates cannot be
guaranteed to be correct. One way to merge uncertainties and
position estimates is to make use of the covariance matrix
from the EKF. Therefore, a second assumption is made:

Assumption 2: The covariance matrix calculated by the
EKF can be used to describe the confidence interval of tag
position estimates.

The covariance of the parametrization is estimated by the
EKF, and is given as Σ0, Σ1 ∈ R3×3 for p0, p1, respectively.
The confidence interval provides a range of values that are
likely to contain the population parameter of interest. These
are specified as confidence interval levels. For instance, a
95% confidence interval may be chosen. This means that
if the same population is sampled on an infinite number
of occasions with the same confidence level, the resulting
interval would contain the population parameter in exactly
95% of the cases. By Assumptions 1-2, the covariance matrix
covar if found as a function of the parametrization s(t) as

covar(s(t)) = AΣc AT ∈ R3×3 (18)

where

Σc =

[
Σ0 0
0 Σ1

]
∈ R6×6 (19)

Theoretically, the confidence interval is a sphere for Gaus-
sian distributed errors in 3D space, but now becomes an
ellipsoid with the covariance values being non-zero. Before
moving on, an assumption about the depth measurements is
made.

Assumption 3: Assume that the pressure sensor uncer-
tainty is so small that it can be neglected. It then follows that
the depth position estimate by the EKF is the true depth.

According to Assumption 3, the confidence interval is
reduced from an ellipsoid in 3D to an ellipse in 2D in
the North-East plane. In order to calculate the error co-
variance ellipse, the covariance matrix covar(s(t)) and a
95% confidence interval is chosen. Ideally, a short interval
with a high degree of confidence is desired, which is why
the 95% confidence interval usually is chosen [24]. Both
the method and a proof of the method presented here can
be found in [25]. The confidence interval is obtained by
assuming a multivariate Gaussian distributed data set with
zero covariance, which means that North and East position
data are normally distributed. The ellipse can be calculated
as (

x
σx

)2
+

(
y

σy

)2
= σs, (20)

where σs is the scale of the ellipse, i.e., the confidence
interval value. The sum is distributed by a χ2-distribution,
and for the 95% confidence interval, the scale is found as
σs = 5.99 (p. 760 in [25]). The ellipse is easily obtained
based on the scale σs and the estimated North- and East
values from the EKF at any desired depth.

C. Results
The EKF is given an initial tag position p̄0 =

[
0 0 5

]T
and covariance matrix P̄0 = 252 · I3×3. Variance terms
are chosen as Σ2

pi
= diag(12, 12, 0.022) on the hydrophone

position, σ2
dti
= (5 · 10−4)2 on the time stamp and σ2

RSSi
=

102 on the RSS signal for all hydrophones. Furthermore,
the variance σ2

p j
= 0.012 is applied on the tag positions

for tag no. j = 1, 2, 3, 4, and σ2
z = 0.022 on the depth

sensor readings. The remaining parameters used in the case
study can be found in Table II. It should be noted that the
sound speed c0 is calculated as in (1), the source level at
reference distance SL0 is used to estimate RSS in (5), and the
absorption coefficient α is found based on the work of [19],
using the wave frequency ωwf , temperature T and salinity S
in Table II.

TABLE II
Simulation parameters

Description Parameter Value
Temperature T 13 [◦C]
Salinity S 35 [‰]
Depth D 7.5 [m]

Sound velocity c0 1500 [ms ]
Gravitational constant g 9.81 [ kg·m

s2 ]
Sea water density ρ 1025 [ kg

m3 ]
Source level at reference distance SL0 160 [dB]

Absorption coefficient α 21.9·10−4[ dB
m ]

Wave frequency ωw f 69 [kHz]

Running 3000 Monte Carlo simulations with these parame-
ters gives the average of the root mean square errors (RMSE).
In RMSE1, RSS measurements are used, while these are not
included in RMSE2. The results can be found in Table III.
One simulation with RSS measurements are shown with the
covariance error ellipse representation in Figure 3.



TABLE III
Initialization parameters and RMSE for each tag after 3000 Monte

Carlo Simulations.

Tag no. 1 2 3 4
p̄0 (0,0,5) (0,0,5) (0,0,5) (0,0,5)

True Position (5,-5,5) (7.5,-7.5,10) (10,-10,15) (15,-15,25)
RMSE1 [m] 0.173 0.219 0.270 0.448
RMSE2 [m] 0.175 0.220 0.271 0.449
Hydrophone p1 p2 p3

Position (0,0,0) (15,0,0) (0,-15,0)

Fig. 3. This figure shows the hydrophone and tag positions with corre-
sponding confidence error ellipses after 60 minutes. The blue and black
squares represent the hydrophone and tag positions, respectively. The blue
ellipses correspond to the 95% confidence interval in the North-East plane
for the hydrophone and tag positions. H1, H2 and H3 represent hydrophone
no. 1, 2 and 3, while T1, T2, T3 and T4 represent tag no. 1, 2, 3 and 4,
respectively.

By Assumptions 1-3, the interpolation method from Sec-
tion V-A is applied to create the occupancy grid map. All
depth intervals are equally spaced by 10 cm, each containing
a Gaussian distributed 2D point cloud based on the mean
and the covariance matrix from the EKF. The resulting map
with anchor line position and uncertainties can be seen as an
occupancy grid map in Figure 4.

Fig. 4. An occupancy grid map of the anchor line in Octomap. The structure
is drawn as a set of 3D grid cells based on a point cloud, generated within
the confidence interval boundaries.

Perhaps more interestingly, the estimation process and con-
vergence towards the true tag positions for the tag closest to
and furthest away from the surface are illustrated in Figures
5 and 6, respectively. For tag no. 1, the position estimate
converges after less than five minutes (five measurements,
one measurement every minute), while convergence for tag
no. 4 takes approximately 40 minutes.
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Fig. 5. True tag position (red) vs. estimated tag position (black) for tag
no. 1 (T1). The blue lines represent the 95% confidence interval

VI. Discussion

This section discusses the validity of the assumptions and
the methods used to estimate the tag positions.

The data set of which the numerical simulation case study
is based upon is static for 60 minutes, meaning that all
values are constant for the entire case study. This is not
realistic, not even in calm sea states, where slowly varying
fluctuations such as currents do exist. Therefore, noise is
included in the model based on the environment and the
equipment measurement inaccuracies. The time stamp on
the received signal is the main contributor to errors in the
position estimates, which has a millisecond resolution. By
assuming that the typical sound speed in water is 1500 m/s,
a millisecond resolution implies that the position data may
have an error up to 1500[m/s] · 0.001[s] = 1.5[m]. Though,
with enough measurements, the RMS error can go below
1.5m. The RSS data are range measurements, but these
values can be unreliable due to, e.g., the direction in which
the hydrophone points or due to a non-spherical wave front.
This is why the measurement noise σRSS is set high, and
based on the RMSE data presented in Table III, it can be seen
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Fig. 6. True tag position (red) vs. estimated tag position (black) for tag
no. 4 (T4). The blue lines represent the 95% confidence interval

that the inclusion of RSS measurements only has a marginal
improvement for all tag position estimates, which may be
due to the large values for σRSS and SL0. Nevertheless, the
RSS measurements can be valuable when fused with other
measurements, depending on the signal quality.

The convergence rate and estimation accuracy are heavily
dependent on each tag’s position relative to the receiver
network geometry, which is known as the dilution of pre-
cision (DOP). Poor DOP areas are nonlinear, where even
the smallest measurement errors can lead to large estimation
errors, mainly caused by a non-Gaussian distribution and
lost information about the system in the linearization phase.
To avoid this, another filter could be implemented, e.g., a
particle filter (PF) or an unscended Kalman filter (UKF).
These estimators do not require linearization and are better
suited to describe non-Gaussian distributions. However, if
the hydrophones are strategically placed according to the tag
positions, the EKF should match the performance of a PF and
UKF, especially if there is little noise on the measurements,
given that the nonlinearities are sufficiently reduced. It should
be noted that motions on the hydrophones due to waves and
currents can affect the transmitter position estimates. These
disturbances may, for instance, be filtered out by utilizing the
method developed in [26].

When considering the hardware, designing the receivers
to have microsecond time stamp resolution would highly
improve the final accuracy in the estimate. Other error
sources are due to the tuning of variances. The GPS positions
for the hydrophones are estimated to have a variance of
Σp = 1m in the horizontal plane, which might be a bit

high, as RTK dGPS (real-time kinematic differential GPS)
or precise point positioning (PPP) can give error estimates
below 1m. Moreover, a decent pressure sensor should give
depth errors below 5cm, which is the main motivation for
letting the confidence intervals describe confidence error
ellipses instead of ellipsoids.

In this case study, only four tags were used, while in
a fish cage, it may be necessary to have several more to
accurately model the structure. As an example, consider the
following: If it is known that environmental forces are small,
the cage will be almost perfectly cylindrical. Since each of
the tags represent a point position on the structure, it would
be sufficient with 3 tags to accurately model a perfectly
cylindrical cage at a given depth, where the interpolation
strategy would be to draw a circle that intersects the given
tag point positions. However, the assumption that the cage is
perfectly cylindrical may not be valid in a real life scenario,
and it is highly likely that more tags will be needed to
accurately model the cage structure. Not only does the
accuracy of the model depend on the number of tags used,
but also the properties of the water, the environmental forces
and the structure, accuracy of position estimates, noises and
noise distributions, delays and processing time, DOP and the
interpolation strategy.

Greater accuracy of the underwater tag position estimates
can be achieved by customizing tags for higher update rates
and with larger batteries. Combining this with sensor tech-
nologies such as doppler velocity loggers (DVLs), sonars and
cameras on an underwater vehicle can give additional updates
of the position of objects in the map, and may increase
the positioning accuracy. A digital map that incorporates
a strategy for handling inaccuracies and that can be used
for navigation purposes has the potential to increase the
autonomy level in underwater vehicles performing operations
in offshore and aquaculture industry.

VII. Conclusions
In this paper, a method for estimating the position of

acoustic transmitter tags on a flexible structure, represented
by an anchor line, has been developed. The interpolation
strategy is applied in a numerical simulation case study with
good results. The simulation study showed that the position
of the anchor line is estimated with less than 0.5m error. The
position data were given as input to Octomap, to generate
a probabilistic 3D occupancy grid map. However, the error
estimates can be significantly reduced through improved cali-
bration procedures. This work shows that there is an immense
potential to improve underwater positioning of flexible struc-
tures using position information in a probabilistic occupancy
grid map. By utilizing Octomap and estimating confidence
intervals for the measurements and filter estimations, it is
expected that this map could give a sufficient representation
of the ocean structure. Such a probabilistic representation
of the environment is important for underwater vehicles
operating close to or within the structure, and may lay a
foundation for increased level of autonomy in inspection,
maintenance and repair operations. Customizing point tags



for higher update rates and with larger batteries, where
weight and size are not limiting factors, position estimates
will be improved. Sensor information from, e.g., doppler
velocity loggers (DVLs), sonars and cameras on the vehicle
can be applied to update the geometrical representation of
the underwater environment. A digital map, such as the
Octomap, can both be used as a visualization tool for ROV
operators and supervisory tasks, and as a framework for
underwater vehicles to enhance their autonomous capabilities
through improved planning, guidance, navigation and control
strategies.
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Appendix

∂hi
∂εpi

=
(pk − pi)T

c0ri
∂hi
∂εp j

=
[
0 0 0

]
, j , i

∂h1
∂εdt1:m

=
[
1 1 0 · · · 0

]
∈ R1×m

∂h2
∂εdt1:m

=
[
0 1 1 0 · · · 0

]
∈ R1×m

∂hm−1
∂εdt1:m

=
[
0 · · · 0 1 1

]
∈ R1×m

∂hm
∂εRSS1:m

=
[
1 0 · · · 0

]
∈ R1×m

∂h2m−1
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=
[
0 · · · 0 1

]
∈ R1×m
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∂εz

= 1
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