
Instruction Set for Bit-Banging
Operations
Increasing flexibility for low power

communication

Henrik Olav Solvang

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IET
Co-supervisor: Jan Frode Lønnum, Nordic Semiconductor ASA

Department of Electronics and Telecommunications

Submission date: January 2016

Norwegian University of Science and Technology

P R O B L E M D E S C R I P T I O N

Title: Instruction Set for Bit-Banging Operations
Increasing flexibility for low power communication

Focus: Computer architecture, Processor design, Serial Communication.

Bit-banging techniques are being widely used by embedded programmers to
emulate dedicated hardware in microcontrollers. Today a wide range of serial
engines such as SPI, UART, UASRT, TWI, USB, I2S, MIPI etc. are required in a
broad range ASIC targeted for high volume production. It is costly in terms of
development time and chip area to make dedicated circuitry for these diverse
communication protocols.

In order to increase the efficiency of communication protocols based on bit-
banging methodology, this master thesis will propose a new core logic unit
with an efficient instruction set for performing bit-banging operations. It is
important that the architectural study on the instruction set is targeting effi-
cient operations, high flexibility and the stringent timing requirements found
in many communication peripherals. A more general use of the instruction set
beyond serial engines should be considered. If time permits an example engine
in C/SystemVerilog should be developed.

Responsible professor: Kjetil Svarstad, IET
Supervisor: Jan Frode Lønnum, Nordic Semiconductor

i

A B S T R A C T

A microcontroller can only offer a limited amount of communication interfaces.
When designing an ASIC targeted for high volume production, flexibility must
often give way to increased energy efficiency. The limitation in the number
and types of communication interfaces may force embedded designers to use
inefficient bit-banging techniques to communicate with various modules. Can
a co-processor optimized for bit-banging provide this flexibility with an accept-
able loss in power efficiency, compared to dedicated hardware modules?

A cycle-accurate instruction set simulator has been developed to support the
design of instruction sets and optimization of the bit-banging programs. It is
also used to determine the run/sleep ratio for these programs on the individual
instruction sets. Complexity based power estimations, that make use of power
and complexity measures from an ARM Cortex M0 implementation, are used
to estimate the dynamic power consumption of the various instruction sets.

A new set of instructions, called the SOL-instructions, was developed to op-
timize the output and input of serial data. Together with the addition of the
REPEAT-instruction, a 36% reduction in active time was achieved compared
to a simple instruction set. Compared to dedicated modules the difference in
dynamic power consumption vary with transmission frequency. The power
consumption range from 6.7%(UART, 9.6kbps) to 529%(SPI, 1000kbps) of the
dedicated hardware’s power consumption.

Flexibility is added at the cost of reduced power efficiency for high speed
transmissions. The bit-banging processor is perhaps best suited as an addition
to existing modules. It can not completely replace dedicated modules for com-
mon protocols, but show very promising results as an alternative to bit-banging
in the host processor.

iii

S A M M E N D R A G (N O RW E G I A N)

En mikrokontroller kan bare tilby et begrenset antall kommunikasjonsgrenses-
nitt. Når man designer en ASIC som skal produseres i høyt volum, må ofte flek-
sibilitet ofres for økt energieffektivitet. Begrensningen i antall kommunikasjon-
sgrensesnitt kan tvinge utviklere av innebygde systemer til å bruke inneffek-
tive bit-banging-teknikker for å kommunisere med ulike moduler. Kan en co-
prosessor som er optimalisert for bit-banging tilby denne fleksibiliteten med et
akseptabelt tap i energieffektivitet, sammenlignet med spesialiserte hardware-
moduler?

En syklus-nøyaktig instruksjonssett-simulator har blitt utviklet for å støtte
designet av instruksjonssett og optimaliseringen av bit-banging-programmene.
Den blir også brukt til å bestemme aktiv/inaktiv-forholdet for disse programm-
ene for de individuelle instruksjonssettene.

Et nytt sett med instruksjoner, kalt SOL-instruksjoner, har blitt utviklet for
å optimalisere utmating og innmating1 av seriell data. Sammen med REPEAT-
instruksjonen ble den aktive kjøretiden redusert med 36% i forhold til et sim-
pelt instruksjonssett. Sammenlignet med spesialiserte hardware-moduler så
varierer forskjellen i dynamisk effektforbruk med overføringsfrekvensen. Ef-
fektforbruket varierer fra 6,7%(UART, 9.6kbps) til 529%(SPI, 1000kbps) av de
spesialiserte hardware-modulenes effektforbruk.

Fleksibiliteten er økt på bekostning av redusert energieffektivitet for høy-
hastighets-kommunikasjon. Bit-banging-prosessoren er kanskje best egnet som
et tillegg til eksisterende moduler. Den kan ikke erstatte spesialiserte hardware-
moduler for de mest brukte protokollene, men er et veldig lovende alternativ
til bit-banging i vertsprosessoren.

1 Output/Input

v

P R E FA C E

This thesis completes a Master of Science degree in Electronics, Design of Dig-
ital Systems. The assignment was given by Nordic Semiconductor in August
2015, and the thesis was delivered in January 2016.

While my studies have focused on the design of digital circuits, this thesis
focuses on an architectural approach to a problem. With no accurate measure-
ments of the chip power nor complexity available, and with no time to perform
such measurements, a practical approach to power estimations was adopted.
It was challenging to perform, and not nearly as satisfying as having more
trustable results, but at an architectural level it is simply not practical to im-
plement all solutions. It has been very educational to work at this level of
abstraction, and I believe the work has given me valuable insight into the early
stages of chip design. Insight that I will benefit from as an engineer.

I would like to thank my Professor Kjetil Svarstad for his advice during the
design and writing processes. Jan Frode Lønnum, who has been my supervisor
at Nordic Semiconductor, for advice and proofreading of the thesis. And finally
I would like to thank Vemund Bakken for designing the problem, for very
helpful advice in the starting phases of my work, and for input on the thesis.

Henrik Olav Sollesnes Solvang
NTNU, IET

Trondheim, January 24, 2016

vii

C O N T E N T S

Abstract . iii
Sammendrag (Norwegian) . v
Preface . vii

1 introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Limitations . 2
1.4 Method . 3
1.5 Structure of the thesis . 3

2 background and previous work 5
2.1 Bit-banging . 5
2.2 Protocols . 5

2.2.1 Serial Peripheral Interface – SPI 5
2.2.2 Inter-Integrated Circuit – I2C 8
2.2.3 Two Wire Interface – TWI 11
2.2.4 Universal Asynchronous Receiver/Transmitter – UART . 11

2.3 Instruction set architecture . 13
2.4 Classifying instruction set architectures 14

2.4.1 RISC - Reduced Instruction Set Computer 14
2.4.2 CISC - Complex Instruction Set Computer 14
2.4.3 Number of operands . 15
2.4.4 Operand Type . 16

2.5 Assembly . 17
2.6 Low power methods . 17

2.6.1 Dynamic power consumption 17
2.6.2 Static power consumption 19
2.6.3 Time to idle . 19

2.7 Pads . 19
2.8 Power estimation methods . 20
2.9 Previous work . 21

3 processor architecture outline 23
4 instruction simulator 27

4.1 Structure . 27
4.2 Register file . 28
4.3 I/O-map . 29
4.4 Waveform generation . 29
4.5 Report generator . 30
4.6 Testbench . 30
4.7 I-functions . 31

ix

4.8 A-programs . 33
4.9 Benchmark . 36

5 instruction set architectures 37
5.1 Minimal Instruction Set . 37

5.1.1 Protocols . 38
5.1.2 Results . 43

5.2 Three operands . 43
5.2.1 Results . 44

5.3 Repeat . 44
5.3.1 Protocols . 46
5.3.2 Results . 47

5.4 SOL instructions . 48
5.4.1 Results . 50

5.5 SOL and Repeat . 50
5.6 Conditional Execution . 52

5.6.1 Protocols . 54
5.6.2 Results . 55

5.7 Parallel execution . 56
5.7.1 Protocols . 58
5.7.2 Results . 61

5.8 Comparison . 61
5.9 Max speeds . 62

6 power 63
6.1 Power estimation method . 63
6.2 The Cortex M0 as a baseline . 64
6.3 Power estimate per functionality 65

6.3.1 Unused functions . 65
6.3.2 Repeat . 69
6.3.3 SOL . 70
6.3.4 Conditionals . 70
6.3.5 Parallel Execution . 71

6.4 Dedicated modules . 71
6.5 Estimation results . 72

6.5.1 Equivalent power . 73
7 combined results 75

7.1 Inter-Integrated Circuit – I2C . 75
7.2 Universal Asynchronous Receiver/Transmitter – UART 76
7.3 Serial Peripheral Interface – SPI . 77

8 discussion 79
8.1 Power estimation . 79
8.2 Slave implementations . 80
8.3 The BBP as a general processor . 81
8.4 Full coprocessor . 81
8.5 Frequency reduction . 82

x

8.6 Voltage scaling . 82
9 conclusion 83

9.1 Recommendations for Further Work 83
Bibliography 85

Appendix 89
a cell list 91

xi

L I S T O F F I G U R E S

Figure 2.1 Simple SPI transaction . 6
Figure 2.2 SPI configurations with sampling on the leading edge. . 7
Figure 2.3 SPI configurations with sampling on the trailing edge. . 7
Figure 2.4 Typical transfer of two bytes on I2C 9
Figure 2.5 Slave clock-stretches to catch up when master writes two

bytes of data. 9
Figure 2.6 Glitch in start of UART TX. 12
Figure 2.7 Switching power in a CMOS inverter. 18
Figure 2.8 Nordic semiconductor input/output pad. 20
Figure 2.9 Power consumption of UART implemented on a CPU

compared to a dedicated hardware module[1] 22
Figure 3.1 Bit-banging processor architecture illustration. 23
Figure 4.1 File structure and control flow of the instruction set sim-

ulator. 28
Figure 4.2 VCD-file . 29
Figure 4.3 Flow graph of the algorithm shown in algorithm 4.12b. . 35
Figure 5.1 State chart for UART . 42
Figure 5.2 Simulation results for minimal ISA. 43
Figure 5.3 Simulation results for three operand ISA. 44
Figure 5.4 Illustration of hardware implementation of the REPEAT-

instruction. 45
Figure 5.5 Simulation results for REPEAT ISA. 48
Figure 5.6 SOL TX instructions(SOL/SOM) in hardware 50
Figure 5.7 SOL RX instructions(SIL/SIM) in hardware 51
Figure 5.8 Simulation results for SOL ISA. 51
Figure 5.9 Simulation results for SOL and REPEAT ISA. 51
Figure 5.10 Illustration of conditional execution implementation. . . 54
Figure 5.11 Simulation results for conditional execution ISA. 55
Figure 5.12 Illustration of the UART program in the parallel execu-

tion instruction set. Operations shown as horizontal ar-
rows does not incur a pipeline flush. 57

Figure 5.13 Illustration of parallel execution implementation. 57
Figure 5.14 Simulation results for parallel execution ISA. 60
Figure 5.15 Running ratio for all instruction sets divided by protocol. 61
Figure 5.16 Running and total time of benchmark on all instruction

sets, normalized to SolRepeat. 62
Figure 6.1 Simple register file model. 66

xii

Figure 7.1 Power estimates for the I2C protocol divided by imple-
mentation. 75

Figure 7.2 Power estimates for the UART protocol divided by im-
plementation. 76

Figure 7.3 Power estimates for the SPI protocol divided by imple-
mentation. 77

L I S T O F TA B L E S

Table 2.1 Typical structure of SDA when transmitting two bytes. . 9
Table 2.2 UART frame . 12
Table 2.3 Structure of an instruction with corresponding mnemonic

assembly code. 14
Table 5.1 Minimal Instruction set . 37
Table 5.2 Condition register and condition checks. 53
Table 5.3 Maximum bitrates for SolRepeat ISA. 62
Table 6.1 Cortex M0 area and dynamic power consumption. 64
Table 6.2 Area and power estimates of register reduction. 67
Table 6.3 Area and power estimates of addition/subtraction func-

tionality. 67
Table 6.4 Area and power estimates of datapath width reduction. . 68
Table 6.5 Area and power estimates of multiplier. 68
Table 6.6 Area and power estimates of Repeat functionality. 69
Table 6.7 Area and power estimates of SOL functionality. 70
Table 6.8 Area and power estimates of Conditional functionality. . 71
Table 6.9 Area and power estimates of Parallel Execution. 71
Table 6.10 Power estimates of dedicated hardware modules. 72
Table 6.11 Area and current estimates of unused Cortex M0 func-

tionality, and reduced Cortex M0 core. 72
Table 6.12 Area and current estimates of each instruction set archi-

tecture. 73

xiii

L I S T O F A L G O R I T H M S

2.1 SPI master bit-banging . 7
2.2 I2C master start bit and address transfer. 10
2.3 I2C master write data byte. 10
2.4 I2C bit-banging write single bit transaction. 11
2.5 UART bit-banging single bit. 12
2.6 UART bit-banging. 13
2.7 Assembly pseudo-language example. 17

4.8 I-functions used in the simulator. 32
4.9 jmp-function . 32
4.10 cpseJmp-function (Compare Skip if Equal) 33
4.11 Program that outputs data serially, MSB first. 34
4.12 Program with if-else type structure. 35

5.13 Start-up A-program for the SPI-protocol 38
5.14 SPI byte loop. Full duplex communication. 40
5.15 I2C Write . 40
5.16 I2C Write Acknowledge . 41
5.17 UART top function . 42
5.18 Receive algorithm . 42
5.19 Repeat added to SPI . 46
5.20 Nop padding to allow UART to use repeat. 47
5.21 Outputting single bit from a register without destroying data in

register or changing other outputs. 49
5.22 Program with if-else type structure. 53
5.23 Parallel Execution Function (shortened for readability) 58
5.24 I2C parallel execution A-program 59
5.25 UART RX parallel execution A-program 60

xiv

A C R O N Y M S

bbp Bit Banging Processor

spi Serial Peripheral Interface

uart Universal Asynchronous Receiver/Transmitter

i2c Inter-Integrated Circuit

i2s Inter-Integrated Sound

twi Two Wire Interface

asic Application-Specific Integrated Circuit

risc Reduced Instruction Set Computer

cisc Complex Instruction Set Computer

i/o Input/Output

isa Instruction Set Architecture

pc Program Counter

rtl Register Transfer Level

cpu Central Processing Unit

lsb Least Significant Bit

msb Most Significant Bit

ahb Advanced High-performance Bus

vcd Value Change Dump

alu Arithmetic Logic Unit

aspr Application Program Status Register

Instruction Acronyms: see table 5.1 and chapter 5.

xv

1
I N T R O D U C T I O N

Reducing power consumption in ASIC designs has been an important topic for
research and development for many years. The innovations in low power has
created, and continues to create, new markets as well as constantly improving
existing product lines. Optimizing for battery life and performance is as impor-
tant as ever, but in the process of doing so the complexity constantly increases.
The market for low-power microcontrollers is changing. The bulk of the market
is large companies with time and resources to design complex systems. How-
ever, small start-ups achieving rapid innovation through the use of off-the-shelf
modules is an increasingly important group of users. To capture these mar-
kets, ease of use is an important factor, and this includes the ease of which a
microcontroller can communicate with existing modules.

1.1 M O T I VAT I O N

Communication with sensors, external memory, motors and other external on-
or off-chip modules is an intrinsic part of any microcontroller. There are several
different communication protocols, where Inter Integrated Circuit(I2C), Serial
Peripheral Interface(SPI) and Universal Asynchronous Receiver/Transmitter(UART)
are among the most common. In serial communication, data is sent one bit
at a time. If the microprocessor is used to transmit and receive these bits,
known as bit-banging, it can have a severe impact on performance and power
consumption. Traditionally, this is solved by adding peripheral modules that
communicates on the bus with minimal interaction from the microprocessor.
It is necessary to add one module for each open communication port, so the
number of available ports is limited. In the Nordic Semiconductor chip nRF52
there are in total one Inter-Integrated Sound(I2S), one UART, two Two Wire In-
terface(TWI, I2C-compatible) and three SPI modules. Some of these modules
share resources so only five modules can be active simultaneously, where the
two SPI-s and two TWI-s share resources. Although this selection of communi-
cation protocols may suffice in most cases, they still represent a limitation when
the microcontroller is used in a larger system. Can an application specific pro-
cessor designed to bit-bang protocols be a more flexible alternative, and what
impact does it have on power? In this thesis the architecture of such a proces-
sor will be investigated. It is not expected that the power consumption will
equal the consumption of dedicated hardware, but it is hoped that it can be
well within an order of magnitude.

1

1.2 C O N T R I B U T I O N S

A cycle-accurate instruction set simulator has been created in C. The simulator
emulates timing and creates waveform-files which can be viewed in a waveform
viewer. It is simple to add and remove features of the simulated instruction sets,
and seven instruction set variations has been implemented. The simulator can
handle conditional parallel execution, where one of three fetched instructions
is performed. Finally, the simulator creates report files that can be used to
compare different instruction set implementations.

A concept architecture for a bit-banging processor has been created, and
power consumption for this processor has been estimated. The ARM Cortex
M0 is used as a baseline for power estimates. Based on analysis, the size of
some Cortex M0 features has been calculated to allow for more accurate power
estimations. The hardware-cost of implementing some instructions has been
calculated for the same reason. The simulation and hardware estimation results
have been combined to compare the different bit-banging processor implemen-
tations to each other and to dedicated hardware.

Using the simulator and power estimates, an instruction set architecture with
promising results in terms of power efficiency has been created. A processor
based on the instruction set architecture can be added to a microcontroller to
offer a flexible communication module at an acceptable reduction in power
efficiency, compared to dedicated hardware. Suggestions to further improve
the power consumption of the bit-banging processor is presented.

1.3 L I M I TAT I O N S

Time is the number one limiting factor when writing a thesis, and consequently
it is important to limit the scope of the thesis to ensure that all tasks can be
performed with the necessary depth. The main focus of this thesis is to develop
an instruction set which is optimized for serial communication. It was decided
that an RTL-implementation of the processor would not be feasible. Since there
has been no RTL-implementation, the power estimates are based on an existing
processor, the ARM Cortex M0. Although the Cortex M0 is a low-power proces-
sor, it is a larger and more powerful processor than the bit-banging processor.
Through analysis and existing estimates, the size of Cortex M0 submodules that
are not included in the bit-banging processor has been calculated and removed,
but the accuracy of the power estimations are not expected to be high. Further-
more, complexity-based power estimation is not a very accurate method, and
this further reduces the reliability of the power estimations. There has not been
time to consider all aspects of the protocol implementations. Specifically, clock-
stretching in I2C and clock synchronization in UART, are not implemented.

2

1.4 M E T H O D

The instruction set simulator has been designed using an iterative design metho-
dology with ad-hoc testing. Using testbenches in the instruction set simulator
to verify the results, the instruction sets have been developed using an analysis
based methodology to explore the major candidates for improving the power
efficiency. The power estimation is performed using an analysis based gate
equivalent model widely used in industry for fast, architectural, power estima-
tions.

1.5 S T R U C T U R E O F T H E T H E S I S

First the communication protocols studied in this thesis will be presented in
detail. An introduction to concepts of different processor architectures, and a
short introduction to power estimation, is given in chapter 2. The conceptual
bit-banging processor is discussed in chapter 3 to give the reader a basis for
reading the subsequent chapters. To give the reader an opportunity to verify
the instruction set simulator, it is explained in detail in chapter 4. The iterative
development process for the instruction sets is highlighted in chapter 5. The in-
struction sets are explained, results are presented, analysed and the candidates
for improvement is shown and implemented. In chapter 6 it is explained how
the power estimation is performed, and the assumptions necessary to simplify
the power estimation. The results for the different instruction sets are pre-
sented and discussed. The most promising solution is compared to the power
estimates of the dedicated hardware modules in chapter 7. In chapter 8 the
implications of the results, and the reliability of the power estimations is dis-
cussed. Finally conclusions and suggestions for further work is presented in
chapter 9.

3

2
B A C K G R O U N D A N D P R E V I O U S W O R K

This chapter briefly describes relevant background theory for this thesis. Some
assumptions and previous work is also presented. It is expected that the reader
is familiar with basic processor construction techniques, and the assembly lan-
guage. For further reading into this topic it is referred to Computer Organization
and Design by Patterson and Hennessy[2].

2.1 B I T- B A N G I N G

Bit-banging is the colloquial name for using a software program on a micropro-
cessor to toggle general purpose input/output pins to adhere to some commu-
nication protocol. It is often used in embedded programming if the microcon-
troller lacks dedicated modules to communicate on a given protocol. Depend-
ing on the energy consumption of the processor, bit-banging is usually power
inefficient because the general processor, as compared to dedicated hardware,
is not optimized for the process. Timing in the protocols is also important and
the bit-banging must be given high priority in the processor to ensure that tim-
ing is met. It may even be necessary to perform no other operations while the
processor is transferring data, and assuming that the communication frequency
is much lower than the processor frequency, the processor will spend a large
amount of time simply waiting until the next bit can be transferred.

2.2 P R O T O C O L S

In this section three communication protocols are presented: SPI, I2C and
UART. These protocols have been used as reference protocols when designing
the instruction sets in this thesis. They are presented in detail with pseudocode
for the bit-banging procedures.

2.2.1 S E R I A L P E R I P H E R A L I N T E R FA C E – S P I

There is no specific standard for the SPI-protocol, which is evident in the con-
siderable amount of protocol options. SPI is simple to implement, and can
sustain high bitrates (>10mbit/s [3]). Every SPI slave needs a unique slave se-
lect signal. This means that the designer either has to use a General-Purpose
Input/Output(GPIO)-pin for each slave or add a decoder to distribute the chip
select signals. SPI does not allow for more than one master on the bus. Al-
though 8-bit words are common in SPI modules, and word lengths that are
multiples of 8 are even more so, SPI is not limited to these word lengths. SPI

5

is commonly full-duplex, using four wires to allow simultaneous sending and
receiving to and from slave, but can be reduced to a half-duplex three wire
interface using a single wire for both sending and receiving. Extra status wires
may be added to indicate data-ready or other flow control related tasks. Some
SPI implementations send LSB first, others have active low chip selects. In the
description below a full-duplex, four wire SPI is described.

The four-wire interface consist of:

◦ SCK - Serial Clock
◦ MOSI - Master Out Slave In
◦ MISO - Master In Slave Out
◦ CS[n..0] - Chip Select

The bus master drives the SCK, MOSI and CS signals while MISO is driven
by the bus slave. As shown in figure 2.1 communication is initiated when the
master asserts the slave’s chip select signal. The first data-bit follows on the
first (either rising or falling) edge of SCK and the predefined number of bits
follow on each edge. When the transmission is completed the chip select is de-
asserted. The pseudocode of the bit-banging procedure is shown in algorithm
2.1.

Figure 2.1: Simple SPI transaction

C O N F I G U R AT I O N S

SPI is not strictly defined and different slaves and masters may expect slightly
differing protocols. In figure 2.1 the data (MOSI/MISO) is changed on the
falling edge of SCK and is sampled on the leading edge. It is common for SPI
to be configurable in terms of clock polarity, leading/trailing edge sampling
and data order. Figure 2.2 shows the different configurations for MOSI, MISO,
SCK and CS when the data is sampled on the leading edge, while figure 2.3
shows the same for trailing edge sampling. The sampling edge is in both cases
indicated by an arrow on SCK. Changing the sampling edge is equal to a change
in the phase relationship between SCK and the data. As can be seen in these

6

Algorithm 2.1 SPI master bit-banging

Precondition: Full-duplex SPI with sampling on the leading edge.

function spiTransfer(sendData)
assert CS
for word length do

shift next sendData-bit on to MOSI
wait half a SCK period
assert SCK
read MISO to shift register
wait half a SCK period
de-assert SCK

end for
de-assert CS
return read data

end function

Figure 2.2: SPI configurations with sampling on the leading edge.

Figure 2.3: SPI configurations with sampling on the trailing edge.

7

figures, polarity and phase controls when the data is changed in relation to SCK.
Notice that data changes when SCK is high both when polarity is inverted
with normal phase and when the polarity is not inverted with sampling on
the trailing edge. In addition to these configurations some systems may use
separate phase and/or polarity for MOSI and MISO.

2.2.2 I N T E R - I N T E G R AT E D C I R C U I T – I 2 C

The Inter-Integrated Circuit(I2C) is a two wire synchronous protocol. It is a
multi-master/multi-slave protocol which, unlike SPI, is well defined and allows
for all masters and slaves to share two wires. The increase in members on
the bus comes at the cost of reduced speed. 100 and 400kbit/s are normal
speeds, although 3.4Mbit/s is supported in some devices[4]. I2C is an active
high system where the buses rely on pull up resistors to pull the bus to a logical
one. In other words the slaves and masters on the bus will connect the bus to
ground to indicate a logic 0 and output high impedance to indicate a logical 1.
The two-wire interface consist of:

◦ SCL - Serial Clock
◦ SDA - Serial Data

As shown in table 2.1, communication is performed with two 9-bit frames:
the address frame and the data frame. All communication is first initiated by
a master by pulling down SDA from high to low while SCL is high, this can
be seen in the first change of SDA in figure 2.4. This is different from all other
I2C communications because all regular changes on SDA is defined to happen
only when SCL is low. The start bit alerts all other members on the bus that a
new transaction is coming. The initiating master will then issue an address, 7
or 10 bits long, which all slaves receive and evaluate. The master then indicates
whether it wants to write or read with a logical 0 or logical 1 respectively. If
the address matches a slave, and it is ready to be written or read, the slave
will acknowledge by pulling SDA low. If there is no acknowledge, something
is wrong and the master has to decide how to proceed. The data phase starts
and either the master(write) or the slave(read) will toggle SDA when SCL is
low and hold until the next falling edge on SCL. The receiver will acknowledge
the byte as the 9-th bit in the data frame. These 9-bit data frames will continue
to be sent until the master issues a stop bit by changing SDA from low to high
while SCL is high.

Sometimes a master’s data rate will exceed the data rate of the slave. That
means that the slave will not be ready to receive or send data when the master
expects it to. The slave can then stretch the clock by pulling down SCL until it
is ready to transmit again, as shown in figure 2.5. While the slave keeps SCL
low the master is not allowed to change SDA until SCL is released by the slave

8

Table 2.1: Typical structure of SDA when transmitting two bytes.

Start Address R/W ACK DATA ACK DATA ACK STOP

1 bit 7 bits 1 bit 1 bit 8 bits 1 bit 8 bits 1 bit 1 bit

Address frame Data frame Data frame

Figure 2.4: Typical transfer of two bytes on I2C

plus half a SCL period. Clock stretching is usually performed between the data
byte and the acknowledge bit.

Arbitration between masters on the I2C-bus is performed by the masters
themselves. Whenever a master outputs data on SDA it checks whether or
not SDA was set correctly. If it was not, it assumes that some other master won
arbitration on the bus. There may of course be some other, erroneous, reason
for SDA not being set correctly but in that case the transaction has become
worthless either way. Because SDA is either released (and pulled high by the
pull-up resistor) or pulled low, the master with the most zeroes in its message
will always win arbitration. In the worst case scenario two masters may try to
read from the same slave(or write the exact same data) and will not detect the
other master on the bus because they will transmit exactly the same data. If
the slave is a sensor or similar this is not a problem because both masters was
supposed to receive the same data, but for some application where the order or
number of accesses is important, this may cause errors. Including such slaves
on a multi-master bus must be done with utmost care. A pseudocode for the
I2C master address phase can be seen in algorithm 2.2. Algorithms 2.3 and 2.4
show the write procedure. In addition to the three algorithms shown, a read
procedure as well as a stop procedure is needed.

Figure 2.5: Slave clock-stretches to catch up when master writes two bytes of data.

9

Algorithm 2.2 I2C master start bit and address transfer.

Precondition: Function i2cStartAddr must be followed an i2cWriteByte or
i2cReadByte function if not aborted. io[SDA] is in/out pin for the SDA-signal

function i2cStartAddr(address, rwBit)
while !SCL do

wait a short period . Waiting for SCL to be released.
end while
pull down SDA . Start bit.
wait half a period
for bits in address do

arbit = i2cSendBit(bit)
if arbit then

return 1 . Abort because arbitration was lost.
end if

end for
i2cSendBit(rwBit) . 1: Read, 0:Write
nack = io[SDA]
return nack . Returns 1 if no slave acknowledges.

end function

Algorithm 2.3 I2C master write data byte.

Precondition: Function i2cWriteByte must be followed by a stop bit or a
i2cWriteByte function.

function i2cWriteByte(wByte)
for bit in wByte do

arbit = i2cSendBit(bit)
if arbit then

return 1 . Abort because arbitration was lost.
end if

end for
nack = i2cReadBit()
return nack . Return acknowledge on data transfer

end function

10

Algorithm 2.4 I2C bit-banging write single bit transaction.

Precondition: io[SDA] is in/out pin for SDA-signal.

function i2cSendBit(bit)
while !SCL do

wait a short period . Waiting for slave to release clock stretching.
end while
wait half a period
pull down SCL
io[SDA] = bit
wait half a period
release SCL
readSDA = io[SDA]
if readSDA != bit then

return 1 . Master lost arbitration.
end if
return 0

end function

2.2.3 T W O W I R E I N T E R FA C E – T W I

The Two Wire Interface is essentially the same interface as I2C. The name was
first taken in use by Atmel because, while the I2C protocol was not patentable,
the name I2C was trademarked. Thus, TWI will be able to connect to an I2C
interface[5].

2.2.4 U N I V E R S A L A S Y N C H R O N O U S R E C E I V E R / T R A N S M I T T E R –
U A RT

As the name states, UART is an asynchronous protocol. This means that there is
no clock transmitted together with the data signal, and the protocol is depend-
ing the transmitter and receiver having synchronous internal clocks. UART is
usually configured as a full duplex system with two wires, one for each direc-
tion of communication.

Unlike I2C, UART has no clear perception of a master/slave relationship.
Both sides of a communication can initiate a transfer. The asynchronous nature
of UART means that the speed at which transfers are to be performed has
to be decided prior to transmission. Both communicators also has to agree
upon the length of the transfer (usually 5, 8 or 9 bits), whether a parity bit is
going to be used and how many stop bits that should be sent at the end of
transmission. A UART module usually has two pins, receive data(RXD) and
transmit data(TXD).

When the wires are not transmitting the wires are held in an idle state, indi-
cated by logical high for most systems. A UART frame is shown in table 2.2. A

11

Table 2.2: UART frame

Bit 1 2 3 4 5 6 7 8 9 10 11

Start Data Stop

module starts a data transfer on TXD by pulling the wire to a logical low for at
least half a clock cycle. All shorter fluctuations on the wire will be considered
noise and ignored, this can be seen in figure 2.6. The receiver will synchronize
its clock to the falling edge of this start bit if it is not ignored. After this, data
is sent on every positive edge of the transmitters internal clock, with the least
significant bit first. Some UART modules may synchronize its internal clock on
every received data edge. A parity bit, for rudimentary error detection, may
be sent after the data. Finally, one or more stop bit(s)(logic high bit(s)) is sent.
Unlike I2C, the stop bit does not need to be a transition from logic low to high,
but is merely sent to ensure that the line ends in idle mode. Pseudocode for
UART is shown in algorithm 2.6 and 2.5.

Figure 2.6: Glitch in start of UART TX.

Notice that unlike I2C and SPI the UART algorithm is not created for sending
one byte at a time, but is instead controlled by TX Active and RX Active. This is
because there is no master/slave relationship between the two communicators,
thus the algorithm has to always check if the communication is initiated when
it is idling. Counters, which is not shown in the pseudocode, should keep track
of the number of bits sent and received and should clear the active-flags when
a byte is completed.

Algorithm 2.5 UART bit-banging single bit.

function uartBitTrans(bit)
wait posedge baud rate generator
io[TX] = bit
wait negedge baud rate generator
rx = io[RX]

end function

12

Algorithm 2.6 UART bit-banging.

function uart

if TX Active then
uartBitTrans(LSB of byte)
shift byte

else
if TX Start then

uartBitTrans(0) . start bit
else

uartBitTrans(1)
end if

end if
if RX Active then

add read bit to byte
else

check for start condition
end if

end function

2.3 I N S T R U C T I O N S E T A R C H I T E C T U R E

The instruction set architecture(ISA) is defined by Patterson and Hennessy as
a key interface between hardware and low-level software[2]. As a layer of ab-
straction it allows software to run on vastly different hardware implementa-
tions. As an example, both AMD Opteron and Intel Core i7 (Nehalem) processors
implement the x86 instruction set, but their implementations differ greatly in
both pipeline and cache[6].

The instruction set of a processor is set of simple operations that the proces-
sor can perform. It usually includes loading, storing and moving data; doing
logical and arithmetical operations(AND, OR, ADD, etc.); control-related oper-
ations like jumping and comparing data; and other basic operations that can
be combined to perform more complex operations. On the low-level software
side the instruction set is represented as a set of mnemonics, as shown in ta-
ble 2.3. A software developer can use these mnemonics to write an assembly
code describing the series of operations he/she wishes to perform. The assem-
bly code is then assembled into a set of machine readable bit-strings. On the
hardware side, the instruction set defines which operations the processor must
be able to perform, and how the processor should interpret the bit-strings. It
does not specify how the operations should be performed, and this allows the
implementation of hardware to be independent of the software.

13

Table 2.3: Structure of an instruction with corresponding mnemonic assembly code.

0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0

Operation Code Register Immediate

Mnemonic: ori R2 24

2.4 C L A S S I F Y I N G I N S T R U C T I O N S E T A R C H I T E C T U R E S

There are several ways to classify different instruction sets. This section will
explain some of the different groupings of instruction sets and describe their
respective strengths and weaknesses.

2.4.1 R I S C - R E D U C E D I N S T R U C T I O N S E T C O M P U T E R

The Reduced Instruction Set Computer(RISC) is constructed around the idea that
fast execution of a series of simple instructions, is preferable to slower execu-
tion of more complex instructions. It seeks to simplify the decoding stage in the
computer by using fixed length instruction words, with fixed positions for var-
ious elements like the operation code, registers and immediate. RISC architec-
tures always employ a structure where all arithmetic operations are performed
between registers(register to register operations), and separate LOAD/STORE
instructions are used to access memory. RISC architectures usually implement
a homogeneous register set(in contrast to sets of specialized registers) both to
simplify hardware and to simplify the compiler design.

A study shows that 96% of instructions in a general use-case are simple in-
structions [6]. So while the implementation of more complex instructions may
increase the performance of very specific operations, a RISC architecture seeks
to perform simple operations so effectively that the performance gap can be
closed in the sum of operations. The most well-known RISC architecture today
is perhaps the Advanced RISC Machine(ARM) architecture. The ARM architec-
ture dominates the portable market today, ranging from 32-bit microcontrollers
to the high end tablet and mobile CPU-s.

2.4.2 C I S C - C O M P L E X I N S T R U C T I O N S E T C O M P U T E R

The term Complex Instruction Set Computer(CISC) was coined to differentiate
architectures from the RISC type instruction set architectures. A CISC architec-
ture will typically use varying length instruction words, and logic/arithmetic
instructions that can load data from memory. Thus, a CISC can perform log-
ic/arithmetic operations without temporarily storing the data in internal reg-
isters. CISC architectures can also include complex instructions that seeks to
improve performance for high-level functionality such as array accesses, loop
control and procedure call operations. The x86 instruction set architecture is

14

the most prevalent version of CISC instruction sets. Due to its popularity and
age, the software support for x86 is good and widespread. Most personal com-
puters and servers today use the x86 CISC architecture[7]. However, with iOS,
Android and Windows 10 running on ARM instruction sets, the gap is closing.

A study, by E. Blem et al., comparing RISC and CISC type instruction set
architectures for high performance CPU-s, conclude that the type of instruction
set architecture has no impact on performance or energy consumption for the
tested high performance architectures. The hardware implementation, the mi-
croarchitecture, is the deciding factor. For low performance and power CPU-s,
they note that the overhead of CISC instruction sets makes them "untenable"
for the sub 50 milliwatt CPU-s[7]. For the applications in this thesis, memory
to memory operations are not generally needed. Furthermore, a simple and
power effective hardware-design will be important, and CISC architectures are
not chosen as a basis for the design in this thesis.

2.4.3 N U M B E R O F O P E R A N D S

Instruction set architectures can use different numbers of operands in their
arithmetic and logic operations.

Zero operand architectures are also called stack architectures. With no way
of addressing registers, all operations are stored on top of the same stack.
PUSH/PULL operations are used to load and remove data from the stack while
logic and arithmetic operations are usually performed between the two top ele-
ments on the stack.

Logic/arithmetic operations in one operand architectures, or accumulator
architectures, have an implicit temporary register storage location, the accumu-
lator. The logic/arithmetic operations are performed between the operand lo-
cation, usually a memory location, and the value in the accumulator. The result
is then stored in the accumulator. The widely used MSC-51(8051) instruction
set is a one operand architecture.

Two operands is the minimum amount of operands needed to be able to
use a general register file. Two operands allows the program to perform a
logic/arithmetic operation on two registers or memory locations and store the
result to one of the locations. Because the instruction words needs to be kept
short, two operands are very common in 16- and 8-bit RISC architectures. Two
is also the prevalent number of operands in CISC architectures.

Three operands is the most commonly used number of operands in mod-
ern high performance RISC architectures. With three operands it is possible
to perform an operation between two registers and store it in a third register.
It increases the length of the instruction words compared to a two operand
architecture, but it allows for more flexibility in the re-use of data.

Four operands allow for complex instructions such as fused multiply-add
(FMA), where two registers are multiplied, a third register is added to the
result and the final result is stored in a fourth register. Four operands is highly

15

specific and is today just used in a few instructions in the AMD x86 architecture-
family—Bulldozer. It is reportedly dropped in AMD’s future architectures[8].

While zero and one operand architectures can be effective in some applica-
tions, they lack effectiveness in the general case due to the strict ordering of
operations that the limited storage implies. A two or three operand architec-
ture is the most likely choice for the applications in this thesis.

2.4.4 O P E R A N D T Y P E

How many memory locations a logic/arithmetic operation can access also dif-
ferentiates one instruction set from another. The number of memory operands
can range from zero to four, but almost all computers can be put into one of
three groups.

In register-register(load-store) architectures only registers can be accessed in
its logic/arithmetic operations. It uses a separate load instruction to access
memory and then temporarily stores the data in registers, performs operations
on these registers and finally saves the result to memory using a store instruc-
tion. This allows for more compact, fixed length, instructions. It also ensures
that all instructions take a predictable number of clocks to execute. This struc-
ture is one of the defining factors for RISC architectures.

Register-memory architectures allows for one of the operands to be a mem-
ory location. These architectures uses two operands where either the desti-
nation or source can be a memory location, but not both. The x86 architec-
ture uses a register-memory architecture, and most CISC-type architectures em-
ploy this type of operand addressing. Register-memory architectures allow for
more compact assembly code because data can be accessed without separate
load/store-instructions, but the number of registers that can be addressed can
be limited by the need for memory locations to be encoded in instructions. The
number of clocks it takes to execute an instruction can also vary depending on
whether only registers are used or if memory is accessed.

Memory-memory architectures allows all operands to be memory locations.
It doesn’t need to use registers for temporary storing, and can therefore pro-
duce the most compact assembly code. The instruction words can vary a lot
in size depending on which type of operands is used, and there can be large
variations in the execution time for each instruction. Furthermore, memory
will quickly become a bottleneck due to its significantly lower speed compared
to registers. Memory-memory architectures are generally not used in modern
computers.

As mentioned earlier, for the applications considered in this thesis memory
accesses are not needed because the intention is to let the CPU run in the same
way as any dedicated hardware peripheral. A register-register architecture is
the natural choice for the CPU in this thesis.

16

2.5 A S S E M B LY

Assembly languages come in several different forms and dialects. They can
have architecture specific operand names and the operands can be ordered
differently. Throughout this thesis the assembly language used is a pseudo-
language created for readability only, an example can be seen in algorithm
2.7. In arithmetic/logic mnemonics the first operand is the target, or storage,
operand. Registers are denoted as RX, with X being a number identifying the
register. Immediates are simply designated as hexadecimals and some instruc-
tions also use Booleans.

Algorithm 2.7 Assembly pseudo-language example.

start:

andi R0 0xF0

2.6 L O W P O W E R M E T H O D S

The main goal of the instruction set architectures described in this thesis is low
power. Some well-known low power concepts and methods will be presented
as they will be used in the planned architectures.

2.6.1 D Y N A M I C P O W E R C O N S U M P T I O N

Simply put, the dynamic power consumption is the power consumed in gates
when a value is changing state, either 0 → 1 or 1 → 0. When a value changes
state, the load capacitance of the gate, mostly parasitical or wire capacitances,
must be charged/discharged. The bulk of the power is consumed when the
output is switched, and the output load capacitance must be charged or dis-
charged as shown in figure 2.7[9]. This is called the switching power and the
average switching power can be calculated as

Pswitch = αCL · V2dd · fclock (1)

Where Pswicth is the dynamic power consumption, CL is the load capacitance,
Vdd is the supply voltage, fclock is the clock frequency and α is the activity factor
which is usually less than 0.2[10]. Both charging internal capacitances and the
crowbar current1 are other factors that affect the dynamic power consumption,
but switching power is the dominating factor and dynamic power consumption
is often simplified to equation 1[9].

1 The current resulting from a short circuit between the rails. This short circuit occurs when both
PMOS and NMOS are active in the transition to a new, complementary, state.

17

Figure 2.7: Switching power in a CMOS inverter.

V O LTA G E A N D F R E Q U E N C Y

The dynamic power is quadratically proportional to the voltage in a given sys-
tem. Thus, the most effective way to reduce dynamic power would be to reduce
the voltage. However, the propagation delay through a gate is proportional to
the voltage and reducing the voltage will lead to lower performance for the
circuit. While a lower frequency will lead to a reduction in the instantaneous
dynamic power, the total energy will not be reduced, considering that the appli-
cation will run for a longer time. The goal becomes to find the lowest possible
voltage at which the circuit can function while still meeting performance de-
mands. In this thesis the voltage and frequency will be assumed to be set by
other factors and unchangeable.

C L O C K G AT I N G

Dynamic power consumption is dependent on the activity in the circuit, and
in a sequential circuit the clock is the signal enabling all changes. While some
modules are required to run continuously, some parts of a design may be wait-
ing for some event to occur while doing nothing. Stalling the clock for these
modules is called clock gating[9]. The concept is as simple as it is effective: if
a module is not doing anything functional, remove the clock and no activity
will be performed. Clock gating can be achieved by adding an AND-gate in the
clock tree, using the clock as one input and adding an enable signal as the other.
When the clock is gated, data will stop flowing through the sequential circuit,
but all states in flip-flops will be retained. When the clock is once again enabled

18

the circuit may pick up its activity just where it was stopped. Even though the
clock is stopped, other inputs to a submodule may continue to toggle(e.g. bus
connections). So in addition to gating clocks, one can gate the submodule’s con-
nection to the buses to further reduce the dynamic power consumption when
the module is idle.

2.6.2 S TAT I C P O W E R C O N S U M P T I O N

Static power consumption can be generalized to mean the power consumed
by leakage in the transistors. It includes sub-threshold leakage, gate leakage,
gate induced drain leakage and reverse bias junction leakage. Many methods
for reducing static power consumption are performed at transistor level and is
not within the scope of this thesis, but one method for reducing static power
consumption will be described.

P O W E R G AT I N G

Power gating is the main method for reducing static power consumption at
the architectural level[9]. Similar to clock gating, power gating is the act of
removing power from unused modules in the design. Power can be gated
by distributing VDD to the whole circuit while implementing a power-gating
network for VSS—where VSS can be pulled to a virtual rail close to VDD—
or vice versa. Power gating is a complex method and includes isolation of
inputs and outputs, possibilities for data retention and the implementation of a
switching fabric. Generally the wake-up time from a power gated state is much
larger than the wake-up time from a clock gated state, and there is also a cost
related to the discharging and charging of capacitances in the circuit when the
power is turned off and on[11]. This limits the usage of power gating to cases
where long periods of sleep time is expected. Properly designed, power gating
gives the developer the opportunity to dynamically add and remove modules
from a system.

2.6.3 T I M E T O I D L E

Time to idle will throughout this thesis be used as a measure of the perfor-
mance of instruction sets. This is based on the assumption that the processor is
put in sleep mode whenever it does not have instructions to perform. It is also
assumed that the frequency and voltage of the processor is set and unchange-
able. Thus the dynamic energy consumption of the processor is solely decided
by the number of gates and time to idle.

2.7 PA D S

The inputs and outputs used at Nordic Semiconductor uses bi-directional pads
to connect to the outside world. As shown in figure 2.8 pads have four inputs;

19

Figure 2.8: Nordic semiconductor input/output pad.

input enable, output enable, input and output. Input enable(IE) allows the
integrated circuitry to read the data on the pad-bus. When input enable is
not asserted the input(IN) signal is tied low. Output enable(OE_N) controls a
tri-state buffer and if output enable is de-asserted the output from the pad is
high impedance. If output enable is asserted, the pad-bus is connected to the
output(OUT) signal through the buffer.

2.8 P O W E R E S T I M AT I O N M E T H O D S

Accurate power estimation can be performed on a gate-level design using sta-
tistical, stochastic or simulated input to model the expected activity on the
chip. These techniques are to a large degree incorporated into commercial
tools. Gate-level estimation requires synthesis of all modules in a design, and
is thus impractical for use in architectural power estimations.

High-level estimation techniques are designed to perform faster power es-
timations with less input information, at the cost of lower accuracy. Some
methods require the designer to know the approximate power of every macro-
module in the design[12]. The macro-models can be produced from: known,
of-the-shelf, modules; using power factor approximation [13] or by creating ac-
tivity based models[14]. All of these techniques require the designer to have
a gate level implementation of key modules in the design, or at least to have
power figures from the same.

The simplest, and perhaps least accurate, model is a complexity based analyt-
ical model. In one method presented, one tries to relate the power consumption
to the number of gates(e.g. NAND2 equivalents) in the design[15]. It directly

20

uses equation 1 and assumes that the typical energy consumption for a gate
equivalent, and the modules average load capacitance and activity, can be used
to calculate the power consumption for the module as:

Pmod = N(Ptyp +CL ∗ V2) ∗α ∗ f (2)

Where N is the number of gate equivalents, Ptyp is the typical power consump-
tion of a gate equivalent, CL is the average load capacitance, α is the average ac-
tivity factor and f is the running frequency. Landman[13] and Raghunathan[12]
argues that the method is poor at estimating the power for specialized struc-
tures like memory, I/O and clock networks. Leading to the conclusion that to
make this model is accurate, it is important to account for regular modules like
memory, as they will present activity factors different from other logic. Some
methods for this is presented in [16].

2.9 P R E V I O U S W O R K

Extensive literature searches with the search parameters protocol, processor,
ASIP, CPU, bit-banging, bit, bang, software peripheral, software, SPI, I2C and
UART in many different combinations, has been performed. However, there
has not been found any previous work that try to create a processor opti-
mized for bit-banging. Processor designs for wireless protocols[17] and Eth-
ernet protocols[18] were found, and although processor design in general is
related work, the protocols implemented are too dissimilar to the protocols
considered in this thesis.

A single article concerning the effectiveness of software-implemented UART
was found[1]. Lioupis et al. investigates the power consumption of imple-
menting UART as software as compared to a hardware implementation. It is
assumed that the processor is active with other tasks 80% of the total running
time, and that there is no penalty for interrupting the CPU. They do not specify
where their numbers for CPU and UART power consumption are from, and
they conclude that for baud-rates lower than 65Kbits the 30MHz processor is
in fact more power efficient than the dedicated hardware. An excerpt from
their results can be seen in figure 2.9. The CPU’s power cost increases linearly
with the baud-rate, while the dedicated hardware is considered to have con-
stant power consumption for all baud-rates. Thus, as the baud-rate increases
the processor becomes a less efficient solution.

21

Figure 2.9: Power consumption of UART implemented on a CPU compared to a dedi-
cated hardware module[1]

22

3
P R O C E S S O R A R C H I T E C T U R E O U T L I N E

While an instruction set architecture can be largely independent of the hard-
ware implementation it is necessary to define the functional structure of the
processor in order to design the instruction set. This chapter will present the
processor architecture that will be used as a basis for instruction set develop-
ment. The bit-banging processor will throughout the thesis be referred to as
the BBP while the host will be referred to as the host processor.

It is expected that the BBP will not perform data-heavy operations. Indeed,
its main task is to receive data from some other source and output that data
on a bus. For the serial protocols considered in this thesis this data is usually
sent one byte at a time. Consequently, it is assumed that an 8-bit processor
will perform well for these tasks. Even though most serial protocols uses 2–4
I/O-pins the BBP is given the ability to connect to eight separate I/O-pins. This
is to promote flexibility, and enables the BBP to control up to 5 slaves in an SPI
configuration.

Figure 3.1: Bit-banging processor architecture illustration.

23

The BBP is a co-processor designed to have an interface to its environments
similar to that of a peripheral module. Low power and efficient I/O-accessing
are the predominant focuses of this architecture. In figure 3.1 an illustration
of the architecture is shown. The BBP must have some interface to the host
processor. Transmit data, received data and control signals, are necessary inter-
faces. The transmit/receive data will be put in special host-accessible registers,
TXREG and RXREG. The host can write and read these registers respectively,
and they should also be connected to a Direct Memory Access(DMA) system to
relieve the host processor from the task of reading and writing data to the pe-
ripheral. Between the DMA and the host control there is no need for the BBP to
access data memory, and both instructions and hardware used for data memory
access can be excluded. Thus, implementing the BBP does not introduce a new
type of master on the memory bus of the system, and integration into existing
solutions is simplified. The host processor must be able to control transfers on
the BBP and a control register (similar to the control registers in peripherals)
should be included. This register will include all host processor related com-
munications like start new transfer, transfer finished, data ready, error and stall.
The registers should be accessible even when the BBP is in sleep mode.

The communication protocols are dependent on accurate timing, this is par-
ticularly true for the asynchronous UART protocol. Timing could be resolved
by using NOP-s to wait between I/O-updates, but this would leave the BBP al-
ways active and is a very inefficient way of waiting for the next event. A counter
based timer has been added to the architecture to allow the BBP to sleep while
waiting for the next time action is required. The timer can be configured by the
host and the BBP, and will act as a baud-rate generator for the BBP. It will be
started at the beginning of operation and count continuously asserting a wake-
up event signal whenever a specific count is reached, and restart the count. The
counter should be dynamically configurable to allow for clock synchronization
which is especially important for UART.

The BBP should have a low wake-up time from sleep mode. This can be
implemented using an external clock gating module[19]. The clock will be
gated whenever the BBP makes a call to the wait for event(WFE, see section 5.1)
instruction. The events that will wake the BBP include a start transfer command
from the host processor and when the external timer overflows. It would be
possible to add some edge checker that could wake the BBP given some start
sequence on the I/O, but this has not been considered when implementing
the instruction sets. When the BBP calls the WFE-instruction the BBP’s clock
will be stopped and all activity will be ceased, but the state of the BBP will
be retained. Thus, when the clock is started again the BBP will immediately
continue with the next instruction. A single cycle wake-up is preferred, but may
not be necessary for correct functionality. Additionally the module as a whole
should be power-gateable, where only the instruction memory is retained. It
is assumed throughout the rest of the thesis that the BBP is powered down
whenever it is not used.

24

It is assumed that the BBP will not be dynamically switched from one pro-
tocol to another. This is a reasonable assumption because the modules con-
nected to the I/O-pins are not likely to be dynamically changed. Thus, the
program(the protocol) that the BBP will run can be put into a local instruction
memory at compile time. Dynamical switching between protocols can easily be
added by extending the size of the instruction memory and allowing the host
to control the starting address of the BBP.

Slave protocols for SPI and I2C has not been implemented in this thesis, but
UART-RX has a slave-like behaviour and some thought has been put into how
one could improve upon these protocols. Generally, a slave behaviour implies
a lot of waiting for a master to establish contact. Using the BBP to wake up
at every interval to check for a transfer is not a very economical solution. For
SPI this essentially means waiting for the chip select to be asserted and can
be easily added to the clock gating circuitry. In I2C the slave has to check the
address every time a master initiates a transfer on the bus, but can ignore the
data that follows the address if it is meant for another slave device. This is more
complex and requires circuitry that can detect the start of transmission signals,
and a separate detection module would probably be necessary. For UART the
start bit is just a transition from high to low, and can be implemented with the
same circuitry as the edge detector for the SPI signal. These features has not
been considered when comparing instruction sets in the following chapters.

25

4
I N S T R U C T I O N S I M U L AT O R

To compare and analyse different instruction sets, a CPU simulator was imple-
mented in C/C++. The simulator is a cycle-accurate instruction set simulator
that includes internal registers and IO-pins. Programs can be run by writing
assembly-like code in the form of C-functions. The simulator produces cycle-
accurate waveform-files for debugging and report-files for further analysis of
the performance. A C++ testbench ensures that the assembly-like programs
adheres to the protocol specified for each program. Each of the protocols im-
plemented has a single test set, and these test sets is used for all instruction set
implementations.

4.1 S T R U C T U R E

The simulator is constructed around a set of functions representing the instruc-
tion set, for clarity I will call these functions I-functions, example I-functions can
be seen in algorithm 4.8. A program is designed by calling these I-functions se-
quentially, simulating the way an actual microprocessor executes instruction
words. These assembly-like programs will be called A-programs, and an ex-
ample A-program is shown in algorithm 4.11. Each I-function implements the
functionality expected in the corresponding instruction, including reading and
writing registers, I/O-pins and other programmer changeable parts of the pro-
cessor. For this purpose, arrays (with separate sets of read and write functions)
is implemented for both registers and IO-pins. A typical I-function simulating
a logic instruction will read operands from the register file, perform an opera-
tion on the operand, and store the data back into the register file. Just like you
would expect an instruction to be performed in a microprocessor. Addition-
ally, reporting functions is used in the I-functions, register file and I/O-pins
to dump new values to a waveform file and report statistical information to a
report file.

The structure of the system can be seen in figure 4.1. The files inside the
yellow box constitute the framework of the simulator. It includes a register
file, regFile.c; an I/O-pin structure, ioMap.c; a reporting structure, report.c and
a waveform generation structure, vcd.c. The framework is the same for each
instruction set architecture implementation. When new functionality is needed
in a new instruction set, new instruction set specific functions can be added to
the framework without affecting the other implementations.

The files in the blue box in figure 4.1 are instruction set specific files. Each
implementation of an instruction set architecture has a unique instr.c file, and it
contains the I-functions that describe the instruction set architecture. Assembly-

27

Figure 4.1: File structure and control flow of the instruction set simulator.

like implementations of the protocols studied in this thesis are included for each
instruction set, these A-programs implement the communication protocols SPI,
UART and I2C.

Finally the grey box includes the testbench. The testbench uses the CppUTest
framework [20][21]. There is one set of tests for each protocol and the tests are
used to ensure that all A-programs comply with the expected protocols. The
tests, which will be described in further detail in section 4.6, initializes registers
to some known value, loads data into the input array and then runs the A-
program.

4.2 R E G I S T E R F I L E

The register file contains an array of int-s that represent the general register
file, and include functions to read/write a single element in the array and to
reset the array. The two special registers, TXREG and RXREG are also included
in this array and can be handled like regular registers but special functions to
allow for the SOL-functionality(see section 5.4), has also been implemented. In
addition to updating the array, the register write functions also call functions
related to the updating of the waveform.

28

4.3 I / O - M A P

Because of the pad structure described in section 2.7, the array in ioMap has
four elements; one for each pad control signal. For testing it is important to
keep a record of what the output has been at any time. To store this data the
array is two dimensional and is created to be long enough to store all changes
to each pad control signal separately. Whenever a write operation is performed
on the IO, the program will increment a counter and at the end of the program,
when checks are performed, will retain all outputs. This also allows the input
array to be loaded before the program is executed. When read-operations are
performed, the function will read the next data in the array.

4.4 WAV E F O R M G E N E R AT I O N

The waveform generator creates a Value Change Dump(VCD) file that can be
read by most waveform viewers. The structure of a VCD-file is set up like
shown in figure 4.2. In few words, a VCD-file contains a list of value and time
updates. In the highlighted segment in figure 4.2 value A is changed to 0 at
time 3400 and then back to 1 ten nanoseconds later. Notice that time updates
are not described as increments in time, but as updates of the absolute time.
The specification of value change dump files can be read in [22, p. 325].

Figure 4.2: VCD-file

The waveform generator creates and initializes the
VCD-file. The initialization include giving the file a
date-stamp, declaring and naming the signals and set-
ting all signals to be initially unknown, X. The values of
the variables is updated in two separate functions: one
for the register file and one for the I/O-pins. These func-
tions takes the corresponding register or I/O-pin and
the new value as arguments, and writes a new line to
the VCD-file with the corresponding value update. To
improve debugging, a single time-step is also added af-
ter every value update. This allows the user to explore
the sequence the values has been changed in.

The waveform generator operates with three differ-
ent time counters: delta-time, clock-time and timer-time.
The delta-time is incremented by one every time a vari-
able is updated. The clock-time is used to emulate the
processors clock cycles and timer-time emulates the ex-
ternal timer’s period.

To simulate processor cycles, a wait cycle function is
created. This function increments the clock-time with the clock period and
updates the active time in the report. It is checked that delta-time is not larger
than the new clock-time. If it is, too many variables has been changed within a
clock cycle and this signifies an error. Delta-time is set equal to the clock-time,
and the time in the waveform-file is updated. If the clock frequency simulated

29

is increased significantly, one may have to remove the delta-cycle functionality
or change the time-precision in the waveform.

Similarly the wait timer function simulates the timer’s cycles. Timer-time is
updated by a preset timer period and it is checked that neither delta-time nor
clock-time is larger than the new timer-time. In the protocols implemented in
this simulator the timer is in charge of controlling the frequency on the commu-
nication channel. Thus, the active time(the clock-time) should never be larger
than the timer-time. If it is, too many instructions are performed between each
time the communication channel expects updates and the processor is not able
to adhere to the timing constraints of the communication channel. Finally, both
delta-time and clock-time is set equal to the new timer-time. The waveform is
updated with the new time and the sleep-time in the report is increased by the
difference between timer-time and clock-time.

4.5 R E P O RT G E N E R AT O R

To compare instruction sets, statistical information about each implementation
is needed. Specifically, how many times an instruction has been performed,
how many pipe flushes has been performed and how long the processor has
been active/sleeping are important parameters. The report generator monitors
these data and write them to a file for further analysis. It implements an in-
struction reporting function, a pipe flush reporting function and active/sleep
reporting functions. Every I-function will make a call to the instruction report-
ing function, and jump-functions also make a call to the pipeline flush function.
The functions simulating cycle increments and sleep in the waveform generator
will call the active and sleep function respectively. The report generator creates
a file and stores all the information as comma separated values(CSV) that can
be analysed in Excel or the data analysis tool of your choice.

4.6 T E S T B E N C H

Hardware engineers are constantly writing tests to check that their modules
comply with some expected operation. A common way to perform tests is
to connect to the interface of the module and use the testbench to simulate
the environment that the module will be put in. This requires the testbench to
adhere to timing and for the testbench to be able to run in parallel with the unit
under test. These concepts are not entirely applicable for tests in C. The timing
in the simulator is only a construct that is emulated when creating the VCD-file
and is not really a part of the operation. Furthermore, running a testbench in
parallel with the simulation is difficult to achieve. C/C++ tests are usually tests
that runs a function with some given inputs and then checks that the outputs
are as expected. CppUTest is a unit testing framework made for testing C/C++
code. It contains functions and macros that enable the running of groups of
tests with simple constructs that are quick to write. Checking macros that will
report errors to terminal, and generally simplifies the testing, are also included.

30

In hardware testing we control the inputs of the module and expect some
reaction from the module, it is not so for C-testbenches. A test will first initialize
the structures in the simulator to some specific values(e.g. the TXREG and the
input array), it will then run the A-program for a set number of iterations.
When the A-program finishes it can check that the structures are set to the
correct values. This include checking that the RXREG is the correct value and
that the outputs has been the correct values at the correct times. Checking the
RXREG is a simple comparison between the value stored in register file array
and an immediate, but checking that the output sequence has been correct is
more complex.

In a HDL-testbench the values on the bus will usually be checked periodi-
cally on the positive edge of some clock and compared to the expected value
in that instant. In the C-testbench we must check that the output-array con-
tains the correct sequence of data, this requires intimate knowledge of how the
output-array is updated. For the synchronous protocols, SPI and I2C, we can
in fact emulate the positive edge checking nature of HDL-tests. A function
which will start at some offset, and then for every positive edge of the array
representing the clock wire, will check the bit representing the data-bit. For
the asynchronous UART protocol there is no clock output to synchronize the
checks to. Luckily, unlike the synchronous protocols that will update several
different outputs(clock, data and select), the UART A-programs only access the
output when new data is written. Thus, the output array contains only the data
information and one can simply iterate through the output array to collect the
values and compare them to the expected stream.

4.7 I - F U N C T I O N S

Each instruction set has a unique set of I-functions that mirrors the instructions
in the set. Each I-function should replicate the behaviour of its correspond-
ing instruction and should update both the report and the waveform whenever
called. In algorithm 4.8 the implementations of two instructions are shown;
AND and OUT. The AND-function(algorithm 4.8(a)) reads the registers, per-
forms a bitwise AND on the data and stores the result to the storage operand.
Additionally, it calls the report instruction function from the report file to incre-
ment the number of AND-operations performed, and calls the wait cycle func-
tion from the waveform generator to indicate that time should be increased by
one cycle. The register write functions also calls a function within the waveform
generator to update register value in the waveform.

The OUT-function(algorithm 4.8(b)) reads the operand register and stores the
value in the indicated IO-pin; either output, output enable or input enable. The
OUT-function also calls the report instruction and wait cycle functions(as every
I-function does). The IO-arrays are updated with the IO-write function, which
also updates the waveforms.

31

Algorithm 4.8 I-functions used in the simulator.

(a)AND

void and(unsigned int regd,

unsigned int rega){

reportInstr(I_AND);

vcdWaitCycle();

unsigned int vald, vala;

vald = regRead(regd);

vala = regRead(rega);

vald = vald & vala;

regWrite(regd, vald);}

(b)OUT

void out(io_t padCtrl,

unsigned int reg){

reportInstr(I_OUT);

vcdWaitCycle();

unsigned int val;

val = regRead(reg);

ioWrite(padCtrl, val);}

The functions controlling the flow of the A-program(e.g. jump and compare)
are slightly different. In regular assembly code looping and conditionals are
solved by jumping to the appropriate label. In C-code looping will be solved
using the FOR statement, but the goal of this simulator is to create an assembly
like structure that can later be converted into true assembly code. To mimic
this type of assembly behaviour in the C-simulator the A-program was divided
into sections where each section is a function. The JMP-function will call the
appropriate section. In long loops this can lead to a deep call-stack, where the
section recursively calls itself N number of times. In the very late stages of the
thesis work the C-statement goto was found. It does not only mimic assembly-
code but executes in exactly the same way, and deep call stacks are avoided1.
Due to the late discovery the goto-statement is not used in this simulator. The
JMP function is shown in algorithm 4.9 and takes a function pointer as an
argument. The JMP function performs its reporting and waveform updating
and then calls the function which was passed to it.

Algorithm 4.9 jmp-function

int jmp(void (*section)()){

reportPipeFlush(); //Report pipeline flush

reportInstr(I_JMP); //Report instruction

vcdWaitCycle(); //Register CPU cycle

section();} //Section call

Instead of conditional branching compare-skip functions are implemented,
and this is further described in section 5.1. The compare skip if (not)equal func-
tions are divided into two sets of functions; one set for logic functions(cpseLogic)
and one set for jump functions(cpseJmp). This is because the logic functions

1 While the goto is a preferable way of solving the jump function, it can complicate the cpseJmp-
type functions. You need to pass the address of the label into the jmp and (particularly) the
cpseJmp functions, and getting the address of a label is not supported in regular C. However,
the GCC compiler supports this and ‘&&‘ should be used, instead of the regular ‘&‘, to get the
label address.

32

take a number of integers as their arguments, while the jump functions takes a
function pointer. The cpseJmp function is shown in algorithm 4.10 and takes a
register, an immediate, a jump function and a section function as arguments. If
the condition is met it will call the JMP function which in turn will call the label
function. If the condition is not met it will call a NOP. The cpseLogic-function
has a similar structure but will take integers as arguments instead of the func-
tion pointer(*section) and call a logic function with these integers as arguments.

Algorithm 4.10 cpseJmp-function (Compare Skip if Equal)

int cpseJmp(unsigned int rega, unsigned int imm,

void (*jmpFunc)(), void (*section)()){

reportInstr(I_CPSE); //Report instruction

unsigned int val;

val = regRead(rega); //Read register

vcdWaitCycle(); //Register CPU cycle

if (val != imm) //If register value not equal

{

jmpFunc(section); //Jump instruction call

return 1; //Return 1 to indicate that jump was taken

}

else //If equal, skip

nop(); //Perform nop

return 0;} //Return 0 to indicate that jump was not taken

4.8 A - P R O G R A M S

The A-programs use the I-functions to create an assembly-like calling structure.
An assembly program and an A-program that outputs an eight bit value using a
loop, is shown in algorithm 4.11(a) and 4.11(b), respectively. In the A-program
one will first notice that labels in the assembly program are functions instead.
The output8Bits function will run its initializing operations and then continue
to the loop function. The loop function will run through its operations and
finally recursively call the loop function until the condition is met.

As seen in algorithm 4.11, the instructions between each label in assembly is
divided into sections and constructed using functions in the simulator. If the
user wishes to jump out of a section if some condition is met, this is enabled
using if in the C-simulator. The cpseJmp function shown in algorithm 4.10
returns 0 if the branch is not taken and returns 1 if the branch is taken. Thus
a jump out of a section can be performed by using an if to check whether
cpseJmp returned 1 and then exit the section by calling return. This is shown in
a concept program in algorithm 4.12. The flow of this program can be seen in
figure 4.3, and will be described in detail.

In the case when R0 is equal to 1, the assembly program(algorithm 4.12(a))
will skip the JMP function and continue to run the instructions on the label
eq and finish. The simulator(algorithm 4.12(b)) will also call the cpseJmp func-

33

Algorithm 4.11 Program that outputs data serially, MSB first.

(a)Assembly

output8Bits:

ldi R0 0xAA

ldi R3 0x80

timst 1000

loop:

mov R1 R0

andi R1 0x80

wfe

out OUT R1

lsl R0 1

lsr R3 1

cpse R3 0x00

jmp loop

(b)Simulator

void output8Bits(void){

ldi(R0, 0xAA);

ldi(R3, 0x80);

timst(1000);

loop();

}

void loop(void){

mov(R1, R0);

andi(R1, 0x80);

wfe();

out(OUT, R1);

lsl(R0, 1);

lsr(R3, 1);

cpseJmp(R3, 0x00,

jmp, loop);}

//Init data

//Init counter

//Init timer

//Copy data

//Mask MSB

//Wait for interrupt

//Put the bit on the OUT-bus

//Shift data left

//Shift counter right

//Jumps if R3 != 0

//Else, performs a nop.

tion which will perform a NOP and return zero, it will then continue to the
code labelled eq and then call the finish section to perform the final part of the
instructions.

When the branch is taken (that is, when R0 is not equal to 1), the assembly
code will perform the jump, do the operations following the notEq label and
finally jump back to the finish label. The simulator will call cpseJmp function
which calls the jmp function which in turn calls the notEq function. The instruc-
tions in notEq will be performed and finally another call to the JMP function to
call the finish function. When the finish function has run all its instructions it
will return, and notEq will return and finally the cpseJmp function will return
1, and the ifElse function will also finish without performing the instructions
following the eq label. This may seem complex, but all the user has to think
about is to add the if-return part of the code to ensure that unwanted code is
not run.

34

Algorithm 4.12 Program with if-else type structure.

(a)Assembly

ifElse:

//Do something

cpse R0 0x01 //if not equal

jmp notEq

eq:

//Do something

finish:

//Do something

notEq:

//Do something

jmp finish

(b)Simulator

void ifElse(void){

//Do something

if(cpseJmp(R0, 0x01, jmp, notEq))

return;

//eq:

//Do something

finish();

}

void finish(void){

//Do something

}

void notEq(void){

//Do something

jmp(finish);}

Figure 4.3: Flow graph of the algorithm shown in algorithm 4.12b.

35

4.9 B E N C H M A R K

The power estimation of the processor will be based on the power consump-
tion in active mode and the average ratio of time spent in active/sleep mode
respectively. To get good measures of the average ratio it is important that the
protocols are run in probable use-cases. For the two synchronous master proto-
cols, SPI and I2C, it is assumed that whenever the processor is not performing
a transfer it is in sleep mode waiting for an interrupt from the host. Therefore
the use-case reduces to considerations of how long each transfer will be. Before
data can be sent the protocols demand that the transfer should be initiated in
some particular way. The initialization cost of sending a single byte will then
be higher per byte than when transferring several bytes. A significant amount
of effort has been put into trying to find statistical information about the use-
cases of the protocols. In the end the transfer length is application specific and
the power consumption will therefore also be application specific. In the bench-
marks used for I2C and SPI the single byte transfers and several byte transfers
are therefore spread somewhat evenly; performing a single nine byte transfer,
a three byte transfer, a two byte transfer and three single byte transfers. One
could argue that more transfers should be performed, but as long as you keep
the ratio between the lengths of transactions equal, increasing the number of
transfers would not change the result. The asynchronous UART protocol is a
bit different. Because a RX-transfer can occur at any time, the UART has to
wake up and check for start bit at every transaction time. It is reasonable to
assume that much of the running time in UART may involve idling with no
communication on the bus. This is also represented in the benchmarks. In total
two TX single byte transfers, one single byte RX transfer, one transfer where
the bus is idle 60% of the running time and one test where running for the
equivalent of seven bytes while transferring four RX bytes and five TX bytes.
For the comparison of instruction sets it is also important that the protocols
are weighted equally, the benchmarks has therefore been tuned to run for an
approximately equal simulation time2.

2 The time simulated by the simulator. Not to be confused with wall-clock time, the actual real
world time the simulation takes to run.

36

5
I N S T R U C T I O N S E T A R C H I T E C T U R E S

In this chapter the development of the instruction sets will be presented in the
order they were developed. To show the chronological process of my work,
each section but the first, will first discuss the analytical reasoning for the new
instruction set based on the results of a previous instruction set. Then, the
instruction set is presented, and finally simulation results for each set is given
in each section.

5.1 M I N I M A L I N S T R U C T I O N S E T

Table 5.1: Minimal Instruction set

Mnemonic Description

AND Logical and
ANDI Logical and immediate
OR Logical or
ORI Logical or immediate
XOR Logical xor
XORI Logical xor immediate
LSR Logical shift right
LSL Logical shift left
MOV Copy register to register
LDI Load immediate
CPSE Compare skip if equal
CPSNE Compare skip if not equal
CBSE Compare bit skip if equal
CBSNE Compare bit skip if not equal
JMP Unconditional jump
IN Read IO
OUT Write IO
OUTI Write IO immediate
TIMST Set up and start timer
WFE Wait for event

As a baseline for development
a minimal set of instructions
needed to run the protocols was
implemented. The name mini-
mal should not be confused with
minimal instruction sets in gen-
eral. The protocol implementa-
tion was analysed and some sim-
plifications were identified. The
processor needs to stringently
comply with timing, it must be
effective in reading and setting
I/O-pins and it must be able
to loop through a byte of data.
Some instructions found in a
typical instruction set are not
needed. In the protocols im-
plemented there is no need for
arithmetic calculations. How-
ever, arithmetic operations are
not only needed for performing
calculations, but is also used for
decrementing count registers in
loop control. In the applications
this instruction set is designed
for, the largest loop has a length
of eight. With 8-bit registers,
counting eight iterations can be
solved by setting a bit in the

37

most significant position of the register and right shift the register until empty.
We can then from the algorithms in section 5.1.1 see that there is no need for
arithmetic calculations in this instruction set.

The minimal instruction set is a small, two-operand, RISC-based instruction
set and can be seen in table 5.1. A two operand RISC instruction set was cho-
sen for the reasons discussed in section 2.4. Most of the instructions should
be known to the reader, but I will explain some in detail. You will notice that
there are no conditional branch instructions in the list. Instead, ComPare Skip
if Equal/Not Equal(CPSXX) and Compare Bit Skip if Equal/Not Equal(CBSXX) are
added. These instructions will skip the next instruction if their condition is
true. When a JMP instruction follows a skip-instruction you achieve the same
functionality as you would with a compare and then branch-conditional com-
bination, with the added benefit of being able to perform skips on all types of
instructions. WFE and TIMST are instructions related to the event timer con-
trolling the active period of the processor. The Timer Start(TIMST) instruction
is used to configure and start the timer. Instead of using the BBP to configure
the timer one could let the host take care of this operation. But, anticipating
continuous frequency adjustments to synchronize to external modules, the con-
figuration is left to the BBP. The Wait For Event(WFE) instruction is borrowed
from the ARM instruction set. WFE sets the processor in sleep-mode by indi-
cating that the clock should be gated, and lets supporting modules know that
it should be woken on some event. In the planned architecture the available
events are overflow in the timer and a wake-up from the host processor.

5.1.1 P R O T O C O L S

An overview of how the protocols are implemented in the simulator will be
given. The assembly code may not be completely straight forward at times and
please use the pseudocodes presented in section 2.2 for reference.

All the protocols have a set-up phase where the outputs and inputs are en-
abled and the timer is configured and started. The set-up for SPI is shown in
algorithm 5.13, and is very similar for the other protocols. The outi-functions set
OE_N (output enable active low) to zero for all outputs needed for the protocol,
and IE (input enable) to one for all inputs used. The timst-function configures
the timer to send an interrupt whenever it counts to SPI_CK_TIME and starts
the timer.

Algorithm 5.13 Start-up A-program for the SPI-protocol

1 void spiMInit(void){

outi (OE_N, 0xFF ^ (1<<MOSI | 1<<SCKO | 1<<CSn)); //Enable outputs

outi (IE, 1<<MISO); //Enable input

timst(SPI_CK_TIME);}

38

S P I M A S T E R

The SPI protocol is the simplest to design. As described in section 2.2, SPI has
many possible configurations. Only one configuration is implemented, namely
a leading edge, non-inverted clock, MSB-first configuration. The assembly pro-
gram does not need to be configurable as the program itself can be changed if
one wishes to use a different configuration. A transfer on the SPI master will
always be initiated by the host processor. Thus, it can be started by an event
from the host, run for the designated number of bytes and then go back into
sleep.

A start-section where CSn is asserted and registers are reset, as well as a stop
section where CSn is de-asserted, exists. The main part of the SPI-protocol can
be seen in algorithm 5.14. Lines 4 to 6 copies, masks and outputs the MSB
in TXREG. The other outputs, CSn and SCK, are both low at this point and
will not be changed by line 6. In line 7 the data in TXREG is then shifted.
Transmit-data is changed while SCK is low, and data is received while SCK
is positive. The program goes into sleep until the next edge by calling WFE.
The clock is gated until the timer overflows and enables the clock; the program
then promptly cycles SCK high in lines 10 and 11. Because the protocol is a MSB
first protocol the received data must be stored in the LSB-position of RXREG,
and then shifted left. The left shift must take place before reading the data to
avoid overflow after the last bit has been stored, and is performed in line 13
before the inputs are read in line 14. MISO may not be in the LSB-position of
the eight bit registers and because the only active input is MISO, the data can
safely be shifted right to store MISO at the LSB-position. The loop counter is
shifted right, and the BBP waits until the next edge. Finally SCK is cycled low
again, and on line 22 the program either loops back to the start(by calling itself
recursively) or continues the execution(by returning).

I 2 C M A S T E R

Unlike SPI each I2C transfer consist of two separate phases: the address phase
and the data phase. The data phase can in turn be either a write or a read. The
program for I2C is consequently slightly more complex and a lot longer than
the SPI implementation. The program is divided into start-up, address, write,
read and stop. Instead of pulling the output up or down, I2C either pulls the
output low or disconnects from the output by setting high impedance on the
output pin. Thus in the start-up OUT is set to zero, while OE_N(see section 2.7)
is logic high for all pins. When the program wishes to pull the bus low it sets
OE_N low rather than controlling OUT.

In algorithm 5.15 the write loop is shown. Similar to the SPI algorithm, this
loop cycles the clock and outputs the MSB of TXREG. Unlike SPI, the data
should not be output on the negative edge of the clock signal, but rather while
the clock is low. So SDA is changed in line 12, four instructions after SCL was
pulled low to create a delay.

39

Algorithm 5.14 SPI byte loop. Full duplex communication.

1 //At start of loop: RXREG = 0x00 and loop counter R2 = 0x80.

void spiMRepeat(void){

//Set MOSI at negedge

mov(R0, TXREG); //Copy data

andi(R0, 0x00 | 1<<MOSI); //Mask MSB

6 out(OUT, R0); //Output Bit. CSn and SCK low

lsl (TXREG, 1); //Shift left

wfe(); //Wait next edge

//Cycle SCKO high

ori (R0, 1<<SCKO); //SCKO, !CSn

11 out (OUT, R0);

//Read MISO

lsl (RXREG, 1); //Shift left

in(R1);

lsr(R1, MISO); //Shift data to LSB.

16 or(RXREG, R1); //Assuming RXREG = 0x00 at start.

lsr (R2, 1); //Shift counter right

wfe(); //Wait next edge

//Loop

cpseJmp(R2, 0x00, jmp, spiMRepeat);}

Algorithm 5.15 I2C Write

//At start of loop: RXREG = 0x00 and loop counter R2 = 0x80.

void i2cMSendBit(void){

//Cycle SCL

wfe(); //Wait until negedge

5 andi(R0, 0xFF ^ 1<<SCL); //Pull SCL low while holding SDA equal.

out(OE_N, R0); //Set OE_N

//Set SDA

mov(R0, TXREG); //Copy data

andi(R0, 0xFF ^ 1<<SCL); //SDA = TX[7], SCL = 0

10 lsl(TXREG, 1); //Shift data

lsr(R2, 1); //Shift counter

out(OE_N, R0); //Placed last to create delay

//Cycle SCL

wfe(); //Wait until posedge

15 ori(R0, 1<<SCL); //Release SCL

out(OE_N, R0);

//Loop

cpseJmp(R2, 0x00, jmp, i2cMSendBit);}

The ninth bit in both address and transmit phases is the slave acknowledge.
The acknowledge program is shown in algorithm 5.16. If data has been properly
received the slave will assume control over SDA and pull it low. The master
must therefore release SDA, cycle SCL and then read SDA. If SDA is not equal
to zero it should abort the transmit and initiate some error procedure. The first
part of algorithm 5.16, lines 3–11, performs this operation. Notice that data is

40

output two times, this is because transitions on SDA should not happen on the
edge of SCL, but while SCL is low. The final part either stops the transfer if the
current byte is the final byte or initiates another transfer. To allow the testbench
to control how many transfers will be performed, a simulator workaround has
been added. An iterator keeps track of the number of bytes transmitted and a
dummy compare bit skip if equal is inserted to emulate the operation of the actual
assembly command.

Algorithm 5.16 I2C Write Acknowledge

void i2cMTxAck(void){

2 //Cycle ACK

wfe(); //Wait for negedge

andi(R0, 0xFF ^ 1<<SCL); //Pull SCL low

out(OE_N, R0);

outi(OE_N, 0xFF ^ (0<<SDA | 1<<SCL)); //Release SDA

7 wfe(); //Wait for posedge

outi(OE_N, 0xFF); //Release SCL

in(R1); //Receive ack

if(cbseJmp(R1, SDA, 0, jmp, i2cMNotAck))//If not ack

return;

12

/***Simulator Workaround to allow testbench to run N iterations***/

i--; //Decrement iterator

cbse(CTRL_REG, I2C_STOP, 0); //Dummy for checking

if(i == 0){ //If all transfers completed

17 jmp(i2cMStop); //Stop signal

return;

}else{

jmp(i2cMSendByte); //Send new byte

return;}}

U A RT

The UART protocol does not have a master-slave relationship. Both sides of a
communication can initiate a transmit and must always be able to receive. This
results in the UART having four different states as shown in figure 5.1.

The transfers themselves are quite simple. When woken from sleep by the
timer: transmit or receive data and iterate the corresponding counter. The brunt
of the operations lie in the switching between states. While the UART protocol
does not have a clock signal, it has an internal baud rate generator. Generally
the generator will create a pulse or a clock that the internal UART system uses
to perform transfers at the correct time. For the processor the baud rate pulse
is the wake-up signal from the timer, and it will transmit on one wake-up
and receive on the next. A UART implementation typically synchronizes its
internal clock to the other communicator’s clock at the start bit, or every bit, of
a reception. This has not been implemented in the simulator.

41

IDLE start

TXRX

TX&RX

Figure 5.1: State chart for UART

As shown in algorithm 5.17 the processor will wake up, perform TX and go to
sleep. It will then wake up again to perform RX and return to sleep. Algorithm
5.17 does not look like typical assembly code, but the functions uartTX and
uartRX contain assembly like I-functions and are used as references to increase
the readability of the code. The for loop enables the testbench to control how
many iterations UART will run for, in an actual implementation UART is a
never ending loop. In algorithm 5.18 the uartRx function is shown. RX can
either be idling, checking for a start signal, or be active. In line 3 the program
checks an internal status bit to determine if RX is running. If it is, a jump to the
subroutine for RX-active is performed. Lines 5 and 7 reads the IO and checks if
a start bit is present. Both RxRun and RxStart has jmpDummy("uart") as their
final instruction.

Algorithm 5.17 UART top function

void uartFull(int cycles){

int i; //Simulator workaround

for (i = 0; i < cycles; i++){

4 wfe(); //Wait until pulse

uartTx(); //Perform TX

wfe(); //Wait until pulse

uartRx();}} //Perform RX

Algorithm 5.18 Receive algorithm

void uartRx(void){

if(cbseJmp(CTRL_REG, RXRUN, 0, //If running

3 jmp, uartRxRun)) //jump to RxRun

return;

in(R3);

if(cbseJmp(R3, RXD, 1, //If start signal

jmp, uartRxStart)) //jump to RxStart

8 return;

jmpDummy("uart");} //Else jump to top

42

5.1.2 R E S U LT S

In figure 5.2 the simulation results for the minimal instruction set is shown. Un-
surprisingly WFE is the most used instruction. The number of WFE-instructions
are directly linked to the time the protocols have been running for. Thus, the
number of WFE-instructions is generally unchangeable as it is the instruction
that lets the processor wait for the next edge of the baud rate clock. XOR and
XORI remain unused but are considered important instructions in a processor,
and are kept to promote flexibility. Although unused, the AND function should
not be removed simply because the ANDI function uses the same hardware to
operate.

The considerable amount of NOP-instructions are due to the compare skip-
functions. Whenever an instruction is skipped it is in fact a NOP being per-
formed. Thus, it is a functional skip but the cycle is still consumed. Further
analysis of the results will be performed in the sections below.

Figure 5.2: Simulation results for minimal ISA.

5.2 T H R E E O P E R A N D S

The minimal instruction set has a two operand implementation. As mentioned
in section 2.4 three operand instruction sets will improve the flexibility in re-use
of data. Thus, it will improve performance by avoiding some load-instructions
by temporarily storing a value that is going to be reused. When analysing
the A-programs one can see that the protocol applications are not data heavy.
Generally the data passing through the processor will either be the values to
be output or the counters used in loop control. Common for both of these is
that they do not contain any constant information that can be read from some
location. The values are either known constants set by immediates, such as
the bus clock, or not reusable, such as the counters. These factors led to the
assumption that a two operand instruction set would perform better for the

43

processor in this thesis. Aside from using three operands, the instruction set
architecture equal to the minimal instruction set.

5.2.1 R E S U LT S

When comparing the number of instructions performed, shown in figure 5.3, it
can be observed that using three operands instead of two reduces the number
of instructions. Specifically, the MOV-instructions used to copy TX-data into
a register are removed(see algorithm 5.14 line 4. This improvement comes at
the cost of longer instruction words. Longer instruction words requires higher
complexity in the instruction decoder stage of the processor. More importantly,
longer instruction words increase the memory requirements for the instruction
memory. The cost is assumed to cancel out the fewer number of instructions
in terms of power efficiency. There are more effective ways of reducing the
number of MOV-instructions as will be seen in section 5.4, the power of the
three operand instruction set will therefore not be estimated in the next chapter.

Figure 5.3: Simulation results for three operand ISA.

5.3 R E P E AT

REPEAT Repeat

The simulation results and A-programs of the minimal instruction set was anal-
ysed to find potential for improvement. It is not surprising to find that loop
overhead is a large factor in the A-programs, this overhead includes compare-
skip instructions, jump, load immediate and right shift operations. As can be

44

seen in figure 5.2 these instructions take up a large part of the executed instruc-
tions. All the protocols are expected to output a series of bits and each bit will
be output in the same way each time; looping is a natural consequence of the
behaviour. One could solve this by unrolling the loops, but an important factor
when designing for low power is to limit memory, and other solutions should
be considered.

The REPEAT-instruction[23, p. 495] provides a possible solution. The REPEAT-
instruction takes two arguments, the number of instructions in the loop, N, and
the number of iterations of the loop, M. The REPEAT-instruction initializes and
starts a control-sequence in the program counter, and the next N instructions
are performed M times. A typical loop overhead in the minimal instruction set
include: one load immediate, eight right shift, eight compare-skip, and eight
jumps per byte. For each loop performed the number of cycles can be reduced
by 24 by adding the REPEAT-instruction. Additionally, a normal jump instruc-
tion will also result in a pipeline flush. Depending on the hardware implemen-
tation the flush penalty will vary, but for the three stage pipeline planned in
this thesis a flush penalty of two cycles has been assumed. Seven jumps will
be performed during one of these loops, and this adds an additional 14 cycles
saved per loop.

The hardware needed to add repeat-functionality is not inconsequential. A
loop-controller must be added to the program counter path. It includes two
decrement counters, two equality checkers, 5 multiplexers and an OR-gate [23,
p. 496]. A possible hardware implementation is shown in figure 5.4 and in-
cludes, for clarity, a part of a program counter. When N-counter is equal to
zero repeatFlag is set. This causes the M-counter to be decremented while the
program counter is set from a stored initial value, the start of the loop.

Figure 5.4: Illustration of hardware implementation of the REPEAT-instruction.

45

5.3.1 P R O T O C O L S

S P I M A S T E R

The REPEAT-instruction takes iterations and code length as arguments and
repeats the subsequent instructions a number of times. It is added in the simu-
lator as shown in algorithm 5.19. Where the section spiMRepeat is a version of
algorithm 5.14 without the loop-control instructions. SPI benefits greatly from
the REPEAT-instruction. The final line of algorithm 5.14 can be removed, as well
as the shift operation for the counter. The REPEAT-instruction has to be added
before the loop is started, but the counter initialization is removed, resulting in
no change in number of instructions. Three instructions and a pipeline flush
for each iteration of the loop is removed.

Algorithm 5.19 Repeat added to SPI

1 void spiMTransferByte(void){

andi(CTRL_REG, 0xFF ^ 1<<SPI_BYTE_READY); //De-asserted ready signal

ldi(RX_REG, 0x00); //Reset RX_REG

//ldi(R2, 0x80); //Removed, set counter

//spiMRepeat(); //Removed, perform loop

6 repeat(8, spiMRepeat); //Repeat bit-transfer 8 times

ori(CTRL_REG, 1<<SPI_BYTE_READY);} //Assert ready signal

I 2 C M A S T E R

The loop control instructions can be removed from algorithm 5.15 as well, and
similarly for the transmit address and receive data programs. For each bit sent
it also reduces the number of instructions by three and avoids the flush penalty.

U A RT

In the UART program a RX transfer may begin in the middle of a TX trans-
fer, and this makes it hard to use the REPEAT-instruction. UART is an asyn-
chronous, full duplex, protocol where both sides can initiate a transfer at any
time. Thus, a RX-transfer may start or stop in the middle of a TX-transfer and
this causes problems for the REPEAT-instruction. Performing jumps to subrou-
tines within a repeat-loop will change the program counter. If the subroutines
are not of an equal length the loop will perform instructions that are not sup-
posed to be performed or skip instructions. If RX is not needed, a UART TX
protocol will be able to benefit from the REPEAT-instruction and performance
will be significantly better.

In spite of this, UART was implemented to include the REPEAT-instruction.
In algorithm 5.20 it is shown how the RX program was padded with NOP-s
to make all subroutines of an equal length. RxRunRep is five instructions long,
and the pipeline flush adds another two cycles. RxStartRep only contains two

46

instructions, but before it is started three instructions are performed. Thus,
it must be padded with two NOP-s to be of equal length. Finally, assuming
that the repeat counter does not pause when there is a flush, six NOP-s must
be added for the RX-idle case. This makes the three cases of an equal length
in number of instructions, and UartTxRun can be used in a repeat statement.
This technique is very vulnerable to changes in the instructions and a compiler
will usually struggle with trying to incorporate jumps within a repeat loop.
Consequently, the technique used here is not well suited for user changeable
code.

Algorithm 5.20 Nop padding to allow UART to use repeat.

void uartTxRun(void){

2 wfe();

mov(R0, TXREG);

lsl(R0, TXD); //Data is LSB first, shift data into correct position

out(OUT, R0);

lsr (TXREG, 1);

7 wfe();

//Run

if(cbseJmp(CTRL_REG, RXRUN,0,

jmp, uartRxRunRep)) //Length: 7 + 2(flush)

return;

12 //Start

in(R3); //start: 1

if(cbseJmp(R3, RXD, 1, //start: 2

jmp, uartRxStartRep)) //start: 3 + 2(flush)

return;

17 //RX idle

nop(); //Idle: 4 (flush)

nop(); //Idle: 5 (flush)

nop(); //Idle: 6

nop(); //Idle: 7

22 nop(); //Idle: 8

nop();} //Idle: 9

void uartRxStartRep(void){

ldi(R1, 0x80); //start: 6

27 ori(CTRL_REG, 1<<RXRUN); //start: 7

nop(); //start: 8

nop();} //Start: 9

5.3.2 R E S U LT S

The simulation results shown in figure 5.5 show that the number of instructions
has been reduced significantly. Although REPEAT was added to reduce the
number of compare-skip and jump instructions, there are still a high number
of them. This is mainly due to the checks in the UART protocol. The high
amount of NOP-instructions also stem from these checks. Nevertheless, the

47

UART protocol has benefitted from REPEAT as can be seen in figure 5.15 at
the end of this chapter. For the benchmarks the REPEAT-instruction reduces
the running time by 23%. However, the REPEAT-instruction adds a significant
amount of hardware, and if the energy efficiency is indeed improved remains
to be seen.

Figure 5.5: Simulation results for REPEAT ISA.

5.4 S O L I N S T R U C T I O N S

SOL Serial Output Least Significant bit
SOM Serial Output Most Significant bit
SIL Serial Input Least Significant bit
SIM Serial Input Most Significant bit

Further analysis reveals that reading and writing single bits on the bus is a
slightly cumbersome operation. A general algorithm for outputting the most
significant bit from a register is shown in algorithm 5.21, the least significant bit
can be output by changing the immediates. Line 4 and 5 are necessary because
the R1 register will contain information for all output pins and the other bits
cannot be overloaded.

The general case can be optimised for each protocol implementation. If it
can be assumed that the output wire, TXWIRE, will always be the wire in the
most significant position(that is, position seven) line three can be removed. Fur-
thermore, if the other outputs are known(for example SCK and CSn in SPI, or
SCL in I2C) line four and five can be replaced by andi R2 (0xFF ^ (1<<SCL

| 1<<CSn)) for SPI, and ori R2 (1<<SCL) for I2C. When the output is

48

known one can also assume that all bits that are not set are don’t care and we
can remove line two, reducing the number of instructions by three in total. A
similar analysis can be performed for reading bit-values. So with an optimised
code, three instructions is used for outputting a bit, and three instructions are
used for reading a bit. It can be argued that reading and writing bit-values is
the main task of the implemented programs. It is therefore assumed that creat-
ing a specialised instruction to perform this set of operations effectively, would
improve performance.

Algorithm 5.21 Outputting single bit from a register without destroying data
in register or changing other outputs.

Precondition: R0 stores all bits that are in queue to be sent with MSB as the
next bit. R1 has stored the current outputs on all wires. TXWIRE is the wire
where the data should be put.

1 mov R2 R0 //Copy the data

2 andi R2 0x80 //Mask TX-bit

3 lsr R2 (7-TXWIRE) //Shift TX-bit to correct position

4 andi R1 (0xFF ^ 1<<TXWIRE) //Clear the current TX-bit in R1

5 or R1 R2 //Combine TX-bit with current output

6 out R1 //Send the data to out-pin

The SOL instructions are single cycle instructions that can perform this func-
tionality. SOL/SOM take the LSB/MSB from a specialized register, put the
bit into a general register and output the result. SIL/SIM reads all inputs
into a general register and puts a single bit into the LSB/MSB of a special-
ized register. These instructions reduce the number of instructions needed for
each write/read by two. In an 8 cycle loop where both reading and writing
is performed this combines into a total of 32 instructions per byte transferred.
Making the same assumptions as for the implementation in the previous para-
graph, namely that the TX-bit always will be output on the same wire and
that RX will either be on the same wire(Half-Duplex) or one other specific
wire(Full-Duplex), the hardware size of such an instruction should be minor.
The specialized registers mentioned will, in the case of the proposed processor,
already be registers that are different from the general registers, namely the
host-controllable RX- and TX-registers. A proposed, untested, implementation
of the SOL instructions is shown in figure 5.7 and 5.6 for the IN- and OUT-
functions respectively.

From figure 5.6 it can be seen that the SOL/SOM instructions introduce two
new multiplexers in the processor; one to choose between MSB and LSB and
one to insert the bit into the most significant wire in the data bus. This instruc-
tion can be extended to include bit insertion into any wire in the data bus by
adding a decoder and multiplexers on every bit-line, but the most significant
wire assumption holds well across all implementations in this thesis. When the

49

Figure 5.6: SOL TX instructions(SOL/SOM) in hardware

bit has been inserted into the data-bus it will follow the pre-existing datapaths
of the processor and be written back to the register file.

The SIL/SIM instruction hardware is shown in figure 5.7 and introduce no
new multiplexers in the existing datapath. It is essentially an IN-instruction
with added functionality outside the general datapath. Three multiplexers are
introduced, one to insert the RX-bit into the most significant wire of the RXREG-
bus, one for inserting the RX-bit into the least significant wire of the same bus
and one to switch between the most significant wire and the second most signif-
icant wire. The last multiplexer is necessary because some protocols are full-
duplex and use two separate wires for TX and RX, while others are half-duplex
and share a single wire for both TX and RX. With the assumption that TX is
always set to the most significant wire, the SIL/SIM instruction must be able to
chose between two different positions. Again, the SIL/SIM instructions can be
extended to include all bit positions, this time by adding a larger multiplexer
to span the whole bus of the I/O.

5.4.1 R E S U LT S

The simulation results in figure 5.8 show that there is a considerable reduction
in number of cycles after adding the SOL-instructions to the minimal instruc-
tion set. For the benchmarks the improvement is 12% and considering the
sparse increase in hardware these instructions represent, it can be assumed
that the SOL-instructions improve energy efficiency.

5.5 S O L A N D R E P E AT

The SOL- and REPEAT-instructions were combined to create an energy frugal
instruction set. The two most conspicuous candidates for optimization has been
targeted, and the total improvement in number of cycles is 36%.

50

Figure 5.7: SOL RX instructions(SIL/SIM) in hardware

Figure 5.8: Simulation results for SOL ISA.

Figure 5.9: Simulation results for SOL and REPEAT ISA.

51

5.6 C O N D I T I O N A L E X E C U T I O N

CLR Clear conditional bit
SET Set conditional bit
CPI Compare Immediate, set conditional bit

CMP Compare register, set conditional bit

The SPI and I2C master protocols easily lend themselves to be optimized be-
cause the processor, as master, can control when and for how long, information
should be sent. The UART-protocol, on the other hand, is harder to optimize
due to its master-less nature. As can be seen in figure 5.9, compare and jump
operations still represent a large part of the total instructions, and most of these
are in the UART program. These compare-jump operations are not due to loop
overhead, but due to the several different states the UART program can be in.
The states are showed in figure 5.1. The UART protocol may switch from one
state to any other state at any time, and this makes UART more ineffective as a
bit-banging protocol than SPI and I2C. Remember that every jump performed
incurs a pipeline flush penalty, and the different states results in frequent jumps.
In an attempt to mediate these effects, conditional execution was added to the
SOL and REPEAT instruction set architecture.

Conditional execution is a property added to every instruction in the instruc-
tion set. It allows each instruction to be executed only if a condition register is
in a certain state. In the ARM-instruction set this condition register is the Appli-
cation Program Status Register(ASPR) [24], and is the same register as conditional
branching performs its checks against(i.e. equal, carry, zero and negative flags).
In the case of the UART program, the branching is usually performed due to
some equality check, but the equality check is not any natural part of the pro-
gram flow. Furthermore, when using a condition register that is set by several
ALU operations—as is the case with ASPR—it is hard to store the state of the
program over several instructions. For this reason a register containing four
conditional bits that can be set by special instructions is created. The bits can
be set or cleared by the instructions shown in the start of this section1. All in-
struction words must be extended to include four bits for conditional execution,
the different states that can be checked are shown in table 5.2.

In algorithm 5.22 two programs are shown: one which uses traditional branch-
ing to execute a set of instructions if some condition holds true(5.22(a)), and the
same program implemented with conditional execution(5.22(b)). In the case
where the branch is taken, the traditional code will execute the compare and
jump instructions, inducing a pipeline flush. It will then execute the subrou-
tine and return to the execution with another jump instruction inducing another
pipeline flush. If the subroutine is sufficiently short(like in this example), the

1 The mnemonics are already in use in other instruction sets, and should probably be renamed
to avoid confusion, but these are the names used in the instruction set simulator.

52

Table 5.2: Condition register and condition checks.

Condition Register T=[T3, T2, T1, T0]

Mnemonic Condition

Tn T[n] = 1
!Tn T[n] = 0
Tn&Tm T[n] = 1 && T[m] = 1
T T = 0xF

Algorithm 5.22 Program with if-else type structure.

(a)Normal
void skipIf(void){

cpsneJmp(R1, 0x00, jmp, subroutine);

and(R2, 0x80);

out(OUT, R2);

next();}

void subroutine(void){

in(R2);

and(R2, 0x80);

next();}

void next(void){ /* Operations */ }

(b)Conditional
void skipIf(void){

cpi(T1, R1, 0x00);

inc(R2, T1);

andc(R2, 0x80, T1);

andc(R2, 0x80, !T1);

outc(OUT, R2, !T1);

next();}

void next(void){ /* Operations */ }

execution time of the subroutine will be a lot higher due to the branch penalty.
The conditional code, however, will execute the series of instructions without
inducing any pipeline flushes. However, when the branch is not taken algo-
rithm 5.22(a) will execute the compare instruction, skip the jump instruction,
and will continue with the program. The conditional code will still load all
the instructions in the subroutine, but skip all of them, and will execute the
program using the exact same amount of cycles as when performing the sub-
routine. If we assume that the branch is taken in 50% of the cases, conditional
execution is only preferable if the subroutine is so short that

1+ 2× pipeline flush < subroutine length. (3)

The calculation is further complicated by the fact that the branch may be taken
in any percentage of the cases. As example from the UART protocol we know
that TX-stop will be performed once for every eight transmissions. Thus, the
subroutine must be an eighth of the length of the jump penalties, resulting in a
length of less than one instruction.

53

The hardware implementation of conditional execution can be constructed
by forcing a NOP-instruction to be performed whenever a condition true signal
is low. The condition true signal will be set by a decoder circuit which, based on
the state in the condition register and the condition bits in the instruction word,
outputs a single true/false bit. A simple circuit with this functionality is shown
in figure 5.10. The NOP functionality needed for conditional execution can
probably be merged with the compare skip if equal functionality of this instruction
set.

Figure 5.10: Illustration of conditional execution implementation.

5.6.1 P R O T O C O L S

A set of conditional instructions was added to the instruction set. In the new set
each I-function has an extra argument, the conditional, and will execute a NOP
if the conditional is not true. A 4-bit register that contains the conditional flags
was added, and a set of functions(set, clr, compare set if equal CPIE, compare
set if not equal CPINE) was added to control the flags in the register. A typical
use-case for the conditional execution is shown in algorithm 5.22(b).

S P I M A S T E R

The SPI implementation was not changed at all because no openings for im-
provement was present. The SPI program shown in algorithm 5.14 has no
compare and jump combinations, and thus it cannot benefit from this type of
conditional execution.

I 2 C M A S T E R

In I2C the address phase is followed by either the receive phase or the transmit
phase, and has a possibility for using conditional execution. But, if one assumes
an equal distribution of branch taken/not taken, conditional execution is only
effective if the conditional code incurs a lower penalty if not executed than

54

the compare-jump combination. Conditional execution was implemented, but
in this case both the receive and transmit programs are quite long and the
gain from removing the jump-penalty is completely absorbed by the amount of
NOP-s produced by the, not executed, conditional I-functions. The conditional
I2C-implementation is not included in the final results.

U A RT

Conditional execution was mainly added to improve the UART program. Sev-
eral different implementations has been tried, without Repeat, with Repeat,
with a large amount of the I-functions running conditionally and with very few
running conditionally. The TX-phase and RX-phase are not being performed
at the same time, and there is no gain in trying to make these conditional in
relation to each other. The start and stop operations are targets for using con-
ditional execution. However, start and stop are only executed once for every
byte sent. With a large amount of the time being spent either idling or send-
ing data-bits, the NOP-s incurred by the non-executed conditional instructions
outweigh the gain of reducing jumps. In the end none of the implementations
improved the cycle performance of the UART-protocol.

5.6.2 R E S U LT S

The simulation results of the conditional execution instruction set show that no
improvement was achieved; the number of cycles is in fact increased. For SPI
and I2C no opportunities for improvement was found and the implementation
are the same as for the SOL and REPEAT instruction set, so the detrimental
effects are solely in the UART program. In figure 5.11 one can see that the
number of jumps have in fact increased in the attempt to utilize conditional
execution. This may be due to my inability to optimize the UART program,
and is perhaps a case of over-use of the conditional execution functionality. But
many solutions have been tried, and this is the best result that was achieved
without excluding conditional execution altogether.

Figure 5.11: Simulation results for conditional execution ISA.

55

5.7 PA R A L L E L E X E C U T I O N

The UART-program is always in one of four states and a significant part of the
overhead of the UART-program is spent jumping between these states. In a
final attempt to reduce the overhead the conditional execution instruction set
was extended into a parallel execution instruction set. In the simulator the
instruction set was created to support four instructions, but only three parallel
instructions are necessary.

This instruction set has the ability to load a finite number of instructions in
parallel, but only choose one instruction that will be executed. An illustration
of such a program flow is shown in figure 5.12 and this allows switching be-
tween the states of UART to be performed by changing the conditional registers.
One important thing to note is that all operations that are performed in parallel
must have orthogonal conditions. That is, the intention of the program must be
to always execute only one of the instructions because no form of scheduling
or stalling is intended in this instruction set. In figure 5.12 the four different
states of the UART is shown as rounded boxes and the lines extending ver-
tically from the boxes can be considered as a timeline. The horizontal arrows
from one timeline to another indicates a change in states by changing the condi-
tional register. There is no pipeline flush incurred when changing state. In the
different timelines different operations are performed, but the assembly code
must be carefully designed so that whenever the state is changed the parallel
operations are running in the same phase of the program. That is, that a state
change does not result in any unwanted operations.

Figure 5.13 shows a concept draft of the hardware implementation for three
parallel instructions. There is no need for actual parallel execution but three
instructions must be fetched and none or one of them should be executed. This
can be achieved by a condition checker (not unlike the one in figure 5.10) con-
trolling a 4-to-1 multiplexer where one of the instructions is a NOP. Although
this implementation is significantly smaller than having true parallel execution,
it also introduces some limitations.

Because the conditional is checked in the fetch stage, some circuit for forward-
ing the conditional checks performed in the execution stage must be added.
This was discovered too late in the project to implement in the power estima-
tions. But as will be seen from the results of this section and section 6.3.5, it
does not change the final conclusion.

This implementation implies the use of an instruction word that is 3× instruct-
ion word length long. This results in a large bus width to the instruction memory
or an instruction-fetch module that is three times faster than the rest of the pro-
cessor. If the parallel execution functionality is always on, the size of programs
that are not able to utilize the parallelism will be three times larger than neces-
sary. So the processor should be configurable to turn off parallel execution if it
is not needed.

56

Figure 5.12: Illustration of the UART program in the parallel execution instruction set.
Operations shown as horizontal arrows does not incur a pipeline flush.

Figure 5.13: Illustration of parallel execution implementation.

57

5.7.1 P R O T O C O L S

Parallel execution has been implemented in the simulator as a function that can
take up to four different function pointers, the arguments to these functions and
a Boolean as the condition for execution. The function is shown in algorithm
5.23. It prioritizes the functions from first to last and executes the first function
that has a true conditional, if no conditions are true it executes a NOP. In the
other instruction sets the functions take a varying amount of arguments, e.g.
OUT takes only two arguments while AND takes three. To allow parallelEx
to call all instructions, some I-functions have been extended from two to three
arguments by including dummy-inputs.

Algorithm 5.23 Parallel Execution Function (shortened for readability)

1 int parallelEx(

void (*ex0)(unsigned int,unsigned int,unsigned int),

unsigned int ex0var0, unsigned int ex0var1, unsigned int ex0var2,

unsigned int ex0Cond

,void (*ex1)(unsigned int, ...

6 ,void (*ex2)(unsigned int, ...

,void (*ex3)(unsigned int, ...

reportParallel();

if(ex0Cond)

ex0(ex0var0, ex0var1, ex0var2);

11 else if(ex1Cond)

ex1(ex1var0, ex1var1, ex1var2);

else if(ex2Cond)

ex2(ex2var0, ex2var1, ex2var2);

else if(ex3Cond)

16 ex3(ex3var0, ex3var1, ex3var2);

else

nop();

return 0;}

S P I M A S T E R

For the same reasons as for the conditional execution instruction set, SPI has
not been changed at all.

I 2 C M A S T E R

The I2C algorithm has three different types of phases it can run. Namely the
address transmit, data transmit and data receive. All three phases are 9-bits
long, and an A-program that run these phases in parallel has been created. An
excerpt of the I2C parallel execution code is shown in algorithm 5.24. The three
threads are loaded in parallel, but only one is executed. Note that the address
thread and the send thread are very similar, while the receive thread needs to
be padded with NOP-s to execute as many cycles as the other two threads.

58

Algorithm 5.24 I2C parallel execution A-program

1 void i2cParallelBit(void){

// ex0 send Address Bit, T0

// ex1 send Bit, T1&!T0

// ex2 receive Bit, !T1&!T0

/***** Excerpt *****/

6 parallelEx(

somPar, OE_N, SDA, R2, T0, //Output address bit

somPar, OE_N, SDA, R2, T1&&!T0, //Output data Bit

outiPar, OE_N, 0xFF, NAN, !T1&&!T0, //Toggle SCL

nopPar,0,0,0,0);

11 parallelEx(

wfePar, NAN, NAN, NAN, T0, //Wait

wfePar, NAN, NAN, NAN, T1&&!T0, //Wait

lslPar, RX_REG, 1, NAN, !T1&&!T0, //Left shift RXREG

nopPar,0,0,0,0);

16 parallelEx(

lslPar, TX_REG, 1, NAN, T0, //Left shift TXREG

lslPar, TX_REG, 1, NAN, T1&&!T0, //Left shift TXREG

nopPar,0,0,0,0, //NOP

nopPar,0,0,0,0);

21 /***** Excerpt *****/ }

Although it is entirely possible to run I2C in this way, I2C does not regularly
switch between these phases and the gain from parallel execution is limited. A
few added NOP-s due to the unevenness of the transmit- and receive-programs,
and the added control instructions to change the conditional makes this A-
program less effective than the SolRepeat A-program. Granted, I2C always
switches from address to either transmit or receive, and it is conceivable that
running address without parallel execution before continuing to a parallel data
phase could improve the performance. But the address phase actually runs
next to the transmit phase without extra cost, and the larger problem is to run
transmit in parallel with receive.

U A RT

UART has the greatest opportunity to benefit from parallel execution. In al-
gorithm 5.25 the A-program runs check start RX and running RX in parallel.
In the program it can be seen that there is no need for any jumps to switch
between the two states, and in fact the A-program as a whole(including TX)
contains only the final jump back to the top (line 26 in algorithm 5.25). This
significantly reduces the number of pipeline flushes. However, whenever the
RX-protocol is in the idle state(i.e. neither running nor starting) there are two
NOP-s performed each time this program is executed. With the assumption
that a significant amount of time will be spent in an idle-state this incurs a sig-
nificant penalty to the performance. The same is the case for the TX-program
and this effectively negates the gain from running without jumps.

59

Algorithm 5.25 UART RX parallel execution A-program

void uartRx(void){

//ex0 = check start, T0 == starting

//ex1 = running, T1 == running

4 wfe(); //Read middle

parallelEx(

inPar,R1, NAN, NAN, !T1, //Read data

lsrPar, RX_REG, 1, NAN, T1, //Shift RX_REG

nopPar,0,0,0,0,

9 nopPar,0,0,0,0);

parallelEx(

cpiePar, rT0, R1, 0<<RXD, !T1, //If RXD was high

simPar , RXD, R0, NAN, T1, //Read RXD

nopPar,0,0,0,0,

14 nopPar,0,0,0,0);

parallelEx(

ldiPar, R3, 0x80, NAN, T0, //Initiate counter

lsrPar, R3, 1, NAN, T1, //Shift Counter

nopPar,0,0,0,0, //NOP if not starting or running

19 nopPar,0,0,0,0);

parallelEx(

setPar, rT1, NAN, NAN, T0, //Set running high

cpinePar,rT1, R3, 0x00, T1, //If counter=0, stop

nopPar,0,0,0,0, //NOP if not starting or running

24 nopPar,0,0,0,0);

clrc(rT0, T0); //Clear start

jmpDummy("uartRun");} //Jump to top

Figure 5.14: Simulation results for parallel execution ISA.

60

5.7.2 R E S U LT S

Again, the simulation results(figure 5.14) show that the new A-program im-
plementations did not achieve any improvement compared to the SolRepeat
instruction set. Although the number of jumps—and consequently pipeline
flushes—for UART is decreased, the increased number of compare instructions
and NOP-s more than cancel out the improvement. The NOP-s stem from the
fact that the instruction sequences that we wish to run in parallel are not neces-
sarily of equal length and introduces NOP-s on the shorter sequence.

5.8 C O M PA R I S O N

From figure 5.16 it can be seen that REPEAT very effectively reduced the num-
ber of pipeline flushes. The pipeline flushes was further reduced by both condi-
tional and parallel execution, but the total running time was increased for both
of these instruction sets compared to SolRepeat.

When comparing the results in figure 5.16 and 5.15 it can clearly be seen
that the most promising instruction set architecture is the SolRepeat ISA. There
is a 36% reduction in running time for SolRepeat as compared to the minimal
instruction set(Std). A change in bitrate only affects the sleep time of the pro-
gram, and 36% reduction is valid for all bitrates that does not violate the time
constraints described in section 4.4. The REPEAT-instruction will add consider-
able hardware to the processor, so if the improvement will indeed be that large
when power consumption is considered remains to be seen.

Figure 5.15: Running ratio for all instruction sets divided by protocol.

61

Figure 5.16: Running and total time of benchmark on all instruction sets, normalized
to SolRepeat.

5.9 M A X S P E E D S

The maximum bit-rates for SolRepeat is shown in table 5.3, these values have
been found by simulation. The bit-rate maximum speed is limited by the pro-
cessor frequency and the longest sequence of instructions between two wait for
event(WFE) instructions.

Table 5.3: Maximum bitrates for SolRepeat ISA.

SPI I2C UART

Bitrate[kbps] 1152.1 806.5 448.0

62

6
P O W E R

In this chapter the dynamic power consumption of each instruction set from
chapter 5 will be calculated. To do this a power estimation method based on an
existing processor will be presented. The area-estimates are

6.1 P O W E R E S T I M AT I O N M E T H O D

In section 2.8 an analytical, complexity based, power estimation method was
presented. It proposes that there is a relationship between the complexity (i.e.
the number of gate equivalents) and power. The equation for this method is
repeated in equation 4 for convenience.

Pmod = N(Ptyp +CL ∗ V2) ∗α ∗ f (4)

It assumes that an average load capacitance and activity factor can be estimated.
In this chapter a method based on these principles is used. The power for a
similarly structured component, namely a processor, has been measured. Based
on the assumption that the power consumption of a component is proportional
to its number of gate equivalents the power per module can be calculated as:

Pmod = N ∗ Pgate ∗ f (5)

Where

Pgate = (Ptyp +CL ∗ V2) ∗α (6)

and Pgate can be estimated as:

Pgate =
Pmeasured
Ngates

(7)

This estimation method is common practice in the industry[25]. However,
this method of approximation does not necessarily yield an accurate result of
the power consumption for all modules, but for modules with similar activity
profiles (e.g. two processors) the results should provide a reasonable fidelity1.
Assuming that the fidelity is high, correct architectural decisions can be made
on the basis of these estimates.

According to measurements performed at Nordic Semiconductor the Cortex
M0 consumes 567µA when running at 16MHz, and the leakage current is 0.2µA.

1 Fidelity describes to which degree the estimator is able to predict if one solution is better/worse
than the other solutions. This is in contrast to accuracy which is a measure of how close the
estimator is to the actual value. Fidelity can be high even with low accuracy.

63

The number of gate equivalents in the Cortex M0 is estimated based on area-
results after synthesis. It is calculated as how many NAND2-gates one can
fit on the area that the design requires. The parameters for the Cortex M0
implementation is shown in table 6.1.

Note that the power consumption is directly proportional to the current by a
factor of 1.2(the voltage), and throughout this chapter the power consumption
will be discussed although most estimated values will be given as currents.

Table 6.1: Cortex M0 area and dynamic power consumption.

Area NAND2 Activity Active Current Voltage

228357µm2 22881 21% 567µA 1.2V

6.2 T H E C O RT E X M 0 A S A B A S E L I N E

The Cortex M0 has been chosen as a baseline for power estimations. This is
primarily because power measurements of the processor was readily available,
but the Cortex M0 is not a bad candidate for a baseline in any case. The Cortex
M0 is a low power, 32-bit, processor created for the embedded market. It uses
the ARMv6-M Thumb instruction set which is more extensive in some respects
than the instruction sets planned in this thesis.

The data width is perhaps the most obvious difference between the cortex M0
and the planned processor. The 32-bit Cortex M0 datapath is four times larger
than in the 8-bit planned processor. Furthermore, the Cortex M0 has 13 general
purpose register compared to the planned four general purpose registers in the
BBP. It also implements memory operations, addition/subtraction and single
cycle multiplication; these instructions has not been considered necessary in
the BBP. The Cortex M0 does not allow for single cycle I/O access, but its
close sibling Cortex M0+ has this functionality. Unfortunately, there were no
measurement data available for this processor.

In general the Cortex M0 can be viewed as a superset of the minimal instruc-
tion set. It is therefore expected that the estimates performed based on the
Cortex M0 will overestimate the number of gates needed for BBP by a large
amount. As a result, the impact of adding new functionality may be improp-
erly weighted. Adding 1000 gates to the Cortex M0 will constitute about a 5%
increase in hardware, while 1000 gates in the BBP may be a significantly larger
relative increase. If the addition of an instruction reduces the time to idle by
10% while increasing the hardware size of the Cortex M0 with 5%, it will add
up to a total decrease in energy for the application This may not be the case for
the BPP, where the area increase will be a larger relative cost.

In the following sections some efforts will be made to reduce the area gap
between the expected BBP hardware and the Cortex M0. One could argue that
it would be simpler to estimate the size of the BBP and use the power per gate

64

estimate from the Cortex M0 to calculate the power consumption. However,
it was considered likely that when estimating the BBP-size one could easily
overlook important factors of the processor and underestimate the size of the
BBP. Consequently it was expected that the method chosen would represent
a more accurate power estimation. Throughout this chapter all estimations
assumes that it is better to err on the side of caution, and that it is better to
underestimate the performance of the BBP than the opposite.

6.3 P O W E R E S T I M AT E P E R F U N C T I O N A L I T Y

To be able to compare the instruction sets it is necessary to be able to approx-
imate the power usage of each functionality so that they can be removed and
added for the different instruction sets. A power estimate of the unused func-
tionality in the Cortex M0 will also be approximated in order to improve the
accuracy and fidelity of the estimates. In this section the size requirements
for different instructions/functions will be analysed, and a possible hardware
implementation will be described and constructed. The total size requirement
will be calculated from the size of each added cell, and finally the total area will
be reduced to NAND2 equivalents for comparison. The area numbers for the
Cortex M0, as well as the following sections, is based on a subset of the TSMC
0.18µm Process at 1.2V. The list of cells in the subset can be found in appendix
A, and the cell descriptions in [26].

6.3.1 U N U S E D F U N C T I O N S

As previously mentioned the processor described in chapter 3 is a lot smaller
than the Cortex M0 as it does not need to be as general. To be able to compare
the processor to the dedicated hardware modules, the power consumption of
some key functions will be calculated and subtracted from the total power.

D E B U G

The Cortex M0 has a debug functionality that occupies 3825 gate equivalents.
The debug-functionality is clock-gated and will not consume any dynamic
power when not enabled. During the measurements performed at Nordic Semi-
conductor the debug functionality has not been enabled and the gates can be
removed from the total number of gates prior to determining the power per
gate.

R E G I S T E R S

The Cortex M0 has thirteen general purpose registers and three special registers.
Namely the stack pointer, the link register and the program counter[27]. The
protocol implementations in chapter 5 indicate that only four general purpose
registers, two special TX/RX registers and the program counter are necessary

65

Figure 6.1: Simple register file model.

in the BBP. The stack pointer is unnecessary because it is used when passing
more than four arguments to a subroutine call. The BBP does not have enough
general purpose registers to pass more than four arguments. Creating subrou-
tines that can be called from any part in the code and is expected to return to
the same location(i.e. branch linked operations) is inefficient for short subrou-
tines, and is not used in the protocol implementations. Thus, the link register
is rendered unnecessary. These two assumptions reduces the BBP’s ability to
operate as a general processor.

The general purpose register file in the Cortex M0 represent 28.5% of the
total area for the chip according to the synthesis results from tests at Nordic
Semiconductor. Additionally, there are several multiplexers distributed on the
chip to control the write inputs of the register file. The register file also has
separate clocks and write enable signals for the program counter and stack
pointer, but the logic of these will not be considered. A simple register file
model, as shown in figure 6.1, will be used to calculate the reduction in area.
For simplicity the program counter register will be left out of the subsequent
discussions.

While the program counter is updated every cycle, only one of the registers
is updated within a cycle. Thus, it can be assumed that the activity factor
in the registers will be a fifteenth of the average activity, an activity factor of
1.40%. One 32-bit register can be constructed using 32 SDFFR-cells, giving a
total of 480 SDFFR-cells. Six 8-bit registers can be created using 48 SDFFR-
cells. Additionally the register file uses two 32-bit 15-to-1 multiplexers to feed
the value of two registers to the ALU, and one 1-bit 1-to-15 demultiplexer to
distribute the write enable signal to the fifteen registers. The size of both the
32× 15 register file and the 8× 6 register file and the total reduction in current
is shown in table 6.2. Note that the number of registers should perhaps be
a power of two to fully utilize the instruction word, but considering that the

66

program counter has been left out of these discussions this is not taken into
account as the program counter can be expected to be larger than an 8-bit
register. A smaller register file implies a shorter data-word which will reduce
power in the fetch and decode stages. The reduced power in the fetch stage
will not be calculated and an overestimation of the BBP-size is expected.

Table 6.2: Area and power estimates of register reduction.

Cell Area[µm2] NAND2 Activity Current[nA] № of

32-bit
Register SDFF 2980.45 298.67 1.40 % 592.70 15
Mux MX2 851.56 85.33 21 % 2540.13 28

1-to-16 Demux Gate 345.95 34.67 21 % 1031.93 1

8-bit
Register SDFF 745.11 74.67 1.40 % 148.17 6
Mux MX2 212.89 21.33 21 % 635.03 10

1-to-8 Demux Gate 153.01 15.33 21 % 456.43 1

Total reduction 62143.80 6227.33 73350.32

A D D E R – S U B T R A C T O R

The Cortex M0 adder is not needed for the implemented protocols. Although
the particulars of the on-chip implementation is not known, one can assume
that the adder is constructed using 2-bit full-adders in a ripple-carry configu-
ration. This is one of the smallest possible implementations of an adder[28],
a total of 32 full-adders. For subtraction the same adder is used with one
operand inverted carry in on the least significant full-adder set high, 32 XOR-
gates are needed. The Cortex M0 does not use the same XOR-gates for operand
negation and the EOR-instruction. There are two full adders available in the
cell-library, normal and high speed, the smallest possible implementation is as-
sumed and the ADDFX2-cell is chosen. The size and power consumption for
the adder–subtractor is shown in table 6.3.

Table 6.3: Area and power estimates of addition/subtraction functionality.

Cell Area[µm2] NAND2 Current[nA] № of

Full-adder ADDFX 69.85 7.00 208.37 32
XOR XOR2 26.61 2.67 79.38 32

TOTAL 3086.90 309.33 9207.98

67

D ATA PAT H W I D T H

The datapath width in the Cortex M0 is four times larger than in the BBP. Es-
timating the size of the datapath can be complicated because the datapath is
not a single module, but is instead incorporated into almost every module in
the design. The gates in the datapath will mainly consist of the Arithmetic
Logic Unit(ALU), the Shift and permute unit(SPU) and multiplexers to pass the
data through the processor, in addition to the already considered register file[2].
The ALU size is 1018 gate equivalents and the SPU size is 644 gate equivalents
according to synthesis results at Nordic Semiconductor. These modules are
not simple to analyse and with the rest of the datapath distributed across the
processor some rough assumptions are made to simplify the calculations. Al-
though the control-path of the modules is assumed to comprise a large part of
the module, the SPU’s size is divided by four. It is assumed that not altering
the size of the ALU and not estimating the distributed data path will more than
make up for the underestimation of the SPU’s size. A total of 483 gate equiva-
lents is removed from the design to allow for the narrower datapath of the BBP,
it is shown in table 6.4. For comparison a 4-to-1 32-bit multiplexer is calculated
to 426 gate equivalents, so this is considered a very conservative estimate.

Table 6.4: Area and power estimates of datapath width reduction.

NAND2 Current[nA]

Datapath 483 14378

M U LT I P L I C AT I O N

The Cortex M0 implements single cycle multiplication. Results from synthesis
tests performed at Nordic Semiconductor show that the multiplier uses a total
of 2587 gate equivalents. The multiplier is not a part of the BBP and the esti-
mated power and gates used by the multiplier can be removed. However, the
multiplier has an enable signal that will tie all inputs to logic low if the multi-
plier is not enabled. The switching activity factor on the internal gates will be
zero when the multiplier is not enabled. The power measurements used for the
Cortex M0 in this thesis is based on a program calculating prime numbers. The
prime number calculation algorithm uses the multiplier often and the switch-
ing activity in the multiplier when operating is usually high depending on the
input. The multipliers power consumption is, for simplicity, assumed to add
its full gate equivalent power to the measured power. The NAND2 equivalents
and current consumption is shown in table 6.5.

Table 6.5: Area and power estimates of multiplier.

NAND2 Current[nA]

Multiplier 2587 77008

68

D ATA M E M O RY

Memory is accessed using the AHB-interface, this bus is used for both instruc-
tion and data memory as well as peripheral control and all other communi-
cation. Because the BBP is designed as any other peripheral module it will
not have an AHB-master interface, but will instead have a dedicated instruc-
tion memory and Direct Memory Access-module. It is assumed that the logic
required for the AHB-interface can act as substitute for these modules.

6.3.2 R E P E AT

Adding the repeat instruction involves adding a loop controller that should be
connected to the program counter logic. A possible hardware implementation
for the repeat instruction is shown in figure 5.4. For the protocols implemented
in this thesis performing eight loops of eight instructions is sufficient. But some
communication protocols may require larger loops with more instructions, for
example an I2S protocol sending music with 16-bit precision[29]. With this in
mind a 16X16 repeat instruction is suggested here. The two decrement adders
can be implemented using TSMC standard cell full-adders. A 16 bit decre-
menter uses 16 full-adders in a ripple-carry configuration with the with the
B input tied to logic high, thus all A-values are added to two’s complement
negative one(0xFFFF). The area, number of NAND2 equivalents and estimated
power can be seen in table 6.6. A zero-checker is simply a 16-input OR-gate.
Using the available TSMC library this can be constructed using six 3-input and
three 2-input OR-gates.

Table 6.6: Area and power estimates of Repeat functionality.

Cell Area[µm2] NAND2 Current[nA] № of

Decrement ADDF2 1087.73 109.00 3244.62 2
Zero-check OR3/2 146.36 14.67 436.59 2
4-bit reg SDFFR 372.56 37.33 1111.31 3
31-bit reg SDFFR 2887.32 289.33 8612.64 1
2-to1 MUX MUX2 26.61 2.67 79.38 112
Or OR2 13.31 1.33 39.69 1

TOTAL 9466.93 948.67 28239.14

Although the decrement circuit uses two’s complement addition to decre-
ment, it is not necessary to store the values with five bits. The fifth bit that is
needed to represent 16 positive values in two’s complement form is implicitly
removed(i.e. not connected) at the end of decrement calculations. The four
registers can be implemented using D-flipflops. The flip-flops available in the
Nordic Semiconductor subset of TSMC standard cells are scan-flip-flops for

69

scan based testing. Four 4-bit registers, 16 SDFFR cells in total. Additionally,
the initial instruction memory pointer must be stored so that it is possible to
return to this address. The required size of the register depend on the address-
space of the instruction memory. The address space in the Cortex M0 is 31-bits,
thus another 31 SDFFR-cells must be added in addition to a 31-bit wide 2-to-1
multiplexer. Furthermore, five 16-bits wide multiplexers are used in the loop
controller. In total 112 2-to-1 multiplexers. The total number of gates needed to
implement the REPEAT-instruction is 955 gates, a significant addition.

6.3.3 S O L

As described in section 5.4 the SOL-instructions adds five multiplexers in total.
The total added area and power is shown in table 6.7.

Table 6.7: Area and power estimates of SOL functionality.

Cell Area[µm2] NAND2 Current[nA] № of

2-to-1 mux MX2 26.61 2.67 79.38 5

TOTAL 133.06 13.33 396.90

6.3.4 C O N D I T I O N A L S

As described in section 5.6 conditional execution can be implemented as an
enable signal for all signals that enable changes in the states of registers, con-
ditional flags and I/O. The logic proposed to compute conditional execution
contains four inverters, six AND-gates, a four input AND and the 16-to-1 mul-
tiplexer, see figure 5.10.

In the subset of the TSMC library 2-to-1 multiplexer standard cells are avail-
able. The 16-to-1 multiplexer can be constructed by using 8+4+2+1=15 2-to-
1 multiplexers, or 16 4-input AND-gates, 16 inverters and five 4-input OR-
gates [30]. As shown in table 6.8, the multiplexer approach yields an area
of 40 NAND2 equivalents, while the gate approach gives a total of 51 NAND2
equivalents. Using the multiplexer approach, conditional execution adds 45.33
NAND2 equivalent gates in total.

Considering the total size of the M0 this is not a very large amount, but
perhaps the most important impact conditional execution has on the system is
the bits it occupies in the instruction word. 4-bits of the instruction word is
used for conditional coding and assuming that the current instruction words
are irredundant this adds four bits to the instruction memory and the fetch
logic in theory. Because the simulation results of the conditional instruction set
show no improvement the increased power consumption of a larger instruction
word is not calculated due to the complexity of the task.

70

Table 6.8: Area and power estimates of Conditional functionality.

Cell Area[µm2] NAND2 Current[nA] № of Included

16-to-1 mux
MX2 399.17 40 1190.69 1 X

Gates 508.94 51 1518.13 1 ×
And2 gate AND2 13.31 1.33 39.69 11 X

Inverter INV 6.65 0.67 19.84 4 X

And4 gate AND4 19.9584 2 59.53437 1 X

TOTAL 525.57 52.67 1567.74

6.3.5 PA R A L L E L E X E C U T I O N

Adding parallel execution includes adding the conditional calculation logic de-
scribed in the section above and a 16-bit wide 4-to-1 multiplexer, the estimated
values are shown in table6.9. Additionally the width or speed of the instruction
memory bus must be tripled, and this will constitute the bulk of the added logic.
Calculating the power usage of this circuit is complex, and because the parallel
execution shows no improvement in number of cycles executed, the cost of im-
plementing is not calculated and the power consumption of this instruction set
is expected to be underestimated.

Table 6.9: Area and power estimates of Parallel Execution.

Cell Area[µm2] NAND2 Current[nA] № of

Conditional 525.57 52.67 1567.74 1
4-to-1 mux MX 79.83 8 238.14 16

TOTAL 1802.91 180.67 5377.94

6.4 D E D I C AT E D M O D U L E S

Although some power-measurements of the dedicated modules used in Nordic
Semiconductors microcontrollers exists, the same power estimation method
will be used to estimate the power consumption for the dedicated modules.
Because the power estimates are not necessarily accurate, comparing measured
values for the hardware implementations to the estimates may give mislead-
ing conclusions. Furthermore, the measurements included IO-switching power,
baud-rate generator and DMA, and the power measurements were significantly
higher than the estimates. The estimates for the dedicated modules can be seen
in table 6.10. Most of the logic in the dedicated hardware modules run at a
16Mhz clock [31], while a small part runs at the bus speed. In the estimations it

71

is assumed that the lower effect of the slower running part of the modules make
no significant impact on the total power. The modules are therefore assumed
to consume a constant amount of power for all bit-rates.

Table 6.10: Power estimates of dedicated hardware modules.

Protocol NAND2 Current[µA]

SPI 1335 39.75
I2C 2981 88.75
UART 1697 50.53

6.5 E S T I M AT I O N R E S U LT S

First, the gate count of the Debug functionality is removed from the total num-
ber of gates in the Cortex M0 shown in table 6.1, the current per gate is then
calculated as shown in equation 7. We have,

Igate =
567.26µA
22881− 3825

= 0.029767µA (8)

Table 6.11 show the total number of gate equivalents and current for each func-
tionality which is removed from the Cortex M0, and the final current of the
reduced Cortex M0 which will be used for calculating the power of the mini-
mal instruction set.

Table 6.11: Area and current estimates of unused Cortex M0 functionality, and reduced
Cortex M0 core.

Removed Total
NAND2 Current[µA] NAND2 Current[µA]

CortexM0 22881.45 567.26
Debug 3825.00 0.00
Adder 309.33 9.21
Register 6227.33 73.35
Multiplier 2587.00 77.01
Data Path 483.00 14.38

Reduced M0 9449.79 393.31

In table 6.12 the dynamic current of every instruction set is shown. For sim-
plicity it is assumed that the static power consumption is the same for every
instruction set, the changes in static power consumption between the sets is
minimal, and will not impact the estimates significantly.

72

Table 6.12: Area and current estimates of each instruction set architecture.

NAND2 Current[µA]

Std 9449.79 393.31
Sol 9463.12 393.71
Repeat 10398.45 421.55
SolRepeat 10411.79 421.95
Conditional 10464.45 423.52
ParallelEx 10592.12 427.33

6.5.1 E Q U I VA L E N T P O W E R

The dedicated hardware modules have a constant power consumption through-
out operation. The processor, on the other hand, switches between active and
sleep mode. To compare the two an equivalent constant power is calculated for
the processor. The equivalent power is calculated as:

Peq = Pactive × λ+ Psleep × (1− λ) (9)

where Pactive is the power consumption when the processor is active, Psleep
is the power consumption when the processor is clock gated, the power is cal-
culated as the current multiplied with the chip voltage, 1.2V. λ is the ratio of
running time compared to the total time reported by the simulator. λ is calcu-
lated as:

λ =
tactive
ttotal

(10)

73

7
C O M B I N E D R E S U LT S

In this chapter the results from chapter 5 and 6 are combined to produce the
equivalent power described in equation 10. The protocols are simulated at sev-
eral bit-rates, and the active/sleep ratio is combined with the dynamic and
static power to produce an equivalent power that can be compared to the dedi-
cated hardware. The static power consumption is assumed to be 0.24µW.

7.1 I N T E R - I N T E G R AT E D C I R C U I T – I 2 C

As can be seen in figure 7.1, the I2C the BBP performs surprisingly well. The
SolRepeat instruction set is better than the hardware implementation for both
I2C running frequencies; 100kbps and 400kbps. 500 and 800 kbps, are not typ-
ical I2C bitrates, but are simulated to show that it is possible to run I2C at
these bitrates on the BBP. The good performance is probably because the I2C A-
program does not implement the full functionality of I2C, both multi-master
support and clock-stretching is not implemented. The dedicated hardware
module(TWI) does not support multi-master mode [32], but it does support
clock stretching. Assuming that clock stretching will only be performed on the
byte-level, which is a reasonable assumption, every byte which is not stretched
will take three more instructions to execute. This is a considerable addition,
but does not entirely account for the good performance of the SolRepeat imple-
mentation. It can be assumed that the BBP will be a decent I2C replacement.

Figure 7.1: Power estimates for the I2C protocol divided by implementation.

75

7.2 U N I V E R S A L A S Y N C H R O N O U S R E C E I V E R /
T R A N S M I T T E R – U A RT

In figure 7.2 the estimation results for some of the possible baud-rates for UART
are shown. UART is designed to run at 16 different frequencies, and a subset
has been simulated. The baud rates simulated are: 9.6, 19.2, 76.8, 115.2, 250 and
403 kbps. 403 kbps is not a common UART baud-rate but it is the highest baud
rate for which all instruction sets can run; Repeat is the limiting instruction set.
For low bit-rates the BBP performs better than the hardware implementation
for all ISA. However, the power consumption of the BBP increases linearly with
the bit-rate and quickly becomes less power-effective. The SolRepeat instruction
set has the lowest power consumption and performs better than the hardware
implementation when the bit-rate is lower than approximately 140kbps. For
bit-rates higher than this, all instruction sets performs worse than the hardware
implementation. Compared to the running times the power estimations pro-
duce no surprising results. Note that, as discussed in section 6.3.5, the power
estimate for the parallel execution instruction set is overly optimistic and will
probably have higher power consumption than what is shown.

Figure 7.2: Power estimates for the UART protocol divided by implementation.

76

7.3 S E R I A L P E R I P H E R A L I N T E R FA C E – S P I

As one can see from figure 7.3 the BBP performs worse than the hardware im-
plementation for almost all bit-rates. The bit-rates simulated are 125, 250, 500,
750 and 1000 kbps, all except 750kbps are bit-rates that the dedicated hardware
module is designed to run at[32]. Std and Sol was not able to run at 1000kbps.
Again, the SolRepeat instruction set is the best performing instruction set. It is
slightly than the hardware implementation when running at 125kbps, but the
difference is so small that it is beyond the expected accuracy of the estimations
and one cannot conclude that the BBP is indeed better. Again the results after
estimating the different power consumptions of the different instruction sets
does not change the conclusions one could have drawn from the running time
simulations alone. Conditional, Parallel Execution and SolRepeat performs almost
equally well. This is because the SPI A-programs could not be improved by
adding conditional execution, they therefore all run the same A-program. Par-
allel Execution probably performs worse than shown in this graph for the same
reasons as mentioned in the previous section.

Figure 7.3: Power estimates for the SPI protocol divided by implementation.

77

8
D I S C U S S I O N

For low bitrates the BBP show very promising results. The power consumption
is on the level of the dedicated hardware modules and the added flexibility pro-
vides an overall improvement. As the bitrates increase, however, the processor
spend more time in the active state relative to the sleep state for each bit it is
sending. That is, the absolute power consumption of sending a bit does not
increase(in fact it is slightly reduced due to less time spent in sleep mode), but
the interval between bits is reduced. The dedicated modules does not have an
equivalent to the sleep mode and will consume roughly the same amount of
energy at any bitrate. Consequently, the performance of the BBP compared to
the dedicated modules is significantly worse for higher bitrates.

Although the power consumption is not directly comparable to the dedicated
modules, it was never expected to outperform the existing solution. The exist-
ing solution with dedicated modules require considerable engineering work to
implement into a system. Firmware must be created for each module, and each
module also takes it share of area on the chip. Adding a single BBP will add
SPI, UART, I2C and, although yet untested, several more protocols to the chip.
This simplifies implementation both at the hardware and the firmware level,
and may represent a shorter time to market. Furthermore, production flaws
may be easier to correct in a processor with a software workaround in the event
that something is designed or produced incorrectly.

It also presents the opportunity to add uncommon or user designed protocols,
which will usually not be present on a high-production-volume chip. Today
these protocols might be bit-banged on the less energy efficient main processor,
and the BBP can offer a significant reduction in power consumption. The BBP
represent an opportunity to add a single module, next to the existing ones, that
can solve any needs a user might have for an additional or specialized protocol.
For example, the current Nordic Semiconductor chips are unable to run in a
multi-master I2C configuration. But the BBP can be reprogrammed to allow
for multi-master arbitration, and can energy-efficiently solve the problem. This
flexibility is the strength of the BBP.

8.1 P O W E R E S T I M AT I O N

The power estimations performed are very likely to be inaccurate. The inaccu-
racy of the complexity based estimation model can be very high, and because
the area estimates does not take into account all the differences between the
Cortex M0 and the BBP, it is expected that the accuracy can be even lower.
When estimating the size of the BBP by removing gates from the Cortex M0

79

there are many structures that, for simplicity, has not been taken into consid-
eration. The control network of the processor has not been reduced to mirror
the reduction in functionality. This is because it would be hard to estimate
due to the distributed nature of such a network. The same argument is used
when not considering the implication of the reduction in the clock tree. The
average power per gate has been estimated across the whole design, but the
activity and load capacitance will differ for different chip-structures. This has
only been taken into account when reducing the size of the register file, and
should have been taken into account if the clock network was considered.

In order to create a trustable estimate, the size estimations try to be as close
to, but not better than, the worst case scenario as possible. Steps have been
taken to avoid underestimating the power consumption of the BBP. Specifically
the Cortex M0 is a much larger and comprehensive processor than the BBP, and
even though the Cortex M0 has been reduced in size to increase the accuracy
and fidelity, the size reduction estimates has been as conservative as possible.
I feel confident that the comparisons between the dedicated hardware and the
bit-banging implementations favour the dedicated hardware, and that the BBP
performs better than the results show. Although, and this can not be stated
clearly enough, there is no direct proof to support this.

8.2 S L AV E I M P L E M E N TAT I O N S

The slave counterparts of the SPI and I2C protocols have not been implemented
in this thesis, and this is certainly an object for further work. The BBP performs
well because it can quickly go into sleep mode whenever no transfers are re-
quired. As we’ve seen in the UART protocol, the BBP is not as well suited for
slave implementations as it is for pure master protocols. This is due to the fact
that the BBP must wake to check if a transfer has been initiated by some other
source. The synchronous slave protocols are also slightly different because they
need to run on an external clock, this complicates the implementation. For SPI
a slave is selected using the chip select, CSn. In order to detect that a transfer is
beginning the BBP needs to checks this signal, but at what interval should the
BBP wake up to check this? Since the master controls the bus-clock, it is not
necessarily known for the slave. There is generally not possible to know when
a transfer might begin, and the BBP might have to run in busy-wait loop, con-
stantly checking the chip select signal. It is therefore necessary to implement
some detecting module that can wake the BBP upon assertion of the chip select.
Furthermore the BBP has to output/read new data on every edge(positive or
negative depending on the SPI implementation) of the serial clock(SCK) which
is supplied by the bus master. Thus, the timer cannot be used to synchronize
the wake-ups with the edges. Again, some module that can detect edges and
wake the processor should be implemented.

For the I2C it is arguably even more complex. An I2C transfer is initiated
by a master by pulling the data line(SDA) low while the clock line(SCL) is

80

high. Again it is necessary to edge detect this transition, and a module can
detect these transitions should be implemented to wake the processor. In an
I2C transaction an address is sent, and if the address does not match the slave’s
address the slave should do nothing and wait for the next start of transfer. The
processor can go back to sleep and wait for the edge-detection module to wake
it.

The UART implementation discussed in this thesis can also greatly benefit
from an edge-detection module that can wake the BBP when a RX-transfer is
initiated.

The edge detection module will not be of an entirely simple design. It must
be configurable to both detect positive and negative edges and it must be able
to differentiate between pure edge detection and edge detection while some
other condition is set on a different wire in the design. Detection hardware like
this is already implemented in the dedicated hardware modules, but the need
to implement a different edge-detection unit for each slave protocol reduces
the flexibility of the BBP, so some configurable detection module or interrupt
controller could be created.

8.3 T H E B B P A S A G E N E R A L P R O C E S S O R

The bit-banging processor has been designed with optimization for bit-banging
as the main goal. The structure proposed in chapter 3 outlines a processor
which is designed to function as a peripheral unit without a store/load unit,
and this significantly decreases its use as a general processor. Furthermore the
BBP does not have any arithmetic instructions and has very few general pur-
pose registers, further decreasing its usefulness as a general processor. How-
ever, although the power estimations has targeted this structure they are not
without usefulness in describing the BBP as a general processor. The load/store
unit is never removed in the estimations and it is entirely possible to estimate
the power consumption of a slightly larger, more general processor. If we add
an 8-bit adder/subtractor unit, and return the number of general purpose reg-
isters to 16, the total current of a general SolRepeat becomes 423µA. This does
now not include added instruction memory, as it was assumed to replace the
AHB, so the total current will probably be higher. Although, it can be assumed
that the AHB can be used to access instruction memory and that a more general
BBP can use existing on-chip RAM as instruction memory. Thus the BBP can
be implemented as a general processor at the cost of, a very approximate, 7.6%
increase in power.

8.4 F U L L C O P R O C E S S O R

The results show that the BBP cannot entirely replace dedicated modules from a
low power perspective. However, some microcontrollers(e.g. the NXP LPC4300-
series) employ a big-little architecture where both a high performance processor
and a low power processor is implemented on a single chip. The coprocessor

81

can be used to assist the high performance processor during computation inten-
sive periods, or it can be used as the only running processor in periods of low
activity. The methods investigated in this thesis can be implemented into such
a co-processor to offer reasonably low-power serial communication as well as
being a co-processor that can perform more general tasks.

8.5 F R E Q U E N C Y R E D U C T I O N

The relatively poor performance at high frequencies can lead to the conclusion
that one should avoid using the BBP when high transmission rates are necessary.
If high transmission rates are not necessary, then the BBP core frequency can
be reduced. While reducing core frequency reduces the dynamic power, it
does not reduce the dynamic energy consumption as throughput decreases to
match the instantaneous power reduction. But a lower frequency provides a
different improvement. Typically, cell libraries contain two types of cells: high
threshold voltage cells and low threshold voltage cells. Low threshold voltage
cells are faster, but has a significantly higher static leakage than the slower
high threshold voltage cells[33]. If the frequency for the BBP can be lowered,
it is possible that the BBP can be designed with high threshold cells. This
would reduce the static power while making the BBP unable to run at higher
frequencies.

8.6 V O LTA G E S C A L I N G

In this thesis it has been assumed that the BBP will run on a 16MHz clock
and that voltage is non-changeable. This assumption leads to the conclusion
that short time to idle is the best way to reduce dynamic power consumption,
but there are alternatives. As can be seen in equation 1 the dynamic power
consumption is quadratically proportional to the voltage. If the voltage can be
reduced, both the static and dynamic power consumption will also be reduced.
A limiting factor for reduction of the supply voltage is the maximum frequency.
When the voltage is reduced, the speed of each gate is also reduced and the
maximum frequency is lowered[33]. A possible, although complex, improve-
ment would be to implement a voltage scaling technique where voltage can be
reduced if the full speed of the processor is not needed. The time to idle would
increase, but the voltage and frequency would decrease and lead to a total de-
crease in energy consumption. It can be difficult to implement voltage scaling
due to the variable timing through the processor when the voltage is variable.
Timing is also crucial for the communication protocols and it can become very
difficult to ensure proper bus-timing if the processor has variable frequencies,
but nevertheless it is mentioned as a possible strategy.

82

9
C O N C L U S I O N

In order to investigate the possibility of implementing a bit-banging processor
an instruction set simulator has been created in C. The simulator is cycle accu-
rate, can perform waits of arbitrary length and produces a waveform diagram
that can be used for debugging and analysis. A general minimal instruction
set has been designed and UART, SPI and I2C protocol implementations have
been created. New instructions have been added to improve the performance
of the protocol implementations. The SOL-instructions have been created to
optimize output/input of serial data, and we find that the Repeat-instruction
and the SOL-instructions combined give the best results for running time of the
protocols. In the instruction set SolRepeat running time has been improved by
36% compared to the minimal instruction set. Complexity based power esti-
mates have been performed and while the improvement is somewhat reduced
by the increased power consumption of the added hardware, the improvement
of SolRepeat is still 32%. To avoid overestimating the performance of the BBP,
the estimates have been conservative and it is expected that they favor the ded-
icated hardware implementation. When comparing the bit-banging processor
approach to the estimated power consumption of the dedicated hardware mod-
ules, we find that the bit-banging processor is not a power-effective solution for
high speed SPI or UART. However, I2C, and low-speed UART and SPI show
promising results and performs better than the dedicated hardware modules
according to our estimates. The BBP was not implemented to replace the dedi-
cated hardware, but to reduce the power consumption of protocols bit-banged
in the host processor today. The BBP adds flexibility to low-power communica-
tion, and the results are promising.

9.1 R E C O M M E N D AT I O N S F O R F U RT H E R W O R K

• Implement slave protocols. An edge detection module that can wake the
processor is recommended.

• Implement I2S, USB and other serial protocols.

• Implement parallel protocols, extending the BBP as needed.

• Create the bit-banging processor RTL to perform more accurate power
estimates.

• Consider reducing or scaling the frequency to allow for low leakage cells
to be used.

• Analyse the need for a protocol processor, and consider implementing a
general co-processor with SOL and Repeat functionality.

83

B I B L I O G R A P H Y

[1] D. Lioupis, A. Papagiannis, and D. Psihogiou. A systematic approach to
software peripherals for embedded systems. In Ninth International
Symposium on Hardware/Software Codesign. CODES 2001 (IEEE Cat.
No.01TH8571), pages 140–145. ACM, 2001.

[2] D. A. Patterson and J. L. Hennessy. Computer Organization and Design.
Morgan Kaufmann, fifth edition, 2012.

[3] Byte Paradigm. Using SPI for embedded system debug, 2015.

[4] NXP Semiconductors. I2C-bus specification and user manual, 2014.

[5] telos Systementwicklung. TWI Bus. URL
http://www.i2c-bus.org/twi-bus/.

[6] J. L. Hennessy and D. A. Patterson. Computer Architecture, A Quantitative
Approach. Morgan Kaufmann, fifth edition, 2011.

[7] E. Blem, J. Menon, and K. Sankaralingam. Power struggles: Revisiting the
RISC vs. CISC debate on contemporary ARM and x86 architectures. In
2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA), pages 1–12. IEEE, feb 2013.

[8] G. Gopalasubramanian. [PATCH] add znver1 processor., 2015. URL
https://sourceware.org/ml/binutils/2015-03/msg00078.html.

[9] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low power
methodology manual: For system-on-chip design. Springer Publishing
Company, Incorporated, 2007.

[10] K. Moiseev, A. Kolodny, and S. Wimer. Timing-aware power-optimal
ordering of signals. ACM Transactions on Design Automation of Electronic
Systems, 13:1–17, September 2008.

[11] K. Agarwal, K. Nowka, H. Deogun, and D. Sylvester. Power Gating with
Multiple Sleep Modes. In 7th International Symposium on Quality Electronic
Design (ISQED’06), pages 633–637. IEEE, 2006.

[12] A. Raghunathan, N. K. Jha, and S. Dey. High-level power analysis and
optimization. Springer Science & Business Media, 2012.

[13] P. Landman. High-level power estimation. In Proceedings of 1996
International Symposium on Low Power Electronics and Design, pages 29–35.
IEEE, 1996.

85

http://www.i2c-bus.org/twi-bus/
https://sourceware.org/ml/binutils/2015-03/msg00078.html

[14] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago. Evaluation of
architecture-level power estimation for CMOS RISC processors. In 1995
IEEE Symposium on Low Power Electronics. Digest of Technical Papers, pages
44–45. IEEE, 1995.

[15] K. D. Muller-Glaser, K. Kirsch, and K. Neusinger. Estimating essential
design characteristics to support project planning for ASIC design
management. In 1991 IEEE International Conference on Computer-Aided
Design Digest of Technical Papers, pages 148–151. IEEE Comput. Soc. Press,
1991.

[16] C. Svensson. Power consumption estimation in CMOS VLSI chips. IEEE
Journal of Solid-State Circuits, 29(6):663–670, jun 1994.

[17] M. Sheets, F. Burghardt, T. Karalar, J. Ammer, Y. Chee, and J. Rabaey. A
Power-Managed Protocol Processor for Wireless Sensor Networks. In
2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers., pages
212–213. IEEE, 2006.

[18] T. Henriksson, U. Nordqvist, and D. Liu. Embedded protocol processor
for fast and efficient packet reception. In Proceedings. IEEE International
Conference on Computer Design: VLSI in Computers and Processors, pages
414–419. IEEE Comput. Soc, 2002.

[19] ARM. Application Note 216, Implementing sleep control for low-power
Cortex-M1, 2008.

[20] M. Feathers. CppUTest manual. URL
http://cpputest.github.io/manual.html.

[21] J. W. Grenning and J. Carter. Test-driven development for embedded C.
Pragmatic Bookshelf, 2011.

[22] IEEE Computer Society. IEEE Standard for Verilog Hardware Description
Language – Std 1364-2005. 2006.

[23] D. Liu. Embedded DSP Processor Design: Application Specific Instruction Set
Processors. Morgan Kaufmann, 2008.

[24] ARM. Instruction Set Summary - Cortex-M0 Technical Reference Manual,
2009.

[25] Discussions with Jan Egil Øye, 24.11.2015.

[26] Artisan Components. TSMC 0.18µm Process 1.8-Volt SAGE-XTM Standard
Cell Library Databook. 2003.

[27] ARM. Core registers - Cortex-M0 Devices Generic User Guide, 2009.

86

http://cpputest.github.io/manual.html

[28] A. Th. Schwarzbacher, J. P. Silvennoinen, J.T. Timoney, and Nui Maynooth.
Benchmarking CMOS Adder Structures, 2002.

[29] Philips Semiconductors. I2S-bus specification, 1986.

[30] K. Chapman. Multiplexer Design Techniques for Datapath Performance
with Minimized Routing Resources, 2014.

[31] Discussions with Vegard Endresen, 03.12.2015.

[32] Nordic Semiconductor. nRF52832 Objective Product Specification v0.6.3,
2015.

[33] J. A. Butts and G. S. Sohi. A static power model for architects. In
Proceedings of the 33rd annual ACM/IEEE international symposium on
Microarchitecture - MICRO 33, pages 191–201, New York, New York, USA,
dec 2000. ACM Press.

87

A P P E N D I X

89

A
C E L L L I S T

Table A.1: Subset of TSMC standard cells[26] used in this thesis.

Cell type Area[µm2]

ADDFHX1_1V2 76.5072
ADDFX1_1V2 69.8544
ADDHX1_1V2 39.9168
AND2X1_1V2 13.3056
AND3X1_1V2 16.632
AND4X1_1V2 19.9584
AOI211X1_1V2 16.632
AOI21X1_1V2 13.3056
AOI22X1_1V2 16.632
AOI2BB1X1_1V2 16.632
AOI2BB2X1_1V2 23.2848
BUFX12_1V2 33.264
BUFX16_1V2 43.2432
BUFX1_1V2 13.3056
CLKBUFX12_1V2 53.2224
CLKBUFX16_1V2 63.2016
CLKBUFX1_1V2 13.3056
CLKINVX12_1V2 63.2016
CLKINVX16_1V2 83.16
CLKINVX1_1V2 9.9792
DLY1X1_1V2 19.9584
DLY2X1_1V2 19.9584
DLY3X1_1V2 23.2848
DLY4X1_1V2 23.2848
INVX12_1V2 43.2432
INVX16_1V2 56.5488
INVX1_1V2 6.6528
MX2X1_1V2 26.6112

Cell type Area[µm2]

MXI2X1_1V2 23.2848
NAND2BX1_1V2 13.3056
NAND2X1_1V2 9.9792
NAND3BX1_1V2 16.632
NAND3X1_1V2 13.3056
NAND4BBX1_1V2 26.6112
NAND4BX1_1V2 23.2848
NAND4X1_1V2 16.632
NOR2BX1_1V2 13.3056
NOR2X1_1V2 9.9792
NOR3BX1_1V2 19.9584
NOR3X1_1V2 13.3056
OAI211X1_1V2 19.9584
OAI21X1_1V2 16.632
OAI221X1_1V2 23.2848
OAI22X1_1V2 19.9584
OAI2BB1X1_1V2 16.632
OAI31X1_1V2 19.9584
OR2X1_1V2 13.3056
OR3X1_1V2 19.9584
SDFFRX1_1V2 93.1392
SDFFSX1_1V2 106.4448
TLATNX1_1V2 36.5904
XNOR2X1_1V2 26.6112
XOR2X1_1V2 26.6112
TLATNRX1_1V2 43.2432
TLATNSX1_1V2 53.2224

91

	Abstract
	Sammendrag (Norwegian)
	Preface
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Limitations
	1.4 Method
	1.5 Structure of the thesis

	2 Background and previous work
	2.1 Bit-banging
	2.2 Protocols
	2.2.1 Serial Peripheral Interface – SPI
	2.2.2 Inter-Integrated Circuit – I2C
	2.2.3 Two Wire Interface – TWI
	2.2.4 Universal Asynchronous Receiver/Transmitter – UART

	2.3 Instruction set architecture
	2.4 Classifying instruction set architectures
	2.4.1 RISC - Reduced Instruction Set Computer
	2.4.2 CISC - Complex Instruction Set Computer
	2.4.3 Number of operands
	2.4.4 Operand Type

	2.5 Assembly
	2.6 Low power methods
	2.6.1 Dynamic power consumption
	2.6.2 Static power consumption
	2.6.3 Time to idle

	2.7 Pads
	2.8 Power estimation methods
	2.9 Previous work

	3 Processor architecture outline
	4 Instruction Simulator
	4.1 Structure
	4.2 Register file
	4.3 I/O-map
	4.4 Waveform generation
	4.5 Report generator
	4.6 Testbench
	4.7 I-functions
	4.8 A-programs
	4.9 Benchmark

	5 Instruction set architectures
	5.1 Minimal Instruction Set
	5.1.1 Protocols
	5.1.2 Results

	5.2 Three operands
	5.2.1 Results

	5.3 Repeat
	5.3.1 Protocols
	5.3.2 Results

	5.4 SOL instructions
	5.4.1 Results

	5.5 SOL and Repeat
	5.6 Conditional Execution
	5.6.1 Protocols
	5.6.2 Results

	5.7 Parallel execution
	5.7.1 Protocols
	5.7.2 Results

	5.8 Comparison
	5.9 Max speeds

	6 Power
	6.1 Power estimation method
	6.2 The Cortex M0 as a baseline
	6.3 Power estimate per functionality
	6.3.1 Unused functions
	6.3.2 Repeat
	6.3.3 SOL
	6.3.4 Conditionals
	6.3.5 Parallel Execution

	6.4 Dedicated modules
	6.5 Estimation results
	6.5.1 Equivalent power

	7 Combined Results
	7.1 Inter-Integrated Circuit – I2C
	7.2 Universal Asynchronous Receiver/Transmitter – UART
	7.3 Serial Peripheral Interface – SPI

	8 Discussion
	8.1 Power estimation
	8.2 Slave implementations
	8.3 The BBP as a general processor
	8.4 Full coprocessor
	8.5 Frequency reduction
	8.6 Voltage scaling

	9 Conclusion
	9.1 Recommendations for Further Work

	Bibliography
	Appendix
	A Cell List

