
   

 

 

Environmental concerns have prompted governments around the world to subsidize 

renewable energy markets. One of the major risks associated with subsidizing is that it 

may inflate costs. Thus, understanding the drivers of costs, and specifically how 

subsidies affect costs is crucial for evaluating and designing good subsidy policies. In 

this paper, we identify and estimate the cost drivers of solar photovoltaic systems in the 

California market using a semi-parametric regression model, and further quantify the 

cost-inflationary effect by simulation using machine learning techniques. We find 

evidence for significant cost inflationary effects of subsidies. The regression results 

suggest that a 1% increase in incentives per kW installed is associated with nearly 0.1% 

increase in costs per kW installed. Furthermore, simulations indicate that cut-off of 

subsidies in 2012 would have saved the California government US$1.15bn, while the 

extra costs imposed on end-customers would be only US$0.30bn. Our results suggest 

that a cut-off in 2012 would not have lead to a substantial jump in costs to end-

customers at the cut-off point, and that costs would only be slightly higher for end-

customers than with subsidies. The results indicate that an accelerated subsidy down-

scaling may be desirable, with minimal adverse implications for end-customers. 
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Introduction  

Solar power is the most rapidly expanding source of energy in California, and today the 

state is leading in the US in terms of electricity generation from solar photovoltaics (PV), 

accounting for nearly half of the US total. A statewide effort to promote growth of the 

market for solar PV was initiated in 2007, known as Go Solar California. The main 

component of the campaign was the California Solar Initiative (CSI) which subsidizes roof-

top solar PV installations by providing rebates for end-customers. These subsidies have 

likely been one of the most important drivers of growth in the California solar PV market. 

𝐶𝑂2-emission is recognized as a major issue by most governments and efforts to 

reduce emissions have been initiated all over the world. To this end, subsidizing of 

renewable energy markets is commonly employed to minimize dependence on fossil fuels 

as a source of energy, and California is not alone in subsidizing solar PV systems. The US 

federal government provides tax credit for residential solar systems across the United 

States, and numerous other countries have introduced subsidies for solar power. 

The costs of solar photovoltaics have decreased substantially in recent years, 

leading more countries to open up to solar power as a viable source of energy, decreasing 

the dependence on nonrenewable energy and thus reducing 𝐶𝑂2-emissions. Understanding 

the costs of solar PV systems and how subsidies may impact the costs will be crucial when 

evaluating and designing subsidy policies for emerging solar power markets. One of the 

major risks associated with subsidizing is that it may inflate costs. Contractors and 
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manufacturers may see potential to raise prices to end-customers when subsidies boost 

purchasing power. Thus, the "more is better"-principle does not necessarily apply in the 

case of subsidies. Thorough analysis of alternative subsidy policies is imperative for 

identifying policies with the desired properties, i.e. promoting market growth while 

minimizing cost inflationary effects. 

As a first step in analyzing solar PV subsidy policies, the objective of this paper is 

to investigate any cost inflationary effects of subsidies in the context of the California solar 

PV market. We do this in two stages. First, we aim to identify the most important cost 

drivers of solar PV systems, and look specifically at the effect subsidies have on costs. This 

is achieved using a semi-parametric regression model, enabling us to model complex 

relationships in the data while also providing descriptive insight. Second, we aim to 

quantify any cost-inflationary effect by simulating costs under alternative subsidy policies. 

Cost simulations can be used to evaluate different policies in terms of minimizing cost 

inflationary effects, which would be valuable for governments or other institutions 

considering subsidizing solar PV systems in the future. We use machine learning 

techniques to build a prediction model that can generate simulations. As a benchmark to 

test the model against, we use our semi-parametric regression model on out-of-sample 

predictions. We use the prediction model to simulate costs under some simple, alternative 

subsidy policies, to quantify the cost inflationary effects. Although our analysis is limited 

to the California solar PV market, the findings are likely to be relevant also for other 

emerging renewable energy markets. 

The rest of this paper is structured as follows. In the following section we present 

a brief review of existing literature in the field, highlight potential problem areas and place 

our research into the body of literature. Next, the Data section gives a description of the 

data and briefly presents the data pre-processing, as well as discuss any limitations of the 

data. The Methodology section presents a brief introduction to the methodologies used and 

provides the model specifications. The results are presented and discussed in the Results 

section. Finally, we summarize key findings and give some recommendations for further 

work. 

Literature review 

Several empirical studies in economic literature have investigated the effects of subsidies 

on costs. Early work by Pucher and Markstedt (1983) and Feldstein og Friedman (1977) 

examine costs in the context of mass transit systems and health care systems, respectively, 

and find evidence for cost inflationary effects of subsidies. For the California solar PV 

market, Mauritzen (2017) and Wiser, et al. (2006) have conducted empirical studies 

investigating cost drivers, and a key finding from both of these studies is that higher 

subsidies are associated with higher cost, hence indicating that cost-inflationary effects of 

subsidies are present also in this market. However, we find several opportunities for 

improvement on these studies. Wiser, et al. (2006) use a linear regression model incapable 

of capturing any non-linear relationships between predictor and response variable. 

Mauritzen (2017) show that there are non-linear relationships and this should be taken into 

account. Also, the study by Wiser, et al. (2006) is concerned with the incentive program 

preceding the CSI program, and thus is out-dated. In the study by Mauritzen (2017), there 

is a lack of sufficient data pre-processing and identification of linearity in the relationships 

between response and predictor variables. Furthermore, both studies fail to address certain 

market effects that could explain the association between higher subsidies and higher costs, 

and we argue that their conclusions are somewhat pre-mature. In particular, end-users may 

be encouraged to buy higher quality systems as purchasing power is increased with 

subsidizing. This effect could be in line with the goals of the subsidy program, and should 



not be confused with any cost inflationary effect. We take all these aspects into 

consideration and aim to improve on existing research. 

Avato and Cooney (2008) study how to accelerate clean energy adoption, with 

focus on R&D. They state that while there are many promising clean energy technologies, 

most are very costly. Subsidy policies are introduced with the goal of market expansion, 

and the return on investment for end-customers must be increased in order to increase the 

number of solar PV installations by end users. Minimizing cost inflationary effects of 

subsidies is a part of this process. Wiser, et al. (2006) suggest that as the CEC program – 

predecessor of the CSI program – gradually reduced its incentive levels, system retailers 

absorbed some of the decrease by reducing prices. Wiser et al. (2006) state that as a result, 

the net cost to the end user was essentially unchanged as incentives scaled down. In this 

paper, we investigate the opportunity of accelerated downscaling of subsidies, using 

machine learning techniques and more recent data. 

Whether or not subsidies in solar power markets have the desired effects, and what 

types of policies are most effective are other important questions. Chernyakhovskiy (2015) 

examines the effectiveness of policy incentives to increase residential solar PV capacity in 

the United States, and finds that financial incentives are an important driver of growth. 

Incentives that reduce up-front cost of adoption and that are subject to low uncertainty are 

found to have the largest impact. Hsu (2012) investigates the environmental impact of 

different combinations of promotion policies for solar PV installations in Taiwan. He finds 

that policies with higher capital subsidy and lower initial feed-in tariff price has the lowest 

average cost of 𝐶𝑂2-emission reduction, out of all the combinations studied. Astbury 

(2017) argues that the U.S. should focus government investment on R&D instead of on 

policy mechanisms, in order to most effectively achieve clean energy goals. Our analysis 

is based solely on the policies used by the CSI-program, which are capital subsidies 

targeting end-customers. The effect of other policy mixes is therefore not taken into 

account in this paper. 

Several different methods have been employed for descriptive analyses in solar 

power markets. While Mauritzen (2017) and Wiser, et al. (2006) use semi-parametric and 

linear regression respectively, Hsu (2012) uses a more complex system dynamics model. 

For the purpose of this study we find that a system dynamics model is not necessary to 

capture the effects of interest, and we use a semi-parametric regression model for our 

descriptive analysis. 

We make two main contributions to the existing literature. We improve on existing 

econometric models of the California solar PV market by enhancing data pre-processing 

and model identification. Next, we further examine and quantify the cost inflationary 

effects of the CSI policy using machine learning techniques for simulation. 

Data 

For our analyses, we use publicly available data from the California Solar Initiative of more 

than 140,000 solar PV system installations across the state of California, from the start of 

the incentive program in 2007, until mid-2017. The data contains 124 attributes for each 

installation, including for example total cost, incentives received and nameplate capacity. 

All installations covered by the CSI program are included in the data set. Table 1 contains 

summary statistics for key variables. We identify 14 outliers with a cost per kW above 

US$40 000, which are excluded from the data. A brief analysis and justification for the 

exclusion of these data points is provided in Appendix A. Furthermore, 11 data points with 

a reported cost per kW of US$0 were also excluded. 

 

 



 Mean Median Min Max 1st Qu. 3rd Qu. 

Installation date, years since 2007 5.177 5.436 0.137 10.704 3.841 6.559 

Cost per kW, US$ 6206.1 5811.1 537.3 106949 4940.0 7319.2 

Incentive per kW, US$ 639.99 289.02 31.69 5623.32 172.22 953.72 

Nameplate capacity, kW 11.80 5.39 0.92 5945.94 3.85 7.50 

Number of observations 142017      

% leased 48.62      

% with Chinese panels 22.94      

Table 1: Summary statistics for key variables 

 

 

 
Figure 1: Number of installations per day 

 

 

 
Figure 2: Average cost per kW for PV system installations 



The California solar PV systems market has seen substantial growth over the 

course of the incentive program. Figure 1 shows a smoothed curve of the number of 

installations per day under the CSI program, along with a smoothed curve for all 

California installations. The graph shows an exponential increase for the total number of 

installations from 2007 to 2016, followed by a decrease. On the other hand, the number 

of installations being subsidized has decreased sharply after 2013. This is due to 

downscaling of the incentive program. Figure 2 shows smoothed curves of the average 

cost per kW of installed capacity under the CSI program, with and without incentives, 

from 2007 to 2017. The costs are reported by the system owners as a part of participating 

in the incentive program. The dates used for the data points is that of program application 

approval. It is evident that the overall trend in the market has been steadily declining 

costs, at least since the beginning of the subsidy program. Only installations covered by 

the CSI program report data on costs, thus only these are represented in the graph. As the 

downscaling of incentives has lead to very few data points from around 2015 onward, 

there is great variance in the average cost of installations in this interval. 

Several of the variables of interest are highly non-normal in distribution, and are 

log transformed to exhibit normality. Although it is not strictly necessary to have normally 

distributed variables for the results to be meaningful, it minimizes the probability that the 

regression suffers from high-leverage points skewing the results. It is therefore preferential 

that the variables are at least approximately normally distributed. We log transform 

incentives per kW, nameplate capacity, yearly total of installed capacity at the zip code 

level, contractor size, as well as the response variable, cost per kW.  

During data pre-processing for artificial neural networks it is customary to rescale, 

or standardize, the input variables. This is not strictly necessary when using a Multi-Layer 

Perceptron (MLP), as we are, however, it can make training faster and reduce chances of 

getting stuck in local optima. We standardize the input variables by removing the mean 

and scaling to unit variance. The scaling parameters are computed using the training set 

only, and scaling is applied to both the training and test set. When making predictions on 

new input data we scale these using the same scaling parameters computed on the training 

set. 

We identify three main limitations of the data. Firstly, the data only includes 

installations covered by the CSI incentive program, and as shown in Figure 1 there is a 

substantial excess amount of installations. Adding baseline data of unincentivized 

installations would greatly enhance our analyses of the impact subsidies have on costs. 

Unfortunately, there is currently no data available on the costs of solar PV system 

installations not covered by the program. Secondly, no data for prices of PV modules is 

included. Wiser, et al. (2006) argue that these solar module prices are exogenously 

specified, and is significant in explaining the total cost of solar PV systems. For the GAM 

regression the effect of the PV module prices are likely absorbed by other variables and 

will thus not cause any trouble in the descriptive analysis. However, for prediction 

purposes, the price of PV modules at some time lag is likely to play a significant role, and 

it would be valuable to add this information in the prediction model. Lastly, the data set 

contains only promotion policies used by the CSI program. These are capital subsidies 

based on either expected system performance or realized performance over five years. It is 

therefore infeasible to test for the effect of other promotion policies such as feed-in-tariffs, 

net metering, tradable green certificates and tax credits. The US government tax credit level 

is held constant at maximum 30 % of installation costs during the time period of the data. 

Thus, we are not be able to measure any effect the federal subsidy might have on costs. 



Methodology 

The aim of this paper is to investigate any cost inflationary effects of subsidies in the 

context of the California solar PV market. Subsidies are predetermined by the California 

government and are therefore exogenous to the system. Wiser, et al. (2006) and 

Mauritzen (2017) use linear regression and semi-parametric regression, respectively, to 

model the costs in the California solar PV market. Potential endogeneity of the 

explanatory variables, i.e. bidirectional causality with the response, are not discussed in 

either of the studies. We believe it is plausible that some of the control variables, like 

nameplate capacity, could have a bidirectional causal relationship with cost per kW. A 

lower cost per kW could motivate a larger installation (increased capacity), thus forming 

a feedback loop between cost per kW and nameplate capacity. This would necessitate a 

model that allows for specification of several endogenous variables, such as simultaneous 

equations systems, to identify the correct coefficient parameters. However, we believe 

that this feedback effect in the data is minimal, for example for nameplate capacity other 

factors like roof area available will likely limit the total capacity of an installation. Thus, 

we follow the existing literature and use single equation regression to model costs. 

Data characteristics must also be accounted for when modelling costs. Mauritzen 

(2017) find evidence for non-linear relationships in the data, which would make linear 

regression and Generalized Linear Models (GLM) inappropriate. Hence, we adopt a 

Generalized Additive Model (GAM), which is a semi-parametric regression that provides 

descriptive power while allowing for complex, non-linear relationships to be modelled. 

Another advantage of GAMs over linear regression and GLMs is that model specification 

and identification is simplified. The non-parametric components of the GAM are able to 

automatically identify appropriate polynomial terms and transformations of the 

predictors. 

As a second step in investigating any cost inflationary effects, we aim to quantify 

the impact of subsidies by simulating costs under alternative subsidy policies. In order to 

obtain plausible cost simulations, a method of high accuracy in terms of out-of-sample 

predictions should be applied. We adopt a deep neural network, a method that has proven 

useful in out-of-sample predictions in various applications in recent years, like stock 

market predictions. The neural network regression approach is completely non-

parametric, and hence does not provide any direct descriptive power. However, our aim 

in this part of the study is not to directly interpret the relationships in the data, but rather 

simulate alternative market scenarios and quantify the effects of cost inflation. 

Generalized additive model 

A generalized additive model is a semi-parametric regression model on the form: 

 

𝑔(𝜇𝑖) = 𝑋𝑖𝛽 + 𝑓1(𝑥1𝑖) + 𝑓2(𝑥2𝑖) + ⋯ + 𝑓𝑚(𝑥𝑚𝑖)  (1) 

 

𝑋𝑖𝛽 constitutes the linear component of the model, and the predictor variables, 

𝑋𝑖, are strictly parametrically specified. The smooth functions 𝑓1𝑖, 𝑓2𝑖, … 𝑓𝑚𝑖 constitute the 

nonparametric component of the model, and applies to the covariates, 𝑥1𝑖, 𝑥2𝑖, … 𝑥𝑚𝑖. In 

Equation 1, 𝑔 is a smooth monotonic link function, 𝜇𝑖 = ℇ[𝑌𝑖], and 𝑌𝑖 is the response 

variable which follows some exponential family distribution. The distribution of 𝑌𝑖 must 

be predetermined together with the function 𝑔. 

The smooth functions allow for rather flexible specifications of the dependence 

of the response variable on the covariates, and is what separates GAMs from GLMs. We 

estimate the smooth functions using a cubic regression spline. Cubic polynomials are 



fitted to the shape in segments and connected at points called knots, such that the function 

is continuous up to the second derivative. 

We use the mgcv package in R to construct the GAM. The model we implement 

can be written as the following equation:  
 

𝐿𝑜𝑔(𝑐𝑜𝑠𝑡_𝑝𝑒𝑟_𝑘𝑊𝑖)  
= 𝛿𝑠𝑒𝑐𝑡𝑜𝑟 + 𝛽0 + 𝛽1𝐿𝑜𝑔(𝑖𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒_𝑝𝑒𝑟_𝑘𝑊𝑖)
+ 𝛽2𝐿𝑜𝑔(𝑧𝑖𝑝_𝑦𝑒𝑎𝑟_𝑡𝑜𝑡𝑎𝑙𝑖)  + 𝛽3𝐿𝑜𝑔(𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑜𝑟_𝑠𝑖𝑧𝑒𝑖) + 𝜁1𝑙𝑒𝑎𝑠𝑒𝑖  
+ 𝜁2𝑐ℎ𝑖𝑛𝑎𝑖  + 𝑓1(𝑡𝑖𝑚𝑒_𝑦𝑒𝑎𝑟𝑠𝑖)  + 𝑓2(𝐿𝑜𝑔(𝑛𝑎𝑚𝑒𝑝𝑙𝑎𝑡𝑒𝑖)) + 𝜖𝑖 

(2) 

 

The left-hand side of Equation 2 is the response variable, log cost per kW of 

installed nameplate capacity. The right-hand side is composed of several terms of 

predictor variables. 𝛿𝑚 represents fixed effects, 𝛽𝑚 represent coefficients of the linear 

predictors, 𝜁𝑚 are the coefficients of dummy variables and 𝑓𝑘(⋅) are the non-parametric 

smooth functions. 

We are mainly interested in the variable incentive_per_kW, in order to analyze 

the impact of subsidies on costs and investigate any cost inflationary effects. This 

variable is log transformed and enter the model as a linear component. The other 

variables are merely control variables in this study. There are four sectors of end-

customers covered by the CSI program: residential, commercial, governmental and non-

profit. Fixed effects for each sector are captured by 𝛿𝑠𝑒𝑐𝑡𝑜𝑟. The variable zip_year_total 

represents the total installed capacity within the zip code of an installation, in the given 

year, and is log transformed to exhibit normality and included linearly in the model. The 

variable contractor_size captures the market share of the contractor responsible for the 

installation, in the given year. It is also log transformed and included as a linear 

component. Two dummy variables are included, lease representing whether a system is 

leased (as opposed to owned by the host) and china representing whether the PV modules 

are from a Chinese manufacturer. Finally, two smooth terms are included, time_years 

which is the number of years since 2007, and  nameplate which is the nameplate capacity 

of the installation. Both of these were found to have non-linear relationships with the cost 

and were therefore included as smooth functions. The nameplate capacity is log 

transformed as we found this to give a better fit. 

Artificial Neural Network 

 

Model parameter Value 

Number of hidden layers 8 

Number of neurons in hidden layers 50 

Activation function Rectified Linear Unit (ReLU) 

Solver ADAM 

Learning rate Set by ADAM solver 

Max. iterations 500 

L2 regularization term 0.0001 

Table 2: Specification of model parameters for Artificial Neural Network 

Table 2 shows the specifications for our deep ANN model. We have used the 

MLPRegressor model from the scikit-learn package in Python to construct the neural 

network. After testing the model with different numbers of hidden layers and numbers of 

neurons, using 10-fold cross validation, we find that the best performance is achieved 

with 8 hidden layers, each with 50 neurons. For training the weights in the ANN we use 



the ADAM solver. This is a variation of stochastic gradient descent outlined by Kingma 

and Ba (2014). The method computes individual adaptive learning rates for different 

parameters from estimates of first and second moments of the gradients; the name Adam 

is derived from adaptive moment estimation. For the activation function of the nodes we 

use the rectified linear unit (ReLU), given by 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥). This is a very common 

activation function in ANNs as it makes training easy. The curious reader is encouraged 

to refer to Zeiler, et al. (2013) for some of the advantages of the ReLU. For 

regularization, i.e. penalization of complexity in an effort to reduce overfitting, we use 

the default value of 0.0001. 

Results 

Through the descriptive analysis we identify and estimate the cost drivers of solar PV 

systems in the California market, using the GAM. In the simulation analysis, we quantify 

cost inflationary effects of subsidies using the deep ANN model. 

 

 
Table 3: Statistical data for our GAM model and the model of Mauritzen (2017) for comparison 



Descriptive Analysis 

The results of the GAM regression are shown in Table 3, along with the results of 

Mauritzen (2017) for comparison. The comparison model was fitted using data from 

2007 to 2014. Coefficient estimates for the linear variables are given with the 

corresponding standard error in parenthesis. For the smooth terms, estimated degrees of 

freedom are given, where the p-values are from F-tests of whether the smooth terms 

significantly improve the fit of the model. At the bottom are summarizing statistics. Note 

that our GAM model has log transformed the response variable, along with incentives per 

kW, the contractor size and the nameplate capacity, and used an identity link function. 

Mauritzen (2017) has not transformed any variables and used a log link function. The 

GAM we present has a substantially higher 𝑅2 value and deviance explained than that of 

Mauritzen (2017), at 0.52 and 0.38 respectively. This indicates that we have succeeded in 

improving the model, resulting in a better goodness-of-fit. 

 The coefficient for incentives per kW is significant and positive. According to 

our results, a 1% increase of incentives per kW installed is associated with nearly 0.1% 

increase in costs per kW installed. For the model of Mauritzen (2017), a US$1 increase of 

incentives per kW installed is associated with 0.1% increase in costs per kW installed. 

The difference in the form of the results is due to the log transformation of incentives per 

kW in our model, and accounting for this the results are quite similar. Wiser, et al. (2006) 

find that for the CEC program, predecessor of the CSI program, a US$1 increase in 

incentive levels yield a US$0.55-US$0.80 change in pre-incentive installed costs. 

 Wiser, et al. (2006) and Mauritzen (2017) conclude that their results are evidence 

of cost inflationary effects of the respective subsidies. However, we believe that their 

conclusion needs more justification, as an important aspect of the market dynamics are 

ignored. As a result of increased purchasing power due to subsidizing, end-users may 

invest in higher quality systems, which naturally have higher costs. This effect could be 

in line with the aims of the subsidy program, and would then not be an adverse effect that 

should be minimized. The quality of a solar PV system is mostly characterized by its 

efficiency and its life span. The system efficiency is accounted for in the model, as the 

costs are on a per kW nameplate capacity basis. Therefore, the life span of the system is 

the main factor that could contribute to the observed higher costs. Though there is some 

variabililty in the life expectancy of different solar PV systems, most manufacturers – at 

least eight of the largest in the California market, which together account for more than 

half of all systems installed under the CSI program – all have the same industry standard 

10-year product warranty and 25-year power output warranty. Thus, there is reason to 

believe that the average system life-span is not remarkably impacted by the subsidy. 

Other factors, such as design and customer service, could also cause end-users to choose 

a higher cost installation, however, we then argue that any increase in average system 

cost based on such factors is counterproductive to the aims of the CSI program, and thus 

is comparable to cost inflation by contractors and manufacturers. With these aspects in 

mind we advise some caution in interpreting the coefficient for incentives per kW as a 

pure cost inflationary effect, however we find it reasonable to assume that at least part of 

the effect captured is due to cost inflation. 

 All of the control variables are significant and as expected, except for 

zip_year_total which is not significant at the 5% level. To verify the validity of the model 

we have conducted residual tests. Approximate normality of the resiudals was found, and 

a Harrisson-McCabe test verifies no heteroscedasticity. Complete model robustness 

analysis of the GAM is presented in Appendix B. 



Simulation analysis 

The ANN prediction model achieves an average 𝑅2 of 0.60 when using 10-fold cross 

validation to test the precision of out-of-sample predictions. For comparison, the GAM 

achieves an 𝑅2 of 0.51 for out-of-sample predictions. Thus, the ANN model well 

outperforms the benchmark. To verify the validity of the ANN prediction model, we have 

conducted residual tests which show that the model is robust. Detailed model validation 

is presented in Appendix B. In the following we use this prediction model to simulate a 

few simple, alternative subsidy policies, in order to analyze the resulting market scenarios 

and quantify the effect of cost inflation.  

Firstly, we simulate costs under a zero subsidy policy and a 2010 cut-off subsidy 

policy, which follows the CSI-policy up until 2010 and then drops to zero. Figure 3 and 

Figure 4 show smooth functions of the simulated average costs per kW for the two 

scenarios, along with the true and fitted costs per kW for the CSI-program. Both 

simulations indicate that lower subsidies are associated with lower costs, and are thus in 

line with the results from the descriptive analysis above. The resulting costs for the zero 

incentive simulation, given in Figure 3, should be interpreted with some care. The 

simulation predicts a sudden drop in costs in 2007, when the CSI program was initiated, 

which is not likely. A more likely scenario would be for the cost to start from the actual 

cost in 2007 and then exhibit a downward deviation from actual costs over time. We try 

to incorporate this behavior with the cut-off policy. Figure 4 shows the simulation of this 

alternative subsidy policy, with cut-off in 2010, exhibiting the expected behaviour of cost 

per kW, with no sudden jump. The results are in line with the findings of Wiser, et al. 

(2006), suggesting that intermediaries absorb some of the price increase to end-customers 

when subsidies are reduced. As discussed in the descriptive analysis, there are other 

possible explanations for higher costs associated with the subsidy. Nonetheless, the 

simulations may indicate that subsidies should be scaled down quickly to minimize 

inflation of costs. 

 

 
Figure 3: Cost per kW before incentives over time: Simulated values for zero incentives policy, 

along with true and fitted values for the CSI policy 



 

 
Figure 4: Cost per kW before incentives over time: Simulated values for 2010 cut-off policy, along 

with true and fitted values for the CSI policy 

 

Secondly, it is important to examine how end-users are affected by a drop in 

subsidies. Although total costs decrease, the cost to end-users may increase, which will 

likely affect market growth. We assume that the return on investment for end-users drives 

the demand for solar PV installations. Thus, in order to promote market growth, costs to 

end-users should be steadily decreasing with time. We examine the cost effects to end-

users under a 2010 cut-off policy and a 2012 cut-off policy. Figure 5 and Figure 6 show 

smooth functions of the simulated average costs per kW including incentives under the 

two subsidy policies, along with the realized costs per kW including incentives under the 

CSI policy. The timeline starts at the cut-off point, since costs prior to this would be 

equal. The results indicate that the 2012 cut-off policy performs best in terms of assuring 

market growth through steadily decreasing costs. Figure 5 shows that under the 2010 cut-

off policy there would be a considerable jump upward in costs to end-customers. 

Additionally, the costs under this subsidy policy exceed the costs exhibited under the CSI 

policy by a significant amount between 2010 and 2012. This could potentially damage 

the market growth, as the return on investment for end-users is substantially lower. 

Figure 6 shows that these problems are not as prominent for the 2012 cut-off policy, as 

the difference in costs between the cut-off policy and the CSI-program is smaller and no 

significant jump occurs in costs at the cut-off point. Our simulations show that the total 

extra costs imposed on end-users under a subsidy cut-off in 2010 or 2012 would be only 

US$0.50bn or US$0.30bn, respectively. On the other hand, the cost of the incentives for 

the California government from 2010 until mid-2017 has been nearly US$1.29bn, or 

US$1.15bn from 2012. This indicates a substantial cost inflationary effect of the subsidy, 

and suggests that accelerated subsidy down-scaling may have been desirable. 

 



 
Figure 5: Cost per kW after incentives over time: Simulations of 2010 cut-off policy, along with 

fitted values for the CSI policy 

 

 
Figure 6: Cost per kW after incentives over time: Simulations of 2012 cut-off policy, along with 

fitted values for the CSI policy 



Conclusions 

In this paper, we estimate and analyze cost inflationary effects of subsidies in the context 

of the California solar PV market. Using a semi-parametric regression technique we 

model the costs of solar PV installations and analyze the central cost drivers, with focus 

on subsidies. Furthermore, using machine learning techniques we build a prediction 

model that well outperforms the benchmark on out-of-sample-predictions. We use the 

prediction model to simulate costs under a zero subsidy policy and two simple cut-off 

policies, which follow the CSI policy up until some specified point in time, and then 

drops to zero. 

 The results of the GAM provide evidence for some cost inflationary effects of 

subsidies, confirming the results of existing literature on cost drivers of California solar 

PV systems. We find that a 1% increase in incentives per kW installed, is associated with 

nearly 0.1% increase in costs per kW installed. The results for the ANN model also 

suggest cost inflationary effects of the subsidy. Market simulations for zero incentives 

and for two different cut-off subsidy policies show lower total cost per kW compared to 

actual costs exhibited under the CSI policy. The cost effect to end-users, i.e. cost after 

incentives, is estimated under the 2010 and 2012 cut-off policies. Examination of the cost 

curves suggest that the 2012 cut-off policy is superior, as costs per kW after incentives do 

not exhibit any significant jump at the cut-off point, and the costs to end-customers are 

not notably higher than under the realized scenario. The costs saved by the California 

government under the 2012 cut-off policy would be US$1.15bn, while the total extra 

costs imposed on end-users would be only US$0.30bn. This suggests that accelerated 

subsidy downscaling may be desirable. 

Our study is concerned only with the effect subsidies have on end-customers, and 

not how it may affect intermediaries and suppliers. We have found evidence for suppliers 

"inflating" costs under the California subsidy, meaning that although the subsidy is aimed 

at end-customers, suppliers are indirectly being subsidized. However, whether this is bad 

or good is not straightforward. Cutting the indirect subsidy to suppliers may result in 

adverse market effects. Fewer suppliers entering the market can lead to weaker 

competition and less investment in R&D. This, in turn, could impair technological 

improvements needed to enable steadily decreasing costs over time. In order to design 

good subsidy policies, it is crucial to first evaluate what type of subsidy is preferred. If it 

is found that the goal should be to subsidize end-customers only, minimizing cost 

inflationary effects is central. If it is found desirable to subsidize suppliers and 

intermediaries as well, the cost inflationary effect may give the intended result. 

Nonetheless, it is likely that a better option for subsidizing suppliers and intermediaries 

would be a direct subsidy. In that case, any end-customer subsidy, like the CSI, should 

aim to minimize cost inflationary effects, as we have aimed to in this study. 

We note that the increased purchasing power of end-users under the subsidy may 

encourage higher quality investments, thus explaining some of the increase in average 

costs found in our analyses. However, we argue that the main quality factor the subsidy 

program should be concerned with is the system life-span, and as most manufacturers 

have the same industry standard warranties there is reason to believe the average system 

life-span in California is not greatly impacted by the subsidy. We conclude that although 

some caution is warranted in interpreting the results as a pure cost inflation by contractors 

and manufacturers, it is reasonable to assume that at least part of the effect captured is 

due to cost inflation, and that our simulation results therefore are significant. 

There are several interesting areas of future research on the topic of designing 

optimal subsidy policies in solar power markets. To find optimal policies in the context 

of the California solar PV market, more complex subsidy policies than the cut-off 



policies we have tested should be evaluated. Moreover, the prediction model could be 

adapted to new markets and simulations extended to future scenarios, to enable guidance 

to the choice of subsidy policies for emerging solar PV markets. Lastly, further research 

on the quality of the systems purchased is needed to be able to verify the true cost 

inflationary effect, separating out any effect of end-customers investing in better, higher 

quality systems as their purchasing power is increased, which could be in line with the 

aims of the subsidy policy. 
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Appendix A – Outlier Analysis 

There are 14 observations in the data with a reported cost per kW above $40 000. As the 

summary statistics in Table 1 shows, the average cost per kW is $6206, and 75% of the 

data has cost per kW in the range [$4940, $7319]. Thus, the identified observations have 

extremely high values for this variable. We note that all these outliers are from the period 

2008-2010. As average cost has declined significantly since 2010 this could possibly help 

explain the high cost values, however, as top panel of Figure 7 shows the outliers have 

abnormally high costs even for the time period. Comparing values for a the other 

variables we find that the outliers are within normal ranges: slightly low for nameplate, 

zip_year_total and contractor_size, and slightly high for incentive_per_kW, but given the 

time period of the observations this is not unexpected. Figure 7 plots the data with three 

key variables against the cost_per_kW. The 14 outliers (circled in the plots) are clearly 

separated from the rest of the data for all three variables, thus further underpinning the 

hypothesis of noisy or erroneous data. We therefore remove them from the data before 

performing further analyses. 
 

 

 

 
Figure 7: Plots of three key variables against cost_per_kW, outliers are circled 



Appendix B – Model Validation 

Generalized additive model 

The results of the residual tests indicate that the model is robust. Figure 8 shows residual 

tests for the GAM regression. The QQ-plot compares the distribution of the residuals 

against the theoretical quantile values of the normal distribution. The distributions of the 

residuals and the theoretical quantiles should be linearly related, and hence the QQ-plot 

should be a straight line. Although heavy-tails are present, normality is approximately 

achieved for the residual interval [−5000, 2500]. The histogram of the residuals confirm 

that almost all residuals lie in this interval. From the plot of the residuals vs. the linear 

predictors we see that the residuals are distributed quite evenly around zero. The bottom 

right plot shows the response variable vs fitted values. If all fitted values are correct the 

points will lie on the line 𝑦 = 𝑥, and we can see from the figure that the points form a 

cluster which follows this line. The residual plot in the upper right shows no sign of 

heteroscedasticity. This is further underpinned by a Harrison-McCabe test which cannot 

reject the null hypothesis of homoscedasticity, even at the 30% significance level. 
 

 

 
Figure 8: GAM model residual tests, from upper left: QQ-plot, residuals vs. linear predictor, histogram of 

residuals, response vs. fitted values 

Artificial Neural Network 

The residual plots in Figure 9 show that the ANN regression model is quite robust, with 

residuals approximately normally distributed. From the QQ-plot it is evident that like the 

residuals of the GAM model, there are distinct heavy-tails. This means that there are 

many extreme valued residuals compared to a normal distribution. Within the critical 

range of 2-3 standard deviations from the mean, the error distribution follows the normal 

distribution quite closely. The bottom left panel of Figure 9 shows that the distribution is 

slightly skewed, but has the desired bell-shape. From the residual plot in the upper right 

and the prediction plot in the bottom right we can see that there seems to be some 

heteroscedasticity present, as the residuals "fan out" as the predicted cost per kW 



increases. The heavy-tails and heteroscedasticity is not likely to present any significant 

problems in the model as it is solely used for predictions, and because the ANN is more 

flexible than a GAM and does not make the same assumptions about the residual 

distribution. On a final note, there is no clear bias in the residuals, as they are 

approximately symmetric about zero. 
 

 

 

Figure 9: ANN model residual tests, from upper left: QQ-plot, residuals vs. linear predictor, histogram of 

residuals, response vs. fitted values 


