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Chapter 1

Introduction

“Divergente Rekker ere i det Hele noget Fandensskab,og det er en Skam at man
vover at grunde nogen Demonstration derpaa.”
-N. H. Abel in letter to Holmboe, 1928.

Classical numerical analysis has mainly revolved around a simple notion of
continuity, typically that functions are “simple” when viewed on a small scale.
More specifically there would be an underlying assumption on regularity in the
asymptotic regimeh → 0, whereh is a scale in e.g. time or space. In many ways
this is a natural way to think since most physical models, especially those consid-
ered in engineering applications, are indeed regular in this limit. The boundary
between asymptotic analysis and numerical analysis constitutes one of the lessex-
plored fields of applied mathematics, not counting honorable exceptions like the
analysis of stiff ODE-problems. The idea that some phenomena should be consid-
ered in other limits thanh → 0 is old, and the associated techniques have proven
of great use to physicists since the time of Newton. Notions of tolerances, error
control and efficiency, central to the numerical analyst, have howeverseemed quite
incompatible with these classical asymptotic techniques. A challenge, it has been
pointed out, has therefore been to construct numerical methods that incorporate
asymptotic characteristics, while at the same time improving accuracy over the
classical techniques, and providing e.g. error control. The recent surge in attention
on oscillatory problems and numerical techniques for these has resulted in remark-
able methods that in certain cases show dramatic improvement in efficiency over
both classical asymptotic and numerical techniques. The success of thesetech-
niques is rooted in the the fact that they employ, often implicitly, techniques for
resolving two different asymptotic regimes, e.g. high oscillations and a slowly
varying envelope.

The problem with classical numerical quadrature methods applied to highly
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INTRODUCTION

oscillatory functions is quite obvious. Such methods typically work by approx-
imating the integrand on an element of a partition, resolving the integral of the
approximate integrand and finally summing over the partition. Clearly, if the fre-
quency of the oscillation increases, the size of the partition must decrease inorder
to accurately resolve the integrand, thus increasing the computational load.Indeed,
codes that have been touted as oscillatory quadrature methods have typically em-
ployed some way of tracking oscillations and applying a standard method on each
period of oscillation. In other words, the idea that less resolution power is actually
needed the more oscillations there are has not been prominent in numerics.

Classical asymptotic techniques for oscillatory integrals include examples like
the method of stationary phase, the method of steepest descent and relatedsaddle
point methods[30]. Such methods yield asymptotic expansions of the considered
integral. These expansions are typically non-convergent and can onlygive a lim-
ited accuracy. Not until recently, with the advent of more sophisticated numerical
methods like e.g. Levin-type methods[20, 27], Filon-type methods[16, 17] and nu-
merical steepest descent[11], has this been seen as a surmountable problem. These
numerical techniques have the property that a number of terms in the asymptotic
expansion of the error are zero, while at the same time large scale structureis re-
solved. If applied correctly, such methods exhibit convergence both in the regime
h → 0 andω → ∞. Also, less computational effort is needed for such methods
the more oscillations there are.

The issue of numerical versus asymptotic approximations of integrals has a
direct analogue in the field of wave scattering. A wave scattering problem istyp-
ically modeled with a wave equation or Helmholtz equation, and a discretisation
with e.g. finite elements or spectral methods corresponds to a classicalh → 0
approach. The Helmholtz equation can as well in some cases be reformulatedas
an integral equation, which in turn can be discretised using boundary elements.
However good these methods are they will run into the problem of sampling re-
quirements when the frequency of oscillation increases. Therefore, just as in the
case of classical quadrature methods, the computational effort grows with increas-
ing frequency. Again asymptotic techniques provide approximations that are more
accurate with increasing frequency. The most basic of these being the well known
Geometric Optics approximation(GO). More sophisticated techniques like Physi-
cal Optics and Geometrical Theory of Diffraction(GTD)[18] are used extensively
in physics and engineering. All these methods are however not applicable, i.e. they
are limited in accuracy, at moderately low wavenumbers and across Stokes lines.

In this work different aspects of the application of highly oscillatory quadrature
have been considered. A central topic is the scattering by a smooth obstaclefor
which highly oscillatory quadrature methods open up a new viewpoint. In this
introductory chapter a short review of a collection of themes relevant to thisthesis,
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1.1. OSCILLATORY INTEGRALS AND ASYMPTOTICS

relating to highly oscillatory problems is presented. A summary of the papers and
the papers themselves follow suit.

1.1 Oscillatory integrals and asymptotics

The model problem in oscillatory integration is the integral

I[f ] =

∫ b

a
f(x)eiωg(x)dx. (1.1)

ω is here a parameter that can be large. In that case the appropriate asymptotic
regime beingω → ∞. f andg are functions assumed to be non-oscillatory, often
called the envelope and the oscillator of the integral. A number of assumptions
may be imposed onf andg, typically that they aren time differentiable in the
interior of [a, b], or that there exist analytic continuations of them in certain parts
of the complex plane.

The asymptotics of integrals of the form (1.1) is thoroughly treated in the lit-
erature, see e.g. [24, 30], a key characteristic being the localisation of the integral.
By localisation we mean that asymptotically the value of the integral depends only
onf andg and their derivatives at a discrete set of points. These are the endpoints
of the interval, points of discontinuity of any derivative off or g and the stationary
points. Stationary points, often referred to as critical points, are pointsξ ∈ [a, b]
such thatg′(ξ) = 0. The number of derivatives that vanish at a stationary point
we call the order of the stationary point. Thus, for example, we have the canonical
functiong(x) = xn, which possesses an ordern− 1 stationary point at the origin.

Case of no stationary points

In the case wheref, g ∈ C∞[a, b] andg′(x) 6= 0, x ∈ [a, b], the full asymptotic
expansion of (1.1) is easily obtained by iterated integration by parts, which gives a
full asymptotic expansion,

I[f ] ∼ −
∞
∑

m=1

1

(−iω)m

[

eiωg(b)

g′(b)
σm−1[f ](b) − eiωg(a)

g′(a)
σm−1[f ](a)

]

, (1.2)

where

σ0[f ](x) = f(x)

σm+1[f ](x) =
d

dx

σm[f ](x)

g′(x)
, m = 0, 1, . . . . (1.3)

From this expansion we immediately see the above mentioned localisation; the
asymptotics depend only onf andg at the endpoints of the interval[a, b].
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INTRODUCTION

Case of stationary points

If we have at least one pointξ ∈ [a, b] such thatg′(ξ) = 0 the situation is quite
different. In this case, the integration by parts procedure will fail since the function
f/g′ is not continuously differentiable. Several other approaches may yield the
asymptotic expansion of the integral in such cases. For example will the stationary
phase approximation[30] give the leading order term with no great effort. Higher
order terms can also be found, but not as easily.

As suggested by Iserles & Nørsett[16], one useful way of expandingthe in-
tegral in the case where there are stationary points is a simple add- and subtract
procedure. For example, when there is a single stationary pointξ ∈ [a, b] of order
one, then,

I[f ] = f(ξ)I[1] + I[f − f(ξ)],

and the second integral can be treated with integration by parts since(f−f(ξ))/g′

has a removable singularity. More generally, the singularity induced by a station-
ary point of orders is removable when subtracting ans-term Taylor expansion of
f :

I[f ] =
s−1
∑

j=0

1

j!
f (j)(ξ)I[(· − ξ)j ] +

∫ b

a

(

f(x) −
s−1
∑

j=0

1

j!
f (j)(ξ)(x− ξ)j

)

eiωg(x)dx.

This leads to an expansion, sometimes referred to as the Iserles-Nørsett expansion,
of the integral of the form (1.2) plus a sum of so-called generalised moments,
I[(· − ξ)j ], j = 0, . . . , s − 1. Though expressed in terms of oscillatory integrals
this expansion is useful for analysing numerical methods.

The method of steepest descent

For finding a more pure-bred asymptotic expansion the method of steepest descent
is a very powerful tool. The method of steepest descent provides an algorithm
for obtaining the asymptotics for a wide range of oscillatory integrals, including
cases of stationary points. Assuming the functionsf andg have complex ana-
lytic(holomorphic) extensions in the complex plane, the method of steepest de-
scent involves deforming the path of integration into the complex plane. As a
consequence of Cauchy’s Integral Theorem[9] and the analytic properties off and
g, we have

∫ b

a
f(x)eiωg(x)dx =

∫

Γ
f(x)eiωg(x)dsx,

4



1.1. OSCILLATORY INTEGRALS AND ASYMPTOTICS

whereΓ ∈ C is a curve that starts ata and ends atb. Of particular interest are
paths along which the integrand is non-oscillatory. A path of steepest descent1 is a
curve in the complex plane, described by the functionhx(p), which is defined by
the equation

g(hx(p)) = g(x) + ip, p ≤ 0, (1.4)

along with the condition thathx(0) = x. hx(p) then starts atx ∈ R and runs
into the complex plane in such a way thateiωg(hx(p)) = eiωg(x)e−ωp, rendering the
integrand non-oscillatory and exponentially decreasing. Equation (1.4) isuniquely
solvable, at least in a neighborhood ofx, provided thatg′(x) 6= 0. In casex is an
orders stationary point there ares+ 1 steepest-descent directions fromx 2.

Whenx is a stationary point we must have a rule to select which solution
branch of (1.4) to take. Assume now thatg is strictly monotone in the interval
(a, b), possibly with stationary points ata or b. The following argument can be
extended to more general configurations by subdividing the interval such that all
stationary points are endpoints. The path of steepest descent originatingat a will
never meet the path of steepest descent starting atb; along a path of steepest de-
scent starting atxwe have thatreal(g) ≡ g(x), andg(a) 6= g(b) by the monotonic-
ity of g. Now it proves useful to consider theridgesandvalleysof the analytical
extension ofg. Briefly, two points are in the same valley if they can be connected
by a path which does not intersect the real line and along whichimag(g) is posi-
tive(negative for ridges). This corresponds nicely to our earthly notions of valleys
and ridges. If now two paths of steepest descent follow the same valley, itcan be
shown that the integral along the path connecting the pointha(P ) andhb(P ) is
exponentially small inω, and it vanishes asP → ∞. This provides a criterion for
choosing the right path among thes+ 1 available at a stationary point.

The procedure yields the following decomposition of the integral,

I[f ] = I[f ;ha] − I[f ;hb], (1.5)

where,

I[f ;hx] = eiωg(x)

∫ ∞

0
f(hx(p))h′x(p)e−ωpdp. (1.6)

Note that the integrals, one for each contributing point, are of Laplace type, and an
asymptotic expansion can therefore be found by standard methods like Laplace’s
method[3].

1The termsteepest descentrefers, for historical reasons, to the real part ofig (i.e. the nega-
tive imaginary part ofg) which decreases fastest along a path of steepest descent. In literature the
exponent is oftenωv(x).

2Stationary points ofg correspond to saddle points in the complex plane. This is the background
for the term saddle points methods, a class of methods under which the method of steepest descent
sorts.
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INTRODUCTION

The method of steepest descent requires complex analytic extensions off and
g. This requirement can however be relaxed e.g. to analyticity in appropriate
parts of the complex plane. This follows from Cauchy’s Theorem which requires
analyticity only in the area encompassed by the integration path and the interval
[a, b].

Re(z)

Im
(z

)

− + −

+ − +

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1.1: The analytic structure of the Airy-type oscillatorg(x) = x3 − x/2. Dashed
lines mark the border between ridges(+) and valleys(-). Solid bold lines are
paths of steepest descent from±1 and the stationary points

1.2 Numerical methods for oscillatory integrals

For classical quadrature methods there are several ways of characterising effi-
ciency. Most of these, like the polynomial degree of precision, is a measure of
how well integrals of smooth functions are approximated. For oscillatory quadra-
ture we operate with a so-calledasymptotic order. The asymptotic order gives the
rate at which the error decreases with increasingω, that means the leading order
behaviour of the error of the method.
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1.2. NUMERICAL METHODS FOR OSCILLATORY INTEGRALS

We say that the methodQ[f ] has order3 q if,

Q[f ] − I[f ] = O(ω−q).

1.2.1 Filon-type methods

In the integral (1.1), if we replace the envelope functionf with a polynomialp of
orderm, we get an approximation,

I[f ] ≈ I[p],

which can be obtained by a linear combination of momentsI[xj ], j = 0, . . . ,m.
In the case where the moments can be computed we are left with an interpolation
problem. This is the basic idea behind Filon-type methods.

The key to analysing the efficiency of this approach is asymptotic expansions
of the error. Here we limit the discussion to the case of no stationary points, and
the relevant asymptotic expansion is (1.2). It can be proved with relative ease that
the functionsσm[f ], defined in (1.3), are of the form,

σm[f ](x) =
m
∑

j=0

σm,j(x)f
(j)(x), (1.7)

whereσm,j(x) only depend ong and its derivatives up to orderm, evaluated inx.
This implies the following lemma,

Lemma 1.1. Let f be anm times differentiable function such thatf (j)(a) =
f (j)(b) = 0, j = 0, . . . ,m. Assumeg′(x) 6= 0, x ∈ [a, b]. Then,

∫ b

a
f(x)eiωg(x)dx = O(ω−m−1), ω → ∞.

Proof. Considering the form of the functionsσm[f ] in equation (1.7) it is clear
that,

σj [f ](a) = σj [f ](b) = 0, j = 0, . . . ,m.

Combined with the asymptotic expansion (1.2) we get the desired conclusion.

Now the asymptotic properties of Filon-type methods are easily obtained. From
the linearity of the integration operation we get,

I[f ] − I[p] = I[f − p] = O(ω−m−1),

3Note that this definition of asymptotic order is slightly misleading since theI[f ] = O(ω1/r)
itself, wherer+1 is the order of the highest order stationary point in[a, b]. This is why some authors
define the asymptotic order as the order of the relative error.
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wherem is the maximal number of derivatives off that are interpolated byp at
either of the endpointsa and b. That means the method is of asymptotic order
m + 1. A similar argument employing the Iserles-Nørsett-expansion[16] shows
that a method achieves orderm if the polynomialp interpolatesf andm − 1
derivatives at regular endpoints, andm · (rj + 1) derivatives at allq stationary
pointsξj of orderrj , j = 1, . . . , q.

This clearly suggests that high asymptotic order can be achieved, in fact any
asymptotic order, simply by using Hermite interpolation. Moreover, we can argue
by referring to classical results in polynomial approximation that any tolerance
can theoretically be achieved. Therefore we can get convergence, also for fixedω.
This as opposed to what asymptotic expansions can provide.

L.N.G. Filon’s method from 1928[8] has not been confined to total obscu-
rity, his article was cited quite regularly throughout the years. It is therefore a
bit surprising that a proper analysis of the method came more than seventy years
later. Interestingly, Filon did not identify the endpoints as critical, and suggested
subdivision of the interval to obtain higher accuracy. In other words, Filon only
considered the approximation properties ofp with respect tof , and missed the
perhaps more interesting asymptotic accuracy.

1.2.2 The numerical method of steepest descent

Considering the method of steepest descent, a quite simple observation with im-
portant implications is the fact that thesteepest-descent integral(1.6) is of a form
that is well suited for approximation by classical numerical methods. This will
lead to methods with similar characteristics as those of the Filon-type methods.

First we make the following remark regarding the form of the paths of steepest
descent.

Lemma 1.2. Assumingg is a complex analytic function atx. hx(p), any path of
steepest descent originating at a pointx is of the form

hx(p) ∼ x+ a1p
1/r + a2p

2/r + . . . , p→ 0,

wherer − 1 is the order of the stationary point ifx is a stationary point,r = 1
otherwise.

Proof. For smallp, hx(p) = x + δ, whereδ is small. Being a complex analytic
function,g has an expansion in integer powers wherer − 1 terms drop out, there-
fore,

g(x+ δ) = g(x) + grδ
r + gr+1δ

r+1 + . . . .

Inserting into equation (1.4) gives,

grδ
r + gr+1δ

r+1 + . . . = ip,

8



1.2. NUMERICAL METHODS FOR OSCILLATORY INTEGRALS

An extension of the Lagrange-Bürmann formula(see Theorem 2.4f from[9]) pro-
vides thatδ hasr branches, each being complex analytic atp = 0 as a function of
p1/r. This concludes the proof.

It follows from this that the Jacobian of the path is not necessarily regular.
However, with a change of variablesp→ qr, we get

I[f, hx] = r

∫ ∞

0
f(hx(qr))h′x(qr)qr−1e−ωqr

dq,

which has an analytic integrand. A second change of variablesq → tω−1/r trans-
forms the integral into a form where Gaussian quadrature with Freud-typeweights
e−tr can be applied. These are quadrature rules with nodesxj and weightswj ,

n
∑

j=1

wjϕ(xj) ≈
∫ ∞

0
ϕ(t)e−trdt,

which are exact forϕ(t) being a polynomial of degree≤ 2n−1. Note that forr =
1 we have the well known Gauss-Laguerre rule, and the caser = 2 corresponds to
half-space Hermite4.

In [6] it is proved that using this quadrature rule on the two steepest-descent
integrals in equation (1.6) as here indicated yields a methodQ[f ] for which,

Q[f ] − I[f ] = O(ω− 2n+1
r ),

wheren is the number of quadrature points used on each of the integrals. Clearly,
this approach provides approximations of high asymptotic order. In addition, it
follows from the convergence properties of Gaussian quadrature thatalso the nu-
merical method of steepest descent is actually convergent.

Filon-type methods and the numerical method of steepest descent are two very
different approaches that yield efficient methods for oscillatory integrals, methods
that can achieve high asymptotic order inω while at the same time being conver-
gent for fixedω. These are however far from the only possibilities we have. Levin-
type methods are based on a third approach which is quite different from the two
approaches seen here. It is based on formulating the integral as a differential equa-
tion which can be solved e.g. by collocation or continuous GMRES[20, 27, 25].

4In the case where we use an incoming and outgoing path at a stationary point, it is beneficial
to merge the two paths at a stationary point withr = 2 such that full Hermite quadrature may be
applied. For higherr a similar observation holds, although for oddr the quadrature rules are slightly
exotic[6].
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INTRODUCTION

1.3 High frequency scattering problems

Wave scattering problems appear in a large number of applications. The scattering
of electromagnetic waves is important in antenna design, radar, fiber optics, MRI
etc. Scattering of acoustic waves is central to sonar technology, seismic explo-
ration, ultrasound imaging, architecture, and more. The applications are ubiqui-
tous and appear as central in the engineering of many of the devices that stand as
icons representing the contemporary world.

Techniques for high frequency asymptotics for scattering problems havea long
history with incremental developments. The well known Geometric Optics ap-
proximation does good in many cases, but fail to deliver in special cases like
diffraction, non-linear effects and intermediate frequencies. More sophisticated
asymptotic techniques exist, but more and more effort is now being put into dis-
cretisation techniques. Recent developments has however given some very power-
ful hybrid approaches. These use both asymptotics and elements of discretisation
techniques. Such approaches do a lot to increase the efficiency of solvers for scat-
tering problems.

1.3.1 The Helmholtz equation

As a starting point for scattering problems we have the hyperbolic scalar wave
equation

∂2p

∂p2
− c2∆p = 0, x ∈ D ⊂ R

n. (1.8)

This equation describes the propagation of waves in homogeneous media,n =
2, 3. A typical example is acoustic waves, in which casec is the speed of sound
andp is the induced pressure. Electromagnetic waves can be expressed similarly
with a vectorial version of the wave equation.

Time-harmonic solutions of (1.8) are functions of the form

p(x, t) = u(x)e−iωt,

where the functionu(x) satisfies the elliptic Helmholtz equation, often referred to
as the time-harmonic wave equation,

∆u+ k2u = 0, x ∈ D ⊂ R
n, (1.9)

We callk = ω/c is thewavenumberof the problem. It is related frequency by the
formulaf = kc/2π.

The question of solvability of the Helmholtz equation must be treated differ-
ently for different geometries. In case the domainD is bounded, the Laplacian,
with Dirichlet or Neumann boundary conditions, is self-adjoint. The Fredholm

10
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alternative then gives that eitherk2 is not an eigenvalue of the Laplacian, and the
problem is uniquely solvable, ork2 is an eigenvalue, and eigenfunctions are so-
lutions to (1.9). For an exterior problem, i.e.D = R

n\Ω, whereΩ is a bounded
domain, an extra condition at infinity is needed in order for the solution to be
uniquely solvable. This is the Sommerfeld radiation condition which makes sure
that the solution is outgoing at infinity, thereby eliminating unphysical solutions.
A common expression for the condition is,

∣

∣

∣

∂us

∂r
− ikus

∣

∣

∣
≤ c

r2
, r → ∞.

The Helmholtz equation (1.9) in free space possesses two solutions that areof
particular interest. The first is a plane wave traveling in the directiond,

u(x) = eikd
T x, |d| = 1.

The plane wave does not satisfy the radiation condition. It is however still of
great use since, for example, it can be used as a model for point sources at large
distances. The second solution of interest to us is the fundamental solution or
Greens function, i.e. the solution to the problem with a point source at the origin,

∆G+ k2G = −δ0

δ0 is the Dirac delta at the origin, and the radiation condition is imposed . The
fundamental solution forn = 2 is

G(r) = − 1

4i
H

(1)
0 (kr), (1.10)

with H(1)
0 being the order zero Hankel function of the first kind. In the casen = 3

the fundamental solution is,

G(r) =
1

4πr
eikr (1.11)

1.3.2 Problem formulation

Consider anobstacleΩ which is a bounded domain of spaceR
n. We shall con-

sider solutions to (1.9) in the exterior of the obstacle,R
n\Ω. Necessary boundary

conditions onΓ, the surface ofΩ, are imposed by modelling. They can be of
Dirichlet-typeu|Γ = gD, Neumann-type∂u

∂n |Γ = gN or combinations thereof.
In the following we shall assume thatΩ is smooth and strictly convex, and

also, for simplicity, we assume a perfectly reflecting boundary conditions, i.e. a

11
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zero Dirichlet conditiongD = 0. This last assumption on the boundary condi-
tion is not crucial; general boundary conditions yield problems with similar char-
acteristics. It turns out, however, that the smoothness and convexity ofΩ is an
assumption with deeper consequences. Sharp corners onΩ give rise to diffraction
phenomena that are fundamentally different from reflections. Non-convex scatter-
ers may exhibit multiple reflections which among other things destroy asymptotic
localization properties.

The scattering problem concerns finding the scattered fieldus given an incom-
ing field ui, both satisfying (1.9), with boundary conditions imposed on the total
field u = us + ui, and the radiation condition imposed on the scattered field,

∆us + k2us = 0, x ∈ R
n\Ω,

us = −ui, x ∈ Γ (1.12)

|∂u
s

∂r
− ikus| ≤ c

r2
r → ∞.

The last equation here is the radiation condition, and with it this problem is indeed
well-posed[23].

1.3.3 Asymptotics of the highly oscillatory scattering problem

Figure 1.2: Illustration of the asymptotics of a smooth convex scatterer with an incident
plane wave. In the illuminated region (1) waves behave according to Geomet-
ric Optics. In the Foch-Leontovic̆-regions (2 and 3) Geometric Optics break
down. The field in the shadow region (4) is due to diffraction phenomena

For the high frequency behaviour of solutions to the scattering problem (1.12)
it is natural to try a WKB-type ansatz of the form,

us(x) ∼
∞
∑

j=0

Aj(x)

(ik)j
eiku(x), k → ∞.

12
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This leads to the well known eikonal and transport equations,

(∇u)2 = 1, (1.13)

Aj∇u+ 2∇Aj∇u = −∆Aj−1, j = 0, 1, . . . . (1.14)

HereA−1 = 0 by convention. The eikonal equation (1.13) can presumably be
solved by the method of characteristics, giving the rays known from Geometric
Optics. The leading order transport equation can also be solved explicitly.To-
gether this means that the leading order of the reflected field can be computed
explicitly[29]. Although this approach seems promising, it’s only the beginningof
a very long story. In case the obstacle under consideration is non-convex, caus-
tics may appear, i.e. the field at a point may be determined by more than one
ray, and the approximation is no longer valid. Note that we exclude this case by
assumption. Otherwise, when approaching a point of ray tangency, a point on the
boundary between the illuminated part of the obstacle and shadow, the series break
down. Also the series will be insufficient to predict the small but non-zerosolution
in the shadow. This means fore example that diffraction effects are unaccounted
for.

Near the point of ray tangency a special asymptotic region can be identified.
This region, known as the Fock-Leontovic̆ region, has a size that scales withk−1/3

to either side of the tangency point along the surface, andk−2/3 normal to the
surface. The leading order is here given by the Fock-Leontovic̆ equation[19].

In the shadow region the failure of the WKB-type ansatz reflects theextra
polynomial decayof the solution. In other words the wave field vanishes faster than
any inverse power ofk in the shadow. Still, a number of interesting phenomena
play out in the shadow. For example will we have that the surface itself is a caustic
of the eikonal equation. Rays tangent to the surface will diffract and follow the
surface while at the same time shedding rays tangentially. Such solutions decay
quickly. However, thesecreeping raysare important in applications[22].

The connection of the behaviours at the different regions is a highly non-trivial
problem of uniform asymptotics. A solution does exist in a paper by Melroseand
Taylor[21]. These results have yet to be applied in computations.

1.3.4 Integral equation representations

The scattering problem can be formulated as an integral equation overΓ, the sur-
face of the scattererΩ. This is done through the layer potentials. Thesingle layer
potentialis written,

us(y) = (Sq)(y) :=

∫

Γ
G(x− y)q(x)dSx,

13
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and thedouble layer potential,

us(y) = (Dϕ)(y) :=

∫

Γ

∂G

∂nx
(x− y)ϕ(x)dSx.

q andϕ are defined onΓ and are usually referred to as the single and double layer
potential densities.

The layer potentials automatically satisfy the radiation condition, and they
solve the Helmholtz problem both in the exterior and interior ofΩ. It is shown
e.g. in [23], that the single layer potential is continuous iny, while its normal
derivative is discontinuous when crossingΓ. Similarly the double layer potential
has a continuous normal derivative, but is itself discontinuous when crossingΓ.
From this it follows thatu solves both the exterior and interior Dirichlet problem
if q solves,

(Sq)(y) = −ui(y), y ∈ Γ.

The discontinuous double layer potential densityϕ solves,
(

(
I

2
+D)ϕ

)

(y) = −ui(y), y ∈ Γ,

if u is to solve the exterior Dirichlet problem, and
(

(−I
2

+D)ϕ
)

(y) = −ui(y), y ∈ Γ,

for the interior problem. Similar relations exist for the Neumann problem[23].
The tight connection between the interior and exterior problems poses a par-

ticular problem. If we wish to solve the exterior problem, we solve the interior
problem at the same time, which is, as pointed out above, not necessarily uniquely
solvable. In this case the operators are not invertible. However, a trick due to
Brakhage and Werner[4] is to use an operator,

us(y) = (iαS(q) −D(q))(y).

This operator is invertible for allk providedα is real.

1.3.5 Numerical methods for high frequency scattering problems

By a numerical method for high frequency scattering problems we mean a method
that in some way incorporates the high frequency asymptotics of the solution.The
goal of this would be to develop methods whose computational effort is bounded
or decreasing ask → ∞ while maintaining constant precision, also for moderate
wavenumbers.

One approach that goes a long way in achieving this, at least for convexob-
stacles, is by the use of boundary elements where asymptotic properties of the
solution are incorporated[5]. Other approaches include the use of fast multipole
methods or hierarchical matrices(see [10] for a review of such techniques).
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Discretisation based on oscillatory quadrature
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Figure 1.3: The absolute value of the real and imaginary parts of the single layer potential
densityq for a circle with an incident plane wave. (b) showsq with the GO-
phase factored out. Bold lines marks position of shadow boundaries

Ignoring for the time being possible difficulties of non-uniqueness, an integral
equation for the single layer potential density written out for the casen = 2 is

− 1

4i

∫

Γ
H

(1)
0 (k|x− y|)q(x)dsx = −ui(y).

For the Hankel function the behaviour for large arguments is,

H
(1)
0 (r) ∼

√

2

πr
ei(r−1/4π).

The oscillatory behaviour for large argumentseir can be factored, out and the
remainder is non-oscillatory. Similarly, the densityq is oscillatory, but here we can
use high frequency asymptotics, e.g. Geometric Optics, to factor out the oscillatory
part. The Geometric Optics approximation, which is valid in the illuminated part
of a smooth obstacle gives,

q(x) = qs(x)e
ikgi(x),

whereqs is smooth andgi is the phase of the incoming wave. After thisphase
extractionwe have an equation of the form,

∫

Γ
K(x, y)qs(x)e

ik(|x−y|+gi(x))dsx = −ui(y). (1.15)
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whereK(x, y) = i
4H

(1)
0 (k|x − y|)e−k|x−y| is a smooth function.qs can only be

expected to be smooth wherever the Geometric Optics approximation is valid, thus
qs can be expected to be oscillatory in the shadow region, which indeed can beseen
in Figure 1.3. Boundary element discretisations based on this formulation of the
problem are of great interest since one solves for a field that is less oscillatory than
q, the unknown in the standard formulation. Such hybrid approaches are proved
to require only a moderate increase in unknowns with increasingk for fixed error
bounds(n ∼ k1/9 in [7].)

The kernel of the integral operator (1.15) is oscillatory, and a discretisation has
to take this into account. A Filon-type discretisation is done by first identifying
contributing points. By examining the oscillator|x − y| + gi(x) we get that the
only stationary points are to be found in the shadow region[2]. Since the solution
is both oscillatory and exponentially small in the shadow region[7] we can neglect
these contributions bearing in mind that they might not be negligible in moderate
wavenumber regimes. We are left with a contribution from a discontinuous deriva-
tive combined with the logarithmic singularity ofH(1)

0 (k|x − y|) at x = y. The
moments of this Filon-quadrature are oscillatory quadratures themselves, but these
can be computed efficiently with the numerical method of steepest descent. This,
coupled with a special treatment of the Fock-Leontovic̆ regions and shadow region
gives a method that has at least fixed accuracy for increasingk[13].
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1.4 Summary of the main contribution of the thesis

The work leading to this thesis has revolved around the application of oscillatory
quadrature methods to practical problems. The most important case study has
been the acoustic scattering from a smooth convex obstacle. For this problem, a
discretisation technique due to Huybrechs and Vandewalle[13] employs both the
Filon-type approach and numerical steepest descent. One of the main contribu-
tions of this thesis has been a more thorough treatment of this method. Notably,
a reinterpretation of the method shows that it can be regarded as a method for ob-
taining the near-equivalent of high order Geometric Optics approximations.This
work also paves the way for more sophisticated discretisations based on theuni-
form asymptotics of Melrose and Taylor.

An important element in the implementation of the Filon-type discretisation is
the computation of the moments. This is done by the numerical method of steepest
descent. A difficulty here is the computation of the paths of steepest descent, which
has been an issue in this work. One of the contributions here is the analysis of
the numerical method of steepest descent with local path approximations, which
shows exactly how asymptotic accuracy deteriorates when paths are approximated.

A final theme, which resulted in the first paper of this thesis, is the basis of
oscillatory quadrature and asymptotics. Asymptotic expansions can be expressed
with an exact error term. An alternative approach to oscillatory quadrature, sim-
ilar to techniques in hyperasymptotics, is to resolve the error term by oscillatory
quadrature. This leads to new methods with new characteristics.
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1.4.1 Summary of papers

Paper I: A combined Filon/Asymptotic quadrature method for
highly oscillatory problems

A. Asheim
Published in BIT Numerical Mathematics 48, 2008[1]

This paper discusses a combination of asymptotic expansions and Filon-typemeth-
ods. An asymptotic expansion has a remainder term that can be expressedas an os-
cillatory integral. Resolving this oscillatory integral with e.g. a Filon-type method
yields a new type of approximation that combines properties of both constituent
methods. A discussion on possible gains from using this approach is included,
which concludes that in certain cases significant savings in terms of moments can
be achieved.

Paper II:Asymptotic analysis of numerical steepest descent with
path approximations

A. Asheim and D. Huybrechs
To appear in Found. Comput. Math.

A difficulty with steepest descent methods lies in the computation of the paths of
steepest descent. It is however well known from asymptotics that a certain slack
can be tolerated. In this paper we translate this observation into the numerical
setting. A central difference between the numerical and asymptotic setting is the
more localised character of the numerical method; the form of the path for large
arguments is in some sense irrelevant. It is shown that a local approximation of the
path is sufficient for high asymptotic order, and the main part of the paper analyses
the asymptotic properties of the method. The result is a slightly unintuitive relation
between the degree of the path approximation and the method’s order.

Paper III: Local solutions to high frequency scattering problems

A. Asheim and D. Huybrechs
To appear in J.Comput.Phys.

Classical asymptotic techniques show that the scattering from convex bodies de-
pends on local characteristic, meaning that an incident ray is reflected according
to the properties of the scatterer only where it strikes. In this paper we show that a
Filon-type discretisation transforms the boundary integral equation for thescatter-
ing problem to a boundary value problem for a differential equation. Thisequation
can be solved with local data only to give a high order approximation, which cor-
responds to the localisation principle known from Geometric Optics.
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Paper I

A combined Filon/Asymptotic quadrature method for
highly oscillatory problems

A. Asheim
Published in BIT Numerical Mathematics, vol. 48(3) p.425-448, 2008.





Chapter 2

A combined Filon/Asymptotic
quadrature method for highly
oscillatory problems

Abstract. A cross between the asymptotic expansion of an oscillatory integral
and the Filon-type methods is obtained by applying a Filon-type method on the er-
ror term in the asymptotic expansion, which is in itself an oscillatory integral. The
efficiency of the approach is investigated through analysis and numericalexperi-
ments, revealing a method which in many cases performs better than the Filon-type
method. It is shown that considerable savings in terms of the required number of
potentially expensive moments can be expected. The case of multivariate oscilla-
tory integrals is discussed briefly.
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2.1 Introduction

The quadrature of highly oscillatory integrals has been perceived as a hard prob-
lem. Traditionally one would have to resolve the oscillations by taking several
sub-intervals for each period, resulting in a scheme whose complexity wouldgrow
linearly with the frequency of the oscillations. More careful analysis will however
reveal that by exploiting the structure of certain classes of oscillatory integrals
better discretisation schemes can be devised, schemes where the error actually
decreases when the frequency of the oscillations increases. This is wellknown
in asymptotic analysis with eg. saddle point methods and the method of station-
ary phase approximation[16, 14]. Recently attention has been directed atnumer-
ical methods with similar properties. Examples of such methods are Filon-type
methods[8, 9] Levin-type methods[13, 15] and numerical steepest descent[6].

We are considering oscillatory integrals of the form

I[f ] =

∫ 1

−1
f(x)eiωg(x)dx, (2.1)

whereω is a large parameter. It is well known that an ordinary Gaussian quadrature
applied to this integral will have an error ofO(1) asω grows large. A much better
approach to approximatingI[f ] whenω is large is found through an asymptotic
expansion: Assumingg′(x) 6= 0, −1 ≤ x ≤ 1, integration by parts yields

I[f ] =
1

iω
[ f(1)
g′(1)e

iωg(1)− f(−1)
g′(−1)e

iωg(−1)]− 1

iω

∫ 1

−1

d

dx

[ f(x)

g′(x)

]

eiωg(x)dx. (2.2)

Whenω becomes large the integral term in equation (2.2) vanishes faster than the
boundary terms, by an extension of Riemann-Lebesgue’s lemma, so the bound-
ary terms can approximate the integral. Furthermore the process can be repeated
on the integral remainder to obtain a full asymptotic expansion. This expansion
will however not be perfect. As is often the case with asymptotic expansionsthe
accuracy is limited due to the divergence of the series.

An even better approach is to choose a set of quadrature nodesc1, . . . , cν ,
interpolate the functionf by a polynomialf̃ at these points and let

QF
1 [f ] =

∫ 1

−1
f̃(x)eiωg(x)dx =

ν
∑

j=1

bj(ω)f(cj),

wherebj(ω) =
∫ 1
−1 lj(x)e

iωg(x)dx for lj(x) the j-th Lagrange cardinal polyno-
mial. A variant of this approach, then with piecewise quadratic interpolation in the
Fourier-case wheng(x) = x, dates back to L.N.G. Filon[4]. Schemes of this type
are referred to as Filon-type methods. Constructingbj(ω) requires the moments
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∫ 1
−1 x

meiωg(x)dx. Moments are oscillatory integrals themselves that hopefully can
be calculated by analytical means as in the Fourier case. If not, the numerical
steepest descent method can be applied to compute moments for the Filon-type
method, an approach which works well in practical applications[7, 2]. Iserles
proved[8] that as long as the endpoints of the interval are included as quadrature
nodes andg′(x) 6= 0, −1 ≤ x ≤ 1, this approach will carry an error

QF
1 [f ] − I[f ] ∼ O(ω−2), ω → ∞.

The superiority of this approach over the asymptotic expansion can be understood
by realising that the method is exact for a class of problems, regardless ofthe size
of ω. As for the behaviour for largeω it was proved by Iserles and Nørsett[11]
that by applying Hermite interpolation to interpolatef(x) with p derivatives at the
endpoints, the asymptotic behaviour of the error can be expressed as

QF
p [f ] − I[f ] ∼ O(ω−p−1), ω → ∞.

The theory can be expanded to the cases whereg has stationary points, that means
pointsξ with g′(ξ) = 0. What must be done to achieve good asymptotic properties
is basically to include the stationary points among the quadrature nodes[9].

Considering the asymptotic expansion with the remainder term (2.2) one can-
not fail to notice that the problem has really been transformed into boundary terms
plus the remainder term, which is an integral of the same form as the original. A
natural question to ask in light of this observation is whether treating the remainder
term with a specialised technique, like the Filon-type quadrature, numerical steep-
est descent or a Levin-type method, could improve accuracy. In the following this
question will be addressed, in particular for the choice of the Filon-type quadrature
QF

p as quadrature method. In the above-mentioned case this would amount to a
new method

QFA[f ] =
1

iω

[

f(1)

g′(1)
eiωg(1) − f(−1)

g′(−1)
eiωg(−1)

]

− 1

iω
QF

p

[ d

dx

[

f/g′
]

]

.

We will refer to methods of this form ascombined Filon/asymptotic methods. Ob-
serve that forω 6= 0 this method is consistent in the sense that accuracy can be
improved by using a better quadrature method on the remainder term, a property
which the asymptotic expansion does not have. Furthermore, because ofthe1/ω-
factor, the asymptotic error behaviour will be better than for the classical Filon-
type method applied directly. This means that less work, in terms of moments,
is needed to get high asymptotic order. The combined method is in this sense a
true cross between the asymptotic method and the Filon-type method, combining
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good qualities of both methods. These observations will be elaborated on in the
following with emphasis on the 1D case without stationary points, with stationary
points and a brief look into the multivariate case.

2.2 The Asymptotic method and Filon-type methods

We begin the exposition by presenting an overview of the constituent parts of the
combined method: The asymptotic expansion of the highly oscillatory integral and
the Filon-type methods. In the following we will denote byQp[f ] ≈ I[f ] a highly
oscillatory quadrature method ofasymptotic orderp, meaning that for smoothf

Qp[f ] − I[f ] ∼ O(ω−p−1), ω → ∞.

Note that in some parts of the literature this would be referred to as orderp + 1.
This corresponds to absolute error decay, whereas ours is relative error decay in the
case of no stationary points whereI[f ] ∼ 1/ω [16]. In the presence of stationary
points the picture is slightly different, and for simplicity we will then avoid the
concept of asymptotic order.

2.2.1 The case of no stationary points

Assume for the time being that there are no stationary points in the interval of
interest, that meansg′(x) 6= 0, −1 ≤ x ≤ 1. An asymptotic expansion of the
highly oscillatory integral (3.1) is obtained by successively applying integration
by parts. This approach gives us a full expansion through the followingpartial
expansion

I[f ] = −
s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

+
1

(−iω)s

∫ 1

−1
σs[f ](x)eiωg(x)dx, (2.3)

where

σ0[f ](x) = f(x)

σm+1[f ](x) =
d

dx

σm[f ](x)

g′(x)
, k = 0, 1, . . . . (2.4)

The correctness of the above expansion can easily be checked through an induction
argument. A full asymptotic expansion of the highly oscillatory integral (3.1) is
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then

I[f ] ∼ −
∞
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

. (2.5)

Truncating the series afters terms, yields the asymptotic method

QA
s [f ] = −

s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

. (2.6)

The method has asymptotic orders. This can be seen by writing out the remain-
der term, which is an oscillatory integralO(ω−1) multiplied by (−iω)−s. Note
that the concept of asymptotic order is rather useless for not-so-largeω. In fact
the asymptotic expansion is divergent in the general case, and this divergence is
more severe for smallerω. Thus the asymptotic method is rather useless for small
ω. Furthermore, divergence implies that only a fixed accuracy can be attained -
adding terms will not always increase accuracy. This is problematic for practical
applications where usually a given accuracy is sought.

The Filon-type methods will be accurate also for smallerω and have control-
lable error, but that is at the cost of moments. We define the moments

µk(ω) =

∫ 1

−1
xkeiωg(x)dx,

and assume these can be computed, possibly at a significant cost. Then theFilon-
type method is obtained by choosing a set of nodes−1 = c1 < c2 < · · · <
cν = 1 and integer multiplicitiesm1, . . . ,mν ≥ 1 associated with each node.
Let n =

∑ν
j=1mj − 1 andf̃ be the unique Hermite interpolation polynomial of

degreen obtained by interpolatingf at the points{cj}ν
j=1 with the corresponding

multiplicities,

f̃(x) =
ν
∑

l=1

ml−1
∑

j=0

αl,j(x)f
(j)(cl).

The Filon-type method is defined as

QF
s [f ] =

∫ 1

−1
f̃(x)eiωg(x)dx =

ν
∑

l=1

ml−1
∑

j=0

βl,j(ω)f (j)(cl), (2.7)

whereβl,j(ω) =
∫ 1
−1 αl,j(x)e

iωg(x)dx is obtained from linear combinations of
moments. As fors, the asymptotic order of this method, we state a theorem due to
Iserles and Nørsett[11]:
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Theorem 2.1. Supposem1,mν ≥ s, then for every smoothf and smoothg with
g′(x) 6= 0, −1 ≤ x ≤ 1

QF
s [f ] − I[f ] ∼ (ω−s−1), ω → ∞.

The proof is obtained by expandingf − f̃ as in equation (2.5) and observing
that the firsts terms will cancel due to the interpolation criteria. This theorem
can be summarised by saying that only by adding derivative information at the
endpoints of the interval can the asymptotic order of the method be improved.
Information about derivatives can also be supplied indirectly by clustering inter-
polation nodes near the endpoints. If the nodes approach the endpoints as 1/ω
high asymptotic order can be attained[10]. Note that increasing the order of the
interpolating polynomial̃f will increase the accuracy of the method for some fixed
ω, at least when the interpolation nodes are the Chebychev points. This is indeed
confirmed by numerical experiments[10]. This means that for anyω a prescribed
accuracy can be attained, a property which is crucial for practical applications.

2.2.2 Generalized Filon and asymptotic method in the presence of sta-
tionary points

When g has stationary points Theorem 2.1 is no longer valid, a fact which is
suggested by the singularity introduced in the integral in remainder term of the
asymptotic expansion (2.2). Assume in the following thatg(x) has only one
stationary pointξ ∈ (−1, 1), which amounts to sayingg′(ξ) = 0, g′(x) 6=
0, x ∈ [−1, 1]\{ξ}. Furthermore assume thatg′(ξ) = · · · = g(r)(ξ) = 0, and
g(r+1)(ξ) 6= 0, this means thatξ is a rth order stationary point. The method of
stationary phase[3, 14] states that in this case the leading order behaviour of the
highly oscillatory integral (3.1) is of the form

I[f ] ∼ Cω−1/(r+1), ω → ∞. (2.8)

This means that the main contribution to the value of the integral comes from the
stationary point, suggesting that the interpolation nodes for the Filon-type methods
should include stationary points as well as the endpoints.

Assume for simplicity thatξ is a first order stationary point meaningg′(ξ) = 0
andg′′(ξ) 6= 0. Writing

I[f ] = f(ξ)I[1] + I[f − f(ξ)]

= f(ξ)I[1] +
1

iω

∫ −1

1

f(x) − f(ξ)

g′(x)
d

dx
eiωg(x)dx,
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then integrating by parts gives the following expression:

I[f ] = f(ξ)I[1] +
1

iω

[

f(1) − f(ξ)

g′(1)
eiωg(1) − f(−1) − f(ξ)

g′(−1)
eiωg(−1)

]

− 1

iω

∫ 1

−1

d

dx

f(x) − f(ξ)

g′(x)
eiωg(x)dx. (2.9)

Now, sinceg′′(ξ) 6= 0, the singularity is removable. The expansion can be con-
tinued giving a full expansion reminiscent of the expansion (2.5). More generally,
for a rth order stationary point we introduce the generalized moments

µk(ω; ξ) = I[(· − ξ)k] =

∫ 1

−1
(x− ξ)keiωg(x)dx, k ≥ 0.

Note that these can be written in terms of ordinary moments. Now write

I[f ] =
r−1
∑

j=0

1

j!
f (j)(ξ)µj(ω; ξ) + I



f(x) −
r−1
∑

j=0

1

j!
f (j)(ξ)(x− ξ)j



 . (2.10)

Again the singularity is removable, and the expansion can be formed. We will
later need the expansion with the remainder term, so this will be formulated as a
lemma1:

Lemma 2.1. Supposeξ is a stationary point of orderr, and thatξ is the only
stationary point inside the interval[−1, 1]. Then for every smoothf

I[f ] =
r−1
∑

j=0

1

j!
µj(ω; ξ)

s
∑

m=1

1

(−iω)m−1
ρm−1[f ](j)(ξ)

−
s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)

(

ρm−1[f ](1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(1 − ξ)j

)

(2.11)

− eiωg(−1)

g′(−1)

(

ρm−1[f ](−1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)s
I
[

ρs[f ]
]

,

1Note that the conclusion in this lemma is different from that of Iserles & Nørsett in [11], Theo-
rem 3.2, which we suggest is flawed.
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where

ρ0[f ](x) = f(x)

ρm+1[f ](x) =
d

dx

ρm[f ](x) −∑r−1
j=0

1
j!ρm[f ](j)(ξ)(x− ξ)j

g′(x)
. (2.12)

Proof. This is proved by induction. The Lemma is certainly true fors = 0. Now

I
[

ρs[f ]
]

=
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)µj(ω; ξ)

+
1

iω

∫ 1

−1

ρs[f ](x) −∑r−1
j=0

1
j!ρs[f ](j)(ξ)(x− ξ)j

g′(x)
d

dx
eiωg(x)dx.

Integration by parts gives

I
[

ρs[f ]
]

=
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)µj(ω; ξ)

− 1

(−iω)

[

eiωg(1)

g′(1)

(

ρs[f ](1) −
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)(1 − ξ)j

)

− eiωg(−1)

g′(−1)

(

ρs[f ](−1) −
r−1
∑

j=0

1

j!
ρs[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)
I
[

ρs+1[f ]
]

.

Inserting into equation (2.11) proves the Lemma.

As before, truncating the expansion (2.11), that is the twom-summations after
s terms, yields the asymptotic method. The asymptotic behaviour of the error in
this method is found by the method of stationary phase applied to the remainder.
Thus we get for the asymptotic method,

QA[f ] − I[f ] ∼ O(ω−s−1/(r+1)), ω → ∞.

For an even more general case, in the presence of more than one stationary point,
the interval can be partitioned such that each sub interval contains only one sta-
tionary point, and then an expansion can be made for each sub interval. Asbefore,
truncating the expansion afters terms yields the asymptotic method.
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Now to the Filon-type method: Letξ be a unique stationary point of order
r: g′(ξ) = 0 andg′(x) 6= 0 for x ∈ [−1, 1]\{ξ}, g′(ξ) = · · · = g(r)(ξ) = 0,
andg(r+1)(ξ) 6= 0. Thegeneralized Filon method[11] is constructed by choos-
ing nodes−1 = c1 < c2 < · · · < cν = 1 such that the stationary point is
among the nodes, that iscq = ξ for someq ∈ {1, 2, . . . , ν}. Given multiplicities
m1,m2, . . . ,mν ≥ 1 corresponding to each node, we letf̃ be the unique Hermite
interpolation polynomial of degreen =

∑ν
j=1mj − 1 obtained by interpolating

f at the points{cj}ν
j=1 with the corresponding multiplicities. The method is now

simply

QF [f ] =

∫ 1

−1
f̃(x)eiωg(x)dx.

The above integral is computed from linear combinations of moments.
We present another theorem by Iserles and Nørsett[11] regarding theasymp-

totic error behaviour of the generalized Filon method.

Theorem 2.2. Letm1,mν ≥ s andmq ≥ s(r + 1) − 1. Then

QF [f ] − I[f ] ∼ O(ω−s−1/(r+1)), ω → ∞.

This theorem is, like Theorem 2.1 proved by expandingf− f̃ and showing that
terms up to orders cancel. The method is trivially expanded to cater for several
stationary points, possibly of different order.

2.3 The combined Filon/asymptotic method

Let us for the moment assume that there are no stationary points ofg in [−1, 1].
This assumption will be relaxed later on. A combined Filon/asymptotic method is
constructed from the asymptotic expansion with the remainder term (2.3) by ap-
plying a Filon-type method on the remainder term, which is in itself an oscillatory
integral. Denoting byQFA

p,s a method which is obtained by applying ap-th order
Filon-type method on the remainder of ans-term expansion we get

QFA
p,s [f ] = −

s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

+
1

(−iω)s
QF

p

[

σs[f ]
]

, (2.13)

where theσm[f ] are defined as in equation (2.4). Note that this formula is con-
sistent forω 6= 0 in the sense that if we resolve the remainder term exactly, then
the formula is exact as well. Furthermore, note that the idea is not restricted to
Filon-type methods. Any quadrature methodQp can be applied:
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Theorem 2.3. Let g be such thatg′(x) 6= 0, −1 ≤ x ≤ 1. Applying a highly
oscillatory quadrature methodQp of asymptotic orderp on the remainder in the
s-term asymptotic expansion (2.3) yields a methodQp,s. Applied to any smoothf
this method is of orderp+ s, that is

Qp,s[f ] − I[f ] ∼ O(ω−p−s−1), ω → ∞.

Proof. Writing out the asymptotic expansion ofQp,s[f ] − I[f ] gives

Qp,s[f ] − I[f ] ∼ 1

(−iω)s
Qp[σs[f ](x)]

+
∞
∑

m=s+1

1

(iω)m

[

eiωg(1)

g′(1)
σm−1[f ](1) − eiωg(−1)

g′(−1)
σm−1[f ](−1)

]

=
1

(−iω)s

(

Qp[σs[f ](x)] −
∞
∑

j=1

1

(iω)j

[eiωg(1)

g′(1)
σj−1[σs[f ]](1)

− eiωg(−1)

g′(−1)
σj−1[σs[f ]](−1)

]

)

∼ 1

(−iω)s
O(ω−p−1) = O(ω−p−s−1),

where the last line appears by using the asymptotic error property of the method
Qp.

We will here limit our attention to the case whereQp is a Filon-type method,
and we call the combined methodQFA

p,s a Filon/asymptotic method.

Example 2.1. For the simplest case sets = 1 and get

QFA
p,1 [f ] =

1

iω

[

eiωg(1)

g′(1)
f(1) − eiωg(−1)

g′(−1)
f(−1)

]

− 1

iω
QF

p

[

d

dx

f

g′

]

, (2.14)

which is a method of asymptotic orderp+ 1.

Example 2.2. We wish to compute
∫ 1

−1

eiωx

2 + x
dx.

Interpolatingf(x) = 1/(2 + x) and its first derivative atx = −1 andx = 1
will give us a Filon-type method of asymptotic orders = 2. This method requires

34



2.3. THE COMBINED FILON /ASYMPTOTIC METHOD
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Figure 2.1: The absolute value of the error for the combined Filon/asymptotic method
(top) and the classical Filon-type method (bottom) from example 2.2, all
scaled byω3

four moments. Interpolating only the function value ofσ1(x) = −1/(2 + x)2

at the two endpoints gives the combined Filon/asymptotic scheme which is also
of asymptotic order2, but only needs two moments. We expect this to be at the
cost of not that good approximation properties compared to the classical method,
which is indeed confirmed by experiments, see figure 2.1. Note that the crests of
the curve of one method seems to correspond with the troughs of the other, much
like what was pointed out by Iserles & Nørsett in [11]. This behaviour willbe
discussed in section 2.5.

The key element in a discussion of the efficiency of this method is the need
for moments. Recall that a classical asymptotic method needs no moments, but
it breaks down for smallω and the error is not controllable. On the other hand a
classical Filon-type method can be made precise also for moderately sizedω, but
at the cost of moments. A Filon-type method needs a minimum of2p moments
to obtain asymptotic orderp. The combined Filon/asymptotic method is situated
between the Filon-type method and the asymptotic method, both in spirit and in
terms of requirements. For example, this method can obtain any asymptotic order
as well as accuracy for moderately sizedω with the use of only two moments. The
asymptotic nature of the method is revealed by the1/ωs-factor which indicates that
it will perform bad asω → 0. Forω = 0 the method does not work, as opposed
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to the classical Filon-type method which in this case reduces to a classical quadra-
ture method. The combined method can, like the classical Filon-type method, be
made precise to a prescribed tolerance by adding more moments. The usefulness is
here dictated by the cost of computing moments, as well as the cost of computing
σm[f ] and its derivatives. The following example, example 2.3, shows how a com-
bined Filon/asymptotic method performs better than a classical Filon-type method
with approximately the same input data. This observation will be elaborated on in
section 2.5.1.
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Figure 2.2: a) Error for the Filon/asymptotic method with interpolation nodes
[−1, 0, 1](top), and[−1,−1/3, 1/3, 1](bottom), scaled byω3. b) Error for
the classical Filon-type method scaled byω3 (same scale as (a))

Example 2.3. Once again we wish to compute with a combined Filon/asymptotic
method the integral

∫ 1

−1

eiωx

2 + x
dx,

but this time we include internal nodes. Interpolatingσ1(x) = −1/(2 + x)2

at the nodes[−1, 0, 1], and [−1,−1/3, 1/3, 1] will result in combined schemes
requiring three and four moments respectively. That means comparable to the
classical Filon-type method from example 2.2, which is obtained by interpolating
f(x) = 1/(2 + x) with its first derivative at the endpoints requiring four mo-
ments. Both this classical method and the above described combined methods
have asymptotic order2. Comparing error plots for the methods(see figure 2.2) we
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see that the combined method with nodes[−1, 0, 1] has almost exactly the asymp-
totic error constant as the classical method whenω increases, whereas the one with
nodes[−1,−1/3, 1/3, 1] has a significantly smaller error constant. In figure 2.3
we see how the different methods behaves for smallω. Note that including inter-
nal nodes reduces the severity of the singularity. Even for quite smallω the best
Filon/asymptotic method is better than the classical method.

w
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 100

 101

Figure 2.3: Log-plot of the error for the Filon/asymptotic method with interpolation nodes
[−1, 1](top), [−1, 0, 1](middle) and[−1,−1/3, 1/3, 1](bottom), not scaled.
Error for the classical Filon-type method shown as a dotted line

2.3.1 The combined Filon/asymptotic method with stationarypoints

Extending the method to cater for stationary points is fairly straightforward given
Lemma 2.1. Assume in the following thatξ is the only stationary point of orderr
in [−1, 1]. This requirement is not crucial, it will just simplify otherwise horrific
expressions. In the following we will denote byQp a method tailored for this
problem, like the generalized Filon-type quadrature, which for smoothf bears an
error

Qp[f ] − I[f ] ∼ O(ω−p−1/(r+1)), ω → ∞.

Applying the generalized Filon methodQF
p on the expansion (2.11) yields the
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generalized combined Filon/asymptotic method

QFA
p,s [f ] =

r−1
∑

j=0

1

j!
µj(ω; ξ)

s
∑

m=1

1

(−iω)m−1
ρm−1[f ](j)(ξ) (2.15)

−
s
∑

m=1

1

(−iω)m

[

eiωg(1)

g′(1)

(

ρm−1[f ](1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(1 − ξ)j

)

− eiωg(−1)

g′(−1)

(

ρm−1[f ](−1) −
r−1
∑

j=0

1

j!
ρm−1[f ](j)(ξ)(−1 − ξ)j

)

]

+
1

(−iω)s
QF

p

[

ρs[f ]
]

.

ρm[f ] are defined as in equation (2.12). Recall thatQF
p is constructed by interpo-

lating f in the endpoints andξ (c1, cν andcq) with multiplicitiesm1, mν andmq

respectively. Using a generic methodQp we have the following theorem:

Theorem 2.4. Assumeg′(ξ) = · · · = g(r)(ξ) = 0, g(r+1)(ξ) 6= 0 andg′(x) 6=
0 for x ∈ [−1, 1]\{ξ}. Let Qp be a method which for any smoothf has the
asymptotic error

Qp[f ] − I[f ] ∼ O(ω−p−1/(r+1)), ω → ∞.

For the combined methodQp,s, constructed by applyingQp on the remainder term
in expansion (2.11), applied to any smoothf it is true that

Qp,s[f ] − I[f ] ∼ O(ω−p−s−1/(r+1)), ω → ∞.

Proof. Completely analogous to the proof of Theorem 2.3 we get

Qp,s[f ] − I[f ] ∼ 1

(−iω)s

(

Qp[ρs[f ]] −
∫ 1

−1
ρs[f ](x)eiωg(x)dx

)

∼ 1

(−iω)s
O(ω−p−1/(r+1)) = O(ω−p−s−1/(r+1)).

Again we restrict our treatment to the methodQFA
p,s constructed from a gener-

alized Filon-type method.
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Example 2.4. The simplest case is a problem with only one stationary pointξ of
order one, expanded with one term(as in equation (2.9)). The combined Filon/asymptotic
method (2.15) written out is then

QFA
p,1 [f ] =µ0(ω)f(ξ) +

1

iω

(

f(1) − f(ξ)

g′(1)
eiωg(1) − f(−1) − f(ξ)

g′(−1)
eiωg(−1)

)

− 1

iω
QF

p

[

d

dx

f(x) − f(ξ)

g′(x)

]

. (2.16)
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Figure 2.4: a) The absolute value of the error for the combined Filon/asymptotic method
with c = [−1, 0, 1] (top), together with classical Filon-type method (bottom)
in logarithmic scale. b) Combined method withc = [−1,−1/2, 0, 1/2, 1]
(bottom), and the classical Filon-type method(top). All curves are scaled by
ω

5

2 . Logarithmic scale is used in (a) in order to properly represent both curves
in the same plot

Example 2.5. The oscillator of the integral

∫ 1

−1
exeiω

1
2
x2

dx

has an order one stationary point atx = 0. Interpolatingρ1[f ](x) = d
dx

f(x)−f(ξ)
g′(x) =

xex−ex+1
x2 at the nodes[−1, 0, 1] (using l’Hospital’s rule to obtain the value at the

stationary point) gives a combined Filon/asymptotic scheme on the form of (2.16).
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The predicted error behaviour seems to be confirmed by experiments (seefigure
2.4). The proposed scheme needs three moments plus the first generalizedmo-
mentµ0 which is constructed from these. A classical Filon-type method requires
a total of seven to obtain the same asymptotic order. Figure 2.4 (a) shows thatthe
proposed method has a much higher asymptotic error constant than the classical
Filon-type method, however do we only need to add two interpolation nodes, that
is two moments, to beat it. See figure 2.4 (b) for illustration.

2.4 Extension to the multivariate case

For the model multivariate highly oscillatory integral we write

I[f,Ω] =

∫

Ω
f(x)eiωg(x)dV,

whereΩ ∈ R
d andf, g : Ω → R. Bringing the highly oscillatory quadrature

methods into the multivariate setting presents us with a whole set of complications.
For example we will have to take into account not only stationary points,x s.t
∇g(x) = 0, but also points of resonance, those are boundary points where∇g
is orthogonal to the boundary, ie. no oscillation along the boundary. For general
smooth boundaries resonance will necessarily be a problem, in this case theory
is not yet fully developed. Furthermore, computing moments will be even more
expensive than in the univariate case. For oscillatory integrals on simplicesand
polygons we refer to [12] for a theoretical treatment.

In the following we assume that no stationary points or resonance points are
present. Furthermore we restrict our treatment to thed-dimensional simplex2. The
Filon-type method is in this case, like in the 1D case, constructed by interpolating
in critical points, here being the vertices of the simplex. Increasing asymptotic
order is done by increasing the number of interpolated derivatives at thevertices.

The point of departure for developing a combined formula will here be the
Stokes-type formula for a simplex as presented in [12]:

I[f,Sd] =
1

iω

∫

∂Sd

nT (x)∇g(x)
f(x)

||∇g(x)||2 e
iωg(x)dS

− 1

iω

∫

Sd

∇T

[

f(x)

||∇g(x)||2∇g(x)

]

eiωg(x)dV. (2.17)

Using the formula repeatedly on the remainder term yields an expansion with an
integral remainder term. We here state this as a theorem:

2Note that polygons can be tiled by simplices, thus generalising the results fora simplex to the
polygon case.
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Theorem 2.5. For any smoothf and smoothg without stationary points and sub-
ject to the non-resonance condition, it is true that

I[f,Sd] = −
s
∑

m=1

1

(−iω)m

∫

∂Sd

nT (x)∇g(x)
σm−1(x)

||∇g(x)||2 e
iωg(x)dS

+
1

(−iω)s

∫

Sd

σs(x)eiωg(x)dV, (2.18)

where

σ0(x) = f(x)

σm+1(x) = ∇T

[

σm(x)

||∇g(x)||2∇g(x)

]

.

Proof. The proof follows from an iterated use of formula (2.17).

The expansion (2.18) can be carried on to obtain a full expansion for largeω,
showing that the value of the integral is asymptotically determined by integrals
over the faces of the simplex. Furthermore, by expanding the lower dimensional
integrals one repeatedly "pushes" the integrals from faces to edges(lower dimen-
sional faces), a process which terminates at the vertices, indicating that the value of
the integral is asymptotically determined by data at the vertices of the simplex. The
expansion can also be used to show that the value of the integralI[f,Sd] decays
like O(ω−d).

Now the combined method in all its glorious generality:

Theorem 2.6. AssumeQp is a quadrature method with asymptotic orderp, that is

I[f,Sd] −Qp[f,Sd] ∼ O(ω−d−p), ω → ∞.

For any smoothf andg, without stationary points and subject to the non-resonance
condition, the method

Q[f,Sd] = −
s
∑

m=1

1

(−iω)m

∫

∂Sd

nT (x)∇g(x)
σm−1(x)

||∇g(x)||2 e
iωg(x)dS

+
1

(−iω)s
Qp[σs,Sd] (2.19)

is of asymptotic orders+ p.

Proof. As in proof of theorem 2.3, write out the expansion of the error and use the
asymptotic error property ofQp.
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This method is not really a quadrature rule per se, as we have not addressed
the fact that also the boundary integrals have to be treated somehow. A lower
dimensional, thus cheaper, quadrature method might be used. Using the Stokes-
type formula to reduce the dimension of the boundary integrals until we are left
with a formula incorporating data only at the vertices is a possibility, but then also
treating the resulting remainder terms with a Filon-type method is preferable in
order to retain control over the error.

2.4.1 Quadrature on the 2D simplex

To illustrate the combined Filon/asymptotic approach in the multivariate case we
consider the case of the 2D simplex. Assume no stationary points or resonance
points are present and write

I[f,S2] =

∫ 1

0

∫ 1−y

0
f(x, y)eiωg(x,y)dxdy.

Applying the Stokes-type formula once yields:

I[f,S2] =
1

iω

∫ 1

0
n1

T∇g(x, 0)
f(x, 0)

||∇g(x, 0)||2 e
iωg(x,0)dx (2.20)

+
√

2
1

iω

∫ 1

0
n2

T∇g(x, 1 − x)
f(x, 1 − x)

||∇g(x, 1 − x)||2 e
iωg(x,1−x)dx

− 1

iω

∫ 1

0
n3

T∇g(0, y) f(0, y)

||∇g(0, y)||2 e
iωg(0,y)dy

− 1

iω

∫ 1

0

∫ 1−y

0
∇T

[

f(x, y)

||∇g(x, y)||2∇g(x, y)
]

eiωg(x,y)dxdy

with n1 = [0,−1],n2 = [
√

2
2 ,

√
2

2 ] andn3 = [−1, 0] being outer normals as
illustrated in figure 2.5.

Example 2.6. Considering the problem

I =

∫ 1

0

∫ 1−y

0
sin(x+ y)eiω(x−2y)dxdy,

we construct a classical Filon-type method of order 2, meaning the error goes down
like O(ω−4), by interpolating function values and derivatives at the vertices. An
interpolation point at(1/4, 1/4) is included in order to fix the last parameter in
a full third order interpolation polynomial. Thus 10 moments are required. Con-
structing a combined method with the same asymptotic order from the formula
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2.4. EXTENSION TO THE MULTIVARIATE CASE

1

3n
2n

n

Figure 2.5

w
10 20 30 40 50 60 70 80 90 100

0.00

0.01

0.02

0.03

(a)

w
10 20 30 40 50 60 70 80 90 100

0.00

0.01

0.02

0.03

(b)

Figure 2.6: (a) The error of the classical Filon-type method, scaled byω4. (b) The com-
bined method, also scaled byω4
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(2.20), which consists of three univariate and one bivariate integrals, can be done
with a first order multivariate method applied to the remainder term and a sec-
ond order univariate method(error goes likeO(ω−3)) on the boundary terms. In
total we need four univariate moments per edge plus three bivariate moments for
the remainder term. Adding an interpolation point in(1/4, 1/4) for the sake of
comparison gives a method with similar accuracy as the classical method, see fig-
ure 2.6. We observe that in this case the combined method performs better than
the classical method, for general problems the two methods will have comparable
accuracy.

Assuming bivariate moments are much harder to compute than univariate mo-
ments, the example shows a good improvement of efficiency. On the downsidethe
combined method is harder to implement, and for error control, the error of four
quadratures must be balanced, which can pose a problem.

The combined method can also be constructed in a more extreme way, sorting
out all information at the vertices as simple terms, and all integrals as remainder
terms. Carrying out the computations for the non-resonant 2D simplex problem
without stationary points yields the following expression:

I =
1

(iω)2

[

eiωg(0,0)f(0, 0)

||∇g(0, 0)||2
(

gy(0, 0)

gx(0, 0)
+
gx(0, 0)

gy(0, 0)

)

− eiωg(1,0)f(1, 0)

||∇g(1, 0)||2
(

gy(1, 0)

gx(1, 0)
− gx(1, 0) + gy(1, 0)

gx(1, 0) − gy(1, 0)

)

− eiωg(0,1)f(0, 1)

||∇g(0, 1)||2
(

gx(0, 1)

gy(0, 1)
+
gx(0, 1) + gy(0, 1)

gx(0, 1) − gy(0, 1)

)

]

+
1

(iω)2

[

∫ 1

0

d

dx

[

f(x, 0)gy(x, 0)

||∇g(x, 0)||2gx(x, 0)

]

eiωg(x,0)dx

−
∫ 1

0

d

dx

[

f(x, 1 − x)(gx(x, 1 − x) + gy(x, 1 − x)

||∇g(x, 1 − x)||2(gx(x, 1 − x) − gy(x, 1 − x))

]

eiωg(x,1−x)dx

+

∫ 1

0

d

dy

[

f(0, y)gx(0, y)

||∇g(0, y)||2gy(0, y)

]

eiωg(0,y)dy

]

− 1

iω

∫ 1

0

∫ 1−y

0
∇T

[

f(x, y)

||∇g(x, y)||2∇g(x, y)
]

eiωg(x,y)dxdy,

Note however that this approach will potentially only reduce on the number of
univariate moments needed, the bivariate remainder term is still at large. Therefore
we will not pursue this approach further.
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2.5 Error estimates

In Example 2.2 where the simple univariate case without stationary point was con-
sidered, we observed how the troughs in the error plot for a particular Filon/asymptotic
method seem to correspond with the peaks of a classical Filon-type method. This
is exactly the same observation Iserles and Nørsett made in [10], but then for two
different Filon-type methods. The behaviour we have observed can beexplained in
a similar way. This investigation will also lead to a method for comparing classical
Filon-type methods and Filon/asymptotic methods of the same asymptotic order.

Assume in the following thatg′(x) 6= 0, −1 ≤ x ≤ 1. From the discussion
on the asymptotic order of a Filon-type method and equation (2.5) it is clear that

QF
p [f ] − I[f ] ∼

eFp [f ]

ωp+1
+ O(ω−p−2), ω → ∞.

eFp [f ]/ωp+1 is in fact the next term in the expansion ofI[f − f̃ ], with f̃ being the
interpolant off :

eFp [f ] =
eiωg(1)

(−i)p+1g′(1)
[σp[f̃ ](1) − σp[f ](1)]

− eiωg(−1)

(−i)p+1g′(−1)
[σp[f̃ ](−1) − σp[f ](−1)].

By arguing thatσp[f ] = f (p)

(g′)p + a linear combination off (k) multiplied by a func-
tion involving derivatives ofg, k = 0, . . . , p − 1, one states that for a Filon-type
method theasymptotic error constant|eFp | can be estimated by

ΛF
−[f ] ≤ |eFp [f ]| ≤ ΛF

+[f ],

where

ΛF
±[f ] =

∣

∣

∣

∣

∣

|f̃ (p)(1) − f (p)(1)|
|g′(1)|p+1

± |f̃ (p)(−1) − f (p)(−1)|
|g′(−1)|p+1

∣

∣

∣

∣

∣

.

The exact same reasoning can be used to estimate the asymptotic error constant for
a combined Filon/asymptotic methodQFA

p,s . Keeping in mind that the asymptotic
order of this method isp+ s we can write

QFA
p,s [f ] − I[f ] ∼

eFA
p,s [f ]

ωp+s+1
+ O(ω−p−s−2), ω → ∞.
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Now the Filon-type method is applied to the remainder, so it should be clear that

eFA
p,s [f ] =

eiωg(1)

(−i)s+1g′(1)
[σ̃s[f ](p)(1) − σs[f ](p)(1)]

− eiωg(−1)

(−i)s+1g′(−1)
[σ̃s[f ](p)(−1) − σs[f ](p)(−1)].

Here σ̃s[f ] denotes the interpolant ofσs[f ], and σ̃s[f ](p)(x) its p-th derivative
evaluated inx. This gives

ΛFA
− [f ] ≤ |eFA

p,s [f ]| ≤ ΛFA
+ [f ],

with

ΛFA
± [f ] =

∣

∣

∣

∣

∣

|σ̃s[f ](p)(1) − σs[f ](p)(1)|
|g′(1)|p+1

± |σ̃s[f ](p)(−1) − σs[f ](p)(−1)|
|g′(−1)|p+1

∣

∣

∣

∣

∣

.

Example 2.7. Example 2.2 concerns the problem
∫ 1
−1

eiωx

2+xdx, whereby applying
a Filon-type method we obtain

f̃(x) = −1

9
x3 +

2

9
x2 − 2

9
x+

4

9
and [ΛF

−,Λ
F
+] = [0.5930, 1.1852].

The combined Filon/asymptotic method has

σ̃1[f ](x) =
4

9
x− 5

9
and [ΛFA

− ,ΛFA
+ ] = [1.1852, 1.9259].

These estimates explain the most significant features of Figure 2.1. For the schemes
in Example 2.3 we have for the casec = [−1, 0, 1]:

σ̃1[f ](x) = −11
36x

2 + 4
9x− 1

4 , [ΛFA
− ,ΛFA

+ ] = [0.7037, 1.1852],

and forc = [−1,−1
3 ,

1
3 , 1]:

σ̃1[f ](x) = 248
1225x

3 − 391
1225x

2 + 2668
11025x− 2606

11025 , [λfa
− , λfa

+ ] = [0.3754, 0.6492].

these calculations fit well with what has been observed, note in particular how the
method withc = [−1, 0, 1] closely matches the classical filon-type method.
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2.5.1 comparing the classical filon and filon/asymptotic methods

now it is time to address the important question: will a combined filon/ asymptotic
method get better accuracy than the classical filon-type method from the same
information3? for simplicity, consider the fourier caseg(x) = x, and also assume
derivatives off are easily available. the maximum error for a filon-type method
and a combined filon/asymptotic method, both of asymptotic orderp, asω becomes
large are then

λf
+[f ] = |f̃ (p)(1) − f (p)(1)| + |f̃ (p)(−1) − f (p)(−1)|,

λfa
+ [f ] = |σ̃s[f ](p−s)(1) − σs[f ](p−s)(1)| + |σ̃s[f ](p−s)(−1) − σs[f ](p−s)(−1)|

= |σ̃s[f ](p−s)(1) − f (p)(1)| + |σ̃s[f ](p−s)(−1) − f (p)(−1)|.

now g(x) = x implies thatσs[f ] = f (s), and σ̃s[f ] is the interpolant off (s).
we see that both methods have an error which is determined by the interpolant’s
ability to approximate thepth derivative off at the endpoints. the error constant
in the filon-type method comes from interpolatingf and differentiating the inter-
polant, for the combined approach takes derivatives, interpolate, then differenti-
ate. the possibility to more freely chose the placement of the interpolation nodes,
not restricted to the endpoints, will also result in a better approximation of thepth
derivative, explaining at least in part why the combined method performs better
than the classical method with the same data. we wish to explore this a bit further.

in the following we will do a small computation to demonstrate what can be
gained by using a combined method. consider a method constructed from2p nodes
distributed equidistantly, including endpoints, to approximate the error in ap −
1 term asymptotic expansion, that is aqfa

p−1,1-type method, compared to a filon-

type method of asymptotic orderp of minimum complexityqf
p ? by an orderp

method of minimum complexity we mean a method constructed by interpolating
only p derivatives at the endpoints with no internal nodes, implying that we use the
minimum number of moments to attain orderp. now bear in mind that equidistant
points are by no means optimal, but are just used for the sake of demonstration.
these two methods are both are of asymptotic orderp and use2p moments.qf

p

requiresp data at each endpoint to interpolatef , it is well known that the error of
the hermite interpolation is[5]

f̃(x) − f(x) =
f (2p)(c1)

(2p)!
(x+ 1)p(x− 1)p,

3information here signifies moments.
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wherec1 ∈ [−1, 1]. then from rodrigues’ formula[1]

f̃ (p)(x) − f (p)(x) =
f (2p)(c1)

(2p)!
pp(x)2

pp!,

with pp(x) being thepth legendre polynomial. as|pn(±1)| = 1 we have

λf
+[f ] = 2p+1p!

|f (2p)(c1)|
(2p)!

= |f (2p)(c1)|
21−p√π
γ(p+ 1

2)
. (2.21)

for the qfa
p−1,1-type method, we consider the case withn + 1 equidistant nodes,

including endpoints. we interpolateσp−1[f ], and the interpolation error is now[5]:

σ̃p−1[f ](x) − f (p−1)(x) =
f (p−1+n+1)(c2)

(n+ 1)!

n
∏

i=0

(x− 1 + i
2

n
),

for c2 ∈ [−1, 1]. this simplifies to

σ̃p−1[f ](x) − f (p−1)(x) =
f (p+n)(c2)

(n+ 1)!

2n+1γ(n
2 (x+ 1))

nn+1γ(n
2 (x− 1))

.

differentiating gives

σ̃p−1[f ]′(x) − f (p)(x) =

f (p+n)(c2)

(n+ 1)!

2n

nn

(

Ψ(n
2 (x+ 1) + 1) − Ψ(n

2 (x− 1))
)

Γ(n
2 (x+ 1) + 1)

Γ(n
2 (x− 1))

,

with Ψ being the digamma function. The limit of the above expression asx tends
to±1 can be found with a bit of effort:

lim
x→±1

[σ̃p−1[f ]′(x) − f (p)(x)] = f (p+n)(c2)(±1)n 2n

(n+ 1)nn
.

Now

ΛFA
+ [f ] = |f (p+n)(c2)|

2n+1

(n+ 1)nn
. (2.22)

For the case where the two methods use the same momentsn = 2p− 1, and then

ΛFA
+ [f ] = |f (3p−1)(c2)|

22p

2p · (2p− 1)2p−1
.

Now we investigate the relative sizes of the two asymptotic error constants.

ΛFA
+ [f ]

ΛF
+[f ]

=
|f (3p−1)(c2)| 22p

(2p)(2p−1)2p−1

|f (2p)(c1)|2
1−p

√
π

Γ(p+ 1
2
)

=
|f (3p−1)(c2)|
|f (2p)(c1)|

8p

4

Γ(p+ 1/2)√
πp(2p− 1)2p−1

.
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Figure 2.7: Log-plot of the ratio8p

4
Γ(p+1/2)

√

πp(2p−1)2p−1

If we use no derivatives, that isp = 1, the ratio is one, and for increasingp the
ration is decreasing. In general the derivatives can often be assumedto be of mag-
nitude|f (n)| ∼ Ln, this will in the limit not alter the conclusion. The significance
of the above calculations is most easily appreciated through a plot. Figure 2.7
shows that, assuming the derivatives off are of the same order of magnitude, the
combined Filon/asymptotic method will have a smaller error constant when using
the same number of moments.

Example 2.8. As a final little calculation we once again investigate Example 2.3
and the close match between thec = [−1, 0, 1] combined Filon/asymptotic method
and the classical Filon-type method, both of orderp = 2. Equation (2.21) with
p = 2 gives for the latter

ΛF
+[f ] ∼

√
π

23
4

√
π

=
2

3
.

Thec = [−1, 0, 1] combined Filon/asymptotic method has three equidistant nodes,
that isn = 2. Equation (2.22) gives,

ΛFA
+ [f ] ∼ 23

3 · 22
=

2

3
.
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This fits well with the close match between the two methods that we observe in
example 2.3. Provided that derivatives are of the same order, these methods will
in general perform similarly.

We must remark that although the proposed method apparently performs bet-
ter, it is by no means optimal. The freedom to choose interpolation nodes couldbe
used to minimise the error, placing nodes closer to the boundary would generally
be better as derivatives at the boundary would be better approximated, see [10],
but this also depends on the size ofω. In the limitω → ∞, placing all the nodes at
the boundary, increasing the asymptotic order would be best. On the other hand,
a more spread out distribution would probably be beneficial for smallerω. All
this seems to make the whole discussion about asymptotic error constants slightly
artificial.

2.6 Conclusion

We have demonstrated the feasibility of combining the asymptotic expansion of
highly oscillatory integrals and Filon-type methods. Experiments as well as the-
oretical calculations show that the combined method can achieve better precision
than the classical Filon-type method with more or less the same information. The
extra cost of the combined method lies mainly in more complicated expressions,
especially for cases with several stationary points or in the multivariate case. In
order to make a combined method for more general oscillatory integrals we must
have an asymptotic expansion with an oscillatory integral remainder. However,
such an expansion is not always available.
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Chapter 3

Asymptotic analysis of numerical
steepest descent with path
approximations

Abstract. We propose a variant of the numerical method of steepest descent for
oscillatory integrals by using a low-cost explicit polynomial approximation of the
paths of steepest descent. A loss of asymptotic order is observed, but inthe most
relevant cases the overall asymptotic order remains higher than a truncated asymp-
totic expansion at similar computational effort. Theoretical results based onnum-
ber theory underpinning the mechanisms behind this effect are presented.
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NUMERICAL STEEPEST DESCENT WITH PATH APPROXIMATIONS

3.1 Introduction

Consider a highly oscillatory integral of the form

I[f ] =

∫ 1

−1
f(x)eiωg(x) dx, (3.1)

whereω is a large parameter andf andg are smooth functions called theamplitude
functionandoscillator of the integral respectively. Such integrals, often referred
to as Fourier-type integrals, appear in a wide area of applications, e.g., highly os-
cillatory scattering problems in acoustics, electromagnetics or optics [5, 3, 14, 2].
Numerical evaluation of Fourier-type integrals with classical techniques becomes
expensive asω becomes large, which corresponds to a highly oscillatory integral.
Typically, a fixed number of evaluation points per wavelength is required to obtain
a fixed accuracy, which makes the computational effort at least linear inω [6].

Asymptotic techniques on the other hand yield approximations that become
more accurate asω increases, making them superior forω sufficiently large. One of
these techniques, the principle of stationary phase [21, 26], states thatI[f ] asymp-
totically depends only onf andg in a set ofspecial pointsasω → ∞. These
points are the endpoints, herex = −1 andx = 1, and stationary points - points
where the derivative ofg vanishes. At stationary points the integral is locally non-
oscillatory. The integral has an asymptotic expansion in inverse powers ofω, with
coefficients that depend on the derivatives off andg at these critical points [16].

A set of particularly effective ways of obtaining the contribution from a special
point are thesaddle point methods[26, 20, 8]. Based on Cauchy’s integral theorem,
the path of integration can be deformed into the complex plane without changing
the value of the integral, provided thatf andg are analytic [9]. Themethod of
steepest descentis obtained by following a path whereg has a constant real part
and increasing imaginary part, which renders the integral (3.1) non-oscillatory and
exponentially decreasing. This procedure yields separate paths originating from
each special point that typically connect at infinity (see Figure 3.1 for anillus-
tration). The result is separate contributions corresponding to each special point.
Every one of these contributions is a non-oscillatory integral that can be written as

∫ ∞

0
ψ(q)e−ωqr

dq, (3.2)

whereψ is a smooth function,r = 1 for endpoint contributions, andr > 1
for stationary points. These integrals are usually treated with standard asymp-
totic techniques like Watson’s Lemma. The larger class of saddle point methods
also contains methods that follow other paths with similar characteristics to the
steepest-descent paths, e.g., Perron’s method [26].

The asymptotic expansion ofI[f ] in general diverges, but it can yield very
accurate approximations ifω is very large. Still, divergence implies that the er-
ror is uncontrollable, which is problematic in the context of numerical compu-
tations. Recent research has however produced several numericalmethods that
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x=−1 x=1

Figure 3.1: The contours of the imaginary part of the oscillatorg(x) = x2 in the complex
plane and the corresponding paths of steepest descent. Two paths emerge
from the endpointsx = −1 andx = 1. They are connected by a path passing
through the stationary point atx = 0

exhibit convergence. TheFilon-type methods[16, 15, 17] are based on polyno-
mial interpolation of the amplitudef and can deliver errors that areO(ω−p) for
anyp, much like truncated asymptotic expansions, but with controllable error for
fixedω. Filon-type methods require thatmomentswk = I[xk] are available, a se-
rious drawback in some cases. Combining asymptotic expansions and Filon-type
methods [1] can economise on, but not eliminate the need for moments. Methods
that do not rely on moments are theLevin-type methods, due to Levin [19] and
extended by Olver [23, 24]. Levin-type methods do not work in the presence of
stationary points, but a work-around is provided in [22]. We refer the reader to [11]
for a detailed overview of these and other numerical methods.

One of the alternatives is thenumerical method of steepest descent[12], which
is a numerical adaptation of the above described method of steepest descent. Re-
lying on classical numerical integration methods applied to an exact decomposi-
tion of the integral, the numerical method of steepest descent has controllable error
wherever the exact decomposition is available, and asymptotic error decayO(ω−p)
for anyp. The paths of steepest descent can however be difficult to compute, as
their computation corresponds to solving a non-linear problem that can in practice
only be solved iteratively.

The method of this paper is similar in spirit but based on the practical observa-
tion that the exact choice of path is not essential. This observation resonates with
the theory behind saddle point methods. A Taylor expansion of the path of steepest
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descent, which can explicitly be derived from a Taylor expansion of the oscillator
function g, is in many cases sufficient. Iterative methods to solve a non-linear
problem can therefore be entirely avoided. We obtain a numerical scheme which
is relatively simple to implement and cheap to evaluate. The method exhibits high
asymptotic order, and the order is in fact higher than one would get from atrun-
cated asymptotic expansion using exactly the same number of derivatives ofg.
A disadvantage of this approach is that the method again is only asymptotic, even
when the decomposition using steepest-descent paths is exact, because the approx-
imate paths may diverge too far away from the exact paths deep into the complex
plane – this is the cost of simplicity.

It is the purpose of this paper to analyse the asymptotic order of the proposed
explicit numerical saddle-point method. Unlike the numerical adaptation of the
steepest-descent method and the other methods for highly oscillatory integrals
mentioned above, the asymptotic order does not follow from standard results in
asymptotic analysis. A seemingly irregular relation between the number of deriva-
tives ofg that are used and the number of quadrature points along the approximate
paths of steepest descent can only be explained in terms of elementary number the-
ory. The main result of this paper is formulated and proved in §3.4 in Theorem 3.2.

3.2 The numerical method of steepest descent

In this section we give a brief overview of the numerical method of steepestde-
scent. For a more thorough treatment, see [26] for the classical method of steepest
descent, and [12] for particularities on the numerical version. In the following,
we will for simplicity assume that all paths may extend to infinity, which implies
among other things thatf andg should be analytic in a sufficiently large portion
of the complex plane. We note that this requirement can be significantly relaxed if
so desired [10].

3.2.1 Paths of steepest descent

The method of steepest descent is based on the fact that under the above mentioned
restrictions on analyticity, the path of integration can be deformed into the complex
plane without changing the value of the integral. A path that follows so-called
paths of steepest descent, we shall see, is particularly useful.

For the oscillatory integral (3.1) the path of steepest descenthx(p) originating
at the pointx can be found by solving the equation

g(hx(p)) = g(x) + ip. (3.3)

Subject to the boundary conditionhx(0) = x, equation (3.3) is uniquely solvable
for smallp if g′(x) 6= 0. Along the path of steepest descent we haveeiωg(hx(p)) =
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eiωg(x)e−ωp, which means that the line integral

I[f ;hx, P ] = eiωg(x)

∫ P

0
f(hx(p))h′x(p)e−ωpdp,

is non-oscillatory and exponentially decreasing. By taking eg.x = −1, the left
endpoint of (3.1), this integral is the integration of the integrandf(x)eiωg(x) along
the path starting at−1.

Along paths of steepest descent originating from different points,g(hx(p))
may have different, constant real parts, hence the paths originating from two dif-
ferent points are in general different and do not connect. Therefore we need to
work with at least two paths of steepest descent, one for each endpoint.In addition
connecting paths must be introduced. If there are no stationary points, theendpoint
paths may connect at infinity by lettingP → ∞. In that case, the connecting path
has no contribution to the value of the integral. In the presence of stationarypoints
in [−1, 1] however, the connecting path must pass through all of these points and
their contributions are not negligible.

Any valueξ ∈ [−1, 1] such thatg′(ξ) = 0 is called a stationary point. We
call ξ a stationary point of orderr − 1 if g(i)(ξ) = 0 for i = 1, 2, . . . , r − 1,
andg(r)(ξ) 6= 0.1. The canonical example of a stationary point of orderr − 1
at x = 0 is g(x) = xr. At a stationary point, equation (3.3) may have several
solutions. In particular, ifξ is a stationary point of orderr − 1 > 0, then there are
r different paths,hξ,j , j = 1, . . . , r, emerging fromξ. Since the connecting path
passes troughξ only once, exactly two of these paths are relevant. We denote these
two paths byhξ,j1 andhξ,j2 . Each of these paths corresponds to an integral of the
form

I[f ;hξ,j , P ] = eiωg(ξ)

∫ P

0
f(hξ,j(p))h

′
ξ,j(p)e

−ωp dp.

Again, lettingP → ∞ eliminates contributions from paths connectinghξ with
other steepest-descent paths, under above mentioned assumptions. Writing

I[f ;hx] = lim
P→∞

I[f ;hx, P ],

the integral (3.1) is represented as a sum of contributions

I[f ] = I[f ;h−1] − I[f ;hξ1,j1 ] + I[f ;hξ1,j2 ]

+ . . .− I[f ;hξn,j1 ] + I[f ;hξn,j2 ] − I[f ;h1],

whereξ1, . . . , ξn are stationary points. We will in the rest of this paper concentrate
on integrals of the typeI[f ;h], hereafter referred to as steepest-descent integrals.

1Note that with this definition any point which is not a stationary point, these may well include
endpoints, may be considered points of order0

59



NUMERICAL STEEPEST DESCENT WITH PATH APPROXIMATIONS

3.2.2 Numerical evaluation of steepest-descent integrals

Steepest-descent integrals can be approximated efficiently with Gaussian quadra-
ture. This is the observation behind the numerical method of steepest descent,
which we shall briefly explain here.

For convenience, we introduce the notation

fx(p) = f(hx(p))h′x(p).

The contribution from an endpoint becomes

I[f ;hx] = eiωg(x)

∫ ∞

0
fx(p)e−ωpdp =

eiωg(x)

ω

∫ ∞

0
fx

( t

ω

)

e−tdt. (3.4)

Sincefx(t/ω) is smooth, this integral can be computed efficiently with classical
Gauss-Laguerre quadrature for the weight functione−t [6]. Applying ann-point
quadrature yields an approximation with errorO(ω−2n−1) [12]. Truncating the
asymptotic expansion aftern terms yields onlyO(ω−n−1) asymptotic error, but
requires the same number of evaluations off .

For the contribution from a stationary point things are a little different. When
ξ is a stationary point of orderr − 1 > 0, hξ(p) behaves asp1/r nearp = 0

andh′ξ(p) has ap−(r−1)/r singularity [9]. This singularity can be canceled by the
substitutionp = qr. The contribution is now written

I[f ;hξ] = reiωg(ξ)
∫∞
0 fξ(q

r)qr−1e−ωqr
dq (3.5)

= reiωg(ξ)

ω

∫∞
0 fξ(

tr

ω )tr−1e−trdt.

This is an integral of the form (3.2). Sincefξ(
tr

ω )tr−1 is a smooth function, the
integral can be efficiently approximated by Gaussian quadrature with weight func-
tion e−tr . We note that it may be beneficial to merge the two contributions from a
stationary point into a single integral over the whole real line. For example, inthe
case of a first order stationary point (r = 2), classical Gauss-Hermite quadrature
can be applied [7]. In this exposition, however, we will only work with integrals
on the half-space.

The result of applying ann-point Gaussian quadrature leads to an approxima-
tion with an error which isO(ω−(2n+1)/r) asω → ∞ [7, Lemma 1]. In con-
trast, truncating the asymptotic expansion aftern terms yields onlyO(ω−(n+1)/r)
asymptotic error, but requires the same number of evaluations off .

3.3 A numerical saddle point method

Finding the path of steepest descent means solving equation (3.3). This is anon-
linear equation and solving it amounts to computing the inverse functiong−1,
which in practical applications may be difficult to achieve. The rationale in this
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section is that in many cases it is sufficient to have only a rough approximationof
the exact steepest-descent path. If not, then the rough approximation is still use-
ful as a starting value for, e.g., Newton iterations to solve the non-linear equation
numerically.

Here, we obtain a local approximation of the path by means of its Taylor series
aroundx. Only derivatives ofg atx are used to construct this approximation. This
approximate path may diverge away from the actual steepest-descent path deep
into the complex plane. However, this is not a problem in practice providedω
is large: because the quadrature points cluster towardsx asω grows, as can be
seen from equations (3.4) and (3.5), a good approximation close to the real axis is
generally sufficient.

3.3.1 Local paths at endpoints

In the case of the steepest-descent path emerging from an endpoint, we assume
that the path is of the form

hx(p) = x+
∞
∑

j=1

ajp
j . (3.6)

Note that we already incorporated the boundary conditionhx(0) = x. Substitution
into equation (3.3) gives

g
(

x+
∞
∑

j=1

ajp
j
)

= g(x) + ip.

Taking the Taylor expansion ofg aroundx yields the equation

∞
∑

k=1

(
∑∞

j=1 ajp
j)k

k!
g(k)(x) = ip. (3.7)

The coefficients can now be obtained by series inversion. The first fewcoefficients
are given explicitly by, with evaluation inx implied,

a1 =
i

g′
, a2 =

1

2

g′′

(g′)3
,

a3 =
i

6(g′)5
(

g′g′′′ − 3(g′′)2
)

, (3.8)

a4 = − 1

24

1

(g′)7

(

g(4)(g′)2 − 10g′g′′g′′′ + 15(g′′)3
)

.

In general,ak is given in terms of derivatives ofg up to orderk.
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We define the local path̃hx by truncating the series ofhx afterm terms,

h̃x(p) = x+
m−1
∑

j=1

ajp
j . (3.9)

This means that the left and right hand side of (3.3) match up to orderm,

g(h̃x(p)) = g(x) + ip+ O(pm), p→ 0. (3.10)

From this path we can define the steepest-descent integral with an approximated
path, using the notatioñfx(p) = f(h̃x(p))h̃′x(p) andg̃x(p) = g(h̃x(p)),

I[f ; h̃x, P ] =

∫ P

0
f̃x(p)eiωg̃x(p)dp. (3.11)

We shall later evaluate this integral numerically. The numerical approximation will
serve as an approximation to the infinite integralI[f ;hx], we shall see that this is
indeed justified in §3.4.1.

3.3.2 Local paths at stationary points

We now turn our attention to paths passing through stationary points. Letx be
a stationary point of orderr − 1, meaning thatg′(x) = . . . = g(r−1)(x) = 0,
but g(r)(x) 6= 0. Expanding the path starting atx in integer powers ofp is not
possible, sincehx(p) is singular atp = 0. This can also be seen from equation
(3.7): the firstr−1 terms in the expansion ofg in the left hand side would be zero,
which makes it impossible to match the right hand side of the equation. However,
proceeding as in §3.2.2, the substitutionp = qr eliminates this problem. Thus, we
assume a path of the form

hx(p) = x+
∞
∑

j=1

ajp
j/r. (3.12)

Note that the functionhx(qr) is analytic inq. Plugging this ansatz into equa-
tion (3.3) for the path of steepest descent yields

∞
∑

k=r

(
∑∞

j=1 ajp
j/r)k

k!
g(k)(x) = ip. (3.13)

The first coefficient is easily obtained,

a1 = r

√

ir!

g(r)(x)
. (3.14)
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Ther-th root in this expression hasr branches in the complex plane, correspond-
ing to ther different paths near the stationary point. More coefficients can be
computed recursively. In the case of an order one stationary point, the first four
coefficients are, with evaluation inx implied,

a1 = ±
√

2i

g′′
, a2 = − i

3

g(3)

(g′′)2
,

a3 = ±
√

2i

g′′
i

36(g′′)3

(

5(g′′′)2 − 3g′′g(4)
)

, (3.15)

a4 =
1

270

1

(g′′)5

(

40(g′′′)3 − 45g(4)g′′′g′′ + 9g(5)(g′′)2
)

.

Explicit expressions for the coefficients can be found for generalr. We refer the
reader to [25] for a general description of such explicit expressions.

As in the endpoint case, we form an approximated path by truncating (3.12)
afterm terms,

h̃x(p) = x+
m−1
∑

j=1

aj p
j/r. (3.16)

This means that the both sides of (3.3) match up to orderr+m−1
r ,

g(h̃x(p)) = g(x) + ip+ O(p
r+m−1

r ), p→ 0. (3.17)

This expression agrees with (3.10) forr = 1. Next, we form the integral

I[f ; h̃x, P ] =

∫ P

0
f̃x(p)eiωg̃x(p)dp.

=

∫ Q

0
rqr−1f̃x(qr)eiωg̃x(qr)dq. (3.18)

with Q = P 1/r.

3.3.3 Numerical evaluation

As noted in section §3.2.2, it is advantageous to evaluate the half-space integral
I[f, hx] with Gaussian quadrature. Though the integralI[f, h̃x, P ] is finite, we
intend to apply Gaussian half-space quadrature here as well.

For the numerical evaluation of steepest-descent integrals with approximated
paths, we rewrite (3.18) as

I[f ; h̃x, P ] =

∫ Q

0
rqr−1f̃x(qr)eiωg̃x(qr)+ωqr

e−ωqr
dq. (3.19)
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Note that (3.11) is a special case of (3.19) withr = 1, so that we can treat the
cases of endpoints and stationary points simultaneously. A change of variables
q = ω−1/rt gives the form

I[f ; h̃x, P ] =
r

ω

∫ Qω1/r

0
tr−1f̃x(tr/ω)eiωg̃x(tr/ω)+tre−trdt.

This integral can be evaluated with the same Gaussian half-space quadrature rules
with weight functione−tr that were used on the exact steepest-descent integrals.
To be precise, if that quadrature rule is given by pointsxi and weightswi, then we
propose the approximation

I[f ; h̃x, P ] ≈ Q[f ; h̃x] :=
r

ω

n
∑

i=1

wix
r−1
i f̃x

(

xr
i

ω

)

e
iωg̃x

„

xr
i

ω

«

+xr
i
. (3.20)

We expect that this quadrature rule provides a good approximation toI[f ; h̃x, P ].
This is what we examine next in §3.4.

3.4 Asymptotic error analysis

Thus far, we have presented a way of obtaining a numerical approximationof
I[f ; h̃x, P ]. We will show first in §3.4.1 that this finite saddle-point integral is a
good (asymptotic) approximation to the infinite steepest-descent integralI[f ;hx].
Next, we shall investigate in §3.4.2 the numerical approximation ofI[f ; h̃x, P ] by
Gaussian quadrature. Theorem 3.2 gives the asymptotic order of this approxima-
tion. Its proof follows in §3.4.3 and §3.4.4.

3.4.1 The error of using truncated approximate paths

In the method outlined in section §3.3, we replaced the exact path of steepest
descenthx originating atx with an approximatioñhx that is valid only nearx.
By our assumptions of analyticity, the path taken does not change the value of the
integral. However, since the approximate path may diverge away from the exact
path for largeP , the limitP → ∞ may result in both paths leading into different
sectors of the complex plane. It is clear that the integral along the approximate
path should be truncated at finiteP to avoid this. In the following theorem and
corollary, we prove that the difference between the exact steepest-descent integral
I[f ;hx] and the truncated integralI[f ; h̃x, P ] is exponentially small asω → ∞,
providedP is sufficiently small. This implies that using a numerical approximation
of I[f ; h̃x, P ] is justified.
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Figure 3.2: Illustration of the exact (continuous) and approximate (dashed) steepest-
descent paths. The curveΓ connects a truncation of these two paths

Theorem 3.1. Let x ∈ [−1, 1] be a point of orderr − 1. Assumef andg are
analytic, and let̃hx(p) be anm-term approximation to the exact pathhx(p) as
in (3.16) withm > 1. Then a constantP0 > 0 exists, such that

I[f ;hx, P ] − I[f ; h̃x, P ] = O(ω−n), ∀n > 0, ∀P < P0.

Proof. By Cauchy’s integral theorem we have

I[f ; h̃x, P ] − I[f ;hx, P ] =

∫

Γ
f(s)eiωg(s)ds,

whereΓ is any simple path connectinghx(P ) and h̃x(P ). In the following, we
chooseΓ to be the straight line. We intend to show that the integrand is exponen-
tially small along all ofΓ.

Let us expandg in a Taylor series aroundhx(P ). We haveg(x+ δ) = g(x) +

O(δr) andg(j)(x+ δ) = O(δr−j). Sincehx(p) = O(p1/r), we find that

g(j)(hx(p)) = O(p(r−j)/r). (3.21)

We have by construction thathx(p) − h̃x(p) = O(pm/r) and therefore,

γ − hx(P ) = O(Pm/r), γ ∈ Γ, P → 0. (3.22)

To conclude, we note that for sufficiently smallP , such thatΓ lies in the radius of
convergence of the Taylor series ofg athx(P ), and for anyγ ∈ Γ, we may write

g(γ) = g(hx(P ) + γ − hx(P )) =
∑∞

j=0 g
(j)(hx(P )) (γ − hx(P ))j

= g(x) + iP +
∑∞

j=1 g
(j)(hx(P )) (γ − hx(P ))j .
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Now, if m > 1, by considering (3.22) and (3.21), the termiP dominates the terms
in the summation asP → 0. Thereforeg has positive imaginary part alongΓ, again
for sufficiently smallP . It follows in that case that the integrand is exponentially
small along all ofΓ.

Corollary 3.1. Under the assumptions of Theorem 3.1, providedP < P0,

I[f ;hx] − I[f ; h̃x, P ] = O(ω−n), ∀n > 0, ω → ∞.

Proof. We have

I[f ;hx] = I[f ;hx, P ] +

∫ ∞

P
ψ(q)e−ωqr

dq,

whereψ(q) is analytic inq. It follows from repeated integration by parts that

I[f ;hx] − I[f ;hx, P ] = O(ω−n), ∀n > 0 ω → ∞.

The result follows from this and Theorem 3.1.

3.4.2 Asymptotic error of the numerical approximation

Since replacing the paths does not lead to a loss in asymptotic order, the or-
der of the overall method relies on the order of the numerical approximation of
I[f ; h̃x, P ]. We evaluate the latter by a quadrature rule. A quadrature rule with
n points and with orderd with respect to the weight functione−xr

satisfies the
conditions

∫ ∞

0
xje−xr

dx =
n
∑

k=1

wk x
j
k, j = 0, . . . , d− 1. (3.23)

Using such a rule for the steepest-descent integral leads to an asymptotic error
of sizeO(ω−(d+1)/r) [7, Th.2]. When using an approximate path, we have the
following result. Note that by integer divisiond\β, we mean that the real quantity
d/β is rounded towards the nearest smaller integer.

Theorem 3.2. Assumex is either a regular point,r = 1, or a stationary point of
orderr − 1 > 0. An approximationI[f ; h̃x, P ] to the steepest-descent integral
I[f ;hx] is constructed by replacing the pathhx with its m-term Taylor expan-
sion h̃x, with m > 1 and withP < P0 sufficiently small as in Theorem 3.1.
Let Q[f ; h̃x], given by (3.20), denote the approximation toI[f ; h̃x, P ], obtained
through ann-point quadrature rule of orderd that satisfies the conditions (3.23).

Defineβ = r +m− 1, k = d\β andl = d mod β. Then

I[f ;hx] −Q[f ; h̃x] =

{

O(ω− d+1
r

+k), if l ≤ m− 1,

O(ω− d+1
r

+k+
l−(m−1)

r ), if l > m− 1,
(3.24)
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for ω → ∞. In particular, forr = 1 we have

I[f ;hx] −Q[f ; h̃x] = O(ω−d−1+d\m).

We can also formulate an upper bound for the exponents in (3.24) that avoids
integer arithmetic.

Corollary 3.2. Under the same conditions as in Theorem 3.2, we have

I[f ;hx] −Q[f ; h̃x] = O(ω
− d+1

r
+ d

β ). (3.25)

Proof. For the first case of (3.24), note thatk = d\β ≤ d/β. For the second case,
assume thatl = K + m − 1 with 0 < K < r. Thenk + l−(m−1)

r = k + K
r <

k + K+m−1
r+m−1 = d

β .

Let us first compare the result of Theorem 3.2 to the result based on using the
exact path. One incurs a loss of minimumk = d\β = d\(r +m− 1). In order to
achieve the full order(d+ 1)/r, one should at least havek = 0, meaningd < β,

m > d− r + 1.

Full order is then achieved ifl ≤ m−1, which is always true wheneverr = 1, and
more likely to be violated for largerr. In the converse case, we have a maximum
order loss of one.

Next, we compare to the result based on using a truncated asymptotic expan-
sion. This is more involved. Ans-term expansion has asymptotic errorO(ω−(s+1)/r)

and requires the valuesg(j)(x), j = 0, . . . , r + s − 1 [16]. Using these same val-
ues, we can affordm = s+ 1.The asymptotic expansion also requires thes values
f (j)(x), j = 0, . . . , s− 1, whereas the proposed method needsn evaluations off
andg. We choosen = s for the comparison and continue by counting evaluations
of f or any of its derivatives. For the asymptotic expansion,s values off lead to
order s+1

r . A Gaussian quadrature rule with respect to the weight functione−xr

yieldsd = 2s. By Corollary 3.2, the proposed numerical saddle-point method then
yields an order greater than or equal to

d+ 1

r
− d

β
=

2s+ 1

r
− 2s

r + s
=
s+ 1

r
+
s

r

[

s− r

r + s

]

.

Thus we are guaranteed to do at least as good as the asymptotic expansionwhen-
evers ≥ r.

Note that in the above, we ignored the evaluations ofg in the complex plane.
This is justified in a setting where many integrals of the formI[f ] need to be
evaluated for the same oscillatorg, for example when computing moments for
later use in Filon-type quadrature [16].

Both these calculations show that the proposed method compares well to both
the method with exact paths and asymptotic expansions whenr is relatively small.
In real-life applications we do however not expect to encounter cases with r being
large, we will typically haver = 1 or r = 2.

67



NUMERICAL STEEPEST DESCENT WITH PATH APPROXIMATIONS

3.4.3 Supporting lemmas for the proof of Theorem 3.2

We once again rewrite the integralI[f ; h̃x, P ] in the following form:

I[f, h̃x, P ] = eiωg(x)

∫ Q

0
ψ̃(q)eiωRr+m−1(q)e−ωqr

dq, (3.26)

wherer − 1 is the order of the pointx,Rβ(q) is a function of the form

Rβ(q) = qβ
∞
∑

j=0

rjq
j . (3.27)

To be precise, one sees by comparing to (3.19) that this means

Rr+m−1(q) = g̃x(qr) − iqr − g(x),

and
ψ̃(q) = r f̃x(qr) qr−1.

It is important in the following that the functionRr+m−1(q) indeed vanishes to
orderr + m − 1, which can be seen by inserting (3.17) into (3.19), and that the
functionψ̃(q) is a smooth function independent ofω.

The following lemma is a generalization of Lemma 2.1 in [7]. That lemma
characterized the asymptotic order of a scaled quadrature rule applied to asteepest-
descent integral of the form (3.2). Assume ann-point quadrature rule is given that
satisfies the conditions (3.23). It was proved in [7] that, for a functionu(x) analytic
in x = 0, the quadrature approximation behaves as

∫ ∞

0
u(x)e−ωxr

dx− ω−1/r
n
∑

k=1

wku(xkω
−1/r) = O(ω−(d+1)/r).

Here, we will allow the integrand to depend onω in a benign manner and show that
the asymptotic order changes in a way that reflects the possible growth or decay of
the integrand as a function ofω.

Lemma 3.1. Assume ann-point quadrature rule is given such that conditions (3.23)
hold. Letu(x;ω) be analytic inx = 0 with a positive radius of convergenceR for
eachω ≥ ω0,

u(x;ω) =
∞
∑

j=0

aj(ω)xj , |x| < R, (3.28)

and such thataj = O(ωγj ) with γj ∈ R. If 0 < P < R, then

∫ P

0
u(x;ω)e−ωxr

dx− ω−1/r
n
∑

k=1

wku(xkω
−1/r;ω) = O(ωmaxj≥d γj− j+1

r ).
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Proof. We have
∫ P

0
u(x;ω)e−ωxr

dx =
∞
∑

j=0

aj(ω)

∫ P

0
xje−ωxr

dx.

Using integration by parts, as in the proof of Corollary 3.1, we find that
∫ ∞

0
xje−ωxr

dx−
∫ P

0
xje−ωxr

dx = O(ω−m), ∀m ∈ N.

Next, it is straightforward to verify that
∫ ∞

0
xje−ωxr

dx− ω−1/r
n
∑

k=1

wk (xkω
−1/r)j =

{

0, j < d,

O(ω−(j+1)/r), j ≥ d.

The first case follows from exactness of the quadrature rule for polynomials up to
degreed−1. The second case follows because both terms in the left hand side have
the given size: the integral can be computed explicitly, the summation contains the
factorω−(j+1)/r.

Combining all of the above proves the result. Note thatu(x;ω) is evaluated in
the pointsxkω

−1/r which, for sufficiently largeω, lie in the radius of convergence
of u.

Finally, we will examine the asymptotic size of functions of the formeωη(x)

and their derivatives. In order to obtain the result, we use a version of Faà di
Bruno’s formula expressed with integer partitions. A partition of an naturalnumber
n ≥ 0 is a way of writing it as a sum of natural numbers. The number of different
ways to do this is the partition number ofn, denoteda(n). We write a partitionp
of the integern as an arrayp = (p1, p2, . . . , pn), wherepj is the number of times
the integerj occurs in the sum, i.e.,

n
∑

j=1

j pj = n. (3.29)

See, e.g., [4] for a detailed treatment of partitions and [18] for Faà di Bruno’s
formula, which we recall in the following Lemma.

Lemma 3.2(Faà di Bruno’s Formula). If g andf are functions that are sufficiently
differentiable, then

dn

dxn
g(f(x)) =

∑ n!

p1!p2! . . . pn!
g(k)(f(x))

(f ′(x)
1!

)p1
(f ′′(x)

2!

)p2

. . .
(f (n)(x)

n!

)pn

,

where the sum is over all partitionsp of n with entriesp1, p2, . . . , pm, andk =
p1 + p2 + . . .+ pn.
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Lemma 3.3. LetRβ(q) be defined by (3.27) for an integerβ > 0. The derivatives
of eωRβ(q), evaluated atq = 0, have an expansion of the form

dn

dqn
eωRβ(q)

∣

∣

∣

q=0
=

n\β
∑

j=0

bj ω
j , ω → ∞,

where\ denotes integer division.

Proof. It is clear that

R
(j)
β (0) = 0, 0 ≤ j < β. (3.30)

Using Faà di Bruno’s Formula (Lemma 3.2), we have

dn

dqn
eωRβ(q)

∣

∣

∣

q=0
=

eωRβ(0)
∑ n!

p1!p2! . . . pn!

(ωR′
β(q)

1!

)p1
(ωR′′

β(q)

2!

)p2

. . .
(ωR

(n)
β (q)

n!

)pn

=
∑ n!

p1!p2! . . . pn!

(ωR
(β)
β (q)

β!

)pβ
(ωR

(β+1)
β (q)

(β + 1)!

)pβ+1

. . .
(ωR

(n)
β (q)

n!

)pn

,

where the sum is over all partitionsp of n. The last line follows from equation
(3.30). Clearly, each of the terms in this sum is proportional toω

Pn
j=β pj . It is

also clear that the expansion consists of positive integer powers ofω. To find
the dominating term, we maximise the expression

∑n
j=β pj over the set of all

partitions ofn. It remains only to prove that

n
∑

j=β

pj ≤ n\β, ∀ p partitions of n.

Assume a partitionq of n exists such that

n
∑

j=β

qj = n\β +M,

with M > 0. From q we can construct another partitioñq as follows. We let
q̃β = n\β +M andq̃j = 0, j > β. It follows from our construction that

n
∑

j=β

j qj ≥
n
∑

j=β

j q̃j = β(n\β +M) > n.

No matter how we choosẽqj for j < β, q̃ can never satisfy the summation prop-
erty (3.29) and neither canq. This proves the resultreductio ad absurdum.
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The final lemma concerns the maximal exponent ofω that may arise in the
result of Lemma 3.1.

Lemma 3.4. Assume thatr andβ are integers such thatβ > r and define the
sequence

sj = j\β − j

r
.

For any positive integerd, let k = d\β and l = d mod β. The maximum of
{sj}∞j=d is

max
j≥d

sj =

{

k − d
r , if l ≤ β − r,

k + 1 − (k+1)β
r , if l > β − r.

Proof. For the integer division we have the identity

j\β =
j

β
− 1

β
(j mod β). (3.31)

This means that

sj = j(
1

β
− 1

r
) − 1

β
(j mod β).

The first of these terms is decreasing monotonically. The second term is non-
increasing, except when the integer part ofj/β changes. This implies that the
largest element in the sequence forj ≥ d is either the first element,sd, or snβ for
some integern. In the latter case, we have

snβ = n(1 − β/r),

which again is decreasing. This means that a maximum must occur at the smallest
admissiblen. This isn = k, whend is a multiple ofβ, andn = k + 1 otherwise.
This leads toskβ = sd as above ors(k+1)β .

From the identity (3.31), we find that the corresponding element is either

sd = d\β − d

r
= k − d

r

or

s(k+1)β = (k + 1)β\β − (k + 1)β

r
= k + 1 − (k + 1)β

r
.

One easily verifies that the former is larger than the latter ifl < β − r. They are
equal ifl = β − r.
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3.4.4 Proof of Theorem 3.2

We assembled enough results in §3.4.3 to state a short proof of Theorem 3.2. In
the following, letβ = r +m− 1.

Proof. Leibniz’ formula gives the derivatives of the integrand of (3.26) as the sum

dn

dqn

[

ψ̃(q)eiωRβ(q)
]

=
n
∑

j=0

(

n
j

)

[ dj

dqj
eiωRβ(q) dn−j

dqn−j
ψ̃(q)

]

.

Lemma 3.3 applied to each of the these terms gives an expansion of the form,

dn

dqn

[

ψ̃(q)eiωRβ(q)
]

q=0
=

n\β
∑

j=0

cj ω
j .

Hence, a Taylor series aroundq = 0 has coefficients that areO(ωn\β).
All conditions of Lemma 3.1 are satisfied and we can conclude that the error

of the quadrature approximation is

I[f ; h̃x, P ] −Q[f ; h̃x] = O(ωmaxj≥d j\β−(j+1)/r).

The maximum in the exponent follows from Lemma 3.4, since

j\β − (j + 1)/r = −1/r + [j\β − j/r] = −1/r + sj ,

wheresj is defined as in Lemma 3.4. This leads to the stated order (3.24) of the
quadrature approximation. The casel ≤ β − r = m− 1 follows immediately. For
the second case, one can verify that

k + 1 − (k + 1)β

r
− 1

r
= −d+ 1

r
+ k +

l − (m− 1)

r
.

For r = 1, the second case does not arise because thenβ = r +m − 1 = m and
the conditionl ≤ m− 1 always holds, so the result simplifies.

Thus far we proved the asymptotic error in approximatingI[f ; h̃x, P ]. The
final result now follows from Corollary 3.1.

3.5 Numerical experiments

In this section we will illustrate the use of the method outlined in section §3.3 as
well as the results regarding the asymptotic error behaviour predicted in Theorem
3.2.
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Figure 3.3: Log-plot of error for different path approximations. Case of regular endpoint

3.5.1 Test of case with no stationary points

Consider the highly oscillatory integral

I[f ] =

∫ 1

−1
sin(x)eiω/(x+2)dx.

The oscillatorg(x) = 1/(x + 2) has no stationary points, meaning there are only
contributions from the endpoints. The exact paths can be computed in this case.

In Figure 3.3 we have plotted the error of the two-point Gauss-Laguerrequadra-
ture applied to the resulting line integrals with the given exact paths as well as ap-
proximate paths with different number of terms. Note that the approximate paths
are constructed only with the knowledge of some derivatives ofg.

The loss of order when using approximate paths, which can clearly be ob-
served in Figure 3.3, is predicted in Theorem 3.2. We shall test the conclusion of
the theorem by using approximate paths with different number of terms and dif-
ferent number of quadrature points, and then measuring the asymptotic order by
regression for each combination. The result of this test can be seen in Table 3.1
along with the predicted order,2n+ 1 − 2n\m.

3.5.2 Comparison with classical asymptotic expansion

As noted in the introduction, the numerical method of steepest descent with ap-
proximated paths is asymptotic in its nature and should be compared to a classical
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n ↓,m→ exact 2 3 4 5
1 3.0(3) 2.0(2) 3.0(3) 3.0(3) 3.0(3)
2 5.0(5) 3.1(3) 4.0(4) 4.1(4) 5.0(5)
3 7.0(7) 4.2(4) 5.1(5) 6.9(6) 6.2(6)
4 9.0(9) 5.3(5) 7.1(7) 7.3(7) 8.0(8)

Table 3.1: Measured order for different numbersn of Gauss-Laguerre points withm terms
in the Taylor expansion of the steepest-descent path. Firstcolumn is with the
exact path. Numbers in parentheses are orders predicted in Theorem 3.2.

1 derivative ofg 2 derivatives ofg
ω → 10 50 100 10 50 100

Asymptotic 1.49e-02 1.24e-03 4.11e-052.10e-02 1.84e-04 2.85e-05
1-point NSD 1.53e-03 5.39e-04 3.27e-051.70e-02 1.56e-04 2.37e-05
2-point NSD 1.19e-03 2.98e-05 3.31e-063.96e-03 4.83e-07 1.85e-07
3-point NSD 1.01e-03 1.49e-06 7.59e-087.80e-04 1.87e-07 7.62e-09
4-point NSD 7.40e-04 5.48e-08 5.83e-103.07e-05 1.81e-08 2.25e-10

Table 3.2: Comparison of the error of the classicaln-term asymptotic expansion which
usesn derivatives ofg and them-term approximated path approximation which
usem − 1 derivatives ofg. The rows two to five contain results for numerical
steepest descent with approximated paths and one to four quadrature points.

asymptotic expansion. This expansion, written out explicitly in eg. [16], requires
derivatives off , which the method of steepest descent does not. On the other hand,
the asymptotic expansion only evaluates the functions at the endpoints, whereas
the proposed method can be evaluated at a chosen number of complex evaluation
points. A fair comparison is therefore not straightforward. We shall attempt this
on applying the two approaches on the integral

I =

∫ 1

−1
eiω sin(πx/3)dx,

usingn = 1, . . . , 4 Gaussian evaluation points for the steepest descent method.
The results in Table 3.2 shows that the method of steepest descent with approxi-
mated paths performs consistently better than the truncated asymptotic expansion.
Note that adding evaluation points is computationally cheap; there is potential for
doing much better with little extra work.
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3.5.3 Case of stationary points

Now consider the integral

I =

∫ 1

0
cos(x)eiω(x3+2x2)dx,

which has an order one stationary point at the origin. Even in this simple poly-
nomial case the exact path originating from the stationary point is cumbersometo
compute. Instead we construct the paths with the coefficients (3.15).

The steepest-descent integral corresponding to the path from the stationary
point atx = 0 is computed with a scaled Gaussian quadrature. By using the exact
path and a large number of quadrature points, we can nearly eliminate the error
contribution from the right endpoint. Thus the error will be dominated by the error
from thex = 0 contribution. Running over a range of differentω we estimate the
order by regression, and the results fit with the predictions from Theorem 3.2 (see
Table 3.3a).

No attempt to use exact paths at the origin was done, and the reference so-
lution was obtained with Matlab’s standard quadrature package close to machine
precision.

For completion, we include the results from parallel tests done on the integral

I =

∫ 1

0
eiω(x4+4x3)dx,

which has an order2 stationary point at the origin(Table 3.3b).

(a)

n ↓,m→ 2 3 4
1 1.0(1) 1.5(3/2) 1.5(3/2)
2 1.5(3/2) 1.5(3/2) 2.0(2)
3 1.6(3/2) 2.4(5/2) 2.5(5/2)
4 1.9(2) 2.4(5/2) 3.5(7/2)

(b)

n ↓,m→ 2 3 4
1 0.6(2/3) 1.0(1) 1.0(1)
2 0.6(2/3) 1.0(1) 1.3(4/3)
3 0.9(1) 1.7(4/3) 1.3(4/3)
4 1.4(1) 1.6(5/3) 2.4(2)

Table 3.3: Measured order for different numbersn of Gauss points withm terms in the
expansion of the steepest-descent path. Numbers in parentheses are orders
predicted in Theorem 3.2. a)-Case of order one stationary point, b)-Case of
order two stationary point.

75



NUMERICAL STEEPEST DESCENT WITH PATH APPROXIMATIONS

3.5.4 Effect of singularities on path approximations

0 10 20 30 40
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ω

 

 Exact path

2 terms

4 terms

(a) 6 Gaussian evaluation points

0 10 20 30 40
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

ω

 

 Exact path

2 terms

4 terms

(b) 12 Gaussian evaluation points

Figure 3.4: Influence of singularities in the complex plane on the method. Error plotted
for exact paths and path approximations with 2 and 4 terms
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Figure 3.5: Contours of the imaginary part of the oscillatorg(x) = 1/(1+x2) with exact
path and approximations

It is important to note that the numerical method of steepest descent, both with
exact and approximated paths, can perform well in non-analytical cases. Singu-
larities in the complex plane have only an exponentially small influence on the
integral. Of course, a quantity that is exponentially small for increasingω may be
arbitrarily large for any fixed value ofω and thus tangible restrictions on the size
of ω may apply.
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As an example we consider the integral
∫ 1

0
e
iω 1

1+x2 dx,

whose oscillator has poles atx = ±i. By considering the asymptotics of the
path equation (3.3), it is easy to verify that paths of steepest descent approach the
poles asp → ∞. If the paths are truncated they are contained in a section of the
complex plane where the integrand is analytic and thus Cauchy’s theorem applies.
The pole at−i hardly affects the accuracy when using exact paths, as shown in
Figure 3.4. However, the pole does affect the accuracy of the path approximation.
The approximate paths using2 or 4 terms are shown in Figure 3.5. Still, forω
large enough the influence of the pole is negated by the clustering of the evaluation
points near the real axis. Using more evaluation points, some of which are located
further away from the real axis, means that this effect comes in at a higher ω.

3.6 Extensions

In this final section we describe two extensions of the proposed scheme that are
likely to be interesting in applications. We omit formal statements with proofs for
the sake of brevity, but nevertheless we aim to be precise.

3.6.1 Avoiding the use of derivatives

(a)

n ↓,m→ 2 3 4 5
1 2.0 3.0(3) 3.0(3) 3.0(3)
2 3.1(3) 4.0(4) 4.1(4) 5.0(5)
3 4.2(4) 5.1(5) 7.0(6) 6.3(6)
4 5.7(5) 7.3(7) 7.7(7) 8.0(8)

(b)

n ↓,m→ 2 3 4
1 1.0(1) 1.5(3/2) 1.5(3/2)
2 1.5(3/2) 1.5(3/2) 2.0(2)
3 1.4(3/2) 2.5(5/2) 2.4(5/2)
4 1.8(2) 2.4(5/2) 3.4(5/2)

Table 3.4: Repetition of the experiments in Table 3.1 and 3.3(a), but with derivatives ob-
tained from a finite difference approximation with appropriately scaled evalu-
ation points.

The proposed scheme requires the computation of derivatives, which maynot
always be available. This is true for most numerical schemes for oscillatory inte-
grals with high asymptotic order, because the asymptotic behaviour of the integral
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depends precisely on those derivatives. However, when aiming for high asymp-
totic order, it is sufficient to know derivatives only approximately, as longas the
accuracy of the approximation scales withω in a suitable fashion.

This was exemplified for Filon-type quadrature in [15]: Hermite interpolation
of derivatives at critical points in this setting can be replaced by interpolation in
points that are spacedO(ω−1) apart without sacrificing asymptotic order of accu-
racy. A similar observation holds for our method: the exact derivatives of g can be
replaced by finite difference approximations and it is sufficient that the points are
spacedO(ω−1) apart, and the asymptotic rate of error decay will stay the same.

To be precise, let us assume that the derivatives employed in the method are
approximated withO(ω−1) error, i.e.,

g̃(k)(x) = g(k)(x) + ek(ω), (3.32)

whereek(ω) = O(ω−1). Note that when using finite differences of orderhp with
h ∼ ω−1 spacing, the error may actually be asymptotically smaller.

We construct path approximationsh̃∗x with coefficients̃aj on the basis of these
derivative approximations. One can verify that theO(ω−1) error finds its way into
the path equation with the same asymptotic size:

g(h̃∗x(p)) = g(x) + ip+
∞
∑

k=r+m−1

(
∑∞

j=1 ãjp
j/r)k

k!
g̃(k)(x) + E(ω, p),

with E(ω, p) = O(ω−1) for each value ofp.2 Thus

g(h̃∗x(qr)) = g(x) + iqr +Rr+m−1(q) + E(ω, qr),

in the notation of §3.4.3. If we define a new residual function

R̃r+m−1(q) = Rr+m−1(q) + E(ω, qr),

the proof of Theorem 3.2 must be reconsidered with this function. The critical
point here is Lemma 3.3, which is concerned with the growth of derivatives of
functions of the formeωRβ . The property of vanishing derivatives (3.30) in this
Lemma clearly doesn’t hold for̃Rβ . However, the derivatives are asymptotically
small, i.e.,

R̃
(j)
β (0) = O(ω−1), 0 ≤ j < β.

With this condition replacing (3.30), the Lemma still holds. Thus mended, the
proof in §3.4.4 in turn also holds.

Table 3.4 confirms this analysis. The experiments that were used in §5 to
experimentally determine the order of the method are repeated here with simple
finite difference approximations of the derivatives. The numbers are roughly the
same as the numbers found in Tables 3.1 and 3.3(a).

2In order to see this, note that the coefficientsãj have an error of the same size regardless of the
value ofr, which follows for example from the explicit expressions in §3.
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3.6.2 Two-dimensional integrals

Multivariate oscillatory quadrature is significantly more challenging than the uni-
variate case. However, the benefits of exploiting high oscillation are also greater
compared to traditional methods. The numerical method of steepest descentwas
extended to multivariate integrals in [13], based on repeated one-dimensional inte-
gration and tensor-product Gaussian quadrature. The computation of all steepest-
descent paths involved is a delicate matter. It turns out that path approximations
provide an important simplification in this procedure.

We consider a simple example to illustrate two-dimensional integration with
approximated paths numerically. The integral

I[f ] =

∫ ∞

0

∫ ∞

0
e−x2−y2

e
iω 1

2x+y+1 dydx,

has only one contributing point, the origin. Treating it as an iterated integral re-
quires us to solve for two paths of steepest descent, where theinner pathfor y
depends on the outer integration variablex. The inner pathu(p, x) satisfies

g(x, u(p, x)) = g(x, 0) + ip, (3.33)

and the pathv(q) for x is subsequently found from the equation

g(v(q), 0) = g(0, 0) + iq. (3.34)

The combination leads to a steepest-descent manifold(u, v) which satisfies

g(v(q), u(p, v(q))) = g(0, 0) + ip+ iq.

Construction of the paths simplifies considerably in the framework of approx-
imated paths. For the experiment we fix the number of terms in the expansion of
the two paths to be the samem. We solve equations (3.33) by replacingg(x, y)
by its Taylor series in they-direction and (3.34) by replacingg(x, 0) by its trun-
cated Taylor series at the origin. These series are in turn inverted. Table3.5 shows
measured asymptotic order for a range ofm, including exact paths, and number of
evaluation pointsn, plus the accuracy the method achieves for this problem.

The measured rates of convergence in Table 3.5 appear to be exactly the same
as those given in Table 3.1. Though an exact analysis of this case is more involved
than the repeated application of the arguments used for the univariate case, this
result should not be surprising as one can indeed think of the double integral as
a repeated one-dimensional integral with approximate paths, each of whichhas a
known asymptotic behaviour.

This line of thinking does not generalize however to the case of stationary
points, where the gradient of the oscillator vanishes, and the case of resonance
points, where the gradient of the oscillator is orthogonal to the tangent of the in-
tegration domain’s boundary. Both generalizations are a topic of further research.
The simplicity of path approximations, with explicit expressions for the path ap-
proximations, presents a motivating factor for this research.
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a)

n ↓,m→ exact 2 3 4 5
1 3.0 2.0 3.0 3.0 3.0
2 5.0 3.0 4.0 4.0 5.0
3 7.0 4.1 4.9 6.1 6.0
4 9.3 5.3 6.9 7.0 8.4

b)

n ↓, ω → 10 50 100
1 1.05e-02 4.01e-04 1.00e-04
2 4.11e-03 1.72e-05 2.04e-06
3 4.25e-03 1.30e-06 6.58e-08
4 3.74e-03 1.52e-07 3.10e-09

Table 3.5: a) Measured order for different numbersn of Gauss-Laguerre points withm
terms in the Taylor expansion of the steepest-descent pathsfor a 2D-example.
First column is with the exact path. b) Absolute error for theapproximation
obtained with two-term path approximations.
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Chapter 4

Local solutions to high frequency
scattering problems

Abstract. We consider the solution of high-frequency scattering problems in two
dimensions, modeled by an integral equation on the boundary of a smooth scatter-
ing object. We devise a numerical method to obtain solutions on only parts of
the boundary with little computational effort. The method incorporates asymp-
totic properties of the solution and can therefore attain particularly good results
for high frequencies. We show that the integral equation in this approachreduces
to an ordinary differential equation.
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