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Chapter 1

Introduction

“Divergente Rekker ere i det Hele noget Fandensskab,og det eraam &kman
vover at grunde nogen Demonstration dergaa.
-N. H. Abel in letter to Holmboe, 1928.

Classical numerical analysis has mainly revolved around a simple notion of
continuity, typically that functions are “simple” when viewed on a small scale.
More specifically there would be an underlying assumption on regularity in the
asymptotic regimé — 0, whereh is a scale in e.g. time or space. In many ways
this is a natural way to think since most physical models, especially thosigeons
ered in engineering applications, are indeed regular in this limit. The boyndar
between asymptotic analysis and numerical analysis constitutes one of thg-less
plored fields of applied mathematics, not counting honorable exceptions &ke th
analysis of stiff ODE-problems. The idea that some phenomena shoulahbiel-co
ered in other limits thah — 0 is old, and the associated techniques have proven
of great use to physicists since the time of Newton. Notions of toleranaes, er
control and efficiency, central to the numerical analyst, have hoveeamed quite
incompatible with these classical asymptotic techniques. A challenge, it has bee
pointed out, has therefore been to construct numerical methods thaponats
asymptotic characteristics, while at the same time improving accuracy over the
classical techniques, and providing e.g. error control. The recege guattention
on oscillatory problems and numerical techniques for these has resultdank-
able methods that in certain cases show dramatic improvement in efficiency ove
both classical asymptotic and numerical techniques. The success oft¢bse
niques is rooted in the the fact that they employ, often implicitly, techniques for
resolving two different asymptotic regimes, e.g. high oscillations and a slowly
varying envelope.

The problem with classical numerical quadrature methods applied to highly
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INTRODUCTION

oscillatory functions is quite obvious. Such methods typically work by approx
imating the integrand on an element of a partition, resolving the integral of the
approximate integrand and finally summing over the partition. Clearly, if the fre-
guency of the oscillation increases, the size of the partition must decreaen

to accurately resolve the integrand, thus increasing the computationalhoaed,
codes that have been touted as oscillatory quadrature methods havéytygita
ployed some way of tracking oscillations and applying a standard methodtbn ea
period of oscillation. In other words, the idea that less resolution powetls#y
needed the more oscillations there are has not been prominent in numerics.

Classical asymptotic techniques for oscillatory integrals include examples like
the method of stationary phase, the method of steepest descent andsatitkl
point methods[30]. Such methods yield asymptotic expansions of the coetside
integral. These expansions are typically non-convergent and cargivelya lim-
ited accuracy. Not until recently, with the advent of more sophisticated ricahe
methods like e.g. Levin-type methods[20, 27], Filon-type methods[16,ri¥ha-
merical steepest descent[11], has this been seen as a surmounthldepithese
numerical techniques have the property that a number of terms in the asymptotic
expansion of the error are zero, while at the same time large scale strisctere
solved. If applied correctly, such methods exhibit convergence botleiretiime
h — 0 andw — oo. Also, less computational effort is needed for such methods
the more oscillations there are.

The issue of numerical versus asymptotic approximations of integrals has a
direct analogue in the field of wave scattering. A wave scattering probléyp-s
ically modeled with a wave equation or Helmholtz equation, and a discretisation
with e.g. finite elements or spectral methods corresponds to a classieal0
approach. The Helmholtz equation can as well in some cases be reformagated
an integral equation, which in turn can be discretised using boundary mieme
However good these methods are they will run into the problem of sampling re-
quirements when the frequency of oscillation increases. Therefoteagus the
case of classical quadrature methods, the computational effort gritwvsareas-
ing frequency. Again asymptotic techniques provide approximations thahare
accurate with increasing frequency. The most basic of these being thenaen
Geometric Optics approximation(GO). More sophisticated techniques lika-Phys
cal Optics and Geometrical Theory of Diffraction(GTD)[18] are uskigmsively
in physics and engineering. All these methods are however not applicabkbey
are limited in accuracy, at moderately low wavenumbers and across Stodé®s lin

In this work different aspects of the application of highly oscillatory qaade
have been considered. A central topic is the scattering by a smooth oldstacle
which highly oscillatory quadrature methods open up a new viewpoint. In this
introductory chapter a short review of a collection of themes relevant tthigss,
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1.1. OSCILLATORY INTEGRALS AND ASYMPTOTICS

relating to highly oscillatory problems is presented. A summary of the papdrs an
the papers themselves follow suit.

1.1 Oscillatory integrals and asymptotics

The model problem in oscillatory integration is the integral

Ilf] = / ’ flz)e*I@dz, (1.1)

w is here a parameter that can be large. In that case the appropriate agympto
regime beingv — oco. f andg are functions assumed to be non-oscillatory, often
called the envelope and the oscillator of the integral. A number of assumptions
may be imposed orf andg, typically that they are: time differentiable in the
interior of [a, b], or that there exist analytic continuations of them in certain parts
of the complex plane.

The asymptotics of integrals of the form (1.1) is thoroughly treated in the lit-
erature, see e.g. [24, 30], a key characteristic being the localisatioa oftdgral.
By localisation we mean that asymptotically the value of the integral depends only
on f andg and their derivatives at a discrete set of points. These are the etglpoin
of the interval, points of discontinuity of any derivative pbr g and the stationary
points. Stationary points, often referred to as critical points, are péirtga, b]
such thaty’(¢) = 0. The number of derivatives that vanish at a stationary point
we call the order of the stationary point. Thus, for example, we have tiengzal
functiong(z) = 2™, which possesses an order- 1 stationary point at the origin.

Case of no stationary points

In the case wher¢, g € C*[a,b] andg’(z) # 0, x € [a, b], the full asymptotic
expansion of (1.1) is easily obtained by iterated integration by parts, whiebh g
full asymptotic expansion,

- © 1 etwg(b) ; etwg(a) 15
U1~ =3 e | gy VIO — G omal@)] . @2)
where
oolf](x) = f(x)
_d onlf](x) _
Om+1]f](x) = I g =0,1,.... (1.3)

From this expansion we immediately see the above mentioned localisation; the
asymptotics depend only ghandg at the endpoints of the interval, b].
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Case of stationary points

If we have at least one poigt € [a,b] such thaty’(¢) = 0 the situation is quite
different. In this case, the integration by parts procedure will fail sinedithction
f/d' is not continuously differentiable. Several other approaches may yield th
asymptotic expansion of the integral in such cases. For example will the sigtion
phase approximation[30] give the leading order term with no greatteffigher
order terms can also be found, but not as easily.

As suggested by Iserles & Ngrsett[16], one useful way of expanti@gn-
tegral in the case where there are stationary points is a simple add- analcsubtr
procedure. For example, when there is a single stationary gainfz, b] of order
one, then,

I[f] = FOTIU +Z[f = f(O)];

and the second integral can be treated with integration by parts(sireé¢(&)) /g’
has a removable singularity. More generally, the singularity induced byiarsta
ary point of orders is removable when subtracting afsierm Taylor expansion of

f:

s—1

n=y ]1 FOOTI - ) + / Z IO - &)

Jj=0

This leads to an expansion, sometimes referred to as the Iserles-Ngpsetsion,

of the integral of the form (1.2) plus a sum of so-called generalised moments
I[(- — €)7],7 =0,...,5 — 1. Though expressed in terms of oscillatory integrals
this expansion is useful for analysing numerical methods.

The method of steepest descent

For finding a more pure-bred asymptotic expansion the method of steesesid

is a very powerful tool. The method of steepest descent provides arithig

for obtaining the asymptotics for a wide range of oscillatory integrals, inctudin
cases of stationary points. Assuming the functignand g have complex ana-
lytic(holomorphic) extensions in the complex plane, the method of steepest de-
scent involves deforming the path of integration into the complex plane. As a
consequence of Cauchy'’s Integral Theorem[9] and the analytiepiep of f and

g, we have
b . .
/f(a:)el“’g(x)d:c:/f(x)e“"g(x)ds
a r



1.1. OSCILLATORY INTEGRALS AND ASYMPTOTICS

wherel" € C is a curve that starts at and ends ab. Of particular interest are
paths along which the integrand is non-oscillatory. A path of steepestueica
curve in the complex plane, described by the functigfp), which is defined by
the equation

9(ha(p)) = g(x) +ip,  p =<0, (1.4)

along with the condition thak,(0) = z. h,(p) then starts at € R and runs
into the complex plane in such a way thétd(h=(r)) — ¢iws(@)e=wp rendering the
integrand non-oscillatory and exponentially decreasing. Equation (ludjdsely

solvable, at least in a neighborhoodagfprovided thay’(z) # 0. In caser is an

orders stationary point there are+ 1 steepest-descent directions fram.

When z is a stationary point we must have a rule to select which solution
branch of (1.4) to take. Assume now thats strictly monotone in the interval
(a,b), possibly with stationary points ator b. The following argument can be
extended to more general configurations by subdividing the interval that all
stationary points are endpoints. The path of steepest descent origiatdingl|
never meet the path of steepest descent startihgabng a path of steepest de-
scent starting at we have thateal(g) = g(x), andg(a) # ¢g(b) by the monotonic-
ity of g. Now it proves useful to consider tmelgesandvalleysof the analytical
extension ofy. Briefly, two points are in the same valley if they can be connected
by a path which does not intersect the real line and along wilielg(g) is posi-
tive(negative for ridges). This corresponds nicely to our earthly netaf valleys
and ridges. If now two paths of steepest descent follow the same valtey) tbe
shown that the integral along the path connecting the pgojtP) and k,(P) is
exponentially small inv, and it vanishes aB — oo. This provides a criterion for
choosing the right path among tker 1 available at a stationary point.

The procedure yields the following decomposition of the integral,

T[] = ZIf: hal — T1f: ), (1.5)

where, -
zvmazﬁﬂﬂA £ (ha(p) 1, (p)ePdp. (1.6)

Note that the integrals, one for each contributing point, are of Laplace aypkan
asymptotic expansion can therefore be found by standard methods likeckap
method[3].

The termsteepest descengfers, for historical reasons, to the real partgf(i.e. the nega-
tive imaginary part ofy) which decreases fastest along a path of steepest descent. In leetatur
exponent is oftev(x).

2Stationary points of correspond to saddle points in the complex plane. This is the background
for the term saddle points methods, a class of methods under which thedwétsteepest descent
sorts.
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The method of steepest descent requires complex analytic extensifandf
g. This requirement can however be relaxed e.g. to analyticity in appropriate
parts of the complex plane. This follows from Cauchy’s Theorem whighires
analyticity only in the area encompassed by the integration path and the interval
[a, b].

Im(z)

-15 -1 -0.5 0 0.5 1 15
Re(z)

Figure 1.1: The analytic structure of the Airy-type oscillatg(zr) = 2® — x/2. Dashed
lines mark the border between ridges(+) and valleys(-)idSmild lines are
paths of steepest descent fram and the stationary points

1.2 Numerical methods for oscillatory integrals

For classical quadrature methods there are several ways of cheiagteffi-
ciency. Most of these, like the polynomial degree of precision, is a measgur
how well integrals of smooth functions are approximated. For oscillatorgrgua
ture we operate with a so-calledymptotic orderThe asymptotic order gives the
rate at which the error decreases with increasinghat means the leading order
behaviour of the error of the method.
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1.2. NUMERICAL METHODS FOR OSCILLATORY INTEGRALS

We say that the metho@|f] has ordet q if,

1.2.1 Filon-type methods

In the integral (1.1), if we replace the envelope functjowith a polynomialp of
orderm, we get an approximation,

which can be obtained by a linear combination of moméiig], j = 0,...,m
In the case where the moments can be computed we are left with an interpolation
problem. This is the basic idea behind Filon-type methods.

The key to analysing the efficiency of this approach is asymptotic expansion
of the error. Here we limit the discussion to the case of no stationary poirds, an
the relevant asymptotic expansion is (1.2). It can be proved with relase that
the functionsr,,, [ f], defined in (1.3), are of the form,

Zamj ) f9) () (1.7)

whereo,, ;(x) only depend oy and its derivatives up to ordet, evaluated inc.
This implies the following lemma,

Lemma 1.1. Let f be anm times differentiable function such that?) (a) =
fO®)=0,5=0,...,m. Assumey'(z) # 0, z € [a,b]. Then,

b
/ f(@)e®9@)dz = O™, w— .

Proof. Considering the form of the functions,,[f] in equation (1.7) it is clear
that,

oj[fl(a) = o;[fI(b) =0, j=0,....m
Combined with the asymptotic expansion (1.2) we get the desired conclugion.

Now the asymptotic properties of Filon-type methods are easily obtained. From
the linearity of the integration operation we get,

Ilf] = Zlp) = Z[f —p) = O(w™™ ),

®Note that this definition of asymptotic order is slightly misleading sinceZthfé = O(wl/")
itself, wherer 41 is the order of the highest order stationary poinirb]. This is why some authors
define the asymptotic order as the order of the relative error.




INTRODUCTION

wherem is the maximal number of derivatives gfthat are interpolated by at
either of the endpointa andb. That means the method is of asymptotic order
m + 1. A similar argument employing the Iserles-Ngrsett-expansion[16] shows
that a method achieves order if the polynomialp interpolatesf andm — 1
derivatives at regular endpoints, and- (r; + 1) derivatives at ally stationary
points¢; of orderr;, j =1,...,q.

This clearly suggests that high asymptotic order can be achieved, innfact a
asymptotic order, simply by using Hermite interpolation. Moreover, we cauearg
by referring to classical results in polynomial approximation that any toberan
can theoretically be achieved. Therefore we can get convergdaodpafixedw.

This as opposed to what asymptotic expansions can provide.

L.N.G. Filon’s method from 1928[8] has not been confined to total obscu-
rity, his article was cited quite regularly throughout the years. It is thezedio
bit surprising that a proper analysis of the method came more than sevemgy ye
later. Interestingly, Filon did not identify the endpoints as critical, and sstgde
subdivision of the interval to obtain higher accuracy. In other wordenFonly
considered the approximation propertiespofvith respect tof, and missed the
perhaps more interesting asymptotic accuracy.

1.2.2 The numerical method of steepest descent

Considering the method of steepest descent, a quite simple observation with im-

portant implications is the fact that tis¢eepest-descent integi@l.6) is of a form

that is well suited for approximation by classical numerical methods. This will

lead to methods with similar characteristics as those of the Filon-type methods.
First we make the following remark regarding the form of the paths of s&tepe

descent.

Lemma 1.2. Assumingg is a complex analytic function at h,(p), any path of
steepest descent originating at a pairns of the form
hx(p)~x+a1p1/r+a2p2/r+..., p — 0,

wherer — 1 is the order of the stationary point:f is a stationary pointy = 1
otherwise.

Proof. For smallp, h,(p) = = + ¢, whered is small. Being a complex analytic
function, g has an expansion in integer powers where 1 terms drop out, there-
fore,

g(z +6) = g(x) + g.0" + gr1 0"+ ...

Inserting into equation (1.4) gives,

gré" + 9r+15T+1 +...=1p,



1.2. NUMERICAL METHODS FOR OSCILLATORY INTEGRALS

An extension of the Lagrange-Blrmann formula(see Theorem 2.4f[®9npro-
vides thaty hasr branches, each being complex analytip at 0 as a function of
p/7. This concludes the proof. O

It follows from this that the Jacobian of the path is not necessarily regular
However, with a change of variablges— ¢", we get

Z[f, ha] = 7”/OOO f(halg")h(q") g e dg,

which has an analytic integrand. A second change of variagblestw—!/" trans-
forms the integral into a form where Gaussian quadrature with Freudatgjugts
e~!" can be applied. These are quadrature rules with nogasd weightsu;,

ijw(wj)%/ p(t)e " dt,
=1 0

which are exact fop(t) being a polynomial of degre€ 2n — 1. Note that forr =
1 we have the well known Gauss-Laguerre rule, and thecas@ corresponds to
half-space Hermite

In [6] it is proved that using this quadrature rule on the two steepesedesc
integrals in equation (1.6) as here indicated yields a mefhigd for which,

_2n+1
T

QI = I[f] = O(w );

wheren is the number of quadrature points used on each of the integrals. Clearly,
this approach provides approximations of high asymptotic order. In addition
follows from the convergence properties of Gaussian quadraturalgwthe nu-
merical method of steepest descent is actually convergent.

Filon-type methods and the numerical method of steepest descent areywo ve
different approaches that yield efficient methods for oscillatory integnaethods
that can achieve high asymptotic orderirwhile at the same time being conver-
gent for fixedw. These are however far from the only possibilities we have. Levin-
type methods are based on a third approach which is quite different fi@iaith
approaches seen here. Itis based on formulating the integral asramdlifiéequa-
tion which can be solved e.g. by collocation or continuous GMRES[20,%7, 2

“In the case where we use an incoming and outgoing path at a stationatyipisitbeneficial
to merge the two paths at a stationary point with= 2 such that full Hermite quadrature may be
applied. For higher a similar observation holds, although for odthe quadrature rules are slightly
exotic[6].
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1.3 High frequency scattering problems

Wave scattering problems appear in a large number of applications. Titerisca
of electromagnetic waves is important in antenna design, radar, fiber,dgiis
etc. Scattering of acoustic waves is central to sonar technology, seispi@ ex
ration, ultrasound imaging, architecture, and more. The applications apei-ub
tous and appear as central in the engineering of many of the devicesaihdies
icons representing the contemporary world.

Techniques for high frequency asymptotics for scattering problemsaiaveg
history with incremental developments. The well known Geometric Optics ap-
proximation does good in many cases, but fail to deliver in special cases lik
diffraction, non-linear effects and intermediate frequencies. Mordistipated
asymptotic techniques exist, but more and more effort is now being put into dis
cretisation techniques. Recent developments has however given spnpower-
ful hybrid approaches. These use both asymptotics and elements eftidition
techniques. Such approaches do a lot to increase the efficiency efsfidy scat-
tering problems.

1.3.1 The Helmholtz equation

As a starting point for scattering problems we have the hyperbolic scala wa
equation

82]? 2 n

— —c“Ap =0, xeDCR"™ (1.8)

Op?
This equation describes the propagation of waves in homogeneous meéia,
2,3. A typical example is acoustic waves, in which case the speed of sound
andp is the induced pressure. Electromagnetic waves can be expressed similarly
with a vectorial version of the wave equation.

Time-harmonic solutions of (1.8) are functions of the form
ple,t) = u(x)e ™",

where the function(x) satisfies the elliptic Helmholtz equation, often referred to
as the time-harmonic wave equation,

Au+ k*u =0, zeDCR", (1.9)

We callk = w/c is thewavenumbeof the problem. It is related frequency by the
formulaf = kc/2m.

The question of solvability of the Helmholtz equation must be treated differ-
ently for different geometries. In case the domains bounded, the Laplacian,
with Dirichlet or Neumann boundary conditions, is self-adjoint. The Fredho

10



1.3. HGH FREQUENCY SCATTERING PROBLEMS

alternative then gives that eithef is not an eigenvalue of the Laplacian, and the
problem is uniquely solvable, d is an eigenvalue, and eigenfunctions are so-
lutions to (1.9). For an exterior problem, i.& = R™\2, where(2 is a bounded
domain, an extra condition at infinity is needed in order for the solution to be
uniquely solvable. This is the Sommerfeld radiation condition which makes sure
that the solution is outgoing at infinity, thereby eliminating unphysical solutions.
A common expression for the condition is,

ou®
or

— tku®

C
Sﬁ, T — OQ.

The Helmholtz equation (1.9) in free space possesses two solutions tioét are
particular interest. The first is a plane wave traveling in the direclion
u(x) = ethd"x |d| = 1.
The plane wave does not satisfy the radiation condition. It is however §till o
great use since, for example, it can be used as a model for poinesoafrtarge
distances. The second solution of interest to us is the fundamental solution o
Greens function, i.e. the solution to the problem with a point source at thia,orig

AG + kG = =4,

do is the Dirac delta at the origin, and the radiation condition is imposed . The
fundamental solution for = 2 is

Glr) = —%Hél)(kr), (1.10)

with Hél) being the order zero Hankel function of the first kind. In the case 3
the fundamental solution is,

G(r) = L (1.12)

1.3.2 Problem formulation

Consider arobstaclef2 which is a bounded domain of spag&. We shall con-
sider solutions to (1.9) in the exterior of the obsta®l&) (2. Necessary boundary
conditions onI’, the surface of2, are imposed by modelling. They can be of
Dirichlet-typeu|r = gp, Neumann—typég%\p = gy Or combinations thereof.

In the following we shall assume th& is smooth and strictly convex, and
also, for simplicity, we assume a perfectly reflecting boundary conditionsai.e

11
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zero Dirichlet conditiongp = 0. This last assumption on the boundary condi-
tion is not crucial; general boundary conditions yield problems with similar-cha
acteristics. It turns out, however, that the smoothness and convexityi®fan
assumption with deeper consequences. Sharp cornélggore rise to diffraction
phenomena that are fundamentally different from reflections. Nomesoscatter-
ers may exhibit multiple reflections which among other things destroy asymptotic
localization properties.

The scattering problem concerns finding the scattereddiegiven an incom-
ing field «?, both satisfying (1.9), with boundary conditions imposed on the total
fieldu = u® + v, and the radiation condition imposed on the scattered field,

Au® +k%u® =0, xeRMNQ,
ut = —u', zeTl (1.12)

ou® c
’5‘7" —iku5|§T—2 T — 00.

The last equation here is the radiation condition, and with it this problem isdndee
well-posed[23].

1.3.3 Asymptotics of the highly oscillatory scattering prdolem

Figure 1.2: lllustration of the asymptotics of a smooth convex scattesiéh an incident
plane wave. In the illuminated region (1) waves behave aicgto Geomet-
ric Optics. In the Foch-Leonto¥iregions (2 and 3) Geometric Optics break
down. The field in the shadow region (4) is due to diffractibrepomena

For the high frequency behaviour of solutions to the scattering probleif)(1
it is natural to try a WKB-type ansatz of the form,

piku(x)

, k — oo.

12
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This leads to the well known eikonal and transport equations,

(Vu)? =1, (1.13)
AjVu+2VA;Vu=—-AA;j_1, j=0,1,.... (1.14)

Here A_; = 0 by convention. The eikonal equation (1.13) can presumably be
solved by the method of characteristics, giving the rays known from Geizme
Optics. The leading order transport equation can also be solved expli€ily.
gether this means that the leading order of the reflected field can be computed
explicitly[29]. Although this approach seems promising, it’s only the beginaing

a very long story. In case the obstacle under consideration is nomxaraus-

tics may appear, i.e. the field at a point may be determined by more than one
ray, and the approximation is no longer valid. Note that we exclude this gase b
assumption. Otherwise, when approaching a point of ray tangencynigoothe
boundary between the illuminated part of the obstacle and shadow, the ek
down. Also the series will be insufficient to predict the small but non-gehation

in the shadow. This means fore example that diffraction effects are ouaisz

for.

Near the point of ray tangency a special asymptotic region can be identified
This region, known as the Fock-Leontdvigion, has a size that scales with'/3
to either side of the tangency point along the surface, fardd® normal to the
surface. The leading order is here given by the Fock-Leoateguation[19].

In the shadow region the failure of the WKB-type ansatz reflectsetie
polynomial decapf the solution. In other words the wave field vanishes faster than
any inverse power of in the shadow. Still, a number of interesting phenomena
play out in the shadow. For example will we have that the surface itself issdica
of the eikonal equation. Rays tangent to the surface will diffract afidwahe
surface while at the same time shedding rays tangentially. Such solutions deca
quickly. However, thesereeping raysare important in applications[22].

The connection of the behaviours at the different regions is a highktmaal
problem of uniform asymptotics. A solution does exist in a paper by Mekaose
Taylor[21]. These results have yet to be applied in computations.

1.3.4 Integral equation representations

The scattering problem can be formulated as an integral equatiod otee sur-
face of the scattereé®. This is done through the layer potentials. Hiegle layer
potentialis written,

W (y) = (Sq)(y) = /F Gz — y)q(z)dS,,

13
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and thedouble layer potential

u®(y) = (Dp)(y) :== gf (z — y)p(x)dS,.
T T

q andy are defined o’ and are usually referred to as the single and double layer
potential densities.

The layer potentials automatically satisfy the radiation condition, and they
solve the Helmholtz problem both in the exterior and interiofofIt is shown
e.g. in [23], that the single layer potential is continuousg,jrwhile its normal
derivative is discontinuous when crossifig Similarly the double layer potential
has a continuous normal derivative, but is itself discontinuous whessicrgl .
From this it follows that: solves both the exterior and interior Dirichlet problem
if ¢ solves,

(Sq)(y) = —u'(y), yeT.
The discontinuous double layer potential dengitgolves,

I 7
(G+Dw)w) =), wyer,
if u is to solve the exterior Dirichlet problem, and

((—g + D)@) () =-u'(y), yeT,

for the interior problem. Similar relations exist for the Neumann problem[23].

The tight connection between the interior and exterior problems poses a par
ticular problem. If we wish to solve the exterior problem, we solve the interior
problem at the same time, which is, as pointed out above, not necessaqilgiyn
solvable. In this case the operators are not invertible. However, a tuekal
Brakhage and Werner[4] is to use an operator,

u(y) = (iaS(q) — D(q))(y)-
This operator is invertible for alt provideda is real.

1.3.5 Numerical methods for high frequency scattering prolems

By a numerical method for high frequency scattering problems we mean adnetho
that in some way incorporates the high frequency asymptotics of the soltitien.
goal of this would be to develop methods whose computational effort isdsalin

or decreasing aB — oo while maintaining constant precision, also for moderate
wavenumbers.

One approach that goes a long way in achieving this, at least for casex
stacles, is by the use of boundary elements where asymptotic properties of th
solution are incorporated[5]. Other approaches include the usetahfatpole
methods or hierarchical matrices(see [10] for a review of such tecesgjqu

14
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Discretisation based on oscillatory quadrature

10° ; m“,w i ' \( Y \|r HII i \ 10° /\
y |

10

d
107 ‘MM

0 0.2 0.4 0.6 0.8 1 0.4 0.6
t t

(a) (b)
Figure 1.3: The absolute value of the real and imaginary parts of thdeslager potential

densityq for a circle with an incident plane wave. (b) shogsith the GO-
phase factored out. Bold lines marks position of shadow Baties

Ignoring for the time being possible difficulties of non-uniqueness, anriaiteg
equation for the single layer potential density written out for the case2 is

_% /F HY (k|2 — yl)g(x)ds, = —ul(y).

For the Hankel function the behaviour for large arguments is,

2 i(r— T
Hél)(T)N\/;e( 1/4m)

The oscillatory behaviour for large argument$ can be factored, out and the
remainder is non-oscillatory. Similarly, the densjtis oscillatory, but here we can
use high frequency asymptotics, e.g. Geometric Optics, to factor out tilatosy

part. The Geometric Optics approximation, which is valid in the illuminated part
of a smooth obstacle gives,

q(z) = gs(x)e™91 @),

whereq, is smooth andj; is the phase of the incoming wave. After thibase
extractionwe have an equation of the form,

/K(ac,y)qs(x)eik(m_y'wi(x))dsx = —ui(y). (1.15)
r

15
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whereK (z,y) = 2 HV (k|z — y|)e*=~l is a smooth functiong, can only be
expected to be smooth wherever the Geometric Optics approximation is valid, thus
¢s can be expected to be oscillatory in the shadow region, which indeed caebe
in Figure 1.3. Boundary element discretisations based on this formulatior of th
problem are of great interest since one solves for a field that is ledisimsy than
q, the unknown in the standard formulation. Such hybrid approachesaved
to require only a moderate increase in unknowns with incredsiiog fixed error
boundsf ~ &'/9in [7].)

The kernel of the integral operator (1.15) is oscillatory, and a disctigtishas
to take this into account. A Filon-type discretisation is done by first identifying
contributing points. By examining the oscillathr — y| + g;(z) we get that the
only stationary points are to be found in the shadow region[2]. Since thé®mo
is both oscillatory and exponentially small in the shadow region[7] we calecieg
these contributions bearing in mind that they might not be negligible in moderate
wavenumber regimes. We are left with a contribution from a discontinuaiisaee
tive combined with the logarithmic singularity (Hél)(kp: —yl|) atz = y. The
moments of this Filon-quadrature are oscillatory quadratures themselvésebel
can be computed efficiently with the numerical method of steepest descést. Th
coupled with a special treatment of the Fock-Leortaegions and shadow region
gives a method that has at least fixed accuracy for increa$irgj.

16
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1.4 Summary of the main contribution of the thesis

The work leading to this thesis has revolved around the application of osgjllato
quadrature methods to practical problems. The most important case stsidy ha
been the acoustic scattering from a smooth convex obstacle. For thismprable
discretisation technique due to Huybrechs and Vandewalle[13] empldkisthie
Filon-type approach and numerical steepest descent. One of the maiitowon
tions of this thesis has been a more thorough treatment of this method. Notably,
a reinterpretation of the method shows that it can be regarded as a metiodd fo
taining the near-equivalent of high order Geometric Optics approximatibms.

work also paves the way for more sophisticated discretisations based anithe
form asymptotics of Melrose and Taylor.

An important element in the implementation of the Filon-type discretisation is
the computation of the moments. This is done by the numerical method of steepest
descent. A difficulty here is the computation of the paths of steepest deatérh
has been an issue in this work. One of the contributions here is the andlysis o
the numerical method of steepest descent with local path approximatioith wh
shows exactly how asymptotic accuracy deteriorates when paths acxiapgted.

A final theme, which resulted in the first paper of this thesis, is the basis of
oscillatory quadrature and asymptotics. Asymptotic expansions can bessegr
with an exact error term. An alternative approach to oscillatory quadrasim-
ilar to techniques in hyperasymptotics, is to resolve the error term by osgjllator
quadrature. This leads to new methods with new characteristics.
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1.4.1 Summary of papers

Paper I: A combined Filon/Asymptotic quadrature method for
highly oscillatory problems

A. Asheim
Published in BIT Numerical Mathematics 48, 2008[1]

This paper discusses a combination of asymptotic expansions and Filoméyipe

ods. An asymptotic expansion has a remainder term that can be expaesseds-
cillatory integral. Resolving this oscillatory integral with e.g. a Filon-type method
yields a new type of approximation that combines properties of both constituent
methods. A discussion on possible gains from using this approach is id¢lude
which concludes that in certain cases significant savings in terms of monagnts c
be achieved.

Paper Il:Asymptotic analysis of numerical steepest descent with
path approximations

A. Asheim and D. Huybrechs
To appear in Found. Comput. Math.

A difficulty with steepest descent methods lies in the computation of the paths of
steepest descent. It is however well known from asymptotics that drceléak

can be tolerated. In this paper we translate this observation into the numerical
setting. A central difference between the numerical and asymptotic setting is th
more localised character of the numerical method; the form of the path & lar
arguments is in some sense irrelevant. It is shown that a local approximétia o
path is sufficient for high asymptotic order, and the main part of the payadyses

the asymptotic properties of the method. The result is a slightly unintuitive relation
between the degree of the path approximation and the method’s order.

Paper IlI: Local solutions to high frequency scattering problems

A. Asheim and D. Huybrechs
To appear in J.Comput.Phys.

Classical asymptotic techniques show that the scattering from convexstaelie
pends on local characteristic, meaning that an incident ray is reflecteddaoy
to the properties of the scatterer only where it strikes. In this paper we thiad a
Filon-type discretisation transforms the boundary integral equation facthiter-
ing problem to a boundary value problem for a differential equation. &dnisition
can be solved with local data only to give a high order approximation, which c
responds to the localisation principle known from Geometric Optics.
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Chapter 2

A combined Filon/Asymptotic
guadrature method for highly
oscillatory problems

Abstract. A cross between the asymptotic expansion of an oscillatory integral
and the Filon-type methods is obtained by applying a Filon-type method on the er-
ror term in the asymptotic expansion, which is in itself an oscillatory integral. The
efficiency of the approach is investigated through analysis and numeripatli-
ments, revealing a method which in many cases performs better than the Fiéon-typ
method. It is shown that considerable savings in terms of the required mnwhbe
potentially expensive moments can be expected. The case of multivaridla-osc
tory integrals is discussed briefly.
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2.1 Introduction

The quadrature of highly oscillatory integrals has been perceived asdgphob-
lem. Traditionally one would have to resolve the oscillations by taking several
sub-intervals for each period, resulting in a scheme whose complexity \goud
linearly with the frequency of the oscillations. More careful analysis willieeer
reveal that by exploiting the structure of certain classes of oscillatoryraiteg
better discretisation schemes can be devised, schemes where the wratly ac
decreases when the frequency of the oscillations increases. This iknogth
in asymptotic analysis with eg. saddle point methods and the method of station-
ary phase approximation[16, 14]. Recently attention has been direcieniar-
ical methods with similar properties. Examples of such methods are Filon-type
methods[8, 9] Levin-type methods[13, 15] and numerical steepestiis

We are considering oscillatory integrals of the form

I[f] = /_ 11 f(x)e9 @ dg, (2.1)

wherew is a large parameter. It is well known that an ordinary Gaussian qua€ratu
applied to this integral will have an error 6f(1) asw grows large. A much better
approach to approximating | whenw is large is found through an asymptotic
expansion: Assuming/(z) # 0, —1 < z < 1, integration by parts yields

_ L iwg(1)  f(=1) iwg(—1) 1 [t d f(z) iwg(z)
I[f] = a[me ~gCEne ]_E 71@{9,(@}6 dx. (2.2)

Whenw becomes large the integral term in equation (2.2) vanishes faster than the
boundary terms, by an extension of Riemann-Lebesgue’s lemma, so thd-bou
ary terms can approximate the integral. Furthermore the process cancagectp
on the integral remainder to obtain a full asymptotic expansion. This expansio
will however not be perfect. As is often the case with asymptotic expangiens
accuracy is limited due to the divergence of the series.

An even better approach is to choose a set of quadrature ngdes, ¢,,
interpolate the functiorf by a polynomialf at these points and let

1 12
QF[f] = / F@)e=@dz = 3 bi(w) f(c),
-1 =

whereb;(w) = [, 1;()e™9®)dz for I;(x) the j-th Lagrange cardinal polyno-
mial. A variant of this approach, then with piecewise quadratic interpolatiorein th
Fourier-case whep(z) = z, dates back to L.N.G. Filon[4]. Schemes of this type
are referred to as Filon-type methods. Constructifig’) requires the moments
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fil z"e9(*)dz. Moments are oscillatory integrals themselves that hopefully can
be calculated by analytical means as in the Fourier case. If not, the numerica
steepest descent method can be applied to compute moments for the Filon-type
method, an approach which works well in practical applications[7, 2grlds
proved[8] that as long as the endpoints of the interval are includedarajure
nodes and/’(z) # 0, —1 < x < 1, this approach will carry an error

QY[f] — Ilf] ~ O(w™?), w— o0

The superiority of this approach over the asymptotic expansion can leestodd
by realising that the method is exact for a class of problems, regardléss size
of w. As for the behaviour for large it was proved by Iserles and Ngrsett[11]
that by applying Hermite interpolation to interpolatér) with p derivatives at the
endpoints, the asymptotic behaviour of the error can be expressed as

QpIf1 = I1f] ~ O(w™), w— oo,

The theory can be expanded to the cases whbigs stationary points, that means
points¢ with ¢'(£) = 0. What must be done to achieve good asymptotic properties
is basically to include the stationary points among the quadrature nodes[9].

Considering the asymptotic expansion with the remainder term (2.2) one can-
not fail to notice that the problem has really been transformed into bowtelans
plus the remainder term, which is an integral of the same form as the original. A
natural question to ask in light of this observation is whether treating the rderain
term with a specialised technique, like the Filon-type quadrature, numeiéeg-s
est descent or a Levin-type method, could improve accuracy. In thevinliahis
guestion will be addressed, in particular for the choice of the Filon-typdmgiure
Qf as quadrature method. In the above-mentioned case this would amount to a
new method

FA 1 f(l) iwg(1 f(_l) iwg(—1 1 F d /
Q"= Ly~ ) - ek L]

We will refer to methods of this form aombined Filon/asymptotic method3b-

serve that forw # 0 this method is consistent in the sense that accuracy can be
improved by using a better quadrature method on the remainder term, atproper
which the asymptotic expansion does not have. Furthermore, becaiisel ¢i-

factor, the asymptotic error behaviour will be better than for the classitai-F

type method applied directly. This means that less work, in terms of moments,
is needed to get high asymptotic order. The combined method is in this sense a
true cross between the asymptotic method and the Filon-type method, combining
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good qualities of both methods. These observations will be elaborated oa in th
following with emphasis on the 1D case without stationary points, with stationary
points and a brief look into the multivariate case.

2.2 The Asymptotic method and Filon-type methods

We begin the exposition by presenting an overview of the constituent dahe o
combined method: The asymptotic expansion of the highly oscillatory integial an
the Filon-type methods. In the following we will denote @y f] ~ I[f] a highly
oscillatory quadrature method asymptotic ordep, meaning that for smootfi

Qplf] = 1lfl ~ O™, w— oo

Note that in some parts of the literature this would be referred to as préer.
This corresponds to absolute error decay, whereas ours is relativelecay in the
case of no stationary points whefgf] ~ 1/w [16]. In the presence of stationary
points the picture is slightly different, and for simplicity we will then avoid the
concept of asymptotic order.

2.2.1 The case of no stationary points

Assume for the time being that there are no stationary points in the interval of
interest, that meang (z) # 0, —1 < z < 1. An asymptotic expansion of the
highly oscillatory integral (3.1) is obtained by successively applying iatégmn

by parts. This approach gives us a full expansion through the followargal
expansion

s 1 ctwa(1) ctwg(—1)
==Y = [ g ol = Sl
1 ! iwg(x)
+ EmE /1 os[f](z)e9'\* dx, (2.3)
where
ool fl(x) = f(x)
0m+1[f](x):(ibw, k=0,1,.... (2.4)

The correctness of the above expansion can easily be checkedhlamirgiuction
argument. A full asymptotic expansion of the highly oscillatory integral (3.1) is
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then
; © 1 eiwg(1) . eiwg(=1) . ”s
Truncating the series afterterms, yields the asymptotic method
Arel 5 1 etwg(1) eiwg(—1)
Qs [f]= _mZ:1 (—iw)m [ 7(1) om-1[f](1) — mamfl[f](_l) . (2.6)

The method has asymptotic order This can be seen by writing out the remain-
der term, which is an oscillatory integrél(w—!) multiplied by (—iw)~*. Note
that the concept of asymptotic order is rather useless for not-so<arde fact

the asymptotic expansion is divergent in the general case, and thigefioer is
more severe for smaller. Thus the asymptotic method is rather useless for small
w. Furthermore, divergence implies that only a fixed accuracy can beeattain
adding terms will not always increase accuracy. This is problematic &mtipal
applications where usually a given accuracy is sought.

The Filon-type methods will be accurate also for smallexnd have control-
lable error, but that is at the cost of moments. We define the moments

1

o) = [ eatias,
-1

and assume these can be computed, possibly at a significant cost. Thdorthe

type method is obtained by choosing a set of nodés= ¢; < ¢ < -+ <

¢, = 1 and integer muItiijcitiesml, ...,my, > 1 associated with each node.

Letn = Z;f:l m; — 1 and f be the unique Hermite interpolation polynomial of

degreen obtained by interpolating at the points{cj}j’f:1 with the corresponding

multiplicities,

umll

E Z CtlJ Cl .

=1 j5=0
The Filon-type method is defined as

ymll

/ f@)e9@de =>" 3" g i(w) f9 (), (2.7)
=1 35=0
where §,;(w) = [, a,j(z)e9)dz is obtained from linear combinations of

moments. As fos, the asymptotic order of this method, we state a theorem due to
Iserles and Ngrsett[11]:
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Theorem 2.1. Supposeni, m, > s, then for every smoothi and smoothy with
g'(z) #0, -1 <z <1

QEIfl —Ifl ~ (w1, w— .

The proof is obtained by expandinfg— f as in equation (2.5) and observing
that the firsts terms will cancel due to the interpolation criteria. This theorem
can be summarised by saying that only by adding derivative informationeat th
endpoints of the interval can the asymptotic order of the method be improved.
Information about derivatives can also be supplied indirectly by clugtenier-
polation nodes near the endpoints. If the nodes approach the endmints a
high asymptotic order can be attained[10]. Note that increasing the ofdiee o
interpolating polynomiaf will increase the accuracy of the method for some fixed
w, at least when the interpolation nodes are the Chebychev points. Thigedind
confirmed by numerical experiments[10]. This means that foriaayprescribed
accuracy can be attained, a property which is crucial for practicdicagipns.

2.2.2 Generalized Filon and asymptotic method in the presee of sta-
tionary points

When g has stationary points Theorem 2.1 is no longer valid, a fact which is
suggested by the singularity introduced in the integral in remainder term of the
asymptotic expansion (2.2). Assume in the following th&t) has only one
stationary point € (—1,1), which amounts to saying’({) = 0, ¢'(z) #

0,z € [-1,1]\{¢}. Furthermore assume thet(¢) = --- = ¢("(¢) = 0, and
grth(€) # 0, this means thag is arth order stationary point. The method of
stationary phase[3, 14] states that in this case the leading order bahakibe
highly oscillatory integral (3.1) is of the form

I[f] ~ Cw V0D 0. (2.8)

This means that the main contribution to the value of the integral comes from the
stationary point, suggesting that the interpolation nodes for the Filon-typedseth
should include stationary points as well as the endpoints.

Assume for simplicity thaf is a first order stationary point meanipd¢) = 0
andg” (&) # 0. Writing

I[f] = FOIA] + I[f = f(E)]
—1 £y — '
1

iw g'(x dz

30



2.2. THE ASYMPTOTIC METHOD AND FILON-TYPE METHODS

then integrating by parts gives the following expression:
B 1 @) = f©) gy F(=1) = F(€) wg(—1)
1111 = s + o |[Z S E centy L LEDZTE

x. (2.9)

Now, sinceg” (&) # 0, the singularity is removable. The expansion can be con-
tinued giving a full expansion reminiscent of the expansion (2.5). Meretally,
for arth order stationary point we introduce the generalized moments
1 .
pulwi€) =11 = ] = [ (o= ¢Fesan, k>0

1

Note that these can be written in terms of ordinary moments. Now write

r—1 r—1
17 =3 DO @) + T | f@) - S =)@ -y | . (210)
Jj=0 J: j=0 J:

Again the singularity is removable, and the expansion can be formed. We will

later need the expansion with the remainder term, so this will be formulated as a
lemmét:

Lemma 2.1. Suppose is a stationary point of order, and thaté is the only
stationary point inside the intervat1, 1]. Then for every smootlf

r—1 s
=3 56 3 et 190
7=0 m=1
i zwg(l) r—1 1 o) .
—iw)™ [ (1) (pm*l[f](l)*z:ﬁpmfl[f]j (5)(1*5)0
m= 1 =0
2.11)
givo(~1) =
_ g,(_l) (Iom 1 ZO' )( 1 —5) )]
+ el ]

!Note that the conclusion in this lemma is different from that of Iserles &hin [11], Theo-
rem 3.2, which we suggest is flawed.
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where

polf](w) = f(=)
d (@) = 520 Fom 1D (E) (@ — &)
dz g (z) '

pms1fl(z) = (2.12)

Proof. This is proved by induction. The Lemma is certainly truefoe 0. Now

|
—

r

1 .
Tpslf] =3 sl A0 @)
7=0
L L elfl@) - S qe A O@ -0 a4y,
iw J 4 g'(x) dz
Integration by parts gives
r—1 1
UGG RICTACE
7=0
1 [ews =1 ;
(i) [ sy JZOJ' - )
ciwg(=1) =1 . ;
= (PIED =2 el 101 -9 >]
1
+ mI[PsH[f]]
Inserting into equation (2.11) proves the Lemma. O

As before, truncating the expansion (2.11), that is thertwsummations after

s terms, yields the asymptotic method. The asymptotic behaviour of the error in
this method is found by the method of stationary phase applied to the remainder.

Thus we get for the asymptotic method,
QUM —I[f] ~ O™ M) w — oo,

For an even more general case, in the presence of more than one sygbioina,

the interval can be partitioned such that each sub interval contains oelgtan
tionary point, and then an expansion can be made for each sub intervatféye,
truncating the expansion afteterms yields the asymptotic method.
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Now to the Filon-type method: Let be a unique stationary point of order
ri g'(§) = 0andg/'(z) # 0forz e [1,1\{&}, g'(¢) = --- = g™ (&) = 0,
andg(T“)(Q # 0. Thegeneralized Filon methgll] is constructed by choos-
ing nodes—1 = ¢; < ca < --- < ¢, = 1 such that the stationary point is
among the nodes, thatig = ¢ for someq € {1,2,...,v}. Given multiplicities
mi,ma, ..., m, > 1 corresponding to each node, we febe the unique Hermite
interpolation polynomial of degree = 237:1 m; — 1 obtained by interpolating
f at the points{c;}”_, with the corresponding multiplicities. The method is now
simply

1
F _ 3 iwg(x) )
QU= [ e s

The above integral is computed from linear combinations of moments.
We present another theorem by Iserles and Narsett[11] regardirapyinep-
totic error behaviour of the generalized Filon method.

Theorem 2.2. Letm, m, > s andmg > s(r+ 1) — 1. Then
QY[f] = I[f] ~ Ow™* M) w — oo,

This theorem is, like Theorem 2.1 proved by expandirgf and showing that
terms up to ordes cancel. The method is trivially expanded to cater for several
stationary points, possibly of different order.

2.3 The combined Filon/asymptotic method

Let us for the moment assume that there are no stationary poigt&ndf-1, 1].

This assumption will be relaxed later on. A combined Filon/asymptotic method is
constructed from the asymptotic expansion with the remainder term (2.3)-by ap
plying a Filon-type method on the remainder term, which is in itself an oscillatory
integral. Denoting b)Q{;:;“ a method which is obtained by applyingah order
Filon-type method on the remainder of sterm expansion we get

ei“Jg(l) eiw.g(*l)

FA __S 1 . _ o _
AN == X i | gy o VIO moalf(-1)
1

g (-1)

Qp [o([£1], (2.13)

" iy
where theo,,[f] are defined as in equation (2.4). Note that this formula is con-
sistent forw # 0 in the sense that if we resolve the remainder term exactly, then
the formula is exact as well. Furthermore, note that the idea is not restricted to
Filon-type methods. Any quadrature meth@gl can be applied:
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Theorem 2.3. Let g be such thay'(z) # 0, —1 < = < 1. Applying a highly
oscillatory quadrature methag, of asymptotic ordep on the remainder in the
s-term asymptotic expansion (2.3) yields a metiiggd.. Applied to any smoottf
this method is of ordep + s, that is

Qpslf] = I[f] ~ O™, w— .

Proof. Writing out the asymptotic expansion %, ;[ f] — I[f] gives

Qpslf] = 1lf] ~ ——;

1 1
= Ty (Qp[os[f] ()] — ; o) [ 70 o 1los[f1](1)
6iu)g(fl)
- g,(_l)ajl[as[f]](l)D

O = 0w,

T (—iw)®

where the last line appears by using the asymptotic error property of th@dneth

Qp- 0

We will here limit our attention to the case whepg is a Filon-type method,
and we call the combined methd;};;“ a Filon/asymptotic method.

Example 2.1. For the simplest case set= 1 and get

Fa = L [

ei“)g(l) 1 ei“)g(fl)
g'(1) g (-1)

which is a method of asymptotic order- 1.

f(—l)] A Y

1w

Example 2.2. We wish to compute

1 wx
/ ¢ dx.
-1 2+

Interpolating f(x) = 1/(2 + ) and its first derivative at = —1 andz = 1
will give us a Filon-type method of asymptotic ordes 2. This method requires
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2.3. THE COMBINED FILON/ASYMPTOTIC METHOD

I

100 20 30 40 50 60 70 80 90 100

Figure 2.1: The absolute value of the error for the combined Filon/agptigp method
(top) and the classical Filon-type method (bottom) fromregke 2.2, all
scaled byw?

four moments. Interpolating only the function valuef(z) = —1/(2 + x)?

at the two endpoints gives the combined Filon/asymptotic scheme which is also
of asymptotic ordeR, but only needs two moments. We expect this to be at the
cost of not that good approximation properties compared to the classitabane
which is indeed confirmed by experiments, see figure 2.1. Note that ths ofes
the curve of one method seems to correspond with the troughs of the otlaér, mu
like what was pointed out by Iserles & Ngrsett in [11]. This behaviour &l
discussed in section 2.5.

The key element in a discussion of the efficiency of this method is the need
for moments. Recall that a classical asymptotic method needs no moments, but
it breaks down for smalb and the error is not controllable. On the other hand a
classical Filon-type method can be made precise also for moderately.sibed
at the cost of moments. A Filon-type method needs a minimugpahoments
to obtain asymptotic order. The combined Filon/asymptotic method is situated
between the Filon-type method and the asymptotic method, both in spirit and in
terms of requirements. For example, this method can obtain any asymptotic order
as well as accuracy for moderately sizewith the use of only two moments. The
asymptotic nature of the method is revealed bylthe*-factor which indicates that
it will perform bad asv — 0. Forw = 0 the method does not work, as opposed
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to the classical Filon-type method which in this case reduces to a classiclhgua
ture method. The combined method can, like the classical Filon-type method, be
made precise to a prescribed tolerance by adding more moments. The esefaln
here dictated by the cost of computing moments, as well as the cost of computing
om|f] and its derivatives. The following example, example 2.3, shows how a com-
bined Filon/asymptotic method performs better than a classical Filon-type method
with approximately the same input data. This observation will be elaborated on in
section 2.5.1.

0.94 0.9+

0.8 0.8

0.74 0.7+

0.6 0.6

0.5 0.5

0.4 ‘ ! ‘ 0.4

0.3 T T T T T T T T ! 03 T T T T T T T T .
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 8 90 100
(0] [0}

@ (b)

Figure 2.2:a) Error for the Filon/asymptotic method with interpolationodes
[~1,0,1](top), and[—1,—1/3,1/3, 1](bottom), scaled by.?. b) Error for
the classical Filon-type method scaleddsy/(same scale as (a))

Example 2.3. Once again we wish to compute with a combined Filon/asymptotic

method the integral
1 eiwx
/ dz,
-1 2 —+x

but this time we include internal nodes. Interpolatingz) = —1/(2 + z)?

at the nodes—1,0, 1], and[—1, —1/3,1/3, 1] will result in combined schemes
requiring three and four moments respectively. That means comparable to th
classical Filon-type method from example 2.2, which is obtained by interpolating
f(xz) = 1/(2 + x) with its first derivative at the endpoints requiring four mo-
ments. Both this classical method and the above described combined methods
have asymptotic ord&. Comparing error plots for the methods(see figure 2.2) we
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2.3. THE COMBINED FILON/ASYMPTOTIC METHOD

see that the combined method with nofles, 0, 1] has almost exactly the asymp-
totic error constant as the classical method whémcreases, whereas the one with
nodes[—1,—1/3,1/3,1] has a significantly smaller error constant. In figure 2.3
we see how the different methods behaves for smaNMote that including inter-
nal nodes reduces the severity of the singularity. Even for quite sitéké best
Filon/asymptotic method is better than the classical method.

10"

10°3
1074
103

1076

Figure 2.3: Log-plot of the error for the Filon/asymptotic method witiiérpolation nodes
[-1,1](top), [-1,0, 1](middle) and[—1, —1/3,1/3, 1](bottom), not scaled.
Error for the classical Filon-type method shown as a dofted |

2.3.1 The combined Filon/asymptotic method with stationarypoints

Extending the method to cater for stationary points is fairly straightforwamehgi
Lemma 2.1. Assume in the following th&is the only stationary point of order
n [—1,1]. This requirement is not crucial, it will just simplify otherwise horrific
expressions. In the following we will denote 6y, a method tailored for this
problem, like the generalized Filon-type quadrature, which for smg@dibars an
error

Qplf] = I1f] ~ O(w P V) — oo,

Applying the generalized Filon metht@ipF on the expansion (2.11) yields the
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generalized combined Filon/asymptotic method

r—1 s

QA =Y S €) S e 19O (2.15)

J=0 w)

u‘,_.

m=1

V)

elw (1) .
B 04Lmldé)@m1f E:'Wll Ve - )

m=1

eiw.Q(*l)

- (el 23—% ©(- 1-—5V)]

+ Qf [ps[f1]-

1
(—iw)®
pm[f] are defined as in equation (2.12). Recall k@ﬁtis constructed by interpo-

lating f in the endpoints ang (c1, ¢, andc,) with multiplicities my, m, andm,
respectively. Using a generic meth@g we have the following theorem:

Theorem 2.4. Assumeg/(¢) = --- = ¢ (€) = 0, g0tV (&) # 0 andy'(z) #
0 for z € [-1,1]\{{}. Let @, be a method which for any smoothhas the
asymptotic error

Qplf] = 11 ~ O™ ) — co.

For the combined metha@, s, constructed by applyin@, on the remainder term
in expansion (2.11), applied to any smogitit is true that

Qpslf] = I[f] ~ O(w P~ M H) 0 — o0,
Proof. Completely analogous to the proof of Theorem 2.3 we get

(@lal - [ pdriiestiaz)

O(w_p_1/(r+1)) — O(w—p—s—l/(rﬂ))'

Qp,s[f] = I[f] ~ _;ws

O]

Again we restrict our treatment to the metf@ﬂ 4 constructed from a gener-
alized Filon-type method.
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2.3. THE COMBINED FILON/ASYMPTOTIC METHOD

Example 2.4. The simplest case is a problem with only one stationary pooft
order one, expanded with one term(as in equation (2.9)). The combineddsyonptotic
method (2.15) written out is then

-1
w\ g0 J-1)
Lop[Arw-ra]

iw P lde  g(x)

QL 1f) =po(w) f(€) + 1 <f(1)_f(§)eiwg(l) f(=D) = f(©) eiwg(_1)>

(2.16)

x107
3.0

7 VWV\/\/\/\N\N\/\/\/W/\/\/\ANVVV\AW\AN as

WMAN\/W\MNWWW "1
-4

T T T l T T T 1
100 200 300 400 100 200 300 400
o} (o)

(a) (b)

Figure 2.4: a) The absolute value of the error for the combined Filonfastptic method
with ¢ = [-1,0, 1] (top), together with classical Filon-type method (bottom)
in logarithmic scale. b) Combined method with= [-1,—-1/2,0,1/2, 1]
(bottom), and the classical Filon-type method(top). Alivas are scaled by
w?. Logarithmic scale is used in (a) in order to properly reprédoth curves
in the same plot

Example 2.5. The oscillator of the integral

1 01,2
/ ete™2" dy
—1

has an order one stationary pointat 0. Interpolatingo; [f](x) = f—x% =

ze—c+1 at the node$—1,0, 1] (using I'Hospital’s rule to obtain the value at the
stationary point) gives a combined Filon/asymptotic scheme on the form 0 (2.16
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The predicted error behaviour seems to be confirmed by experimentigisee
2.4). The proposed scheme needs three moments plus the first genemadized
mentuy which is constructed from these. A classical Filon-type method requires
a total of seven to obtain the same asymptotic order. Figure 2.4 (a) showiisehat
proposed method has a much higher asymptotic error constant than theatlass
Filon-type method, however do we only need to add two interpolation nodss, th
is two moments, to beat it. See figure 2.4 (b) for illustration.

2.4 Extension to the multivariate case

For the model multivariate highly oscillatory integral we write
17.9) = [ feoeaay,
Q

whereQ) € R¢ and f,g : Q — R. Bringing the highly oscillatory quadrature
methods into the multivariate setting presents us with a whole set of complications.
For example we will have to take into account not only stationary poits.t
Vg(x) = 0, but also points of resonance, those are boundary points Where

is orthogonal to the boundary, ie. no oscillation along the boundary. ¢wergl
smooth boundaries resonance will necessarily be a problem, in this casg the
is not yet fully developed. Furthermore, computing moments will be even more
expensive than in the univariate case. For oscillatory integrals on simplizks
polygons we refer to [12] for a theoretical treatment.

In the following we assume that no stationary points or resonance points are
present. Furthermore we restrict our treatment taitbémensional simpleék The
Filon-type method is in this case, like in the 1D case, constructed by interpolating
in critical points, here being the vertices of the simplex. Increasing asymptotic
order is done by increasing the number of interpolated derivatives aetliees.

The point of departure for developing a combined formula will here be the
Stokes-type formula for a simplex as presented in [12]:

I1f, Sd] =% /8 . nT(x)Vg(x)HVJ;((XX)Wew(x)ds

_ i & < iwg(x)
5 17 [agamvseo] rav - ean

Using the formula repeatedly on the remainder term yields an expansion with an
integral remainder term. We here state this as a theorem:

2Note that polygons can be tiled by simplices, thus generalising the resutissiorplex to the
polygon case.
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2.4. EXTENSION TO THE MULTIVARIATE CASE

Theorem 2.5. For any smoottf and smoothy without stationary points and sub-
ject to the non-resonance condition, it is true that

s

I11f,8a = = Z:l (_Zi)m /an nT(x)Vg(x)meiwg(x)dS

1 / 4
—— | oy(x)e“I™¥qy,  (2.18)
i) Js, ™
where
oo(x) = f(x)
Omi1(X :VT[Jm(X)V x].
Proof. The proof follows from an iterated use of formula (2.17). Ol

The expansion (2.18) can be carried on to obtain a full expansion fpedgr
showing that the value of the integral is asymptotically determined by integrals
over the faces of the simplex. Furthermore, by expanding the lower dinmasio
integrals one repeatedly "pushes" the integrals from faces to edges(iowen-
sional faces), a process which terminates at the vertices, indicatingehatitte of
the integral is asymptotically determined by data at the vertices of the simplex. The
expansion can also be used to show that the value of the intEgta,;| decays
like O(w™9).

Now the combined method in all its glorious generality:

Theorem 2.6. AssumeR,, is a quadrature method with asymptotic orgethat is
I[f7 Sd] - Qp[fv Sd] ~ O(w*d*p% W — Q.

For any smootlf andg, without stationary points and subject to the non-resonance
condition, the method

S

I B e L
QU8 == 3 i g, ™ OO0
1
" o] o

is of asymptotic ordes + p.

Proof. As in proof of theorem 2.3, write out the expansion of the error and w&se th
asymptotic error property a@,,. O
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This method is not really a quadrature rule per se, as we have not sedres
the fact that also the boundary integrals have to be treated somehow. A lowe
dimensional, thus cheaper, quadrature method might be used. Using ties-Stok
type formula to reduce the dimension of the boundary integrals until we dre lef
with a formula incorporating data only at the vertices is a possibility, but then als
treating the resulting remainder terms with a Filon-type method is preferable in
order to retain control over the error.

2.4.1 Quadrature on the 2D simplex

To illustrate the combined Filon/asymptotic approach in the multivariate case we
consider the case of the 2D simplex. Assume no stationary points or resonan
points are present and write

1 1—y )
I1f,Ss] :/0 /0 f(z, )@V dzdy.

Applying the Stokes-type formula once yields:

1 ! JZ,O wg(x
I[f,Sa] = z'w/o anVg(a:,O)HVJ;((wO)er 9(@,0) qy; (2.20)

I flz,1—2) _
-l-\/i/ ny ' Vg(z,1 -2 ’ 9@ 1) gy
@l = a1 =a)P

/ n3” ' Vg(0,y) /0,

5 IVg(0, y))l2
ST

y)
[HVQ (@, )|

with n; = [0, —1],n2 = [72, g] andng = [—1,0] being outer normals as

illustrated in figure 2.5.

¢w9(09) g

Vg(z,y)| 7"V dzdy

Example 2.6. Considering the problem

1 1—y )
I= / / sin(z 4 )@= dzdy,
0o Jo

we construct a classical Filon-type method of order 2, meaning the eresrdpwn

like O(w™*), by interpolating function values and derivatives at the vertices. An
interpolation point a{1/4,1/4) is included in order to fix the last parameter in

a full third order interpolation polynomial. Thus 10 moments are required- Con
structing a combined method with the same asymptotic order from the formula
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lm

Figure 2.5

0.02 0.02 | m r‘

0.01 0.01

0.00 0.00
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® (0]

@ (b)

Figure 2.6: (a) The error of the classical Filon-type method, scaled/by(b) The com-
bined method, also scaled by
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(2.20), which consists of three univariate and one bivariate integratshbe done

with a first order multivariate method applied to the remainder term and a sec-
ond order univariate method(error goes liRéw—?)) on the boundary terms. In

total we need four univariate moments per edge plus three bivariate moroents f
the remainder term. Adding an interpolation point(iry4,1/4) for the sake of
comparison gives a method with similar accuracy as the classical methody-see fi
ure 2.6. We observe that in this case the combined method performs better than
the classical method, for general problems the two methods will have cobigara
accuracy.

Assuming bivariate moments are much harder to compute than univariate mo-
ments, the example shows a good improvement of efficiency. On the dowhside
combined method is harder to implement, and for error control, the errotuof fo
guadratures must be balanced, which can pose a problem.

The combined method can also be constructed in a more extreme way, sorting
out all information at the vertices as simple terms, and all integrals as remainder
terms. Carrying out the computations for the non-resonant 2D simplexepnob
without stationary points yields the following expression:

1 |90 F(0,0) (,(0,0) | g.(0,0)
=y | Vg0 ( .(0,0) gy<o,0>>
e“9L0) £(1,0) (g,(1,0)  ga(1,0) + gy(1,0)
HVQ(LO)HQ <gw(170) - gm(l,O) _gy(170)>
=90 £(0,1) (gx(o, D, 9:00,1) +,(0, 1>>
va(o, 1)||2 gy(o, 1) gz(o’ 1) - gy(o’ 1)

L li f(a:,O)gy(x,O) R (x,0) T
*(m)?[/o i s 0 y)

/1d [va( x;(gg;(:n, 1—2)+gy(x,1—12) :|eiwg(:c71—x)dm
)

del[[Vg(e, 1 = 2)[](ga (2,1 = 7) — gy (2,1 — x))

! d (0 y z(o y) )
o [ OO0 i,
o dy [11Vg(0,1)]1%g,(0, ) Y

1—y .%’ )
s T [ e ) o

Note however that this approach will potentially only reduce on the number of
univariate moments needed, the bivariate remainder term is still at largeefotee
we will not pursue this approach further.
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2.5 Error estimates

In Example 2.2 where the simple univariate case without stationary pointamas c
sidered, we observed how the troughs in the error plot for a particiaw/&ymptotic
method seem to correspond with the peaks of a classical Filon-type methisd. Th
is exactly the same observation Iserles and Ngrsett made in [10], butathiewof
different Filon-type methods. The behaviour we have observed cexgb&ined in

a similar way. This investigation will also lead to a method for comparing classical
Filon-type methods and Filon/asymptotic methods of the same asymptotic order.

Assume in the following thag’(z) # 0, —1 < x < 1. From the discussion
on the asymptotic order of a Filon-type method and equation (2.5) it is clear that

F eg[f] —p—2
Qp[f]_I[f]pr+1 + O(w )y w — 00.

el’[f]/wP* L is in fact the next term in the expansioniff — f], with f being the
interpolant off:

eiwg(1) -

—W[%[ﬂ(l) — ap[f]1(1)]

ei‘*}g(_l) ~

- W[%[ﬂ(—l) — ap[f1(=1)].

By arguing that,[f] = J;()) + alinear combination of *) multiplied by a func-
tion involving derivatives ofj, K = 0,...,p — 1, one states that for a Filon-type
method theasymptotic error constarjé}ap | can be estimated by

where

pon [IFP) = 5O | [FP (1) — (1)
B P i Py o |

The exact same reasoning can be used to estimate the asymptotic errantdonsta
a combined Filon/asymptotic meth@ﬂg‘. Keeping in mind that the asymptotic
order of this method ip + s we can write

FA ep /] —
Qp,s[f]_j[f]’“ p+5+1+0( ), w— 0.
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Now the Filon-type method is applied to the remainder, so it should be clear that

eiwg(1)

= [G,[f]P(1) — o [f]®
(_i)sﬂg,(l)[ [F1P)(1) — o [f]P (1))

eiw‘g(_l)

- [6,[f]P(=1) — o, [f]P(-1)].
(_i)erlg/(_l)[ S[f] ( 1) s[f] ( 1)]

Here 6,[f] denotes the interpolant of,[f], and &,[f]® (x) its p-th derivative
evaluated inc. This gives

AFALF] < Jeb 2111 < AFAL],
with

5[ F1®P) (1) — a5 F1®) (1 Gs[F1P) (1) — o4[F]P) (=1
Ai’A[f]:‘ /] |(g/)(1)|p+£f] W] 195[/] (g/()—1)p+[{] DI}

Example 2.7. Example 2.2 concerns the probleﬁﬁ1 ;%dx, whereby applying
a Filon-type method we obtain

. 1, 2, 2 4
fl)=—ga® +ga® —Jo+g  and  [AF,Af)=[0.5930, 1.1852).

The combined Filon/asymptotic method has
Gilf)(x) =z — = and  [AFA ATA) =[1.1852, 1.9259).

These estimates explain the most significant features of Figure 2.1. Fohéraas
in Example 2.3 we have for the case- [-1,0, 1]:

Gilfl(x) = —fa? + tx — L [AFA ATA] = [0.7037, 1.1852),

and forc = [-1, -4, %, 1]:
Gilf)(z) = 2803 — 3L p2 4 2068, 2006 \Je \9) = [0.3754, 0.6492].

1225 11025

these calculations fit well with what has been observed, note in particuhatte
method withc = [—1, 0, 1] closely matches the classical filon-type method.
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2.5.1 comparing the classical filon and filon/asymptotic mébds

now it is time to address the important question: will a combined filon/ asymptotic
method get better accuracy than the classical filon-type method from the same
informatior®? for simplicity, consider the fourier cagéx) = x, and also assume
derivatives off are easily available. the maximum error for a filon-type method
and a combined filon/asymptotic method, both of asymptotic grdesw becomes

large are then

NS =179 (1) = fP Q)] + |fP(-1) - fP (1)),
M =165/ (1) = o [f1P (D] + 1651 (1) — o5 [f]7) (1)
= [&,[f]P7) (1) — fP Q)] + 6,[ /1P (~1) — FP(-1)].

now g(z) = z implies thato,[f] = f©), andé,[f] is the interpolant off(®).

we see that both methods have an error which is determined by the interpolant’
ability to approximate theth derivative off at the endpoints. the error constant

in the filon-type method comes from interpolatifigand differentiating the inter-
polant, for the combined approach takeerivatives, interpolate, then differenti-
ate. the possibility to more freely chose the placement of the interpolation,nodes
not restricted to the endpoints, will also result in a better approximation gftkhe
derivative, explaining at least in part why the combined method perfoetterb
than the classical method with the same data. we wish to explore this a bit further.

in the following we will do a small computation to demonstrate what can be
gained by using a combined method. consider a method constructedjnondes
distributed equidistantly, including endpoints, to approximate the errorpn-a
1 term asymptotic expansion, that iszfgfm-type method, compared to a filon-

type method of asymptotic orderof minimum complexityq};? by an ordep
method of minimum complexity we mean a method constructed by interpolating
only p derivatives at the endpoints with no internal nodes, implying that we use the
minimum number of moments to attain orgemow bear in mind that equidistant
points are by no means optimal, but are just used for the sake of demomstratio
these two methods are both are of asymptotic opdand use2p moments.q{f
requiresp data at each endpoint to interpoldteit is well known that the error of

the hermite interpolation is[5]

Sinformation here signifies moments.
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wherec; € [—1,1]. then from rodrigues’ formula[1]

- (2p) (¢
f(p)(x) _ f(p)(gc) — f@;)!l)pp(x)zpp!,

with p,(z) being thepth legendre polynomial. dg,(+1)| = 1 we have

Frn_ opri [P ()]
)‘+[f] = 2Pt P!W

for the q;:_l,l—type method, we consider the case witht- 1 equidistant nodes,
including endpoints. we interpolate _; [ f], and the interpolation error is now[5]:

— 1P (. M 221
f (1)\7(p+%)- (2.21)

a

f(p—1+n+1) (62) n

) - 2
Gp—1[fl(z) — Fo Y (2) = (”‘Fl)!g(x -1 +Z;)7

for cp € [—1, 1]. this simplifies to

Gp-1[f](x) = fP D (z) =

FP (eg) 27 (G (x + 1))
(n4+1)! nntly(5 '

differentiating gives
Gp-1lf) (@) — fP(2) =

£ ey) 20 (B3 + 1) + 1) — B3~ )T G+ 1) + 1)
(n+1)! n» I'(5(z—-1)) ’

with ¥ being the digamma function. The limit of the above expressiantasnds
to +1 can be found with a bit of effort:

Jim (5 [fY (@) = 1) = O ) )
Now it
AL = If(p“‘)(@)lm. (2.22)

For the case where the two methods use the same momen&p — 1, and then
22p
2p- (2p— 1)1

A —
AL = 1O ()]
Now we investigate the relative sizes of the two asymptotic error constants.

_ 2
AT OV )l w158 V()8 T+ 1/2)

ML yere)Esg el 4 Ve -1
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10° 4

I'(p+1/2)

Figure 2.7: Log-plot of the ratio%W

If we use no derivatives, that js = 1, the ratio is one, and for increasipgthe
ration is decreasing. In general the derivatives can often be assorbhedf mag-
nitude|f(™| ~ L™, this will in the limit not alter the conclusion. The significance

of the above calculations is most easily appreciated through a plot. Figure 2.7
shows that, assuming the derivativesfadre of the same order of magnitude, the
combined Filon/asymptotic method will have a smaller error constant when using
the same number of moments.

Example 2.8. As a final little calculation we once again investigate Example 2.3
and the close match between the- [-1, 0, 1] combined Filon/asymptotic method
and the classical Filon-type method, both of order 2. Equation (2.21) with

p = 2 gives for the latter

NS 2
AL[f] ~ B3
4
Thec = [—1, 0, 1] combined Filon/asymptotic method has three equidistant nodes,
that isn = 2. Equation (2.22) gives,
23 2
AFA ~ - =
Vi~ =g
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This fits well with the close match between the two methods that we observe in
example 2.3. Provided that derivatives are of the same order, thesedsi@itlo
in general perform similarly.

We must remark that although the proposed method apparently performs bet-
ter, it is by no means optimal. The freedom to choose interpolation nodeslo®uld
used to minimise the error, placing nodes closer to the boundary wouldadjgner
be better as derivatives at the boundary would be better approximatedl 3,
but this also depends on the size.ofln the limitw — oo, placing all the nodes at
the boundary, increasing the asymptotic order would be best. On the athér h
a more spread out distribution would probably be beneficial for smalleAll
this seems to make the whole discussion about asymptotic error constants slightly
artificial.

2.6 Conclusion

We have demonstrated the feasibility of combining the asymptotic expansion of
highly oscillatory integrals and Filon-type methods. Experiments as well as the-
oretical calculations show that the combined method can achieve betteligrecis
than the classical Filon-type method with more or less the same information. The
extra cost of the combined method lies mainly in more complicated expressions,
especially for cases with several stationary points or in the multivariate ¢ase
order to make a combined method for more general oscillatory integrals we must
have an asymptotic expansion with an oscillatory integral remainder. Howeve
such an expansion is not always available.
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Chapter 3

Asymptotic analysis of numerical
steepest descent with path
approximations

Abstract. We propose a variant of the numerical method of steepest descent for
oscillatory integrals by using a low-cost explicit polynomial approximation ef th
paths of steepest descent. A loss of asymptotic order is observed,thatnmost
relevant cases the overall asymptotic order remains higher than a trdiasstep-

totic expansion at similar computational effort. Theoretical results basedmn

ber theory underpinning the mechanisms behind this effect are presented

55



NUMERICAL STEEPEST DESCENT WITH PATH APPROXIMATIONS

3.1 Introduction

Consider a highly oscillatory integral of the form

1
If] = /_ 1 f(x)e™9®) 4z, (3.1)

wherew is a large parameter arfdandg are smooth functions called thenplitude
functionandoscillator of the integral respectively. Such integrals, often referred
to as Fourier-type integrals, appear in a wide area of applications, e lgly bt
cillatory scattering problems in acoustics, electromagnetics or optics [5, 3].14
Numerical evaluation of Fourier-type integrals with classical techniquesrbes
expensive as» becomes large, which corresponds to a highly oscillatory integral.
Typically, a fixed number of evaluation points per wavelength is requiretaim

a fixed accuracy, which makes the computational effort at least lineaf6ih

Asymptotic techniques on the other hand yield approximations that become
more accurate asincreases, making them superior éosufficiently large. One of
these techniques, the principle of stationary phase [21, 26], state§ thasymp-
totically depends only orf andg in a set ofspecial pointsasw — oo. These
points are the endpoints, here= —1 andxz = 1, and stationary points - points
where the derivative gf vanishes. At stationary points the integral is locally non-
oscillatory. The integral has an asymptotic expansion in inverse powerswith
coefficients that depend on the derivative§'@ndg at these critical points [16].

A set of particularly effective ways of obtaining the contribution from ecial
point are thesaddle point method&6, 20, 8]. Based on Cauchy’s integral theorem,
the path of integration can be deformed into the complex plane without changing
the value of the integral, provided thitand g are analytic [9]. Thanethod of
steepest descert obtained by following a path whekghas a constant real part
and increasing imaginary part, which renders the integral (3.1) ndlabs/ and
exponentially decreasing. This procedure yields separate paths @rigifram
each special point that typically connect at infinity (see Figure 3.1 faias:
tration). The result is separate contributions corresponding to eaclakpeint.
Every one of these contributions is a non-oscillatory integral that carrittermvas

/0 Blg)e7 dg, (32)

where ) is a smooth functiony = 1 for endpoint contributions, and > 1

for stationary points. These integrals are usually treated with standamgpasy
totic techniques like Watson’s Lemma. The larger class of saddle point methods
also contains methods that follow other paths with similar characteristics to the
steepest-descent paths, e.g., Perron’s method [26].

The asymptotic expansion df f] in general diverges, but it can yield very
accurate approximations df is very large. Still, divergence implies that the er-
ror is uncontrollable, which is problematic in the context of numerical compu-
tations. Recent research has however produced several numedttads that
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x=1

Figure 3.1: The contours of the imaginary part of the oscillagér:) = 22 in the complex
plane and the corresponding paths of steepest descent. dte pmerge
from the endpoints: = —1 andz = 1. They are connected by a path passing
through the stationary point at= 0

exhibit convergence. ThEilon-type method$16, 15, 17] are based on polyno-
mial interpolation of the amplitud¢ and can deliver errors that a(w ") for
any p, much like truncated asymptotic expansions, but with controllable error for
fixedw. Filon-type methods require thatomentsy,, = I[z*] are available, a se-
rious drawback in some cases. Combining asymptotic expansions and Fien-ty
methods [1] can economise on, but not eliminate the need for moments. Methods
that do not rely on moments are thevin-type methodsue to Levin [19] and
extended by Olver [23, 24]. Levin-type methods do not work in the pesef
stationary points, but a work-around is provided in [22]. We refer¢iaeler to [11]
for a detailed overview of these and other numerical methods.

One of the alternatives is tmimerical method of steepest desdéai, which
is a numerical adaptation of the above described method of steepesttddsee
lying on classical numerical integration methods applied to an exact decémpos
tion of the integral, the numerical method of steepest descent has cor&eltedr
wherever the exact decomposition is available, and asymptotic error &cay’)
for any p. The paths of steepest descent can however be difficult to compute, as
their computation corresponds to solving a non-linear problem that caadtiqe
only be solved iteratively.

The method of this paper is similar in spirit but based on the practical observa
tion that the exact choice of path is not essential. This observation tesomith
the theory behind saddle point methods. A Taylor expansion of the patibegfest
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descent, which can explicitly be derived from a Taylor expansion of skaélator
function g, is in many cases sufficient. Iterative methods to solve a non-linear
problem can therefore be entirely avoided. We obtain a numerical schéimk w

is relatively simple to implement and cheap to evaluate. The method exhibits high
asymptotic order, and the order is in fact higher than one would get frooma
cated asymptotic expansion using exactly the same number of derivatives of
A disadvantage of this approach is that the method again is only asymptotic, eve
when the decomposition using steepest-descent paths is exact, be eaaygartix-
imate paths may diverge too far away from the exact paths deep into the somple
plane — this is the cost of simplicity.

It is the purpose of this paper to analyse the asymptotic order of the mwpos
explicit numerical saddle-point method. Unlike the numerical adaptation of the
steepest-descent method and the other methods for highly oscillatory Istegra
mentioned above, the asymptotic order does not follow from standartisr@su
asymptotic analysis. A seemingly irregular relation between the number ghderi
tives ofg that are used and the number of quadrature points along the approximate
paths of steepest descent can only be explained in terms of elementargmtheib
ory. The main result of this paper is formulated and proved in §3.4 in The8r2.

3.2 The numerical method of steepest descent

In this section we give a brief overview of the numerical method of steejeest
scent. For a more thorough treatment, see [26] for the classical methtmbpést
descent, and [12] for particularities on the numerical version. In thevolig,

we will for simplicity assume that all paths may extend to infinity, which implies
among other things that and g should be analytic in a sufficiently large portion
of the complex plane. We note that this requirement can be significantly defaxe
so desired [10].

3.2.1 Paths of steepest descent

The method of steepest descent is based on the fact that under teenadraioned
restrictions on analyticity, the path of integration can be deformed into the cemple
plane without changing the value of the integral. A path that follows so-called
paths of steepest descent, we shall see, is particularly useful.

For the oscillatory integral (3.1) the path of steepest desegipt) originating
at the pointz can be found by solving the equation

g(hz(p)) = g(x) + ip. (3.3)

Subiject to the boundary conditidn.(0) = x, equation (3.3) is uniquely solvable
for smallp if ¢/(x) # 0. Along the path of steepest descent we hgé(=(®) =
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ewd(@)e—wP \which means that the line integral

. P
I1fihe, Pl =) [ o) p)ea,

is non-oscillatory and exponentially decreasing. By takingeg= —1, the left
endpoint of (3.1), this integral is the integration of the integrﬁhﬂ)e”g(m) along
the path starting at 1.

Along paths of steepest descent originating from different points, (p))
may have different, constant real parts, hence the paths originatimgtivo dif-
ferent points are in general different and do not connect. Therefe need to
work with at least two paths of steepest descent, one for each endpaawidition
connecting paths must be introduced. If there are no stationary poinendpeint
paths may connect at infinity by letting — oo. In that case, the connecting path
has no contribution to the value of the integral. In the presence of statipoaris
in [—1, 1] however, the connecting path must pass through all of these points and
their contributions are not negligible.

Any value¢ € [—1,1] such thaty’ () = 0 is called a stationary point. We
call ¢ a stationary point of order — 1 if ¢ (¢) = 0fori = 1,2,...,r — 1,
and g (¢) # 0.1 The canonical example of a stationary point of order 1
atx = 0is g(x) = z". At a stationary point, equation (3.3) may have several
solutions. In particular, if is a stationary point of order— 1 > 0, then there are
r different pathsh, ;, j = 1,...,r, emerging from¢. Since the connecting path
passes troughonly once, exactly two of these paths are relevant. We denote these
two paths byhe ;, andh ;,. Each of these paths corresponds to an integral of the
form

P
If; he g, P) = 6900 /0 Flhe ()L (p)e™P dp.

Again, letting P — oo eliminates contributions from paths connectilagwith
other steepest-descent paths, under above mentioned assumptiongg Writin

I[f§hz] :th I[f;h$,P],
the integral (3.1) is represented as a sum of contributions

I[ﬂ = I[f;h—l] - I[f;hihjl] + I[f? h§17j2]
+ = I fihe ] + 1S5 hey go] — I3 als

whereéy, . . ., , are stationary points. We will in the rest of this paper concentrate
on integrals of the typé[f; h], hereafter referred to as steepest-descent integrals.

!Note that with this definition any point which is not a stationary point, these nayinclude
endpoints, may be considered points of or@ler
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3.2.2 Numerical evaluation of steepest-descent integrals

Steepest-descent integrals can be approximated efficiently with Gaussidrag
ture. This is the observation behind the numerical method of steepesintlesce
which we shall briefly explain here.

For convenience, we introduce the notation

f+(p) = f(ha(p))h,(p).

The contribution from an endpoint becomes

) 00 eiwg(aj) 00 t
I[f;hy] = w9 (@) / fz(p)e “Pdp = / fa (—)e_tdt. (3.4)
0 w 0 w

Since f,(t/w) is smooth, this integral can be computed efficiently with classical
Gauss-Laguerre quadrature for the weight functioh[6]. Applying ann-point
quadrature yields an approximation with er@fw—2"~1!) [12]. Truncating the
asymptotic expansion after terms yields onlyO(w=""1) asymptotic error, but
requires the same number of evaluationg of

For the contribution from a stationary point things are a little different. When
¢ is a stationary point of order — 1 > 0, h¢(p) behaves ap'/” nearp = 0
andh(p) has gp~("~1)/" singularity [9]. This singularity can be canceled by the
substitutionp = ¢". The contribution is now written

I[f;he] = rews(€) f fe(qd") “lemwd"dq (3.5)
_ ,r,ezwg(f) fo L)tr 1 _trdt

This is an integral of the form (3.2). Smg@( “)¢"=1 is a smooth function, the
integral can be efficiently approximated by Gaussian quadrature with ifeigt:

tion e~*". We note that it may be beneficial to merge the two contributions from a
stationary point into a single integral over the whole real line. For exampthgin
case of a first order stationary point £ 2), classical Gauss-Hermite quadrature
can be applied [7]. In this exposition, however, we will only work with intdgr

on the half-space.

The result of applying an-point Gaussian quadrature leads to an approxima-
tion with an error which isO(w=(*"*1)/") asw — oo [7, Lemma 1]. In con-
trast, truncating the asymptotlc expansion aftéerms yields onlyO(w™ ”“)/T)
asymptotic error, but requires the same number of evaluatiofis of

3.3 A numerical saddle point method
Finding the path of steepest descent means solving equation (3.3). Thisiis a

linear equation and solving it amounts to computing the inverse funetidn
which in practical applications may be difficult to achieve. The rationale in this
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section is that in many cases it is sufficient to have only a rough approxinttion
the exact steepest-descent path. If not, then the rough approximatidhuses

ful as a starting value for, e.g., Newton iterations to solve the non-lineatiequ
numerically.

Here, we obtain a local approximation of the path by means of its Taylor series
aroundz. Only derivatives ofy atx are used to construct this approximation. This
approximate path may diverge away from the actual steepest-descterdgep
into the complex plane. However, this is not a problem in practice provided
is large: because the quadrature points cluster towarsw grows, as can be
seen from equations (3.4) and (3.5), a good approximation close to trexie#s
generally sufficient.

3.3.1 Local paths at endpoints

In the case of the steepest-descent path emerging from an endpoirgswaea
that the path is of the form

he(p) =+ ap. (3.6)
j=1

Note that we already incorporated the boundary condftigif®) = x. Substitution
into equation (3.3) gives

g(m + iajpj> = g(z) + ip.
j=1

Taking the Taylor expansion gfaroundz yields the equation

i (Z;.il a]p])kg(k)

1 (z) = ip. (3.7)

k=1

The coefficients can now be obtained by series inversion. The firstdetficients
are given explicitly by, with evaluation im implied,

(g/g/// _ 3(9//)2) ’ (3.8)

<g(4) (g/)Q _ 109/9//9/// + 15(9//)3) ]
In generalgay is given in terms of derivatives af up to orderk.
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We define the local path,, by truncating the series éf, afterm terms,
~ m_l .
ha(p) =2+ ) a;p’. (3.9)
j=1

This means that the left and right hand side of (3.3) match up to augler

9(ha(p)) = g(z) +ip+O(P™), p—0. (3.10)

From this path we can define the steepest-descent integral with an apatect
path, using the notatiofi. (p) = f(ha(p))h;,(p) andgz(p) = g(ha(p)),

-~ P ~ . -~
I[f: hy, P = /O f2(p)e™9=P)dp, (3.11)

We shall later evaluate this integral numerically. The numerical approximatlbn w
serve as an approximation to the infinite integr@l; /.|, we shall see that this is
indeed justified in 83.4.1.

3.3.2 Local paths at stationary points

We now turn our attention to paths passing through stationary pointsx bet

a stationary point of order — 1, meaning thay/(z) = ... = ¢ Y(z) = 0,

but ¢")(z) # 0. Expanding the path starting atin integer powers op is not
possible, sincé:,(p) is singular atp = 0. This can also be seen from equation
(3.7): the firstr — 1 terms in the expansion gfin the left hand side would be zero,
which makes it impossible to match the right hand side of the equation. However,
proceeding as in 83.2.2, the substitutipa- ¢" eliminates this problem. Thus, we
assume a path of the form

ha(p) =2+ a;p!/". (3.12)

j=1

Note that the functiorh,(¢") is analytic ing. Plugging this ansatz into equa-
tion (3.3) for the path of steepest descent yields

i Mgw)

x (x) = ip. (3.13)

k=r

The first coefficient is easily obtained,

ir!
ar = {/ SJ(T(JU) (3.14)
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Ther-th root in this expression hasbranches in the complex plane, correspond-
ing to ther different paths near the stationary point. More coefficients can be
computed recursively. In the case of an order one stationary point,r&béofir
coefficients are, with evaluation inimplied,

2i i g
g" S 3(9")

_ % i N2 g 1 (4)
a =%\ e (06 —30"90). (3.15)

1 1
= 370 TaE (40(9///)3 _ 459(4)9///9// + 99(5)(9//)2> .

a1::|:

ag =

a4

Explicit expressions for the coefficients can be found for generalle refer the
reader to [25] for a general description of such explicit expressions

As in the endpoint case, we form an approximated path by truncating (3.12)
afterm terms,

m—1
ha(p) = x + Zajpj/r. (3.16)
j=1

This means that the both sides of (3.3) match up to o?é@rﬁl

r+m—1

9(he(p)) = g(x) +ip+ O(p ),  p—0. (3.17)

This expression agrees with (3.10) fo= 1. Next, we form the integral
~ P ~ . ~
R A )
0
Q

= /0 rqr_lfx(qr)eiwg’”(qr)dq. (3.18)

with Q = PY/",

3.3.3 Numerical evaluation

As noted in section 83.2.2, it is advantageous to evaluate the half-spacelinteg
I[f, hy] with Gaussian quadrature. Though the intedifdl, i, P] is finite, we
intend to apply Gaussian half-space quadrature here as well.

For the numerical evaluation of steepest-descent integrals with approgimate
paths, we rewrite (3.18) as

Q y e T T T
I[f; he, P = / rq" " fu(q") eI (@) Fwd gmwd" g (3.19)
0
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Note that (3.11) is a special case of (3.19) with= 1, so that we can treat the
cases of endpoints and stationary points simultaneously. A change dblearia
g = w1/t gives the form

popQet -
1[f;he, P = = / ot )0 SO e g,
0

w

This integral can be evaluated with the same Gaussian half-space quaduis

with weight functione=*" that were used on the exact steepest-descent integrals.
To be precise, if that quadrature rule is given by pointand weightsy;, then we
propose the approximation

x

I[f; ha, P] = Q[f; hy] = ngix;“lfx <x> eiwgz(j)”;. (3.20)
=1

T
A
ik

w

We expect that this quadrature rule provides a good approximatib[lfiéx, P].
This is what we examine next in §3.4.

3.4 Asymptotic error analysis

Thus far, we have presented a way of obtaining a numerical approximattion
I[f; hy, P]. We will show first in §3.4.1 that this finite saddle-point integral is a
good (asymptotic) approximation to the infinite steepest-descent intggtal.,|.
Next, we shall investigate in §83.4.2 the numerical approximatioH ffh.., P] by
Gaussian quadrature. Theorem 3.2 gives the asymptotic order of thisxapp-
tion. Its proof follows in 83.4.3 and 83.4.4.

3.4.1 The error of using truncated approximate paths

In the method outlined in section 83.3, we replaced the exact path of steepest
descenth, originating atz with an approximatiorh,. that is valid only neat.

By our assumptions of analyticity, the path taken does not change the ¥dhe o
integral. However, since the approximate path may diverge away fromxte e
path for largeP, the limit P — oo may result in both paths leading into different
sectors of the complex plane. It is clear that the integral along the appr@xima
path should be truncated at finife to avoid this. In the following theorem and
corollary, we prove that the difference between the exact steepssttantegral
I[f; h,] and the truncated integrd|f; h,, P] is exponentially small as — oo,
providedP is sufficiently small. This implies that using a numerical approximation
of I[f; h., P] is justified.
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Figure 3.2: lllustration of the exact (continuous) and approximatesfdal) steepest-
descent paths. The curVeconnects a truncation of these two paths

Theorem 3.1. Let z € [—1,1] be a point of order — 1. Assumef andg are

analytic, and Ietﬁx(p) be anm-term approximation to the exact path(p) as
in (3.16) withm > 1. Then a constan®, > 0 exists, such that

I[f; hy, P] = I[f; he, Pl = O(w™), ¥n >0, YP <P,

Proof. By Cauchy’s integral theorem we have
I[f ha, P) = I[f; hy, P] _/f(s)eiwg(S)d&
r

wherel is any simple path connectirg,(P) and Ex(P). In the following, we
choosd to be the straight line. We intend to show that the integrand is exponen-
tially small along all ofl".

Let us expand in a Taylor series arounid,(P). We havey(z + §) = g(z) +
O(67) andg¥) (z + §) = O(6" 7). Sinceh,(p) = O(p*/"), we find that

99 (ha(p)) = O(P"7). (3.21)
We have by construction that,(p) — h.(p) = O(p™/") and therefore,
N —hy(P)=0OFP™"), ~yel, P—0. (3.22)

To conclude, we note that for sufficiently sm&l] such thaf’ lies in the radius of
convergence of the Taylor seriespét h,.(P), and for anyy € T', we may write

9(7) = g(hx(P) +v - h:(:(P)) = Zoio g(J)(hx(P)) (’7 - hm(P))]
= g(x) +iP + 332, g9 (he(P)) (v — ha(P)).
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Now, if m > 1, by considering (3.22) and (3.21), the teimdominates the terms
in the summation a® — 0. Thereforgy has positive imaginary part alohg again

for sufficiently smallP. It follows in that case that the integrand is exponentially
small along all off". O

Corollary 3.1. Under the assumptions of Theorem 3.1, providee Py,
I[f;hz]_I[fQianP]:O(w_n), \V/TL>0, w — O0.

Proof. We have
I[f:hy] = I[f ;e P) + /P b(g)e 7 dg,

where(q) is analytic ing. It follows from repeated integration by parts that
I[fihe] = I[f;he, Pl = O(™),  ¥n>0  w— oo

The result follows from this and Theorem 3.1. O

3.4.2 Asymptotic error of the numerical approximation

Since replacing the paths does not lead to a loss in asymptotic order, the or-
der of the overall method relies on the order of the numerical approximation o
I[f; hs, P]. We evaluate the latter by a quadrature rule. A quadrature rule with
n points and with ordet! with respect to the weight functiosr*" satisfies the
conditions

/ mje_xrdx:Zwkwi, j=0,...,d—1. (3.23)

0 k=1

Using such a rule for the steepest-descent integral leads to an asymptotic e
of size O(w=(@+1)/7) [7, Th.2]. When using an approximate path, we have the
following result. Note that by integer divisiaf\ 5, we mean that the real quantity
d/( is rounded towards the nearest smaller integer.

Theorem 3.2. Assumez is either a regular point; = 1, or a stationary point of

orderr — 1 > 0. An approximation/|f; l}x,P] to the steepest-descent integral

I[f; h,] is constructed by replacing the path with its m-term Taylor expan-

sion hy, with m > 1 and withP < P, sufficiently small as in Theorem 3.1.

Let Q[f; h.], given by (3.20), denote the approximationiig'; h,., P], obtained

through am-point quadrature rule of orderthat satisfies the conditions (3.23).
Defineg =r+m — 1,k =d\pfandl =d mod . Then

O(w= 5 Ty, ifl<m-—1,

o (3.24)
SO s m— 1,

I[f§hx]_Q[f§iL:c]:{

d+1
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for w — oo. In particular, forr = 1 we have
I[f; hal = Qf; ha] = O 471 H0Vm),

We can also formulate an upper bound for the exponents in (3.24) thidsavo
integer arithmetic.

Corollary 3.2. Under the same conditions as in Theorem 3.2, we have

= _d+ld
I[f; ha] = Q[f s ha] = O(w™ 7 75). (3.25)
Proof. For the first case of (3.24), note that= d\ 3 < d/(3. For the second case,

assume that = K +m — 1with0 < K <. Thenk+@:k+§ <

K4+m—1 _ d
k+ T‘JrrTr?fl - g O

Let us first compare the result of Theorem 3.2 to the result based o th&in
exact path. One incurs a loss of minimum= d\§ = d\(r +m — 1). In order to
achieve the full ordefd + 1)/r, one should at least hake= 0, meaningl < 3,

m>d—r—+1.

Full order is then achieved if< m — 1, which is always true whenever= 1, and
more likely to be violated for larger. In the converse case, we have a maximum
order loss of one.

Next, we compare to the result based on using a truncated asymptotic expan-
sion. This is more involved. Ag-term expansion has asymptotic er(@(rw—(S“)/’“)

and requires the valugé’) (z), j = 0,...,7 + s — 1 [16]. Using these same val-
ues, we can afforech = s+ 1.The asymptotic expansion also requiresdivalues
fU(x),j=0,...,s — 1, whereas the proposed method needsvaluations off

andg. We choose: = s for the comparison and continue by counting evaluations
of f or any of its derivatives. For the asymptotic expansiomalues off lead to
order%. A Gaussian quadrature rule with respect to the weight funetion
yieldsd = 2s. By Corollary 3.2, the proposed numerical saddle-point method then
yields an order greater than or equal to

d+1 g_Qs—i—l 2s _s+1+§ s—r
N r+s|’

Thus we are guaranteed to do at least as good as the asymptotic expamsien
evers > r.

Note that in the above, we ignored the evaluationg of the complex plane.
This is justified in a setting where many integrals of the faffi] need to be
evaluated for the same oscillatgy for example when computing moments for
later use in Filon-type quadrature [16].

Both these calculations show that the proposed method compares well to both
the method with exact paths and asymptotic expansions wisarelatively small.
In real-life applications we do however not expect to encounter casles Wweing
large, we will typically have: = 1 orr = 2.

r 15} T r+s r r
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3.4.3 Supporting lemmas for the proof of Theorem 3.2

We once again rewrite the integtdlf; h.., P] in the following form:
- ) Q. .
I[f, hy, P] = e’wg(m)/ w(q)ez“’R”m*l(q)e_wq dg, (3.26)
0

wherer — 1 is the order of the point, R3(q) is a function of the form
Rs(q) =" rid. (3.27)
j=0

To be precise, one sees by comparing to (3.19) that this means

Reym-1(q) = u(q") — iq" — g(x),

and B ~
(q) =rfa(q") g "

It is important in the following that the functioR,,,—1(q) indeed vanishes to
orderr +m — 1, which can be seen by inserting (3.17) into (3.19), and that the
function(q) is a smooth function independent.of

The following lemma is a generalization of Lemma 2.1 in [7]. That lemma
characterized the asymptotic order of a scaled quadrature rule appliste&past-
descent integral of the form (3.2). Assumerapoint quadrature rule is given that
satisfies the conditions (3.23). It was proved in [7] that, for a funatiar) analytic
in x = 0, the quadrature approximation behaves as

/ u(x)e*w:pr dx — w*I/T Z wku(kafl/r) _ O(wf(d+1)/r)'
0 k=1

Here, we will allow the integrand to depend@1in a benign manner and show that
the asymptotic order changes in a way that reflects the possible growthayr ofe
the integrand as a function of

Lemma 3.1. Assume am-point quadrature rule is given such that conditions (3.23)
hold. Letu(x;w) be analytic inc = 0 with a positive radius of convergenégfor
eachw > wg,

u(zr;w) = Zaj(w)a:j, |z| < R, (3.28)
=0
and such that; = O(w) with v; € R. If 0 < P < R, then

i1

P n
/ u(z;w)e @ do — w T Z wku(:ckwfl/r; w) = (’)(wmaXJZde*JT ).
0 k=1
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Proof. We have
P r > P . r
/ u(z;w)e " dor = Zaj(w)/ xle " dx.
0 s 0

Using integration by parts, as in the proof of Corollary 3.1, we find that
00 P
/ e dg — / le™ " dr = O(w™™), Ym € N.
0 0

Next, it is straightforward to verify that

> - 0 j<d
j —wx” o =1r —1/r\j _ ’ )
[ e Sty = { Gy 54
The first case follows from exactness of the quadrature rule for polyels up to
degreel—1. The second case follows because both terms in the left hand side have
the given size: the integral can be computed explicitly, the summation contains the
factorw—(+1/r,
Combining all of the above proves the result. Note th@at; w) is evaluated in
the pointsz,w~!/" which, for sufficiently largev, lie in the radius of convergence
of u. O

Finally, we will examine the asymptotic size of functions of the farti(®)
and their derivatives. In order to obtain the result, we use a versiora@&fdi
Bruno’s formula expressed with integer partitions. A partition of an naturalber
n > 0 is a way of writing it as a sum of natural numbers. The number of different
ways to do this is the partition number of denotedu(n). We write a partitiorp
of the integem as an array = (p1,p2, ..., pn), Wherep; is the number of times
the integerj occurs in the sum, i.e.,

> ipj=n. (3.29)
j=1

See, e.g., [4] for a detailed treatment of partitions and [18] for Faa dndsu
formula, which we recall in the following Lemma.

Lemma 3.2(Faa di Bruno’s Formula)lf g andf are functions that are sufficiently
differentiable, then

ey =

dan
Z pllpg?.!. .pn!g(k)(f($)) (fll(!x)>p1 (f,;(!x))m o (f(t;(x))pn,

where the sum is over all partitionsof n with entriespy, po, ..., pm, andk =
p1+p2+...+Dn.
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Lemma 3.3. Let Rg(q) be defined by (3.27) for an integér> 0. The derivatives
of e«5(0) | evaluated ag = 0, have an expansion of the form

qn n\B ‘
diqnebk)Rﬁ(q)‘q:O = Z b] Uﬂ, w — 00,
where\ denotes integer division.
Proof. Itis clear that
RY(0)=0, 0<j<g. (3.30)

Using Faa di Bruno’s Formula (Lemma 3.2), we have

ar
4w g<q)‘
dq”e

wR! p1  wWRS(q) N\ p2 wR™ ()~ pn
(T (T (e

p1'p2 1! 2! n!

wRﬁ(O)Z
ng@(q) po (wBY V(@) vps wRS (@) \pe
_Zpl'pz pn!< B! > ( B+ 1! > ( ) 7

where the sum is over all partitionpsof n. The last line follows from equation
(3.30). Clearly, each of the terms in this sum is proportionab%;ﬁpf. It is
also clear that the expansion consists of positive integer powets dfo find
the dominating term, we maximise the express@;’r 5 pj over the set of all
partitions ofn. It remains only to prove that

n!

ij <n\fB, Vp partitions of n.
Jj=B

Assume a partitiol of n exists such that
n
Y g =n\B+M,
j=8

with M > 0. Fromg we can construct another partitignas follows. We let
gs =n\f+ M andg; =0, j > (3. It follows from our construction that

ZJQJ>Z]C]] B(n\B+ M) >

No matter how we choosg for j < /3, ¢ can never satisfy the summation prop-
erty (3.29) and neither can This proves the resuteductio ad absurdum [
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The final lemma concerns the maximal exponeniwdhat may arise in the
result of Lemma 3.1.

Lemma 3.4. Assume that- and § are integers such tha > r and define the
sequence

sj =J\B — %

For any positive integetl, let k = d\f and! = d mod §. The maximum of
{sj}i2qis

k-4, ifl<p—r
axs; =
TR T k1 - B8 s gy
Proof. For the integer division we have the identity
\g=2 1 mod §) (3.31)

== - = mo . .

This means that
(G~ 1)~ (G mod )
s;i=Jjlm—-)— =5 mo

The first of these terms is decreasing monotonically. The second term 4s non
increasing, except when the integer partjgfi changes. This implies that the
largest element in the sequence for d is either the first element,, or s, for
some integen. In the latter case, we have

sng = n(1—B/r),

which again is decreasing. This means that a maximum must occur at the smallest
admissiblen. This isn = k, whend is a multiple of3, andn = k + 1 otherwise.
This leads tos;3 = s4 as above 08 1)g-

From the identity (3.31), we find that the corresponding element is either

d d
Sd:d\ﬁ—;:k}—;

or

(k+1)8 (k:+1)6.

Styp = (K +1)B\B — k41—

One easily verifies that the former is larger than the lattér<if 5 — r. They are
equal ifl =g —r. O
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3.4.4 Proof of Theorem 3.2

We assembled enough results in 83.4.3 to state a short proof of Theoretm 3.2
the following, let3 = r +m — 1.

Proof. Leibniz’ formula gives the derivatives of the integrand of (3.26) as time s

n

d" 1o\ iwRse)] _ n\ ¥ oryp 4" -
@ [¢(Q)€ 7 q] = ]z;) (j) [@6 7 dgn—i ¢(Q)]

Lemma 3.3 applied to each of the these terms gives an expansion of the form,

g [T/J(Q)e“"Rﬁ(q)L:O = jz:% cjw’.

Hence, a Taylor series around= 0 has coefficients that a@(w™\%).
All conditions of Lemma 3.1 are satisfied and we can conclude that the error
of the quadrature approximation is

I[f; e, P = QUfhe) = 0w 243\ G40/,
The maximum in the exponent follows from Lemma 3.4, since
I\B=(G+1)/r==1/r+[\B—j/r]=—1/r+s;,

wheres; is defined as in Lemma 3.4. This leads to the stated order (3.24) of the
quadrature approximation. The cds€ § — r = m — 1 follows immediately. For
the second case, one can verify that

bl (k:+1)ﬁ_1:_d+1 +k+l (m 1)'
T T
Forr = 1, the second case does not arise becausethen + m — 1 = m and
the conditioni < m — 1 always holds, so the result simplifies.
Thus far we proved the asymptotic error in approximating; i, P]. The
final result now follows from Corollary 3.1. O

3.5 Numerical experiments
In this section we will illustrate the use of the method outlined in section §3.3 as

well as the results regarding the asymptotic error behaviour predicteceiordim
3.2.
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Figure 3.3: Log-plot of error for different path approximations. Caseegular endpoint

3.5.1 Test of case with no stationary points

Consider the highly oscillatory integral
1

I[f] = / sin(z)e™/ @+ dg,
—1

The oscillatorg(x) = 1/(x + 2) has no stationary points, meaning there are only
contributions from the endpoints. The exact paths can be computed in $kis ca

In Figure 3.3 we have plotted the error of the two-point Gauss-Laggeaeéra-
ture applied to the resulting line integrals with the given exact paths as weiltas a
proximate paths with different number of terms. Note that the approximate paths
are constructed only with the knowledge of some derivatives of

The loss of order when using approximate paths, which can clearly be ob-
served in Figure 3.3, is predicted in Theorem 3.2. We shall test the cantlofs
the theorem by using approximate paths with different number of terms and dif
ferent number of quadrature points, and then measuring the asymptaeichyrd
regression for each combination. The result of this test can be seeblm 34
along with the predicted ordeln + 1 — 2n\m.

3.5.2 Comparison with classical asymptotic expansion

As noted in the introduction, the numerical method of steepest descent with ap
proximated paths is asymptotic in its nature and should be compared to a classical
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n |,m— exact 2 3 4 5

1 3.0(3) 2.0(2) 3.0(3) 3.0(3) 3.0(3)
2 5.05) 3.1(3) 4.0(4) 4.1(4) 5.0(5)
3 7.0(7) 4.2(4) 5.1(5) 6.9(6) 6.2(6)
4 9.0(9) 5.3(6) 7.1(7) 7.3(7) 8.0(8)

Table 3.1: Measured order for different numbersf Gauss-Laguerre points with terms
in the Taylor expansion of the steepest-descent path. d&tsimn is with the
exact path. Numbers in parentheses are orders predictdteiordm 3.2.

1 derivative ofg 2 derivatives ofy
w — 10 50 100 10 50 100
Asymptotic | 1.49e-02 1.24e-03 4.11e-052.10e-02 1.84e-04 2.85e-05
1-point NSD| 1.53e-03 5.39e-04 3.27e-051.70e-02 1.56e-04 2.37e-05
2-point NSD | 1.19e-03 2.98e-05 3.31e-063.96e-03 4.83e-07 1.85e-07
3-point NSD | 1.01e-03 1.49e-06 7.59e-087.80e-04 1.87e-07 7.62e-09
4-point NSD | 7.40e-04 5.48e-08 5.83e-103.07e-05 1.81e-08 2.25e-10

Table 3.2: Comparison of the error of the classieaterm asymptotic expansion which
usesn derivatives ofy and them-term approximated path approximation which
usem — 1 derivatives ofg. The rows two to five contain results for numerical
steepest descent with approximated paths and one to fodrajuge points.

asymptotic expansion. This expansion, written out explicitly in eg. [16]}Jireg
derivatives off, which the method of steepest descent does not. On the other hand,
the asymptotic expansion only evaluates the functions at the endpointgasher
the proposed method can be evaluated at a chosen number of completienalu
points. A fair comparison is therefore not straightforward. We shall attenmgp

on applying the two approaches on the integral

1
I = / eiwsin(wx/?))dx,
-1

usingn = 1,...,4 Gaussian evaluation points for the steepest descent method.
The results in Table 3.2 shows that the method of steepest descent wittxiappr
mated paths performs consistently better than the truncated asymptotic erpansio
Note that adding evaluation points is computationally cheap; there is potemtial fo
doing much better with little extra work.
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3.5.3 Case of stationary points

Now consider the integral
1
I:/ Cos(:c)eiw(x3+2x2)dm,
0

which has an order one stationary point at the origin. Even in this simple poly-
nomial case the exact path originating from the stationary point is cumbetsome
compute. Instead we construct the paths with the coefficients (3.15).

The steepest-descent integral corresponding to the path from the atgtion
point atz = 0 is computed with a scaled Gaussian quadrature. By using the exact
path and a large number of quadrature points, we can nearly eliminate the err
contribution from the right endpoint. Thus the error will be dominated by tre e
from thex = 0 contribution. Running over a range of differemwve estimate the
order by regression, and the results fit with the predictions from The82 (see
Table 3.3a).

No attempt to use exact paths at the origin was done, and the reference so
lution was obtained with Matlab’s standard quadrature package close tanaach
precision.

For completion, we include the results from parallel tests done on the integral

I = /1 eiw($4+4x3)dx
0

which has an ordeZ stationary point at the origin(Table 3.3b).

nl,m— 2 3 4

1 1.0(1) 1.5(3/2) 1.5(3/2)
@ 2 1.5(3/2) 1.5(3/2) 2.0(2)

3 1.6(3/2) 2.4(5/2) 2.5(5/2)

4 1.9(2) 2.4(5/12) 3.5(7/2)

nl,m-— 2 3 4

1 0.6(2/3) 1.0(1) 1.0(2)
(b) 2 0.6(2/3) 1.0(1) 1.3(4/3)

3 0.9(1) 1.7(4/3) 1.3(4/3)

4 1.4(1) 1.6(5/3) 2.4(2)

Table 3.3: Measured order for different numbetisof Gauss points withn terms in the
expansion of the steepest-descent path. Numbers in pasastlare orders
predicted in Theorem 3.2. a)-Case of order one stationaint,po)-Case of
order two stationary point.
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3.5.4 Effect of singularities on path approximations
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Figure 3.4: Influence of singularities in the complex plane on the methedor plotted

Figure 3.5: Contours of the imaginary part of the oscillatdrr) = 1/(1 + 2?) with exact
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path and approximations

It is important to note that the numerical method of steepest descent, both with
exact and approximated paths, can perform well in non-analyticat c&iagu-
larities in the complex plane have only an exponentially small influence on the
integral. Of course, a quantity that is exponentially small for increasintpy be
arbitrarily large for any fixed value @b and thus tangible restrictions on the size

of w may apply.

76



3.6. EXTENSIONS

As an example we consider the integral

T
/ewl+m2dx,
0

whose oscillator has poles at = +i. By considering the asymptotics of the
path equation (3.3), it is easy to verify that paths of steepest desqamizap the
poles ap — oo. If the paths are truncated they are contained in a section of the
complex plane where the integrand is analytic and thus Cauchy’s theomi@sap
The pole at—i hardly affects the accuracy when using exact paths, as shown in
Figure 3.4. However, the pole does affect the accuracy of the pathxapyation.

The approximate paths usirgor 4 terms are shown in Figure 3.5. Still, far
large enough the influence of the pole is negated by the clustering of thetéea
points near the real axis. Using more evaluation points, some of which atedbc
further away from the real axis, means that this effect comes in at arhighe

3.6 Extensions
In this final section we describe two extensions of the proposed scheimar¢ha

likely to be interesting in applications. We omit formal statements with proofs for
the sake of brevity, but nevertheless we aim to be precise.

3.6.1 Avoiding the use of derivatives

nl,m-— 2 3 4 5
1 20 3.0(3) 3.0(3) 3.03)
€) 2 3.1(3) 4.04) 4.1(4) 5.0(5)
3 4.2(4) 5.1(5) 7.0(6) 6.3(6)
4 5.7(5) 7.3(7) 7.7(7) 8.0(8)
nl,m— 2 3 4
1 1.0(1) 1.5(3/2) 1.5(3/2)
(b) 2 1.5(3/2) 1.5(3/2) 2.0(2)
3 1.4(3/2) 2.5(5/2) 2.4(5/2)
4 1.8(2) 2.4(5/2) 3.4(5/2)

Table 3.4: Repetition of the experiments in Table 3.1 and 3.3(a), bth derivatives ob-
tained from a finite difference approximation with apprapely scaled evalu-
ation points.

The proposed scheme requires the computation of derivatives, whichabhay

always be available. This is true for most numerical schemes for oscillatiery in
grals with high asymptotic order, because the asymptotic behaviour of theaihteg
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depends precisely on those derivatives. However, when aiming farasggmp-
totic order, it is sufficient to know derivatives only approximately, as laaghe
accuracy of the approximation scales wittn a suitable fashion.

This was exemplified for Filon-type quadrature in [15]: Hermite interpolation
of derivatives at critical points in this setting can be replaced by interpalatio
points that are spaced(w~") apart without sacrificing asymptotic order of accu-
racy. A similar observation holds for our method: the exact derivatifgsan be
replaced by finite difference approximations and it is sufficient that thirtpare
spaced)(w~1!) apart, and the asymptotic rate of error decay will stay the same.

To be precise, let us assume that the derivatives employed in the method are
approximated wittO(w=1) error, i.e.,

g8 (z) = g¥)(z) + ex(w), (3.32)

whereey,(w) = O(w™1). Note that when using finite differences of ordérwith
h ~ w~! spacing, the error may actually be asymptotically smaller.

We construct path approximatiohs with coefficientsa; on the basis of these
derivative approximations. One can verify that hev—!) error finds its way into
the path equation with the same asymptotic size:

- > < g/
so) =) +ips > G0 4 B, p),

with E(w, p) = O(w™!) for each value 0p.? Thus

g(hi(q") = g(x) +iq" + Rrym—1(q) + E(w,q"),
in the notation of 83.4.3. If we define a new residual function

Rr-l—m—l(Q) = Rr+m—1(Q) + E(w, qr)7

the proof of Theorem 3.2 must be reconsidered with this function. Theadritic

point here is Lemma 3.3, which is concerned with the growth of derivatifes o
functions of the forme“s. The property of vanishing derivatives (3.30) in this

Lemma clearly doesn't hold fof%ﬁ. However, the derivatives are asymptotically

small, i.e.,

RY(0)=0@w™), 0<j<p.

With this condition replacing (3.30), the Lemma still holds. Thus mended, the
proof in 83.4.4 in turn also holds.

Table 3.4 confirms this analysis. The experiments that were used in 85 to
experimentally determine the order of the method are repeated here with simple
finite difference approximations of the derivatives. The numbers arghtg the
same as the numbers found in Tables 3.1 and 3.3(a).

2In order to see this, note that the coefficieltshave an error of the same size regardless of the
value ofr, which follows for example from the explicit expressions in 83.
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3.6. EXTENSIONS

3.6.2 Two-dimensional integrals

Multivariate oscillatory quadrature is significantly more challenging than tle un
variate case. However, the benefits of exploiting high oscillation are atsieyr
compared to traditional methods. The numerical method of steepest desent
extended to multivariate integrals in [13], based on repeated one-dimelintena
gration and tensor-product Gaussian quadrature. The computatitirst#fegpest-
descent paths involved is a delicate matter. It turns out that path approxisatio
provide an important simplification in this procedure.

We consider a simple example to illustrate two-dimensional integration with
approximated paths numerically. The integral

R B S jw—L
I[f] :/ / e VTV e Tty dyde,
0 0

has only one contributing point, the origin. Treating it as an iterated integtal r
quires us to solve for two paths of steepest descent, wherankee pathfor y
depends on the outer integration variableThe inner pathu(p, =) satisfies

9(@, u(p,v)) = g(x,0) + ip, (3.33)
and the path(q) for z is subsequently found from the equation
9(v(q),0) = g(0,0) + iq. (3-34)

The combination leads to a steepest-descent marifold) which satisfies

g(v(q),u(p,v(q))) = 9(0,0) + ip + iq.

Construction of the paths simplifies considerably in the framework of approx
imated paths. For the experiment we fix the number of terms in the expansion of
the two paths to be the same. We solve equations (3.33) by replacin@r, v)
by its Taylor series in thg-direction and (3.34) by replacing(z, 0) by its trun-
cated Taylor series at the origin. These series are in turn inverted. I&déows
measured asymptotic order for a rangergfincluding exact paths, and number of
evaluation points:, plus the accuracy the method achieves for this problem.

The measured rates of convergence in Table 3.5 appear to be exactyrtée s
as those given in Table 3.1. Though an exact analysis of this case is moikeih
than the repeated application of the arguments used for the univariatetluase
result should not be surprising as one can indeed think of the doubleahtegy
a repeated one-dimensional integral with approximate paths, each of hdsch
known asymptotic behaviour.

This line of thinking does not generalize however to the case of stationary
points, where the gradient of the oscillator vanishes, and the caseoofarese
points, where the gradient of the oscillator is orthogonal to the tangeneohth
tegration domain’s boundary. Both generalizations are a topic of furéisearch.

The simplicity of path approximations, with explicit expressions for the path ap-
proximations, presents a motivating factor for this research.
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NUMERICAL STEEPEST DESCENT WITH PATH APPROXIMATIONS

nl,m— exact 2 3 4 5

1 30 20 30 30 30

a) 2 50 3.0 40 40 5.0
3 70 41 49 61 6.0
4 93 53 69 7.0 84
nlw— 10 50 100
1 1.05e-02 4.01e-04 1.00e-04

b) 2 4.11e-03 1.72e-05 2.04e-06
3 4.25¢-03 1.30e-06 6.58e-08
4 3.74e-03 1.52e-07 3.10e-09

Table 3.5: a) Measured order for different numbetf Gauss-Laguerre points with
terms in the Taylor expansion of the steepest-descent faths2D-example.
First column is with the exact path. b) Absolute error for #pmproximation
obtained with two-term path approximations.

80



Bibliography

[1] A. Asheim. A combined Filon/asymptotic quadrature method for highly os-
cillatory problems BIT, 48(3):425-448, 2008.

[2] A. Asheim and D. Huybrechs. Local solutions to high frequencysgBitter-
ing problems. Technical report, NTNU, Trondheim, 2008.

[3] P. Bettess. Short wave scattering, problems and technideigs. Trans. R.
Soc. Lond. A362:421-443, 2004.

[4] M. Bona. A Walk Through CombinatoricgVorld scientific co., 2002.

[5] M. Born and E. Wolf. Principles of Optics Cambridge University Press,
Cambridge, 1999.

[6] P.J. Davis and P. Rabinowitiethods of Numerical IntegratiorComputer
Science and Applied Mathematics. Academic Press, New York, 1984.

[7] A. Deafio and D. Huybrechs. Complex Gaussian quadrature dfabsry
integrals.Numer. Math,. 112(2):197-219, 2009.

[8] A. Erdélyi. Asymptotic ExpansionsDover publications inc., New York,
1956.

[9] P. Henrici. Applied and Computational Complex Analysis, Volumelley
& Sons, New York, 1974.

[10] D. Huybrechs and S. Olver. Superinterpolation in highly oscillatargdya-
ture. Technical report. In preparation.

[11] D.Huybrechs and S. Olverighly Oscillatory Problems: Computation, The-
ory and Applicationschapter 2. Highly oscillatory quadrature. Cambridge
Univ. Press, 2008.

[12] D. Huybrechs and S. Vandewalle. On the evaluation of highly osaillato

integrals by analytic continuatiorS1IAM J. Numer. Anal44(3):1026—-1048,
2006.

81



BIBLIOGRAPHY

[13] D. Huybrechs and S. Vandewalle. The construction of cubatulies rfor
multivariate highly oscillatory integraldviath. Comp, 76(260):1955-1980,
2007.

[14] D. Huybrechs and S. Vandewalle. A sparse discretisation forraftegua-
tion formulations of high frequency scattering probler8$AM J. Sci. Com-
put.,, 29(6):2305-2328, 2007.

[15] A. Iserles and S. P. Ngrsett. On quadrature methods for highiffatscy
integrals and their implementatio®IT Numer. Math.44(4):755-772, De-
cember 2004.

[16] A. Iserles and S. P. Ngrsett. Efficient quadrature of highly osoiljainte-
grals using derivative?roc. Roy. Soc. A461(2057):1383-1399, 2005.

[17] A. Iserles and S. P. Ngrsett. Quadrature methods for multivariakdyhig-
cillatory integrals using derivativedlath. Comp. 75:1233-1258, 2006.

[18] W. P. Johnson. The curious history of Faa di Bruno’s formililee American
Mathematical Monthly109(3):217-234, 2002.

[19] D. Levin. Fast integration of rapidly oscillatory functiorls.Comput. Appld.
Maths, 67:95-101, 1996.

[20] P. D. Miller. Applied Asymptotic Analysi®dmerican Mathematical Society,
Providence, 2006.

[21] F. W. J. Olver. Asymptotics and Special Function&\cademic Press, Inc,
New York, 1974.

[22] S. Olver. Moment-free numerical approximation of highly oscillatory-inte
grals with stationary pointsuro. J. Appl. Maths18:435-447, 2006.

[23] S. Olver. Moment-free numerical integration of highly oscillatory fims.
IMA J. of Numer. Ana).26(2):213-227, Apr. 2006.

[24] S. Olver. On the quadrature of multivariate highly oscillatory integraés o
non-polytope domaindNumer. Math,. 103(4):643-665, 2006.

[25] J. Wojdylo. Computing the coefficients in Laplace’s meth@&lAM Rev.
44(1):76-96, 2006.

[26] R. Wong.Asymptotic Approximations of IntegralSIAM Classics, 2001.

82



Paper Il

Local solutions to high frequency scattering problems

A. Asheim and D. Huybrechs
To appear in Journal of Computational Physics.




Is not included due to copyright






Chapter 4

Local solutions to high frequency
scattering problems

Abstract. We consider the solution of high-frequency scattering problems in two
dimensions, modeled by an integral equation on the boundary of a smotitir-sca
ing object. We devise a numerical method to obtain solutions on only parts of
the boundary with little computational effort. The method incorporates asymp-
totic properties of the solution and can therefore attain particularly goadtses
for high frequencies. We show that the integral equation in this appreaiites

to an ordinary differential equation.
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