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Chapter 1

Introduction

The use of Lie groups and differential geometry has in the last few years gained
importance in several branches of applied engineering, such as robot technology,
structural mechanics and marine control system. Symmetries and geometric fea-
tures, like for example the symplectic structure of Hamiltonian systems, play a
central role in stability analysis and in the understanding of the system’s physi-
cal characteristics. Yet it is not always easy to determine which of the geometric
properties are the most fundamental in the various particular problems at hand.
Even simple mechanical systems can exhibit unexpected or chaotic dynamical
behavior which is well worth investigating. Sometimes these properties can be
revealed by sophisticated analytical methods or clever geometric numerical meth-
ods, see e.g. [11, 13, 24].

In structural mechanics and flexible body dynamics, complicated real life
structures are often simulated by numerical discretization of the modeled govern-
ing continuous equations. The building blocks for numerical discretizations are
often proper combinations of simpler mechanical systems, e.g. systems of rigid
or elastic bodies linked by reciprocal force influences, and it is desirable that the
finite dimensional discretized equations inherit the key geometrical features of
their continuous counterparts. Since a physical system is featured and sometimes
completely determined by its geometrical properties, also its numerical treatment
should be tailored to the problem. This suggests that the modeling, geometrical
analysis and numerical approximation of a mechanical problem play interactive
roles in the solution process and geometric considerations have therefore been the
course of action, both in the modeling and in the numerical techniques, through
out this thesis.

Paper I [7] and II [6] in this thesis focus on rigid body dynamics, systems of
rigid bodies that are exposed to external forces. An implementation based on the



Chapter 1. Introduction

exact solution of the free rigid body motion is adopted in splitting methods for
rigid body dynamics. Besides being an interesting subject in it self, the geometry
of rigid body dynamics also constitutes a basic understanding of the elastic model
considered in papers III–V.

Paper III [17] and IV [16] addresses applications within offshore engineering,
in particular pipelay operations. Pipelines constitute one of the major compo-
nents within offshore oil and gas industry. As the exploiting in deep water fields
becomes more common, the installation of pipelines and flowlines has become
some of the most challenging offshore operations handled. In fact, recent trends
in deep water installation have developed pipelaying into an engineering discipline
of its own accord [18]. As the engineering complexity and costs increase with wa-
ter depth and pipe diameter, accurate mathematical models and geometrically
correct numerical simulations have become more important. The simulations
are used to analyze the pipelay operation and identify possible critical strains
on the pipe during the installation to maintain the overall safety levels. This
has motivated the development of dynamic models and geometrically correct nu-
merical methods to better understand the problem and predict the behavior of
the mechanical system. Some already existing commercially developed computer
program, such as for example OFFPIPE [23], SIMLA [28] and RIFLEX [10], have
become the universal tools for simulating pipelay operations. However, high re-
liability models and numerical methods, suited for closed loop automatic control
assistance in the pipelay, are still an interesting subject of research. Paper III
[17] and IV [16] in this thesis address the problem of modeling and simulating
the pipelay operation. By adding external forces, such as gravity, buoyancy and
hydrostatic damping to a well established nonlinear elastic rod model [25], we
obtain a dynamic model for an elastic pipe submerged in water. A mathematical
model of a vessel is finally attached to the pipe-model as a boundary condition.

In Paper V [8], we formulate both a symplectic and a multi-symplectic for-
mulation of the elastic rod model used in paper III and IV.

In the following section we will give an introduction of the free rigid body
and rotations in space. This is not only of interests for the papers on rigid
body dynamics, but also for the understanding the kinematics of the elastic rod
model used for the pipelay simulations. We will also give an introduction to some
geometrical and structural numerical methods that will be used in the papers.

1.1 SO(3) and the rigid body dynamics

One of the most fundamental mechanical problems is the motion of the rigid
body, whose configuration space is the Lie group of rotations in space, SO(3).
The rich geometry of rigid body dynamics often appears in a more general form
in solid mechanics and plays a important role for more advanced theories for

2



1.1. Rigid body

modeling rods, beams and shells [25, 26].
For a comprehensive description of rigid body motions see e.g. [2, 22]. A

rigid body is defined by a set of points in space B ⊂ R3, such that the distance
between two arbitrary points of the body remains constant as the body moves.
The motion of a free rigid body, without any influence of gravity or external
forces, can be described by linear translations and rotations about the center of
mass. However, for simplicity it is usual to neglect the translational motions and
consider only body rotations about a fixed point in space.

Let {E1, E2, E3} be an orthonormal basis attached to the rotating body, re-
ferred as the body frame, with its origin placed at the center of mass. Further,
let {e1, e2, e3} be an orthonormal spatial basis fixed in space, having its origin
at the body center of mass. Thus, any point given in body coordinates X ∈ B
(uppercase letters), in the body fixed basis Ei, can be transformed to its spatial
coordinates x (lowercase letters) in the basis {ei}i=1,...,3 by a 3×3 rotation matrix
Λ ∈ SO(3),

SO(3) := {Λ ∈ 3× 3 real matrix |ΛΛT = I3×3, det Λ = 1},

where I3×3 is the 3 × 3 identity matrix and ΛT is the transpose of Λ. The
motion of a point X ∈ B in the spatial coordinates is therefore described by
x(t) = Λ(t)X, where t is the time. Differentiating x with respect to t gives the
velocity of the point in spatial coordinates, ẋ = Λ̇X = Λ̇ΛTx, and from the
identity ΛΛT = I3×3,

d

dt
ΛΛT = Λ̇ΛT + ΛΛ̇T = Λ̇ΛT + (Λ̇ΛT )T = 0,

it follows that Λ̇ΛT must be a skew-symmetric matrix

ŵ :=

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 = Λ̇ΛT , w = (w1, w2, w3)T ∈ R3,

where w is called the spatial angular velocity (aligned with the axis of rotation,
see figure 1.1). It is readily seen that the matrix-vector multiplication ŵx can be
interpreted as the vector product of w and x, i.e. ẋ = ŵx = w × x. The velocity
can also be expressed in body basis ΛT ẋ = ΛT Λ̇X, the convective velocity, and
we define the skew symmetric matrix

Ŵ := ΛT Λ̇, W ∈ R3,

where W is the body angular velocity and it follows

Λ̇ = ŵΛ = Λ Ŵ . (1.1)

3
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Figure 1.1: Geometrical interpretation of the angular velocity w in space coordinates

By the definition of kinetic energy in classical mechanics one finds the kinetic
energy for the rotating rigid body

T =
1
2

∫
B
ρ(X)‖Λ̇X‖2 d3X =

1
2

∫
B
ρ(X)‖ŴX‖2 d3X =

1
2
〈W,JW 〉,

where ρ is the density, 〈 · , · 〉 denotes the Euclidean inner product and J is a
symmetric positive definite matrix. The inertia matrix J can be made diagonal,
J = diag(J1, J2, J3) by an appropriate choice of body basis Ei. In that case Ji,
i = 1, . . . , 3, are referred to as the principal moments of inertia.

From the Lagrangian L, defined by L = T − U = (1/2)〈JW,W 〉, one obtains
the equations of motion via the reduced variational principle,

δ

∫ t1

t0

Ldt = δ

∫ t1

t0

1
2
〈JW,W 〉 dt = 0. (1.2)

However, the variations has to be done with care using consistent variations
such that δW = Σ̇ + W × Σ, for arbitrary Σ(t) ∈ R3 satisfying the boundary
conditions Σ|t0 = Σ|t1 = 0, see e.g. [22]. The variational problem (1.2) yields the
Euler equations, JẆ = (JW )×W , and together with the rotational kinematics
(1.1) one obtains the equations of motions for a free rigid body

JẆ = (JW )×W, (1.3)

Λ̇ = ΛŴ . (1.4)

The Euler equations (1.3) can also be obtained from the Noether’s theorem
[2, 24, 13]. By Noether’s theorem one can prove that the components of the

4



1.1. Rigid body

Figure 1.2: The solution on the momentum sphere

spatial angular momentum m,

m := ΛM = ΛJW, M := JW,

are preserved quantities, i.e. m = constant. This implies

d

dt
m =

d

dt
(ΛM) = ΛŴM + Λ

d

dt
M = 0,

or
d

dt
M = M ×W = M × (J−1M), (1.5)

equivalent to (1.3).
From the two preserved quantities (invariants): the total angular momentum,

C := ‖M‖2/2, and the total energy, E := MT (J−1M)/2, one observes that the
solution of the Euler equations must lay on the intersection of the two level
surfaces of momentum C (sphere) and energy E (ellipsoid), see figure 1.2. Using
the two invariants one obtains the well known solution of the Euler equations,
that dates back to Legendre and Jacobi [15], given in terms of Jacobi elliptic
functions.

The geometry of rigid bodies also appear in the elastic rod model described
in [25], whose configuration space is

C = {(ϕ,Λ) |S ∈ [0, L]→ R3 × SO(3) | 〈ϕ′(S),Λe3〉 > 0}.

The kinematics for the rigid rotations of the undeformed cross sections along the
line of centroids ϕ is given by

∂SΛ(S, t) = ω̂Λ = ΛΩ̂, ∂tΛ(S, t) = ŵΛ = ΛŴ ,

5
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where w is the angular velocity and ω is the bending and torsional strain in spatial
basis (lowercase letters), respectively, and W,Ω their analogues in material basis.
The governing equations (excluding external forces) in spatial basis are

ρA∂
2
t ϕ = ∂Sn (1.6)

Iρ∂tw + w × (Iρw) = ∂Sm+ (∂Sϕ)× n, (1.7)

where n, m are internal stress forces and stress couple (in spatial basis), respec-
tively, and

ρA :=
∫
A
ρ0 dA, Iρ := ΛJρΛT , Jρ = diag(J1, J2, J3).

Defining the momentum densities P := ρAΛT (∂tϕ), Π := JρW we obtain the
reduced equations in material coordinates [27]

∂tP + (J−1
ρ Π)× P = ∂SN + (C−1

2 M)×N, (1.8)

∂tΠ + (J−1
ρ Π)×Π = ∂SM + (C−1

2 M)×M + (C−1
1 N + e3)×N. (1.9)

From the kinematics of the rotations differentiating in turn with respect to t and
S we also obtain

C−1
1 ∂tN − ρ−1

A ∂SP = (C−1
1 N + e3)× (J−1

ρ Π) + (C−1
2 M)× (A−1

ρ P ),

C−1
2 ∂tM − J−1

ρ ∂sΠ = (C−1
2 M)× (J−1

ρ Π).

The latter formulation, equations (1.8)-(1.9), has strong similarities with the
Euler equations of rigid body dynamics (1.5).

1.2 Integrators on manifolds

A common geometric property for the physical phenomena we are interested in
is that their solutions evolve on a given smooth manifold. For the definition of a
manifold see e.g. [19], however in most applications it is sufficient to consider a
manifold as the zero-set in Rn of a smooth map g : Rn → Rn−m, m ≤ n, i.e.

M = {y | g(y) = 0}, g : Rn → Rn−m,

and M is said to be m-dimensional.
Assume a problem formulated by the differential equation

ẏ = f(t, y), f(t, y) ∈ TyM, (1.10)

where TyM is the tangent space at y ∈ M such that y(t), for t ≥ t0, belongs to
the m-dimensional manifold M for y(t0) ∈M . In particular we are interested in
manifolds acted upon by a Lie group.

6



1.2. Integrators on manifolds

Definition 1.2.1. [24] A Lie group is a smooth manifold G that is also an
algebraic group, with a smooth binary group operation m : G × G → G and a
smooth inversion map i : G→ G

m(g, h) = g · h ∈ G, i(g) = g−1 ∈ G, ∀ g, h ∈ G.

If G is a Lie group, its tangent space TeG at the identity, e ∈ G, is a linear
vector space with the same dimension as G. This tangent space obey certain
algebraic properties and is called the Lie algebra associated to the Lie group G,
denoted g := TeG.

Definition 1.2.2. A Lie algebra g is a linear vector space together with a bilinear
operation, [ · , · ] : g× g→ g, called the Lie bracket, that is 1) Bilinear, 2) Skew-
symmetric and 3) satisfies the Jacobi identity.

The theory of Lie groups and Lie algebras is found in e.g. [3, 9, 12].

Definition 1.2.3. [24] Let M be a smooth manifold, G a Lie group with the
identity e and U be a subset of G ×M containing e such that {e} ×M ⊂ U ⊂
G×M . A local group of transformations acting on M is given by a Lie group G
and a smooth map (Lie group action) Ψ : U →M with the following properties:

1. Ψ(e, y) = y, y ∈M .

2. (g1, y), (g2, y) ∈ U , implies

Ψ(g1,Ψ(g2, y)) = Ψ(g1 · g2, y),

where g1 · g2 ∈ G.

3. Ψ(g−1,Ψ(g, y)) = y.

The Lie group action is said to be transitive if for any two points y, z ∈ M ,
there is a group element g such that Ψ(g, y) = z, or equivalently if the orbit
Ψ(G, y) := {Ψ(g, y) | g ∈ G} of any point is all of M [19].

Example The group of rotations SO(3) is a Lie group and its associated Lie
algebra is denoted so(3), which consists of all skew-symmetric matrices. The Lie
bracket of so(3) is the matrix commutator given by [ŵ, v̂] = ŵv̂−v̂ŵ, ŵ, v̂ ∈ so(3).
For the attitude matrix Λ ∈ SO(3), described in the previous section, we have

Ŵ := ΛT Λ̇ ∈ so(3), ŵ := Λ̇ΛT ∈ so(3).

�
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For the numerical solution of problems of the type (1.10) it might be crucial,
in some applications, to produce numerical approximations yn ≈ y(tn) that stay
on the given manifold, i.e. yn ∈ M . A generic numerical method, such as e.g.
a classical Runge-Kutta or a multistep method, does not in general have this
property. On manifolds acted upon by a transformation group it is possible to
use Lie group integrators (see e.g. [11]) in order to ensure that the numerical
approximation is on M .

The idea behind Lie group integrators is that the numerical method Φh : yi →
yi+1 advances the numerical solution on M by using the Lie group action. Lie
group integrators relay on the use of a coordinate map, a local diffeomorphism
from a neighborhood of the origin in g to a neighborhood of the identity in G. A
common example is the exponential map,

exp : g→ G. (1.11)

Using the coordinate map and the Lie group action it is possible to pullback the
original equation from the manifold to the Lie algebra. The transformed equation
is then approximated on g by means of a classical Runge-Kutta method and the
inverse transformation is used to advance the solution on M . An example of
Lie group integrator is the Magnus integrator described in [14], which is used in
paper I [7] on SO(3) to approximate the attitude of a rigid body. The approach
is illustrated in the example below.

Example Recall the linear differential equations for the attitude of the rigid
body (1.1) in the form (1.10),

Λ̇ = ŵ(t)Λ ŵ(t)Λ ∈ TΛSO(3), (1.12)

here M = SO(3) and Λ(t) ∈ SO(3). Since exp : so(3) → SO(3) (1.11) is a local
diffeomorphism and the Lie group action is transitive, the solution of (1.12) can
be expressed locally as

Λ(t) = exp Ω(t)Λ0, Λ0 = Λ(t0) ∈ SO(3). (1.13)

Differentiating (1.13) with respect to time we obtain

d

dt
exp Ω(t) = ŵ(t) exp Ω(t), Ω(t0) = 0,

and the equation can be written explicitly in Ω as a differential equation in so(3).
One obtains

Ω̇ = d exp−1
Ω (ŵ(t)) =

∞∑
k=0

Bk
k!

adkΩ(ŵ(t)), (1.14)
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1.2. Integrators on manifolds

where

adkΩ(A) = [adk−1
Ω (A), A], ad0

Ω(A) = Ω,

and Bk are the Bernoulli numbers defined by
∑
k≥0(Bk/k!)xk = x/(ex − 1) [1].

The firsts Bernoulli numbers are B0 = 1, B1 = −1/2, B2 = 1/6. Applying
Picard’s fixed point iteration to (1.14) [21],

Ω(t) = lim
m→∞

Ωm(t), Ωm+1 = Ω0 +
∫ t

t0

d exp−1
Ωm

(ŵ(τ)) dτ,

where Ω0 = Ω(t0) = 0, yields the so called Magnus series

Ω(t) =
∫ t

t0

ŵ(τ) dτ − 1
2

∫ t

t0

∫ τ1

t0

[
ŵ(τ2) , ŵ(τ1)

]
dτ2 dτ1

+
1
4

∫ t

t0

∫ τ1

t0

∫ τ2

t0

[[
ŵ(τ3) , ŵ(τ2)

]
, ŵ(τ1)

]
dτ3 dτ2 dτ1 + · · · , (1.15)

for ‖t − t0‖ sufficiently small. To get an approximate solution Ω̃ ≈ Ω, in so(3),
one truncates the Magnus expansion (1.15) and approximates the integrals by
Gaussian quadrature [14]. The numerical solution to (1.12), Λ1 ≈ Λ(t0 + h) ∈
SO(3), is

Λ1 = exp(Ω̃)Λ0 ∈ SO(3).

and its order of accuracy depends on ‖Ω̃−Ω‖ = O(hp+1). Using one point Gauss
quadrature,

Ω̃ = h ŵ(t0 + h/2),

one obtains a second order Lie group method, p = 2. For a fourth order method

Ω̃ = h(A1 +A2)/2− h2

√
3

12
[A1, A2],

where A{1,2} = ŵ(t0 + h(1/2 ∓
√

3/6)). Besides being a Lie group integrator,
these second and fourth order methods also become time-symmetric, such that
the numerical method, Φh : Λ0 → Λ1, satisfies Φh ◦ Φ−h = identity mapping.
Symmetric methods usually show good behavior in long time integration [11].
A complete treatment of Magnus methods can be found in [5] and in references
therein.

�
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Chapter 1. Introduction

1.3 Symplectic integrators

Symplectic integrators or Poisson integrators are specially designed numerical
schemes for Hamiltonian systems which preserve the symplectic structure and
have excellent behavior on long-time integration. Under appropriate assumptions,
symplectic methods can also be shown to ensure approximate conservation of
energy over exponentially long times [4].

For a mechanical system with n degrees of freedom q = (q1, . . . , qm)T , the
equations of motion are given by the solution of the Euler-Lagrange equations

d

dt
∂q̇L(q, q̇) = ∂qL(q, q̇), (1.16)

where L = T (q, q̇) − U(q), T is the kinetic- and U the potential energy, here
assumed to depend only on q. By the Legendre transform one defines the con-
jugate momenta pi := (∂/∂q̇i)L to get the Hamiltonian formalism of the prob-
lem. Solving the Lagrange equations (1.16) is equivalent to solve the (canonical)
Hamiltonian system

ż = J∇zH(z), J =
(

0 Im×m
−Im×m 0

)
, (1.17)

where H : R2m → R is the Hamiltonian function, H := pT q̇(p, q) − L(q, q̇(p, q)),
z = (q, p)T ∈ R2m and J is called structure matrix. By the definition of H one
can readily see that the Hamiltonian is a preserved quantity, i.e. Ḣ = 0. An
other special property of this formulation is that the solution of (1.17) preserves
the symplectic two form

ω := dp ∧ dq =
n∑
i=1

dpi ∧ dqi,

which is equivalent to say that(
∂z(t)
∂z0

)T
J
(
∂z(t)
∂z0

)
= J , ∀ t > 0. (1.18)

A symplectic integrator is a numerical method Φh : z0 → z1, zn = (qn, pn), where
z1 = Φh(z0) is an approximation of z(t1) = z(t0 + h), satisfying the condition(

∂z1

∂z0

)T
J
(
∂z1

∂z0

)
= J .

Not all mechanical systems obey the canonical Hamiltonian formalism de-
scribed above. For example the free rigid body equations do not fit into this
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framework. Hamiltonian systems can however be generalized to the so called
Poisson systems, having the form

ż = J (z)∇zH(z), (1.19)

where z ∈ Rn and H(z) is the Hamiltonian function, with a non-constant struc-
ture matrix J (z). A Poisson system is endowed with a Poisson bracket

{F,H} := ∇zF (z)TJ (z)∇zH(z),

and the system (1.19) can be written as żi = {zi, H} i = 1, . . . , n. In particular,
if Jij depends linearly on z, Jij = Ckijzk, the system is said to be a Lie-Poisson
system (the bracket is called Lie-Poisson bracket).

Example The free rigid body has a Lie-Poisson structure with the Lie-Poisson
bracket [22]

{F,G} = ∇F (z)T M̂ ∇G(z) = −〈M , ∇F (z)×∇G(z)〉, (1.20)

and the Euler equations (1.5) can be obtained from Ṁi = {Mi, H}, where the
Hamiltonian H = 〈M,J−1M〉/2.

�

Similarly to symplectic integrators one defines Poisson integrators for non-
canonical systems (1.19).

Definition 1.3.1. (See [11]) A numerical method Φh : z0 → z1 is a Poisson
integrator for the structure matrix J (z), if the transformation z0 → z1

• respects the Casimirs, i.e. invariants Ci that satisfies {Ci, H} = 0 for all
smooth H,

• satisfies (
∂z1

∂z0

)
J (z1)

(
∂z1

∂z0

)T
= J (z1),

whenever the method is applied to (1.19).

Example One way to obtain a Poisson integrator is to split the Hamiltonian
in two parts, H = H1 + H2, giving rise to two simpler individual systems, ż =
J (z)∇Hi(z), i = 1, 2. By integrating those systems exactly and composing their
flows appropriately one obtains the numerical approximation, e.g., for a second
order method

z1 = ϕ
[2]
h/2 ◦ ϕ

[1]
h ◦ ϕ

[2]
h/2(z0),

11



Chapter 1. Introduction

where ϕ[1]
h (z0) and ϕ[2]

h (z0) denote the exact solutions z(h+ t0) for a given initial
condition z(t0) = z0. This approach is for example adopted in paper I [7] and II
[6] on rigid bodies that are exposed to external forces.

�

In some cases, it might be convenient to rewrite a non-canonical Poisson
system into a canonical system. Given a non-canonical Poisson structure with
a structure matrix J (z) ∈ Rn×n, if J (z) has constant rank 2m ≤ n then, by
Darboux’ theorem [24], there exist a local change of variables z = z(z) such that
the problem assumes the canonical Hamiltonian form (1.17).

Example The Lie-Poisson structure of the free rigid body can be locally rewrit-
ten in canonical form in Euler angles Φ = (ϕ, θ, ψ)T ∈ R3 [22]. The Euler angles
define local coordinates on SO(3). For example, defining elementary rotations,

Rx(α) =

 1 0 0
0 cosα sinα
0 − sinα cosα

 , Rz(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 , (1.21)

around the x- and the z-axis, respectively, Λ ∈ SO(3) can be formulated by
successive simple rotations

Λ = R(Φ) := Rz(ψ)Rx(θ)Rz(ϕ), Φ = (ϕ, θ, ψ)T , (1.22)

so called zxz-convention. The latter representation of Λ in Euler angles is not
unique, but is just one of several possible conventions (local charts). From the
kinematic relation (1.1)

Λ̇ = ŵΛ = ΛŴ ,

where w and W are spatial and body angular velocity, it follows from straight-
forward calculations,

W = skew−1

(
R(Φ)T

d

dt
R(Φ)

)
, w = skew−1

((
d

dt
R(Φ)

)
R(Φ)T

)
,

where skew is the bijective mapping skew : R3 → so(3), i.e. skew(v) = v̂, one
obtains the transformations W = TW (Φ)Φ̇, w = Tw(Φ)Φ̇, where e.g.,

TW (Φ) :=

 sinψ sin θ cosψ 0
− cosψ sin θ − sinψ 0

cos θ 0 1

 . (1.23)

From the Lagrangian

L =
1
2
〈W,JW 〉 =

1
2
〈Φ̇, TW (Φ)TJTW (Φ)Φ̇〉

12
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one obtains the conjugate momenta

P :=
∂L

∂Φ̇
= TW (Φ)TJTW (Φ)Φ̇, P = (pϕ, pθ, pψ)T . (1.24)

However, the Legendre transform (1.24) is only regular and valid for

0 < ϕ < 2π, 0 < θ < π, 0 < ψ < 2π,

when TW (Φ)TJTW (Φ) is invertible. The Hamiltonian finally defined by H :=
PT Φ̇(Φ, P )− L(Φ, Φ̇(Φ, P )) becomes

H =
1
2

(
[(pϕ − pψ cos θ) sinψ + pθ sin θ cosψ]2

J1 sin2 θ

+
[(pϕ − pψ cos θ) cosψ − pθ sin θ sinψ]2

J2 sin2 θ
+
p2
ψ

J3

)
,

and the rigid body equations are written in canonical form (1.17) for z = (Φ, P )T .

�

1.4 Summary of papers

Paper I: Efficient time-symmetric simulation of torqued rigid bodies
using Jacobi elliptic functions

Elena Celledoni and Niklas Säfström
Published in Journal of Physics A, 2006 [7]

In this paper we develop an accurate integrator for the dynamics of a free
rigid body with distinct principal moments of inertia. The solution of the Euler
equations is given by the Jacobi elliptic functions, which are computed to machine
precision by using the Arithmetic-Geometric Mean sequence. To approximate the
attitude of the body a symmetric Magnus method of order 2 and 4, respectively,
is employed. The overall implementation gives a symmetric 2 or 4 order method
for the dynamics of the free rigid body. The method is primarily proposed as a
part of a symmetric splitting method for problems of rigid bodies subjected to
external forces. Experiments on the heavy top and a satellite problem show that
the splitting method preforms well and gives a near conservation of energy during
long time integration. The use of the highly accurate approximation of the Jacobi
elliptic functions is advantageous for perturbed free rigid body problems.
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Chapter 1. Introduction

Paper II: The exact computation of the free rigid body motion
and its use in splitting methods

Elena Celledoni, Francesco Fassò, Niklas Säfström and Antonella Zanna
Published in SIAM Journal on Scientific Computing, 2008 [6]

This paper is a continuation of the ideas in paper I. Here we consider Jacobi
elliptic integrals of the third kind to compute an accurate solution of the attitude
of the rigid body. Both rotation matrices and quaternions are used to represent
the rotation of the body. We review various algorithms for the computation of the
exact solution of the free rigid body equations and provide a common framework.
The purpose of the paper is to investigate the benefits of using the exact solution
of the free rigid body motion in splitting methods for rigid body dynamics. Var-
ious different experiments are performed, e.g., satellite-dynamics problems and
molecular dynamics simulation of water molecules. The results are compared
against state of the art methods for rigid body dynamics. The conclusion is
that the use of exact rigid body motion in splitting methods is competitive as a
numerical approach: it is very robust and behaves uniformly well for all choice
of the principal moment of inertia and initial conditions, independently of the
step-size of integration.

Paper III: Modeling and Control of Offshore Pipelay Operations
Based on a Finite Strain Pipe Model

Gullik A. Jensen, Niklas Säfström, Tu Duc Nguyen and Thor I. Fossen
Published in Proceedings of American Control Conference–ACC2009, 2009 [17]

The paper deals with mathematical modeling and simulations within offshore
engineering. A model, aimed for prediction and control of offshore pipelay oper-
ations from a dynamically positioned surface vessel, is developed. The model is
based on a nonlinear elastic rod, capable of undergoing shearing, twist and bend-
ing, formulated by J.C. Simo [25]. The elastic rod model, adding hydrostatic
damping and gravity, is used to model the pipe submerged in water. A standard
vessel model is attached to one end of the pipe model as a dynamic boundary
condition. Numerical simulations are included, applying both PD (proportional-
derivative) and PID (proportional-integral-derivative) controllers, to give an ex-
ample of possible application of the model and to illustrate the behavior of the
mechanical system.

14



Bibliography

Paper IV: A Nonlinear PDE Formulation for Offshore Vessel Pipeline
Installation

Gullik A. Jensen, Niklas Säfström, Thor I. Fossen and Tu Duc Nguyen
To appear in Journal of Ocean Engineering [16]

This work continues paper III [17]. A seabed as added to the pipe model
presented in paper III and the final combined pipe-vessel system is proved to
be input-output passive. Numerical experiments are performed, for the static
case as well as for a dynamic scenario, which are validated against the natural
catenary equation, for the static case, and the commercial finite element method
(FEM) code RIFLEX [10], which holds an international leading position in FEM
analysis for slender marine structures. The dynamic experiment indicates a very
good correlation with the simulation performed by RIFLEX. The conclusion is
that the proposed model is well suited for prediction and control of offshore
pipelay operations. Since the dynamics of the surface vessel is included in the
model, the range of analysis that can be performed using the proposed model
extends that of RIFLEX.

Paper V: Hamiltonian and multi-symplectic structure of a rod model
using quaternions

Elena Celledoni and Niklas Säfström
Preprint Numerics No. 8/2009,

Departments of Mathematical Sciences, NTNU [8]

A constrained Hamiltonian formulation as well as a multi-symplectic formu-
lation of the elastic rod model [25], adopted in paper III and IV, is presented.
The motivation for those formulations is the excellent behavior in long time in-
tegration, while applying symplectic or multi-symplectic integrators [20]. Multi-
symplecticity is a generalization of classical symplecticity for finite-dimensional
Hamiltonian systems to the infinite-dimensional case. Besides global preserva-
tion of energy and momentum, the multi-symplectic formulation of a Hamiltonian
PDE implies local energy and momentum conservation properties.
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Chapter 2

Efficient time-symmetric
simulation of torqued rigid
bodies using Jacobi elliptic
functions

Abstract. If the three moments of inertia are distinct, the solution to the Euler
equations for the free rigid body is given in terms of Jacobi elliptic functions. Using
the Arithmetic-Geometric mean algorithm, [1], these functions can be calculated
efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson
solvers, the overall approach yields a faster and more accurate numerical solution
to the Euler equations. This approach is designed for mass asymmetric rigid
bodies. In the case of symmetric bodies, the exact solution is available in terms
of trigonometric functions, see [5] and [18] and [2] for details.

In this paper we consider the case of asymmetric rigid bodies subject to external
forces. We consider a strategy similar to the symplectic splitting method proposed
in [18] and [5]. The method here proposed is time-symmetric. We decompose the
vector field of our problem in a free rigid body (FRB) problem and another com-
pletely integrable vector field. The FRB problem consists of the Euler equations
and a differential equation for the 3 × 3 orientation matrix. The Euler equa-
tions are integrated exactly while the matrix equation is approximated using a
truncated Magnus series.

In our experiments we observe that the overall numerical solution benefits greatly
from the very accurate solution of the Euler equations. We apply the method to
the heavy top and the simulation of artificial satellite attitude dynamics.



Chapter 2. Efficient time-symmetric simulation of torqued rigid bodies

2.1 Introduction

We consider the Euler equations describing the motion of a free (FRB) rigid body

I1ω̇1 = (I2 − I3)ω2ω3,

I2ω̇2 = (I3 − I1)ω3ω1,

I3ω̇3 = (I1 − I2)ω1ω2,

(2.1)

where I1, I2 and I3 are the principal moments of inertia. These equations are
completely integrable. Energy and angular momentum are preserved along the
solution, this means that for all times the two quantities

E =
1
2
(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
, G2 = I2

1ω
2
1 + I2

2ω
2
2 + I2

3ω
2
3 , (2.2)

are constant, (here E is the energy andG2 is the total angular momentum). There
is also a non canonical symplectic structure (Lie-Poisson structure) preserved by
the flow of (2.1), [13]. By using the two constants of motion it is possible to
derive the general solution of the equations expressed in terms of Jacobi elliptic
functions.

The expression of the exact general solution of the Euler equations can be
turned into a numerical method by using efficient numerical approximations of
the Jacobi elliptic functions. To impose the initial conditions a constant τ , used
to translate time, must be computed prior to the integration, see section 3 for
details. In this paper we show that this approach is very competitive and discuss
the details of its further use in problems of rigid bodies subject to external forces.
We also refer to [3] and [16] for related literature.

The simulation of rigid body motion is interesting for applications in robotics,
structural mechanics, molecular dynamics, and also nanotechnology, [8], [10, 19].
Often stable integration over very long times is required in the simulations. It
has been shown that the preservation of geometric features, as for example sym-
plecticity and time-symmetry of the flow for Hamiltonian systems, can be crucial
for the performance of numerical integrators in long time simulations, [10, 9].
Therefore in some cases geometric integrators are preferred to other existing so-
phisticated algorithms for multi-body systems.

Lie-Poisson integration methods for the Euler equations have been constructed
by various authors, [7, 12, 15, 17], see also [10] and references therein. Many of
these methods cannot be straightforwardly generalized to the broader class of
non canonical Hamiltonian problems, thus their use is limited to the numerical
approximation of the Euler equations. However some of these integrators have
successfully been applied in the simulation of rigid body dynamics and of torqued
rigid bodies. This is for instance the case in [5] and [18].
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For the Euler equations, in [14, 18], the right hand side of (2.1) is split in the
following three terms,

f1(ω) =

 0
I3ω3ω1

−I2ω1ω2

 , f2(ω) =

 −I3ω2ω3

0
I1ω1ω2

 , f3(ω) =

 I2ω2ω3

−I1ω3ω1

0

 .
(2.3)

Each of the three vector fields is Hamiltonian with respect to the rigid body Pois-
son bracket [13, p. 8], and defines a differential equation which is easy to integrate
exactly. The appropriate composition of the corresponding flows produces a (non
canonical) symplectic approximation of the problem. There is numerical evidence
showing that this Lie-Poisson method is very competitive compared to most of
the known and previously proposed integration strategies for the Euler equations
[14, 4, 15]. We use this splitting for comparison in our numerical experiments.
The generalization to the case of a six-dimensional system modeling torqued rigid
bodies, in [18], is achieved by considering a splitting of the Hamiltonian of the
problem in four parts, three of them give rise to vector fields analogous to f1, f2

and f3, the last vector field is completely integrable and arises from the potential
energy yielding the torque. We will briefly recall this approach in section 4.

The method proposed for torqued rigid bodies in the present paper is time-
symmetric, and related to the approach of [18, 5]. We decompose the vector
field of our problem in a FRB problem and another completely integrable vector
field. The FRB problem is given by the three Euler equations and the differ-
ential equations for the orientation matrix. This matrix represents the rotation
which the body undergoes with respect to a reference configuration. The nu-
merical approximation of the Euler equations is performed to machine accuracy,
while the orientation matrix is approximated by the exponential of a truncated
Magnus series (achieving order 2 or 4). The overall splitting is symmetric, but
not symplectic. However in many of the considered numerical experiments the
new method presents better conservation of energy and better behavior of the
numerical solution then the symplectic integrator of [18, 5].

Accurate approximations preserving energy, momentum and the Lie-Poisson
structure of the Euler equations, have been recently addressed in [15]. In this work
the authors propose a new implementation of the Discrete Moser-Veselov (DMV)
algorithm of [17]. By applying an appropriate rescaling of the initial condition,
they also obtain new DMV methods of order four and six. The rescaling needs
to be performed just once, at the beginning of the integration. The higher order
methods present therefore virtually the same computational cost as the second
order DMV algorithm.

Our numerical tests show that using the exact solution and computing the
Jacobi elliptic functions to machine accuracy leads to a very competitive method
for the solution of the Euler equations, also compared to the improved DMV
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approach. Both approaches require the computation of some quantities prior to
the time stepping, the rescaling factors for the DMV, and the constants for im-
posing the initial condition in the approach of Jacobi elliptic functions. This im-
plies increased computational cost when the methods are used within a splitting
technique for torqued rigid bodies. Our experiments show that the symmetric
splitting method proposed in the present paper remains competitive also in the
case of torqued rigid bodies.

The outline of the paper is as follows. The new method is presented in sec-
tion 2. Some technical issues for the implementation of this approach are dis-
cussed in section 3. In section 4 we report some numerical experiments comparing
the proposed approach to the DMV approach of [15] and the symplectic splitting
of [5, 18].

2.2 A symmetric splitting method for torqued
rigid bodies

Efficient integrators for the free rigid body can be used in connection with split-
ting methods in the numerical approximation of more complex rigid body dynam-
ics. The method presented here can also be applied to problems of interacting
rigid bodies, rigid body linked by constrains, etc [5, 18].

The Hamiltonian function for our problem is

H = H(π, Q) =
1
2

(
π2

1

I1
+
π2

2

I2
+
π2

3

I3

)
+ V (Q),

where π = (I1ω1, I2ω2, I3ω3)T is the angular momentum and Q is the rotation
matrix which describes the orientation of the body.

The Hamiltonian H gives rise to the following system of ordinary differential
equations

π̇ = skew(T−1π)π + f(Q), (2.4)

Q̇ = skew(T−1π)Q, (2.5)

where

skew(v) =

 0 v3 −v2

−v3 0 v1

v2 −v1 0

 ,

f depends on the potential energy V (Q), and

T =

 I1 0 0
0 I2 0
0 0 I3


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2.2. A symmetric splitting method for torqued rigid bodies

is the principal inertia tensor. To derive a symmetric splitting method for the
above equations, we start by applying a Störmer/Verlet splitting,

H = H1 +H2, H2 = V (Q),

and H1 = H − H2 is the kinetic energy. The system of differential equation is
then split into the two systems,

S1 =

{
π̇ = skew(T−1π)π,

Q̇ = skew(T−1π)Q,
(2.6)

corresponding to the kinetic part, and

S2 =

{
π̇ = f(Q),

Q̇ = 0,
(2.7)

corresponding to the potential part. The Störmer/Verlet scheme is then

(π, Q)(j+1) = ϕ
[S2]
h/2 ◦ ϕ

[S1]
h ◦ ϕ[S2]

h/2((π, Q)(j)), j = 0, 1, . . . ,

where ϕ[S1]
h and ϕ

[S2]
h represent the exact flows of S1 and S2. It is well known

that this scheme is symplectic. In the case of symmetric rigid bodies, the exact
flow ϕ

[S1]
h can be expressed in terms of trigonometric functions, see [5, 18, 2]

for details. This is not true in the asymmetric case. Our splitting is obtained
substituting ϕ[S1]

h with a computationally efficient time-symmetric approximation
of the flow of S1.

The system S1 is simply a FRB problem. Rewriting the first part of system
(2.6) in terms of the angular velocity, ω = T−1π one obtains the Euler equa-
tions (2.1). We can now compute π(t) to machine accuracy, for any t and any
initial value, by using the exact solution of the Euler equations, and computing
the Jacobi elliptic functions by the method of Arithmetic-Geometric Mean, see
section 3. Hence the update of π on the interval [tj , tj+1] is

π(j+1) = S(π(j), h, tj), (2.8)

and is exact. The operator S : R3 × R × R → R3 maps any initial value
π(tj) = v ∈ R3 to the solution, π(tj+1) = S(v, h, tj), of the Euler equations at
time tj+1 = tj + h.

The approximation of the orientation matrix Q(j+1) in tj+1 is obtained inte-
grating numerically on the interval [tj , tj+1] the equation

Q̇ = skew(T−1π)Q, Q(tj) = Q(j),
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using a symmetric Magnus method (of order 2 or 4) [9]. For order 2 this results
in the following expression

Q(j+1) = exp
(
h skew

(
T−1π(j+1/2)

))
Q(j), (2.9)

where π(j+1/2) = π(tj + h/2) is obtained as a by-product of the update π(j+1)

in (2.8) with little extra cost (see section 3 for details). The exponential in (2.9)
is computed by Rodrigues formula [13, p. 291]. Thus, using (2.8) and (2.9), the
flow ϕ

[S1]
h is approximated by a second order flow φ

[S1]
h .

Given f(Qj) the flow ϕ
[S2]
h can be calculated exactly

π(j+1) = π(j) + hf(Q(j)),

Q(j+1) = Q(j),

and the updating (second order) scheme is finally

(π(j+1), Q(j+1)) = ϕ
[S2]
h/2 ◦ φ

[S1]
h ◦ ϕ[S2]

h/2((π(j), Q(j))),

where

φ
[S1]
h ((π(j), Q(j))) =

{
π(j+1) = S(π(j), h, tj),
Q(j+1) = exp

(
h skew

(
T−1π(j+1/2)

))
Q(j),

(2.10)

ϕ
[S2]
h ((π(j), Q(j))) =

{
π(j+1) = π(j) + h f(Q(j)),

Q(j+1) = Q(j)
(2.11)

It is easy to verify that φ[S1]
h φ

[S1]
−h = I and the overall splitting method has the

time-symmetry property,

ΦhΦ−h = 1, Φh = ϕ
[S2]
h/2 ◦ φ

[S1]
h ◦ ϕ[S2]

h/2 .

Note that if we increase the number of terms included in the truncated Magnus
series and obtain higher order in the approximation of ϕ[S1], our scheme will
accordingly be a more accurate approximation of the Störmer/Verlet splitting.

2.3 Implementation issues

Consider the values

a2
1 = 2EI3 −G2, a2

3 = G2 − 2EI1,

b21 = I2(I3 − I2), b23 = I2(I2 − I1),
(2.12)
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2.3. Implementation issues

where G and E are given in (2.2) and I1, I2, I3 are the principal moments of
inertia in the Euler’s equations (2.1). Assume b3/a3 ≤ b1/a1 (we will have a
similar situation if b3/a3 ≥ b1/a1), the solutions of the Euler equations are

ω1 =
a1 cn u√
I1(I3 − I1)

, ω2 =
a1 sn u

b1
, ω3 =

a3 dn u√
I3(I3 − I1)

, (2.13)

where cn, sn and dn are the Jacobi elliptic functions defined by

cn u = cosϕ, sn u = sinϕ, dn u =
√

1− k2 sin2 ϕ, (2.14)

with u(t) = λ(t − τ), λ = b1a3/(I2
√
I1I3), and τ is a constant of integration.

Here the amplitude ϕ is given implicitly as the solution of the equation

F (ϕ|k2) = u(t), u(t) = λ(t− τ), (2.15)

where
F (ϕ|k2) :=

∫ ϕ

0

dθ√
1− k2 sin2 θ

is an elliptic integral of the first kind with modulus k = b3a1/(b1a3). Assume
ω(j) = T−1π(j) is the approximation of the angular velocity produced by the
symmetric splitting method at step j. At the next integration step we have to
calculate the exact solution of the Euler’s equations, ω(t), at t = tj + h and
t = tj + cih, ci ∈ (0, 1), and i = 1, . . . , s, taking ω(tj) = ω(j) as initial condition.
In the case we integrate the equations for the orientation matrix with a Magnus
method of order two we have s = 1 and c1 = 1/2, and for order four we have
s = 2, c1,2 = 1/2±

√
3/6.

The first task of the process is to determine τ to satisfy the initial condition
ω(tj) = ω(j). To this end, we first find the amplitude ϕ(j) ∈ [0, 2π], which is
uniquely determined from the equations

ω1(tj) =
a1 cosϕ(j)√
I1(I3 − I1)

, ω2(tj) =
a1 sinϕ(j)

b1
.

Furthermore, from the sign of ω3(tj),

ω3(tj) =
a3

√
1− k2 sin2 ϕ(j)√
I3(I3 − I1)

,

we determine the sign of the constants a3 and λ. Now from (2.15) we get

τ = tj −
1
λ
F (ϕ(j)|k2) (2.16)
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where

F (ϕ(j)|k2) =
∫ ϕ(j)

0

dθ√
1− k2 sin2 θ

. (2.17)

The latter integral can be computed to the desired accuracy using the method
of Arithmetic-Geometric Mean of [1], briefly described below. We performed the
numerical tests in matlab. To the best of our knowledge there is no built-in
routine in matlab evaluating the integral (2.17) for arbitrary values of ϕ(j).
The procedure we implemented is analogous to the one used in the matlab
function ellipke for computing the complete elliptic integrals of the first kind
(F (π/2|k2)).

Consider the sequence {ϕ(j)
n }n=0,1,..., ϕ

(j)
n+1 > ϕ

(j)
n defined by

tan(ϕn+1 − ϕn) =
bn
an

tanϕn, ϕ0 = ϕ(j),

where an, bn are given by the Arithmetic-Geometric Mean sequence [1], i.e.

an+1 =
an + bn

2
, bn+1 =

√
anbn, cn+1 =

an − bn
2

. (2.18)

Taking the initial values

a0 = 1, b0 =
√

1− k2, c0 = k,

one can show that

F (ϕ0|k2) = lim
n→∞

ϕn
2nan

, ϕ0 = ϕ(j). (2.19)

The iteration stops when n = N and cN in (2.18) is less than tolerated error.
As the Arithmetic-Geometric Mean sequence, (2.18), converges quadratically, one
obtains accurate approximations of F (ϕ(j)|k2) in very few recursion steps. In our
implementation we terminate the iteration when cN is less then machine epsilon.

From (2.16) we easily obtain τ . At this point to find the solution of the Euler
equations at the desired time values we can use the built-in matlab function
ellipj, with input

[λ(tj + c1h− τ), . . . , λ(tj + csh− τ), λ(tj+1 − τ)]T .

We obtain in output the corresponding values of cn, sn, dn and after appropriate
rescaling (2.13), we obtain the values of the solution at tj+c1h, . . . , tj+csh, tj+1.

The matlab function ellipj is based on a similar algorithm as the one
described above. In our implementation we reuse the Arithmetic-Geometric Mean
sequence obtained in the computation of τ .

Note that ϕ, from the relation (2.17), can be found explicitly for the special
cases k2 = 1 or k2 = 0.
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2.4. Numerical experiments

2.4 Numerical experiments

The second order symmetric splitting method proposed in this paper is denoted
in the sequel by SEJ and compared with the symplectic method of [5, 18] which
we denote in short by MR. We denote with SEJ4 the second order symmetric
splitting method where the Magnus method of order 4 in the integration of (2.6)
is used. The approach for solving the Euler equations is also compared with the
Discrete Moser-Veselov methods of [15] (DMV). The symplectic method MR is
based on a splitting of the the Hamiltonian H into four parts,

H̃1 =
π2

1

2I1
, H̃2 =

π2
2

2I2
, H̃3 =

π2
3

2I3
, H̃4 = V (Q).

Each of the corresponding Hamiltonian vector fields can be integrated exactly
(H̃1, H̃2, H̃3 correspond to the vector fields (2.3)), the symmetric composition of
the flows gives rise to the approximation scheme,

(π, Q)(j+1) = ΦM ((π, Q)(j)),

where
ΦM = ϕ4,h/2 ◦ ΦT,h ◦ ϕ4,h/2.

Here
ΦT,h = ϕ1,h/2 ◦ ϕ2,h/2 ◦ ϕ3,h ◦ ϕ2,h/2 ◦ ϕ1,h/2

is the contribution from the kinetic parts, H̃1, H̃2 and H̃3. The flows of the
kinetic parts correspond to elementary rotations in R3. For example for H1

ϕ1,h((π, Q)(j)) =

{
π(j+1) = Rx(h)π(j),

Q(j+1) = Rx(h)Q(j),

where

Rx(h) =

 1 0 0
0 cos(C(j)h) sin(C(j)h)
0 − sin(C(j)h) cos(C(j)h)

 ,

and

C(j) =
π

(j)
1

I1
.

While the flow for H̃4 is the same as for the system S2 (2.5) of the previous
section, i.e. ϕ4,h = ϕ

[S2]
h .
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Chapter 2. Efficient time-symmetric simulation of torqued rigid bodies

Figure 2.1: Euler equations. Execution times (x-axis) against the norm of the global
error at t = 1 (y-axis). Integration on the interval [0, 1] with different step sizes. The
methods are: MR of order 2 and 4, DMV of order 2, 4 and 6, and the method JE based
on the accurate computation of the Jacobi elliptic functions using ellipj in matlab. The
results are the average over 200 experiments. The initial condition is π0 = [−1, 0, 2]T .
The principal moments of inertia are I1 = 5, I2 = 4, I3 = 3.

2.4.1 Free rigid body experiments

In the first experiment we consider the integration of the Euler equations. In
this experiment we perform a comparison of the use of ellipj in matlab for
computing the exact solution of the equations (approach here denoted with JE
in the figures) with the MR and DMV methods. We refer to [15, 17] for a
detailed description of the DMV methods, and recall that the higher order DVM
are obtained by computing an appropriate rescaling of the initial condition. In
figure 2.1 we plot on the x-axis the execution times employed by the methods to
perform the integration on the interval [0, 1], for different choices of the step size,
h = 1/(2k) and k = 2, . . . , 6. On the y-axis we report the corresponding values
of the 2-norm of the global error. In all the experiments the reference solution
for computing the global error is obtained using the built in function of matlab,
ode45, setting the absolute and relative tolerance equal to 10e − 14. The MR
method in this case involves the computation of the three flows corresponding to
the Hamiltonians H̃1, H̃2, H̃3 only.

The JE approach produces, as expected, a very accurate solution of the prob-
lem, the error is of the size of 10−14 and is independent on the step size of
integration. The MR and DMV methods of order 2 and 4 perform similarly
with a slight advantage for the MR in the second-order case, and of DVM in the
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2.4. Numerical experiments

Figure 2.2: FRB equations (2.6). Execution times (x-axis) against the norm of the
norm of the global error at t = 1 (y-axis). Integration on the interval [0, 1] with different
step sizes. The considered methods are MR of order 2 (MR2) and 4 (MR4), and the
methods JEM2 and JEM4 (combination of ellipj in matlab with a Magnus method of
order 2 or 4). The results are the average over 200 experiments. The initial conditions
are π0 = [−1, 0, 2]T , and Q0 is equal to the 3×3 identity matrix. The principal moments
of inertia are I1 = 5, I2 = 4, I3 = 3.

fourth-order case.
The execution times are computed taking an average over 200 experiments. In

this experiment the principal moments of inertia and the initial value are I1 = 5,
I2 = 4, I3 = 3 and π0 = (1, 0, 2)T . The cost for computing the rescaling factors
in the DMV methods and for the computation of τ in JE are not included in
this experiment. The excellent performance of the JE approach, compared to the
other considered methods, shows that the Arithmetic-Geometric Mean algorithm
is a very efficient method for the evaluation of the Jacobi elliptic functions.

We repeated this experiment, on the interval [0, 400] with step size h = 0.4,
and considered the energy error as the difference between the constant exact
energy, given by H, and the energy obtained from the numerical methods. For
the MR method of order 2 and 4 the energy error is oscillating near zero, (the
amplitude of the oscillations is about 10−3 for order 2, and about 10−5 for the
method of order 4). The DMV methods give an energy error of the size of 10−13,
and the JE approach the energy error is about 10−16.

In the second experiment we consider the integration of the FRB problem
(2.6). In figure 2.2 we report the execution times (x-axis) against the norm of
the global error at t = 1 (y-axis). The integration is performed on the interval
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Figure 2.3: Heavy top. Execution times (x-axis) against the norm of the global error
at t = 1 (y-axis). Integration on the interval [0, 1] with different step sizes. The results
are the average over 200 experiments. We consider the symmetric splitting methods
SEJ and SEJ4 and the symplectic splitting MR. All the methods have order 2. The
initial conditions are ω0 = [10, 10, 10]T , u0 = [0, 0, 1]T . The principal moments of inertia
are I1 = 1000, I2 = 5000, I3 = 6000.

[0, 1] with different step sizes. We denote with JEM2 og JEM4 the methods
based on the use of ellipj in matlab, (for the solution of the Euler’s equations),
combined with a Magnus method for the computation of the orientation matrix,
( Magnus method of order 2 (JEM2) and order 4 (JEM4), see section 2). The
comparison is made with the MR methods of order 2 and 4. The results are
given as an average over 200 repeated experiments. The initial conditions are
π0 = [−1, 0, 2]T , Q0 is equal to the 3 × 3 identity matrix, and I1 = 5, I2 = 4,
I3 = 3. Also in this case the JEM methods perform very well.

2.4.2 Heavy top experiments

In figure 2.3 we report the results of the third experiment. We consider the
integration of the heavy top problem which corresponds to taking

V (Q) = eT3 Qu0,
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Figure 2.4: Energy error for the heavy top. Integration on the interval [0, 100], using
the method SEJ. I1 = 1000, I2 = 5000, I3 = 6000, ω0 = [10, 10, 10]T .
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Figure 2.5: Energy error for the heavy top. Integration on the interval [0, 100], using
the method MR. I1 = 1000, I2 = 5000, I3 = 6000, ω0 = [10, 10, 10]T .
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where e3 is the third canonical vector and u0 is the initial position of the center
of mass of the heavy top. This gives rise to a torque in (2.4) of the form

f(Q) =

 u2

−u1

0

 , u(t) = Q(t)u0.

We use the second order splitting methods MR and SEJ and SEJ4 on the interval
[0, 1]. The principal moments of inertia are I1 = 1000, I2 = 5000, I3 = 6000, and
the initial conditions are ω0 = (10, 10, 10)T and u0 = (0, 0, 1)T .

We first integrate on the interval [0, 1] and compare the performance of the
two splitting methods in terms of execution times against the norm of the global
error, figure 2.3. In this case the advantage of the SEJ4 splitting method is quite
clear while MR and SEJ perform similarly.

Next we illustrate the qualitative performance of the two methods SEJ and
MR. We look at the energy error and at the numerical trajectory describing
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Figure 2.6: Energy error for the heavy top, u0 = [0, 0, 1]T . Integration on the interval
[0, 10], h = 0.01. In figure 2.6(a) we vary the initial angular velocity, ω0 = α[1, 2, 3]T ,
and let I1 = 1, I2 = 2, I3 = 3 fixed. In figure 2.6(b) we vary the principal moments of
inertia, I1 = α, I2 = 2α, I3 = 3α, and let ω0 = [1, 2, 3]T fixed.

the motion of the center of mass, integrating on the time interval [0, 100]. The
results are in figures 2.4 and 2.5. We compare the results obtained by using
different step sizes for MR and SEJ. For small step sizes we expect the methods
to produce similar trajectories. We would like the methods reproduced the correct
qualitative behavior of the solution also for bigger step sizes. For step size h =
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0.01, figures 2.4 (f) and 2.5 (f), the two methods produce trajectories such that

1
N

N∑
n=1

‖uSEJ,n − uMR,n‖ = O(10−1),

and N = 100/0.01 is the total number of steps. The energy error for SEJ is a
factor 10−4 smaller than for MR. Increasing the step size to h = 0.05 and h = 0.1,
the amplitude of the oscillations in the energy error increases for both methods.
Consistently for all the experiments, SEJ has much smaller energy error than
MR, figures 2.4 (b), (d) and (f), 2.5 (b), (d) and (f). For step size h = 0.1 the
trajectory of the center of mass produced by the MR method is different from the
one produced with step size h = 0.01, figures 2.5 (a) and (e). For the SEJ method
the numerical trajectory of the center of mass maintains the same character for
the different step sizes h = 0.01, h = 0.05 and h = 0.1, figures 2.4 (a), (c), (e).

Next, we compare the energy error between the two methods for different
values of the angular velocity, figure 2.6 (a), and the inertia tensor figure 2.6 (b).
The initial position of the center of mass is u0 = (0, 0, 1). We consider the time

interval [0, 10] and integrate with step size h = 0.01. In figure 2.6 we report on
the y-axis the average absolute value of the energy error,

1
N

N∑
n=1

|H −Hn|,

with Hn the value of the numerical energy for the methods at time step n and
H the exact energy value, and N = 10/0.01 = 1000. On the x-axis we report
the value of a parameter α used for varying the initial angular velocity ω0 =
α[1, 2, 3]T , with fixed principal moments of inertia I1 = 1, I2 = 2, I3 = 3,
figure 2.6 (a). In figure 2.6 (b) α is instead used to vary the principal moments
of inertia I1 = α, I2 = 2α, I3 = 3α while keeping ω0 = [1, 2, 3]T fixed. From
the two plots in figure 2.6 it appears that the energy error for the SEJ method
is smaller compared to the MR method in some cases. This happens when the
angular velocity or inertia are large, i.e. when the external torque is relatively
small compared to the momentum.

2.4.3 Third experiment

Assume µ and r are given constants and the potential energy is given by

V (Q) = 3
µ

2r3
(Qe3)TTQe3,

where T is the inertia tensor and Qe3 is the third column of Q. The torque f(Q)
in equation (2.5) is here given by

f(Q) = 3
µ

r3
(Qe3)× (TQe3).
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(a) Body frame Qe3, h = 0.1, MR (b) Relative energy error MR, h = 0.1

(c) Body frame Qe3, h = 0.1, SEJ (d) Relative energy error SEJ, h = 0.1

(e) Body frame Qe3, h = 0.1, SEJ4 (f) Relative energy error SEJ4, h = 0.1

Figure 2.7: Plot of Qe3 and the relative energy error for the satellite simulation.
Integration on the interval [0, 400] with h = 0.1, using the method MR, SEJ and SEJ4
(SEJ with Magnus method of order 4 for the rotation matrix Q). The principal moments
of inertia are I1 = 1.7 · 104, I2 = 3.7 · 104, I3 = 5.4 · 104. The initial angular velocity is
ω0 = [15,−15, 15]T and Q(0) is the 3× 3 identity matrix.
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Chapter 2. Efficient time-symmetric simulation of torqued rigid bodies

This test problem is a simplified version of the model describing the motion of a
satellite in a circular orbit of radius r around the earth, [11]. In our test problem
the energy is preserved. We take µ = GM where G is the gravitational constant
and M is the mass of the earth.

Recall that we indicate with SEJ4 the second order symmetric splitting method
where the rotation matrix Q is approximated with Magnus method of order 4,
while for the method SEJ the rotation matrix Q is approximated with a second
order Magnus method as in (2.9).

In the first experiment on the satellite model we compare the methods MR,
SEJ and SEJ4. The inertia moments are chosen to be

I1 = 1.7 · 104, I2 = 3.7 · 104, I3 = 5.4 · 104,

the initial condition for the angular velocity is

ω0 = [15,−15, 15]T ,

and Q(0) = I (the identity matrix). Similar values are considered for tests
performed in [16]. We have µ = GM = 3.986× 1014, r = 1.5× 105. We integrate
on the interval [0, 400] for two different step sizes h = 0.1 and h = 0.05. In
figure 2.7, the step size is h = 0.1. Figures 2.7 (a), (c), (e) in the left column
show the trajectory of described by the vector Qe3. The method SEJ4 gives the
best results.

In the right column of figure 2.7, the energy error for the three methods is
presented. Both SEJ and SEJ4 preserve the energy much better than the MR
method.

In figure 2.8, the step size is h = 0.05. Here the three different methods per-
form similarly. Also in this case the SEJ methods give better energy preservation
compared to MR.

In some of the presented experiments we have considered different orderings of
the elementary flows which define the MR methods, this has not given significant
differences in the results. An analysis of how different compositions of the flows
can influence the size of the energy error can be found in [6]. We do not exclude
that appropriate orderings of the flows can give improved performance for the
MR splitting in some cases.

2.5 Conclusions

In this paper we presented a symmetric splitting method for the integration
of rigid body problems subject to external forces. The numerical strategy is
based on the use of available efficient algorithms for the computation of Jacobi
elliptic functions. We compared the method with a similar symplectic splitting
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method of [18] and [5]. In many of the performed experiments the presented
symmetric splitting is more efficient then the symplectic splitting. Moreover the
new method presents in many experiments a better energy conservation. This
happens especially for problems where the principal moments of inertia are of
large size.
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(a) Body frame Qe3, h = 0.05, MR (b) Relative energy error MR, h = 0.05

(c) Body frame Qe3, h = 0.05, SEJ (d) Relative energy error SEJ, h = 0.05

(e) Body frame Qe3, h = 0.05, SEJ4 (f) Relative energy error SEJ4, h = 0.05

Figure 2.8: Plot of Qe3 and the relative energy error for the satellite simulation.
Integration on the interval [0, 400], using the method MR, SEJ and SEJ4 (SEJ with
Magnus method of order 4 for the rotation matrix Q). The principal moments of
inertia are I1 = 1.7 · 104, I2 = 3.7 · 104, I3 = 5.4 · 104. The initial angular velocity is
ω0 = [15,−15, 15]T and Q(0) is the 3× 3 identity matrix.
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Chapter 3

The exact computation of
the free rigid body motion
and its use in splitting
methods

Abstract. This article investigates the use of the computation of the exact free
rigid body motion as a component of splitting methods for rigid bodies subject to
external forces. We review various matrix and quaternion representations of the
solution of the free rigid body equation, which involve Jacobi elliptic functions
and elliptic integrals, and are amenable to numerical computations. We consider
implementations which are exact (i.e. computed to machine precision), and semi-
exact (i.e. approximated via quadrature formulas). We perform a set of exten-
sive numerical comparisons with state of the art geometrical integrators for rigid
bodies, such as the preprocessed discrete Moser–Veselov method. Our numerical
simulations indicate that these techniques, combined with splitting methods, can
be favorably applied to the numerical integration of torqued rigid bodies.

3.1 Introduction

The accurate and efficient integration of the equations of motion of a rigid body
under the influence of conservative forces is of great interest in various fields,
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particularly mechanics and molecular dynamics (see e.g. [17]). Splitting algo-
rithms are frequently used: the Hamiltonian H = T + V , where T is the kinetic
energy and V is the potential energy, is written as the sum of integrable terms,
whose individual flows can be computed accurately and efficiently (see [11, 21]
for background on splitting methods).

If the body has two equal moments of inertia, then the flow of T , namely
the flow of the free rigid body, involves only trigonometric functions. Therefore
splittings based on the computations of the flows of T and of V are widely used,
see e.g. [28, 8, 3]. If the body has three different moments of inertia, instead, it is
common practice to further split the flow of T in a number of simpler flows, each
of which is computable in terms of trigonometric functions, see [28, 20, 26, 8, 9].
However, it is a classical result which dates back to Legendre and Jacobi [13] that,
even in the case of three distinct moments of inertia, the flow of the free rigid body
can be explicitly integrated in terms of special functions—Jacobi elliptic functions
for the angular momentum equation and elliptic integrals or theta functions for
the attitude equation, see e.g. [2, 31, 16, 14]. Hence, the flow of T is numerically
computable and can be used as a component of splitting algorithms. Because of
this there has recently been a renewal of interest in the exact integration of the
free rigid body and in its use in splitting methods, see for example [6, 29, 30].

The aim of this article is to investigate the potentialities of this approach
through extended comparisons with other existing methods, particularly with
those which appear to be the state of the art for the integration of the free rigid
body with distinct moments of inertia, that is, a number of splitting algorithms
[28, 20, 26, 8] and the so called ‘preprocessed discrete Moser–Veselov’ method of
[12]. The latter method consists of applying the classical discrete Moser–Veselov
algorithm, [24], to a free rigid body whose moments of inertia have been suitably
modified. This produces high order approximations of the solution of the original
free rigid body problem. The modified moments of inertia depend on the initial
conditions through the integrals of motion and are given by series expansions
in powers of the time-step. Truncations of these series produce integrators of
arbitrarily high orders at a very moderate increase in computational cost. See
also [22] for an earlier version of this approach.

The rigid body motion can be described in a variety of ways, for example using
Euler angles, rotation matrices, and quaternions. A variety of expressions of the
solution of the equations of motion has been given in each case. In Section 2 we
derive expressions of the solution which are amenable for numerical computations,
using both rotation matrices and quaternions (as they are generally preferred to
Euler angles in numerical algorithms), and we discuss the link between them.
Even though this is of course nothing else than a revisitation of classical material,
we add a unified and mathematically precise treatment. We also discuss the
relationship to other approaches known in the literature [15, 29].
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We consider the implementation of two of these algorithms, one with rotation
matrices and one with quaternions. They both use the elliptic integral of the third
kind, and to compute this function we consider two strategies. One is exact, that
is, computes the required functions to machine precision by means of the well-
known Carlson’s method, [25]. The other, that we call semi-exact, uses Gaussian
quadrature of arbitrarily high order and produces high order approximations of
the solution of the free rigid body. At the price of making the error in the
evaluation of the integral depending on the step-size of integration, this allows a
substantial reduction of the computational cost.

In section 3 we perform numerical experiments. In particular, in Section
3.2 we consider the free rigid body and compare the methods with those of
[12]. We investigate how the different methods perform for different choices of
the moments of inertia. It should be noted that, as far as the free rigid body
is concerned, an obvious yet important feature of the exact methods is that
they can be applied with any value of the time-step, while approximate and
semi-exact methods must be applied with small enough time-steps in order to
achieve a desired accuracy. Furthermore, implicit methods, like those of [12],
use fixed-point iteration, which might require small step-sizes to converge. These
numerical comparisons give some indication on the potentiality of exact and semi-
exact algorithms as components of splitting methods for forced rigid bodies. In
fact, compared to approximate methods, exact and semi-exact methods are more
robust in their dependence on the size of the time-step. In particular, these
methods perform better, compared to others, when using large step-sizes.

Next, in Sections 3.3 and 3.4 we investigate numerically the use of exact and
semi-exact methods as components of splitting methods for the integration of
some problems involving rigid bodies subject to external forces. Specifically, we
consider some sample cases with and without a fixed point and a case from molec-
ular dynamics. In molecular dynamics situations the large number of particles
implies that most of the computation time is spent to evaluate the interact-
ing forces, so that an increase in the time spent to update the individual rigid
molecules’ state can be compensated by the advantage given by the use of larger
step-sizes.

Altoghether, our conclusion is that the implementation of the exact solution
of the free rigid body is in general a competitive approach compared to other
numerical methods, which is worth of consideration.
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3.2 The exact solution for the free rigid body

3.2.1 The equations of motion

The configuration of a rigid body with a fixed point is determined by the rotation
which transforms a chosen orthonormal frame {Es

1,E
s
2,E

s
3} fixed in space into

a chosen orthonormal frame {Eb
1,E

b
2,E

b
3} attached to the body, both having

the origin in the body’s fixed point. We assume that Eb
1,E

b
2,E

b
3 are principal

axes of inertia of the body. As is customary, we identify all vectors with their
representatives in the body base, that we denote with lowercase fonts (that is,
v = (v1, v2, v3)T is the body representative of V =

∑
i viE

b
i ) and denote by

e1, e2, e3 the vectors of the canonical basis of R3. The configuration of the body
is thus determined by the attitude matrix Q ∈ SO(3) which transforms body
representives into spatial representatives of vectors; in particular, Qesi = ei for
i = 1, 2, 3.

If m = (m1,m2,m3)T is the body representative of the angular momentum
vector and I = diag(I1, I2, I3) is the inertia tensor, then the equations of motion
can be written as

ṁ = m× I−1m, (3.1)

Q̇ = Q Î−1m. (3.2)

Here × denotes the vector product in R3 and the hat-map ̂ : R3 → so(3) is
defined as

v =

 v1

v2

v3

 7→ v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0


and satisfies v̂u = v × u for all u,v ∈ R3.

Equation (3.1) is Euler equation (written for the angular momentum rather
than for the angular velocity ω = I−1m), while (3.2) is sometimes called Arnold
equation. These are the left-trivialized Hamilton equations on T ∗SO(3) ≈ SO(3)×
R3 3 (Q,m) with the kinetic energy,

T =
m2

1

2I1
+
m2

2

2I2
+
m2

3

2I3
,

as Hamiltonian. These equations form a completely integrable Hamiltonian
system—in fact, a superintegrable or noncommutatively integrable system since,
besides the kinetic energy, also the three components of the spatial angular mo-
mentum vector Qm are constants of motion (see for instance [10] and references
therein). In particular, the norm of the body angular momentum, G = ‖m‖, is
a constant of motion.
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3.2. The exact solution for the free rigid body

As we review in this section, equations (3.1) and (3.2) can be explicitly inte-
grated in terms of elliptic functions. The integration is done in two steps. First,
Euler equation (3.1) is integrated to give m(t). Then, Arnold equation (3.2)
becomes a time dependent linear equation for Q(t), whose integration exploits
in an essential manner the constancy of the spatial angular momentum vector.
We shall review different representations of the solution, including some that use
quaternions instead of rotation matrices.

Note that, due to the obvious SO(3)-symmetry and scaling invariance of equa-
tions (3.1) and (3.2), we may restrict ourselves to describe their solutions with
initial conditions (Q0,m0) at t = t0 such that

Q0 = 1 , ‖m0‖ = 1 .

We shall indeed do so in order to keep the notational complexity to a minimum,
but we shall indicate the changes which give the general solutions. Depending
on notational convenience, we shall indifferently write m(t) or mt for the value
at time t of the solution of Euler equation, etc.

From now on, we tacitly assume that the three moments of inertia I1, I2, I3
are pairwise distinct and we order them in ascending order, I1 < I2 < I3.

3.2.2 Solution of Euler equation

The integration of Euler equation (3.1) is a standard matter, and we restrict
ourselves to provide the result. As is well-known, Euler equation can be viewed as
a Hamiltonian system with respect to the Lie–Poisson structure on R3 ≈ so(3)∗,
and has the energy T and the norm of the angular momentum, G := ‖m‖,
as constants of motion. For given G > 0, the phase portrait consists of the
six equilibria ±Gej , j = 1, 2, 3, of the four stable/unstable manifolds of the
equilibria ±Ge2, which are given by 2TI2 = G2, and of periodic orbits which fill
four disconnected regions of the sphere G = const. The periodic orbits satisfy
either 2TI3 > G2 > 2TI2 or 2TI2 > G2 > 2TI1 and, for given T and G, there
are two of them.

The expression of the periodic solutions involve the three Jacobi elliptic func-
tions sn, cn and dn, whose definition is recalled in the Appendix. As mentioned,
we consider only solutions with unit norm. Given T , define the positive constants

Ijh = |Ij − Ih| , ∆j = |1− 2TIj | , Bjh =
(Ij∆h

Ijh

)1/2

for j, h = 1, 2, 3, j 6= h, and

k =
(∆1I32

∆3I21

)1/2

, λ1 =
(∆1I23

I1I2I3

)1/2

, λ3 =
(∆3I12

I1I2I3

)1/2

that we shall use without reference throughout this section.
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Proposition 3.2.1. Let mt be a solution of Euler equation (3.1) with unit norm
and energy T .
(i) If 2TI2 > 1 > 2TI1, then

mt =
(
σB13 dn(λt− ν, k) , B21 sn(λt− ν, k) , B31 cn(λt− ν, k)

)T
, (3.3)

with λ = σλ3, for some ν ∈ R and σ = ±1.

(ii) If 2TI2 < 1 < 2TI3, then

mt =
(
B13 cn(λt− ν, k−1) , B23 sn(λt− ν, k−1) , σB31 dn(λt− ν, k−1)

)T
,

with λ = σλ1, for some ν ∈ R and σ = ±1.

(iii) If 2TI2 = 1 and mt is not an equilibrium solution, then

mt =
(
σ′B13 sech(λt− ν) , tanh(λt− ν) , σ′B31 sech(λt− ν)

)T
,

with λ = σλ3, for some ν ∈ R, σ = ±1 and σ′ = ±1.

The proof of these expressions reduces to differentiation, see e.g. [16]. Solu-
tions on the stable/unstable manifolds have been included mostly for complete-
ness, as their need in numerical computations is quite rare. Note that in the
first two cases the phase ν can be taken modulo the period of the Jacobi elliptic
functions.

Remark: Solutions with norm G are obtained from the formulas of proposi-
tion 3.2.1 with the substitutions m 7→ Gm and T 7→ T/G2.

3.2.3 Integration of the rotation matrix

There are various derivations of the solution t 7→ Qt of equation (3.2) for the
attitude matrix. They all have in common the use of the constancy of the angular
momentum vector in space to reduce the determination ofQt to the determination
of a planar rotation which, thanks to the knowledge of the solution of Euler
equation, reduces to the evaluation of the integral of a known function. The
procedure is more easily explained in terms of space vectors, rather than of their
body representatives.

Let M be the angular momentum vector, that as above we assume of unit
norm, Bs = {Es

1,E
s
2,E

s
3} be the spatial frame and Bb = {Eb

1,E
b
2,E

b
3} be the

body frame. M and Bs are fixed in space, while Bb changes with time. Consider
any rotation Pt which takes M into the position of Eb

3 at time t; this rotation
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depends on t and its inverse transforms the body basis Bb into a certain orthonor-
mal frame Bt = {V t,W t,M}. Similarly, let R be a (time-independent) rotation
which transforms Es

3 into M , and hence the spatial basis Bs into a certain or-
thonormal frame B′ = {V ′,W ′,M}. Since the frames B′ and Bt have theM axis
in common, there is a (time-dependent) rotation Yt of axis M which transforms
the former into the latter. Therefore, the rotation Qt = R ◦ Yt ◦ Pt transforms
the spatial basis into the body basis.

This procedure is not unique in that it depends on the choice of Pt and R but
has the advantage that, for each such choice, the determination of Qt reduces to
the determination of a rotation about a known axis, that is, of an angle. Note
that, if Qt equals the identity at a certain time t0, as we may and do assume,
then it is possible to choose R = P−1

t0 and, correspondingly, Yt0 = 1.
Translated into body coordinates, this procedure leads to a representation of

the attitude matrix Qt as the product PTt0YtPt with Pt, Yt ∈ SO(3) such that

Ptmt = e3 and Yte3 = e3 ∀ t , Yt0 = 1 . (3.4)

We begin by giving an expression for the angle ψt of the rotation Yt as a function
of Pt. For shortness, we do it only in case (i) of proposition 3.2.1.

Here and in the following we denote by a dot the Euclidean scalar product
in R3 (and later on also in R4). Moreover, we use the inner product

〈A,B〉 :=
1
2

tr (ATB)

on the space of 3 × 3 skew-symmetric matrices. Note that 〈û, v̂〉 = u · v for all
u, v ∈ R3.

Proposition 3.2.2. Consider a solution mt of Euler equation with unit norm.
Let Pt, Yt ∈ SO(3) be smooth functions which satisfy (3.4) and write Yt =
exp(ψtê3) for some real function ψt. Then

Qt := PTt0YtPt (3.5)

is the solution of (3.2) with initial datum Qt0 = 1 if and only if

ψt =
∫ t

t0

(
2T + 〈ê3, PsṖ

T
s 〉
)
ds (mod2π) (3.6)

or equivalently, if vt and wt are the first two columns of PTt ,

ψt =
∫ t

t0

(
2T +ws · v̇s

)
ds (mod2π) . (3.7)
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Proof. Let ωt = I−1mt be the angular velocity. Under hypotheses (3.4), the
matrix Qt as in (3.5) satisfies Qt0 = 1 if and only if ψt0 = 0. Thus, it suffices to
prove that Qt = PTt0YtPt satisfies Q̇t = Qtω̂t if and only if

ψ̇t = 2T + 〈ê3, PtṖ
T
t 〉 . (3.8)

For simplicity, we omit the indication of the dependency on t. Since Ẏ = ψ̇Y ê3,
differentiating equation (3.5) gives Q̇ = QPT (ψ̇ê3 + ṖPT )P . Hence, Q̇ = Qω̂ if
and ony if ω̂ = PT (ψ̇ê3 + ṖPT )P . Since P ûPT = P̂u for all P ∈ SO(3) and u ∈
R3, this condition is equivalent to ψ̇ê3 = P̂ω−ṖPT , namely ψ̇ = 〈ê3, P̂ω+PṖT 〉
given that the matrices ê1, ê2, ê3 form an orthonormal set for the inner product
〈 , 〉 and ṖPT is skew-symmetric. The proof of (3.8) is concluded by observing
that 〈ê3, P̂ω〉 = e3 · Pω = PTe3 · ω = m · ω = 2T .

Let us now prove (3.7). From PTe3 = m it follows that P = [v,w,m]T with
orthonormal vectors v,w,m and one computes PṖT = −w · ṁê1 + v · ṁê2 −
v · ẇê3. Thus 〈ê3, P Ṗ

T 〉 = −v · ẇ = v̇ ·w.

Note that any unit vector vt orthogonal to mt can be used to construct the
matrix Pt = [vt,wt,mt]T , where wt = mt × vt. Since ‖mt‖ = 1 implies that
ṁt is ortohogonal to mt, a possible choice is that of taking vt aligned with ṁt.
We specialize the expression of the angle ψt corresponding to this choice. For
another choice, see section 2.6. The expression of ψ uses the elliptic integral of
the third kind, Π, and the amplitude function am, whose definitions are recalled
in the Appendix.

Corollary 3.2.3. Consider a solution mt of Euler equation as in (3.3), with
unit norm and energy T such that 2TI2 > 1 > 2TI1. If, in proposition 3.2.2,
vt = ‖ṁt‖−1ṁt then

ψt = 2T (t− t0) +
∆2

λI2

[
Π
(
am(λt− ν), n, k

)
−Π

(
am(λt0 − ν), n, k

)]
(3.9)

with k, λ and ν as in (3.3) and n = B−1
23 .

Proof. The orthogonality of w = m × v and ṁ implies w · v̇ = w · m̈/‖ṁ‖ .
Since m̈ = d

dt (m×ω) = ṁ×ω +m× ω̇ and ω̇ = ‖ṁ‖I−1v, this gives w · v̇ =
v · I−1v − ω ·m = v · I−1v − 2T . But from proposition 3.2.2 we know that
ψ̇ = 2T + w · v̇. Hence ψ̇ = v · I−1v. Inserting ṁ = m × I−1m into v this
becomes

ψ̇ =
I1(I23m2m3)2 + I2(I13m1m3)2 + I3(I12m1m2)2

(I1I23m2m3)2 + (I2I13m1m3)2 + (I3I12m1m2)2
.
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Using the constancy of T and G2 (= 1) to express m2
1 and m2

3 in terms of T
and m2

2, and then using the expression of m2 from (3.3), this gives

ψ̇ = 2T − I2∆1∆2∆3

I2
2 ∆1∆3 − I12I23m2

2

= 2T +
∆2/I2

1−B−2
23 sn2(λt− ν)

.

The proof is concluded by integrating between t0 and t, taking into account
equation (3.36) of the Appendix.

This algorithm equals that of [16], except for the sign of ψ. A similar algorithm
is given in [7].

Remark: If 2TI3 > 1 > 2TI2 then ψt is as in (3.9) with k replaced by k−1,
with λ and ν as in point (ii) of proposition 3.2.2, and with n = B−1

21 .

3.2.4 The equations of motion in quaternionic form

We consider now the quaternionic formulation of the free rigid body. For general
references on quaternions, see e.g. [19]. Quaternions (of unit norm) are the points
of the three sphere S3 = {q ∈ R4 : ‖q‖ = 1} equipped with a certain Lie group
structure. As is customary, we write q = (q0, q) ∈ R × R3 and refer to q0 and
q = (q1, q2, q3) as to the scalar and vector parts of q. Then

S3 = {q = (q0, q) ∈ R× R3 : q2
0 + ‖q‖2 = 1}

is a Lie group with product

(p0,p)(q0, q) := (p0q0 − p · q, p0q + q0p+ p× q). (3.10)

The identity element of S3 is e = (1,0) and the inverse of q = (q0, q) ∈ S3 is
q−1 = (q0,−q).

The ‘Euler–Rodriguez’ map E : S3 → SO(3) defined by

E(q) = 1+ 2q0q̂ + 2q̂2 (3.11)

is a 2 : 1 surjective submersion. It is not injective since E(q) = E(−q) and each
rotation matrix has two preimages. Hence, S3 is a double covering of SO(3). If
E(q) is a rotation of angle ψ and axis e ∈ R3, ‖e‖ = 1, then q = (cos ψ2 ,±e sin ψ

2 ).
Moreover, the map E is a group homomorphism since

E(qp) = E(q)E(p) ∀q, p ∈ S3.

Thus, the quaternionic formulation of the equations of motion of the rigid body
is a formulation on a covering space. Each motion of the rigid body in SO(3)
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Chapter 3. The exact computation of the free rigid body motion

corresponds to two (non-intersecting) motions in S3, and it is immaterial which
one is considered. The ‘equation of motion of the rigid body in quaternion form’
is the differential equation on T ∗S3 which describes these motions. Analogously
to what done in the case of SO(3), we give this equation in left-trivialized form.

The Lie algebra s3 = TeS3 of S3 can be identified with R3 equipped with the
cross product as commutator. It is convenient, however, to identify s3 with the
subspace {0} × R3 of R4 = R× R3,

s3 =
{
u = (0,u) : u ∈ R3

}
,

so as to be able to exploit the fact that the quaternion product (3.10) extends
to R4. Note that, if u = (0,u) and v = (0,v) are in s3, then uv = (−u·v,u×v) ∈
R×R3 need not be in s3. Instead, if u = (0,u) ∈ s3 and q ∈ S3, then quq−1 ∈ s3,
see also (3.14) below. We shall also use the Euclidean product of R4, that we
denote by a dot.

A simple calculation shows that the derivative at the identity of the covering
map E : S3 → SO(3) is the map E∗ := TeE : s3 → so(3) given by

E∗(u) = 2û , u = (0,u) ∈ s3 . (3.12)

If qt ∈ S3 and Qt = E(qt), then q−1
t q̇t ∈ s3, QTt Q̇t ∈ so(3) and

E∗(q−1
t q̇t) = QTt Q̇t . (3.13)

By general facts about Lie groups and covering maps, the map E∗ is a Lie algebra
isomorphism and hence intertwines the two adjoint representations, that is

E∗(quq−1) = E(q)E(u)E(q)−1 ∀ q ∈ S3 , u ∈ s3.

Note that this identity, (which, incidentally, can be easily verified by a direct
computation), can also be written as

E∗(quq−1) = 2Ê(q)u ∀ q ∈ S3 , u = (0,u) ∈ s3 . (3.14)

As a direct consequence of (3.13) and (3.14) we can now state the rigid body
equations of motion on S3:

Proposition 3.2.4. Assume that mt is a solution of Euler equation (3.1) and
that qt ∈ S3 is a smooth function. Then, Qt := E(qt) is a solution of Arnold
equation (3.2) if and only if

q̇t =
1
2
qtωt (3.15)

with ωt = (0, I−1mt).
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3.2. The exact solution for the free rigid body

Clearly, if qt is a solution of (3.15) for a certain mt, then so is −qt and
they project onto the same rigid body motion E(qt) on SO(3). The choice of
the initial condition qt0 unambiguously selects one of the two. Even though we
need not using this fact, we note for completeness that, written on s3, that is for
mt = (0,mt), Euler equation becomes ṁt = 1

2 (mtωt − ωtmt).

3.2.5 Integration of the quaternion

Solutions of (3.15) can be searched in a factorized form qt = p−1
t0 ytpt analogous

to that of section 3.2.3. To this end, it is sufficient to determine pt and yt so that
Pt := E(pt) and Yt := E(yt) satisfy properties (3.4).

Since E∗ is an isomorphism, equation (3.14) shows that if p ∈ S3, u = (0,u) ∈
s3 and v = (0,v) ∈ s3 then E(p)u = v if and only if pup−1 = v. Thus, if we write

mt = (0,mt) ∈ s3 , ej = (0, ej) ∈ s3 (j = 1, 2, 3) ,

we see that the analogues of conditions (3.4) are

ptmtp
−1
t = e3 and yte3y

−1
t = e3 ∀ t , yt0 = e . (3.16)

(The choice yt0 = −e would be acceptable as well.) We can now state the
analogue of the first part of proposition 3.2.2.

Proposition 3.2.5. Consider a solution mt of Euler equation with unit norm.
Let pt, yt ∈ S3 be smooth functions which satisfy (3.16). Then,

qt := p−1
t0 ytpt

satisfies (3.15) and qt0 = e if and only if yt = (cos ψt

2 , e3 sin ψt

2 ) with

ψt =
∫ t

t0

(
2T + 2e3 · psṗ−1

s

)
ds (mod2π) . (3.17)

Proof. Define Pt := E(pt) and Yt := E(yt). The latter is a rotation with axis e3

if and only if yt = ±(cos ψt

2 , e3 sin ψt

2 ) for some ψt, but the plus sign has to
be selected in order to have yt0 = e. Since Yt = exp(ψtê3), recalling proposi-
tion 3.2.2 and observing that qt = p−1

t0 ytpt is a solution of (3.15) if and only if
E(qt) = PTt0YtPt is a solution of (3.2), we see that all we have to prove is that the
expressions (3.17) and (3.6) of the angle ψ coincide, namely that

2e3 · pṗ−1 = 〈ê3, P Ṗ
T 〉 .

Let PṖT = â with a ∈ R3. Then, equations (3.12) and (3.13) together show
that pṗ−1 = (0, 1

2a). Hence 2e3 · pṗ−1 = e3 · a = 〈ê3, â〉.
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Chapter 3. The exact computation of the free rigid body motion

In order to make the previous result applicable, we need to give conditions on
the quaternion pt which ensure that it satisfies ptmtp

−1
t = e3 and then to express

the angle ψt in terms of the components of pt. This is the content of the following
Lemma.

Lemma 3.2.6. Consider a solution m = (m1,m2,m3)T : R → R3 of Euler
equation with unit norm and m3(t) 6= −1 for all t. Then, four smooth functions
p0, p1, p2, p3 : R→ R are the components of a function p : R→ S3 which satisfies
(3.16) if and only if

p1 =
p3m1 + p0m2

1 +m3
, p2 =

p3m2 − p0m1

1 +m3
, (3.18)

p2
0 + p2

3 =
1 +m3

2
. (3.19)

In that case

2T + 2e3 · pṗ−1 =
2T + I−1

3 m3

1 +m3
+ 4

p3ṗ0 − p0ṗ3

1 +m3
. (3.20)

Proof. A computation shows that the four components of pm = (−p ·m, p0m+
p ×m) equal those of e3p = (−p · e3, p0e3 − p × e3) if and only p0, p1, p2, p3

satisfy (3.18). Condition (3.19) ensures that (p0, p1, p2, p3) has norm one. Next,
using (3.18) one computes

e3 · pṗ−1 = (p3ṗ0 − p0ṗ3) + (p2ṗ1 − p1ṗ2) = 2
p3ṗ0 − p0ṗ3

1 +m3
− m1ṁ2 −m2ṁ1

2(1 +m3)

and the conclusion follows observing that m1ṁ2 −m2ṁ1 = e3 ·m× (m× ω) =
2Tm3 − ω3, where as usual ω is the angular velocity.

Thus, any choice of p0 and p3 satisfying (3.19) leads to a quaternionic imple-
mentation of the free rigid body motion. For instance, taking p0 = c0

√
1 +m3

and p3 = c3
√

1 +m3 with constants c0 and c3 such that c20 + c23 = 1
2 leads to a

particularly simple expression for ψ̇. Taking for instance c0 = 1√
2

and c3 = 0
gives the following:

Corollary 3.2.7. Consider a solution m(t) of Euler equation as in (3.3), with
unit norm and energy T such that 2TI2 > 1 > 2TI1. Then, quaternions p(t) and
y(t) =

(
cos ψ(t)

2 , e3 sin ψ(t)
2

)
as in proposition 3.2.5 are given by

p(t) =
1√
2

(√
1 +m3(t) ,

m2(t)√
1 +m3(t)

, − m1(t)√
1 +m3(t)

, 0

)
,

ψ(t) =
t− t0
I3

+
I31

I1I3λ

[
Π (ϕ(t), n, k) + f(t)−Π (ϕ(t0), n, k)− f(t0)

]
,
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3.2. The exact solution for the free rigid body

where ϕ(s) = am(λs− ν, k) with λ, k and ν as in (3.3), n = −(B31/B13)2 and

f(s) = B−1
21 B13B31 arctan

(
B−1

13 B21 sd(λs− ν, k)
)
.

Proof. If 2TI2 > 1 > 2TI1 then m3 > −1 for all times. With the given choice of
p0 and p3 the right hand side of (3.20) reduces to 2T+m3/I3

1+m3
, namely 1

I3
+ ∆3/I3

1+m3
.

From (3.3), m3 = acn(λt − ν, k) with a = B31. Since 0 < a < 1, n := a2

a2−1 < 0
and thus [5, page 215]∫

du

1 + acn(u, k)
=

1
1− a2

[
Π
(
am(u, k), n, k

)
− af1(u)

]
,

with f1(u) = C tan−1(C−1sd(u, k)), C =
[
(1 − a2)/(k2 + (1 − k2)a2)

]1/2. The
proof is concluded with a little bit of algebra.

This is a rescaled version of the algorithm presented by Kosenko in [15]. This
is the algorithm we use in the numerical work of the next section.

3.2.6 Relation between quaternion and matrix algorithms

We discuss now very shortly how to translate into quaternionic form q = p−1
t0 ytpt

a given representation Qt = PTt0YtPt of the attitude matrix as in proposition
3.2.2. This clearly reduces to determining a quaternion pt such that Pt = E(pt).
This operation involves ‘inverting’ a two-to-one map and can of course be done
only up to the overall sign of p, but this is immaterial in the present context
given that the product p−1

t0 ytpt is independent of the sign of p.
As usual, we assume ‖m‖ = 1 and 2TI2 > 1 > 2TI1. Thus m3 6= ±1 and we

can invoke lemma 3.2.6, which implies that a quaternion p such that E(p) = P is
determined, up to the sign, once p2

3 and the relative signs of p0 and p3 are known.
If p = (p0, p1, p2, p3) then, from (3.11),

E(p) =

 1− 2(p2
2 + p2

3) −2p0p3 + 2p1p2 2p0p2 + 2p1p3

2p0p3 + 2p1p2 1− 2(p2
1 + p2

3) −2p0p1 + 2p2p3

−2p0p2 + 2p1p3 2p0p1 + 2p2p3 1− 2(p2
1 + p2

2)

 .

Equating the three diagonals entries of this matrix to those of P = [v,w,m]T

gives 4p2
1 = 1 + v1 − w2 −m3, 4p2

2 = 1− v1 + w2 −m3 and

4p2
3 = 1− v1 − w2 +m3. (3.21)

If p0 and p3 are both nonzero, then their relative sign is determined by the
equality

4p0p3 = v2 − w1,
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Chapter 3. The exact computation of the free rigid body motion

which is obtained by equating entries (1, 2) and (2, 1) of the two matrices E(p)
and P . As an example, the algorithm of corollary 3.2.3 uses v = ‖ṁ‖−1ṁ =
‖ṁ‖−1m× I−1m and hence w = m×v = ‖ṁ‖−1(2Tm− I−1m). Thus, (3.21)
gives

p2
3 =

1 +m3

4
+

I32m2

4I2I3‖ṁ‖
(
m3 −B32

)
.

The other components of the quaternion p are computed as just explained and
the angle ψ is as in corollary 3.2.3.

As another example, take v = m×e3
‖m×e3‖ . Then v1 = (1 −m2

3)−1/2m2, w2 =
(1−m2

3)−1/2m2m3 and

p2
3 =

1 +m3

4
− m2(1 +m3)

4
√

1−m2
3

.

This produces a quaternion version of the algorithm based on rotation matrices
recently considered by van Zon and Schofield [29]. The rotation angle is

ψ =
∫ t

t0

2TI3 −m2
3

I3(1−m2
3)
ds =

t− t0
I3

+
I31

λI3I1

(
Π(am(λt−ν), n, k)−Π(am(λt0−ν, n, k)

)
with n = −B−2

31 B
−2
13 .

Remark: There is another possibility for constructing a quaternion p such
that pmp−1 = e3, which is used in [15]. This is based on the fact that, given any
three orthonormal vectors v1,v2,v3 ∈ R3 and a vector m ∈ R3 with unit norm,
one has

pmp−1 = v3 with p =
v2 + v1m

‖v2 + v1m‖
(3.22)

where, as usual vi = (0,vi) and n = (0,m). Reference [15] uses v3 = e3,
v1 = γ1e1 + γ2e2 and v2 = γ2e1 − γ1e2 with γ1, γ2 ∈ R. It is elementary to
verify (3.22) by direct computation if vi = ei, i = 1, 2, 3. Otherwise, there is
a quaternion s ∈ S3 such that E(s)ei = vi, i = 1, 2, 3. Then, p = k(se2s

−1 +
se2s

−1m) with k = ‖se2s
−1 + se2s

−1m‖−1 and a simple computation shows that
v3p − pm = s

[
e3(e2 + e1n) − (e2 + e1n)n

]
s−1 for n = sms−1. Here, the term

between square brackets vanishes by virtue of the previous observation.

3.3 Numerical experiments

3.3.1 Numerical implementation

The exact algorithms described in this paper require the computation of elliptic
integrals of the first and third kind. Elliptic integrals of the first kind are com-
puted very fast by using standard algorithms like AGM (arithmetic geometric
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mean) and ascending/descending Landen trasformations [1]. These can be used
also for the elliptic integral of the third kind, but their performance is not so
uniform and other algorithms are preferred instead. In [29] the authors use a
method based on theta functions. Our implementation makes use of Carlson’s
algorithms rf, rj, rc, that have been acclaimed to produce accurate values for
large sets of parameters. These methods are described in detail in [25] and are the
most common routines for elliptic integrals of the third kind in several scientific
libraries.

As mentioned in the Introduction, an alternative to the exact computation
of the elliptic integral of the third kind is the approximation by a quadrature
method. We will refer to the methods obtained in this manner as semi-exact
methods. These, by construction, integrate the angular momentum exactly. They
also preserve Qm (because of the properties of the matrix P in Prop. 3.2.2).
Moreover, they will be time-symmetric if the underlying quadrature formula is
symmetric.

In [30], the integral ∫ u

u0

ds

1− n sn2 s

is approximated by a quadrature based on Hermite interpolation, as the function
sn and its derivative can be easily computed at the endpoints of the interval.
Alternatively, one can write the same integral in the Legendre form,∫ am(u)

am(u0)

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
. (3.23)

This format is convenient when using quadrature formulae because it requires
tabulating the sine function in the quadrature nodes instead of sn(λ(t − ν)).
Thus, (3.23) can be approximated as∫ am(u)

am(u0)

f(θ)dθ ≈
p∑
i=1

bif(ϕ0 + ai∆ϕ),

where ∆ϕ = am(u) − am(u0) and bi, ai are weights and nodes of a quadrature
formula respectively. We use Gaussian quadrature (i.e. quadrature based on or-
thogonal polynomials), because of its high order. In particular, Gauss–Legendre
quadrature with p points attains the maximal quadrature order, 2p. The coef-
ficients and weights for Gaussian–Legendre quadrature method of order 10 (5
nodes) used in this paper are reported in the Appendix. Our numerical exper-
iments indicate that this approximation is very effective. For instance, the 5
point Gauss–Legendre quadrature (order 10) gives very accurate results even for
moderately large step-sizes, and reduces the overall cost of the methods by 2/3.
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Chapter 3. The exact computation of the free rigid body motion

With respect to the exact methods, the semi-exact methods obtained with
this approach are more directly comparable to the methods of [12].

3.3.2 Free rigid body

In this section we compare the algorithms discussed in this paper with the pre-
processed Rattle/discrete Moser–Veselov of Hairer et al. [12]. The latter are, in
our opinion, the state-of-the-art approximation methods insofar the rigid body is
concerned. The comparison is done using FORTRAN routines. The methods we
compare are: dmv6, dmv8, dmv10, the methods based on the preprocessed Rat-
tle algorithms of order 6, 8 and 10, respectively, the two exact methods with the
rotation matrix of Section 2.3 and the rotation quaternion of Section 2.5 along
with their semi-exact variants in which the elliptic integral is approximated by
Gauss–Legendre quadrature formulae of order 6, 8 and 10. As explained in the In-
troduction, in order to do these comparison, we integrate the flow of the free rigid
body in a time interval [0, Tfin] by repeated application of the time-h algorithms.

In the first experiment, see Figure 3.1 top plot, we display

averageI,m0
log10 ||Qreference(Tfin; I,m0)−Qcomputed(Tfin|h; I,m0)||∞, (3.24)

(or the analogous quantity of the quaternion) against the cpu-time averages of the
different methods when Tfin = 10, with twenty different step-sizes h ranging from
about 0.4 down to 0.01. The absolute value of the indicator (3.24) corresponds
to the average number of significant digits of the attitude matrix with step-size
h at time Tfin.1 The set of initial parameters, shared by all the methods, is
determined as follows. We choose a random inertia tensor, normalized so that
I1 < I2 < I3 = 1, thereafter a random initial normalized angular momentum in
the first quadrant. This is not a restriction, as both scaling the inertia tensor and
the angular momentum are equivalent to a time reparametrization. The initial
condition for the attitude matrix is the identity matrix that, for quaternions,
is (1, 0, 0, 0). The reference solution is computed with Matlab’s ode45 routine,
setting both relative and absolute error to machine precision. The average cpu
is computed as the mean of 100 runs.

Figure 3.1 indicates that the exact methods are clearly more expensive, but
they always converge (against 75 successes for the methods dmv6, dmv8, dmv10,
that are depending on a step-size “small enough” for the fixed point iterations to
converge). The diverging runs of the DMV methods are not taken into account
when computing averages. Good behaviour is displayed also by the semi-exact

1Our methods compute exactly the angular momentum, while the DMV methods do not.
However both classes of methods preserve exactly the kinetic energy, the norm of the angular
momentum, the spatial angular momentum Qm, are time-reversible and Lie–Poisson integrators
for the angular momentum. The DMV methods and the semi-exact methods are not symplectic.
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Figure 3.1: Left: Average log of error versus average cpu times in the attitude rotation
(100 runs) for random initial conditions and random moments of inertia. Right: Relative
cost (with respect to the cheapest method) versus step-size. The methods computing
the exact solutions are more expensive then the approximated ones, but their relative
cost rate improves for large time-steps. The DMV methods converge 75 out of the 100
runs. The failures are not taken into account when computing the averages.

methods. Their cost is about 1/3 of the methods using the exact elliptic integral
(and this is reasonable, because the exact routines compute 3 elliptic integrals of
the third kind: the complete one between 0 and π/2, and two incomplete ones
between 0 and φ, where 0 ≤ φ ≤ π/2). The right plot in Figure 3.1 displays the
relative cost of the methods, computed as

average cost of method X
minall methods aver. cost of method X

,

so that the bottom line equals to one by definition. The DMV are the cheapest
methods and their cost increases very slowly with the order of the method. We
see that the relative cost of the exact and semi-exact methods is higher for small
step-sizes and lower for large step-sizes. This indicates that the exact and semi-
exact methods are of interest in numerical simulations that use large step-sizes,
for which the DMV might have problems in converging.

The exact and semi-exact methods discussed in this paper reveal a worse
accumulation of roundoff error for small step-sizes (see Figure 3.1, left plot). This
can be partly explained by the fact that the routines for the attitude rotation
make repeated use of the exact solution of the angular momentum. However,
with exact methods it is not necessary to perform many tiny steps for integrating
to the final time: a single time-stepping is enough, and this avoids the problems
related to the accumulation of roundoff error. To improve on propagation of
roundoff, it is also possible to perform a simple projection at the end of each
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Figure 3.2: Parametrization domain for the matrix of inertia. x-axis: I1/I3, y-axis:
I2/I3.

time-step, in the quaternion case this amounts to divide the attitude quaternion
by its norm. In general, when exact and semi-exact methods are applied within
a splitting method, the value of the parameters (angular momentum, attitude,
energy) will change before and after one free rigid body step, hence we do not
foresee problems of roundoff accumulation.

What about the accuracy of the exact methods using matrices or quaternions?
Numerical experiments reveal that the accuracy of the two exact methods is very
comparable and also their cost. Methods using quaternions to represent rotations
are usually faster than their matrix counterpart, but here the computational time
is dominated by the evaluation of the elliptic integrals.

Our extensive numerical experiments revealed that the performance of the
semi-exact and the DMV methods depended heavily on the matrix of inertia I
and the initial condition m0 for the angular momentum. To understand this
dependence, we have followed a procedure similar to the one used in [9]. Since
normalizing the matrix of inertia is equivalent to a time reparametrization, it
is sufficient to consider values of the form I1/I3 < I2/I3 < 1. This reduces to
considering two parameters, say x = I1/I3 and y = I2/I3. As Ii + Ij ≥ Ik, the
problem is reduced to considering values of x and y in the triangle

T = {(x, y) ∈ R2 : 0 < 1− y ≤ x < y < 1},

(see Figure 3.2).
We construct a discretization of this triangle by superimposing a rectangular

grid (100 points in the x direction and 50 in the y direction). For each point
(x, y) in the interior of the triangle, we solve 20 initial value problems with initial
condition m0 in the first octant. This set of initial parameters is identical for
all the methods. Thereafter, we compute the average (3.24) for each method
(non converging runs for the DMV methods are discarded). The results of the
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Figure 3.3: Average log10 error for the various values of the matrix of inertia with step-
size h = 0.4. Comparison of exact methods. Top: Matrix case. Bottom: Quaternion
case.

experiments are shown in Figures 3.3, 3.4(a), 3.4(c) and 3.4(e), computed with
integration step-size h = 0.4, and Figures 3.4(b), 3.4(d) and 3.4(f) computed
with integration step-size h = 0.04.

For the largest step-size, h = 0.4, the exact methods described in this paper
perform very similarly and show a uniform accuracy. We compare then the semi-
exact methods of order 6, 8, and 10 and the DMV ones of the same order. It
should be mentioned that the pictures corresponding to semi-exact methods using
matrix rotations or quaternions are virtually indistinguishable from each order,
for this reason we only show one of the two. Both the semi-exact and the DMV
methods reveal a worse approximation in the proximity of the top left corner

0 ≈ x =
I1
I3
� y =

I2
I3
≈ 1 =

I3
I3
, (3.25)

namely when the smallest moment of inertia is much smaller than the two others.
This behaviour of the numerical methods is due to the fact that when I1 goes to
zero, one of the periods of the free rigid body motion tends to zero. To resolve
these motions accurately, numerical integrators must use small step-sizes. The
DMV methods have in average less accuracy and they failed to converge for
several initial conditions.

For the next value of the step-size (h = 0.04) the exact methods reveal a worse
accumulation of roundoff error (not shown), already observed in Figure 3.1. This
accumulation disappears if the integration in [0, Tfin] is performed with a single
time-step. The DMV, in particular dmv10, perform very well in the whole triangle,
except for the top left corner.

The conclusion is that exact and semi-exact methods are of interest for large
step-sizes, and in particular for values of the moments of inertia in the region
(3.25).
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Figure 3.4: Average log10 error for the various values of the matrix of inertia with
step-size h = 0.4, left, and h = 0.04, right:
(a) and (b) order 6. Top: semi-exact with quadrature order 6. Bottom: dmv6.
(c) and (d) order 8. Top: semi-exact with quadrature order 8. Bottom: dmv8.
(e) and (f) order 10. Top: semi-exact with quadrature order 10. Bottom: dmv10.
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3.3.3 Torqued systems and perturbations of free rigid body
motions

In this section we consider systems of the form

H(m, Q) = T (m) + V (Q), (3.26)

where T is the kinetic energy of the free rigid body and the potential energy V
describes some external torque. As mentioned in the introduction, a standard
approach to solve this problem is to split it into a free rigid body motion coming
from the kinetic part,

S1 =

{
ṁ = m× I−1m,

Q̇ = Q Î−1m,
(3.27)

plus a torqued motion, namely

S2 =

{
ṁ = f(Q),

Q̇ = 0,
(3.28)

where f(Q) = −rot(QT ∂V∂Q ). Here, rot-function maps matrices to vectors, first
by associating to a matrix a skew-symmetric one, and then identifying the latter
with a vector,

rot(A) = skew−1(A−AT ),

where skew(v) = v̂, see also [26].
Thereafter, the flows of the S1 and S2 systems are composed by means of a

splitting method [21].
The most commonly used is the symplectic second order Störmer/Verlet

scheme

(m, Q)(j+1) = ϕ
[S2]
h/2 ◦ ϕ

[S1]
h ◦ ϕ[S2]

h/2((m, Q)(j)), j = 0, 1, . . . ,

where ϕ[S1]
h and ϕ[S2]

h represent the flows of S1 and S2, respectively. Some higher
order splitting schemes are presented in the appendix. These are state-of-the-art
optimized schemes with very small leading error, [4]. We will use these methods
for the remaining experiments. All the remaining experiments are performed in
MATLAB. For the rigid body part, we use the rotation-matrix exact method of
Section 2.3, which we will call RB for reference.

One of the most popular methods for approximating the free rigid body system
(3.27) is a second-order method proposed by McLachlan and Reich (see [8]).
This method, that we will call MR, is time-reversible and preserves the Poisson
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structure of the system. In brief, the MR method is based on a splitting of the
Hamiltonian (3.26) into four parts,

H̃1 =
m2

1

2I1
, H̃2 =

m2
2

2I2
, H̃3 =

m2
3

2I3
, H̃4 = V (Q).

Each of the corresponding Hamiltonian vector fields can be integrated exactly
(H̃1, H̃2, H̃3 correspond to the vector field (3.27)), the symmetric composition
of the flows gives rise to the approximation scheme,

(m, Q)(j+1) = ΦMR((m, Q)(j)),

where
ΦMR = ϕ4,h/2 ◦ ΦT,h ◦ ϕ4,h/2.

Here
ΦT,h = ϕ1,h/2 ◦ ϕ2,h/2 ◦ ϕ3,h ◦ ϕ2,h/2 ◦ ϕ1,h/2

is the contribution from the kinetic parts, H̃1, H̃2 and H̃3, where the flows of the
kinetic parts corresponds to elementary rotations in R3.

3.3.3.1 The heavy top

As a first study case, we consider a nearly integrable situation, the rigid body
with a fixed point in a small constant-gravity field. The Hamiltonian is

H = T + εV (Q), 0 < ε� 1, (3.29)

with
V (Q) = eT3 Q

Tu0,

for a constant vector u0. The vector u = QTu0 describes the position of the
center of mass times the (normalized) acceleration of gravity. This potential V
corresponds to f(Q) = (u2,−u1, 0)T , where u1 and u2 are components of u.

A symplectic splitting method of order p that treats the free rigid body part
exactly would typically have a nearby Hamiltonian of the form

H̃ = H + εV +O(εhp),

hence, if the step-size of integration is small enough, the numerical error remains
smaller with respect to the perturbation parameter, see e.g. [3]. If the rigid body
part is resolved by a symplectic method of order r, typically r ≥ p, the nearby
Hamiltonian has the form

H̃ = H + εV +O(hr) +O(εhp),
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Figure 3.5: Average relative energy errors versus computational time, perturbed rigid
body, ε = 10−3 (top plot) and ε = 10−6 (bottom plot). Initial kinetic energy T0 = 1.
Solid lines: splitting methods using RB. Dash-dotted lines: splitting methods using
MR approximation for the rigid body motion boosted to the same order of the splitting
scheme.

thus, in order to have an error that goes to zero as ε goes to zero, one has to take
smaller step-sizes h.

This behaviour is displayed in Figure 3.5 for two values of ε (left plot: ε =
10−3, right plot: ε = 10−6). We compare different splitting schemes of various
order for the system S1+S2. Moreover, we compare the same splitting techniques
using an exact method or a further MR splitting for the free rigid body motion.
As the MR method has only order two, we boost its order to p (the same as the
underlying splitting scheme) using Yoshida’s technique [32].
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Chapter 3. The exact computation of the free rigid body motion

The initial conditions, identical for all the methods, are chosen as follows.
Having fixed a value of ε, we choose a random inertia tensor, normalized so that
I1 = 1. Having chosen the first two components of m0 randomly, the remaining
one is determined to match T0 = 1. The vector u0 is taken equal to e3 and Q0

is the identity matrix.
Several splitting methods are compared, each timing and relative Hamiltonian

error is averaged (mean value) over 20 different initial conditions (each with
new I,m0). The methods are implemented so that all the splitting schemes
perform the same number of force evaluations. This is done as follows: start
with the following basic time-steps: h ∈ {8, 5, 4, 2, 1.75, 1.5, 1.25, 1, 0.5}. For a
splitting method with s stages (s is the number of evaluations of the force), we use
hs = csh = s

10h. For instance, for the 6th order 10-stages method S610, cs = 1,
for the Störmer-Verlet splitting (V2), cs = 1

10 . The integration is performed in
the interval [0, 20].

Figure 3.5 indicates that, the more we boost the order of the MR scheme, the
more the cost of the splitting method becomes similar to the one using the exact
solution of the rigid body. This is evident especially for schemes that have a large
number of stages (S610, RKN6a14). Moreover, it is also evident that composing
MR to a higher order scheme using Yoshida’s technique yields methods with high
leading error term, that dominates the small error of optimized splitting scheme.
Finally, note that only the methods using the exact integrator produce an error
that is smaller than ε even for very large choices of the step-size. This is evident
for ε = 10−3 but, in particular, for ε = 10−6. The conclusion is that the use of
the exact algorithm for the rigid body is definitively of interest in integration of
perturbed systems (see also [3], [6]).

3.3.3.2 Second test case

We consider a simplified model describing the motion of a satellite in a circular
orbit of radius r around the earth [18]. Denote µ = gM , where g is the gravi-
tational constant and M is the mass of the Earth. The potential energy of this
system is given by

V (Q) = 3
µ

2r3
(QTe3) · IQTe3, (3.30)

where I is the inertia tensor and e3 is the canonical vector (0, 0, 1)T in R3. The
torque associated to this potential becomes

f(Q) = 3
µ

r3
(QTe3)× I(QTe3). (3.31)

We simulate the motion of the satellite using the same parameters as in [23],
namely

I1 = 1.7× 104, I2 = 3.7× 104, I3 = 5.4× 104,

68



3.3. Numerical experiments

Figure 3.6: Satellite simulation. Left column: Center of mass (QT e3) by the splitting
method RKN6a

14 with step-size h = 0.1 (top) and h = 0.05 (bottom). Right: Relative
error on the energy corresponding to the same step-sizes. See text for details.

with
µ = 3.986× 1014, r = 1.5× 105,

in the interval [0, 400]. The initial angular momentum is m0 = I (15,−15, 15)T .
The initial attitude Q0 is the identity matrix. The system has an energy H0 =
1.21595664×107, which is conserved in time. This experiment was also considered
in [6]. The splitting method based on the exact approximation of the rigid body
is very accurate. The motion of the center of mass (left column) and the relative
error on the energyH0 (right column) for the splitting method RKN6a14 employing
our exact solution, are shown in Figure 3.6. The integration is performed in the
interval [0, 400] with step-size h = 0.1 (top) and h = 0.05 (bottom). The relative
error on the energy (see Figure 3.6), which is of the order of 10−7 for h = 0.1 and
10−10 for h = 0.05, indicates that H0 is preserved to 7 and 10 digits respectively.

69



Chapter 3. The exact computation of the free rigid body motion

The corresponding plots for the evaluation of the flow of T with the MR splitting
method are shown in Figure (3.7).

Figure 3.7: Satellite simulation. Left column: Center of mass (QT e3) by the splitting
method MR with step-size h = 0.1 (top) and h = 0.05 (bottom). Right: Relative error
on the energy corresponding to the same step-sizes. See text for details.

3.3.4 Molecular dynamics simulation: Soft dipolar spheres

We consider a molecular dynamics simulation, where molecules are modeled as
dipolar soft spheres. This model is of interest because it can be used to study wa-
ter and aqueous solutions, as water molecules can be described by small dipoles.
We consider the system described in example b in Appendix A of [8] which we
recall here for completeness. Denote by mi the total mass of the ith body, by qi
the position of its center of mass, by pi its linear momentum, by Qi its orienta-
tion and, finally, by mi its angular momentum in body frame. The system has
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Hamiltonian
H(q,p,m,Q) = T (p,m) + V (q,Q), (3.32)

where T refers to the total kinetic energy,

T (p,m) =
∑
i

(T trans
i (pi) + T rot

i (mi)),

consisting of the sum of the translational and rotational kinetic energies of each
body,

T trans
i (pi) =

‖pi‖2

2
, T rot

i (mi) =
1
2
mi · (I−1

i mi),

where Ii = diag(Ii,1, I,2, Ii,3) is the inertia tensor of the ith body, while V is the
potential energy, describing the interaction between dipoles, that is assumed to
depend on the position and orientation only. Furthermore, V =

∑
j>i Vi,j , where

Vi,j describes the interaction between dipole i and dipole j. We suppose

Vi,j(qi,Qi,qj ,Qj) = V short
i,j + V dip

i,j ,

where

V short
i,j = 4ε

(
σ

ri,j

)12

, ri,j = qi − qj , ri,j = ‖ri,j‖,

describes the short range interaction between particles i and j, while

V dip
i,j =

1
r3
i,j

µi · µj −
3
r5
i,j

(µi · ri,j)(µj · ri,j),

is the term modeling the dipole interaction, where µi being the orientation of
the ith dipole vector. If µ̄i is an initial fixed reference orientation for the dipole,
then µi = Qiµ̄i.

The Hamiltonian (3.32) is separable, as the potential energy is independent
of momenta and angular momenta. As before, we split the system as H = T +V ,
yielding

q̇i = pi

mi
,

ṗi = 0,
ṁi = mi × (I−1

i mi),

Q̇i = Qi
̂(I−1
i mi),

(3.33)

and
q̇i = 0,
ṗi = − ∂V

∂qi
,

ṁi = −rot(Q>i
∂V
∂Qi

)
Q̇i = 0.

(3.34)
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We approximate the original system with full Hamiltonian (3.32) by a com-
position of the flows of (3.33) and (3.34), using some of the optimized splitting
schemes introduced earlier. In [30] the authors use a similar approach. The
main difference is in the the choice of the splitting schemes (Störmer-Verlet and a
fourth-order Forest-Ruth like scheme) and the implementation of the RB method.
One of the standard methods, used in several packages for molecular dynamics
simulations, for instance the ORIENT package [27], is that described in [8]. The
method consists of a Störmer–Verlet splitting plus a further splitting of the rigid
body kinetic energy (that is the MR method described earlier in 3.3.3). Here, we
will denote the same method by V2+MR.

It is important to stress that, for a sufficiently large number of particles,
approximating the rigid body equations by a inexpensive method, like MR, or a
more expensive one, like the exact RB, is irrelevant, as the cost of this part grows
only linearly with the number of particles. The computationally most demanding
part in this simulation is the solution of (3.34), namely the computation of the
potential, whose cost grows quadratically with the number of particles.

This appears clearly in our first example: we compare different splitting meth-
ods for a system of 100 particles, for a relatively short time integration (Tfin = 1).
All the methods use fixed step-size, appropriately scaled for each splitting scheme,
to require the same number of function evaluations. For the reference method,
the V2+MR, we use step size h = 10−1×1/2i, for i = 0, . . . , 7, i.e. for the largest
step-size h = 0.1 one has 10 potential evaluations, thus the x-axis in Figure
3.8 can be interpreted as number of function evaluations as well. Similarly, the
sixth-order splitting method S610+RB, with 10 internal stages requiring potential
evaluations, is implemented with step-size h = 1. The results of the simulation
are displayed in Figure 3.8. The methods are implemented using the RB method
(solid line) and using the MR method (dash-dotted line). Coalescence of stages is
exploited for all methods. The initial conditions for the experiment were taken as
follows: the masses mi are chosen to be 1, qi = N × randn(3, 1), N = 100 being
the number of particles, and randn(3, 1) a vector with random components (gaus-
sian distribution) between −1 and 1; pi = 0,mi = 0, Qi random orthogonal ma-
trix, µi = (0, 1, 1)T , σ = ε = 1, with a resulting energy H0 = 0.14134185611814.
The moments of inertia are those of water (I1 = 1, I2 = 1.88, I3 = 2.88).

In the next numerical example (Figure 3.9), we test the same methods for
different energies. The initial conditions are chosen as follows: we take 125
particles that we position on a lattice of dimension 5×5×5. The initial positions
are then perturbed by 1% (Gaussian normal distribution). The initial orientations
are random orthogonal matrices. With these parameters, we compute the initial
energy and then we change the linear momentum of the particles in positions q1 =
(1, 1, 1)T and q125 = (5, 5, 5)T to achieve the target energy H0. For each step-
size h = 1, 1/2, 1/4, 1/8 of the basic method SR610, we perform 100 simulations
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Figure 3.8: Error in the Hamiltoninan versus computational time for 100 particles.
Several splitting methods are compared. See text for details.

(choosing every time a different initial condition), and we average the error and
the computational time (arithmetic mean).

Finally, having observed that Nyström schemes behave very well for this class
of problems, the method RKN4b6 is compared to RKN6a14 in Figure 3.10. The
number of function evaluations for the two methods is the same. The initial
conditions as before, except for the number of averages (which is 1), and the time
of integration, with Tfin = 10.

These experiments indicate that the main source of error for this problem is
the splitting H = T + V . This seems consistent with conclusions on the water
simulations in [30]. In particular, a lower global error as a result of using the
exact RB integrator becomes visible only in the step-size asymptotic regime (as
h → 0, see Figure 3.8). Furthermore, how small the step-size h must be, to
see the positive effect of the exact RB integrator, seems to depend on the total
energy of the system. For low energies, the error with the exact method becomes
smaller at a larger step-size. For higher energies, the error with the exact method
becomes smaller only at very small values of h, see Figures 3.9-3.10.

Our conclusion is that the use of an exact RB integrator is favorable for
simulations where higher precision is required (for instance low energy). For
higher energies, and the effect of having an exact integrator for the RB part
appears to be less relevant unless other techniques are used.
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Figure 3.9: Average errors versus CPU time for different values of the energy H0, 100
runs per each of the step-sizes 1, 1/2, 1/4, 1/8. Number of particles N = 125. For small
energy values, the splitting methods based on the exact RB integrator perform better
than those with the MR splitting. For higher values of the energy, the error due to the
splitting H = T + V is much higher than the error for the RB-part and it dominates
the total error.

3.4 Conclusions

The main purpose of this paper has been to understand whether and when the
use of exact solution of the free rigid body equations as a component of splitting
methods is a competitive geometric integrator.

We have reviewed various algorithms for the computation of the exact solu-
tion of the free rigid body equations providing a common framework. We have
implemented two concrete approaches based on rotation matrices and quater-
nions. The algorithms require the computation of a elliptic integral of the third
kind, which we either compute to machine accuracy (exact methods) or approx-
imate by Gauss-Legendre quadrature (semi-exact methods). We have preformed
numerous experiments comparing these methods to preprocessed discrete Moser–
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Figure 3.10: Error versus CPU time. Comparison of two RKN splittings of order
4 and 6, on the interval [0,10], 125 particles, for some initial conditions. The sharp
increase of the error for the 6th order method is due to the fact that the step-size is too
large. The RKN46 method (crosses with solid and dash-dotted lines) is the same as in
Figure 3.9.

Veselov methods (experiments on the free rigid body problem) and to various
splitting methods (experiments on torqued rigid bodies).

In conclusion the exact methods, though more expensive, are very robust and
behave uniformly well for all choices of the principal moments of inertia and
initial conditions, independently of the step-size of integration.

If cost is an issue, semi-exact methods are a good compromise. They are much
cheaper than the exact ones, while sharing most of the geometric properties2 and
being robust for large step-sizes and arbitrary values of the principal moments

2Symplecticity is lost, but the methods are time-reversible as long as the underlying quadra-
ture is symmetric. Also the DMV methods are time-reversible but not symplectic.
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of inertia. This is an advantage compared to implicit methods using fixed-point
iteration, that might require small step-sizes to converge, (e.g. the cheeper DMV).

Our conclusion is that the implementation of the exact solution of the free
rigid body is competitive as a numerical approach and has the advantage that it
can be used as a building block for splitting methods of high order.

When used as a component of splitting methods the exact and semi-exact
methods are definitively of interest in the case of perturbed free rigid body prob-
lems. In molecular dynamics simulations, using the exact rigid body motion gives
a clear advantage compared to other splittings only in the low energy case. How-
ever even in the general case, the cost due to any rigid body integrator (approx-
imate or exact) is growing only linearly as a function of the number of particles
while the number of inter-particles force evaluations is growing quadratically and
dominates the overall computational cost.
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Appendices

Jacobi elliptic functions

We collect here a few facts about the elliptic functions we use in the article.
Given 0 ≤ k < 1, the function

ϕ 7→ F (ϕ, k) :=
∫ ϕ

0

dθ√
1− k2 sin2 θ

(3.35)

is called (incomplete) elliptic integral of the first type with modulus k and is a
diffeomorphism R→ R. Its inverse F ( · , k) is an odd function

am( · , k) : R→
(
− π

2
,
π

2

)
which is called amplitude of modulus k. The Jacobi elliptic functions sn and cn
of modulus k are the functions R→ [−1, 1] defined as

sn(u, k) = sin(am(u, k)) , cn(u, k) = cos(am(u, k))
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and are periodic of period 4K(k), where K(k) = F (π2 , k) (the so called complete
elliptic integral of the first type of modulus k). Moreover,

dn(u, k) =
√

1− k2sn(u, k)2 , sd(u, k) =
sn(u, k)
dn(u, k)

.

For given k, the u-derivatives of these functions satisfy sn′ = cn dn, cn′ = −sn dn
and dn′ = −k2sn cn.

The (incomplete) elliptic integral of the third kind with modulus 0 < k ≤ 1
and parameter n ∈ R is the function Π( · , n, k) : (−π2 ,

π
2 )→ R defined by

Π(ϕ, n, k) :=
∫ ϕ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
, (3.36)

(Legendre form), or equivalently

Π(ϕ, n, k) =
∫ F (ϕ,k)

0

ds

1− n sn(s, k)2
.

Coefficients of the Gauss quadrature

For completeness, we report the coefficients of the Gaussian quadrature of order
10 shifted to the interval [0, 1].

a1 = 0.04691007703067 b1 = 0.11846344252809
a2 = 0.23076534494716 b2 = 0.23931433524968
a3 = 0.5 b3 = 0.28444444444444
a4 = 0.76923465505284 b4 = b2
a5 = 0.95308992296933 b5 = b1.

(3.37)

For the qudrature of order 6 and 8 the coefficients have closed form and can
be found for instace in [1].

Coefficients of the splitting schemes

Given the differential equation

y′ = F (y) = A(y) +B(y),

denote by ϕ[F ]
τ the flow of the vector-field F from time t to time t + τ . Given a

numerical approximations y(j) ≈ y(tj), we consider symmetric splitting schemes
of the type

y(j+1) = ϕ
[A]
a1h
◦ ϕ[B]

b1h
◦ ϕ[A]

a2h
◦ · · · ◦ ϕ[A]

am+1h
◦ · · · ◦ ϕ[B]

b1h
◦ ϕ[A]

a1h
y(j),
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where h = tj+1 − tj . A typical splitting is obtained separating the contributions
arising from the from kinetic (A) and potential (B) energy of the system. For
this reason, (twice) the number s of the coefficients bi is called the stage number
of the splitting method. The effective error is defined as Ef = s p

√
||c||2, where

c is the vector of coefficients of the elementary differentials of the leading error
term and p is the order of the method. We refer to [4, 21] for background and
notation.

For completeness, we report the coefficients of the methods used in this paper.
Störmer–Verlet scheme (V2):

a1 = 1/2, b1 = 1, (3.38)

(order 2, one stage).
S610 method (order 6, 10 stages, effective error Ef = 1.12):

a1 = 0.0502627644003922, b1 = 0.148816447901042,
a2 = 0.413514300428344, b2 = −0.132385865767784,
a3 = 0.0450798897943977, b3 = 0.067307604692185,
a4 = −0.188054853819569, b4 = 0.432666402578175,
a5 = 0.541960678450780, b5 = 1/2− (b1 + · · ·+ b4),
a6 = 1− 2(a1 + · · ·+ a5).

(3.39)

S46 (order 4, 6 stages, effective error Ef = 0.56):

a1 = 0.07920369643119565, b1 = 0.209515106613362,
a2 = 0.353172906049774, b2 = 0.143851773179818,
a3 = −0.04206508035771952, b3 = 1/2− (b1 + b2),
a4 = 1− 2(a1 + a2 + a3).

(3.40)

The splitting above are generic in the sense that the A and B part are in-
terchangeable. This is not the case for the next methods, which are based on
Nyström schemes for separable Hamiltonians.
RKN4b6 (order 4, (7)6 stages, effective error Ef = 0.28):

b1 = 0.0829844064174052, a1 = 0.245298957184271,
b2 = 0.396309801498368, a2 = 0.604872665711080,
b3 = −0.0390563049223486, a3 = 1/2− (a1 + a2),
b4 = 1− 2(b1 + b2 + b3).

(3.41)
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RKN6a14 (order 6, 14 stages, effective error Ef = 0.63):

a1 = 0.0378593198406116, b1 = 0.09171915262446165,
a2 = 0.102635633102435, b2 = 0.183983170005006,
a3 = −0.0258678882665587, b3 = −0.05653436583288827,
a4 = 0.314241403071477, b4 = 0.004914688774712854,
a5 = −0.130144459517415, b5 = 0.143761127168358,
a6 = 0.106417700369543, b6 = 0.328567693746804,
a7 = −0.00879424312851058, b7 = 1/2− (b1 + · · ·+ b6),
a8 = 1− 2(a1 + · · ·+ a7).

(3.42)
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Chapter 4

Modeling and Control of
Offshore Pipelay Operations
Based on a Finite Strain
Pipe Model

Abstract. This paper deals with modeling and control of offshore pipelay op-
erations from a dynamically positioned surface vessel where a nonlinear dynamic
beam formulation in three dimensions capable of undergoing shearing, twist and
bending is used to model the pipe. This pipe model is coupled with a nonlinear
vessel model that has been adopted as a standard for vessel control design and
analysis purposes. The complete pipelay system is shown to be input-output pas-
sive taking the thruster force as the input and the vessel velocity as the output.
A nonlinear controller is applied, and using the passivity condition of feedback
connection of two passive systems, the closed loop system is stable. Numerical
simulations using both PD and PID controllers illustrate the theoretical results.

4.1 Introduction

Over the last decade deepwater pipelaying has gone through a spectacular devel-
opment. In the early 90s a water depth of 300 meters was considered deep, while
today depths of 2000 meters are common practice. The unprecedented global de-
mand for oil and gas is the main drive in the offshore petroleum industry, which
in turn demands improved pipeline technology. The installation of pipelines and
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flowlines constitute some of the most challenging offshore operations handled, and
the required engineering sophistication, as well as the share size and complexity
of the vessels used, has developed pipelaying into an engineering discipline of its
own accord [13]. Present trends in the marked indicates an increase in deepwater
projects as well in length as depth, according to [12].

Purpose build pipelay vessels equipped with dynamic positioning systems are
used for installation of offshore pipelines. The pipe is clamped on to the vessel
by heavy tension equipment and extended in a production line accommodating
either S-lay or J-lay, which are the two main pipelay methods. The S-lay method
is fast and economical and dominates the pipelay market. The pipe is extended
horizontally and it describes an S-shaped curve to the seabed, see Figure 4.1.
The upper part (overbend) is supported by a submerged supporting structure
called a stinger to control curvature and ovalization, and the curvature in the
lower curve (sagbend) is controlled by pipe tension. The strain must be checked
against pipe design parameters to stay within limits for buckling and ovalization.
In deep waters, the weight of the pipe makes it difficult to maintain a stinger
supported overbend due to the increased pipe tension, but the tension may be
reduced by adopting the J-lay method where the pipe is extended near vertically
and thus eliminates the overbend. The methods are seen to be complementary
[15]. Both methods are well described in recent textbooks such as [2], [7] and
[14]. The present trends in deepwater pipelay systems are described in [8] and
the references therein.

Mathematical models are vital in pipeline design for analysis of pipelay pa-
rameters and for operability analysis. Commercially developed computer tools,
e.g., OFFPIPE, RIFLEX and SIMLA, that are based on finite element models
have become the universal method for modeling pipelay operations in industry.
These models capture well the dynamics of the pipe and have replaced simpler
models, e.g., the static catenary model and stiffened catenary model [3, 16], which
were used in earlier years. These finite element models are not suited in model-
based controllers for pipelay operations, as the system may become unstable due
to unmodeled system modes, the so-called spillover [1], since the passivity analy-
sis is performed on a finite-dimensional model rather than an infinite-dimensional
model.

In this paper a mathematical model for the dynamics of pipelay operations is
developed, limited to a surface vessel and pipe where the pipe is clamped to the
vessel at an arbitrary angle. The pipe dynamics is modeled by a three dimensional
finite strain beam formulation obtained from the classical study of rods. This
is a geometrically correct model of nonlinear rods capable of undergoing finite
extension, shearing, twist and bending. The key feature of this model is the
choice of parametrization which yields the momentum equation on a form which
strongly resembles the classical Euler equation of rigid body dynamics, and it is
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Figure 4.1: A schematic presentation of the pipe and vessel system in a S-lay config-
uration shown in three degrees of freedom. All the coordinate frames used are shown.

well suited for both mathematical and numerical analysis.
A vessel model on vectorial form using Euler angles is used here since Euler

angles are preferred for quantifying attitude in marine applications. The models
are coupled by applying the vessel as a boundary condition of the partial dif-
ferential equation describing the pipe. The system is shown to be input-output
passive when the vessel thruster forces are taken as input and the vessel velocity
is taken as the output. Hence, stability of the closed loop system follows for a pas-
sive controller. Numerical simulations are provided to illustrate the theoretical
results.

4.2 Mathematical Model

In this section the mathematical model is developed for the system of a surface
vessel with a freely suspended slender pipe string extending from the vessel at a
touchdown point at the seabed, see Figure 4.1. The model of the vessel is the
familiar system of ordinary differential equations on vectorial form, as presented
in [5], and the pipe model is a nonlinear partial differential equation presented in
[9], which extends the finite strain beam theory presented by Simo et. al in [17,
18, 19, 20], to apply for a pipeline submerged in a fluid by adding hydrodynamic
and hydrostatic effects. The configurations of the pipe are completely defined by
specifying the evolution of an orthogonal matrix, and position vector of line of
centroids [17].
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4.2.1 Notation

Vectors are represented with bold face lower case letters, while bold face upper
case letters denote matrices. All vectors are given as coordinate vectors with
reference to a frame which is indicated by a superscript, which may be omitted if
the frame dependency is evident. A superposed dot denotes the derivative with
respect to time, and a prefixed ∂S indicates the material derivative. The usual
inner product is equally defined by 〈a,b〉 and aTb for all a,b ∈ Rn.

4.2.2 Kinematics

The pipe is in a classical point of view a rod, which is a three-dimensional body
whose reference configuration can be described by a smooth curve ϕ0, where
planes called cross-sections are attached at each point of ϕ0. The curve ∂Sϕ0

is assumed to be normal to the plane of each cross-section and intersecting the
plane at the centroid. Any configuration of the pipe is thus given by a smooth
curve ϕ : [0, L] → R3 denoted line of centroids, where L is the total length of
ϕ0, and thus the undeformed pipe. The cross-sections are assumed to remain
unchanged in shape, but do not necessarily remain normal to ∂Sϕ while the pipe
is undergoing motion. This means that the pipe model is capable of undergoing
shearing. The outlined kinematic model is known as the constrained two director
Cosserat rod.

Let t be an orthonormal frame with base t1, t2, t3 with t2 and t3 directed
along the principal axis of the plane and t1 normal to the plane in order to
form a right-handed system, with the origin Ot at the centroid. In rigid body
mechanics the frame t is called a body frame. Let e be an inertial frame with
orthonormal base e1, e2, e3 and origin Oe located at the pipe touchdown point
fixed on the sea floor. The orientation of t along ϕ (S) relative to e is given by
the rotation matrix Re

t : [0, L] → SO (3), where SO (3) ⊂ R3 denotes the special
orthogonal group of order three, such that for i = 1, 2, 3,

tei = Re
te
e
i . (4.1)

The velocity of the points of ϕ (S, t) is given as ϕ̇ (S, t), and the spatial angular
velocity of frame t is given as

Ṙe
t = (we)×Re

t , (4.2)

where (·)× is the skew-symmetric operator, and (we)× is the vorticity in the
inertial frame. The associated vector we ∈ R3 is the spatial angular velocity of
the cross-sections.

Marine vessels moving in six degrees of freedom (DOF) require a minimum of
six independent coordinates to uniquely determine position and orientation. Let
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b be a body fixed frame with the origin Ob located at the center of gravity of
the pipelay vessel and orthonormal base b1,b2,b3 directed along the principal
axes of symmetry of the vessel. Let the generalized position and orientation of
the vessel be given as

ηe =
[

pT ΘT
]T ∈ R6, (4.3)

where p = [x, y, z]T is the position in the e frame, and Θ = [φ, θ, ψ]T representing
the orientation Re

t in Euler angles by the zyx-convention. The velocity of the
vessel νb, is expressed in the body-fixed frame b such that

νb =
[

vT ωT
]T ∈ R6. (4.4)

where v ∈ R3 represents the linear velocity, and ω ∈ R3 represents the angular
velocity. Let the pipe be clamped to the vessel such that Ob coincides with Ot
at S = L, at an arbitrary fixed angle β. The rotation matrix Re

b, rotating from
e to b is

Re
b = Re

t (L) Rt
b (β) , (4.5)

where Rt
b is a constant. The mapping of velocity between the e-frame and the

b-frame is
η̇e = J (ηe)νb, (4.6)

where J (ηe) ∈ R6×6 is found as

J (ηe) =
[

Re
b 03×3

03×3 Π−1
e Re

b

]
∈ R6×6, θ 6= ±π

2
. (4.7)

The mapping Πe between angular velocity we and the rate of change of the Euler
angles Θ̇ is obtained from equation (4.2), such that

we = ΠeΘ̇ (4.8)

where

Πe (Θ) =

 cos θ cosψ − sinψ 0
cos θ sinψ cosψ 0
− sin θ 0 1

 . (4.9)

This parametrization of the rotation with respect to Euler angles by the zyx-
convention introduces a singularity in pitch for the inverse kinematics. Alterna-
tive conventions can be applied to move the singularity, or it can be removed
completely by using quaternions.

The superscripts of ηe and νb will be omitted for the remainder of this paper.
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4.2.3 The Vessel Dynamics

The equations of motion of a marine vessel given in the body frame is known
from [5] as

Mν̇ + C (ν)ν + D (ν)ν + g (η) = τ + χ+ w (4.10)

where

M - system inertia matrix
C (ν) - Coriolis-centripetal matrix
D (ν) - damping matrix
g (η) - vector of restoring forces and moments
τ - vector of control inputs
χ - vector of forces and moments from the pipe
w - vector of environmental forces

where M is symmetric positive definite, C (ν) is skew-symmetric and D (ν) is
symmetric positive definite. The equation of motion in the inertial frame e is
found by substituting (4.6) into (4.10) such that

Mη (η) η̈ + Cη (ν,η) η̇ + Dη (ν,η) η̇ + gη (η)

= J−T (η) τ + J−T (η)χ (4.11)

where

Mη (η) = J−TMJ−1 (4.12)

Cη (ν,η) = J−T
[
C (ν)−MJ−1J̇

]
J−1 (4.13)

Dη (ν,η) = J−TD (ν) J−1 (4.14)

gη (η) = J−Tg (η) (4.15)

The vector of forces and moments from the pipe χ, is presented as the boundary
condition for the pipe in the next section. Note that χ is given in the body fixed
frame of the vessel. For the later passivity analysis the following properties of
(4.11) hold:

P1) Mη (η) = MT
η (η) > 0, ∀ η ∈ R6

P2) sT
[
Ṁη (η)− 2Cη (ν,η)

]
s = 0, ∀ s,ν,η ∈ R6

P3) Dη (ν,η) > 0, ∀ ν,η ∈ R6.

Note also that Cη (ν,η) is not skew-symmetric.
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4.2.4 The Pipe Dynamics

The pipe dynamics is modeled by:

mP ϕ̈ = ∂Sne − feg −Re
t f
t
D, (4.16)

Ieρẇ
e + we × Ieρw

e = ∂Sme + ∂Sϕ× ne −DRwe, (4.17)

where

mP - mass per unit length of the pipe
Re
t f
t
D - transversal hydrodynamic damping vector

ne - resultant internal force vector
feg - restoring force vector
Ieρ - mass moment of inertia matrix
DR - rotation damping matrix
me - resultant internal torque vector

and DR > 0. Due to the buoyancy, the restoring forces given as feg = (mP − ρwA) ge,
not only depend on the mass and gravitation ge = [0, 0, g]T, but also on the mass
density of ambient water ρw and the cross-section area of the pipe A. The damp-
ing is estimated using Morison’s equation [4] and is given as

f tD =
1
2
doρwDT


∣∣vtr1 ∣∣ vtr1((

vtr2
)2 +

(
vtr3
)2)1/2

vtr2((
vtr2
)2 +

(
vtr3
)2)1/2

vtr3

 , (4.18)

where do is the outer pipe diameter, DT is the symmetric positive definite damp-
ing matrix of translational motion and vtri

are elements of the relative velocity
of the pipe in the water, vtr = (Re

t )
T (ϕ̇− vec) ∈ R3, where vec

(
ϕTe3, t

)
is the

ocean current velocity at depth h + ϕTe3, where h represents the water depth.
Wave excitation forces on the pipe are neglected since they only affect the pipe
near to the surface, (typically down to 20m). The time dependent inertia tensor,
Ieρ (S, t), is given by

Ieρ = Re
tJ
t
ρ (Re

t )
T , Jtρ = diag[J1, J2, J3] (4.19)

where Jtρ ∈ R3×3 is the inertia tensor for the cross section in the reference con-
figuration.

Let the lower end of the pipe be clamped to the seabed, tangent to the e1-axis,
thus the boundary conditions at S = 0 are

ϕ (0, t) = ϕ0 = 0, (4.20)
Re
t (0, t) = (Re

t )0 = I3×3, (4.21)
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and the pipelay vessel represents the boundary conditions at S = L, which can
explicitly be expressed by inserting (4.10) into[

ne|L
me|L

]
= −

[
Re
b 03×3

03×3 Re
b

]
χ (4.22)

with the initial conditions

Re
t (L, t0) = Re

b (t0)
(
Rt
b (β)

)T . (4.23)

4.3 Control Design

The stability properties of the system are investigated in this section. Firstly, an
input-output passivity check of the pipelay system with the thrusters as the input
and the velocity vector as the output is performed, and secondly a stability check
of the pipelay system by condition of feedback connection of two passive systems,
which are the pipelay vessel with pipeline and the passive thruster controller.

4.3.1 Passivity

Let the thruster force of the vessel τ be defined as the input, and the output be
defined as the vessel speed in the body frame. The total energy of the system E ,
taken as the storage function is given by

E = EP + EV ≥ 0 (4.24)

where EP and EV are the energy of the pipe and vessel respectively. The pipe
energy function EP is the sum of kinetic energy TP and potential energy UP ,

EP = TP + UP (4.25)

where

TP =
1
2

L∫
0

(mP 〈ϕ̇, ϕ̇〉+ 〈we, Iρwe〉) dS, (4.26)

UP =

L∫
0

Ψ
(
γt,ωt

)
dS +

L∫
0

〈
feg ,ϕ

〉
dS, (4.27)

and the potential energy function Ψ is given by the quadratic form

Ψ
(
S,γt,ωt

)
=

1
2

[
(
γt
)T

CTγ
t +
(
ωt
)T

CRω
t], (4.28)
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where {γt,ωt} is the strain measure [17], and

CT = diag [EA,GA2, GA3] > 0, (4.29)
CR = diag [GJ,EI2, EI3] > 0. (4.30)

The constants E and G are interpreted as the Young’s modulus and the shear
modulus, A is the cross-sectional area of the pipe, A2 and A3 are the effective
shear areas, {I2, I3} are the principal moments of inertia of the cross-section
plane relative to principal axes t2, t3 of ϕ0, and J is the Saint Venant torsional
modulus. Equation (4.28) is only valid for small strains since it does not have
proper growth conditions for extreme strains.

The vessel energy function EV is likewise the sum of kinetic energy TV and
potential energy UV , given as

TV =
1
2
η̇TMηη̇ and UV = G (η) , (4.31)

where G (η) : R6 → R is a potential function for gη (η), such that

∇G = gη ⇒ Ġ (η) = gT
η (η) η̇. (4.32)

The time derivative of (4.24) is given as

Ė = ĖP + ĖV , (4.33)

where, following [9], ĖP is found to be

ĖP = [〈ne, ϕ̇〉]L0 + [〈me,we〉]L0

−
L∫

0

(〈
ϕ̇,Re

t f
t
D

〉
+ 〈we,DRwe〉

)
dS, (4.34)

where the two terms of the integral are square damping terms dissipating energy
from the system. Without these terms the system is seen to be energy conser-
vative as the energy is only depending on the boundary conditions. The time
derivative of EV is readily seen to be

ĖV = η̇TMηη̈ +
1
2
η̇TṀηη̇ + gT

η (η) η̇ (4.35)

= η̇TJ-Tτ + η̇TJ-Tχ− η̇TDη (ν,η) η̇ (4.36)

where (4.11) and properties P2 and P3 have been applied. Thus

ĖV ≤ νTτ + νTχ (4.37)
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which implies that to obtain input-output passivity for the vessel νTχ vanish.
For the boundary condition at S = 0 it is readily seen that

〈ne, ϕ̇〉 |0 = 〈me,we〉 |0 = 0. (4.38)

The remaining terms, S = L, are the forces and moments on the pipe from the
vessel. Summing the time derivatives of the energy for the vessel (4.36) and pipe
(4.34), we obtain

Ė = νTτ + νTχ− η̇TDη (ν,η) η̇ (4.39)
+ 〈ne, ϕ̇〉 |L + 〈me,we〉 |L

−
L∫

0

(〈
ϕ̇,Re

t f
t
D

〉
+ 〈we,DRwe〉

)
dS. (4.40)

It is readily seen by inserting (4.22), and noting that

ν =
[

v
ω

]
=
[

Rb
eϕ̇

Rb
ew

e

]
, (4.41)

that the forces and moments acting between the vessel and the pipe cancel, so
that (4.39) reduces to

Ė = νTτ − η̇TDη (ν,η) η̇

−
L∫

0

(〈
ϕ̇,Re

t f
t
D

〉
+ 〈we,DRwe〉

)
dS. (4.42)

The properties of the damping terms are known from the previous sections such
that Ė ≤ νTτ , and input-output passivity from thruster force to vessel motion
of the total system has been shown.

4.3.2 Controller

An important objective in the competitive pipelay industry is to improve the
profit margins by optimize the utilization of the equipment by increasing the
operational time of the vessel and also to reduce the cost of pipe path preparation
on the seabed. The tension from the pipe on the vessel is a function of the
water depth, pipe density and bending stiffness, and must be counteracted by
the vessel thrusters to obtain a desired pipe configuration. Low tension yields
a steep configuration where the touchdown point is located close to the vessel,
which reduces free spans and allows for smaller radii of the pipe on the seabed
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and thus reduces the need for seabed preparation as the pipe can more easily
be placed to avoid obstacles. Also advocating for low tension is the directly
proportional relationship to the fuel cost [10]. However, too little tension will
cause the pipe string to buckle, this occurs when the strain exceeds the pipe
design limit. Finding the optimal tension is an optimization task where the
above issues are considered.

A simple and common control strategy is tension control which is based on
the measured tension of the pipe at the vessel. In this paper a controller is
designed to shape the configuration of the pipe. Assume that a desired pipe
configuration ϕref is known. This may typically be obtained from simulations
in tools like SIMLA. There exists a mapping F from the desired configuration to
desired vessel position ηref and velocities νref ;

F :
(
ϕref ,R

e
t

)
→
(
ηref ,νref

)
. (4.43)

Known measurements are the vessel and touchdown point positions and attitudes,
the pipe tension at the vessel, the length of the suspended pipe and the stinger
configuration for S-lay. In practical applications, the external environmental
forces of wind, waves and current must be accounted for in the controller, so the
nonlinear PID-controller is suggested

τ = −JT (η) τPID, (4.44)

τPID = Kpη̃ + Kd
˙̃η + Ki

∫ t

t0

η̃ (τ) dτ, (4.45)

where η̃ = η−ηref , and the matrices Kp, Kd, Ki ∈ R6×6 are controller gains. It
is assumed that a wave filter removes the 1st order waves, and the effect of wind
is handled as a feed-forward term. The integrator term removes the bias caused
by current and 2nd order waves. Assuming the vessel to be fully actuated, the
available control input are the vessel thrusters, which are limited to surge, sway
and yaw. By choosing a passive controller such as a PD-controller (Ki = 0), the
closed loop system is stable by the condition of feedback connection of two passive
systems, found in Theorem 6.1 in [11]. However, this property is generally not
guaranteed for the PID-controller due to the integrator term, unless the integral
action term of the controller is bounded.

4.4 Simulations

A standard Galerkin finite element method, with linear shape functions, is ap-
plied on (4.16–4.17) with (4.20–4.22) as boundary conditions. The integration in
time is handled by the embedded Matlab ODE-solver ode15s, suitable for stiff
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Figure 4.2: The dashed red line is the initial static configuration. Dash dot blue line
is at t = 30s where the controller is turned on. Solid black line is configuration at
t = 200s.

systems, with the timestep set to 0.03s. To find the static equilibrium configu-
ration, a Newton Raphson iterative scheme [19] is applied to the linearized weak
formulation of the static model. Integrals are approximated by using Gauss-
quadrature. A linearized model of the vessel (4.10) found in GNC Toolbox [6] is
used for the pipelay vessel.

The position of the vessel in the static equilibrium is computed to be η0 =
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[729.96, 0,−800.38, 0, 0.13, 0]T based on the following parameters:

Rt
b = I3×3,

n = 48,
h = 800m,
L = 1200m,
di = 0.57m,
do = 0.60m,

β = [0, 0, 0]T ,

ρa = 1.200 · 103g/m3
,

ρw = 1.025 · 106g/m3
,

ηref = [780, 0, 0, 0, 0, 0]T ,

w =
[
0, 6 · 105, 0, 0, 0, 0

]T
,

J = 102 · diag[1, 1, 2]T,

CT = 109 · diag[1, 1, 1]T,

CR = 1011 · diag[1, 1, 1]T,

DT = 1.5 · diag[1, 1, 1]T,

DR = 1.5 · diag[1, 1, 1]T,

ρ = (ρa − ρs) (di/do)
2 + ρs,

ρs = 7.850 · 106g/m3.

The course of the simulation is as follows. The pipe starts in the static equilib-
rium. At time t = 10 s the environmental forces on the vessel w and linearly
shared current velocity profile with surface velocity 0.8 m/s in the −y direction
are applied. At time t = 30 s the controller is turned on. The configurations at
the different times are illustrated in Figure 4.2, and Figure 4.3 show the elements
of η for the vessel when the PD-controller is applied with the following controller
gains:

Kp = diag[0.5 · 106, 0.5 · 106, 0, 0, 0, 0]T, (4.46)

Kd = diag[0.4 · 107, 0.4 · 107, 0, 0, 0, 0]T. (4.47)

In Figure 4.4 a PID-controller has been applied with the following controller
gains:

Kp = diag[0.4 · 106, 0.4 · 106, 0, 0, 0, 105]T (4.48)

Kd = diag[0.5 · 107, 0.4 · 107, 0, 0, 0, 105]T (4.49)

Ki = diag[0.1 · 104, 0.5 · 104, 0, 0, 0, 0.2 · 104]T. (4.50)

Applying a PID-controller removes the bias seen in the PD-controller simulation.

4.5 Conclusions

A mathematical model suitable for pipelay operations from a dynamically posi-
tioned surface vessel has been presented in this paper. The pipe string has been
modeled by a nonlinear dynamic formulation in three dimensions capable of un-
dergoing shearing, twist, and bending. A nonlinear model of the pipelay vessel
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Figure 4.3: Postion and orientation of η over the course of the simulation. The PD-
controller is enabled at t = 30s. The dotted line indicates ηref for the controlled states.
Note the bias.

has been taken as the upper boundary condition for solving the numerical prob-
lem. The pipelay system has been shown to be passive taking the thruster force
as input and the vessel velocity as the output. A nonlinear controller considering
the kinematics is presented and applied in numerical simulations to illustrate the
theoretical results. For future extensions of the pipe model, seabed and stinger
interaction forces should be added to the model, and the pipe length should be
made a function of time L (t) to handle pay-out of pipe from the vessel.
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Figure 4.4: Postion and orientation of η over the course of the simulation. The PID-
controller is enabled at t = 30s. The dotted line indicates ηref for the controlled states.
Note that the integrator term cancels the bias terms seen when the PD-controller was
applied.
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Chapter 5

A Nonlinear PDE
Formulation for Offshore
Vessel Pipeline Installation

Abstract. In this paper a nonlinear dynamic PDE formulation for a pipe string
suspended from a pipelay vessel to the seabed in a pipelay operation is developed.
This model extends a three-dimensional beam model capable of undergoing finite
extension, shearing, twist and bending, to apply for marine applications by adding
the effects of restoring forces, hydrodynamic drag and seabed interaction. The
model is validated against the natural catenary equation and the FEM code RI-
FLEX. The model is extended to include the pipelay vessel dynamics by applying
a potential theory formulation of a surface vessel, suited for dynamic positioning
and low speed maneuvering, as a boundary condition for the PDE. This system
is found to be input-output passive and stable. Pipeline installation applications
where the presented PDE is suited are e.g., analysis and simulation of the installa-
tion operation, operabiltiy analysis, hardware-in-the-loop (HIL) testing for vessel
control systems, and automation of the pipelay operation.

5.1 Introduction

Slender marine structures are characterized by having a small cross-section area
compared to the overall structure length, and in the offshore industry these struc-
tures have many applications, such as mooring lines, umbilicals, towers, pipelines
and risers, e.g., drilling risers, production risers, export risers and workover risers.
Having a good understanding of the dynamics of such structures is important for
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marine applications, and this understanding can be acquired from simulations
based on mathematical models.

In this paper offshore pipeline installation from a surface vessel, a so-called
pipelay operation, is considered, see Figure 5.1, where the main objective of the
operation is to position a pipeline along a predefined path on the seabed only by
means of active control of the pipelay vessel position, while at all times ensuring
the structural integrity of the pipe [18]. The different methods used in pipelay
operations are well described in recent textbooks on pipelaying, e.g., [4], [13] and
[25], while the present trends in deepwater pipelay systems in general are well
described by [15] and the references therein.

5.1.1 Pipeline Modelling

In the design phase of an offshore pipeline project, mathematical models for the
pipeline dynamics are needed to determine pipe properties, pipelay parameters,
and the conditions under which the pipeline can safely be installed. Offshore
pipelay operations were first conducted in shallow waters close to shore, where
the strains and stresses in the pipe could satisfactory be approximated by analytic
models, such as the catenary equation known from cable mechanics [16], and the
stiffened catenary equation [27, 5]. As pipelay operations were taken into deeper
waters the dynamic behavior of the pipe became significant. Hence, dynamic pipe
models based on elastic beam models, known from continuum mechanics, were
introduced. These models were discretized, using e.g., the finite element method
(FEM) or the finite difference method, and solved numerically using computers.

Today, computer codes based on FEM, e.g., RIFLEX, ABAQUS, OFFPIPE
and SIMLA, where FEM models are developed by joining already defined ele-
ments, are the method of choice for analysis and simulation of pipelay opera-
tions, since these computer codes produce high quality discrete dynamic models.
A case-study using ABAQUS is found in [21].

In this paper a nonlinear model for pipe string dynamics is developed by ex-
tending a finite strain beam formulation, which is three-dimensional and capable
of undergoing finite extension, shearing, twisting and bending, first presented in
[31]. The principle of superposition [7] is frequently applied in ocean engineering
and is used to extend this model to account for the effects of gravity and buoy-
ancy as well as hydrodynamic drag and seabed interaction. An advantage of this
model over FEM codes is that analyses can be performed directly on the contin-
uous system, rather than on a discretized system. This model is then validated
against the catenary equation and the commercial computer code RIFLEX [12],
which holds an international leading position in FEM analysis for slender marine
structures.

A potential theory formulation of a surface vessel, suited for dynamic posi-
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tioning and low speed maneuvering, is used as the upper boundary condition
to form a system encompassing both pipe and vessel. Hence, analyses where
the dynamics of the vessel is integrated can be performed with vessel control
forces as inputs. It seems plausible that a computer code for dynamic simulation
based on this model may be lighter and faster compared to present alternatives,
since the discretization and integration methods can be chosen based on detailed
knowledge of the model, see e.g., [29, 3, 22]. Applications related to pipeline
installation are e.g., simulation of the installation operation, operabiltiy analy-
sis, hardware-in-the-loop (HIL) testing for vessel control systems, and pipelay
operation automation. It seems also plausible that the model is not limited to
pipelines, but is valid for many slender marine structures.

5.1.2 Automating Pipelay Operations

Today pipelay operations mostly rely on manually operated dynamic positioning
(DP) systems for vessel positioning. Following [18], it seems plausible that intro-
ducing automatic control systems can improve the performance in this industry,
as it has for several other industries, including the process industry, aerospace
industry, and others [1]. Consequently, closed-loop automatic control for pipelay
operations is a relatively new application which may now gain more attention as
DP systems have become standard for deep-water pipelay operations.

The issue of stability of the closed-loop feedback system arises when FEM
computer code models are considered for application in model-based controllers.
The pipe model must be shown to be passive, and the potentially large num-
ber of states and equations may complicate this analysis. However, mechanical
flexible systems are continuous with infinite degrees of freedom, so-called infinite-
dimensional. In practice these systems are modeled as finite-dimensional with a
large number of dimensions, and the fundamental problem of actively controlling
such systems is to control the large-dimensional system with a much smaller di-
mensional controller. This issue was addressed in [2], where the authors showed
that such controllers can become unstable when connected to systems with infi-
nite degrees of freedom even if the discrete model is shown to be passive. This
is due to the unmodeled modes in the system, named the spillover, which the
controller does not account for.

In this paper the passivity analysis of the pipe model is performed before
the system is discretized by a finite element method. By careful discretization,
this property can be preserved, and the closed-loop system will be stable. This
model feature indicates that it may be a suitable candidate for implementation
in a model-based controller. The passivity analysis is extended to the complete
system including the vessel as the upper boundary condition. This result is
important in that a necessary property for implementing the model in model-
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based controllers is establishes.

5.2 Mathematical Model

The model of the pipe dynamics is a partial differential equation (PDE) extending
the nonlinear beam formulation developed and investigated by Simo et al. in a
series of papers [31, 33, 34, 32]. The formulation is a reparametrization of the
formulation originally developed in [28], and this model again can be regarded as
a generalization of a three-dimensional extension of the classical Kirchhoff-Love
rod model [20]. The extension includes finite extension and finite shearing of the
rod. New to the model in this paper is the hydrodynamic and hydrostatic effects
caused by the marine environment as well as the seabed interaction. Pipeline
installation is a low speed application, hence it is a reasonable assumption to
neglect the acceleration term of the damping as well as the added mass.

A vessel model in the time domain, suitable for low-speed maneuvering and
station keeping, is fixed to the surface end of the pipe string as the upper bound-
ary condition. The vessel model is obtained by considering the forces and mo-
ments on a rigid body as well as hydrodynamic radiation forces and wave loads
and the resulting state space model is a system of ordinary differential equations
in the time domain.

In this section, the notation and reference frames are introduced, followed by
the kinematics and the dynamics, including the boundary conditions.

5.2.1 Notation

Bold face lower and upper case letters denote vectors and matrices respectively,
and a superscript denote the reference frame of coordinate vectors. This may be
omitted if the frame dependency is evident. With a small abuse of notation, the
derivative with respect to time is denoted by a superposed dot and the derivative
with respect to space, the curve parameter S, is denoted by a prefixed ∂S . The
usual inner product of a, b ∈ Rn is denoted 〈a, b〉 or equivalently on vectorial
form aTb.

5.2.2 Reference Frames

Three Cartesian reference frames denoted by e, t and b are required in the devel-
opment of the pipelay system model, see Figure 5.1. Let e be an inertial frame
with base e1, e2, e3, where the origin Oe is fixed to the seabed at S = 0. Let t (S)
be a body-fixed frame with base t1 (S) , t2 (S) , t3 (S) and origin Ot (S) located
at the centroid of the pipe cross-section at S, where S ∈ [0, L] is the spatial pipe
variable, and L is the total length of the undeformed pipe. The base vector t1 (S)
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Figure 5.1: Illustration of a J-lay installation in three dimensions with the three
reference frames applied. The position of the pipelay vessel center of mass, illustrated
by the box, is in the spatial frame e given by p.

is directed normal to the cross-section plane, and t2 (S) and t3 (S) are directed
along the principal axis of it. Let b be body-fixed with origin Ob at the pipelay
vessel center of mass, and with its basis b1, b2, b3 along the principle axes of sym-
metry for the vessel, in accordance with [35]. The e and t frames are frequently
referred to as the spatial and material frame, respectively.

The coordinate transformation of vectors from one frame to another is given
by

vy = Ry
xv

x, x, y ∈ {e, t, b}, v ∈ R3, (5.1)

where

Ry
x ∈ SO(3), SO(3) , {Ry

x ∈ R3×3 | (Ry
x)TRy

x = I3×3, detRy
x = 1}, (5.2)

is a so-called rotation matrix from y to x, that transforms the vector coordinates
of v in frame x to frame y. This notation is adopted from [6]. In addition
to representing the coordinate transformation between the coordinates of a point
expressed in two different frames, the rotation matrix is also describing the mutual
orientation between two coordinate frames, where the columns of the matrix are
the directional cosines of the axes of the rotated frame with respect to the original
frame [30]. Transformations between the defined frames e, t and b are handled
by the rotation matrices

Re
t (S),Re

b,R
t
b ∈ SO(3), (5.3)
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Figure 5.2: The pipe configuration is given by the line of centroids ϕ, where the
reference configuration is given as ϕr. The cross-section of the pipe at ϕ(S) is spanned
by t2(S) and t3(S).

where e.g. Re
t transforms coordinate vectors from in frame t to frame e. Equiv-

alent interpretations are given for Re
b and Rt

b such that

tei (S) = Re
t (S)eei , bei = Re

be
e
i , bti = Rt

bt
t
i. (5.4)

A rotation can be expressed as a sequence of partial rotations where each rotation
is defined with respect to the preceding one [30]. Hence, a rotation matrix of
composite rotations is the product of rotation matrices, and Re

b can be found by
the composite rotations

Re
b = Re

t (L)Rt
b. (5.5)

5.2.3 Model Preliminaries

From a classical point of view the pipeline can be considered similar to a hollow
rod, a three-dimensional slender body with uniform density and circular cross-
sections. The reference configuration of the pipe is described by a smooth curve
ϕr, connecting the centroids of the cross-section planes, where the tangent of ϕr
is normal to each cross-section, see Figure 5.2. Any configuration of the pipe can
then be given by a smooth curve ϕ : [0, L]→ R3, the so-called line of centroids.
The cross-sections are assumed to remain unchanged in shape while the pipe is
undergoing motion, but the assumption that the cross-sections remain normal
to the tangent ∂Sϕ known from the Euler-Bernoulli beam theory is relaxed to
account for shearing effects. The position of any point along the line of centroids is
given by ϕ (S), and the orientation of the cross-section at ϕ(S) is given byRe

t (S).
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Hence, the configurations of the pipe are completely defined by specifying ϕ (S, t)
and Re

t (S, t) along the material variable S and time t. The configuration space
for the elastic pipe is given by

C ,
{

(ϕ,Re
t ) |S ∈ [0, L]→ R3 × SO (3) | 〈∂Sϕ (S) ,Re

te
e
1〉 > 0

}
, (5.6)

and the reference configuration is taken as
(
ϕr,R

e
t,r

)
∈ C such that

ϕr (S) = See1, Re
t,r(S) = I3×3. (5.7)

5.2.4 Kinematics

The derivatives of ϕ (S, t) and Re
t (S, t) with respect to time t and space S (curve

parameter), and the material stress resultant and stress couple are derived in this
section.

5.2.4.1 Time and Space Derivatives

Differentiating (5.4) with respect to time t yields

ṫ
e

i = S (we) tei , S (we) = Ṙ
e

t (Re
t )

T , (5.8)

where S (·) : R3 → TISO (3), is the skew-symmetric map, defined as

S (v) ,

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 , v ∈ R3. (5.9)

The spin of the moving frame is defined as the skew-symmetric tensor S (we),
and the associated axial vector we (S, t) defines the vorticity. The time derivative
of Re

t is thus given by the two alternative forms

Ṙ
e

t = Re
tS
(
wt
)

, (5.10)

Ṙ
e

t = S (we)Re
t . (5.11)

The linear velocity vector is given in the spatial and material frames respectively
as

ϕ̇ ∈ R3, vt = (Re
t )

T
ϕ̇, (5.12)

where differentiating (5.12) yields the linear acceleration

ϕ̈ ∈ R3, v̇t = (Re
t )

T
ϕ̈− (Re

t )
T [we × ϕ̇] . (5.13)

111



Chapter 5. A Nonlinear PDE Formulation for Pipeline Installation

The space derivative of the position vector is simply denoted ∂Sϕ (S, t) ∈
R3, and the corresponding material derivative of Re

t is, like the time derivative,
obtained from (5.4). Hence,

∂SR
e
t = Re

tS
(
ωt
)

, (5.14)
∂SR

e
t = S (ωe)Re

t , (5.15)

where ωt and ωe represent the curvature or bending in material and spatial form,
respectively. Since derivation with respect to time and space are commutative
operations, evaluating the identity

∂S (∂tRe
t ) = ∂t (∂SRe

t ) , (5.16)

by taking the spatial derivative of (5.10) and the time derivative of (5.14), yields
the following expression relating ω and w,

ω̇t = ∂Swt + ωt ×wt = (Re
t )

T [∂Swe + ωe ×we] . (5.17)

5.2.4.2 Stress

The material stress resultant nt and stress couple mt are obtained from the
bilinear quadratic energy function Ψ(γt,ωt) [31],

nt =
∂

∂γt
Ψ, mt =

∂

∂ωt
Ψ, (5.18)

where

Ψ(γt,ωt) ,
1
2

[
γt

ωt

]T [
CT 03×3

03×3 CR

] [
γt

ωt

]
, (5.19)

and where extension and shearing γt, defined as

γt = (Re
t )

T (∂sϕ− t1) , (5.20)

and curvature ωt are the material strain measures, and

CT = diag [EA,GA2, GA3] , (5.21)
CR = diag [GJ,EI2, EI3] . (5.22)

The constants E and G are interpreted as the Young’s modulus and the shear
modulus, A is the cross-sectional area of the pipe, A2 and A3 are the effective
shear areas, I is the unit polar moment of inertia of the cross-section plane, and
J is the Saint Venant torsional modulus. Hence in material form

nt = CTγ
t, (5.23)

mt = CRω
t, (5.24)
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and in spatial form

ne = Re
tn

t = Re
tCT (Re

t )
T [∂Sϕ− te1], (5.25)

me = Re
tm

t = Re
tCR (Re

t )
T
ωe. (5.26)

Taking the time derivative of (5.20) yields γ̇t to be

γ̇t = −S
(
wt
)

(Re
t )

T (∂Sϕ) + (Re
t )

T (∂Sϕ̇) = (Re
t )

T [∂Sϕ̇−we × (∂Sϕ)] .
(5.27)

5.2.5 Dynamics

The linear and angular momentum balance equations for a nonlinear elastic beam
are derived in [31] as

mP ϕ̈ = ∂Sn
e + ñe, (5.28)

Ieρẇ
e + we × Ieρwe = ∂Sm

e + (∂Sϕ)× ne + m̃e
, (5.29)

where mP is the mass per unit length, ñe and m̃e are the resultant external
force and torque per unit length, and Ieρ (S, t) is the state dependent inertia
tensor given by

Ieρ = Re
tJ

t
ρ (Re

t )
T
, J tρ = diag [J1, J2, J3] , (5.30)

where J tρ is the constant inertia tensor for the cross-sections in the reference
configuration.

In this paper we propose to adopt this model for pipes submerged in water
by approximating ñe and m̃e by

ñe = −feg − f
e
D − σe, (5.31)

m̃
e = −DRwe, (5.32)

where

feg - restoring forces vector (gravitation and buoyancy),
feD - transversal hydrodynamic damping,
DR - constant damping matrix of rotation,
σe - seabed interaction force.

Hence, the equations of motion for a nonlinear elastic pipe submerged in water,
given as a PDE in the spatial frame, is found by substituting (5.31)–(5.32) into
(5.28)–(5.29).
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5.2.5.1 Hydrostatic Restoring Terms

The pipe is assumed to be completely submerged in water such that the restoring
forces per unit length are the sum of the gravitation and the buoyancy as defined
by Archimedes. The restoring forces acts only in the vertical direction e3, and is
given in e by

feg = (mP − ρwA) ge3, (5.33)

where ρw is the mass density of ambient water, A is the pipe cross-section area
and g is the gravitational constant.

5.2.5.2 Hydrodynamic Damping Terms

The hydrodynamic forces on a submerged slender body are given by Morison’s
equation as the sum of added mass and drag [23]. For applications involving low
velocities such as e.g., risers, mooring lines and pipelay operations, the added
mass term is small and can be neglected. An estimate for the remaining drag
forces acting on a cylindrical shape in three dimensions are

f tD =
1
2
doρwDT


∣∣vtr1∣∣ vtr1((

vtr2
)2 +

(
vtr3
)2)1/2

vtr2((
vtr2
)2 +

(
vtr3
)2)1/2

vtr3

 , (5.34)

where do is the outer pipe diameter and

DT = diag[D1, D2, D3], (5.35)

where D1, D2, D3 ≥ 0 are damping coefficients, which are constant if a constant
Reynold’s number is assumed. The vector vtr is the relative velocity of the pipe
in the water,

vtr =
(
Re

t

)T (ϕ̇e − vec) , (5.36)

where vec = vec
(
ϕTe3, t

)
is the water current vector given in the spatial frame. Let

the rotational damping in (5.29) be directly proportional to the angular velocity
w, where

DR = diag[D4, D5, D6], (5.37)

and where D4, D5, D6 ≥ 0 are the damping coefficients.

5.2.6 Seabed Interaction

A seabed interaction force is commonly modeled by a spring and damper pair or
simply a spring, since the spring effect will usually dominate the damping effect.
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5.2. Mathematical Model

In this paper the damping effect is neglected, and we propose that the seabed
interaction force σe is modeled by a nonlinear spring, acting on the pipeline
section that is in contact with the seabed, given by

σe = kσ (κ) e3, kσ (κ) =


0, κ < 0,

‖feg‖2
(do/8− do/40)

10κ2

do
, 0 6 κ 6 do/20,

‖feg‖2
(do/8− do/40)

(κ− do/40), κ > do/20,

(5.38)
where κ = ϕTe3 + do/2 denotes the vertical seabed penetration. The nonlinear
spring σe ∈ C1 is defined such that the pipe is at rest for seabed penetration
equal to 1/8 of the outer pipe diameter, κ = do/8. The spring becomes linear
for κ > do/20 and the constants are chosen so that σe becomes continuously
differentiable over R.

5.2.7 Boundary Conditions

The model (5.28)–(5.29) is clamped to the seabed at the lower end and fixed to
a surface vessel at the upper end. These boundary conditions are presented in
this section, mainly focusing on the surface vessel model.

5.2.7.1 Seabed

The lower end of the pipe is assumed to be fixed to the seabed, and the boundary
condition for S = 0 is thus given by

ϕ (0, t) = ϕ0 = 0, Re
t (0, t) = Re

t,0 = I3×3. (5.39)

5.2.7.2 Vessel

In recent years there has been a significant drive to develop time-domain models
for simulation and control system design based on data obtained from seakeeping
programs such as VERES [8] and WAMIT [36]. These programs use potential
theory to compute the potential coefficients (added mass and potential damping)
and the existing wave loads (Froude-Krylov and diffraction forces) for a given
vessel design [9] and [11]. In [26], a potential theory formulation for a surface
vessel suited for dynamic positioning and low speed maneuvering is developed,
and this model is adopted as the boundary condition of the pipe at S = L with
some modifications.

Let η ∈ R3 × S3 be the generalized coordinate position vector using Euler
angles given in the spatial frame e and ν ∈ R6 be the generalized velocity vector
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given in the body frame b, both defined by [9] as

η = [x, y, z, φ, θ, ψ]T and ν = [u, v, w, p, q, r]T . (5.40)

For low-speed applications, we can approximate the equations of motion with a
linear kinetic model,

Mν̇ +CRBν +CAν +B (∞)ν + µ+Gη = τ b, (5.41)

while the kinematics use a nonlinear formulation

η̇ = J (η)ν, J (η) =
[
Re
b 03×3

03×3 TΘ

]
, (5.42)

where TΘ relates the body-fixed angular velocity to the Euler rate vector. Let

M ,MRB +MA, (5.43)

where MRB is the rigid body inertia matrix

MRB =
[
mV I3×3 03×3

03×3 IbV

]
, (5.44)

where mV is the total vessel mass, and IbV ∈ R3×3 is the body inertia tensor.
Matrix MA = A (∞) and B (∞) are the constant infinite frequency added mass
and potential damping matrices. Notice that B (∞) = 0 for zero-speed applica-
tions. As the frame used is not inertial, the Coriolis and centripetal terms for the
rigid body CRB and the added mass CA are accounted for, and appears as

CRB ,MRBUL and CA ,MAUL, (5.45)

where U = ‖ve‖, and

L ,


0 · · · 0 0
0 · · · 0 1
0 · · · −1 0
...

. . .
...

...
0 · · · 0 0

 ∈ R6×6. (5.46)

The matrixG is the restoring matrix. External forces acting on the pipelay vessel
τ b are

τ b = τ bcontrol + τ bpipe + τ benv, (5.47)

where τ bpipe is the force from the pipe, τ bcontrol is the applied control force, and
τ benv are environmental forces. In the remainder of this paper we assume τ benv = 0.
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The term µ is a convolution term representing the fluid memory effects and
given for low-speed, i.e. U = 0, as

µ ,
∫ t

0

K (t− ξ)ν (ξ) dξ, (5.48)

where K (t) is a matrix of retardation functions [24]:

K (t) =
∫ ∞

0

B (ω) cos (ωt) dω. (5.49)

We can approximate
µ (t) ≈Dpν, (5.50)

where Dp is a frequency-independent constant matrix approximating µ at low
frequencies. The resulting linear state-space model becomes

Mν̇ +CRBν +CAν +Dpν +Gη = τ b. (5.51)

In hydrodynamics it is common to assume linear superposition [7], hence nonlin-
ear Coriolis and damping terms can be added directly in the time-domain model
(5.51) according to:

Mν̇ +C (ν)ν +D (ν)ν + g (ϕ,Re
b) = τ b, (5.52)

with relaxations

Gη ←→ g (ϕ,Re
b) , (5.53)

CRB ←→ CRB (ν) , (5.54)
CA ←→ CA (ν) , (5.55)

and

C (ν) , CRB (ν) +CA (ν) , (5.56)

D (ν) ,Dp +Dv (ν) , (5.57)

where Dv (ν) is quadratic viscous damping due to cross-flow drag and surge
resistance.

The following properties of (5.52) holds for the assumption that Ṁ = 0:

P1) M = MT > 0,

P2) sT
[
Ṁ − 2C (ν)

]
s = 0, ∀ s ∈ R6,

P3) D (ν) > 0, ∀ ν ∈ R6.
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A metacentric stable surface vessel has restoring forces and moments in heave
(z), roll (φ) and pitch (θ) that will resist inclinations away from the steady-
state equilibrium. The restoring forces and moments will depend on the vessel’s
metacentric height, the location of the center of gravity, the center of buoyancy,
and the shape and size of the water plane, denoted by Awp. For every vessel and
load a transversal metacentric height GMT ∈ R and a longitudinal metacentric
height GML ∈ R can be computed [9].

The equilibrium in heave is obtained when the gravity and buoyancy forces
balance. A force gel ∈ R3 is generated to restore this balance if the heave position
ϕT (L, t) e3 changed due to external forces, or the heave equilibrium zeq changes
due to e.g. waves. This force is modeled in the e frame as

gel = −Awpρwg
(
ϕT (L, t) e3 − zeq

)
e3, (5.58)

where the Awp is assumed to be constant for small changes in heave.
From geometric considerations, the moment arms in roll and pitch can be

found to be

rbr =

 −GML sin θ
GMT sinφ

0

 . (5.59)

The dependence of Euler angles are removed from (5.59) by observing that

sin θ = − (Re
be1)T

e3, (5.60)

sinφ ≈ cos θ sinφ = (Re
be2)T

e3, (5.61)

where the applied approximation cos θ = 1 is generally true for small pitch angles,
hence (5.59) is approximated by without Euler angles as

r̃br ,

 GML (Re
be1)T

e3

GMT (Re
be2)T

e3

0

 ≈ rbr, (5.62)

such that the restoring moment term becomes

ger = r̃er × f
e
r

=
(
Re
br̃
b
r

)
× (mV ge3) . (5.63)

It is assumed that there is no moment due to heave. Consequently, the nonlinear
restoring forces term of (5.52) is given in the body frame b as

gb (ϕ (L, t) ,Re
b (t)) =

[
(Re

b)
T
get

(Re
b)

T
ger

]
. (5.64)
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For the remainder of this paper, let the pipe be fixed to the center of gravity
of the vessel such that

ν =

[
(Re

b)
T
ϕ̇ (L, t)

(Re
b)

T we (L, t)

]
and ν̇ =

[
(Re

b)
T
ϕ̈ (L, t)

(Re
b)

T ẇe (L, t)

]
. (5.65)

Forces and moments acting between the pipe and the vessel are considered as
internal forces in the total system, and by Newton’s third law the following rela-
tionship holds: [

Re
b 03×3

03×3 Re
b

]
τ bpipe = −

[
ne(L, t)
me (L, t)

]
. (5.66)

5.3 Passivity

The passivity properties of the developed model, with and without boundary
conditions, are considered in this section. Passivity provides a useful tool for the
analysis of nonlinear systems which relates nicely to Lyapunov and L2 stability
[19]. The main passivity theorem states that the negative feedback connection of
two passive systems is passive. By proving passivity of the pipelay system and
choosing a passive controller, the feedback connection is thus known to be stable,
which is necessary for control applications.

Theorem 5.3.1. The system (5.28)–(5.29) is input-output passive, where the
input τ and output ν are taken as

τ , [ne (0, t) ,me (0, t) ,ne (L, t) ,me (L, t)]T ∈ R12 (5.67)

ν , [−ϕ̇ (0, t) ,−we (0, t) , ϕ̇ (L, t) we (L, t)]T ∈ R12 (5.68)

and assuming that |vec,i| ≤ |ϕ̇i|, for i = 1, . . . , 3 (5.36).

Proof. The total system energy EP of (5.28)–(5.29), is given by

EP = TP + UP , (5.69)

where this pipe energy function is the sum of kinetic energy TP and potential
energy UP [33],

TP =
1
2

L∫
0

mp ‖ϕ̇‖22 +
〈
we, Ieρw

e
〉
dS, (5.70)

UP =

L∫
0

Ψ
(
γt,ωt

)
dS +

L∫
0

〈feg,ϕ〉+

κ∫
0

kσ(ξ) dξ

 dS. (5.71)
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Differentiating (5.69) with respect to time, the kinetic energy term yields

ṪP =

L∫
0

〈ϕ̇,mpϕ̈〉+
〈
we, Ieρẇ

e
〉
dS, (5.72)

which by substituting by (5.28)–(5.29) can be rewritten as

ṪP =

L∫
0

〈
ϕ̇,
[
∂Sn

e − feg − f
e
D − σe

]〉
dS+

L∫
0

〈
we,

[
(Ieρw

e)×we + ∂Sm
e + (∂Sϕ)× ne −DRwe

]〉
dS. (5.73)

The potential energy rate of change yields by differentiation

U̇P =

L∫
0

〈
nt, ∂tγ

t
〉

+
〈
mt, ∂tω

t
〉
dS +

L∫
0

〈
feg, ϕ̇

〉
+ 〈σe, ϕ̇〉 dS (5.74)

which by substituton of (5.27) for ∂tγt and (5.17) for ∂tωt, is rewritten as

U̇P =

L∫
0

〈ne, [∂Sϕ̇− (we × (∂Sϕ))]〉 dS +

L∫
0

〈
mt,

[
∂Swt + (ωt ×wt)

]〉
dS+

L∫
0

〈
feg, ϕ̇

〉
+ 〈σe, ϕ̇〉 dS. (5.75)

Since

∂Swe = ∂S
(
Re
tw

t
)

= Re
tS
(
ωt
)
wt +Re

t∂Swt = Re
t

[
∂Swt +

(
ωt ×wt

)]
,

and the fact that
〈
mt, (Re

t )
T∂Swe

〉
= 〈me, ∂Swe〉, the second term in (5.75) is

simplified and, by integration by parts, the equation (5.75) is finally rewritten as

U̇P = 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0
−

L∫
0

〈∂Sne, ϕ̇〉+ 〈∂Sme,we〉 dS+

L∫
0

〈we, (∂Sϕ)× ne〉 dS +

L∫
0

〈
feg, ϕ̇

〉
+ 〈σe, ϕ̇〉 dS. (5.76)
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Hence, the change of energy of the pipe string ĖP can then be found by summing
(5.73) and (5.76) as

ĖP = 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0
−

L∫
0

〈ϕ̇,feD〉 dS −
L∫

0

〈we,DRwe〉 dS, (5.77)

where the energy is seen to depend on the boundary conditions and the transver-
sal and rotational damping. Investigating the integral term for the rotational
damping it is readily seen that

L∫
0

〈we,DRwe〉 dS =

L∫
0

(
3∑
i=1

Di+3 (we
i )

2

)
dS ≥ 0, ∀ we, (5.78)

such that this term will always dissipate energy. The restoring term is rewritten
into

L∫
0

〈ϕ̇,feD〉 dS =
1
2
dρw

L∫
0

〈ϕ̇,Π(ϕ̇− vec)〉 dS ≥ 0, ∀
∣∣vec,i∣∣ ≤ |ϕ̇i| , (5.79)

where

Π = Re
tDTΓ (Re

t )
T ≥ 0, (5.80)

Γ = diag
[∣∣vtr1∣∣ ,((vtr2)2 +

(
vtr3
)2)1/2

,
((
vtr2
)2 +

(
vtr3
)2)1/2

]
≥ 0. (5.81)

Hence, from (5.77) and the assumption
∣∣vec,i∣∣ ≤ |ϕ̇i|, it follows

ĖP ≤ 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0

= τTν. (5.82)

This theorem can be extended to include also the boundary conditions.

Theorem 5.3.2. The system (5.28)–(5.29) with boundary condition (5.39) for
S = 0 and (5.66) for S = L is input-output passive, with input τ bcontrol (5.47)
and output ν (5.40), and assuming that |vec,i| ≤ |ϕ̇i|, for i = 1, . . . , 3.

Proof. The total energy E of the pipelay system is given by the sum of the total
energy of the pipe EP and the surface vessel EV ,

E = EP + EV ≥ 0, (5.83)
EV = TV + UV , (5.84)
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The vessel energy function is the sum of kinetic TV and potential energy UV ,

TV =
1
2
νTMν (5.85)

UV =
1
2
Awpρwg

(
ϕT (L, t) e3 + href

)2
+

1
2
mV g

{
GML

[
(Re

be1)T
e3

]2
+GMT

[
(Re

be2)T
e3

]2}
, (5.86)

where UV is the sum of the potential functions derived from (5.58) and (5.64).
By differentiating (5.85) and (5.86) with respect to time, substituting in (5.52)
and finally applying property P2, the change of energy for the vessel is found to
be

ṪV = νTτ b − νTDν − νTgb, (5.87)

U̇V = νTgb. (5.88)

Since ĖV = ṪV + U̇V we get

ĖV = νTτ b − νTDν. (5.89)

Applying property P3 to (5.89) yields ĖV ≤ νTτ b showing that the vessel is itself
input-output passive with input τ and output ν. Hence, the derivative of the
energy (5.83) can be found by summing (5.77) and (5.89),

Ė = 〈ne, ϕ̇〉
∣∣L
0

+ 〈me,we〉
∣∣L
0
−

L∫
0

〈ϕ̇,feD〉 dS

−
L∫

0

〈we,DRwe〉 dS + νTτ b − νTDν, (5.90)

where the lower boundary condition S = 0, known from (5.39), implies

〈ne, ϕ̇〉 |0 = 〈me,we〉 |0 = 0, (5.91)

and the upper boundary condition is given by (5.66) where the pipe is connected
to the vessel in the center of gravity, as defined in (5.65), such that the total rate
of change of energy of the pipe and vessel system reduces to

Ė =−
L∫

0

〈ϕ̇,feD〉 dS −
L∫

0

〈we,DRwe〉 dS − νTDν + νTτ control, (5.92)

which implies that Ė ≤ νTτ control, and the system is input-output passive.
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Corollary 5.3.3. Finally, it can be concluded the combined system of pipeline
and vessel is stable since E ≥ 0, ‖E‖ → ∞ due to unbounded system states, and
Ė ≤ 0 which implies that

E (t)− E (0) ≤ 0. (5.93)

If a passive controller τ control is applied, this analysis shows that the complete
system is input-output passive and stable.

5.4 Model Validation

A scenario of installing a 30′′ (0.762m) OD (outer diameter) steel pipe at a wa-
ter depth of 900 meters using the J-lay method, as illustrated in Figure 5.1, is
considered in this section for validation. Static and dynamic pipe analyses are
performed in this case-study using both the proposed pipe model, as well as the
catenary equation and RIFLEX. The catenary equation is the classic nonlinear
solution of the static deflection curve for a string loaded by its own weight, and
is well known from cable mechanics [16], while RIFLEX is a recognized FEM
program for static and dynamic analysis of slender marine structures developed
by MARINTEK and SINTEF in cooperation with the Norwegian University of
Science and Technology (NTNU) as a joint industry project. The physical con-
stants and material pipe properties given in Tables 5.1 and 5.2 are used for all
the analyses.

Constant Notation Value Unit
Density of water ρw 1.025 · 103 kg/m3

Earth gravity g 9.80665 m/s2

Young’s modulus steel E 206 · 109 N/m2

Shear modulus steel G 7.9231 · 1010 N/m2

Table 5.1: Physical constants.

5.4.1 Numerical Implementation

A finite element method is applied on (5.28)–(5.29) for the numerical simulations,
following the same procedure as in [34]. A Galerkin weak form of the initial
boundary problem (5.28)–(5.29) with boundary conditions (5.39) and (5.66), is
developed by taking the inner product with admissible test functions u,ϑ. Let
the space of test functions V be defined as

V = {(u,ϑ) |S ∈ [0, L]→ R3 × R3 | (u,ϑ)
∣∣
S=0

= (0,0)}. (5.94)
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Parameter Notation Value Unit
Outer pipe diameter do 0.762 m
Wall thickness WT 0.033 m
Undeformed pipe length L 1500 m
Unit mass of empty pipe mp 593.2818 kg
Moments of inertia I1 78.9851 kg ·m2

I2 = I3 39.4925 kg ·m2

Unit polar moments of inertia I 5.0309 · 10−3 m4

J 1.0062 · 10−2 m4

Axial stiffness EA 1.5569 · 1010 Nm2

Shear stiffness GA 9.0330 · 109 Nm2

Torsional stiffness GJ 7.9720 · 108 Nm2

Bending stiffness EI 1.0364 · 109 Nm2

Table 5.2: Parameters for a 30′′ OD (outer diameter) steel pipe.

Admissible variations associated with any pipe configuration (ϕ,Re
t ) ∈ C span

the tangent space T(ϕ,Re
t )C given by

T(ϕ,Re
t )C , {(u,S(ϑ)Re

t ) | (u,ϑ) ∈ V}. (5.95)

Hence, the weak formulation is found to be

Gdyn(ϕ,Re
t ;u,ϑ) ,

∫ L

0

〈mP ϕ̈,u〉+ 〈[Iρẇe + we × (Iρwe)] ,ϑ〉 dS+∫ L

0

〈[feD + σe],u〉+ 〈DRwe,ϑ〉 dS +Gstat(Φ,Re
t ;u,ϑ) +〈

[Mν̇ +C(ν)ν +D(ν)ν] , (uT,ϑT)T

〉∣∣∣∣
S=L

= 0, (5.96)

for all test functions (u,ϑ) ∈ V, where the static part Gstat is given by

Gstat(ϕ,Re
t ;u,ϑ) ,

∫ L

0

〈
ne,

[
du

dS
+ S(∂Sϕ)ϑ

]〉
+
〈
me,

dϑ

dS

〉
dS+∫ L

0

〈feg,u〉 dS +
〈
g(ϕ,Re

b), (u
T,ϑT)T

〉∣∣∣∣
S=L

. (5.97)

Let the rotation matrixRe
t be parameterized in Euler angles Θ = (φ, θ, ψ)T →

Re
t (Θ) by the zxy-convention, which is locally diffeomorphic to SO(3). Hence,

Re
t is given by

Re
t (Θ) = Re2(θ)Re1(φ)Re3(ψ), (5.98)
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where the elementary rotations about the e1, e2 and e3 axes are given by

Re1(φ) =

 1 0 0
0 cφ −sφ
0 sφ cφ

 , Re2(θ) =

 c θ 0 s θ
0 1 0
−s θ 0 c θ

 ,

Re3(ψ) =

 cψ −sψ 0
sψ cψ 0
0 0 1

 , (5.99)

where s (·) and c (·) denotes sin (·) and cos (·). Adopting the zxy-convention
instead of the more common xyz-convention moves the singularity inherent to
Euler angles from pitch to roll, which is more suitable for the presented model.
This choice of parametrization yields the transformations

we = ΠeΘ̇, ẇe = ΠeΘ̈ + Π̇eΘ̇,
∂Sω

e = Πe(∂SΘ), Θ = (φ, θ, ψ)T,
(5.100)

where

Πe =

 cos θ 0 cosφ sin θ
0 1 − sinφ

− sin θ 0 cosφ cos θ

 . (5.101)

Following the parametrization in Euler angles, the configuration space C can
be reformulated as

C̃ , {(ϕ,Θ) |S ∈ [0, L]→ R3 × R3 | 〈∂Sϕ(S),Re
t (Θ〉e1 > 0}, (5.102)

with test functions

Ṽ , {(u, ϑ̃) |S ∈ [0, L]→ R3 × R3 | (u, ϑ̃)
∣∣
S=0

= (0,0)}, (5.103)

and the new tangent space becomes

T(ϕ,Θ)C̃ , {(u, ϑ̃) | (u, ϑ̃) ∈ Ṽ}. (5.104)

The weak formulation (5.96) for the configuration space (5.102) is semi-discretized
with N equidistant nodes,

⋃N−1
i=1 [Si, Si+1] = [0, L], using linear shape functions

N i
h(S) such that

ϕ ≈ ϕh =
∑N
i=1ϕi(t)N

i
h(S), Θ ≈ Θh =

∑N
i=1 Θi(t)N i

h(S),
uh =

∑N
i=1 uiN

i
h(S), ϑ̃h =

∑N
i=1 ϑ̃iN

i
h(S),

(5.105)
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and the integrals in the weak formulation Gdyn(ϕ,Re
t (Θ);u, ϑ̃) (5.96) are approx-

imated using two point Gaussian quadrature for each interval [Si, Si+1] ⊂ [0, L],
except for the stiffness integral∫ L

0

〈
ne,

[
du

dS
+ S(∂Sϕ)ϑ̃

]〉
+
〈
me,

dϑ̃

dS

〉
dS, (5.106)

which is approximated by a reduced one point Gaussian quadrature, to avoid
shear locking [33]. The semi discretized problem is finally obtained in the form

Mh(ẋj ,xj)ẍi+Ch(ẋj ,xj)ẋi+Kh(xj)xi = 0, for i, j = 1, . . . , N, (5.107)

where
xi = [ϕi,Θi]

T
, (5.108)

is the state vector, and Mh, Ch and Kh are the semi discretized system mass-,
damping- and stiffness matrix, respectively. This form is well known in marine
control engineering. In the simulations Matlab is applied, and the embedded
ODE-solver ode23tb is used to solve the semi discretized problem (5.107).

To approximate the static solution, Gstat(ϕ,Re
t ;u,ϑ) = 0, the Newton-

Raphson strategy described in [33] is applied. For the approximated static solu-
tion (5.97), let the averaged error estimate be given by

εN ,
1
N

N∑
i=1

‖(ϕi,Θi)− (ϕref(Si),Θref(Si))‖2, (5.109)

where the approximated solution from a fine gridded discretization is taken as a
reference solution

(ϕref(S),Θref(S)) ,
N∑
i=1

(ϕi,Θi)N i
h(S). (5.110)

The convergence of εN is shown in Figure 5.3.

5.4.2 Static Pipe Model Validation

The static analysis are performed in the vertical plane spanned by {e1, e3} where
different values for the horizontal tension H = {200, 400, 800} kN are applied to
the top node in the e1-direction. For the pipe model N = 740, such that element
length is approximately 2 meters. To validate the model against the catenary, the
bending stiffness in the pipe model is set to zero, i.e., EI = 0, and the computed
static configurations are plotted in Figure 5.4, where the pipe model and the
catenary configurations can hardly be distinguished. The hang-off angle β and
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Horizontal tension H 200 400 800 kN
Pipe model without bending stiffness, EI = 0

Hang-off angle β 81.22 74.64 65.24 deg
Lay-back distance lh 412.25 645.10 975.51 m

Catenary
Hang-off angle β 81.22 74.64 65.24 deg
Lay-back distance lh 415.25 649.41 982.24 m

Table 5.3: Static analyses results for the pipe model without bending stiffness e.g.
EI = 0 and the catenary.

Horizontal tension H 200 400 800 kN
Pipe model

Hang-off angle β 80.97 74.30 64.87 deg
Lay-back distance lh 467.92 679.76 996.29 m

RIFLEX
Hang-off angle β 81.0 74.4 65.0 deg
Lay-back distance lh 477 686 1001 m

Table 5.4: Static analyses results for the pipe model including the effects of bending
stiffness and RIFLEX.

the lay-back distance lh, the horizontal distance from hang-off to touchdown, for
the PDE and the catenary are presented in Table 5.3, and are seen to correspond
well. The difference in lay-back distance may be explained from the effect of the
seabed interaction of the pipe model. Comparing the pipe model configuration
with and without bending stiffness, see Figure 5.5. The effect of the bending
stiffness is seen in the touchdown area and at the hang-off angle. The computed
static configurations including bending stiffness for H = {200, 400, 800} kN for
the PDE and RIFLEX are plotted in Figure 5.6. The hang-off angles and lay-
back distances for RIFLEX and our code are presented in Table 5.3, and are in
very good agreement. The curvature along the pipe configurations of Figure 5.6
are plotted in Figure 5.7, and show that the forces also agree in the two models.

5.4.3 Dynamic Pipe Model Validation

In the dynamic analysis, the static configuration for H = 400 kN and N = 100
with elements of equal lengths is taken as the initial configuration. No lateral or
axial seabed friction is assumed. The pipe at S = 0 is horizontally clamped to
the seabed, and it is fixed to the center of gravity of the vessel, where it is free to
rotate, for S = L. A linearized vessel model is used where the coefficient matrices
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are obtained from the Marine Systems Simulator (MSS) available at [10]. A DP
system is implemented by a nonlinear PID controller, found in [17], to allow the
surface vessel to track a circular motion with period T = 10s and radius r = 2.5m
before returning to its initial position, see Figure 5.8, which imposes a spiraling
motion to the pipe. The control reference is ramped to limit accelerations. The
position of the pipe tip over the course of 60 seconds of simulation is given as
input to RIFLEX, as RIFLEX does not include the surface vessel dynamics. The
displacement envelopes, bending moment envelopes and axial tension envelope
along the pipe, produced by the proposed model and RIFLEX, are compared
in Figures 5.9, 5.10 and 5.11. The dynamic position and bending moment as a
function of time for node N = 25, which is close to the touchdown point, is shown
in Figure 5.12. The pipe overall length is a sensitive parameter, and Figure 5.13
indicates a very good dynamic correlation of the results, as well as nominal values
are in agreement. By considering these analysis results, the difference between the
results obtained are not more than what can be expected from different numerical
implementation, and the dynamics of the proposed model is very close to that
obtained by RIFLEX both with respect to displacement and forces.

5.4.4 Model Convergence

For a practical applications of the numerical implementation, the convergence
must be considered. The number of nodes in a simulation should be small to
optimize computation time, while at the same time capture the main dynamic
behavior of the system. The dynamic simulation scenario, given in the previous
section, is repeated for N = 10, 20, 40, 80 nodes, and plotted against N = 100,
used in the dynamic validation, see Figure 5.14. Visually, the configurations
of N = 80 and N = 100 cannot be distinguished, while the configuration for
N = 40 can only be distinguished at some locations. For N = 20, the main
dynamics are kept, while for N = 10, the oscillations differs much from that of
N = 100. To improve the dynamics without increasing the number of nodes,
variable element lengths can be introduced, such that sensitive regions along the
pipe, i.e., the touchdown and the hang-off area, may have shorter elements than
the less sensitive regions.

5.5 Conclusions

A dynamic model for a freely suspended pipe string with bending stiffness has
been developed. This pipe model has been shown to be input-output passive by
a passivity check. Further, the model has been extended to include the dynamics
of a surface pipelay vessel, and passivity and stability of the combined system
has been shown from considering the total energy of the system. A numerical im-
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plementation of the proposed PDE model has been successfully validated against
the catenary equation and RIFLEX, which proves that the PDE model can be
used to analyze and simulate slender marine structures, such as a pipe string
suspended from a surface vessel to the seabed. The range of analysis that can be
performed using the proposed model extends that of RIFLEX, since the dynam-
ics of the surface vessel is included in the model. Hence, it may be used to e.g.,
analyze the interaction between a pipe string and a motion control systems for
the surface vessel.

The numerical implementation in this paper was done in Matlab, using equidis-
tant distributed nodes and traditional ODE solvers to integrate in time, and
real-time simulations could not be achieved. For future work, it would be an ad-
vantage to consider a more “sophisticated” numerical implementation to improve
the code, e.g., applying a geometric method [14], which usually show good sta-
bility properties and excellent behavior in long-time simulations. Implementing
a dedicated method rather than using built-in solvers, may also improve com-
putation time. Finally, by implementing the discretized model in a more suited
compilable language will speed up the execution of the computations.

Future extensions to the model can be envisioned: Adding lateral and longi-
tudinal seabed friction, allow for uneven seabed by using bathymetry maps, allow
pipe elongation my relaxing the fixed pipe length property so that L = L (t).
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5.6 Figures
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Figure 5.3: The estimated relative error εN/L for the static solution approximations
where the number of elements N−1 = 8, 16, 32, 64, 128, 256, 512, against relative interval
width h/L = 1/(N − 1), where an approximated solution with N − 1 = 1024 is taken
as the reference. The results compare well to the quadratic auxiliary line.
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Figure 5.4: Static pipe configuration without bending stiffness of the pipe model
validated against the catenary.
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Figure 5.12: Dynamic bending moment (top) and relative displacement (bottom) for
a node (N = 25) close to the touchdown point.
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Chapter 6

Hamiltonian and
multi-symplectic structure
of a rod model using
quaternions

Abstract. The geometrically exact model of an elastic rod, formulated in [21] has
been investigated. We present a constrained Hamiltonian formulation of the elastic
rod model as well as a constrained multi-symplectic formulation of the model. In
both formulations, quaternions are used to represent the group of rotations. The
resulting Hamiltonian PDE and multi-symplectic formulation have simple looking
formats involving constant structure matrices.

6.1 Introduction

In this paper we consider an elastic rod model first formulated in [21]. This
model is a variant of the classical Kirchoff-Love model [17], when allowing for
finite extension and shearing effects. Internal stress forces in the body depend
linearly on the stress measures, and the material therefore possesses a hyper-
elastic behavior. The equations of motion are a system of partial differential
equations (PDEs) on a manifold, and, in many respects, they resemble the Euler
equations of rigid body dynamics. The first numerical discretization methods de-
signed and applied to this model, aimed at obtaining numerical approximations
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lying on the configuration manifold, see [23] (static case) and [24] (dynamical
case). An energy-momentum method was later presented in [11]. One of the
main motivations for developing the energy-momentum method was the disap-
pointing performance of conventional methods in long time simulations. Even
methods usually regarded as very stable exhibited unacceptable numerical insta-
bility [11]. Numerical approximations for the model have later been studied by
many authors, in particular energy-conserving and dissipative schemes based on
finite element strategies, see for example [6, 7, 1, 2].

One important issue in the numerical simulation of this model is the choice of
coordinates used to describe the configuration manifold, consisting of a cartesian
product of the vector space R3 and the group of rotations, SO(3). In [23], and in
many papers later on, rotation matrices were used, while in [2] the authors choose
directors reducing the amount of computations and the memory requirements: a
rotation can be identified by two orthonormal vectors of R3 and represented by 6
parameters satisfying two length constraints and one orthogonality constraint. In
[6], [16] instead the kinematic constraints are imposed via appropriate algebraic
equations and Lagrange multipliers.

In the recent paper [12] this model is employed for modeling pipe-lay offshore
operations and the rod equations are coupled to a controlled rigid body (repre-
senting the vessel conducting the pipe-lay operations). In the same paper the
configuration manifold is described using Euler angles and the choice of appro-
priate conventions (coordinate charts) is very important for the performance of
the method. A robust implementation of this approach should allow for changes
of chart when necessary.

The main contribution of the present work is the derivation of a Hamilto-
nian and a multi-symplectic formulation of the model in quaternions. We choose
to represent rotations as unit quaternions (Euler parameters), we realize unit
quaternions as vectors of R4 subjected to one length constraint. Compared to
Euler angles, which give a local coordinatization of SO(3) and allow to represent
rotations with a minimal number of coordinates, unit quaternions use just one
extra coordinate. The advantage is that we avoid the difficulties of local coor-
dinatizations and changing of charts, see for example [14], [4] for a discussion of
local vs global formulations of Hamiltonian systems and their symplectic inte-
gration. A Hamiltonian formulation of an elastic Cosserat rod has earlier been
investigated in [13].

The resulting Hamiltonian PDE has a simple looking format involving the
canonical (constant) structure matrix typical of finite dimensional Hamiltonian
systems, and it is subjected to kinematic constraints.

The new formulation has the advantage that strightforward finite-difference/
finite-element discretizations in space lead to canonical Hamiltonian semi-dis-
cretized ODE systems with constraints. The semi-discrete Hamiltonian system is
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obtained by first discretizing the Hamiltonian function in space, using a consistent
approximation. The obtained discrete energy function is then used for defining
a finite dimensional canonical Hamiltonian system, approximating the problem.

Multi-symplecticity is a generalization of classical symplecticity for finite-
dimensional Hamiltonian systems to the infinite-dimensional case. Besides global
preservation of energy and momentum, the multi-symplectic formulation of a
Hamiltonian PDE implies local energy and momentum conservation properties.
Following a procedure described in [10], from the Hamiltonian formulation we
derive a multi-symplectic formulation of our problem by defining a new Hamil-
tonian function via a Legendre transform. For more details on multi-symplectic
PDE’s and multi-symplectic integrators, see e.g. [8, 9, 15].

6.2 Background

6.2.1 The elastic rod model

Here we give a short review of the elastic rod model formulated in [21]. For a
given configuration of the elastic rod, the set occupied in R3 by its body B ⊂ R3

is described by

B = {X(S, ξ2, ξ3) = ϕ(S) + ξ2t2(S) + ξ3t3(S) ∈ R3 | (S, ξ2, ξ3) ∈ [0, L]×A},

where [0, L] × A = R ∈ R3 is the reference body, A is the cross section area,
L its reference length and t2(S), t3(S) are mutually orthonormal vectors lying
in the rod cross section plane at ϕ(S). Hence, the rod is fully described by the
curve of centroids ϕ(S) and the orientation of its cross sections, defined by the
orthonormal frame ti, i = 1, 2, 3,

ti = Λei, Λ ∈ SO(3),

attached to each point of the curve of centroids, where t1(S) is normal to the
plane cross section at ϕ(S), see figure 6.1. The configuration space C of the
elastic rod, letting the normal to the cross section be t1 = Λe1, is given by the
set of functions

C = {(ϕ,Λ) : S ∈ [0, L]→ R3 × SO(3) | 〈ϕ′(S),Λe1〉 > 0} = R3 × SO(3). (6.1)

As reference configuration, (ϕr,Λr) ∈ C we assume that the rod is aligned along
the spatial basis axis e1 such that

ϕr(S) = Se1, Λr(S) = 1,

where 1 is the 3× 3 identity matrix [21] (letting the rod reference configuration
be aligned along e1 instead of e3).
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ti

ei

Figure 6.1: The body frame ti(S), i = 1, . . . , 3, relative to the spatial frame for a
given rod configuration.

Following the notation by Simo et al. [23], the material coordinate vectors
given in material basis ti will be denoted by upper-case letters, while lower case
letters are used to denote the vectors in the spatial basis ei. Let W be the body
angular velocity, Ω be the bending and torsional strain in body frame. Hence,
the spatial vectors will be related to their material vectors by the expression

ω = ΛΩ, w = ΛW .

This will give us the kinematics for the orientation of the cross sections along the
line of centroids ϕ(S, t), (S, t) ∈ [0, L]× R+,

∂SΛ(S, t) = ω̂Λ = ΛΩ̂, (6.2)

∂tΛ(S, t) = ŵΛ = ΛŴ , (6.3)

where the hat map ̂ : R3 → so(3), sends the axial vector v to its associated
skew-symmetric matrix v̂, i.e.

v =

 v1

v2

v3

 , v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 .
The assumption of an hyperelastic material behavior, corresponds to allowing

for a bilinear quadratic energy function Ψ(γ,ω),

Ψ(γ,ω) =
1
2

[〈γ,DNγ〉+ 〈ω,DMω〉] ,

DN = ΛCNΛT , DM = ΛCMΛT , (6.4)

and
CN = diag([EA,GA1, GA2]), CM = diag([GJ,EI1, EI2]), (6.5)

where
γ = ∂Sϕ(S, t)− t1 = ∂Sϕ(S, t)−Λ(S, t)e1, (6.6)

144



6.2. Background

is the strain measure for extension and shearing, and ω gives the measure for
twisting and bending.

The constants E and G are interpreted as the Young’s modulus and the shear
modulus, A is the cross-sectional area of the rod, A2 and A3 are the effective
shear areas, I2 and I3 the polar moments of inertia of the cross section plane
relative to the principal axes, and J is the Saint Venant torsional modulus.

The internal stress resultant n and stress couple m are obtained by differen-
tiation from the bilinear quadratic energy function Ψ(γ,ω),

n =
∂

∂γ
Ψ = DNγ, (6.7)

m =
∂

∂ω
Ψ = DMω. (6.8)

Stress forces in material form are given in upper-case letters,

N = ΛTn = CNΓ, Γ = ΛTγ = ΛT∂Sϕ− e1,

M = ΛTm = CMΩ.

The spatial form of the local, linear and angular, momentum balance equa-
tions are written, see e.g. [21, 24],

ρA∂ttϕ = ∂Sn+ ñ, (6.9)
Iρ∂tw + w × (Iρw) = ∂Sm+ (∂Sϕ)× n+ m̃, (6.10)

for (ϕ(S, t),Λ(S, t)) ∈ C and external forces ñ, m̃. Here ρA(S) is the mass per
unit length of the rod in reference length, and Iρ(S, t) is the time dependent
inertia tensor in spatial basis

Iρ = ΛJρΛT , Jρ = diag([J1, J2, J3]), (6.11)

where Jρ is the constant inertia tensor for the cross section in the reference
configuration.

In the absence of external forces ñ and m̃, we assume pure displacement
boundary conditions, such that ϕ and Λ are described at the boundaries S = 0
and S = L. Then the total energy E (Hamiltonian) [22, 11] of the problem
(6.9)–(6.10) is given by

E = T + U =
1
2

∫ L

0

〈ϕ̇, ρAϕ̇〉+ 〈w, Iρw〉 dS +
1
2

∫ L

0

〈γ,DNγ〉+ 〈ω,DMω〉 dS,

(6.12)
where the first integral in the sum is the kinetic energy T and the second is the
potential energy U .
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6.2.2 Quaternions

We here review briefly the main properties of quaternions and introduce some
notations that will be used throughout this paper, more information on this
subject is found in e.g. [20]. The quaternions,

H := {q = (q0, q) ∈ R× R3, q = (q1, q2, q3)T } ∼= R4,

is a strictly skew field [3]. Addition and multiplication of two quaternions, p =
(p0,p), q = (q0, q) ∈ H, are defined by

p+ q = (p0 + q0,p+ q)

and
pq = (p0q0 − pTq, p0q + q0p+ p× q), (6.13)

respectively. For q 6= (0,0) there exist an inverse

q−1 = qc/‖q‖2, ‖q‖ =
√
q2
0 + ‖q‖22,

where qc = (q0,−q) is the conjugate of q, such that qq−1 = q−1q = e = (1,0).
In the sequel we will consider q ∈ H as a vector q = (q0, q1, q2, q3)T ∈ R4. The
multiplication rule (6.13) can then be expressed by means of a matrix-vector
product in R4. Namely, pq = L(p)q = R(q)p, where

L(p) =
[
p0 −pT
p (p01+ p̂)

]
, R(q) =

[
q0 −qT
q (q01− q̂)

]
(6.14)

and 1 is the 3 × 3 identity matrix. Note that R(q) and L(p) commutes, i.e.
R(q)L(p) = L(p)R(q).

Three-dimensional rotations in space can be represented by unit quaternions,
sometimes referred to as Euler parameters,

S3 = {q ∈ H | ‖q‖ = 1}.

S3 with the quaternion product is a Lie group, and q−1 = qc while e = (1,0)
is the identity. There is a (surjective 2 : 1) group homomorphism (the Euler-
Rodriguez map) E : S3 → SO(3), defined by

E(q) = 1+ 2q0q̂ + 2q̂2,

and therefore S3 is a double-covering of SO(3). The Euler-Rodriguez map can
be explicitly written as

E(q) =

 1− 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q0q3 + q1q2) 1− 2(q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q2
1 + q2

2)

 . (6.15)
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A rotation in R3,
w = Qv, Q ∈ SO(3), v,w ∈ R3,

can, for some q ∈ S3, be expressed in quaternionic form as

W = L(q)R(qc)V = R(qc)L(q)V, V = (0,v), W = (0,w) ∈ HP , (6.16)

where HP = {q ∈ H | q0 = 0} ∼= R3 is the set of so called pure quaternions. It
also follows from straightforward computations that

L(q)R(qc) = R(qc)L(q) =
[

1 0T

0 E(q)

]
, 0 = (0, 0, 0)T ∈ R3.

It is also evident that ∀ q ∈ S3, L(q), R(q) ∈ O(4) are orthogonal matrices, such
that L(q)L(q)T = L(q)L(qc) = 14×4, R(q)R(q)T = R(q)R(qc) = 14×4.

6.2.2.1 The Lie algebra s3

If q ∈ S3, it follows from qqc = e that

s3 := TeS3 = HP .

The Lie algebra s3, associated to S3, is equipped with a Lie bracket [ · , · ]s :
s3 × s3 → s3,

[V ,W ]s := [L(V )W − L(W )V ] = (0, 2v ×w) ∈ s3,

where V = (0,v), W = (0,w) ∈ s3.
The derivative map of E is E∗ = TeE : s3 → so(3) is given by

E∗(V ) = 2v̂, V = (0,v) ∈ s3, (6.17)

and it is a Lie algebra isomorphism. Assume now that q ∈ S3 is such that
E(q(S, t)) = Λ(S, t), then L(qc)q̇ ∈ s3, ΛT Λ̇ ∈ so(3) and

E∗(L(qc)q̇) = ΛT Λ̇. (6.18)

Further, it can be shown that

E∗(L(q)R(qc)V ) = 2Ê(q)v ∀q ∈ S3, V = (0,v) ∈ s3, (6.19)

and as a consequence of (6.18) and (6.19) the kinematics of the cross sections
(6.2) and (6.3) can be formulated in unit quaternions S3 as

q̇ =
1
2
L(q)W =

1
2
R(q)w, q′ =

1
2
L(q)Ω =

1
2
R(q)ω, (6.20)

W = 2L(qc)q̇, Ω = 2L(qc)q′, w = 2R(qc)q̇, ω = 2R(qc)q′, (6.21)

where W = (0,W ), w = (0,w), Ω = (0,Ω), ω = (0,ω) ∈ s.
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6.2.3 Hamiltonian formulation of the free rigid body

Following [18] we write an Hamiltonian formulation of the free rigid body motion
in unit quaternions S3, see also [5] for constrained formulation of the rigid body
in quaternions.

Having in mind the expression for the angular velocity in unit quaternions
(6.21), the kinetic energy (total energy) is defined by,

L =
1
2
〈W, J̃W〉 = 2〈q̇, L(q)J̃L(qc)q̇〉,

where

J̃ =
[
α 0T

0 J

]
, α ∈ R, (6.22)

is the constant inertia matrix J = diag([J1, J2, J3]) extended to R4×4. From the
Legendre transformation one obtains the conjugate momenta

p :=
∂L
∂q̇

= 4L(q)J̃L(qc)q̇ ∈ T ∗
q
S3, (6.23)

and the map TqS3 → T ∗
q
S3 (6.23) is invertible for any α. Infact, q ∈ S3 implies

〈q, q̇〉 = 0 and L(qc)q̇ ∈ HP . Consequently, α has no significance when q ∈ S3.
Taking α 6= 0 we can write the Hamiltonian formulation of the free rigid body

p =
1
4
L(p)J̃L(qc)q̇,

q̇ =
1
4
L(q)J̃

−1
L(qc)p.

This motivates a similar extension of the matrices Jρ and CM in the sections
that follow.

6.3 Formulation of the Hamiltonian in quater-
nions

We will obtain the augmented Hamiltonian formulation on the cotangent bundle
of R3×H with the holonomic constraint g(q) := ‖q‖2−1 = 0, from the augmented
Lagrangian

L(u,ut,uS) = T − U − λ(‖q‖2 − 1), u = (ϕ,q)T ∈ R3 ×H. (6.24)

We extend for convenience the inertia tensor Jρ ∈ R3×3 to J̃ρ ∈ R4×4, and
analogously CM ∈ R3×3 to C̃M ∈ R4×4 invertible 4 × 4-matrices, so that the
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new Lagrangian becomes regular on T (R3 ×H). In particular

J̃ρ =
[
α 0T

0 Jρ

]
, C̃M =

[
α 0T

0 CM

]
, α 6= 0,

and accordingly

Ĩρ = L(q)R(qc)J̃ρL(qc)R(q), D̃M = L(q)R(qc)C̃ML(qc)R(q). (6.25)

This is convinient for the actual inversion of the Legendre transform when con-
structing the augmented Hamiltonian and multi-symplectic Hamiltonian, respec-
tively. See [19] for general framework of constrained multi-symplectic theory.

The kinetic- and potential energy density functions, (6.12), are expressed in
quaternions by

T =
1
2

[
〈ϕ̇, ρAϕ̇〉+ 4〈q̇, R(q)ĨρR(qc)q̇〉

]
, (6.26)

U =
1
2

[
〈γ,DNγ〉+ 4〈q′, R(q)D̃MR(qc)q′〉

]
, (6.27)

see also [22, 11, 24]. Here w, ω ∈ HP are defined as in (6.21) and

γ = ϕ′ − E(q)e1.

We now introduce the conjugate variables, pϕ and p, via the Legendre transform

pϕ :=
∂L
∂ϕ̇

= ρAϕ̇, (6.28)

p :=
∂L
∂q̇

= 4L(q)J̃ρL(qc)q̇ = 4R(q)ĨρR(qc)q̇ ∈ T ∗H, (6.29)

and finally obtain the augmented Hamiltonian

H =
∫ L

0

h(u,p,uS) dS, p = (pϕ,p), (6.30)

where h is the energy density function,

h(u,p,uS) = 〈pϕ, ϕ̇(pϕ)〉+ 〈p, q̇(q,p)〉 − L(u,ut(u,p),uS)

=
1
2

[
〈pϕ, ρ−1

A pϕ〉+
1
4
〈p, R(q)Ĩ

−1

ρ R(qc)p〉
]

+
1
2

[
〈γ,DNγ〉+ 4〈q′, R(q)D̃MR(qc)q′〉

]
+ λ(‖q‖2 − 1),

(6.31)
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and
ϕ̇(pϕ) = ρ−1

A pϕ, q̇(q,p) =
1
4
R(q)Ĩ

−1

ρ R(qc)p. (6.32)

The abstract form of the equation of motion for the constrained Hamiltonian
problem is stated as

∂tx =J δH
δx

, J :=
[

0 1

−1 0

]
∈ R14×14, (6.33)

g(x) = 0, g(x) := ‖q‖2 − 1, (6.34)

where 1 is the 7 × 7 identity matrix, x = (u,p)T ∈ R14, u = (ϕ,q)T ∈ R7 and
p = (pϕ,p)T ∈ R7. In other words, a constrained system of partial differential
equations

∂tu =
[
ϕ̇
q̇

]
=

[
ρ−1
A pϕ

(1/4)R(q)Ĩ
−1

ρ R(qc)p

]
, (6.35)

∂tp =
[
ṗϕ
ṗ

]
=
[
−∂h/∂ϕ+ ∂S(∂h/∂ϕ′)
−∂h/∂q+ ∂S(∂h/∂q′)

]
, (6.36)

0 = ‖q‖2 − 1. (6.37)

Here, the equation for pϕ in (6.36) is

ṗϕ = [DN , ω̂]γ −DNγ
′, (6.38)

where [ · , · ] is the usual commutator for 3× 3-matrices ([A,B] = AB −BA),

γ′ = ϕ′′ − ω̂E(q)e1

and
ω(q,q′) = 2(q0q

′ − q′0q + q̂q′) = 2 [−q (q01− q̂)]q′.

The equation for p, (6.36), becomes

ṗ =
1
4
R(q)L(p)L(qc)Ĩ

−1

ρ R(qc)p+R(q)
[
L(ϕ′)−R(ϕ′)

] [ 0
DNγ

]
+ 2R(q)

[
L(ω)D̃Mω + D̃Mω

′
]

+ 2〈(E(q)− 1)ϕ′,DNγ〉q− 2λq. (6.39)

Detailed calculations for the equations of motions can be found in the ap-
pendix 6.5.1.1–6.5.1.2, as well as the solution for the Lagrange multiplier (6.5.2),

λ = −〈ω, D̃Mω〉 − 〈(1− E(q))ϕ′,DNγ〉.

Substituting the above expression for λ in (6.39) and multiplying with (1/2)R(qc)
from the left and using (6.29), one reproduces (6.10) (formulated in quaternions).
Equation (6.9) is reproduced from (6.38) by using (6.28).
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6.4 Multi-symplectic formulation

6.4.1 Review of multi-symplectic PDEs

A PDE is said to be multi-symplectic if it can be written as a linear system of
first order equations of the type

Mzt +Kzx = ∇zS(z), (6.40)

where z ∈ Rd, M and K are skew-symmetric d × d-matrices and S : Rd → R is
a smooth function, see [8] and [9] for a comprehensive description. Defining the
two-forms

ω := dz ∧Mdz, κ := dz ∧Kdz, (6.41)

any solution dz, of the variational equation associated with (6.40), will satisfy
the multi-symplectic conservation law

∂tω + ∂xκ = 0. (6.42)

The equation (6.40) also obeys the local energy and momentum conservation
laws, i.e.

∂te(z) + ∂xf(z) = 0, and ∂ti(z) + ∂xg(z) = 0, (6.43)

where
e(z) = S(z)− 1

2
zTxK

T z, f(z) =
1
2
zTt K

T z, (6.44)

g(z) = S(z)− 1
2
zTt M

T z, i(z) =
1
2
zTxM

T z. (6.45)

Integrating the densities f(z) and i(z) over the spatial domain one obtains, for
suitable boundary conditions, the global conservative quantities of energy E(z)
(6.12) and momentum I(z),

E(z) =
∫ L

0

e(z) dx, and I(z) =
∫ L

0

i(z) dx, (6.46)

such that (d/dt)E(z) = (d/dt)I(z) = 0.

6.4.2 The multi-symplectic formulation S
We construct the constrained multi-symplectic formulation in quaternions by
defining

S(u,p,v) = 〈p,ut(p)〉+ 〈v,uS(v)〉 − L(u,ut(p),uS(v)), (6.47)
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where L(u,ut(p),uS(v)) is the Lagrangian (6.24) defined in the previous section,
p = (pϕ,p)T ∈ R7 are given by the former Legendre transforms (6.28)–(6.29)
and v = (vϕ,v)T ∈ R7 are the second conjugate variables defined by

vϕ :=
∂L
∂ϕ′

= −DNγ = −n, (6.48)

v :=
∂L
∂q′

= −4L(q)C̃ML(qc)q′ = −4R(q)D̃MR(qc)q′ ∈ T ∗H (6.49)

such that

ϕ′(q,vϕ) = −D−1
N vϕ + E(q)e1, (6.50)

q′(q,v) = − 1
4
R(q)D̃

−1

M R(qc)v. (6.51)

We can write the Lagrangian as a function of first and second conjugate variables
p and v,

L(u,ut(p),uS(v)) =
1
2

[
〈pϕ, ρ−1

A pϕ〉+
1
4
〈p, R(q)Ĩ

−1

ρ R(qc)p〉
]

− 1
2

[
〈vϕ,D−1

M vϕ〉+
1
4
〈v, R(q)D̃

−1

M R(qc)v〉
]

− λ(‖q‖2 − 1), (6.52)

and consequently

S(u,p,v) =
1
2

[
〈pϕ, ρ−1

A pϕ〉+
1
4
〈p, R(q)Ĩ

−1

ρ R(qc)p〉
]

− 1
2

[
〈vϕ,D−1

N vϕ − 2E(q)e1〉+
1
4
〈v, R(q)D̃

−1

M R(qc)v〉
]

+ λ(‖q‖2 − 1). (6.53)

Hence, the equations of motion are

∂S
∂u

= − ∂tp− ∂Sv, (6.54)

∂S
∂p

= ∂tu, (6.55)

∂S
∂v

= ∂Su, (6.56)

0 = ‖q‖2 − 1. (6.57)
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Let z = (u,p,v, λ)T ∈ R22, then (6.54)–(6.57) can be written in the general
multi-symplectic form (6.40) where

M =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K =


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ∈ R22×22,

and 1 is the 7 × 7 identity matrix. The partial derivatives of S with respect to
ϕ and q (6.54), respectively, are:

∂S
∂ϕ

= 0, (6.58)

and
∂S
∂q

= − 1
4
R(q)L(p)L(qc)Ĩ

−1

ρ R(qc)p+
1
4
R(q)L(v)L(qc)D̃

−1

M R(qc)v

+R(q) [L(vϕ)−R(vϕ)]
[

0
D−1
N vϕ − E(q)e1

]
+ 2〈(E(q)− 1)vϕ,D−1

N vϕ − E(q)e1〉q+ 2λq. (6.59)

Equations (6.55) and (6.56) are given by (6.32) and (6.50)–(6.51), respectively.
Differentiating the constraint g(q) = 0 twice, see appendix 6.5.3.1, yields

λ = −〈(E(q)− 1)vϕ,D−1
N vϕ − E(q)e1〉.

Analogously to the Hamiltonian case, by a similar procedure as the one in the
end of section 6.3, one can verify that the multi-symplectic formulation is refor-
mulation of the original equations (6.9)–(6.10) in quaternions.

6.5 Appendix

6.5.1 Equations of motions: The Hamiltonian formulation

Detailed calculations for the variational derivative δH/δu (6.33)

δH
δϕ

=
∂h

∂ϕ
− ∂S

∂h

∂ϕ′
, and

δH
δq

=
∂h

∂q
− ∂S

∂h

∂q′
. (6.60)

6.5.1.1 Variational derivative with respect to δϕ

Straight forward computations give the second term in first equation of (6.60),

∂h

∂ϕ′
=

∂

∂ϕ′

[
1
2
〈γ,DNγ〉

]
= DNγ = n. (6.61)
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Since γ = ϕ′ − E(q)e1, we can compute the second term in the first equation
(6.60)

∂S
∂h

∂ϕ′
= D′Nγ +DNγ

′ = [ω̂,DN ]γ +DNγ
′ (6.62)

where [ · , · ] denotes the usual commutator for 3×3-matrices, γ′ = ϕ′′− ω̂E(q)e1

and

ω(q,q′) = 2(q0q
′ − q′0q + q̂q′) = 2

 q0q
′
1 − q′0q1 − q3q

′
2 + q2q

′
3

q0q
′
2 − q′0q2 − q1q

′
3 + q3q

′
1

q0q
′
3 − q′0q3 − q2q

′
1 + q1q

′
2

 .
Finally ∂h/∂ϕ = 0, and the first equation of (6.60) follows

δH
δϕ

= [ω̂,DN ]γ +DNγ
′. (6.63)

6.5.1.2 Variational derivative with respect to δq

Differentiating the terms of the Hamiltonian density function h (6.31) with re-
spect to q. We have

∂

∂q
〈p, R(q)Ĩ

−1

ρ R(qc)p〉 =
∂

∂q
〈L(qc)p, J̃

−1

ρ L(qc)p〉

= 2
(
∂(L(qc)p)

∂q

)T
J̃
−1

ρ L(qc)p

= − 2R(q)L(p)L(qc)Ĩ
−1

ρ R(qc)p, (6.64)

and similarly

∂

∂q
〈q′, R(q)D̃MR(qc)q′〉 = − 2R(q)L(q′)L(qc)D̃MR(qc)q′

= − 1
2
R(q)L(ω)D̃Mω. (6.65)

Further, differentiation of 〈γ, D̃Nγ〉 = 〈Γ, C̃NΓ〉, where Γ = E(q)Tϕ′− e1, with
respect to q gives

∂

∂q
〈γ, D̃Nγ〉 = 2

[
0
(
∂Γ
∂q

)T ] [
0

CNΓ

]
= 4

[
0 −(q ×ϕ′)T

0 q̂ ×ϕ′ − q0ϕ̂′ − ϕ̂′q̂

] [
0

CNΓ

]
. (6.66)
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The above expression (6.66) can be simplified and written in a more convenient
form

4
[

0 −(q ×ϕ′)T

0 q̂ ×ϕ′ − q0ϕ̂′ − ϕ̂′q̂

] [
0

CNΓ

]
=

2R(q) [R(ϕ′)− L(ϕ′)]
[

0
DNγ

]
+ 4〈(1− E(q))ϕ′,DNγ〉q, (6.67)

where ϕ′ = (0,ϕ′) ∈ HP .
To find an explicit expression for the second term ∂S(∂h/∂q′) (6.60) we first

have
∂S (L(q)R(qc)) = L(q′)R(qc) + L(q)R((qc)′),

and, since L(q)L(qc) = R(q)R(qc) = 14×4, one has L(q′)L(qc) = −L(q)L((qc)′),
R(q′)R(qc) = −R(q)R((qc)′). So, from ω = 2R(qc)q′, it follows

∂S (L(q)R(qc)) =
1
2

[L(ω)−R(ω)]L(q)R(qc).

The latter identity yields

∂SD̃M =
1
2

[
(L(ω)−R(ω)) , D̃M

]
, (6.68)

where [ · , · ] is the usual commutator for 4× 4-matrices. Thus, we have

∂h

∂q′
=

∂

∂q′

[
2〈q′, R(q)D̃MR(qc)q′〉

]
= 4R(q)D̃MR(qc)q′ = 2R(q)D̃Mω,

(6.69)
and using the identity (6.68)

∂S
∂h

∂q′
= 2R(q′)D̃Mω +R(q)

[
(L(ω)−R(ω)) , D̃M

]
ω + 2R(q)D̃Mω

′

=R(q)
(
L(ω)D̃Mω + 2D̃Mω

′
)
. (6.70)

Finally, with aid from the above results we obtain the equation for δH/δq =
∂h/∂q− ∂S(∂h/∂q′) (6.60), where h is the density function (6.31),

δH
δq

= − 1
4
R(q)L(p)L(qc)Ĩ

−1

ρ R(qc)p− 2R(q)
(
L(ω)D̃Mω + D̃Mω

′
)

+ 2λq

+R(q) [R(ϕ′)− L(ϕ′)]
[

0
DNγ

]
+ 2〈(1− E(q))ϕ′,DNγ〉q. (6.71)
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6.5.2 Solution of the Lagrange multiplier λ

Differentiating the constraint g(q) := ‖q‖2 − 1 = 0 with respect to t, ∂tg(q) =

2〈q̇,q〉 = 0, inserting the expression for q̇ = (1/4)R(q)Ĩ
−1

ρ R(qc)p (6.32),

∂tg(q) =
1
2
〈R(q)Ĩ

−1

ρ R(qc)p,q〉 =
1
2
〈Ĩ
−1

ρ R(qc)p, e〉 =
1
2
〈q,p〉,

gives the second constraint
1
2
〈q,p〉 = 0. (6.72)

Differentiating (6.72) once again,

1
2

[〈q̇,p〉+ 〈q, ṗ〉] = 0,

and plugging in the equations for ṗ and q̇,

1
2

[〈q̇,p〉+ 〈q, ṗ〉] =
1
2

[
〈w, Ĩρw〉 − 〈w, Ĩρw〉

]
−〈ω, D̃Mω〉−〈(1−E(q))ϕ′,DNγ〉−λ

gives the solution for the Lagrange multiplier λ

λ = −〈ω, D̃Mω〉 − 〈(1− E(q))ϕ′,DNγ〉. (6.73)

6.5.3 Equations for the rotation q: The multi-symplectic
formulation

The calculations are similar as for the Hamiltonian formulation. In particular,
note that

〈vϕ,D−1
N vϕ − 2E(q)e1〉 = 〈E(q)Tvϕ,C−1

N E(q)Tvϕ − 2e1〉

and

∂

∂q
〈vϕ,D−1

N vϕ−2E(q)e1〉 = 2

[
0
(
∂(E(q)Tvϕ)

∂q

)T ] [
0

C−1
N E(q)Tvϕ − e1

]
= 4

[
0 −(q × vϕ)T

0 q̂ × vϕ − q0v̂ϕ − v̂ϕq̂

] [
0

C−1
N E(q)Tvϕ − e1

]
.

Comparing with (6.67) in the Hamiltonian case, we see that the above expression
can be rewritten,

∂

∂q
〈vϕ,D−1

N vϕ − 2E(q)e1〉 = 2R(q)
[
R(vϕ)− L(vϕ)

] [ 0
D−1
N vϕ − E(q)e1

]
+ 4〈(1− E(q))vϕ,D−1

N vϕ − E(q)e1〉q.
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6.5.3.1 Solution for the Lagrange multiplier in the multi-symplectic
case

Differentiation of the constraint, g(q) := ‖q‖2−1 = 0, in time and space, respec-
tively, gives two hidden constraints

〈p,q〉 = 0, 〈v,q〉 = 0. (6.74)

Differentiating twice yields

(∂2
t + ∂2

S)g(q) = 〈q,v′ + ṗ〉+ 〈q′,v〉+ 〈q̇,p〉
= 〈(E(q)− 1)vϕ,D−1

N vϕ − E(q)e1〉+ λ = 0. (6.75)
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