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Abstract. This paper concerns an extension of discrete gradient methods to finite-dimensional
Riemannian manifolds termed discrete Riemannian gradients, and their application to dissipative
ordinary differential equations. This includes Riemannian gradient flow systems which occur natu-
rally in optimization problems. The Itoh–Abe discrete gradient is formulated and applied to gradient
systems, yielding a derivative-free optimization algorithm. The algorithm is tested on two eigenvalue
problems and two problems from manifold valued imaging: interferometric synthetic aperture radar
denoising and diffusion tensor imaging denoising.
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1. Introduction. When designing and applying numerical schemes for solving
systems of ODEs and PDEs there are several important properties which serve to
distinguish schemes, one of which is the preservation of geometric features of the orig-
inal system. The field of geometric integration encompasses many types of numerical
schemes for ODEs and PDEs specifically designed to preserve one or more such ge-
ometric features; a nonexhaustive list of features includes symmetry, symplecticity,
first integrals (or energy), orthogonality, and manifold structures such as Lie group
structure [14]. Energy conserving methods have a successful history in the field of
numerical integration of ODEs and PDEs. In a similar vein, numerical schemes with
guaranteed dissipation are useful for solving dissipative equations such as gradient
systems.

As seen in [17], any Runge–Kutta method can be dissipative when applied to
gradient systems as long as step sizes are chosen small enough; less severe but still
restrictive conditions for dissipation in Runge–Kutta methods are presented in [13].
In [10], Gonzalez introduces the notion of discrete gradient schemes with energy pre-
serving properties, later expanded upon to include dissipative systems in [21]. These
articles consider ODEs in Euclidian spaces only with the exception of [13], where
the authors also consider Runge–Kutta methods on manifolds defined by constraints.
Unlike the Runge–Kutta methods, discrete gradient methods are dissipative for all
step sizes, meaning one can employ adaptive time steps while retaining convergence
toward fixed points [25]. However, one may experience a practical step size restriction
when applying discrete gradient methods to very stiff problems, due to the lack of
L-stability as seen when applying the Gonzalez and mean value discrete gradients to
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problems with quadratic potentials [13], [15]. Motivated by their work on Lie group
methods, the energy conserving discrete gradient method was generalized to ODEs on
manifolds, and Lie groups particularly, in [7], where the authors introduce the concept
of discrete differentials. In [5], this concept is specialized in the setting of Riemannian
manifolds. To the best of our knowledge, the discrete gradient methods have not yet
been formulated for dissipative ODEs on manifolds. Doing so is the central purpose
of this article.

One of the main reasons for generalizing discrete gradient methods to dissipative
systems on manifolds is that gradient systems are dissipative, and gradient flows are
natural tools for optimization problems which arise in, e.g., manifold-valued image
processing and eigenvalue problems. The goal is then to find one or more stationary
points of the gradient flow of a functional V : M → R, which correspond to critical
points of V . This approach is, among other optimization methods, presented in [1].
Since gradient systems occur naturally on Riemannian manifolds, it is natural to
develop our schemes in a Riemannian manifold setting.

A similarity between the optimization algorithms in [1] and the manifold valued
discrete gradient methods in [7] is their use of retraction mappings. Retraction map-
pings were introduced for numerical methods in [26] (see also [2]); they are intended as
computationally efficient alternatives to parallel transport on manifolds. Our meth-
ods will be formulated as a framework using general discrete gradients on general
Riemannian manifolds with general retractions. We will consider a number of specific
examples that illustrate how to apply the procedure in practical problems.

As detailed in [11] and [22], using the Itoh–Abe discrete gradient [18], one can
obtain an optimization scheme for n-dimensional problems with a limited degree of
implicitness. At every iteration, one needs to solve n decoupled scalar nonlinear sube-
quations, amounting to O(n) operations per step. In other discrete gradient schemes
a system of n coupled nonlinear equations must be solved per iteration, amounting
to O(n2) operations per step. The Itoh–Abe discrete gradient method therefore ap-
pears to be well suited to large-scale problems such as image analysis problems, and
so it seems natural to apply our new methods to image analysis problems on man-
ifolds; see subsection 4.2. In [7], the authors generalize the average vector field [16]
and midpoint [10] discrete gradients, but not the Itoh–Abe discrete gradient, to Lie
groups and homogeneous manifolds. A novelty of this article is the formulation of the
Itoh–Abe discrete gradient for problems on manifolds.

As examples we will consider two eigenvalue finding problems, in addition to the
more involved problems of denoising interferometric synthetic aperture radar (InSAR)
and diffusion tensor imaging (DTI) images using total variation (TV) regularization
[30]. The latter two problems we consider as real applications of the algorithm. The
two eigenvalue problems are included mostly for the exposition and illustration of our
methods, as well as for testing convergence properties.

The paper is organized as follows. Below, we introduce notation and fix some
fundamental definitions used later on. In the next section, we formulate the dissi-
pative problems we wish to solve. In section 3, we present the discrete Riemannian
gradient (DRG) methods, a convergence proof for the family of optimization meth-
ods obtained by applying DRG methods to Riemannian gradient flow problems, the
Itoh–Abe discrete gradient generalized to manifolds, and the optimization algorithm
obtained by applying the Itoh–Abe DRG to the gradient flow problem. In section 4,
we provide numerical experiments to illustrate the use of DRGs in optimization, and
in the final section we present conclusions and avenues for future work.
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DISSIPATIVE SCHEMES ON RIEMANNIAN MANIFOLDS A3791

Table 1.1
Notational conventions.

Notation Description
M n-dimensional Riemannian manifold
TpM tangent space at p ∈M with zero vector 0p
T ∗pM cotangent space at p ∈M
TM tangent bundle of M
T ∗M cotangent bundle of M
X(M) space of vector fields on M
g(·, ·) Riemannian metric on M
‖ · ‖p norm induced on TpM by g
{El}nl=1 g-orthogonal basis of TpM

Notation and preliminaries. Some notation and definitions used in the fol-
lowing are summarized below and in Table 1.1. For a more thorough introduction to
the concepts, see, e.g., [19] or [20].

On any differentiable manifold there is a duality pairing 〈·, ·〉 : T ∗M × TM → R
which we will denote as 〈ω, v〉 = ω(v). Furthermore, the Riemannian metric sets
up an isomorphism between TM and T ∗M via the linear map v 7→ g(v, ·). This
map and its inverse, termed the musical isomorphisms, are known as the flat map
[ : TM → T ∗M and sharp map ] : T ∗M → TM , respectively. The applications of
these maps are also termed index raising and lowering when considering the tensorial
representation of the Riemannian metric. Note that with the above notation we have
the idiom x[(y) =

〈
x[, y

〉
= g(x, y).

On a Riemannian manifold, one can define gradients: For V ∈ C∞(M), the
(Riemannian) gradient with respect to g, gradgV ∈ X(M), is the unique vector field
such that g(gradgV,X) = 〈dV,X〉 for all X ∈ X(M). In the language of musical

isomorphisms, gradgV = (dV )]. For the remainder of this article, we will write
gradV for the gradient and assume that it is clear from the context which g is to be
used.

Furthermore, the geodesic between p and q is the unique curve of minimal length
between p and q, providing a distance function dM : M ×M → R. The geodesic
γ passing through p with tangent v is given by the Riemannian exponential at p,
γ(t) = expp(tv). For any p, expp is a diffeomorphism on a neighborhood Np of 0p, The
image expp(Sp) of any star-shaped subset Sp ⊂ Np is called a normal neighborhood
of p, and on this, expp is a radial isometry, i.e., dM (p, expp(v)) = ‖v‖p for all v ∈ Sp.

2. The problem. We will consider ODEs of the form

u̇ = F (u), u(0) = u0 ∈M,(2.1)

where F ∈ X(M) has an associated energy V : M → R dissipating along solutions of
(2.1). That is, with u(t) a solution of (2.1),

d

dt
V (u) = 〈dV (u), u̇〉 = 〈dV (u), F (u)〉 = g(gradV (u), F (u)) ≤ 0.

An example of such an ODE is the gradient flow. Given an energy V , the gradient
flow of V with respect to a Riemannian metric g is

u̇ = −gradV (u),(2.2)D
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A3792 CELLEDONI, EIDNES, OWREN, AND RINGHOLM

which is dissipative since if u(t) solves (2.2), we have

d

dt
V (u) = −g (gradV (u), gradV (u)) ≤ 0.

Remark. This setting can be generalized by an approach similar to [21]. Suppose
there exists a (0,2) tensor field h on M such that h(x, x) ≤ 0. We can associate to h
the (1,1) tensor field H : TM → TM given by Hx = h(x, ·)]. Consider the system

u̇ = HgradV (u).(2.3)

This system dissipates V , since

d

dt
V (u) = 〈dV (u), HgradV (u)〉

= g (gradV (u), HgradV (u))

= h (gradV (u), gradV (u)) ≤ 0.

Any dissipative system of the form (2.1) can be written in this form on the set M\{p ∈
M : g(F (p), gradV (p)) = 0} since, given F and V , we can construct h as follows:

h =
1

g(F, gradV )
F [ ⊗ F [.

If F = −gradV , we take h = −g such that H becomes −Id and recover (2.2). In the
following, we mainly discuss the case F = −gradV for the sake of notational clarity.

3. Numerical scheme. The discrete differentials in [7] are formulated such
that they may be used on non-Riemannian manifolds. Since we restrict ourselves to
Riemannian manifolds, we define their analogues: discrete Riemannian gradients. As
with the discrete differentials, we shall make use of retractions as defined in [26].

Definition 3.1. Let φ : TM →M and denote by φp the restriction of φ to TpM .
Then, φ is a retraction if the following conditions are satisfied:

• φp is smooth and defined in an open ball Brp(0p) of radius rp around 0p, the
zero vector in TpM .

• φp(v) = p if and only if v = 0p.
• Identifying T0pTpM ' TpM , φp satisfies

dφp
∣∣
0p

= idTpM ,

where idTpM denotes the identity mapping on TpM .

From the inverse function theorem it follows that for any p, there exists a neigh-
borhood Up,φ ∈ TpM of 0p such that φp : Up,φ → φp(Up,φ) is a diffeomorphism. In
general, φp is not a diffeomorphism on the entirety of TpM and so all the following
schemes must be considered local in nature. The canonical retraction on a Rieman-
nian manifold is the Riemannian exponential. It may be computationally expensive
to evaluate even if closed expressions for geodesics are known, and so one often wishes
to come up with less costly retractions if possible. We are now ready to introduce the
notion of DRGs.

Definition 3.2. Given a retraction φ, a function c : M×M →M where c(p, p) =
p for all p ∈ M , and a continuous V : M → R, then gradV : M ×M → TM is a
DRG of V if it is continuous and, for all p, q ∈ Uc(p,q),φ,

V (q)− V (p) = g
(

gradV (p, q), φ−1c(p,q)(q)− φ
−1
c(p,q)(p)

)
,(3.1)

gradV (p, p) = gradV |p.(3.2)
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DISSIPATIVE SCHEMES ON RIEMANNIAN MANIFOLDS A3793

We formulate a numerical scheme for (2.2) based on this definition. Given times
0 = t0 < t1 < . . ., let uk denote the approximation to u(tk) and let τk = tk+1 − tk.
Then, we take

uk+1 = φck
(
W
(
uk, uk+1

))
,(3.3)

W (uk, uk+1) = φ−1
ck

(uk)− τk gradV (uk, uk+1),(3.4)

where ck = c(uk, uk+1). In the above and all of the following, we assume that uk

and uk+1 lie in Uck,φ ∩ Sck . The following proposition verifies that the scheme is
dissipative.

Proposition 3.3. The sequence {uk}k∈N generated by the DRG scheme (3.3)–
(3.4) satisfies V (uk+1)− V (uk) ≤ 0 for all k ∈ N.

Proof. Using property (3.1) and (3.3) and (3.4), we get

V (uk+1)− V (uk) = g
(
gradV

(
uk, uk+1

)
, φ−1
ck

(
uk+1

)
− φ−1

ck

(
uk
))

= g
(
gradV

(
uk, uk+1

)
,W

(
uk, uk+1

)
− φ−1

ck

(
uk
))

= −τkg
(
gradV

(
uk, uk+1

)
, gradV

(
uk, uk+1

))
≤ 0.

Remark. This extends naturally to schemes for (2.3) by exchanging (3.4) for

W (uk, uk+1) = φ−1
ck

(uk) + τkH(uk,uk+1) gradV (uk, uk+1),

where H(p,q) is the (1,1) tensor associated with a negative semidefinite (0,2) tensor

field h(p,q) : Tc(p,q)M × Tc(p,q)M → R approximating h|p consistently.
Two DRGs, the average vector field DRG and the Gonzalez DRG, can be easily

found by index raising the discrete differentials defined in [7]. We will later generalize
the Itoh–Abe discrete gradient, but first we present a proof that the DRG scheme
converges to a stationary point when used as an optimization algorithm. We will
need the following definition of coercivity.

Definition 3.4. A function V : M → R is coercive if, for all v ∈ M , every se-
quence {uk}k∈N ⊂M such that limk→∞ dM (uk, v) =∞ also satisfies limk→∞ V (uk) =
∞.

We will also need the following theorem from [28], concerning the boundedness
of the sublevel sets Mµ = {u ∈M : V (u) ≤ µ} of V .

Theorem 3.5. Assume M is unbounded. Then the sublevel sets of V : M → R
are bounded if and only if V is coercive.

Proof. See [28, Chapter 1, Theorem 8.6] and the remarks below it.

Equipped with this, we present the following theorem, the proof of which is in-
spired by that of the convergence theorem in [11].

Theorem 3.6. Assume that M is geodesically complete, that V : M → R is
coercive, bounded from below, and continuously differentiable, and that gradV is con-
tinuous. Then, the iterates {uk}k∈N produced by applying the DRG scheme (3.3)–(3.4)
with time steps 0 < τmin ≤ τk ≤ τmax and ck = uk or ck = uk+1 to the gradient flow
of V satisfy

lim
k→∞

gradV (uk, uk+1) = lim
k→∞

gradV (uk) = 0.

Additionally, there exists at least one accumulation point u∗ of {uk}k∈N, and any such
accumulation point satisfies gradV (u∗) = 0.
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Proof. Since V is bounded from below and by Proposition 3.3, we have

C ≤ V (uk+1) ≤ V (uk) ≤ · · · ≤ V (u0)

such that, by the monotone convergence theorem, V ∗ := limk→∞ V (uk) exists. Fur-
thermore, by property (3.1) and using the scheme (3.3)–(3.4),

1

τk

∥∥φ−1
ck

(uk)− φ−1
ck

(uk+1)
∥∥2
ck

= τk
∥∥gradV (uk, uk+1)

∥∥2
ck

= g
(
gradV (uk, uk+1), φ−1

ck
(uk)− φ−1

ck
(uk+1)

)
= V (uk)− V (uk+1).

From this, it is clear that for any i, j ∈ N,

j−1∑
k=i

τk
∥∥gradV (uk, uk+1)

∥∥2
ck

= V (ui)− V (uj) ≤ V (u0)− V ∗

and

j−1∑
k=i

1

τk

∥∥φ−1
ck

(uk)− φ−1
ck

(uk+1)
∥∥2
ck

= V (ui)− V (uj) ≤ V (u0)− V ∗.

In particular,

∞∑
k=0

∥∥gradV (uk, uk+1)
∥∥2
ck
≤ V (u0)− V ∗

τmin

and
∞∑
k=0

∥∥φ−1
ck

(uk)− φ−1
ck

(uk+1)
∥∥2
ck
≤ τmax

(
V (u0)− V ∗

)
,

meaning

lim
k→∞

∥∥gradV (uk, uk+1)
∥∥
ck

= 0,

lim
k→∞

∥∥φ−1
ck

(uk)− φ−1
ck

(uk+1)
∥∥
ck

= 0.

Since uk+1 is in a normal neighborhood of ck,

dM (ck, uk+1) = dM (ck, expck(exp−1
ck

(uk+1))) = ‖ exp−1
ck

(uk+1)‖ck .(3.5)

Introduce ψck : TckM → TckM by ψck = exp−1
ck
◦φck . Since both exp and φ are

retractions,

ψck(0ck) = 0ck ,

Dψck |0ck = idT
ck
M .

Thus, per the definition of Fréchet derivatives,

ψck(x)− ψck(0ck)−Dψck |0ckx = ψck(x)− x = o(x);

in particular, choosing x = φ−1
ck

(uk+1) we get

exp−1
ck

(uk+1)− φ−1
ck

(uk+1) = o(‖φ−1
ck

(uk+1)‖ck),
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meaning

‖ exp−1
ck

(uk+1)‖ck ≤ ‖φ−1ck (uk+1)‖ck + o(‖φ−1
ck

(uk+1)‖ck).(3.6)

Taking ck = uk and combining (3.5) and (3.6) we find

d(uk, uk+1) = ‖ exp−1
ck

(uk+1)‖ck ≤ ‖φ−1ck (uk+1)‖ck + o(‖φ−1
ck

(uk+1)‖ck).

Hence, since ‖φ−1
ck

(uk)− φ−1
ck

(uk+1)‖ck = ‖φ−1
ck

(uk+1)‖ck when ck = uk,

lim
k→∞

d(uk, uk+1) ≤ lim
k→∞

∥∥φ−1
ck

(uk)− φ−1
ck

(uk+1)
∥∥
ck

= 0.(3.7)

Note that we can exchange the roles of uk and uk+1 and obtain the same result.
Since V is bounded from below, the sublevel sets Mµ of V are the preimages

of the closed subsets [C, µ] and are hence closed as well. Since V is assumed to
be coercive, by Theorem 3.5 the Mµ are bounded, and so since M is geodesically
complete, by the Hopf–Rinow theorem the Mµ are compact [28]. In particular, MV (u0)

is compact such that gradV is uniformly continuous on MV (u0) × MV (u0) by the
Heine–Cantor theorem. This means that for any ε > 0 there exists δ > 0 such that if
dM×M ((uk, uk+1), (uk, uk)) = dM (uk, uk+1) < δ, then∥∥gradV (uk, uk+1)− gradV (uk)

∥∥
ck

=
∥∥gradV (uk, uk+1)− gradV (uk, uk)

∥∥
ck
< ε.

Since dM (uk, uk+1)→ 0, given ε > 0 there exists K such that for all k > K,∥∥gradV (uk)
∥∥
ck
≤
∥∥gradV (uk, uk+1)− gradV (uk)

∥∥
ck

+
∥∥gradV (uk, uk+1)

∥∥
ck
≤ 2ε.

This means

lim
k→∞

gradV (uk) = 0.

Since MV (u0) is compact, there exists a convergent subsequence {ukl} with limit u∗.
Since V is continuously differentiable,

gradV (u∗) = lim
l→∞

gradV (ukl) = 0.

Remark. In the above proof, we assumed ck = uk or ck = uk+1. Although these
choices may be desirable for practical purposes, as discussed in the next subsection,
one can also make a more general choice. Specifically, if φ = exp and ck, let γk(t) be
the geodesic between uk and uk+1 such that

γk(t) = expuk(tvk),

where vk = exp−1
uk (uk+1). Then, taking ck = γk(s) for some s ∈ [0, 1], uniqueness of

geodesics implies that

expck(tγ̇k(s)) = expuk((t+ s)vk).

Hence,

exp−1
ck

(uk) = −sγ̇k(s), exp−1
ck

(uk+1) = (1− s)γ̇k(s),

and so, since geodesics are constant speed curves,

d(uk, uk+1) = ‖v‖uk = ‖γ̇k(s)‖ck = ‖ exp−1
ck

(uk)− exp−1
ck

(uk+1)‖ck .

This means that (3.7) holds in this case. No other arguments in Theorem 3.6 are
affected.
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3.1. Itoh–Abe discrete Riemannian gradient. The Itoh–Abe discrete gra-
dient [18] can be generalized to Riemannian manifolds.

Proposition 3.7. Given a continuously differentiable energy V : M → R and an
orthogonal basis {Ej}nj=1 for Tc(u,v)M such that

φ−1c (v)− φ−1c (u) =

n∑
i=1

αiEi,

define gradIAV : M ×M → Tc(u,v)M by

gradIAV (u, v) =

n∑
j=1

ajEj ,

where

aj =


V (wj)− V (wj−1)

αj
, αj 6= 0,

g(gradV (wj−1), dφc
∣∣
ηj−1

Ej), αj = 0,

wj = φc(ηj), ηj = φ−1c (u) +

j∑
i=1

αiEi.

Then, gradIAV is a DRG.

Proof. Continuity of gradIAV can be seen from the smoothness of the local coor-
dinate frame {Ej}nj=1 and from the continuity of the aj(αj),

lim
αj→0

aj(αj) = lim
αj→0

V (φc (ηj−1 + αjEj))− V (φc (ηj−1))

αj

=
d

dαj

∣∣∣∣
αj=0

V (φc (ηj−1 + αjEj))

=
〈

dV (φc (ηj−1)) , dφc
∣∣
ηj−1

Ej

〉
= g(gradV (wj−1), dφc

∣∣
ηj−1

Ej).

Property (3.1) holds since

g
(
gradIAV (u, v), φ−1c (v)− φ−1c (u)

)
=

n∑
i=1

n∑
j=1

αiajg(Ei, Ej)

=

n∑
j=1

V (wj)− V (wj−1)

= V (wn)− V (w0)

= V (v)− V (u).

Furthermore, (3.2) holds since when v = u, all αj = 0, and c(u, v) = u so that

gradIAV (u, u) =

n∑
j=1

g(gradV (u), Ej)Ej = gradV (u).
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The map gradIAV is called the Itoh–Abe DRG. For the Itoh–Abe DRG to be a
computationally viable option it is important to compute the αi efficiently. Consider,
for instance, the gradient flow system. Applying the Itoh–Abe DRG to this we get
the scheme

uk+1 = φck
(
W (uk, uk+1)

)
,

W (uk, uk+1) = φ−1
ck

(uk)− τkgradIAV (uk, uk+1),

meaning

φ−1
ck

(uk+1)− φ−1
ck

(uk) = −τkgradIAV (uk, uk+1),

and in coordinates

n∑
i=1

αiEi = −τk
n∑
j=1

V (wj)− V (wj−1)

αj
Ej ,

so that the αi are found by solving the n coupled equations

αi = −τk
V (wi)− V (wi−1)

αi
.

Note that these equations in general are fully implicit in the sense that they require
knowledge of the endpoint uk+1 since the wi are dependent on ck. However, if we take
ck = uk, there is no dependency on the endpoint and all the above equations become
scalar, although one must solve them successively. For this choice of ck we present,
as Algorithm 3.1, a procedure for solving the gradient flow problem on a Riemannian
manifold with Riemannian metric g using the Itoh–Abe DRG.

Algorithm 3.1. DRG-OPTIM.

Choose tol > 0 and u0 ∈M. Set k = 0.
repeat

Choose τk and an orthogonal basis {Eki }ni=1 for TukM
vk0 = uk

wk0 = φ−1
uk (vk0 )

for j = 1, . . . , n do
Solve αkj = −τk

(
V
(
φuk(wkj−1 + αkjE

k
j )
)
− V

(
vkj−1

))
/αkj

wkj = wkj−1 + αkjE
k
j

vkj = φuk(wkj )
end for
uk+1 = vkn
k = k + 1

until
(
V (uk)− V (uk−1)

)
/V (u0) < tol

There is a caveat to this algorithm in that the αkj should be easy to compute.
For example, it is important that the Ej and φ are chosen such that the difference
V (φuk(wkj−1+αkjE

k
j ))−V (vkj−1) is cheap to evaluate. In many cases, M has a natural

interpretation as a submanifold of Euclidean space defined locally by constraints g :
Rm → Rn, M = {y ∈ U ⊂ Rm : g(y) = 0}. Then, one may find {Ej}nj=1 as
an orthogonal basis for ker g′(c) and define φc implicitly by taking q = φc(v) such
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that q − (c + v) ∈ (TcM)⊥ and g(q) = 0, as detailed in [6]. This requires the
solution of a nonlinear system of equations for every coordinate update, which is
computationally demanding compared to evaluating explicit expressions for {Ej}nj=1

and φc as is possible in special cases, such as those considered in section 4. To compute
the αkj at each coordinate step one can use any suitable root finder, yet to stay in line
with the derivative-free nature of Algorithm 3.1, one may wish to use a solver like the
Brent–Dekker algorithm [3]. Also worth noting is that the parallelization procedure
used in [22] works for Algorithm 3.1 as well.

4. Numerical experiments. This section concerns four applications of DRG
methods to gradient flow systems. In each case, we specify all details needed to im-
plement Algorithm 3.1: the manifold M , the retraction φ, and the basis vectors {Ek}.
The first two examples are eigenvalue problems, included to illuminate implementa-
tional issues with examples in a familiar setting. We do not claim that our algorithm
is competitive with other eigenvalue solvers but include these examples for the sake of
exposition and to have problems with readily available reference solutions. The first
of these is a simple Rayleigh quotient minimization problem, where issues of compu-
tational efficiency are raised. The second one concerns the Brockett flow on SO(m),
the space of orthogonal m×m matrices with unit determinant, and serves as an ex-
ample of optimization on a Lie group. The remaining two problems are examples of
manifold-valued image analysis problems concerning InSAR imaging and DTI, respec-
tively. Specifically, the problems concern TV denoising of images obtained through
these techniques [30]. The experiments do not consider the quality of the solution
paths, i.e., numerical accuracy. For experiments of this kind, we refer to [5].

All programs used in the following were implemented as MATLAB functions, with
critical functions implemented in C using the MATLAB EXecutable (MEX) interface
when necessary. The code was executed using MATLAB (2017a release) running on
a mid-2014 MacBook Pro with a four-core 2.5 GHz Intel Core i7 processor and 16
GB of 1600 MHz DDR3 RAM. We used a C language port of the built-in MATLAB
function fzero for the Brent–Dekker algorithm implementation.

4.1. Eigenvalue problems. As an expository example, our first problem con-
sists of finding the smallest eigenvalue/vector pair of a symmetric m ×m matrix A
by minimizing its Rayleigh quotient. We shall solve this problem using both the ex-
trinsic and intrinsic view of the (m − 1)-sphere. In the second example we consider
the different approach to the eigenvalue problem proposed by Brockett in [4]. Here,
the gradient flow on SO(m) produces a diagonalizing matrix for a given symmetric
matrix.

4.1.1. Eigenvalues via Rayleigh quotient minimization. In our first ex-
ample, we wish to compute the smallest eigenvalue of a symmetric matrix A ∈ Rm×m
by minimizing the Rayleigh quotient

V (u) = uTAu

with u on the (m− 1)-sphere Sm−1.
Taking the extrinsic view, we regard Sm−1 as a submanifold in Rm, equipped

with the standard Euclidian metric g(x, y) = xT y. In this representation, TuS
m−1 is

the hyperplane tangent to u, i.e., TuS
m−1 = {x ∈ Rm : xTu = 0}. A natural choice

of retraction is

φp(x) =
p+ x

‖p+ x‖
.D
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There is a difficulty with this φ; it does not preserve sparsity, meaning Algorithm 3.1
will be inefficient as discussed above. To see this, consider that at each time step, to
find the αkj , we must compute the difference

V
(
zkj
)
− V

(
zkj−1

)
=
(
zkj
)T
Azkj −

(
zkj−1

)T
Azkj−1

for some zkj−1, z
k
j ∈ Sm−1. We can compute this efficiently if zkj = zkj−1 + δ, where δ

is sparse. Then,

V
(
zkj
)
− V

(
zkj−1

)
= 2

(
zkj−1

)T
Aδ + δTAδ,

which is efficient since one may assume Azkj−1 to be precomputed so that the compu-
tational cost is limited by the sparsity of δ. In our case, we have

zkj−1 = φc
(
wkj−1

)
, zkj = φc

(
wkj−1 + αkjEj

)
.

However, with φc as above, δ = φc(w
k
j−1 + αkjEj) − φc(wkj−1) is nonsparse, and so

computing the energy difference is costly.
Next, let us consider the intrinsic view of Sm−1, representing it in spherical

coordinates θ ∈ Rm−1 by

u1(θ) = cos(θ1),

ur(θ) = cos(θr)

r−1∏
i=1

sin(θi), 1 < r < m,

um(θ) =

m−1∏
i=1

sin(θi).

Due to the simple structure of Rm−1, we take φθ(η) = θ + η. Then, we have

ur(φθ(αEl)) = ur(θ + αEl) =


ur(θ), r < l,
cos(θl + α)

cos(θl)
ur(θ), r = l,

sin(θl + α)

sin(θl)
ur(θ), r > l.

Using this relation, the energy difference after a coordinate update becomes

V (u(θ + αEl))− V (u(θ)) = 2κ1l

l−1∑
i=1

ui(θ)ul(θ)Ail + 2κ2l

l−1∑
i=1

m∑
j=l+1

ui(θ)uj(θ)Aij

+ 2κ3l

m∑
j=l+1

ul(θ)uj(θ)Alj + κ4l

m∑
i=l+1

m∑
j=l+1

ui(θ)uj(θ)Aij

+ κ5lul(θ)ul(θ)All

with

κ1l = cl − 1, κ2l = sl − 1, κ3l = slcl − 1, κ4l = s2l − 1, κ5l = c2l − 1,

where

cl =
cos(θl + α)

cos(θl)
, sl =

sin(θl + α)

sin(θl)
.
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With prior knowledge of V (u(θ)) (and thus the four partial sums in the difference),
evaluating V (u(θ + αEl)) − V (u(θ)) amounts to five scalar multiplications and four
scalar additions after evaluating the κli. With correct bookkeeping, new sums can be
evaluated from previous sums after coordinate updates, reducing the computational
complexity of the algorithm. Although not producing an algorithm competitive with
standard eigenvalue solvers, this example demonstrates that the correct choice of
coordinates is vital to reducing the computational complexity of the Itoh–Abe DRG
method.

4.1.2. Eigenvalues via Brockett flow. Among other things, the article of
Brockett [4] discusses how one may find the eigenvalues of a symmetric matrix A by
solving the following gradient flow problem on M = SO(m):

Q̇ = −Q(DQTAQ−QTAQD).(4.1)

Here, D is a real diagonal matrix with nonrepeated entries. It can be shown that
limt→∞Q = Q∗, where (Q∗)TAQ∗ = Λ is diagonal and hence contains the eigenvalues
of A, ordered as the entries of D. Equation (4.1) is the gradient flow of the energy

V (Q) = tr(AQTDQ)(4.2)

with respect to the trace metric on SO(m). One can check that SO(m) is a Lie group
[29], with Lie algebra

so(m) = {B ∈ Rm×m : BT = −B}.

Also, since SO(m) is a matrix Lie group, the exponential coincides with the matrix
exponential. However, we may consider using some other function as a retraction,
such as the Cayley transform φ : so(m)→ SO(m) given by

φ(B) = (I −B)−1(I +B).

Figure 4.1 shows the results of numerical tests with constant time step τk = 0.1
and m = 20. In the left-hand panel, the evolution of the diagonal values of QkAQk

compared to the spectrum of A is shown; it is apparent that the diagonal values
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Fig. 4.1. Brockett flow with τk = 0.1 and 20 eigenvalues. Random initial matrix. Left:
Evolution of eigenvalues. Right: Optimality error (V (uk)− V ∗)/(V (u0)− V ∗).
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converge to the eigenvalues. The right-hand panel shows the convergence rate of Al-
gorithm 3.1 to the minimal value V ∗ as computed with eigenvalues and eigenvectors
from the MATLAB eigen function. It would appear that the convergence rate is
linear, meaning ‖D− (Qk+1)TAQk+1‖ = C‖D− (Qk)TAQk‖, with C < 1, which cor-
responds to an exponential reduction in ‖D− (Qk)TAQk‖. No noteworthy difference
was observed when using the matrix exponential in place of the Cayley transform.

4.2. Manifold valued imaging. In the following two examples we will consider
problems from manifold valued two-dimensional imaging. We will in both cases work
on a product manifold M = M l×m consisting of l ×m copies of an underlying data
manifold M . An element of M will in this case be called an atom, as opposed to
the regular term pixel. As explained in [20], product manifolds of Riemannian mani-
folds are again Riemannian manifolds. The tangent spaces of product manifolds have
a natural structure as direct sums, with T(u11,u12,...,ulm)M =

⊕l,m
i,j=1 Tuij

M , which
induces a natural Riemannian metric G : TM× TM→ R fiberwise as

G(u11,u12,...,ulm)((x11, . . . , xlm), (y11, . . . , ylm)) =

l,m∑
i,j=1

guij
(xij , yij).

Also, given a retraction φ : TM → M , one can define a retraction Φ : TM → M
fiberwise as

Φ(u11,u12,...,ulm)(x11, . . . , xlm) = (φu11
(x11), φu12

(x12), . . . , φulm
(xlm)).

Discrete gradients were first used in optimization algorithms for image analysis in
[11] and [22]. As an example of a manifold-valued imaging problem, consider TV
denoising of manifold valued images [30], where one wishes to minimize, based on
generalizations of the Lβ and Lγ norms,

V (u) =
1

β

l,m∑
i,j=1

d(uij , sij)
β + λ

l−1,m∑
i,j=1

d(uij , ui+1,j)
γ +

l,m−1∑
i,j=1

d(uij , ui,j+1)γ

 .(4.3)

Here, s = (s11, . . . , slm) ∈ M is the input image, u = (u11, . . . , ulm) ∈ M is the
output image, λ is a regularization strength constant, and d is a metric on M , which
we will take to be the geodesic distance induced by g.

4.2.1. InSAR image denoising. We first consider InSAR imaging, used in
earth observation and terrain modeling [24]. In InSAR imaging, terrain elevation is
measured by means of phase differences between laser pulses reflected from a surface
at different times. Thus, the atoms gij are elements of M = S1, represented by their
phase angles: −π < gij ≤ π. After processing, the phase data is unwrapped to form
a single, continuous image of displacement data [9]. The natural distance function in
this representation is the angular distance

d(ϕ, θ) =

{
|ϕ− θ|, |ϕ− θ| ≤ π,
2π − |ϕ− θ|, |ϕ− θ| > π.

Also, TϕM is simply R, and φ is given, with +
2π

denoting addition modulo 2π, as

φϕ(θϕ) =

(
θ +

2π
(ϕ+ π)

)
− π.
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Fig. 4.2. Left column: Interferogram. Right column: Phase unwrapped image. Top row:
Original image. Bottom row: L2 fidelity denoising, λ = 0.3.
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Fig. 4.3. Logarithmic plot of optimality error (V (uk)− V ∗)/(V (u0)− V ∗).

Figure 4.2 shows the result of applying TV denoising to an InSAR image of a slope
of Mt. Vesuvius, Italy, with β = 2. The left column shows the phase data, while the
right-hand side shows the phase unwrapped data. The input image was taken from
[23]. It is evident that the algorithm is successful in removing noise. Computation
time was 0.1 seconds per iteration on a 150×150 image. A logarithmic plot showing
convergence in terms of (V (uk)−V ∗)/(V (u0)−V ∗) is shown in Figure 4.3, where V ∗ is
a near-optimal value for V , obtained by iterating until V (uk+1)−V (uk) ≤ 10−15. The
plot shows the behavior of Algorithm 3.1 with constant time steps τk = τ0 = 0.002 and
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an ad hoc adaptive method with τ0 = 0.005 where τk is halved each 200 iterations;
for each of these strategies a separate V ∗ was found since they did not produce
convergence to the same minimizer. The reason for the different minimizers is that
the TV functional, and thus the minimization problem, is nonconvex in S1 [27]. We
can observe that the convergence speed varies between O(1/k) and O(1/k2), with
faster convergence for the ad hoc adaptive method. The reason for this sublinear
convergence as compared to the linear convergence observed in the Brockett flow case
may be the nonconvexity.

4.2.2. DTI image denoising. DTI is a medical imaging technique where the
goal is to make spatial samples of the tensor specifying the diffusion rates of water
in biological tissue. The tensor is assumed to be, at each point (i, j), represented
by a matrix Aij ∈ Sym+(3), the space of 3 × 3 symmetric positive definite (SPD)
matrices. Experimental measurements of DTI data are, as with other MRI techniques,
contaminated by Rician noise [12], which one may attempt to remove by minimizing
(4.3) with an appropriate choice of Riemannian structure on M = Sym+(3)m×l.

As above, since the manifold we are working on is a product manifold, it suffices
to define the Riemannian structure on Sym+(3). First off, one should note that
TASym+(3) can be identified with Sym(3), the space of symmetric 3×3 matrices [19].
In [30], the authors consider equipping Sym+(3) with the affine invariant Riemannian
metric given pointwise as

gA(X,Y ) = tr
(
A−

1
2XA−1Y A−

1
2

)
,

and for purposes of comparison, so shall we. The space Sym+(3) equipped with
this metric is a Cartan–Hadamard manifold [19] and thus is complete, meaning that
Theorem 3.6 holds. This metric induces the explicitly computable geodesic distance

d(A,B) =

√√√√ 3∑
i=1

log(κi)2

on Sym+(3), where κi are the eigenvalues of A−
1
2BA−

1
2 . Furthermore, the metric

induces a Riemannian exponential given by

expA(Y ) = A1/2eA
−1/2Y A−1/2

A1/2,

where e denotes the matrix exponential, and A1/2 is the matrix square root of A. We
could choose the retraction as φ = exp, but there are less computationally expensive
options that do not involve computing matrix exponentials. More specifically, we will
make use of the second-order approximation of the exponential,

φA(Y ) = A+ Y +
1

2
Y A−1Y.

While a first-order expansion is also a retraction, there is no guarantee that A+ Y ∈
Sym+(3), whereas the second-order expansion, which can be written in the form

φA(Y ) =
1

2
A+

1

2

(
A

1
2 +A−

1
2Y
)T (

A
1
2 +A−

1
2Y
)
,

is clearly SPD since A is so. Note that using a sparse basis Eij (in our example we
use Eij = eie

T
j +eje

T
i ) for the space Sym(3), evaluating φA(X+αEij) amounts to, at
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Fig. 4.4. DTI scan, axial slice. Left: Noisy image. Right: Denoised with β = 2, λ = 0.05.
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Fig. 4.5. Logarithmic plot of optimality error.

most, four scalar updates when φA(X) and A−1 is known, as is possible with proper
bookkeeping in the software implementation. Also, since all matrices involved are
3× 3 SPD matrices, one may find eigenvalues and eigenvectors directly, thus allowing
for fast computations of matrix square roots and, consequently, geodesic distances.

Figure 4.4 shows an example of denoising DTI images using the TV regularizer.
The data is taken from the publicly available Camino data set [8]. The DTI tensor
has been calculated from underlying data using linear least-squares fitting and is
subject to Rician noise (left-hand side), which is mitigated by TV denoising (right-
hand side). The denoising procedure took about 7 seconds for 57 iterations, on a
72×73 image. The algorithm was stopped when the relative change in energy, (V (u0)−
V (uk))/V (u0), dropped below 10−5. Each atom A ∈ Sym+(3) is visualized by an
ellipsoid with the eigenvectors of A as principal semiaxes, scaled by the corresponding
eigenvalues. The colors are coded to correspond to the principal direction of the
major axis, with red denoting left-right orientation, green anterior-posterior, and blue
inferior-superior. Figure 4.5 shows the convergence behavior of Algorithm 3.1, with
three different time steps: τ = 0.05, τ = 0.01, and a mixed strategy of using τ = 0.05
for 12 steps, then changing to τ = 0.01. Also, baseline rates of 1/k2 and 1/k are shown.
It is apparent that the choice of time step has a great impact on the convergence rate
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and that simply changing the time step from τ = 0.05 to τ = 0.01 is effective in
speeding up convergence. This would suggest that time step adaptivity is a promising
route for acceleration of these methods.

5. Conclusion and outlook. We have extended discrete gradient methods to
Riemannian manifolds and shown how they may be applied to gradient flows. The
Itoh–Abe discrete gradient has been formulated in a manifold setting; this is, to the
best of our knowledge, the first time this has been done. In particular, we have used
the Itoh–Abe DRG on gradient systems to produce a derivative-free optimization
algorithm on Riemannian manifolds. This optimization algorithm has been proven to
converge under reasonable conditions and shows promise when applied to the problem
of denoising manifold valued images using the TV approach of [30].

As with the algorithm in the Euclidian case, there are open questions. The first
question is which convergence rate estimates can be made; one should especially con-
sider the linear convergence exhibited in the Brockett flow problem, and the rate
observed in Figure 4.5 which approaches 1/k2. A second question is how to formulate
a rule for choosing step sizes so as to accelerate convergence toward minimizers. There
is also the question of how the DRG methods perform as ODE solvers for dissipative
problems on Riemannian manifolds, in particular, convergence properties, stability,
and convergence order. The above discussion is geared toward optimization applica-
tions due to the availability of optimization problems, but it would be of interest to
see how the methods work as ODE solvers in their own right similar to the analysis
and experiments done in [5].
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