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Abstract

Ordinary Dirichlet series, of which the Riemann zeta function is the most
important, play a prominent role in classical analysis and number theory,
and in modern mathematics. It is well-known that the Riemann zeta func-
tion has a single pole at the point s = 1. The present thesis investigates
both the behaviour of various zeta functions near this point and the func-
tion spaces of ordinary Dirichlet series they can be said to generate.

Chapter 1 gives a comprehensive overview of the thesis and offers brief
surveys of related results.

Chapter 2 introduces a new scale of function spaces of Dirichlet series and
explains the local behaviour of the reproducing kernels and establishes lo-
cal embeddings into classical function spaces. Other such spaces are also
considered, of which the Dirichlet-Hardy spaces are the most important.

Chapter 3 determines the spaces spanned by the real parts of the boundary
functions and distributions in the different settings.

Chapter 4 characterises the local interpolating sequences for the Hilbert
spaces under consideration. In the non-Hilbert spaces only partial results
are obtained.

Chapter 5 deals with a family of zeta functions corresponding to subsets
of the integers. A complete characterisation of their behaviour close to the
point s = 1 is given in terms of lower norm bounds of integral operators
with the zeta functions as kernels.

Chapter 6 considers the results of the previous chapter under the addi-
tional hypothesis of arithmetic structure. The characterisations become
simpler and more can be said.
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1 Introduction

The theory of ordinary Dirichlet series, i.e. functions of the type

F (s) =
∑
n∈N

ann
−s, s = σ + it, (1.1)

is a classical field of study that dates back, in one form or the other, for
more than 200 years. The primary motivation for the study of these func-
tions has been their significance in analytic number theory. The connection
is perhaps seen in its purest form through the Euler product formula [26]∑

n∈N
n−s =

∏
p∈P

(
1

1− p−s

)
, for σ > 1.

This formula gives a deep connection between the multiplicative properties
of the prime numbers P and the additive properties of the positive integers
N. Either side of this formula defines the Riemann zeta function which we
denote by ζ(s).
Our ambition is to continue work begun by H. Helson in the sixties

[37, 38]. What Helson did was to apply the tools of functional analysis to
study the ordinary Dirichlet series1. We pursue two directions.

Function spaces of Dirichlet series

Our main focus is on a scale of Banach spaces analogue to the classical
Hardy spaces Hp for p ∈ [1,∞). These spaces are called the Dirichlet-
Hardy spaces. The definition for the important special case p = 2 first
appeared in a paper by H. Hedenmalm, P. Lindqvist and K. Seip [35]. It is
the Hilbert space that consists of the Dirichlet series with square summable
coefficients.

1In what follows we refer to ordinary Dirichlet series as Dirichlet series.
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1 Introduction

In addition, we introduce a new scale of Hilbert spaces of Dirichlet se-
ries. We call these spaces the Dirichlet-Bergman spaces. Finally, we con-
sider a scale of Hilbert spaces introduced by J. E. McCarthy [58]. Both
McCarthy’s spaces and the Dirichlet-Bergman spaces offer analogies to
the classical scale of Hilbert function spaces on the half-plane which con-
tain the Bergman-type spaces, the Hardy space H2 and the Dirichlet-type
spaces.
We study the boundary functions, local embedding properties, inter-

polating sequences and Carleson measures of both the Dirichlet-Hardy,
Dirichlet-Bergman and McCarthy’s spaces. Parts of this research has ap-
peared in joint work with E. Saksman [64] and K. Seip [65].

Modified zeta functions

The second part of this thesis deals with a class of functions which we call
the K-zeta functions. These are given by

ζK(s) =
∑
n∈K

n−s, K ⊂ N, s = σ + it. (1.2)

Note that for K = N the formula (1.2) yields the Riemann zeta function
ζ(s). The first statement in B. Riemann’s famous paper2 [71, p. 145] is
that even though the Riemann zeta function only converges absolutely for
σ > 1, it has a meromorphic extension to the entire complex plane with a
single pole of residue one at s = 1. Hence, there exists an entire function
ψ such that

ζ(s) =
1

s− 1
+ ψ(s). (1.3)

By considering the K-zeta functions as kernels of certain integral oper-
ators on L2-spaces over bounded intervals, we are able to characterise
their behaviour near the point s = 1 in terms of densities of the subsets
K ⊂ N. These operators appear naturally in the study of the Dirichlet-
Hardy spaces.
Part of this research has appeared in [63].

2See [25] for an English translation of the original paper.
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1.1 Structure of the thesis

1.1 Structure of the thesis

This work is roughly divided into two parts. In chapters 2, 3 and 4 we give
a detailed account of the work relating to the function spaces of Dirichlet
series, while chapters 5 and 6 deal with the modified zeta functions.
In the current chapter we proceed by giving a comprehensive survey of

the work done in this thesis and indicate related results. We stress that
we do not give an overview of all the research related to function spaces of
Dirichlet series. The overall structure of the survey reflects that of the rest
of the thesis in that every chapter is discussed in separate sections. Inside
of each section we discuss the results of the relevant chapter and point out
connections to related subjects.
The enumeration of our results, as they appear in the introduction,

is identical to the enumeration in the various chapters. This may lead to
jumps since not every lemma and corollary is stated in the introduction. In
the case of results that have appeared in joint-works, they are accompanied
with the appropriate names and year. Results due to other mathematicians
are enumerated as they appear in the chapters, or without enumeration if
they only appear in the introduction.

1.2 Function spaces of Dirichlet series and local
embeddings

Chapter 2 establishes the fundamental connections between each of the
three scales of spaces of Dirichlet series that we discuss and their classical
counter-parts. These connections are the local embeddings and the local
equivalence of the point evaluation functionals. We mention that the local
embedding in the case3 p = 2 for the Dirichlet-Hardy space was already
known. In fact, it served as the starting point for this thesis. We begin
with a rather detailed explanation of this case since it sheds light on the
main ideas of this thesis.

3This was also known to have a trivial extension to the cases p = 2ν with ν ∈ N.
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1 Introduction

The space H 2 and connections to H2(C1/2)

The Dirichlet-Hardy space H 2 introduced by Hedenmalm, Lindqvist and
Seip in [35] is the closure of the Dirichlet polynomials P, i.e. the functions
given by finite series of the type (1.1), in the norm

‖F‖H 2 =

(∑
n∈N
|an|2

)1/2

.

By the Cauchy-Schwarz inequality, this is seen to be a Hilbert space of
Dirichlet series analytic on the half-plane4 C1/2 =

{
σ > 1/2

}
. Moreover,

by inspection, one finds that the translate ζ(s + w̄) of the Riemann zeta
function is the reproducing kernel at the point w ∈ C1/2, i.e. it is the
unique function kH 2

w ∈H 2 such that 〈F |kH 2

w 〉 = F (w) for all F ∈H 2.
A typical use of the formula (1.3) is that it implies that for s + w̄ in a

bounded subset of C we have5

kH 2

w (s) =
1

s+ w̄ − 1
+O (1) .

It is well-known that the function kH2

w (s) = (s+w̄−1)−1 is the reproducing
kernel for the space H2(C1/2). This space is contained in the scale of
classical Hardy spaces of functions analytic on the half-plane C1/2 and
finite in the norm

‖f‖pHp(C1/2) = lim
σ→1/2+

1
2π

∫
R
|f(σ + it)|pdt, p ∈ [1,∞).

The function theory of these spaces is very rich and they are considered
to be well understood. See for instance [22, 31, 51, 57]. This explains our
first observation, namely that for s+ w̄ in a bounded set

kH 2

w (s) = kH
2

w (s) +O (1) . (1.4)
4We give a brief discussion of the general convergence properties of Dirichlet series

in the preliminaries part of chapter 2.
5The relation g(x) = O(f(x)) is short for the statement that there exists some

constant C > 0 such that |g(x)| ≤ Cf(x) for x in some specified range.
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1.2 Function spaces of Dirichlet series and local embeddings

The second fundamental connection between the spaces H2(C1/2) and H 2

is the following embedding that was found in the context of analytic num-
ber theory by H. L. Montgomery in [59, p. 140] and in the context of the
space H 2 in [35].

Lemma 2.2 (Montgomery 1994, Hedenmalm, Lindqvist and Seip 1997).
For F ∈ H 2 and every bounded interval I there exists a constant C > 0,
depending only on the length of I, such that

lim
σ→ 1

2

+

∫
I
|F (σ + it)|2 dt ≤ C‖F‖2H 2 . (1.5)

We sketch a short proof of Lemma 2.2 since the idea will be of importance
throughout this work6. This proof is different from the ones given in [59]
and [35]. Let χI denote the indicator function of the interval I of the
real line R, and consider the embedding operator defined on the Dirichlet
polynomials by

EI :
∑
n∈N

ann
−s ∈P 7−→ χI

∑
n∈N

ann
−1/2−it. (1.6)

The operator EI is densely defined from H 2 to L2(I). We use the con-
vention

‖g‖2L2(I) =
∫
I
|g(t)|2dt.

We stress that throughout this thesis we view L2(I) as the subspace of
L2(R) consisting of functions with support in I. With this, we find the
adjoint operator E∗I and show that7

EIE
∗
I g = lim

σ→1+
χI(g ∗ ζ1+σ).

By using the fact (1.3) that the Riemann zeta function is meromorphic
with a pole at s = 1 this implies that

EIE
∗
I g = 2πχIP+g + χI(g ∗ ψ1),

6We give this argument in full in chapter 2.
7For functions of a complex variable s = σ + it we will frequently use the notation

ζ(σ + it) = ζσ(t) in order to determine which variable is used in the convolution on R
which we denote by ∗.
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1 Introduction

where P+ denotes the Riesz projection which is a bounded operator from
L2(R) to H2(C1/2) and ψ1(t) = ψ(1 + it) is the restriction of an entire
function. Hence EI extends to a bounded operator from H 2 to L2(I) and
Lemma 2.2 follows.
An immediate consequence of Lemma 2.2 is that if F ∈ H 2 then

F (s)/s ∈ H2(C1/2). The trick is to apply the lemma to the inequality8

∫
R

∣∣∣∣F (σ + it)
σ + it

∣∣∣∣2 dt .
∑
m∈Z

1
m2 + 1

∫ 1

0
|F (σ + it− im)|2dt. (1.7)

Note that the norm of H 2 is invariant under vertical translations. In
particular, this implies that F has non-tangential limits almost everywhere
on the abscissa σ = 1/2, giving sense to the notation F (1/2 + it).
We remark that Hedenmalm and Saksman [36] discovered an analogue

of L. Carleson’s celebrated convergence theorem for Fourier series with
square summable coefficients [15].

Theorem (Hedenmalm and Saksman 2003). Let
∑

n∈N |an|2 < ∞. Then
the series

∑∞
n=1 ann

−1/2−it converges for almost every t ∈ R.

A shorter argument that uses Carleson’s result directly was found by
S. V. Konyagin and H. Queffélec [50].
We mention that there is an active research effort on composition op-

erators in the setting of the space H 2. We refer the reader to the recent
survey of Queffélec [68] and the references in it.

Analytic number theory and the Montgomery-Bourgain conjectures

The study of local embeddings of function spaces of Dirichlet series has
mainly been motivated by the role Dirichlet series play in analytic number
theory. As was briefly mentioned above, Lemma 2.2 was discovered by the
analytic number theorist H. L. Montgomery who gave an argument based

8The relation f(x) . g(x) is taken to mean that there exists some constant C > 0
such that f(x) ≤ Cg(x) for x in some specified range. In the corresponding way we
define f(x) & g(x). If both hold, we say f(x) ' g(x).

6



1.2 Function spaces of Dirichlet series and local embeddings

on the following inequality due to Montgomery and R. C. Vaughan9 [59,
p. 140].

Theorem(Montgomery and Vaughan 1994). Let λ1, . . . , λn be distinct real
numbers and set δn = minm 6=n |λn − λm|. Then

N∑
n,m=1
n 6=m

xnym
λn − λm

≤ γ0

(
N∑
n=1

|xn|2

δn

)1/2( N∑
n=1

|yn|2

δn

)1/2

, (1.8)

where10 γ0 ≤ 3.2.

The advantage of Montgomery’s argument is that he obtains explicit
estimates of the constant C, not only in terms of the length of I, but also
the degree of the Dirichlet polynomial. Montgomery’s motivation was a
series of conjectures that he gave on the growth of the quantities∫ T

0

∣∣∣∣∣
N∑
n=1

ann
−it

∣∣∣∣∣
p

dt, p ≥ 1. (1.9)

These conjectures were later reformulated by J. Bourgain [12] who conjec-
tured that for ε > 0, ν ∈ (1, 2) and T > N it holds that

∫ T

0

∣∣∣∣∣
2N∑
n=N

ann
−it

∣∣∣∣∣
2ν

dt . NνT ε(T +Nν) max
N≤n≤2N

|an|2ν . (1.10)

It is clear that Lemma 2.2 implies the estimate (1.10) for ν = 1 since the
constant of the lemma only depends on the length of the bounded interval
I. We remark that the inequality (1.10) also holds for p = 2ν with ν ∈ N.
This trivial extension may be seen either from a direct application of the
inequality (1.10) in the case ν = 1, or from Lemma 2.2, which has an
analogue extension which we mention in the following subsection.

9We reproduce what is essentially this argument in chapter 3 where we state this
inequality as lemma 3.13.

10Montgomery reports in his book [59, p. 145] that this estimate was given by A.
Selberg.
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1 Introduction

If true in general, Montgomery showed that this conjecture would imply
the density hypothesis on the zeroes of the Riemann zeta function. Also,
Bourgain showed that a closely related conjecture implies the Kakeya con-
jecture.

The Dirichlet-Hardy spaces H p and the embedding problem

For general p ∈ [1,∞) the Dirichlet-Hardy space H p were defined by F.
Bayart [3] to be the closure of the Dirichlet polynomials F in the norm

‖F‖H p = lim
T→∞

(
1

2T

∫ T

−T

∣∣∣∣∣∑
n∈N

ann
−it

∣∣∣∣∣
p

dt

)1/p

. (1.11)

Following [35, 3] we prefer not to define the spaces H p directly by this
norm, instead choosing a somewhat indirect approach that we indicate
below.
The similarity between (1.9) and (1.11) is striking, however an exact

connection has yet to be established. E.g. it is an open question if for
Dirichlet polynomials and general p ∈ [1,∞) there exist constants Cp > 0
such that ∫ T

0

∣∣∣∣∣∑
n∈N

ann
−1/2−it

∣∣∣∣∣
p

dt ≤ Cp

∥∥∥∥∥∑
n∈N

ann
−s

∥∥∥∥∥
p

H p

. (1.12)

We remark that this inequality holds for p = 2k with k ∈ N. This is an
immediate consequence of Lemma 2.2. Indeed, one simply uses the fact
that F ∈H 2k implies F k ∈H 2 on both sides of the inequality.
The problem of establishing the inequalities (1.12) has become known as

the H p embedding problem11. The difficulty involved becomes apparent
through the use of an idea due to H. Bohr. He observed [9] that it is
possible to consider Dirichlet series as power series in infinite variables.
Specifically, the idea is to identify the Dirichlet monomial p−sn , where pn
denotes the n’th prime number, with the n’th coordinate of the infinite
dimensional torus

T∞ =
{

(z1, . . .) : zj ∈ T
}
.

11See [74] for a discussion of the H p embedding problem.

8



1.2 Function spaces of Dirichlet series and local embeddings

This results in the one to one Bohr correspondence

B :
∑
n∈N

ann
−s 7−→

∑
n∈N

anz
ν1
1 · · · z

νk
k ,

where n = pν1
1 · · · p

νk
k is the unique prime number factorisation of the in-

teger n. Since T∞ is a compact abelian group, it has a unique normalised
Haar measure ρ. This allows one to define the spaces Lp(T∞) and their
subspaces Hp(T∞). In particular, in [35, 3], it is established, using ergodic
theory that for Dirichlet polynomials F it holds that12∫

T∞
|BF (χ)|pdρ(χ) = lim

T→∞

1
2T

∫ T

−T
|F (it)|pdt.

In this way H p is realised as the inverse image of Hp(T∞) under the linear
isometry B. The point we want to make here is that one now sees that
the norm (1.11) expresses an integral over the infinite dimensional torus,
while (1.9) deals with an integral over a 1-dimensional complex curve on
this huge domain.
Saksman and Seip [74] found an equivalent condition for the H p em-

bedding to hold for p ≥ 2 using a a Fatou type of theorem for the spaces
Hp(T∞). In order to state the condition we introduce some notation. For
χ ∈ T∞ we let χ(pn), where pn is the n’th prime number, denote the
n’th coordinate. Let Tt(χ) = (2−itχ(2), 3−itχ(3), 5−itχ(5), . . .) denote the
Kroenecker flow. The infinite dimensional polydisk is given by

D∞ = {(z1, z2, . . .) : zn ∈ D} .

B. J. Cole and T. W. Gamelin [19] established that an element f ∈ Hp(T∞)
has bounded point evaluations for13 z ∈ D∞ ∩ `2, thereby giving sense
to the space Hp(D∞) in analogy to the one dimensional case. What
Saksman and Seip showed is that there exists boundary functions on the
natural boundary of D∞ ∩ `2. To find the correct approach region set
bθ(χ) = (2−θχ(2), 3−θχ(3), 5−θχ(5), . . .). Now their Fatou type result may

12We give a more elementary proof due to Saksman and Seip in chapter 2.
13See Lemma 2.3 which we state below.
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1 Introduction

be stated as follows. Given f ∈ Hp(D∞) there exists f̃ ∈ Lp(T∞) such
that

f̃(χ) = lim
θ→1/2

f(bθ(χ)), for almost every χ ∈ T∞. (1.13)

We may now formulate the following.

Theorem(Saksman and Seip 2008). Let p ≥ 2. Then the inequality (1.12)
holds if and only if for f ∈ Hp(T∞) and every χ ∈ T∞ it holds that

lim
T→∞

1
2T

∫ T

−T
|f̃((Tt(χ))|pdt = ‖f̃‖pLp(T∞), (1.14)

where f̃ satisfies (1.13).

We remark that by the Birkhoff-Khinchin ergodic theorem [20, p. 11-
12] the identity (1.14) always holds for almost every χ ∈ T∞. Moreover,
for p = 2, Lemma 1.2 implies that (1.14) holds for all χ ∈ T∞. For
χ = (1, 1, . . .) the identity reduces to

lim
T→∞

1
2T

∫ T

−T
|F (1/2 + it)|2dt =

∑
n∈N
|an|2n−1.

This is a special case of a theorem of F. Carlson [16]. We give another
equivalent condition for the H p embedding problem in Theorem 4.17.

Some consequences of the identification of H p with Hp(T∞)

In operator theoretic terms the inequalities (1.12) say that the operator
EI defined on the Dirichlet polynomials by (1.6) extends to a bounded
operator from H p to Lp(I). As we remarked, this is known to hold true
only for p = 2k where k ∈ N. The following result by S. Ebenstein14 [24]
implies that there are no bounded projections from Lp(T∞) to Hp(T∞).

14We thank J. Marzo for pointing out this reference. Also, the proof of Ebenstein
relies crucially on the fact that for p 6= 2 the norm of the Riesz projection on Lp(T)
is strictly greater than one. We thank H. Queffélec for pointing out that the reference
Ebenstein gives does not seem to be accurate, and that the exact norms were computed
in [41].
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1.2 Function spaces of Dirichlet series and local embeddings

This explains why it is problematic to use interpolation theory15 to deduce
that EI extends to a bounded operator from H p to Lp(I) for general p ≥ 2
and thereby solving the H p embedding problem.

Theorem (Ebenstein 1972). Let p ∈ [1,∞). If p 6= 2 then Hp(T∞) is
uncomplemented as a subspace of Lp(T∞).

It is remarked in [74] that by similar arguments as may be used to
prove Ebenstein’s result, one may establish that in the natural duality the
inclusion H q ⊂ (H p)′ is always strict when p 6= 2.
A positive consequence of the identification of H p with Hp(T∞) is the

following. It was shown by Cole and Gamelin [19] in the context of the
spaces Hp(T∞), and applied to the spaces H p by Bayart [3].

Lemma 2.3 (Cole and Gamelin 1985, Bayart 2002). Let p ∈ [1,∞). Then
the norm of the point evaluation in H p at the point s = σ + it in C1/2

equals ζ(2σ)1/p.

By the formula (1.3) we get a relation analogue to (1.4). Indeed, let
ωH p(s) and ωHp(s) denote the norms of the point evaluation functionals
of H p and Hp(C1/2), respectively, then

ωH p(s)p = CωHp(s)p +O (1) , σ → 1/2+, (1.15)

with the constant C > 0 depending on p. It is a curious fact that even
though the norm (1.11) is evaluated by integral means over the imaginary
axis, the elements in the closure of the H p norm are in general only defined
on the half-plane C1/2. We remark that this jump of 1/2 appears several
places in the theory of Dirichlet series and served as the theme of a paper
by Konyagin and Queffélec [50].

15By this we mean the theory which includes the theorems of Marcinkiewicz and
Riesz-Thorin.
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1 Introduction

McCarthy’s spaces and the Dirichlet-Bergman spaces

On the unit disc, there is scale of spaces Dα(D) defined as the closure of
the complex polynomials in the norm

‖
∑

anz
n‖Dα(D) =

(∑
n∈N
|an|2(n+ 1)α

)1/2

.

This scale includes the classical Bergman (α = −1), Hardy (α = 0) and
Dirichlet (α = 1) spaces.
In [58] McCarthy studied several Hilbert spaces of Dirichlet series. In

particular, he defined a family of spaces that resemble the scale Dα(D).
These are the spaces

H 2
α =

{∑
n∈N

ann
−s :

∑
n∈N
|an|2 logα(n+ 1) <∞

}
, α ∈ R.

By the Cauchy-Schwarz inequality the elements of these spaces are analytic
on C1/2.
We establish local embeddings and local equivalences of reproducing ker-

nels connecting the spaces H 2
α to the classical counter-parts of the spaces

Dα(D) on the half-plane C1/2. Let dm denote Lebesgue area measure. We
denote these spaces by Dα(C1/2). For α < 0 these spaces are defined to
be the functions analytic on C1/2 and finite in the norm

‖f‖2Dα =
1
π

∫
C1/2

|f(s)|2
(
σ − 1

2

)−α−1

dm(s).

For 0 < α < 2 we let Dα(C1/2) be the Dirichlet-type of space of functions
analytic in C1/2 such that16 f(σ)→ 0 when σ →∞ and finite in the norm

‖f‖2Dα =
1
π

∫
C1/2

|f ′(s)|2
(
σ − 1

2

)−α+1

dm(s).

16We make a technical adjustment to the norm in the case α = 1 in chapter 2.
We also note that it is possible to define these spaces for α ≥ 2 using higher order
derivatives.

12



1.2 Function spaces of Dirichlet series and local embeddings

As another suggestion of a natural analogue to the spaces Dα(D), we
introduce the family of Hilbert function spaces Dα. For α ∈ R we set

Dα =

{∑
n∈N

ann
−s :

∑
n∈N
|an|2d(n)α <∞

}
.

The function d(n) is the divisor function defined by17 d(n) =
∑

k|n 1. Since
d(n) = O (nε) for all ε > 0 it follows by the Cauchy-Schwarz inequality
that these Dirichlet series converge absolutely on the half-plane C1/2. In
the limiting case α→∞, it is natural to define the space

D∞ =

∑
p∈P

app
−s :

∑
p∈P
|ap|2 <∞

 .

We observe that the Bohr correspondence extends to an isometric isomor-
phism from these spaces to the spaces Dα(D∞). In terms of reproducing
kernels and local embeddings, we show that while the natural counter-part
of the space H 2

α on C1/2 is Dα(C1/2), the natural counter-part of Dα is
the space D1−2−α(C1/2). In the same sense D∞ corresponds to18 D1(C1/2).
We remark that by the irregularity of the function d(n) it follows that if
α 6= 0 then neither Dα ⊂H 2

α nor H 2
α ⊂ Dα holds.

Helson’s conjecture

Let K denote the projective tensor product space H 2⊗H 2. The elemen-
tary tensors are the products fg where f, g ∈ H 2. The tensor space is
then the closure of finite sums of these elementary tensors in the norm

‖F‖K = inf

{∑
finite

‖fi‖H 2‖gi‖H 2 : F =
∑
finite

figi, fi, gi ∈H 2

}
.

17The expression k|n should be read as k divides n. We treat the divisor function in
more detail on page 51.

18From this point on by the space D1−2−α(C1/2) for α = ∞ we mean the space
D1(C1/2).
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1 Introduction

In other words, the infimum is taken over all representations of F as a finite
sum of elementary tensors. It follows from the definition that K ⊂ H 1.
We remark that the space K appears naturally in chapter 3.
Helson conjectured in [38] that K = H 1. An equivalent statement

of this conjecture is that the Nehari problem for H2(T∞) has a positive
solution. I.e. given a bounded form19(

(an), (bn)
)
∈ `2 × `2 7−→

∑
j,k∈N

ajbk%jk,

then the function ∑
n∈N

%nz
ν1 · · · zνr

would be bounded, i.e. belong to20 H∞(T∞). The converse always holds.
Helson solved the Nehari problem in the special case of Hilbert-Schmidt
operators, i.e. under the additional hypothesis that

∑
|%n|2 < ∞, in [40]

(see also [39]). Helson obtained this result by establishing the following
remarkable property of the space D−1, improving upon earlier results by
Bayart [3].

Theorem(Helson 2005). If F ∈H 1 then ‖F‖D−1 ≤ ‖F‖H 1.

In other words, the space H 1 embeds contractively in the space D−1.
The crucial observation is that this inequality holds in one dimension. This
is due to D. Vukotic [81].

Theorem(Vukotic 2003). Suppose f ∈ H1(D). Then(∫
D
|f(z)|2 dxdy

π

)1/2

≤
∫

T
|f(eiθ)|dθ

2π
.

19These are the Hankel forms on H2(T∞). On H2(T) they are given byP
j,k∈N ajbk%j+k. In one dimension it is a well-known theorem by Z. Nehari [62] and in

two dimensions the problem was solved by S. Ferguson and M. Lacey [27].
20By the Bohr correspondence the space H∞(T∞) is identified with the space H ∞

of all Dirichlet series uniformly bounded on the half-plane σ > 0. It was shown in [35]
that this space is the multiplier algebra of H 2. In [3] this was generalised to all p ≥ 1.
We point out that that this is another manifestation of the jump of 1/2 mentioned
on page 11. Also, in [77] the local interpolating sequences were determined. Since we
present no new results concerning this space we do not discuss it further.

14



1.3 Boundary functions

We remark that Seip [78] recently observed the following local theorem.

Theorem (Seip 2009). Suppose α > 0. For F ∈ Dα and every bounded
interval I there exists a constant C > 0 depending only on the length of I,
such that ∫

I
|F (σ + it)|2α+1

dt ≤ C‖F‖2Dα .

Moreover, this embedding is sharp.

This follows from a duality argument and a classical inequality due to
Hardy and Littlewood which says that for g ∈ Lp(T) and p ∈ (1, 2) then∑

k∈Z
|ĝ(k)|2k−(p/2−1) ≤ ‖g‖2p.

1.3 Boundary functions

Suppose p ∈ [1,∞) and v ∈ Lp(R) is a real valued function. It is well-
known that there exists f ∈ Hp(C1/2) such that the real parts of the
non-tangential limits of f on the abscissa σ = 1/2 coincide with v almost
everywhere. One such function is given by

f(s) =
1

2π

∫
R

v(t)
s− it− 1

2

dt.

In chapter 3 we investigate the corresponding problem for the spaces H p,
H 2
α and Dα.
The main result deals with the space H 2 and is given as Theorem 3.5.

In this section we present it as theorems 3.5a and 3.5b. We give explicit
quantitative estimates in theorems 3.10a and 3.10b. We compare this to
a result due to W. H. J. Fuchs. In addition, we obtain similar results for
the spaces H 2

α and Dα.

Boundary functions for H 2

The question of finding F ∈ H 2 that matches given real L2 boundary
data over bounded intervals is in broad strokes answered in the following
theorem.

15



1 Introduction

Theorem 3.5a (Olsen and Saksman 2009). Given a bounded interval I
and a real valued function v ∈ L2(I) there exists F ∈ H 2 such that the
real part of the non-tangential values of F on the abscissa σ = 1/2 coincide
with v for almost every t ∈ I.

Let Z∗ = Z\{0}. The theorem may be considered as a dual statement
of Lemma 2.2. Indeed, we prove it by establishing a lower norm bound of
the adjoint of what could be called the real embedding operator, namely

RI : (an)n∈Z∗ ∈ `2 7−→ χI
∑
n∈N

ann
−it + a−nn

it

√
n

∈ L2(I). (1.16)

It is not hard to see that such a lower bound is reasonable. Indeed, for
g ∈ L2(I) one has

‖R∗Ig‖2H 2 = 2π
∑
n∈N

|ĝ(log n)|2 + |ĝ(− log n)|2

n
, (1.17)

where
F : g 7−→ ĝ(ξ) =

1√
2π

∫
I
g(τ)e−iτξdτ

is the Fourier transform of g. The expression (1.17) is a Riemann sum for
the L2(R) integral of ĝ(ξ), hence it approximates the quantity ‖ĝ‖2L2(R),
which by Plancherel’s formula equals ‖g‖2L2(I). It is worth noting that
while the embedding of Lemma 2.2 extends to the spaces H 2k for k ∈ N,
Theorem 3.5a may be extended to the spaces21 H 2/k.
We make the following definition. Given a real valued function v ∈ L2(I)

and a bounded interval I ⊂ R we set

Vv,I =
{
F ∈H 2 : lim

σ→1/2+
ReF (σ + it) = v(t) for almost every t ∈ I

}
.

Here ReF denotes the real part of F . By the theory of convex sets, it is
clear that there exists a unique smallest element in Vv,I . By the Schwarz

21The extension to the space H 1 is given in Corollary 3.8. As for the case p < 1 we
refer to the remark at the beginning of section 4.6.
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1.3 Boundary functions

reflection principle we deduce the following consequence of the previous
theorem. For a bounded interval I we let CI =

{
s ∈ C : i(1/2−s) /∈ R\I

}
,

i.e. the complex plane with two rays on the abscissa σ = 1/2 removed.
We denote by Hol(CI) the set of functions holomorphic in CI .

Theorem 3.5b (Olsen and Saksman 2009). Let I ⊂ R be a bounded
interval and f ∈ H2(C1/2). Set v = χI Re f(1/2 + it) for t ∈ I. For
any element F ∈ Vv,I there exists φ ∈ Hol(CI) such that f = F + φ.
Moreover, there is a constant CI > 0 that only depends on the length of I
such that the minimal element F ∈ Vv,I satisfies

‖F‖2H 2 ≤ CI‖f‖2H2(C1/2).

In addition, for every set Ω ⊂ CI at a positive distance from C\CI , the
minimal element satisfies

‖φ‖2L∞(Ω) ≤ DΩ,I

(
1 +

CI
|I|

)
‖f‖2H2 ,

where

DΩ,I ≤ sup
s∈Ω

∣∣∣∣1 + 2s
2π

∣∣∣∣2 ∫
R\I

dt
|s− 1

2 − it|2
.

A dual statement in terms of frames and explicit estimates

We consider the sequence of vectors

G =

(
. . . ,

(−n)it√
(−n)

. . . , 1, . . . ,
n−it

√
n
. . . .

)
,

where n is understood to run through Z∗, to be elements of the space L2(I)
by multiplying each with the characteristic function χI . We recall that a
sequence (fn) in a Hilbert space H is called a frame 22 for H if for every
f ∈ H there exists constants A,B > 0 such that

A‖f‖2H ≤
∑
| 〈f |fn〉 |2 ≤ B‖f‖2H .

22We give more information on frames in chapter 3.
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1 Introduction

Hence, to say that (1.17) is bounded above and below in norm is to say
that G is a frame for L2(I). Using the general theory of frames, we are able
to express the unique smallest element of VI,v explicitly in terms of the
operator RIR∗I , where RI is defined as in (1.16). This yields the following.

Theorem 3.10a (Olsen and Saksman 2009). Let I ⊂ R be a bounded
interval. Then there exist constants cI , CI > 0 such that for real valued
v ∈ L2(I) the set Vv,I admits a unique smallest element F ∈H 2 satisfying

cI‖v‖2L2(I) ≤ ‖F‖
2
H 2 ≤ CI‖v‖2L2(I).

By the theory of entire functions we are able to estimate the upper and
lower frame bounds of the sequence G . This yields the following asymptotic
estimate in terms of Vv,I .

Theorem 3.10b (Olsen and Saksman 2009). The constants cI , CI of The-
orem 3.10a satisfy the following. For every ε > 0 there exist constants such
that for |I| ≥ 1 we have

|I|(1−ε)
|I|
π

log π . CI . |I|(1+ε)
6|I|
π

log 2.

For all I it holds that
1

|I|+ d
≤ cI ≤

1
|I|
.

Also,

lim
|I|→0

CI =
2
π
,

and
1
π
≤ lim inf
|I|→0

cI , lim sup
|I|→∞

cI ≤
2
π
.

The computation concerning CI may be compared to a quantitative
version of the uncertainty principle23 due to Fuchs [30].

23See also [80] for a survey on this and related topics.
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1.3 Boundary functions

Theorem(Fuchs 1964). Given ε > 0 there exists a constant only depending
on ε such that for T > 0 and f ∈ L2(−T, T ) then∫

(−K,K)C
|f̂(ξ)|2dξ & e−(1+ε)TK‖f‖2L2(−T,T ),

and this is best possible.

The comparison becomes clearer when we state explicitly that as an
intermediate step in proving the asymptotic bounds for CI , we show that
given ε > 0 and T > 1 there exists a constant only depending on ε such
that for f ∈ L2(−T, T ) we get∑

logn≥log T

|f̂(log n)|2 + |f̂(− log n)|2

n
& T−c(1+ε)T ‖f‖2L2(I),

with c ∈ (2 log π
π , 12 log 2

π ) = (0.729 . . . , 2.290 . . . ). The left-hand side of this
inequality is a Riemann sum for the integral∫

(− log T,log T )C
|f̂(ξ)|2dξ.

So by Fuchs’ result, a natural conjecture would be that CI ' |I||I| as
|I| → ∞.

Boundary functions for the spaces H 2
α and Dα

Let the spaces Dα(C1/2) be as in section 1.2. For the spaces H 2
α we prove

the following.

Theorem 3.18 (Saksman and Olsen 2009). Let I ⊂ R be a bounded and
open interval and α < 2. Then for every f ∈ Dα(C1/2) there exists an
F ∈ H 2

α such that f − F continues analytically to all of CI with Re(f −
F )(1/2 + it) = 0 on I. There exists a unique F ∈ H 2

α of minimal norm
satisfying this. Moreover, there exists a constant C > 0 depending only on
α and the length of I such that the minimal element satisfies

‖F‖2H 2
α
≤ C‖f‖2Dα(C1/2).
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The analogue theorem for the spaces Dα is as follows.

Theorem 3.22. Let I ⊂ R be an open and bounded interval and α ∈
R∪{+∞}. Then for every f ∈ D1−2−α(C1/2) there exists an F ∈ Dα such
that f −F continues analytically to all of CI with Re(f −F )(1/2 + it) = 0
on I. There exists a unique F ∈ Dα of minimal norm satisfying this.
Moreover, there exists a constant C depending only on α and the length of
I such that he minimal element satisfies

‖F‖2Dα ≤ C‖f‖
2
D1−2−α (C1/2).

1.4 Interpolating sequences and Carleson
measures

Chapter 4 deals with interpolating sequences and Carleson measures for
the function spaces of Dirichlet series with emphasis on the spaces H p.
In this section we recall the relevant definitions and some results in the
classical setting before moving on to describe the results we obtain.

Definitions and some classical results

Let H be a Hilbert space of functions on C1/2. A positive measure µ on
C1/2 is called a Carleson measure for H if there is a constant C > 0 such
that ∫

|f(s)|2dµ(s) ≤ C‖f‖2H , for all f ∈ H.

The smallest such number C > 0 is called the norm of the Carleson mea-
sure and is denoted by ‖µ‖CM(H). Assume, in addition, that H admits a
reproducing kernel kw for every w ∈ C1/2. Then a sequence S = (sn) of
points in C1/2 is called a (universal) interpolating sequence if the following
operator is (bounded and) onto `2,

f ∈ H 7−→
(
f(sn)
‖ksn‖H

)
.

Note that if the mapping is bounded, then by the open mapping theorem
there exists a constant C > 0 such that for all sequences (cn/‖ksn‖H) ∈ `2
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1.4 Interpolating sequences and Carleson measures

there is a function f ∈ H that interpolates f(sn) = cn with ‖f‖H ≤
C‖(cn/‖ksn‖H)‖H . The smallest such constant is called the constant of
interpolation for the sequence S. Note that the of the norms of Carleson
measures and constants of interpolating sequences remain true in the var-
ious Banach space settings we introduce below.
For the Banach spaces in the scale Hp(C1/2) these definitions are ex-

tended as follows. Recall that ωHp(s) denotes the norm of the bounded
point evaluation at the point s ∈ C1/2. We say that a sequence of distinct
points S = (sn) in C1/2 is a (universal) interpolating sequence for the space
Hp(C1/2) if the operator defined by f ∈ Hp(C1/2) 7→ (f(sn)/ωHp(sn)) is
(bounded and) onto the space `p. Moreover, we say that a positive mea-
sure dµ on C1/2 is a Carleson measure for the space Hp(C1/2) if there
exists a constant C > 0 such that for all f ∈ Hp(C1/2) it holds that∫

C1/2
|f(s)|pdµ(s) ≤ C‖F‖pHp .

Finally, for the spaces H p these the definitions are extended in the
same way as for the spaces Hp(C1/2). We say that S = (sn) is a (uni-
versal) interpolating sequence for H p if the operator sending F ∈H p 7→
(F (sn)/ωH p(s)) is (bounded and) onto `p. We say that a positive mea-
sure µ on C1/2 is a Carleson measure for H p if there exists some constant
C > 0 such that

∫
|F (s)|pdµ(s) ≤ C‖F‖pH p for all F ∈H p.

Note that we call a Carleson measure local if it has bounded support,
and we call a sequence S local if it is bounded. The Carleson measures for
Hp(C1/2) were characterised by Carleson [14].

Lemma 4.1 (Carleson 1962). Let p ∈ [1,∞). A positive measure µ is a
Carleson measure for the space Hp(C1/2) if there exists C > 0 such that
for every square Q ⊂ C1/2 it holds that

µ(Q) ≤ C|Q|,

where |Q| denotes the length of a side of the square Q.

The interpolating sequences for the spaces Hp(C1/2) were characterised
by H. S. Shapiro and A. L. Shields [79] in their generalisation of Carleson’s
classical interpolation theorem [13].
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Lemma 4.2 (Carleson 1958, Shapiro and Shields 1961). Let p ∈ [1,∞).
A sequence S = (sn), where sn = σn + itn, is a interpolating sequence
for Hp(C1/2) if and only the measure µ =

∑
δsn(2σn − 1) is a Carleson

measure for Hp(C1/2) and if there is a number η > 0 such that

inf
n6=m

∣∣∣∣ sn − sm
sn + s̄m − 1

∣∣∣∣ ≥ η.
Note that an interpolating sequence S = (sn) for Hp(C1/2) is universal

if and only if the measure

µS =
∑

δsn(2σn − 1) (1.18)

is a Carleson measure for Hp(C1/2). As a consequence, the interpolating
and universal interpolating sequences for the spaces Hp(C1/2) coincide.
Moreover, it is clear that both the Carleson measures and interpolating
sequences are the same for all the spaces Hp(C1/2).

Local interpolation in the spaces H 2, H 2
α and Dα

The following theorem says that Lemma 4.2 completely characterises the
local interpolating sequences of the space H 2.

Theorem 4.3 (Olsen and Seip 2008). Suppose S is a bounded sequence of
distinct points from C1/2. Then S is an interpolating sequence for H 2 if
and only if it is an interpolating sequence for H2(C1/2).

The essential ingredient of the proof is the following lemma proved by
R. P. Boas [6]. By this lemma the theorem on local interpolation follows
readily once the local embedding of H 2 into H2(C1/2) and the local equiv-
alence of the reproducing kernels of the spacesH2(C1/2) and H 2 have been
established. These were given as Lemma 2.2 and (1.4), respectively.

Lemma 4.4 (Boas 1941). Suppose (fn) is a sequence of unit vectors in a
Hilbert space H. Then the moment problem 〈f |fn〉H = an has a solution f
in H for every sequence (an) in `2 if and only if there is a positive constant
C > 0 such that ∥∥∥∑ cjfj

∥∥∥ ≥ C‖(cj)‖`2
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1.4 Interpolating sequences and Carleson measures

for every finite sequence of scalars (cj).

The advantage of this approach is that the proof is readily generalised
to other Hilbert function spaces. A problem, however, is that by arguing
by duality in this way, it is difficult to extend the result to the spaces H p.
We discuss an alternative proof in the next subsection.
We are able to establish the corresponding local equivalences between

the spaces H 2
α for α ≤ 1 and the classical scale of spaces Dα(C1/2). This

yields the following more general version of the previous theorem.

Theorem 4.5 (Olsen and Seip 2008). Suppose S is a bounded sequence
of distinct points from C1/2 and assume α ≤ 1. Then S is a (universal)
interpolating sequence for H 2

α if and only if it is a (universal) interpolating
sequence for Dα(C1/2).

Finally, since we are able to make the same connections between Dα and
D1−2−α(C1/2) we get the following.

Theorem 4.6. Suppose S is a bounded sequence of distinct points from
C1/2 and α ∈ R ∪ {+∞}. Then S is a (universal) interpolating sequence
for Dα if and only if it is an interpolating sequence for D1−2−α(C1/2).

We remark that in the case of bounded interpolating sequences for
H2(C1/2), there is no reason to make a distinction between interpolat-
ing sequences and universal interpolating sequences. The same holds true
for Dα(C1/2) when α < 0. However, for Dα(C1/2) with 0 < α ≤ 1 this is
no longer the case [5], [56].
Also, we remark that there exist geometric descriptions of the (univer-

sal) interpolating sequences for all α ≤ 1. For α < 0, Beurling-type density
theorems were proved by Seip [75]. Descriptions in terms of Carleson mea-
sures were found by W. Cohn in the case 0 < α < 1 [18] and independently
by C. Bishop and by D. Marshall and C. Sundberg in the case α = 1 [5],
[56]. For further information, we refer to the monograph by Seip [76].

Constructive proof for H 2

In addition to the proof of Theorem 4.3 indicated in the previous section,
we give a proof in the case H 2 which is more constructive and which does
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not use duality in the construction itself. For f ∈ H2(C1/2) it is known by
the Paley-Wiener theorem that there exists g ∈ L2(0,∞) such that

f(s) =
∫ ∞

0
g(ξ)e−(s−1/2)ξdξ. (1.19)

This representation may be related to the Dirichlet series

F (s) =
∑
n∈N

∫ ∞
0

g(ξ)n−(s−1/2)dξ.

Using this idea we are able to construct a sequence of Dirichlet series
converging in H 2 to a solution of any local interpolation problem solvable
in H2(C1/2).

Interpolating sequences for the spaces H p

As we have indicated, for general p ∈ [1,∞) it seems difficult to give the
same local characterisation as in the case p = 2. (Another indication is
given in Theorem 4.17 below.) However, we are able to get the following
general necessary condition.

Theorem 4.8 (Olsen and Saksman 2009). Let p ∈ [1,∞) and assume that
S is a sequence of distinct points in C1/2. If S is a universal interpolating
sequence for H p then it is an interpolating sequence for Hp(C1/2).

The idea of the proof is straight-forward. It is simply to show that both
conditions of Lemma 4.2 hold for such a sequence S.
It is clear, however, that the condition of Theorem 4.8 is by no means

sufficient. To illustrate this point, we give an example by constructing the
following sequence. For each positive integer j pick points equi-distributed
on the line segment σ = 1/2 + 2−j , 0 ≤ t ≤ 1, i.e., choose

sj,l =
1
2

+ 2−j + i
l

j
, l = 1, 2, ..., j.

Then Carleson’s theorem along with our Theorem 4.3 shows that (sj,l)
is an interpolating sequence for H 2. In particular, the measure given
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1.4 Interpolating sequences and Carleson measures

by (1.18) is a Carleson measure for both H 2 and H2(C1/2). Now if we
move the points vertically and far apart, this may fail in the space H 2.
This is a consequence of the almost periodicity of t 7→ ζ(σ + it). If we
measure the distance between two points in terms of the angle between
the corresponding reproducing kernels, this almost periodicity implies that
points that are far apart in the hyperbolic sense of the half-plane may be
arbitrarily close in the geometry induced by H 2.
The question still remains if the necessary condition of Theorem 4.8

is also sufficient in the case of local interpolating sequences. As we saw
this was the case for H 2. In fact, we may deduce the following from the
theorem for H 2 using the fact that F ∈H 2 implies F 2 ∈H 1.

Theorem 4.12 (Olsen and Saksman 2009). Let S be a bounded sequence
of distinct points in C1/2. If S is interpolating for H1 then it is also
interpolating for H 1.

However, this theorem does not give a complete characterisation for
the space H 1, as we do not know if the sequence will be a universal
interpolating sequence for H 1, and therefore does not imply a solution of
the H 1 embedding problem.
By what amounts to a third proof of the local interpolation theorem of

the space H 2 we establish the following theorem.

Theorem 4.13 (Olsen and Saksman 2009). Let S be a bounded sequence of
distinct points in C1/2. Suppose that for all k ∈ N and open intervals I ⊂ R
there exists Ck > 0, depending on k ∈ N, such that the following holds:
Given f ∈ H2k(C1/2) there exists F ∈ H 2k such that F − f ∈ Hol(CI)
and ‖F‖H 2k ≤ Ck‖f‖H2k . Under these assumptions it holds that if S is an
interpolating sequence for the spaces Hp(C1/2) then S is an interpolating
sequence for the spaces H q for all q ∈ Q.

The proof of this theorem has one novel feature compared to the previous
proofs of the local interpolation type theorems. This is that the duality
arguments are contained in the function theoretic statement on matching
boundary values.
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The space K

Let K denote the projective the tensor product space H 2 ⊗H 2 defined
on page 13. In the proof of Theorem 4.12 we note that we actually solve
the boundary value problem using functions from the space K.

Theorem 4.16 (Olsen and Saksman 2009). Let S be a bounded sequence.
Then S is an interpolating sequence for K if and only it is interpolating for
H1. Moreover, the local interpolating and universal interpolating sequences
of K coincide.

We point out that the definition of interpolating sequences for K is
defined in the same way as for the spaces H 1 and H1(C1/2).

Carleson measures and the embedding problem for H p

For a Dirichlet polynomial F write

lim
σ→1/2+

∫
I
|F (σ + it)|pdt = lim

σ→1/2+

∫
C1/2

|F (s)|pdµσ(s),

where µσ denotes the singular measure on C1/2 with support on the seg-
ment σ + iI of the complex plane. It is clear that the embedding holds
for the space H p if and only if the family of measures

{
µσ
}
is uniformly

bounded as Carleson measures on H p for σ ∈ [1/2, 1). By definition, this
family of measures has this property as Carleson measures for the space
Hp(C1/2). We obtain the following result.

Theorem 4.17 (Olsen and Saksman 2009). Let p ∈ [1,∞). Then the
following statements are equivalent.

(a) For every bounded interval I ⊂ R there exists a constant C > 0 such
that for all finite sequences (an) of complex numbers it holds that∫

I

∣∣∣∑ ann
− 1

2
−it
∣∣∣p dt ≤ C

∥∥∥∑ ann
−s
∥∥∥p

H p
.

(b) Every local Carleson measure for Hp(C1/2) is also a Carleson mea-
sure for H p.
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1.5 A class of modified zeta functions

(c) There exists a constant D > 0 such that every local Carleson measure
for Hp(C1/2) of the form

µS =
∑

δsn(2σn − 1), sn = σn + itn,

is also a Carleson measure for H p with∫
|F (s)|pdµS(s) ≤ D‖µ‖CMp(Hp)‖F‖

p
H p ∀F ∈H p.

1.5 A class of modified zeta functions

In chapters 5 and 6 we look at the behaviour of the K-zeta functions near
the point s = 1. Recall that these are the modified zeta functions given by

ζK(s) =
∑
n∈K

1
ns
, K ⊂ N.

The infinite series defining these functions converge absolutely on the half-
plane σ > 1. We study them by considering the operator24

ZK,I : g ∈ L2(I) 7−→ lim
δ→0

χI
π

(g ∗ Re ζK,1+δ) ∈ L2(I),

where I ⊂ R is an interval of the form I = (−T, T ).
In this section we describe the results obtained in chapter 5. However,

we begin by giving two brief surveys of related work. The first discusses
convergence properties on the abscissa σ = 1 obtained by J.-P. Kahane
and Queffélec. The second discusses work by Kahane which may be said
to be related to the operator ZK,I .

Convergence properties on σ = 1

A natural question when dealing with the behaviour of the K-zeta func-
tions on the abscissa σ = 1 is whether it is reasonable, in general, to expect

24Recall that we use the notation ζK(σ + it) = ζK,σ(t) to clarify the use of the
convolution which we denote by ∗.
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analytic continuations past this abscissa. This question was answered in
the negative by Kahane [46] and Queffélec [67]. They considered Dirichlet
series of the type ∑

n∈N
εnann

−s, (1.20)

where (εn)n∈N is a sequence with εn ∈
{
− 1, 1

}
for each n ∈ N. In other

words the sequence belongs to the infinite product W =
{
− 1, 1

}∞.
The set W may be equipped with two reasonable notions of probability.

In the product topology one may use the probability of coin tosses, with −1
representing heads and 1 representing tails. In this wayW is a probability
space. We say that any property valid for (1.20) for (εn)n∈N outside of
a subset of measure zero holds almost surely. The second way is to use
Baire categories. SinceW is the infinite product of compact sets the Baire
category theorem says that any countable union of nowhere dense sets is
nowhere dense. Such a union is said to be of the first category. We say
that any property valid for (1.20) on the complement of a set of the first
category holds quasi surely.
The following result is proved in greater generality in both of the afore-

mentioned papers.

Theorem (Kahane 1973). Let an be a sequence of positive real numbers
such that σ = 1 is the smallest number for which

∑
n∈N ann

−σ =∞. Then
the Dirichlet series

∑
n∈N εnann

−s has the abscissa σ = 1 as a natural
boundary quasi surely.

It now follows immediately that if K ⊂ N is such that
∑

n∈K n
−1 = ∞

then quasi surely the function ∑
n∈K

εnn
−s (1.21)

has σ = 1 as a natural boundary. If we split K = K1∪K2 according to the
sign of (εn) we may write the function (1.21) as a difference of two K-zeta
functions, i.e. ζK1(s)−ζK2(s). Hence, for each point on the abscissa σ = 1
either the function ζK1 or ζK2 does not have an analytic continuation.
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1.5 A class of modified zeta functions

This reasoning also holds true when the zeta function is given by the
Euler product ∏

p∈P

1
1− εpp−s

It was noticed by Queffélec that by expressing this function as φ(s)e
P
εnp−s ,

where φ(s) is analytic on the half-plane defined by σ > 1/2, and apply-
ing Kahane’s theorem to the function

∑
p∈P εpp

−s, it follows that even if
ζK admits an Euler product it may have the abscissa σ = 1 as a natu-
ral boundary. It is interesting to note that Kahane also proved that the
function (1.21) almost surely admits an analytic continuation up to the
abscissa σ = 1/2.
We remark that there has also been done work in finding conditions for

analytic continuation to hold, see e.g. T. Kurokawa [53].

A Fourier formula for the prime numbers

The operator ZK,I indirectly appears in a series of articles by Kahane in
the form of the functional

φ ∈ C∞0 (I) 7−→
∫

R
φ(τ)ζP(1 + iτ)dτ. (1.22)

In [47] he uses this functional to give a proof of the Prime number theorem

πP(x) ∼ x

log x
,

where πP is the counting function of the prime numbers and f(x) ∼ g(x)
means that f(x)/g(x) → 1 as x → +∞. The key observation is that the
right-hand side of (1.22) is equal to

∑
p∈P

φ̂(log p)
p

. (1.23)

Kahane calls the resulting identity the Fourier formula for prime numbers.
He carefully selects a function φ = φx that depends on a parameter x > 0
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to make the expression (1.23) asymptotically comparable to e−xπ(ex). By
using information about the function ζP(1 + it) he essentially estimates
(1.22) to be asymptotically comparable to x−1(1 + o(1)), thereby proving
the Prime number theorem.

In [48] the same approach is used in the more general context of A.
Beurling’s theory on generalised prime numbers. This field of research
was initiated by Beurling in [4]. The setup is to consider any increasing
sequence R = (ri)i∈N of real numbers as being a substitute for the primes
and then formally define a zeta function by

ζR(s) =
∏
r∈R

1
1− r−s

.

Let N be the multiplicative semi-group that R generates, i.e. the collection
of finite products of elements of R. The set N is called the Beurling
integers. The point is to establish theorems connecting the asymptotic
behaviour of the counting function of the Beurling primes, πR(x), with
the one of the Beurling integers, πN (x). In the paper in question, Kahane
essentially makes the same choice for the functions φx as in [47], making
the analogue of (1.23) asymptotically comparable to πR(x). The strength
of the paper lies in that he discusses a wide class of conditions that one may
impose on the function ζR(1 + it) to extract enough information to prove
asymptotic estimates for πR(x). In particular, he settles a long standing
conjecture made by P. T. Bateman and H. G. Diamond [2] in proving that
the condition ∫ ∞

1

∣∣∣∣πN (x)− cx
x

∣∣∣∣2 log2 x
dx

x
< +∞

implies the Prime number theorem for πR, i.e. that

πR(x) ∼ x

log x
.
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1.5 A class of modified zeta functions

Two questions about the operator ZK,I

We recall some known results on the K-zeta functions. For K = N we get
the classical Riemann zeta function ζN = ζ which satisfies he formula

ζ(s) =
1

s− 1
+ ψ(s), (1.24)

for some entire function ψ. This formula essentially says that the local be-
haviour at s = 1 is an analytic, and therefore small, perturbation of a pole
with residue one. In general, the K-zeta functions may have the abscissa
σ = 1 as a natural boundary, even when they admit an Euler product
representation, as was shown in [46, 67]. Therefore it is not reasonable to
expect the type of nice behaviour displayed by (1.24) for general K ⊂ N.
However, consider the following example. For K = N the formula (1.24)
implies that

Re ζN(1 + δ + it) =
δ

δ2 + t2
+ Reψ(1 + δ + it),

whence
ZN,I = Id + ΨN,I , (1.25)

where ΨN,I is a compact operator on L2(I) for all intervals of the form
I = (−T, T ). We point out that we consider (5.6) to be a generalisation
of the formula (5.1). This leads us to pose the following question.

(1) For which K ⊂ N does the formula ZK,I = AId + ΨK,I , with ΨK,I a
compact operator, hold for some A ≥ 0?

We can pose this question in a more general manner. In chapter 3 what
is essentially the formula (5.6) is used to prove that the operator ZN,I is
bounded below in norm on L2(I). This relies on the following is a result
from Semi-Fredholm theory. It is a classical result shown in e.g. [49, p.
238, thm. 5.26].

Lemma 5.2 (Second stability theorem of Semi-Fredholm theory). Let
X,Y be Banach spaces and Z : X → Y a continuous linear operator
that is bounded below. If Φ : X → Y is a compact operator and Z + Φ is
injective, then it follows that Z + Φ is bounded below.
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If we assume that there are no problems in deciding when ZK,I is injec-
tive or not, this result implies that whenever (1) holds, ZK,I is bounded
below as an operator on L2(I). Letting this be an indicator of when ζK(s)
has a pole-like behaviour at s = 1 we are led to pose the following general
question:

(2) For which K ⊂ N is ZK,I bounded below?

We now outline the solutions to these two questions which are given in full
detail in chapter 5.

A general formula

Given any K ⊂ N we observe that

ZK,Ig(t) =
χI√
2π

∑
n∈K

ĝ(log n)nit + ĝ(− log n)n−it

√
n

.

We consider the right-hand side to be a Riemann sum. To express the
integral it approximates we set

L =
⋃
k∈K

((
− log(n+ 1),− log n

]
∪
[

log n, log(n+ 1)
))
. (1.26)

With this notation we see that the operator ZK,I gives an approximation
in the sense of Riemann sums of the bounded operator

g ∈ L2(I) 7−→ χIF−1χLFg ∈ L2(I).

In this way, we obtain the following theorem which is of importance in an-
swering both of the aforementioned questions. This generalises the formula
(1.25) for any K ⊂ N.

Theorem 5.4. Let K ⊂ N be arbitrary, I ⊂ R be a bounded symmetric
interval and let L be defined by (1.26). Then there exists a compact operator
ΦK,I such that

ZK,I = χIF−1χLF + ΦK,I .
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1.5 A class of modified zeta functions

The Wiener-Ikehara-Korevaar theorem and the first question

The answer to question (1) is indicated by a tauberian theorem due to J.
Korevaar [52] that generalises a classical result of N. Wiener and S. Ikehara
[43]. We state a special case.

Lemma 5.6 (Korevaar 2005). Let K ⊂ N and A ≥ 0. Then the function
defined by

ψK(s) =
1
s
ζK(s)− A

s− 1
(1.27)

extends to a pseudo-function on σ = 1 if and only if

lim
x→∞

πK(x)
x

= A.

Here πK(x) denotes the counting function of the integers K. We call
the distributional Fourier transform of L∞ functions with decay at infinity
pseudo-functions. Any function φ that is analytic on σ > 1 and for which
φσ(t) = φ(σ + it) converges in terms of distributions to a pseudo-function
as σ → 1+ is said to extend to a pseudo-function on σ = 1. Hence, the
behaviour of these K-zeta functions are captured by the pole with residue
A up to a perturbation by a pseudo-function. The significance of the
pseudo-functions in our situation is explained by the following observation.
If φ is analytic on σ > 1 and extends to a pseudo-function on σ = 1. Then
the operator defined by

g ∈ L2(I) 7−→ lim
σ→1+

χI(g ∗ φσ)

is a compact operator. Based on this and the Wiener-Ikehara-Korevaar
Lemma the sufficiency part of the next result follows in a straight-forward
manner. The necessity follows by an application of Theorem 5.4.

Theorem 5.7. Let K ⊂ N be arbitrary and A ≥ 0. Then the operator
defined by

ΨK,I = ZK,I −AId

is compact for all intervals of the form I = (−T, T ) if and only if

lim
x→∞

πK(x)
x

= A.
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Panejah’s theorem and the second question

We now turn to the second question. A crucial result in the study of this
operator is due to B. Panejah [66].

Lemma 5.8 (Panejah 1966). Let L ⊂ R. Then the operator χLF is
bounded below from L2(I) to L2(R) if and only if there exists δ > 0 such
that

inf
ξ∈R
|L ∩ (ξ − δ, δ)| > 0.

By combining this with Lemma 5.2 and Theorem 5.4 we get the following
theorem25 which answers question (2).

Theorem 5.10∗. Let K ⊂ N be arbitrary, I ⊂ R be a bounded symmetric
interval and L ⊂ R be defined by 1.26. Then the following conditions are
equivalent.

ZK,I is bounded below on L2(I).

χIF−1χLF is bounded below on L2(I).

There exists δ ∈ (0, 1) such that lim inf
x→∞

πK(x)− πK(δx)
x

> 0.

1.6 Modified zeta functions and prime numbers

In chapter 6 we continue the study of the K-zeta functions under the addi-
tional assumption of arithmetic structure on the subsets K ⊂ N. In effect,
K consists of the integers whose prime number decomposition contain only
elements of some specified subset of the prime numbers.
We describe the results obtained in the chapter.

Arithmetic structure implies asymptotic density

A fundamental fact is that K ⊂ N with arithmetic structure in the sense
described above always admit an asymptotic density26.

25Theorem 5.10∗ is a simplified statement of Theorem 5.10.
26In chapter 6 we provide a proof of Lemma 6.1 using the Wiener-Ikehara-Korevaar

tauberian theorem.
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1.6 Modified zeta functions and prime numbers

Lemma 6.1. Let Q ⊂ P generate K ⊂ N, and let J denote the integers
generated by the prime numbers not in Q. Then

lim
x→∞

πK(x)
x

= lim
σ→1+

1
ζJ(σ)

.

Hence, if J denotes the integers generated by the primes not in Q, then
the condition of Theorem 5.7 always holds with A = limσ→1+ ζ−1

J (σ). By
the Euler product representation

ζJ(s) =
∏

p∈P\Q

(
1

1− p−s

)

it is seen that ζJ(1) <∞ if and only if∑
p∈P\Q

1
p
<∞. (1.28)

This means that we get the following simpler form of the theorem.

Theorem 6.2. Let Q ⊂ P generate the integers K, and J be the integers
generated by the primes not in Q. Then

ZK,I = ζ−1
J (1)Id + ΨK,I ,

for a compact operator ΨK,I . Moreover, the operator ZK,I is bounded below
on L2(I) if and only if ∑

p∈P\Q

1
p
<∞.

This can be compared with the following theorem of F. Moricz which is
stated in more generality in [61].

Theorem (Moricz 1999). Let K ⊂ N be arbitrary and set φ(x) = |x|p.
Then ∫ 2

1
φ(ζK(σ))dσ '

∞∑
n=1

1
n2
φ

(
n∑

m=1

πK(2m)
2m

)
.
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In particular, for φ(x) = |x|, it follows that∫ 2

1
|ζK(σ)|dσ '

∞∑
n=1

1
n

πK(2n)
2n

.

Also, when we combine Theorem 6.2 with Theorem 5.8, we obtain that
if Q ⊂ P generates K ⊂ N, then

χIF−1χLF =
1

ζJ(1)
Id + ΥK,I ,

where ΥK,I denotes a compact operator for all intervals I = (−T, T ).
However, more can be said about the formula (1.27). We state a special
case of Theorem 6.3.

Theorem 6.3∗. Let Q ⊂ P generate K ⊂ N. Then the function ψK of
formula (1.27) extends to a L1

loc function on σ = 1 if and only if∑
p∈P\Q

log log p
p

<∞.

Prime number theorems for Beurling primes

Let R = (ri) be an increasing sequence of real numbers greater than one
and let N be the multiplicative semi-group it generates. Recall that R may
be said to be the Beurling prime numbers for the Beurling integers N . In
our case Q corresponds to the Beurling primes and K to the Beurling
integers. We say that the prime number theorem holds for Q if

πQ(x) ∼ x

log x
.

We show the following lemma.

Lemma 6.5. Let Q ⊂ P generate K ⊂ N and let J denote the integers
generated by the primes not in Q. Then the prime number theorem holds
for the set K if and only if∑

p∈P\Q∩(δx,x)

log p
p

= o (1) , for all δ ∈ (0, 1). (1.29)
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1.6 Modified zeta functions and prime numbers

We check if the asymptotic information about Q given by the condition
(1.28) is related to a prime number theorem being true for Q. By compar-
ing it to the condition (1.29) we prove that neither condition implies the
other.

Theorem 6.6. Let Q ⊂ P generate K ⊂ N. Then the prime number
theorem for Q neither implies nor is implied by the lower boundedness of
the operator ZK,I .

This completes our survey.
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2 Function spaces of Dirichlet series and
local embeddings

In this chapter we explain the basic analogies between the spaces H p, H 2
α

and Dα and their classical counterparts, the spaces Hp and Dα. These are
given in terms of the Bohr correspondence, point evaluations and local
embedding properties. The reader should consult the previous chapter for
more on the background and motivation for the study of the spaces H p

First we give some basic information on the convergence properties of
Dirichlet series in general, and the Riemann zeta function in particular.

2.1 Preliminaries

By Dirichlet series we refer to functions of the type

F (s) =
∑
n∈N

ann
−s, s = σ + it (2.1)

which are assumed to converge for some s ∈ C. Finite sums of this type are
called Dirichlet polynomials. We denote the set of Dirichlet polynomials
by P.

Classical theory of convergence

By a direct application of summation by parts it follows that if a Dirichlet
series converges at a point s0 = σ0 +it0 then it also converges for all points
on the half-plane Re s > σ0. For a Dirichlet series of the type (2.1) it
therefore makes sense to define the abscissa of convergence,

σc(F ) = inf

{
σ :
∑
n∈N

ann
−σ. converges.

}
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2 Function spaces of Dirichlet series and local embeddings

By applying this to the Dirichlet series with coefficients |an| one establishes
in the same way the existence of an abscissa of absolute convergence, de-
noted by σa(F ).
These abscissae are in a sense similar to the radii of convergence of

complex polynomials. Unlike complex polynomials, however, the abscissae
of convergence and absolute convergence do not coincide in general. An
example of this is given by the alternating zeta function∑

n∈N
(−1)nn−s.

This Dirichlet series converges for σ > 0, but only converges absolutely for
σ > 1. This indicates that the convergence properties of Dirichlet series
are more delicate than those of Taylor series.
We will not need these concepts in our investigations but for complete-

ness we briefly mention that in the same way, it is possible to define the
corresponding abscissae of uniform convergence, σu, and convergence to a
bounded function, σb. It is easily seen to hold true that

σc ≤ σa ≤ σc + 1, and σb ≤ σu ≤ σa.

It was shown by H. Bohr [9, 10] that σu = σb and that σa ≤ 1/2 + σu. H.
F. Bohnenblust and E. Hille [8] proved that the second estimate is sharp.
For more on the classical theory of Dirichlet series one may consult H.

Bohr’s thesis [11] or the classical account of G. H. Hardy and M. Riesz
[33].

Meromorphic continuation of the Riemann zeta function

The Riemann zeta function is given by

ζ(s) =
∑
n∈N

n−s, s = σ + it.

It is clear that the series on the right-hand side converges absolutely on
the half-plane σ > 1 and diverges at the point σ = 1. For us, the essential
property of the Riemann zeta function is contained in the following classical
result [71, p. 145].
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2.2 The Dirichlet-Hardy spaces H p

Lemma 2.1 (Riemann 1859). There exists an entire function ψ such that

ζ(s) =
1

s− 1
+ ψ(s). (2.2)

We give two short arguments that show how this extension is realised
on the half-plane σ > 0. The first relies on a trick. Since 2−sζ(s) =∑

n∈N(2n)−s it follows that

(21−s − 1)ζ(s) =
∑
n∈N

(−1)nn−s.

It is clear that the alternating sum on the right-hand side converges for
s = σ > 0. Hence, the right-hand side converges for all complex s with
real part σ > 0.
The second approach is related to the techniques we use in chapters 5

and 6. We let πN(x) denote the counting function of the integers, i.e.

πN(x) =
∑
n∈N
n≤x

1.

We may now write

ζ(s) =
∫ ∞

1
x−sdπN(x) = s

∫ ∞
1

x−s−1πN(x)dx

=
1

s− 1
+ 1 +

∫ ∞
1

x−s−1(πN(x)− x)dx.

Since |x − πN(x)| ≤ 1 for x ≤ 1 it follows that the last term on the right
hand side defines an analytic function for s with σ > 0. Note that by the
second equality ζ(s)/s is what is called the Mellin transform of πN.

2.2 The Dirichlet-Hardy spaces H p

The space H 2 was introduced in [35] and is defined to be the closure of
the Dirichlet polynomials in the norm∥∥∥∥∥∑

n∈N
ann

−s

∥∥∥∥∥
H 2

=

(∑
n∈N
|an|2

)1/2

.
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2 Function spaces of Dirichlet series and local embeddings

By the Cauchy-Schwarz inequality it is seen that H 2 defines a Hilbert
space of functions analytic on the half-plane C1/2. For p ∈ [1,∞) the
spaces H p may be defined [3] to be the closure of the Dirichlet polynomials
in the norm∥∥∥∥∥∑

n∈N
ann

−s

∥∥∥∥∥
H p

= lim
T→∞

(
1

2T

∫ T

−T

∣∣∣∣∣∑
n∈N

ann
−it

∣∣∣∣∣
p

dt

)1/p

. (2.3)

Following [35, 3] we proceed to explain how to define these spaces using
the Bohr correspondence.

The spaces Lp(T∞) and Hp(T∞)

The infinite dimensional torus may be defined as the set sequences

T∞ = {(z1, z2, . . .) : zn ∈ T} .

With the group action of termwise multiplication and the product topology,
T∞ is a compact abelian group. This means that it has a unique normalised
Haar measure ρ. In fact, it may be seen that this measure is nothing but
the infinite product of the normalised Lebesgue measure on each copy of
T. We define the spaces Lp(T∞) to be the closure of the trigonometric
polynomials on T∞ in the norm

‖g‖Lp(T∞) =
(∫

T∞
|g(χ)|pdρ(χ)

)1/p

.

To do Fourier analysis on these spaces we need to use the dual group of
T∞. This group is the positive rational numbers Q+ under multiplication,
equipped with the discrete topology. For χ ∈ T∞ we let the n’th coordinate
be given by χ(pn). With this notation, for r ∈ Q+ with the prime number
decomposition r = pγ1

1 · · · p
γn
n for γ1, . . . , γn ∈ Z and χ ∈ T∞, the duality

is realised by
r : χ 7−→ χ(r) = zγ1

1 · · · z
γn
n .

This means that for g ∈ Lp(T∞) we have the standard identification

g(χ) ∼
∑
r∈Q+

cr(g)χ(r),
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2.2 The Dirichlet-Hardy spaces H p

where
cr(g) =

∫
T∞

g(χ)χ(r)dρ(χ).

See W. Rudin’s book [72] for more on Fourier analysis on groups. We say
that a function g ∈ Lp(T∞) belongs to the subspace Hp(T∞) if and only
if cr(g) = 0 for r ∈ Q+\N,

An equivalent definition of the space H p

We now define H p to be the Banach space of formal Dirichlet series ob-
tained as the inverse image of Hp(T∞) under the Bohr correspondence

B :
∑
n∈N

ann
−s 7−→

∑
n∈N

anχ(n).

The topology is given by the norm

‖F‖pH p =
∫

T∞
|BF (χ)|pdρ(χ).

To see that this definition coincides with the one given by (2.3) one may
use ergodic theory as we mentioned in the introduction. However, an
argument using only K. Weierstrass’ polynomial approximation theorem
was given by Saksman and Seip in [74]. The idea is first to establish that
for Dirichlet polynomials F it holds that∫

T∞
BF (χ)nBF (χ)

m
dρ(χ) = lim

T→∞

1
2T

∫ T

−T
F (it)nF (it)

m
dt.

This follows by multiplying out both sides and integrating term by term.
By the triangle inequality both functions BF and F are uniformly bounded
by some constant C > 0 on the respective domains of integration. So by
the Weierstrass approximation theorem we may approximate the function
p(z) = |z|p uniformly for |z| ≤ 2C by a sequence of polynomials

pN (z) =
∑

|n|,|m|≤N

cn,mz
nzm.
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2 Function spaces of Dirichlet series and local embeddings

It now follows that as N →∞ we get∫
T∞ pN (BF (χ))dρ(χ) = limT→∞

1
2T

∫ T
−T pN (F (it))dt

←
−

←
−

∫
T∞ |BF (χ)|pdρ(χ) limT→∞

1
2T

∫ T
−T |F (it)|pdt

Hence, the Bohr correspondence B extends to an isometry between the
spaces H p and Hp(T∞).

Connections to to the classical range of Hardy spaces Hp(C1/2)

We first consider the case p = 2. We have already remarked that the
functions in H 2 converge absolutely on the half-plane C1/2. By inspec-
tion, the point evaluation functional at w ∈ C1/2, which is given by the
reproducing kernel kH 2

w (s), is seen to be a translate of the Riemann zeta
function, namely

kH 2

w (s) =
∑
n∈N

n−s−w̄ = ζ(s+ w̄). (2.4)

It is well-known that the reproducing kernel for1 H2(C1/2) is given by

kH
2

w (s) =
1

s+ w̄ − 1
.

By (2.4) and the formula for the Riemann zeta function (2.2), it follows
that for bounded s+ w̄ it holds that

kH 2

w (s) = kH
2

w (s) +O (1) . (2.5)

A property that will be of crucial importance for us is the local embed-
ding property of the space H 2. We give a proof of this embedding using
an argument that will appear as a central idea of several results in this
work. This argument is different from the ones presented in [59] and [35].

1See page 4 for the definition of the space Hp(C1/2).
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2.2 The Dirichlet-Hardy spaces H p

Lemma 2.2 (Montgomery 1994, Hedenmalm, Lindqvist and Seip 1997).
For F ∈ H 2 and every bounded interval I ⊂ R there exists a constant
C > 0, only depending on the length of I, such that

lim
σ→1/2+

∫
I
|F (σ + it)|2dt ≤ C‖F‖2H 2 . (2.6)

Proof. Recall that P denotes the set of Dirichlet polynomials and that we
use the convention ‖f‖2L2(I) =

∫
I |g(t)|2dt. By the invariance under vertical

translations of the norm H 2 it suffices to consider the case I = (−T, T )
for some T > 0. We begin by defining the operator

EI :
∑
n∈N

ann
−s ∈P 7−→ χI(t)

∑
n∈N

ann
−1/2−it, (2.7)

where χI denotes the characteristic function of the interval I. We wish to
show that EI extends to a bounded operator from H 2 to L2(I). To do
this, let εk → 0 be some sequence of positive real numbers and define the
sequence of operators

Ek :
∑
n∈N

ann
−s ∈P 7−→ χI(t)

∑
n∈N

ann
−1/2−εk−it.

It is clear that EkF → EIF in norm for F ∈ P. Hence, it suffices to
prove that EkE∗k converges in the strong operator topology to a bounded
operator from H 2 to L2(I). By a straight-forward computation

E∗kg =
√

2π
∑
n∈N

ĝ(− log n)

n
1
2

+ε−k
n−s.

By applying the operator Ek to this expression, and then pulling the inte-
gral sign in the expression of the Fourier transform ĝ outside of the sum
sign, we get

EkE
∗
kg = χI(g ∗ ζ1+εk), (2.8)

where ∗ denotes convolution on R, the function ζσ(t) = ζ(σ + it) is the
Riemann-zeta function and g ∈ L2(I) is extended to all of R by setting it
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2 Function spaces of Dirichlet series and local embeddings

equal to zero outside of I. Inserting the formula (2.2) for the Riemann-zeta
function in the expression for EkE∗k and taking the limit as k → ∞, we
establish that

EIE
∗
I g = 2πχIP+g + χI(g ∗ ψ1). (2.9)

Here ψ1(t) = ψ(1 + it) and P+ denotes the Riesz projection L2(R) →
H2(C1) given by

P+g(t) = lim
σ→1

1
2π

∫
R

g(τ)
(σ − 1) + i(t− τ)

dτ. (2.10)

Since the Riesz projection is bounded2 on L2(R), the lemma now follows.

We note that it now follows that if F ∈ H 2 then3 F (s)/s ∈ H2(C1/2).
In particular this implies that F has non-tangential boundary limits on
the abscissa σ = 1/2 for almost every t ∈ R.

We turn to general p ∈ [1,∞). Bayart [3] used the sharp results on
point evaluations in the space Hp(T∞) obtained by Cole and Gamelin [19]
to show that the formal Dirichlet series in H p converge on the half-plane
C1/2.

Lemma 2.3 (Cole and Gamelin 1985, Bayart 2002). Let p ∈ [1,∞). Then
the norm of the point evaluation in H p at the point s = σ + it in C1/2

equals ζ(2σ)1/p.

For s ∈ C1/2 let the norm of the point evaluation functional F ∈H p 7−→
F (s) be denoted by ωH p . We now use the fact that the Riemann zeta
function is meromorphic with a pole at s = 1 to get

ωH p(s)p =
1

σ − 1/2
+O (1) , σ → 1/2+. (2.11)

For f ∈ Hp(C1/2) it is well known that a reproducing formula holds,

f(s) =
1

2π

∫
R

f
(

1
2 + it

)
s− 1

2 − it
dt.

2See for instance [51, p. 128] for more on the Riesz projection.
3We gave a demonstration of this fact on page 6.
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α

From this it follows that the norm ωHp(s) of the point evaluation at the
point s ∈ C1/2 satisfies ωHp(s) = Cp(2σ − 1)−1/p, where the constant Cp
only depends on p. By the relation (2.11) this implies

ωH p(s)p = CpωHp(s)p +O (1) , σ → 1/2+. (2.12)

As we remarked in the introduction, the inequality of Lemma 2.2 is only
known to hold for p = 2k where k ∈ N. Indeed, it follows immediately
from the fact that F ∈ H 2k ⇒ F k ∈ H 2 that for bounded intervals I
and the same constant CI as in the lemma,

lim
σ→1/2+

∫
I
|F (σ + it)|2kdt ≤ CI‖F‖2kH 2k .

2.3 McCarthy’s spaces H 2
α

The spaces H 2
α were introduced in [58]. They consist of the Dirichlet series

finite in the norm∥∥∥∥∥∑
n∈N

ann
−s

∥∥∥∥∥
H 2
α

=

(∑
n∈N
|an|2 logα(n+ 1)

)1/2

.

By the Cauchy-Schwarz inequality, we observe that every space H 2
α con-

sists of functions analytic in the half-plane σ > 1/2.

A lemma on weighted zeta functions

We observe that the reproducing kernel at w ∈ C1/2 may be expressed in
terms of a weighted zeta-function,

kHα
w (s) =

∑
n∈N

n−s−w̄

logα(n+ 1)
.

The following lemma describes the local behaviour of these weighted zeta
functions. Note that the Gamma function is given by

Γ(x) =
∫ ∞

0
euux−1du.
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2 Function spaces of Dirichlet series and local embeddings

Lemma 2.4 (Olsen and Seip 2008). For α < 1, we have

∑
n∈N

n−s

logα(n+ 1)
= Γ(1− α)(s− 1)α−1 +O(1)

for s ∈ C1/2 as s→ 1. In the limiting case α = 1 we have

∑
n∈N

n−s

log(n+ 1)
= log

1
s− 1

+O(1)

for s ∈ C1/2 as s→ 1.

Proof. The proof is a calculation analogous to the one for the Riemann
zeta-function found for instance in A. Ivic’s book [44]. To begin with,

∑
n∈N

n−s

logα(n+ 1)
=

∫ ∞
1

x−s

logα(x+ 1)
d[x]

=
∫ ∞

1

x−s−1[x]
logα(x+ 1)

(
s+

α

log(x+ 1)
x

x+ 1

)
dx.

The integral∫ ∞
1

x−s−1[x]
logα(x+ 1)

(
s+

α

log(x+ 1)
x

x+ 1

)
− x−s

logα(x+ 1)

(
s+

α

log(x+ 1)

)
dx

converges absolutely and defines an analytic function in the right half-
plane. We may therefore pass from [x] to x in our integral, and ignore the
factor x/(x+ 1). For a similar reason, we may replace log(x+ 1) by log x
and if necessary change the lower limit of integration.
When α < 1, we make the following computation:∫ ∞

1

x−s

logα x
dx = Γ(1− α)(s− 1)α−1.
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This gives the desired result for 0 < α < 1. When α < 0, we find, using
the functional equation Γ(s+ 1) = sΓ(s) for the gamma-function, that∫ ∞

1

x−s

logα x

(
s+

α

log x

)
dx = Γ(1− α)(s− 1)α−1

as well. In the limiting case α = 1, we find that∫ ∞
2

x−s

log x
dx = log

1
s− 1

+O(1)

as s→ 1.

Connections to the classical range of Hilbert spaces Dα(C1/2)

The natural counterparts to the spaces H 2
α in the half-plane σ > 1/2 are

the spaces Dα(C1/2). For α < 2 these were defined on page 12. In order
to give an exact representation of the reproducing kernels, we redefine the
norm for α = 1 (the space remains the same) to be given by

‖f‖2D1
=

1
2π

∫ ∞
−∞

∣∣∣∣f(1
2

+ it
)∣∣∣∣2 dt

1 + t2
+

1
π

∫
C1/2

|f ′(s)|2dm(s).

Recall that dm denotes Lebesgue area measure. The reproducing kernels
for Dα(C1/2) at w ∈ C1/2 is

kDαw (s) = cα(w̄ + s− 1)α−1 (2.13)

when α < 1, with cα = (−α)2−α−1 for α < 0 and cα = 2α−1(1− α)−1 for
0 < α < 1. In the limiting case α = 1, we now have

kD1
w (s) =

3 + 2w̄
1 + 2w̄

3 + 2s
1 + 2s

(
log

(1 + 2w̄)(1 + 2s)
23

+ log
1

w̄ + s− 1

)
.

What is essential in this case is that for s+ w̄ in a bounded set we have

kD1
w (s) = log

1
s+ w̄ − 1

+O (1) .
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2 Function spaces of Dirichlet series and local embeddings

For α > 1 the reproducing kernels are uniformly bounded and are therefore
not of interest to us.
By combining these considerations with Lemma 2.4 we get for all α ≤ 1

the relations
kH 2

α
w (s) = c−1

α kDαw (s) +O (1) . (2.14)
Moreover, for each α < 2 the inequality (2.6) can now be transformed into
a version that reveals the local boundary behavior of functions in Hα. To
this end, for a bounded interval I let QI denote the half-strip σ > 1/2,
t ∈ I.
Lemma 2.5 (Olsen and Seip 2008). Suppose F ∈ H 2

α and let I be a
bounded interval. There exist constants C only depending on the length of
I and α such that for α < 0 we have∫

QI

|F (s)|2
(
σ − 1

2

)−α−1

dm(s) ≤ C‖F‖2Hα
. (2.15)

Similarly, for 0 < α < 2 we have∫
QI

|F ′(s)|2
(
σ − 1

2

)−α+1

dm(s) ≤ C‖F‖2Hα
. (2.16)

Proof. Using Lemma 2.2 to write (2.6), for σ > 1/2, as∫
I
|F (σ + it)|2 dt ≤ C

∞∑
n=1

|an|2n2σ−1,

multiplying both sides by (σ − 1
2)−α−1, and integrating from 1

2 to +∞,
we get the desired inequality for α < 0. By a similar computation the
inequality for 0 < α < 2 is obtained.

2.4 The Dirichlet-Bergman spaces Dα

In this section we introduce the spaces Dα. For α ∈ R the space Dα

consists of the Dirichlet series finite in the norm∥∥∥∥∥∑
n∈N

ann
−s

∥∥∥∥∥
Dα

=

(∑
n∈N
|an|2d(n)α

)1/2

, α ∈ R. (2.17)
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2.4 The Dirichlet-Bergman spaces Dα

In the limiting case α = +∞, the space consists of the Dirichlet series∑
p∈P app

−s that are finite in the norm∥∥∥∥∥∥
∑
p∈P

app
−s

∥∥∥∥∥∥
D∞

=

∑
p∈P
|ap|2

1/2

.

Here d(n) denotes the number of divisors of the integer n and pn the n’th
prime number. It follows by the properties of this divisor function which
we list below that the spaces Dα for α ∈ R ∪ {+∞} consist of functions
analytic on C1/2.

The divisor function

It is convenient to express the divisor function d(n) as

d(n) =
∑
k|n

1.

Some basic results on this function is given in G. H. Hardy and E. M.
Wright’s book [34]. The divisor function is multiplicative in the sense that
if m,n are relatively prime integers, then d(nm) = d(n)d(m). It is easily
computed that d(pn) = n + 1 for prime numbers p. A basic estimate is
that for all ε > 0 it holds that

d(n) = O (nε) . (2.18)

In particular, this implies that the series (2.17) converge absolutely for s
with σ > 1/2. The inequality implied by (2.18) is best possible in the sense
that one may show that the divisor function grows faster than any power
of the logarithm. It follows that the divisor function is very irregular
since prime numbers and highly composite numbers may occur side by
side among the natural numbers. In particular this implies that neither
Dα ⊂ H 2

α nor H 2
α ⊂ Dα. However, the function d(n) does have some

good properties expressed both in terms of averages and zeta functions.
For instance, it is immediately verified that

ζ(s)2 =
∑
n∈N

d(n)n−s, and
ζ(s)4

ζ(2s)
=
∑
n∈N

d(n)2n−s,
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2 Function spaces of Dirichlet series and local embeddings

while the following identity dates back to P. G. L. Dirichlet4,

D(n) :=
n∑
k=1

d(k) = n log n+ (2γ − 1)n+O
(√
n
)
.

Here γ is Euler’s constant. More generally, the following identities were
announced by S. Ramanujan in [70] and later proved by B. M. Wilson in
[82].

Dβ(n) =
n∑
k=1

d(n)β = Cn(log n)2β−1 +O
(
n(log n)2β−2

)
, β ∈ R, (2.19)

for some constant C depending on α, and

ζ(s)2βφβ(s) =
∑
n∈N

d(n)βn−s, β ∈ R, (2.20)

where φ is some function converging absolutely on the half-plane defined
by σ > 1/2. It can be shown that φβ(s) is non-zero in a neighbourhood of
s = 1.
Let πP denote the prime counting function. By the celebrated prime

number theorem due to C. J. de la Vallée Poussin [21] and J. Hadamard
[32] it is known that

πP(x) =
x

log x
+O

(
x

(log x)2

)
.

Moreover, it is known that close to s = 1 it holds that

ζP(s) =
∑
p∈P

p−s = log
(

1
s− 1

)
+O (1) . (2.21)

4The determination of the optimal Big-oh function is called the Dirichlet divisor
problem. The function

√
n that appears here is due to Dirichlet himself. Currently M.

N. Huxley [42] has the best estimate which is n131/416(logn)26947/8320.
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Relation to classical spaces on polydisks

Recall that the classical space Dα(D) is be the closure of the complex
polynomials of one variable in the norm∥∥∥∥∥∑

ν∈N
aνz

ν

∥∥∥∥∥
Dα(D)

=

(∑
ν∈N
|aν |2(ν + 1)α

)1/2

.

We define these spaces on the finite polydisks Dk to be the closure of
complex polynomials of k variables in the norm∥∥∥∥∥∥

∑
ν1,...,νk∈N

aν1,...,νkz
ν1
1 · · · z

ν1
k

∥∥∥∥∥∥
Dα(Dk)

=

 ∑
ν1,...,νk∈N

|aν1,...,νk |
2(ν1 + 1)α · · · (νk + 1)α

1/2

. (2.22)

Finally, we define the space5 Dα(D∞) by declaring that it is the closure of
the polynomials on

D∞ = {(z1, z2, . . .) : zn ∈ D} ,
in the norm ‖·‖Dα(D∞). This norm is defined on each subset of polynomials
only depending on the k first variables by ‖ · ‖Dα(Dk). We identify the k-
tuple (ν1, . . . , νk) with the natural number n = pν1

1 · · · p
νk
k , and according

to this we set an = aν1,...,νk . Since d(pm) = m + 1 for any prime number
p, it follows by comparing (2.17) and (2.22) that for Dirichlet polynomials

‖BF‖Dα(D∞) = ‖F‖Dα . (2.23)

Hence, the Bohr identification extends to an isometric isomorphism be-
tween Dα(D∞) and Dα. Let

D∞(D∞) =

{∑
n∈N

anzn :
∑
n∈N
|an|2 <∞

}
.

5For an in depth explanation of D∞ in terms of analyticity and function spaces
consult the paper [19]. In our case it suffices to consider the spaces Dα(D∞) as sequence
spaces.
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2 Function spaces of Dirichlet series and local embeddings

It is clear by comparing the norms formally that (2.23) also holds for
α = +∞.

Relation to classical spaces on half-planes

Recall that in the case of McCarthy’s spaces, the space H 2
α was analogue

to Dα(C1/2). In this case the situation is slightly different. It is clear by
the formula for the norm that for α ∈ R the reproducing kernel for the
space Dα is given by

kDα
w (s) =

∑
n∈N

n−s−w̄

d(n)α
.

By the formula (2.20), it follows that for bounded s+ w̄ it holds that

kDα
w (s) = Cαk

D1−2−α
w (s) +O (1) , (2.24)

for constants Cα > 0 that only depend on α. For the space D∞ the
reproducing kernel is given by

kD∞
w (s) =

∑
p∈P

p−s−w̄.

By (2.21) it satisfies for bounded s+ w̄ that

kD∞
w (s) = CkD1

w (s) +O (1) , (2.25)

where C > 0 is an absolute constant. The next Lemma establishes corre-
sponding embeddings6. Let QI be the half-strip σ > 1/2 and t ∈ I, for
some bounded interval I.

Lemma 2.6. Suppose F ∈ Dα and let I be a bounded interval. Then there
exists constants C only depending on the length of I and α such that for
α < 0 we have∫

QI

|F (s)|2
(
σ − 1

2

)2−α−2

dm(s) ≤ C‖F‖2Dα . (2.26)

6In the case α < 0, the following is reproduced with permission from an unpublished
note by K. Seip [78].
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For α > 0 we have∫
QI

|F ′(s)|2
(
σ − 1

2

)2−α

dm(s) ≤ C‖F‖2Dα . (2.27)

Similarly, for α =∞ and F (s) =
∑

p∈P app
−s we have∫

QI

|F ′(s)|2dm(s) ≤ C‖F‖2D∞ . (2.28)

Proof. Let F be a Dirichlet polynomial. By duality,(∫
I
|F (σ + it)|2 dt

)1/2

= sup
g∈L2

‖g‖=1

∫
I
F (σ + it) g(it)dt

= sup
g∈L2

‖g‖=1

N∑
n=1

ann
−σ
∫
I
g(it)n−itdt

=
√

2π sup
g∈L2

‖g‖=1

N∑
n=1

an
ĝ(log n)
nσ

.

(2.29)

Suppose α < 0. Set β = −α. We multiply and divide each term by√
(log n)2β−1/d(n)β , and apply the Cauchy-Schwarz inequality to see that

this is less than or equal to(
N∑
n=1

|an|2

d(n)β
(log n)2β−1

n2σ−1

)1/2

sup
g∈L2

‖g‖=1

(
N∑
n=1

|ĝ(log n)|2 d(n)β

n(log n)2β−1

)1/2

︸ ︷︷ ︸
(∗)

.

Since g has compact support there exists C > 0 such that

sup
ξ∈(k,k+1)

|ĝ(ξ)| ≤ ‖ĝ′‖L∞(R)|ĝ(k)| ≤ C‖g‖L2(R)|ĝ(k)|. (2.30)
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In this way,

(∗) ≤ sup
g∈L2

‖g‖=1

∑
k∈N

∑
n∈(ek,ek+1)

|ĝ(log n)|2 d(n)β

n(log n)2β−1

. sup
g∈L2

‖g‖=1

∑
k∈N
|ĝ(k)|2

∑
n∈(ek,ek+1)

d(n)β

n(log n)2β−1
. 1.

In the last inequality we used the fact that
∑k

n=1 d(n)β = O
(
k(log k)2β−1

)
.

Hence,∫ ∞
1/2

(∫
I
|F (σ + it)|2dt

)(
σ − 1

2

)2β−2

dσ

.
∑ |an|2

d(n)β
(log n)2β−1

∫ ∞
1/2

n−(2σ−1)

(
σ − 1

2

)2β−2

dσ ' ‖F‖2D−β .

The proof for α > 0 and α = ∞ follow in a similar way. We explain
briefly how the latter case is obtained. Let F be a Dirichlet polynomial
of the form F (s) =

∑
p∈P app

−s. We apply (2.29) to the derivative F ′(s),
and much as before we multiply and divide by

√
log pn and then use the

Cauchy-Schwarz inequality to get∫
I
|F ′(σ + it)|2dt

≤

(∑
n∈N

|an|2

p2σ−1
log pn

)
sup

g∈L2(I)
‖g‖=1

(∑
n∈N

|ĝ(log pn)|2

pn
log pn

)
︸ ︷︷ ︸

(∗∗)

. (2.31)

Let πP(x) denote the counting function of the prime numbers. By the
prime number theorem and the inequality (2.30), it now follows that

(∗∗) .
∑
k∈N
|ĝ(k)|2

∑
pn∈(ek,ek+1)

log pn
pn

. 1.
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2.4 The Dirichlet-Bergman spaces Dα

So integrating (2.31) from 1/2 to ∞ with respect to σ yields∫ ∞
1/2

(∫
I
|F ′(σ + it)|2dt

)
dσ . ‖F‖2D∞ .

We remark that this implies that for α ∈ R the spaces Dα embed locally
into the spaces D1−2−α(C1/2). It follows by a theorem in section 3.8 that
this embedding cannot be improved.
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3 Boundary functions

In this chapter the main result is that given any function f ∈ H2(C1/2) and
bounded interval on the abscissa σ = 1/2 there exists a function F ∈H 2

such that F −f extends analytically over the abscissa on this interval. We
observe that the dual formulation of this result is that the sequence(

. . . ,
(−n)it

√
−n

, . . . ,
2it

√
2
, 1, 1,

2−it

√
2
, . . . ,

n−it

√
n
, . . .

)
,

where n is understood to run through Z∗ = Z\{0}, is a frame in L2(I) for
any bounded interval I ⊂ R. Taking advantage of this point of view we
are able to find explicit asymptotic estimates on upper and lower bounds
for the norm of the function F in terms of the function f .
We also give similar results for the spaces H 2

α and Dα. In addition we
note that the result holds for the space H 1 and the projective tensor space
K = H 2 ⊗H 2.

3.1 Preliminaries

We recall some results and definitions about frames and a result from
Semi-Fredholm theory.

Frame

The following information about frames may be found in any general text-
book on the subject. In particular, the three following lemmas are stan-
dard. See for instance [17, ch. 5].
Let H be a Hilbert space. A sequence of vectors (fn) in H is called a

frame for H with lower frame bound A and upper frame bound B if

A‖g‖2 ≤
∑
| 〈g|fn〉 |2 ≤ B‖g‖2 ∀g ∈ H. (3.1)
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3 Boundary functions

The constants A,B in the inequalities are called the lower and upper
bounds for the frame in question. A frame may be seen as a sort of over-
complete basis. In fact, the following holds true.

Lemma 3.1. A sequence (fn) is a frame for a Hilbert space H if and
only if for any element f ∈ H there exists a sequence an ∈ `2 such that
f =

∑
anfn and ‖f‖2H '

∑
|an|2.

It should be noted that the choice of the coefficients is not in general
unique. If it is, we call

{
fn
}
a Riesz basis for H. Define the operator

S : (an) ∈ `2 7−→
∑

anfn ∈ H. (3.2)

By the defining inequalities (3.1) it is not hard to see that the adjoint
operator S∗ is bounded and bounded below if and only if (fn) is a frame
for H. The previous lemma then basically states the fact that the operator
S is surjective in this case1. In the literature the operator SS∗ is often
called the frame operator. It is practical to use since it is readily verified
that for every f ∈ H it holds that

A‖f‖ ≤ ‖SS∗f‖ ≤ B‖f‖, (3.3)

with the same constants as in (3.1). We state this as a lemma for easy
reference.

Lemma 3.2. A sequence (fn) is a frame for a Hilbert space H if and only
if the frame operator SS∗ is bounded and bounded below. Moreover, the
upper and lower bounds coincide with the upper and lower frame bounds of
(fn), respectively.

For a frame (fn) the sequence ((SS∗)−1fn) is also a frame, and it is
called the canonical dual frame.

Lemma 3.3. Let (fn) be a frame in a Hilbert space H that has frame
bounds A,B > 0 as in (3.1) and let (gn) denote its canonical dual frame.
Then for all f ∈ H we have

1
B
‖f‖2 ≤

∑
| 〈f |gn〉 |2 ≤

1
A
‖f‖2,

1The reader may wish to consult [73, p. 97] for this standard result.
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3.2 Boundary functions for H 2 and H 1

and the representation
f =

∑
〈f |gn〉 fn.

Moreover, if (an) is a sequence such that f =
∑
anfn then∑

| 〈f |gn〉 |2 <
∑
|an|2.

We note that if (fn) is a Riesz basis, then the canonical dual frame is
unique and also a Riesz basis.

Semi-Fredholm theory

We also need the following lemma on Banach spaces which is a special case
of [49, p. 238, thm. 5.26].

Lemma 3.4 (Second stability theorem of Semi-Fredholm theory). Let
X,Y be Banach spaces and Z : X → Y a continuous linear operator
that is bounded below. If Φ : X → Y is a compact operator and Z + Φ is
injective, then it follows that Z + Φ is bounded below.

3.2 Boundary functions for H 2 and H 1

We noted on page 46 that every function in H 2 has non-tangential limits
almost everywhere on the abscissa2 σ = 1/2. This gives sense to the
notation F (1/2+it) in the following theorem. We let CI =

{
s ∈ C : i(1/2−

s) /∈ R\I
}
,i.e. the complex plane with two rays on the abscissa σ = 1/2

removed, and by Hol(CI) we denote the set of functions holomorphic in
CI .

Theorem 3.5 (Olsen and Saksman 2009). Let I ⊂ R be a bounded interval.
Then for every f ∈ H2(C1/2) there exists an F ∈ H 2 such that f − F
continues analytically to all of CI with Re(f − F )(1/2 + it) = 0 on I.
There exists a unique F ∈ H 2 of minimal norm satisfying this. For this
F the following holds:

2In fact, on page 6 of the introduction we stated a theorem by Hedenmalm and Saks-
man which says that the Dirichlet series of functions in H 2 converge almost everywhere
on σ = 1/2.
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3 Boundary functions

1. There exists constants CI > 0 such that

‖F‖2H 2 ≤ CI‖f‖2H2(C1/2). (3.4)

2. Given a bounded subset Ω ⊂ CI at a positive distance from C\CI

then
‖f − F‖2L∞(Ω) ≤ DΩ,I

(
1 +

CIπ

|I|

)
‖f‖2H2(C1/2), (3.5)

where

DΩ,I ≤ sup
s∈Ω

∣∣∣∣1 + 2s
2π

∣∣∣∣2 ∫
R\I

dt
|s− 1

2 − it|2
.

To prove this theorem we define an operator analogue to the operator
EI which we defined by (2.7) in chapter 2. As before we may assume that
I = (−T, T ) for some T > 0 since the norm of H 2 is invariant under
vertical translations. Let Z∗ = Z\{0}, and set

RI : (an)n∈Z∗ ∈ `2(Z∗) 7−→ χI(t)
∑
n∈N

ann
−it + a−nn

it

√
n

∈ L2(I).

The following lemma gives an analogue of formula (2.8). It is the key to
proving Theorem 3.5.

Lemma 3.6 (Olsen and Saksman 2009). Let RI : `2(Z∗ → L2(I) be the
operator defined above. Then

RIR
∗
Ig = 2πg + 2χI(g ∗ Reψ1), (3.6)

where ψ1(t) = Reψ(1+it) and ψ is the entire function of the formula (2.2)
for the Riemann zeta function. In particular, the operator RI is bounded.

Proof of Lemma 3.6. We define, for a sequence εk → 0 of positive real
numbers, the sequence of operators

RI,k : (an)n∈Z∗ ∈ `2(Z∗) 7−→ χI(t)
∑
n∈Z∗

ann
−it + a−nn

it

n
1
2

+εk
∈ L2(I).
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3.2 Boundary functions for H 2 and H 1

It is readily checked that RI,k(an)→ RI(an) in norm for (an) where only
finitely many coefficients are non-zero, and that

RI,kR
∗
I,kg(t) = χI(t)

∫
I
g(τ)2 Re ζ(1 + εk + i(t− τ))dτ.

By the formula (2.2) for the Riemann zeta function,

Re ζ(1 + εk + it) =
εk

ε2k + t2
+ Reψ(1 + εk + it).

Hence, taking limits, we get

RIR
∗
Ig(t) = 2πg(t) + χI(t)

∫
I
g(τ)2 Reψ(1 + i(t− τ))dτ.

Combining this lemma with Lemma 3.4 we are able to turn the key, so
to speak, and we obtain the following.

Lemma 3.7 (Olsen and Saksman 2009). The operator RI is onto L2(I).

Note that the operator RI is exactly of the form (3.2). This means that
the operator RIR∗I is the frame operator for the sequence

G ∗I =
(
. . . ,

(−n)it

√
−n

, . . . ,
2it

√
2
, 1, 1,

2−it

√
2
, . . . ,

n−it

√
n
, . . .

)
, (3.7)

and the lemma may be interpreted as saying that this sequence is a frame
for L2(I). We will come back to this in section 3.3.

Proof of Lemma 3.7. In light of the lemmas 3.1 and 3.2 the operator RI
is onto L2(I) if and only if RIR∗I is bounded below in norm. We consider
the formula (3.6). The first term on the right hand side is a constant
multiple of the identity operator which is bounded below. In order to
use Lemma 3.4 to show that this implies that RIR∗I is bounded below, it
suffices to show that the operator RIR∗I is injective, and that the operator
Ψ : g 7−→ χI(g ∗ Reψ1) is compact. The last assertion follows essentially
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3 Boundary functions

from the Riemann-Lebesgue lemma, but we give an explicit argument by
approximating it with finite rank operators in the strong norm topology.
We make a small adjustment to the function ψ. The operator Ψ does
not change if we replace Reψ by φ(t) = χ2I(t) Reψ(t), where 2I is the
interval symmetric around the origin with twice the Lebesgue measure as
I. We consider the Fourier expansion of the function φ ∈ L2(2I), say
φ(t) =

∑
anen(t), where the en(t) are the Fourier characters of 2I. By

the Riemann-Lebesgue lemma an → 0 as n→∞. Choose N ∈ N so large
that |an| ≤ ε for all n ≥ N . Set φN equal to the N ’th symmetric partial
Fourier sum. For g ∈ L2(I) we have

‖χI(g ∗ φ2I)− χI(g ∗ φN )‖L2(I) = ‖
∞∑
n=N

an(g, χIen)χIen‖L2(I)

≤ ‖
∞∑
n=N

an(g, χIen)en‖L2(2I)

≤ ε‖g‖L2(2I) = ε‖g‖L2(I).

Since convolution with φN yields a finite dimensional operator on L2(2I)
we deduce the desired compactness.
We show that RIR∗I is injective. Since RI is always injective on the

image of R∗I it suffices to check that R∗I is injective. To show this, we need
to check that for g ∈ L2(I) the condition ĝ(± log n) = 0 for all n ∈ N
implies g = 0. To get a contradiction, assume that the function g is non-
zero. The function ĝ is entire and of exponential type |I|/2. In particular it
is bounded on R and is therefore of the Cartwright class. A basic property
of functions in this class (see [54, lesson 17]) is that the number of zeroes
with modulus less than r > 0, which we denote by λ(r), has to satisfy

lim
r→∞

λ(r)
r

=
|I|
π
.

In our case λ(r) ' er and it is clear that we get a contradiction.

With these preparations we are ready to give the proof of our main
theorem.
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Proof of Theorem 3.5. Let f ∈ H2(C1/2) and I = (−T, T ). Set v =
χI Re f(1/2 + it). Since RI is surjective and v ∈ L2(I) there exists a
sequence (γn)n∈Z∗ such that

v =
∑
n∈N

(γnn−1/2−it + γ−nn
−1/2+it),

with the convergence of the sum being in the sense of L2(I). It now follows
that the function

F (s) =
∑
n∈N

(γn + γ−n)n−s

is in H 2 and satisfies ReEIF = v, where EI : H 2 → L2(I) is the embed-
ding operator we defined in the introduction. It follows that the function
f − F has vanishing real parts on I. It is well known that under these
conditions this function has a Schwarz reflection that extends it to all of
CI . Since we need an explicit expression for this extension to prove state-
ment (2), we proceed to explain how one is obtained. For g ∈ H2(C1/2)
it is well-known that a representation formula based on the real boundary
values holds,

g(s) =
1

2πi

∫
σ=1/2

Re g(w)
s− w

dw. (3.8)

If f−F were an element of H2(C1/2), then f−F could have been extended
analytically to all of CI using this representation. However, we only know
that (f−F )/s ∈ H2(C1/2). Since the function 1/s is not real valued on the
abscissa σ = 1/2 this does not immediately remedy the situation, although
it does offer a way around the problem. Indeed, consider the conformal
mapping ϑ : D→ C1/2 given by

ϑ(z) =
3− z
2 + 2z

. (3.9)

It now follows that (f − F ) ◦ ϑ ∈ H2(D) since by a change of variables we
get ∫

T

∣∣∣(f − F ) ◦ ϑ(eiθ)
∣∣∣2 dθ =

∫
R

∣∣∣∣(f − F )
(

1
2

+ it
)∣∣∣∣2 2dt

1 + t2
<∞.
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3 Boundary functions

For functions in H1(D), and therefore a fortiori for functions in H2(D), a
representation similar to (3.8) holds, which in our case takes the form

(f − F ) ◦ ϑ(z) =
1

2πi

∫
T

Re(f − F ) ◦ ϑ(ξ)
ξ − z

dξ. (3.10)

Letting s = ϑ(z) and making a change variables now yields the represen-
tation

(f − F )(s) =
1 + 2s

2πi

∫
σ= 1

2
,t/∈I

Re(f − F )(w)
w − s

dw
1 + 2w

. (3.11)

Since Re(f − F )(1/2 + it) vanishes almost everywhere for t ∈ I it follows
that the integral defines an analytic function for all s ∈ CI . We denote
this extension by f − F , and we note that it satisfies

(f − F )(s) = −(f − F )(1− s) s ∈ C.

We turn to statement (1). Since RI is onto and bounded it follows by
the open mapping theorem that there exists a constant C > 0 such that
the sequence (γn) above may be chosen to satisfy ‖(γn)‖2`2 ≤ C‖v‖2L2(I).
Define F in the same way as above. Since ‖v‖L2(I) ≤ ‖f‖H2(C1/2) it follows
that

‖F‖2H 2 ≤ 2‖γn‖2`2 ≤ 2C‖f‖2L2(I) ≤ 2C‖f‖2H2(C1/2).

The existence and uniqueness of the element of minimal norm follows from
the general theory of convex sets: a closed convex set of a Hilbert space
always has a unique element of minimal norm (see, for instance, section
2.2 of [23]). In particular, the set{

F ∈H 2 : ReF (1/2 + it) = Re f(1/2 + it) as functions in L2(I)
}

is clearly closed and convex in H 2.
Statement (2) is a consequence of being able to choose the element F

prescribed by statement (1) and the representation (3.11). So assume
that F satisfies ‖F‖2H 2 ≤ CI‖f‖2H2(C1/2). Applying the Cauchy-Schwarz
inequality to (3.11) now gives

|(f − F )(s)|2 ≤
∣∣∣∣1 + 2s

2π

∣∣∣∣2 ∥∥∥∥Re(f − F )(w)
1 + 2w

∥∥∥∥2

L2(σ= 1
2)

∫
σ= 1

2
,t/∈I

∣∣∣∣ dw
(s− w)2

∣∣∣∣ .
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Since ∥∥∥∥Re(f − F )(w)
1 + 2w

∥∥∥∥2

L2(σ= 1
2)
≤
(

1 +
πCI
|I|

)
‖f‖2H2(C1/2),

and clearly

sup
s∈Ω

∫
σ= 1

2
,t/∈I

∣∣∣∣ dw
(s− w)2

∣∣∣∣ <∞,
we get the desired estimate.

A similar result holds for H 1. For convenience we state it for I =
(−T, T ).

Corollary 3.8 (Olsen and Saksman 2009). Let I = (−T, T ). Then for
every f ∈ H1(C1/2) there exists F ∈ H 1 such that f − F continues an-
alytically to all of CI with Re(f − F )(1/2 + it) = 0 on I. Moreover, the
function F may be chosen in such a way that the following holds.

1. For ε ∈ (0, 1) let T ≥ 1 and Iε = (−(1 + ε)T, (1 + ε)T ) Then

‖F‖H 1 .

√
|I|(|I|+ CIε)

ε
‖f‖H1(C1/2).

2. Given a bounded subset Ω ⊂ CI at a positive distance from C\CI

then

‖f − F‖L∞(Ω) . DΩ,I

√
|I|(|I|+ CIε)

ε
‖f‖H1(C1/2),

where

DΩ,I ≤ sup
s∈Ω

∣∣∣∣1 + 2s
π

∣∣∣∣
∥∥∥∥∥ 1 + iτ

1
2 + iτ − s

∥∥∥∥∥
L∞(R\I)

.

We note that the implicit constants are absolute.

Proof. Fix the interval I ⊂ R. For f ∈ H1(C1/2) let f = JO be its
unique factorisation into an inner function J and an outer function O.
Set g = JO1/2 and h = O1/2. We have both g, h ∈ H2, so by Theorem
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3.5 there exists functions G,H ∈ H 2 and φg, φh ∈ Hol(CIε) such that
g = G+ φg and h = H + φh. Using this,

f −GH = gφh + hφg − φgφh.

In particular v = χI Re(f −GH) ∈ L2(I). Let

ṽ(s) =
1

2πi

∫
I
v(τ)

1
s− iτ − 1

2

dτ.

Then ṽ ∈ H2(C1/2) and so we may find V ∈ H 2 and φv ∈ Hol(CI) such
that ṽ = V + φv. Let F = GH + V . It now follows that F ∈ H 1 and
moreover that Re(f − F )(1/2 + it) = 0 on I.

We turn to the norm bound of statement (1). First, note that ṽ(1/2 +
it) = P+v almost everywhere on for t ∈ R, where P+ denotes the Riesz
projection which we defined in (2.10). Since the Riesz projection is a
contraction, we get

‖ṽ‖H2 = ‖P+v‖L2(R) ≤ ‖v‖L2(I).

In addition, we may choose the functions G,H in such a way that they
each satisfy an inequality of the type (3.4) and (3.5). Due to the special
choice of the functions g, h in terms of the inner-outer factorisation of the
function f ∈ H1 we get

‖GH‖H 1 ≤ ‖G‖H 2‖H‖H 2 ≤ CIε‖g‖H2‖h‖H2 = CIε‖f‖H1 .

Combining this with the inequality ‖V ‖H 1 ≤ ‖V ‖H 2 ≤
√
CI‖ṽ‖H2 , we

get
‖F‖H 1 = ‖V +GH‖H 1 ≤

√
CI‖v‖L2(I) + CIε‖f‖H1 .

What remains is to estimate

‖v‖L2(I) ≤ ‖φg‖L∞(I)‖h‖L2(I) + ‖φh‖L∞(I)‖g‖L2(I) +
√
I‖φgφh‖L∞(I).

We use the inequality (3.5) with Ω = (iI + 1/2) to find bounds for φg and
φh. Since ε ∈ (0, 1) and T ≥ 1 we get

D(iI+ 1
2

),Iε
≤ 1 + T 2

π2

4(1 + ε)
ε(2ε+ 1)T

.
T

ε
.
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Hence,

‖φg‖2L∞(I) .
1
ε

(|I|+ CIε) ‖g‖2H2 .

A corresponding upper bound is valid for ‖φh‖L∞(I) and so

‖v‖L2(I) .
√
|I| |I|+ CIε

ε
‖f‖H1 ,

where the implicit constant is absolute.
Statement (2) follows much as before and we only give a sketch of how

to proceed. Let ϑ be the conformal map defined by (3.9). By the formula
F = V + GH one may show that (f − F ) ◦ ϑ belongs to H1(D). This
implies that the representations (3.10) and (3.11) holds for (f − F ) ◦ ϑ.
Hence, we get the Schwarz reflection of (f − F ) and the inequality

|(f − F )(s)| ≤
∫
σ= 1

2
,t/∈I

∣∣∣∣Re(f − F )(w)
(1 + 2w)2

∣∣∣∣ |dw|
× sup

s∈Ω

∣∣∣∣1 + 2s
2π

∣∣∣∣ ∥∥∥∥1 + 2w
w − s

∥∥∥∥
L∞(σ= 1

2
,t/∈I)

.

Finally, we note that∫
σ= 1

2
,t/∈I

∣∣∣∣Re(f − F )(w)
(1 + 2w)2

∣∣∣∣ |dw| . (1 + CIε)‖f‖H1 +
√
CIε‖v‖L2(I).

Using the previous estimates, this ends the proof.

3.3 A dual formulation and asymptotic
calculations

In this section we consider a dual formulation of Theorem 3.5. In particular
this will help us determine the asymptotic behaviour of the constant CI of
Theorem 3.5. Recall that the operator RI was defined by

RI : (an)n∈Z∗ ∈ `2 7−→ χI(t)

(∑
n∈N

an
n−it

√
n

+ a−n
n−it

√
n

)
∈ L2(I).
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3 Boundary functions

By comparing this to the operator defined by (3.2) we see that RI is
essentially the frame operator in the space L2(I) for the set of vectors

GI =

(
. . . ,

(−n)it√
(−n)

, . . . ,
2it

√
2
, 1,

2−it

√
2
. . . ,

n−it

√
n
, . . .

)
,

where n runs through Z∗. Lemma 3.7 says that RI is onto, which by
Lemma 3.2 establishes that the sequence G ∗I defined by (3.7) for which it
is a frame operator really is a frame. Note, however, that the operator
RI counts the constant function of L2(I) twice. Since we are interested in
finding explicit bounds for the upper and lower frame constants we find it
convenient to only count this function once. We let SI denote the frame
operator for GI .

Theorem 3.9 (Olsen and Saksman 2009). Let I ⊂ R be an interval.
Then GI forms a frame for L2(I). I.e. there exists optimal frame bounds
AI , BI > 0, depending only on the length of I, such that for all f ∈ L2(I)
we have

AI‖f‖2 ≤ 2π

|f̂(0)|2 +
∑

n∈N\{1}

|f̂(log n)|2 + |f̂(− log n)|2

n

 ≤ BI‖f‖2.
Moreover,

|I| ≤ BI ≤ |I|+ d, (3.12)

where d ≤ 13.3138 . . . . Let ε > 0 be given. Then for |I| ≥ 1 there exists
constant only depending on ε such that

|I|−(1+ε)
6|I|
π

log 2 . AI . |I|−(1−ε) I
π

log π, (3.13)

Also,
lim
|I|→0

AI = lim
|I|→0

BI = 2π. (3.14)

We immediately state and prove the following theorem.
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Theorem 3.10 (Olsen and Saksman 2009). Let I ⊂ R be a bounded in-
terval. Then there exists constants cI , CI only depending on the length of
I such that given f ∈ H2(C1/2) the following holds. If F ∈ H 2 is the
unique minimal element such that ReEIF = Re f(1/2 + it) holds, then

cT ‖χI Re f(1/2 + it)‖2L2(I) ≤ ‖F‖
2
H 2 ≤ CT ‖χI Re f(1/2 + it)‖2L2(I).

For |I| > 0 it holds that

1
|I|+ d

≤ cI ≤
2
|I|
.

and given ε > 0 and |I| > 1 there are constants only depending on ε such
that

|I|(1−ε)
|I|
π

log π . CI . |I|(1+ε)
6|I|
π

log 2.

Also,

lim
|I|→0

CI =
2
π
,

and
1
π
≤ lim inf
|I|→0

cI , lim sup
|I|→∞

cI ≤
2
π
.

Proof. Let f ∈ H2(C1/2) and I = (−T, T ). Set v = χI Re f(1/2 + it).
Since RIR∗I is the frame operator for the sequence G ∗I it follows by Lemma
3.3 that for the choice γn =

〈
v|(RIR∗I)−1n−1/2−it

〉
for n ≥ 1 and corre-

spondingly for n ≤ −1 we have

v =
∑
n∈N

(γnn−1/2−it + γ−nn
−1/2−it).

Following the proof of Theorem 3.5 we find that the function

F (s) =
∑
n∈N

(γn + γ−n)n−s

satisfies ReEIF = v. It is readily checked that γn = γ−n, and so

‖F‖2H 2 = 2‖γn‖2`2(Z∗). (3.15)
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We check that this choice of coefficients is optimal. Let G(s) =
∑
znn

−s

be such that ReEIG = v. Write zn = xn + iyn. Then

v =
∑
n∈N

(
xn + iyn

2
n−1/2−it +

xn − iyn
2

n−1/2+it

)
gives an expansion for v in the frame G ∗. Since the (γn) is the coefficients
of v relative to the frame G ∗I given by the canonical dual frame, Lemma
3.3 implies that ∑

n∈Z∗
|γn|2 <

∑
n∈N

|xn + iyn|2

4
+
|xn − iyn|2

4
.

It now follows that ‖F‖H 2 < ‖G‖H 2 . This establishes the optimality of
the choice of coefficients.
We turn to the explicit bounds of the corollary. Using the definition of

the sequence (γn)n∈Z∗ and Lemma 3.3, we get

1

B̃I
‖v‖2L2(I) ≤

∑
n∈Z∗

|γn|2 ≤
1

ÃI
‖v‖2L2(I) (3.16)

where ÃI and B̃I are the lower and upper frame bounds for G ∗I when
restricted to the real vector space L2

R(I), respectively. It is easily checked
that G ∗I has lower frame bound AI and upper frame bound is less than
2BI . But since the frame operator RIR∗I is self-adjoint and preserves real
functions, it follows that it has the same upper and lower norm bounds on
L2(I) as when restricted to L2

R(I). Hence AI = ÃI and BI ≤ B̃I ≤ 2BI
holds. By (3.15) this implies that the following inequalities hold

cI‖v‖2L2(I) ≤ ‖F‖
2
H 2 ≤ CI‖v‖2L2(I),

with B−1
I ≤ cI ≤ 2B−1

I and CI = 2A−1
I . By the previous theorem, the

result follows.

We turn to the proof of Theorem 3.9. What remains is to show the
quantitative statements on the frame bounds. We denote the operator SI
by S2T . The inequalities (3.13) are an immediate consequence of the two
following lemmas.
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3.3 A dual formulation and asymptotic calculations

Lemma 3.11 (Olsen and Saksman 2009). Let ε ∈ (0, 1). For T > 2π we
define the parameter µ > 1 through T = (1 + ε)πµ−1eµ and let

G(x) = sinπx
[eµ]∏
k=2

sin π
log kx
π

log kx
.

For T large enough, we have g = F−1G ∈ L2(−T, T ) and

‖S∗2T g‖2`2
‖g‖22

≤ T−(1−ε) 2T
π

log π.

Proof. This is proved in section 3.4

Lemma 3.12 (Olsen and Saksman 2009). Let ε > 0 be given. For T large
enough and f ∈ L2(−T, T ) it is possible to choose a set of frequencies Λ
in such a way that both inequalities

∑
n∈N

|f̂(log n)|2

n
≥ 1

2T

∑
λ∈Λ

|f̂(λ)|2, (3.17)

and
‖f‖22 ≤ T (1+ε) 12T

π
log 2

∑
λ∈Λ

|f̂(λ)|2 (3.18)

are satisfied.

Proof. This is proved in section 3.5.

To get the limits (3.14) we consider the operator SI . Recall that the
upper and lower norm bounds for the operator SIS∗I give exactly the upper
and lower frame bounds for GI . Next, it is not hard to see that for g ∈ L2(I)
we get

SS∗I g = RIR
∗
Ig − χI

∫
I
g(τ)dτ.

Since the norm of the operator defined by the right-most term goes to zero
as |I| goes to zero, it follows by the formula (3.6) that ‖SIS∗I − 2πId‖,
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3 Boundary functions

where Id denotes the identity operator on L2(I), tends to zero as |I| tends
to zero. The desired limits then follow.
We turn to the inequalities (3.12). Let (an)n∈Z∗\{−1} be a sequence with

only finitely many non-zero coefficients. For some N ∈ N we have

‖SI(an)‖2 =
∫
I

∣∣∣∣∣
N∑
n=1

ann
−1/2−it +

N∑
n=2

a−nn
−1/2+it

∣∣∣∣∣
2

dt. (3.19)

Finding the upper bound of this amounts to finding the upper frame bound.
This was essentially calculated by Montgomery using an inequality due to
Montgomery and Vaughan [59, eq. (27) p. 140]. We state this inequality
without proof and show how the bound follows from it.

Lemma 3.13 (Montgomery and Vaughan 1994). For N ∈ N let λ1, . . . , λN
be distinct real numbers and δn = minm≤N,m6=n |λm − λn|. Then

N∑
n,m=1

xnym
λn − λm

≤ γ0

(
N∑
n=1

|xn|2

δn

)1/2( N∑
n=1

|yn|2

δn

)1/2

, (3.20)

where γ0 ≤ 3.2.

We follow Montgomery’s argument. By applying the triangle inequality
to (3.19), it suffices to consider G(s) =

∑N
n=1 ann

−s and I = (−T, T ).
Multiplying out (

∑
ann

−s)(
∑
ann−s) and integrating, we get∫ T

−T

∣∣∣∣G(1
2

+ it
)∣∣∣∣2 dt = 2T

N∑
n=1

|an|2

n
+ 2

∑
n6=m

anam√
nm

sin(T log n
m)

log n
m

.

We apply inequality (3.20) to the second term on the right hand side to
find that this is less than or equal to(

2T +
2γ0

log 2

) N∑
n=1

|an|2.

Taking into account |I| = 2T , we get the upper bound of (3.12). The lower
bound follows by applying this to the constant function.
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3.4 Proof of Lemma 3.11

3.4 Proof of Lemma 3.11

The point of the proof is to construct a function g ∈ L2(−T, T ) for
which the mass

∫ T
−T |ĝ(ξ)|2dξ is the biggest possible under the restriction

ĝ(± log n) = 0 for ± log n ∈ (−T, T ).
Let ε > 0 be fixed. It is readily checked that

supp F−1
eµ∏
k=2

sin π
log kx
π

log kx
⊂

(
−π

eµ∑
k=2

1
log k

, π
eµ∑
k=2

1
log k

)
.

We note that
∑[eµ]

k=2 log−1 k/(µ−1eµ) → 1 as µ → ∞. Hence, there is a
number µ0 > 0 such that for µ > µ0 we have

supp F−1G ⊂
(
− (1 + ε)πµ−1eµ, (1 + ε)πµ−1eµ

)
.

Since the parameter µ is chosen by requiring that T = (1 + ε)πµ−1eµ,
the function g = F−1G then satisfies supp g = (−T, T ). The rest of the
proof is split into two parts. First we find a lower bound for ‖g‖2, then we
compute an upper bound for ‖S∗2T g‖`2 .
1) Our lower bound for ‖g‖2 is crude and based on Bernstein’s inequal-

ity. This inequality says that for functions in the Bernstein space, i.e.
functions F ∈ L∞(R) which satisfy FF ∈ L∞(−T, T ), it holds that
‖F ′‖∞ ≤ T‖F‖∞. We let F (x) = G(x)/ sinπx. Clearly F is in the
Bernstein space and satisfies F (0) = 1 and ‖F‖∞ ≤ 1. By the Bernstein
inequality ‖F ′‖∞ ≤ T , and so

|F (x)| ≥ 1− Tx

for x ∈ (−T−1, T−1). Since sinπx ≥ 2x for x ∈ (0, 1/2), we get for T > 2
the estimate

‖G‖2L2(R) ≥ 8
∫ T−1

0
x2(1− Tx)2dx =

4
15T 3

. (3.21)

2) We check the upper bound for ‖S∗2T g‖`2 . For n ∈ N such that log n >
µ, we simply use | sinx| ≤ 1 and the inequality

∑[eµ]
k=2 log log k ≤ eµ logµ
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3 Boundary functions

to get

|G(log n)| ≤
[eµ]∏
k=2

log k
π log n

≤ µ[eµ]

(π log n)[eµ]−1
.

Summing over log n ≥ µ, we use the formula
∫∞

eµ x
−1 log−α xdx = (α −

1)−1µ1−α for α > 1 to find that∑
logn≥µ

|G(log n)|2

n
≤ µ2[eµ]

π2[eµ]−2

∑
logn≥µ

1
n log n2[eµ]−2

≤ exp
{
−2 log π

(
1− ε

2

)
eµ
}
.

SinceG is an odd function satisfyingG(log n) = 0 for n such that log n ≤ µ,
we may use the relation T = (1 + ε)πµ−1eµ and, again, play a game of
epsilons to conclude that

‖S∗2T g‖`2 ≤ T−(1−ε) log π
π

T .

The lemma now follows by combining this with the estimate (3.21).

3.5 Proof of Lemma 3.12

We give a short outline of how we proceed. Given f ∈ L2(−T, T ) we
construct the set Λ from the harmonic frequencies of the space L2(−W,W )
where W = (1 + η)T with η ∈ (0, 1). We perturb these frequencies so
that they coincide with members of the set ± log N =

{
log n ∈ N : n ∈

N
}
∪
{
− log n : n ∈ N

}
while minimising the size of f̂ on certain intervals.

In this way we ensure that (3.17) holds.
The inequality (3.18) is harder to establish. We combine an approach

found in [28] with a well-known stability theorem due to M. I. Kadec [45],
and some growth estimates due to S. A. Avdonin [1]. The point is to ensure
that the perturbation process used to construct Λ is done in such a way
we get a representation of the type

f̂(x) =
∑
λ∈Λ

f̂(λ)Ψλ(x) (3.22)
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3.5 Proof of Lemma 3.12

making it possible to consider estimates of the type

‖f‖2L2(−T,T ) ≤

(∑
λ∈Λ

|f̂(λ)|2
)(∑

λ∈Λ

‖Ψλ(x)‖2L2(R)

)
.

It is in making these functions Ψλ decay fast enough that we need the
over-sampling that we achieve by considering L2(−T, T ) as a subspace of
L2(−W,W ).

Constructing the set Λ

Fix f ∈ L2(−T, T ). We remark that although the set Λ depends on f ,
the estimates below will be uniform over such sets. Our starting point
is the set of harmonic frequencies

{
πk/W

}
k∈Z of the space L2(−W,W ).

The first fundamental fact is Kadec’s 1/4-Theorem which we state in the
following lemma. (See e.g. [83, p. 36, thm. 14] for a proof.)

Lemma 3.14 (Kadec’s 1/4-Theorem, 1964). Let
{
µn
}
n∈Z be a sequence

of real numbers such that |µn − n| ≤ δ < 1/4, then
{

eiµnt
}
n∈Z forms a

Riesz base for L2(−π, π) with bounds only depending on δ > 0.

In particular, by scaling, we find that if
{
µn
}
n∈Z is such that |µn −

πn/W | ≤ ρ < π/4W then
{

eiµnt
}
n∈Z forms a Riesz base for L2(−W,W )

satisfying
W‖g‖2L2(−W,W ) '

∑
n∈Z
|
〈
g|eiµnt

〉
|2, (3.23)

with the implicit constants only depending on Wρ > 0.
We split the construction of Λ into two steps:
1) For each harmonic frequency πk/W let Ik denote the open interval

of radius ρ = 1/2W < π/4W centered on this frequency, i.e.

Ik =
(
πk − 1/2

W
,
πk + 1/2

W

)
.

For n ∈ N the distance between log n and log(n+ 1) is less than n−1. This
means that for k ∈ Z such that |πk/W | ≥ logW , the neighbourhoods Ik
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3 Boundary functions

will always contain a member of ± log N. We define a threshold

k0 =
[
W logW

π

]
.

Here the brackets denote the integer function. Now it follows that for each
k > k0 we may choose nk ∈ N such that log nk ∈ Ik and for which

|f̂(log nk)| = min
n∈N:logn∈Ik

|f̂(log n)|.

We do the corresponding selection for the negative frequencies. I.e. for
k < 0 we choose nk ∈ N such that log nk ∈ I−k and for which

|f̂(− log nk)| = min
n∈N:logn∈Ik

|f̂(− log n)|.

Define

λk =
{

log nk if k > k0

− log nk if k < −k0
,

and let Λw =
{
λk
}
|k|>k0

. In particular

U = {πk/W}|k|≤k0
∪ Λw (3.24)

satisfies the Kadec theorem with ρW = 1/2. Hence, EU =
{

eiµt
}
µ∈U forms

a Riesz base for L2(−W,W ) with the same bounds as in (3.23).
2) Let Lk denote the open interval of radius 1/2W centered on the point

π(k + k0 + 1/2)/W for k ≥ 0 and at π(k − k0 − 1/2)/W for k < 0. The
intersection of the sets Lk with ± log N is non-empty. For |k| ≤ k0 choose
the number nk minimising the value of |f̂(sgn(n) log |n|)| on Lk ∩± log N.
Let

λk =
{

log nk if 0 ≤ k ≤ k0

− log nk if −k0 ≤ k < 0
.

We denote Λ0 =
{
λk
}
|k|≤k0

and set

Λ = Λw ∪ Λ0. (3.25)

78



3.5 Proof of Lemma 3.12

We show in the next subsection that the property of being a Riesz basis
is stable under the arbitrary perturbation of a finite number of points as
long as the new set of points is separated. This is a special case by a
theorem of Avdonin in [1]. Note that the intervals Ik and Lk are disjoint,
and moreover that we have the separation

min
n∈Z
n6=m

|λm − λn| ≥
1

2W
. (3.26)

A sampling formula

For f ∈ L2(−T, T ) a well-known sampling formula is the Whittaker-
Kotel’nikov-Shannon formula

f̂(x) =
∑
k∈N

f̂

(
πk

T

)
sinTx

(−1)kT
(
x− πk

T

) .
The formula follows by taking the L2(R) Fourier transform of both sides
of the Fourier series

f = (
√

2π/2T )χ(−T,T )

∑
k∈N

f̂(πk/T )eiπkt/T .

There are two problems with this formula; we want to represent the func-
tion f in terms of the frequencies Λ, and it does not converge fast enough
to separate the sampled coefficients from the rest of the terms in the
way indicated above. Faced with a similar problem, it was realised by
K. M. Flornes, Y. Lyubarskii and Seip in [28] that the correct replace-
ment for this formula is the Boas-Bernstein formula (see e.g. [7, p. 193]).
The formula says that if

{
λk
}
k∈Z is a sequence of real numbers such that

supk∈Z |λk − k| <∞, then for some l ∈ N large enough, it holds that

f̂(x) =
∑
k∈Z

f̂(λ)hl(x− λk)
G(x)

G′(λk)(x− λk)
, (3.27)

where
G(x) =

∏
λ∈Z

′
(

1− x

λk

)
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should be thought of as a sine type function while the factor

hl(x) =
(

sin ηx/l
ηx/l

)l
helps the sum converge. The symbol

∏′ means that whenever λk = 0 the
corresponding factor is taken to be z. Clearly the hypothesis is satisfied
for the sequence Λ. Our function G is slightly more complicated than what
was studied in [28].
We now explain for the readers convenience why this formula holds in

our case, and at the same time we collect some explicit estimates that we
need. Recall that by Kadec’s 1/4-Theorem the set of frequencies U defined
by (3.24) gives a Riesz base for L2(−W,W ). Let

S(z) =
∏
λ∈U

′
(

1− z

λ

)
. (3.28)

It is not hard to see that S(z) is a function of exponential type. For
instance, denote |z| = r. Then for any ε > 0 there exists constants R > 0,
K > 0 and a polynomial P (r) such that for r > R we have

|S(z)| ≤ P (r)
∏
k≥K

(
1 +

(1 + ε)2W 2r2

π2k2

)
≤ P (r) sin (i(1 + ε)Wr) . e(1+ε)Wr. (3.29)

We note that in this computation, the implicit constant depends polyno-
mially on r. This implies that S(z) is at most of exponential type W . By
comparing it to the sine function with approximately the same zeroes, one
is able to estimate the growth along lines parallel to the real axis. This is
the content of the following technical lemma by Avdonin [1, Lemma 4].

Lemma 3.15 (Avdonin 1979). Let Φ(z) be a function of the same type as
(3.28) with zeroes m + δm satisfying supn∈N |δm| < ∞. Then given h > 0
there exists absolute constants such that∣∣∣∣sinπ(x+ ih)

Φ(x+ ih)

∣∣∣∣ ' exp

 ∑
|m|≤2|x|

δm
m

+
δm

x+ ih−m

 , x ∈ R.
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In our case we apply this lemma to Φ(x) = S(πx/W ) with |δk| ≤ 1/2π.
A simple computation now shows that

1
(1 + |x|)1/π

. |Φ(x+ i)| . (1 + |x|)1/π. (3.30)

In particular, this implies that

|Φ(x)| . (1 + |x|)1/π. (3.31)

Indeed, ∣∣∣∣ Φ(x)
Φ(x+ i)

∣∣∣∣2 =
∏
m∈N

′
(

1− 1
1 + (m+ δm − x)2

)
.

Splitting this product into two parts depending on whether x ≤ m or
x < m, it is clear that it is bounded by some constant independent of x.
We may now infer from the definition of Φ(x) and (3.31) that

|S(x)| . (1 + |Wx|)1/π. (3.32)

Since π−1 < 1/2 it follows that S(x)/(S′(λ)(x − λ)) is in L2(R). Hence,
by the Paley-Wiener theorem, this is the Fourier transform of a function
sλ ∈ L2(−W,W ) that satisfies

〈
sλ|eiµt

〉
=

{
1 if λ = µ

0 if λ 6= µ
.

Using this bi-orthogonality and the fact that eλ gives Riesz basis we im-
mediately get the estimate∫

R

∣∣∣∣ S(x)
S′(λ)(x− λ)

∣∣∣∣2 dx . W. (3.33)

Moreover, we get the representation for u ∈ L2(−W,W ),

û(x) =
∑
λ∈Λ

û(λ)
S(x)

S′(λ)(x− λ)
. (3.34)
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If we set

G(z) = S(z)
∏
|k|<k0

′

(
1− z

λk

1− z
πk/W

)
, (3.35)

it follows for the same reasons that G(z)/(z−λ) is the Fourier transform of
a function gλ ∈ L2(−W,W ) and that

{
gλ
}
is bi-orthogonal to

{
eiλt
}
λ∈Λ

.
By (3.35) and the representation (3.34) we also get the formula

û(x) =
∑
λ∈Λ

û(λ)
G(x)

G′(λ)(x− λ)
. (3.36)

We now use the oversampling. Since f ∈ L2(−T, T ) it follows that the
function f̂(x)h(y − x), where

hl(x) =
(

sin ηx/l
ηx/l

)l
,

is the Fourier transform of a function in L2(−W,W ). We may apply for-
mula (3.36) on the function f̂(x)h(y − x), since by the relation between
T,W and η it is the Fourier transform of an element of L2(−W,W ). As
we substitute y = x the Boas-Bernstein formula (3.27) follows.

The inequality (3.17)

Let f ∈ L2(−T, T ) and W = (1 + η)T . Let Λ be the set of frequencies
constructed in the previous section. It is clear that∑

n∈N

|f̂(log n)|2

n
≥

∑
logn∈∪Lk

|f̂(log n)|2

n
+

∑
logn∈∪Ik

|f̂(log n)|2

n
.

By the choice of the frequencies Λw, followed by elementary estimates, this
is seen to be bigger than ∑

|k|≤k0

|f̂(λk)|2
∑

logn∈Lk

1
n

+

 ∑
|k|>k0

|f̂(λk)|2
∑

logn∈Ik

1
n


≥ 1

4T

∑
λ∈Λ

|f̂(λ)|2,
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as was to be shown.

The inequality (3.18)

Recall that we made the choice W = (1 + η)T for η ∈ (0, 1). Now we
specify that we want η to be such that 1 + η = (1 + ε/2)/(1 + ε/3). With
this choice let

F0 =
∑
λ∈Λ0

f̂(λ)h2(x− λ)
G(x)

G′(λ)(x− λ)
and

Fw =
∑
λ∈Λw

f̂(λ)h2(x− λ)
G(x)

G′(λ)(x− λ)
.

From this point on we write h2 = h. By the Boas-Bernstein formula (3.27)
we have f = F0 + Fw, from which it follows that ‖f‖2 ≤ ‖F0‖2 + ‖Fw‖2.
The inequality (3.18) will follow from the estimates

‖F0‖2 . T (1+ε) 12T
π

log 2
∑
λ∈Λ0

|f̂(λ)|2,

and
‖Fw‖2 . T (1+ε) 12T

π
log 2

∑
λ∈Λw

|f̂(λ)|2. (3.37)

These estimates are valid for T > 1 and the implicit constants depend
on ε. The proofs are essentially the same, so we only explain how to get
(3.37). We collect some technical estimates in the following two lemmas.

Lemma 3.16. For λ ∈ Λw ∪
{
πk
W

}
|k0|≤k we have

1
(Wλ)1/π

.
∣∣S′(λ)

∣∣ . (Wλ)1/π. (3.38)

Proof. The estimate follows from Lemma 3.15 in a similar way as the
inequality (3.32). As before, we set Φ(x) = S(πx/W ). We write the
zeroes of Φ in the form µm = m + δm. Given λ ∈ Λw ∪

{
πk/W

}
|k|≤k0

it
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follows that µm = (W/π)λm and for m ∈ Z, and |δm| ≤ 1/2π. In addition
set Φm(x) = Φ(x)/(x− µm). We get

S′(λ) = lim
x→λ

S(x)
x− λ

= Φm(µm).

Moreover, we observe that

Φm(µm + iy) =
Φ(µm + iy)
µm + iy − µm

=
1
iy

Φ(µm + iy).

Combining these two formulas we find

S′(λ) =
1
iy

Φm(µm)
Φm(µm + iy)

Φ(µm + iy).

We fix y = 1. By the inequalitites (3.30), the formula (3.38) follows as
soon as we know that ∣∣∣∣ Φm(µm)

Φm(µm + i)

∣∣∣∣ ' 1,

with the implicit constants independent of m ∈ N. But this follows by
simply expanding the left hand side into an infinite product:

∏
k 6=m

′

∣∣∣∣∣ 1− µm
µk

1− µm+i
µk

∣∣∣∣∣ =

∏
k 6=m

1 +
1

(µk − µm)2

−1/2

'

∏
k 6=m

1 +
1

(k −m)2

−1/2

=

( ∞∏
k=1

1 +
1
k2

)−1

.

We establish some notation. Let Jm =
[
(m− 1

2) πW , (m+ 1
2) πW

)
. This

means that

J =
⋃
|m|≤k0

Jm =
[
λ−k0 −

π

2W
,λk0 +

π

2W

)
.

Since Jm ∩ Jn = ∅ this is a partition of the interval J .
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3.5 Proof of Lemma 3.12

Lemma 3.17. Let ε1 > 0. For λk ∈ Λw and W > 1 we have∣∣∣∣∣∣
∏

λn∈Λ0

λk − πn
W

λk − λn

∣∣∣∣∣∣ . W (1+ε1) 2W
π

log 2. (3.39)

∥∥∥∥∥∥
∏

λn∈Λ0

x− λn
x− πn

W

∥∥∥∥∥∥
L∞(R\J)

. W (1+ε1)W
π

log 33

24 (3.40)

For m ∈
{
− k0, . . . , k0

}
we have∥∥∥∥∥∥∥∥

∏
λn∈Λ0
n6=m

x− λn
x− nπ

W

∥∥∥∥∥∥∥∥
L∞(Jm)

. W (1+ε1) 4W
π

log 2. (3.41)

We note that here the constants depend on ε1.

Proof. The arguments for all the inequalities are basically the same, so we
only give the one for (3.41). We first consider the case m = 0.∥∥∥∥∥∥∥∥

∏
λn∈Λ0
n6=m

x− λn
x− nπ

W

∥∥∥∥∥∥∥∥
L∞(Jm)

≤
∏

λn∈Λ0
n>0

π
2W − λn
π

2W −
π
W n

∏
λn∈Λ0
n<0

− π
2W − λn

− π
2W −

π
W n

≤
k0∏
n=1

(n+ k0 + δn)(n+ k0 − δ−n)
(n− 1

2)2
≤ 4

{
(2k0 + 1)!

(k0 + 1)!(k0 − 1)!

}2

By Stirling’s formula n! ' (n/e)n(2πn)1/2, for any ε1 > 0 this is smaller
than some constant times e(1+ε1)4k0 log 2. Using k0 = [W logW/π] gives us
the desired inequality. Elementary considerations imply that the largest
value is attained by m = 0. Hence, the inequality follows for m ∈

{
−

k0, . . . , k0

}
.

We now resume the proof of the inequality (3.18). The first thing to
notice is that the factor h allows us to use the Cauchy-Schwarz inequality.
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3 Boundary functions

This is essentially why we constructed the set Λ to be over-sampling for
L2(−T, T ). We get

‖Fw‖2L2(R) =
∫

R

∣∣∣∣∣∣
∑
λ∈Λw

f̂(λ)h(x− λ)
G(x)

G′(λ)(x− λ)

∣∣∣∣∣∣
2

dx

≤
∫

R

∑
λ∈Λw

|f̂(λ)|2|h(x− λ)|
∣∣∣∣ G(x)
G′(λ)(x− λ)

∣∣∣∣2 × ∑
µ∈Λw

|h(x− µ)|dx

≤

∥∥∥∥∥∥
∑
µ∈Λw

h(x− µ)

∥∥∥∥∥∥
L∞(R)

∑
λ∈Λw

|f̂(λ)|2
∫

R
|h(x− λ)|

∣∣∣∣ G(x)
G′(λ)(x− λ)

∣∣∣∣2 dx︸ ︷︷ ︸
(I)

.

(3.42)

It is readily checked that the factor outside of the sum is less than some
absolute constant, so it only remains to deal with (I). For λk ∈ Λw we get
by expanding G(x) in terms of S(x) and using the inequality (3.39) that

(I) =
∫

R

∣∣∣∣ S(x)
S′(λk)(x− λk)

∣∣∣∣2

× |h(x− λk)|

∣∣∣∣∣∣
∏

λn∈Λ0

x− λn
x− πn

W

∏
λn∈Λ0

λk − πn
W

λk − λn

∣∣∣∣∣∣
2

dx

. W (1+ ε
3

) 4W
π

log 2

∫
R

∣∣∣∣ S(x)
S′(λk)(x− λk)

∣∣∣∣2 |h(x− λk)|
∏

λn∈Λ0

∣∣∣∣x− λnx− πn
W

∣∣∣∣2 dx︸ ︷︷ ︸
(II)

.

(3.43)

Here and below, the inequalities are valid for W > 1 and the implicit
constants depend on ε. Recall that Jm =

(
(m−1/2) πW , (m+ 1/2) πW

)
and
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3.5 Proof of Lemma 3.12

J = ∪k0
m=−k0

Jm. Then

(II) =
∫

R\∪Jm

∣∣∣∣ S(x)
S′(λk)(x− λk)

∣∣∣∣2 |h(x− λk)|
∏

λn∈Λ0

∣∣∣∣x− λnx− πn
W

∣∣∣∣2 dx︸ ︷︷ ︸
(III)

+
∑
|m|≤k0

∣∣∣∣S′(πmW )
S′(λk)

∣∣∣∣2 ∫
Jm

∣∣∣∣ S(x)
S′(πmW )(x− πm

W )

∣∣∣∣2

×|h(x− λk)|

∣∣∣∣∣∣∣∣
x− λm
x− λk

∏
λn∈Λ0
n 6=m

x− λn
x− πn

W

∣∣∣∣∣∣∣∣
2

dx

︸ ︷︷ ︸
(IV )

.

By the bound |h(x)| ≤ 1 and the inequalities (3.33) and (3.40) this implies

that (III) . W (1+ ε
3

) 2W
π

log 33

24 . It is readily checked that for |k| > k0 then
‖h(x − λk)‖L∞(J) . (|k| − k0)−2 for some absolute constant. Using this,
in addition to the estimates (3.33), (3.38) and (3.41) we get

(IV ) ≤
‖h(x− λk)‖L∞(∪Jm)

|S′(λk)|2
∑
|m|≤k0

|S′(πm
W

)|2
∥∥∥∥x− λnx− λk

∥∥∥∥
L∞(Jm)

×

∥∥∥∥∥∥∥∥
∏
n6=m
λn∈Λ0

x− λn
x− πn

W

∥∥∥∥∥∥∥∥
2

L∞(Jm)

∫
R

∣∣∣∣ S(x)
S′(πmW )(x− πm

W )

∣∣∣∣2 dx

. W (1+ ε
3

) 8W
π

log 2.

By combining the inequalities for (I)-(IV) with (3.42) we get for W > 1
the estimate

‖Fw‖2 . W (1+ ε
3

) 12W
π

log 2
∑
λk∈Λ

|f̂(λk)|2.
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3 Boundary functions

The implicit constant depends on ε. By using W = (1 + ε
2)T/(1 + ε

3) we
establish

‖Fw‖2 . (1 + η)(1+ ε
2

) 12T
π

log 2T (1+ ε
2

) 12T
π

log 2
∑
λk∈Λ

|f̂(λk)|2

=
(1 + η)(1+ ε

2
) 12T
π

log 2

T
ε
2

12T
π

log 2
T (1+ε) 12T

π
log 2

∑
λk∈Λ

|f̂(λk)|2.

Since the first factor of the last expression is bounded for T > 1 by some
constant depending on ε, the inequality (3.37) follows.

3.6 Boundary functions for H 2
α

In this section we prove an analogue of Theorem 3.5 for McCarthy’s spaces
H 2
α . Recall that we established in section 2.3 that for α < 2 the space H 2

α

is embedded locally inDα(C1/2). We stress that by the notation f(1/2+it)
we mean the boundary distribution, and not point-wise values.

Theorem 3.18 (Saksman and Olsen 2009). Let I ⊂ R be a bounded and
open interval and α < 2. Then for every f ∈ Dα(C1/2) there exists an
F ∈ H 2

α such that f − F continues analytically to all of CI with Re(f −
F )(1/2 + it) = 0 on I. There exists a unique F ∈ H 2

α of minimal norm
satisfying this. Moreover, there exists a constant C > 0 depending only on
α ∈ R and the length of I such that the minimal element satisfies

‖F‖2H 2
α
≤ C‖f‖2Dα .

Much like in section 3.2 we establish this result by considering the op-
erator defined on finite sequences by

RI : (an)n∈Z∗ 7−→

(∑
n∈N

ann
−it + a−nn

it

√
n

)∣∣∣∣∣
I

.

In order to determine the proper domain and target spaces for this operator
we need to introduce Sobolev spaces that in general consist of distributions.
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3.6 Boundary functions for H 2
α

Note that since multiplying distributions with the indicator function is in
general problematic, we consider restrictions instead.
It is well-known that the functions in the spaces Dα(C1/2) have distri-

butional boundary values that belong to the Sobolev spaces Wα/2(I) on
bounded and open intervals I ⊂ R. By the local embeddings the same
holds true for the spaces H 2

α . In order to define W β(I) for β ∈ R we in-
troduce the weights wβ(ξ) = (1+|ξ|2)β/2 and denote the space of tempered
distributions by S ′(R). Now we define the unrestricted Sobolev space

W β(R) =
{
u ∈ S ′(R) :

∫
R
|û(ξ)|2w2β(ξ)dξ <∞

}
.

For a bounded and open interval I ⊂ R, we let W β
0 (I) be the subspace of

W β(R) that consists of distributions having support in I. We may now
define the restricted Sobolev space to be the quotient space

W β(I) = W β(R)/W β
0 (R\ĪC).

This space may be said to contain the restrictions of distributions inW β(R)
to the interval I with the norm

‖u‖2Wβ(I) = inf
v∈Wβ(R)
v|I=u

‖v‖2Wβ(R).

Under the natural pairing (u, v) =
∫

R û(ξ)v̂(ξ)dξ, the dual space of W β(I)
is isometric toW−β0 (I) as is readily verified. Note that the closure of C∞0 (I)
in the norm of W β(R) coincides with the space W β

0 (I). This may be seen
by a scaling and mollifying argument.
Note that we may express the McCarthy spaces as,

H 2
α =

{∑
n∈N

ann
−s :

∑
n∈N
|an|2wα(log n) <∞

}
.

Closely related to this space is the sequence space `2α(Z∗). We define it to
be the sequences of complex numbers (an) finite in the norm

‖(an)‖2`2α =
∑
n∈N
|an|2wα(log n) + |a−n|2wα(− log n).
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3 Boundary functions

The following lemma is analogue to Lemma 3.7.

Lemma 3.19. The operator RI extends to a bounded and onto operator
from `2α to Wα/2(I).

Let R∗I denote the adjoint operator of RI with respect to the natural
pairing of the Sobolev spaces and of `2α. We remark that Lemma 3.19
says that RI : `2α −→ Wα/2(I) is both bounded and surjective. This is
equivalent to saying that the operator R∗I : W−α/20 (I) → `2−α is bounded
and bounded below in norm. Since

‖R∗Ig‖2`2−α =
∑
n∈N

|ĝ(log n)|2w−α(log n) + |ĝ(− log n)|2w−α(log n)
n

,

we note that Lemma 3.19 may be formulated as follows.

Lemma 3.20 (Saksman and Olsen 2009). Let I ⊂ R be a bounded interval.
Then there exist constants depending on the length of I such that∑ |f̂(log n)|2wβ(log n) + |f̂(− log n)|2wβ(log n)

n
' ‖f‖2

W
β/2
0 (I)

. (3.44)

We return to the proof of this in section 3.7. We remark that for For
β < 1/2 this means that the sequence

Gβ =

(
. . . , (−n)−itwβ/2(log(−n))√

(−n)
, . . . , 1, . . . , n−itwβ/2(log n)

√
n

, . . .

)
,

where n is understood to run through Z∗, is a frame for W β/2
0 (I) when

restricted to the interval I.

Proof of Theorem 3.18. Let f(1/2 + it) denote the boundary distribution
of f ∈ Dα(C1/2). Moreover, let v be the real part of f(1/2 + it) considered
as an element of Wα/2(2I). We now argue essentially in the same way
as in the proof of Theorem 3.5. Since R2I : `2α → Wα/2(2I) is surjective,
there exists a sequence (γn)n∈Z∗ such that

v =
∑
n∈N

(γnn−1/2−it + γ−nn
−1/2+it)
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3.7 Proof of Lemma 3.19

with the convergence being in the sense of Wα/2(2I). It now follows that
the function

F (s) =
∑
n∈N

(γn + γ−n)n−s

is in H 2
α and satisfies

lim
σ→1/2+

ReF (σ + it) = v

as distributions on 2I. Hence the function F − f is analytic on C1/2 and
has vanishing real parts on 2I in the sense of distributions.
The analytic continuation of the function F − f to all of CI is obtained

in much the same way as in Theorem 3.5. Indeed, we may use same
conformal mapping γ which sends the unit disc D to the half-plane C1/2.
By the local embedding of H 2

α into Dα(C1/2) it follows that the function
(f − F ) ◦ γ is contained in the spaces Dα(D). The Schwarz reflection
of this function may now be obtained directly by considering limits of
H2(D) type representations of the function (f −F ) ◦ γ using the functions
Re(f − F ) ◦ γ(rz) as r → 1−.
The assertion about the smallest element and the existence of a norm

constant follow exactly as in the proof of Theorem 3.5.

3.7 Proof of Lemma 3.19

In place of Lemma 3.4 we use the following lemma. As we are not able to
find a reference, we provide a proof.

Lemma 3.21. Let X,Y be Hilbert spaces and Z : X → Y be a bounded and
injective operator. If there exist a subspace M ⊂ X of finite co-dimension
such that Z is bounded below as an operator on M and a constant C > 0,
such that ‖Zf‖ ≥ C‖f‖ for all f ∈ M , then Z is bounded below on all of
X.

Proof of lemma 3.21. Assume that there exists a sequence of vectors (fn)
such that ‖fn‖ ≡ 1 and ‖Zfn‖ ≤ n−1. We seek a contradiction by showing
that the sequence (Zfn) converges to some non-zero h ∈ X.
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3 Boundary functions

Let PM and PM⊥ be the orthogonal projections ontoM andM⊥, respec-
tively. Since M⊥ is of finite dimension, we assume that PM⊥fn converges
to some vector g ∈ H. Moreover, by the triangle inequality,

‖ZPMfn + Zg‖ ≤ 1
n

+ ‖Z(PM⊥fn − g)‖.

So, since Z is bounded it follows that ZPMfn converges to −Zg, and in
particular (ZPMfn) has to be a Cauchy sequence. The final step is to
observe that the lower boundedness of Z on M implies

‖ZPM (fn − fm)‖ ≥ C‖PMfn − PMfm‖

for some C > 0. I.e. (PMfn) is a Cauchy sequence. And so, since fn =
PMfn+PM⊥fn, we get that (fn) is the sum of two Cauchy sequences, and
is therefore a Cauchy sequence. Observe that limn→∞ ‖fn‖ = 1 whence
limn→∞ Zfn 6= 0. This yields a contradiction.

We are now ready to prove the lemmas of the previous section.

Proof of Lemma 3.19. Since Lemma 3.19 and Lemma 3.20 are equivalent,
it follows that it is enough to prove the relation (3.44). For f ∈ C∞0 (I) it
is clear that this expression converges. Since n−1 log 2 ≤ log(1 + n−1) and
wβ(log n) ≤ wβ(ξ) for ξ ∈ (log n, log(n + 1)), it follows that the left hand
side of (3.44) is less than the constant 1/ log 2 times

∑
n∈N

(∫ log(n+1)

logn
|f̂(log n)|2wβ(ξ)dξ +

∫ − logn

− log(n+1)
|f̂(− log n)|2wβ(ξ)dξ

)
.

Adding and subtracting by f̂(ξ)wβ/2(eξ) within the absolute value signs,
and using the inequality |x + y|2 ≤ 2(|x|2 + |y|2) shows that this again is
smaller than the constant 2 times∫

R
|f̂(ξ)|2wβ(ξ)dξ +

∑
n∈N

(∫ log(n+1)

logn
|f̂(ξ)− f̂(log n)|2wβ(ξ)dξ

+
∫ − logn

− log(n+1)
|f̂(ξ)− f̂(− log n)|2wβ(ξ)dξ

)
. (3.45)
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The first term is simply ‖f‖2
W
β/2
0

. We need to show that the second term

is also controlled by this norm. By expanding the Fourier transform, we
find that

|f̂(log n)− f̂(ξ)| = |
∫ ξ

logn
f̂ ′(τ)dτ |

≤

(
Cβ

n wβ(log n)

∫ log(n+1)

logn
|f̂ ′(τ)|2wβ(τ)dτ

)1/2

,

(3.46)

Here Cβ is a constant depending on β and which may be adjusted at the
appropriate steps below. Inserting this into the last term of (3.45) yields
the upper bound

Cβ
∑
n∈N

1
n2

(∫ log(n+1)

logn
|f̂ ′(τ)|2wβ(τ)dτ +

∫ − log(n+1)

− logn
|f̂ ′(τ)|2wβ(τ)dτ

)

≤ Cβ
∫

R
|f̂ ′(τ)|2wβ(τ)dτ = Cβ‖tf‖2

W
β/2
0 (I)

.

The last equality follows by the rule for differentiating a Fourier transform
and using the definitions of the norms. Since multiplication by t is con-
tinuous on W β/2

0 (I) it follows that ‖tf‖
W
β/2
0 (I)

. ‖f‖
W
β/2
0 (I)

. This proves
the upper inequality.
We turn to the lower inequality. We need to be slightly more careful.

By the same argument as above, we find that the left hand side of (3.44)
is greater than

‖f‖2
W
β/2
0 (I)

− Cβ‖f̂ ′‖2
W
β/2
0 (I)

.

However, for general β and I this leaves us with something negative. The
solution is for some sufficiently largeN ∈ N to leave the terms with |n| < N
out of the sum on the left hand side of (3.44). This only makes the sum
smaller, and running through the same argument as before, (3.44) is seen
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to be greater than

‖f‖2
W
β/2
0 (I)

−
∫ logN

− logN
|f̂(ξ)|2wβ(ξ)dξ

− Cβ
∑
|n|≥N

1
n2

(∫ log(n+1)

logn
|f̂ ′(τ)|2wβ(τ)2dτ

+
∫ − logn

− log(n+1)
|f̂ ′(τ)|2wβ(τ)2dτ

)
.

By the continuity of multiplication by the independent variable, given any
ε > 0, we may choose N large enough so that this is greater than

(1− ε)‖f‖2
W
β/2
0 (I)

−
∫ logN

− logN
|f̂(ξ)|2wβ(ξ)dξ,

Next, we explain how to use Lemma 3.21 to conclude. The lemma
says that it is sufficient to find a subspace M ⊂ W

β/2
0 (I) with finite co-

dimension such that for all f ∈M we have∫ logN

− logN
|f̂(ξ)|2wβ(ξ)dξ ≤ 1

2
‖f‖2

W
β/2
0 (I)

. (3.47)

For η > 0 and K > 1
2η it is possible to choose a finite sequence of strictly

increasing real numbers (ξn)K+1
n=1 such that ξ1 = − logN , ξK+1 = logN

and infn∈J |ξ − ξn| < η. We set

M =
{
f ∈W β/2

0 (I) : f̂(ξn) = 0, for 1 ≤ n ≤ K + 1
}
.

Clearly this is a subspace of finite co-dimension in W β/2
0 (I). Moreover, by

choosing η small enough an estimate of the type (3.46) now implies (3.47).
Indeed, for f ∈M, the left-hand side is equal to

K∑
n=1

∫ ξn+1

ξn

|f̂(ξ)− f̂(ξn)|2dξ ≤ Cβη2
K∑
n=1

1
wβ(ξn)

∫ ξn+1

ξn

|f̂ ′(τ)|2wβ(τ)dτ

≤ Cβη2‖tf‖2
W
β/2
0 (I)

.
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By the continuity of multiplication by the independent variable, the asser-
tion now follows.

3.8 Boundary functions for Dα

In this section we prove an analogue of Theorem 3.5 for the Dirichlet-
Bergman spaces Dα. Recall from section 2.4 that the spaces Dα are embed-
ded locally in the spaces D1−2−α(C1/2). Recall that we use the convention
that for α = +∞ then 1− 2−α = 1.

Theorem 3.22. Let I ⊂ R be an open and bounded interval and α ∈
R ∪ {+∞}. Then for every f ∈ D1−2−α(C1/2) there exists F ∈ Dα such
that f −F continues analytically to all of CI with Re(f −F )(1/2 + it) = 0
on I. There exists a unique F ∈ Dα satisfying this. Moreover, there exists
a constant C depending only on the length I and α such that the minimal
element satisfies

‖F‖2Dα ≤ C‖f‖
2
D1−2−α (C1/2)

To establish a lemma analogue to Lemma 3.20 we recall that by d(n) we
denote the divisor function for which the following formula holds,

Dα(n) =
n∑
k=1

d(k)α = Aαn log2α−1 n+O
(
n(log n)2s−2

)
, (3.48)

where Aα are constants depending on α. Also, the Prime number theorem
says that

πP(x) =
x

log x
+O

(
x

(log x)2

)
. (3.49)

Lemma 3.23. Let I ⊂ R be a bounded and open interval and β ∈ R. Then
there exist constants depending only on the length of I and β such that for

f ∈W
2β−1

2
0 (I) we have∑
n∈N

|f̂(log n)|2d(n)β + |f̂(− log n)|2d(n)β

n
' ‖f‖2

W
2β−1

2
0 (I)

. (3.50)
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Also, there exists a constant only depending on the length of I such that
for f ∈W−1

0 (I) we have

∑
n∈N

|f̂(log pn)|2 + |f̂(− log pn)|2

pn
' ‖f‖2

W
−1/2
0 (I)

. (3.51)

We remark that this means that for β ∈ R the sequence

(
. . . , (−n)−it

√
d(−n)β

(−n)
, . . . , 1, . . . , n−it

√
d(n)β

n
, . . .

)
,

where n is understood to run through Z, is a frame for W
2β−1

2
0 (I) when

restricted to the interval I.

Proof. The upper and lower bounds can be proved in similar ways. There-
fore, we only give the demonstration for the lower bound, since it is the
more difficult one.

Let (an), (bn) be two sequences of complex numbers. Denote their n’th
partial sums by the symbols An and Bn, respectively. Then summation
by parts says that

M∑
n=N

anbn = aMBM − aNBN−1 +
M−1∑
n=N

(an − an+1)Bn. (3.52)

Suppose β ∈ R. Let f ∈ C∞0 (I). Using summation by parts and the
decay of f̂ we find that for N ∈ N the left-hand side of (3.50) is greater
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3.8 Boundary functions for Dα

than

∑
n≥N

|f̂(log n)|2d(n)β + |f̂(− log n)|2d(n)β

n

=
∑
n≥N

(
|f̂(log n)|2

n
− |f̂(log(n+ 1))|2

n+ 1

)
Dβ(n)︸ ︷︷ ︸

(I)

+
∑
n≥N

(
|f̂(− log n)|2

n
− |f̂(− log(n+ 1))|2

n+ 1

)
Dβ(n)︸ ︷︷ ︸

(II)

− |f̂(− logN)|2

N
Dβ(N − 1)− |f̂(logN)|2

N
Dβ(N − 1)︸ ︷︷ ︸

(III)

.

We are going to handle the expressions (I) and (II) in similar ways, while
we carry the expression (III) along until the end of the proof. By elemen-
tary estimates and Stirling’s formula,

n(log n)2β−1 −
n∑
k=1

(log k)2β−1 = O
(
n(log n)2β−2

)
.

Combined with the formula (3.48) this yields

(I) =
∑
n≥N

(
|f̂(log n)|2

n
− |f(log(n+ 1))|2

n+ 1

){
n∑
k=1

(log k)2β−1

}
︸ ︷︷ ︸

(Ia)

+
∑
n≥N

(
|f̂(log n)|2

n
− |f̂(log(n+ 1))|2

n+ 1

)
h(n)︸ ︷︷ ︸

(Ib)

,
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3 Boundary functions

with h(n) = O
(
n(log n)2β−2

)
. Here (Ia) may be thought of as the main

term, while (Ib) is the error term. In a similar way (II) may be split up
into (IIa) and (IIb). By partial summation

(Ia) + (IIa) =
∑
n≥N

|f̂(log n)|2(log n)2β−1 − |f̂(− log n)|2(log n)2β−1

n

+

(
|f̂(logN)|2

N
+
|f̂(− logN)|2

N

)
(logN − 1)2β−1.

Since log2β−1 is comparable to w 2β−1
2

(log) for ξ ≥ 1, Lemma 3.20 implies
that

(Ia) + (IIa) & ‖f‖2
W

2β−1
2

0 (I)

− CN
∑

1≤n≤N

(
|f̂(log n)|2 + |f̂(− log n)|2

)
,

(3.53)
where CN depends on N while the implicit constant is independent of N .
We turn to (Ib). By using the identity a2 − b2 = (a + b)(a − b) and

expanding the Fourier transform, we get∣∣∣∣∣ |f̂(log n)|2

n
− |f̂(log(n+ 1))|2

n+ 1

∣∣∣∣∣
=

(
|f̂(log n)|√

n
+
|f̂(log(n+ 1))|√

n+ 1

)

×
∣∣∣∣∫
I
f(τ)(n−iτ−1/2 − (n+ 1)−iτ−1/2)dτ

∣∣∣∣
By Fubini’s theorem, the integral expression is bounded by some absolute
constant independent of n multiplied by

1
n

(∫ log(n+1)

logn
|f̂ ′(x) + f̂(x)|2

)1/2

.
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3.8 Boundary functions for Dα

Since h(n) = O
(
n(log n)2β−2

)
it now follows that

(Ib) .
∑
n≥N

|f̂(log n)|√
n

(log n)2β−1

log n

(∫ log(n+1)

logn
|f̂ ′(x) + f̂(x)|2

)1/2

.
1

logN

∑
n≥N

|f̂(log n)|2

n
(log n)2β−1

1/2

×
(∫ ∞

logN
|f̂ ′(x) + f̂(x)|2(1 + |x|2)2β−1

)1/2

.

Multiplication by the independent variable is continuous on W β(I) for all
β. So, by Lemma 3.20,

(Ib) + (IIb) .
1

logN
‖f‖2

W
2β−1

2
0 (I)

. (3.54)

Given ε > 0 we may choose N sufficiently large, not depending on f , so
that we may combine this with (3.53) to get

∑
n≥N

|f̂(log n)|2d(n)β + |f̂(− log n)|2d(n)β

n

& (1− ε)‖f‖2
W

2β−1
2

0 (I)

− C
∑

1≤n≤N

(
|f̂(log n)|2 + |f̂(− log n)|2

)
.

We are now in a position to apply Lemma 3.21. We choose M to be

the subspace of W
2β−1

2
0 (I) whose Fourier transforms vanish on the points

± log n for |n| ≤ N . We conclude that the inequality (3.50) holds for all

f ∈W
2β−1

2
0 (I).

We explain how to prove the theorem in the case β = −∞. We define
the weight

d(n)−∞ =

{
1 n is a prime number
0 otherwise

.
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3 Boundary functions

We may now use the same notation as before since we may express (3.51)
as ∑

n∈N

|f̂(log n)|2d(n)−∞ + |f̂(− log n)|2d(n)∞

n
' ‖f‖2

W
−1/2
0 (I)

.

In this case, we have D−∞(n) = πP(n). As before,

n

log n
−

n∑
k=1

1
log k

= O
(

n

(log n)2

)
.

By the Prime number theorem this implies that

D−∞(n) =
n∑
k=1

1
log k

+O
(

n

(log n)2

)
.

The proof now follows exactly as before.
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4 Interpolating sequences and Carleson
measures

In this chapter we give some results on interpolating sequences for the
spaces H p, H 2

α and D . For bounded interpolating sequences we are able
to give a complete characterisation for the space H 2. This characterisation
extends easily to the spaces H 2

α for α ≤ 1 and the spaces Dα for α ∈
R ∪ {+α}. For general H p we are only able to give a necessary condition
and a partial sufficient condition. We also discuss interpolation in the
projective tensor space K = H 2 ⊗H 2 introduced by Helson.
First, we recall some notions which will be of importance throughout

this chapter.

4.1 Preliminaries

We restate the following definitions from section 1.4.
Let H be a Hilbert space of functions on C1/2. A positive measure µ on

C1/2 is called a Carleson measure for H if there is a constant C > 0 such
that ∫

|f(s)|2dµ(s) ≤ C‖f‖2H , for all f ∈ H.

The smallest such number C > 0 is called the norm of the Carleson mea-
sure and is denoted by ‖µ‖CM(H). Assume, in addition, that H admits a
reproducing kernel kw for every w ∈ C1/2. Then a sequence S = (sn) of
points in C1/2 is called a (universal) interpolating sequence if the following
operator is (bounded and) onto `2,

f ∈ H 7−→
(
f(sn)
‖ksn‖H

)
.
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4 Interpolating sequences and Carleson measures

Note that if the mapping is bounded, then by the open mapping theorem
there exists a constant C > 0 such that for all sequences (cn/‖ksn‖H) ∈ `2
there is a function f ∈ H that interpolates f(sn) = cn with ‖f‖H ≤
C‖(cn/‖ksn‖H)‖H . The smallest such constant is called the constant of
interpolation for the sequence S. Note that the notions of norms of Car-
leson measures and constants of interpolating sequences are the same in
the various Banach space settings we introduce below.
Note that we call a Carleson measure local if it has bounded support,

and we call a sequence S local if it is bounded.
For the Banach spaces in the scales Hp(C1/2) and H p these definitions

are extended by using the appropriate bounded point evaluations in place
of the reproducing kernels, and the sequence spaces `p in place of the space
`2. We refer the reader to page 20 for the exact definitions. The Carleson
measures for Hp(C1/2) were characterised in [14].

Lemma 4.1 (Carleson 1962). Let p ∈ [1,∞). A positive measure µ is a
Carleson measure for the space Hp(C1/2) if there exists C > 0 such that
for every square Q ⊂ C1/2 it holds that

µ(Q) ≤ C|Q|,

where |Q| denotes the length of a side of the square Q.

The interpolating sequences for the spaces Hp(C1/2) were characterised
in [79] in a generalisation of a previous result [13].

Lemma 4.2 (Carleson 1958, Shapiro and Shields 1961). Let p ∈ [1,∞).
A sequence S = (sn), where sn = σn + itn, is an interpolating sequence
for Hp(C1/2) if and only the measure µ =

∑
δsn(2σn − 1) is a Carleson

measure for Hp(C1/2) and if there is a number η > 0 such that

inf
n6=m

∣∣∣∣ sn − sm
sn + s̄m − 1

∣∣∣∣ ≥ η.
Note that an interpolating sequence S = (sn) for Hp(C1/2) is universal

if and only if the measure

µS =
∑

δsn(2σn − 1) (4.1)
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4.2 Local interpolation in H 2

is a Carleson measure for Hp(C1/2). As a consequence, the interpolating
and universal interpolating sequences for the spaces Hp(C1/2) coincide.
Moreover, it is clear that both the Carleson measures and interpolating
sequences are the same for all the spaces Hp(C1/2).

4.2 Local interpolation in H 2

In section 2.2 we established that for the spacesH2(C1/2) and H 2 bounded
point evaluations are given by reproducing kernels kH 2

w and kH2

w , respec-
tively, that satisfy the relation

kH 2

w (s) = kH
2

w (s) + ψ(s+ w̄). (4.2)

Here ψ denotes the entire function of the formula (1.3). Also, Lemma 2.2
states that for F ∈ H 2 the following inequality holds for some constant
C > 0, only depending on the length of a bounded interval I ⊂ R,

lim
σ→1/2+

∫
I
|F (σ + it)|2dt ≤ C‖F‖2H 2 . (4.3)

We prove the following result.

Theorem 4.3 (Olsen and Seip 2008). Suppose S is a bounded sequence of
distinct points from C1/2. Then S is an interpolating sequence for H 2 if
and only if it is an interpolating sequence for H2(C1/2).

Needless to say, now Lemma 4.2 gives a geometric description of the
bounded interpolating sequences for H 2.
One implication is immediate from (4.2) and the fact that F (s)/s is

in H2(C1/2) whenever F is in H 2. Namely, when we solve the problem
F (sj) = aj with F in H 2, we simultaneously solve the problem f(s) =
aj/sj with f in H2(C1/2). Also, since S is bounded, (aj/‖kH

2

sj ‖H2)∞j=1 is
in `2 if and only if (sjaj/‖kH

sj ‖H 2)∞j=1 is in `2.
Let us now assume that the bounded sequence S is an interpolating se-

quence for H2(C1/2). We wish to prove that then S is also an interpolating
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4 Interpolating sequences and Carleson measures

sequence for H 2. To begin with, we observe that it suffices to show that
the subsequence

Sε =
{
sj = σj + itj ∈ S :

1
2
< σj ≤

1
2

+ ε

}
is an interpolating sequence for H 2 for some small ε. Indeed, it is clear
that S \ Sε is a finite sequence, which we may write as

S \ Sε = (sj)Nj=1.

The finite interpolation problem F0(sj) = aj , j = 1, ..., N can be solved
explicitly as follows. Choose primes p1, ..., pN (not necessarily distinct)
such that the product

B(s) =
N∏
j=1

(
1− psj−sj

)
has simple zeros at the points s1, ..., sN . If we set Bj(s) = B(s)/(1−psj−sj )
then the finite interpolation problem has solution

F0(s) =
N∑
j=1

aj
Bj(s)
Bj(sj)

.

To solve the full interpolation problem F (sj) = aj , we can now solve

Fε(sj) =
aj − F0(sj)
B(sj)

, sj ∈ Sε,

so that we obtain the final solution F = BFε + F0. Clearly,(
Fε(sj)
‖kH 2

sj ‖H 2

)
sj∈Sε

∈ `2 ⇐⇒

(
aj

‖kH 2

sj ‖H 2

)
sj∈Sε

∈ `2,

so that we have reduced the problem to showing that Sε is an interpolating
sequence for H 2.
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4.2 Local interpolation in H 2

Our reason for making the transition from S to Sε is that it will allow
us to make use of the fact that

lim
ε→0

∑
sj∈Sε

(
σj −

1
2

)
= 0. (4.4)

We note that (4.4) is just a consequence of the trivial fact that an inter-
polating sequence for H2(C1/2) is a Blaschke sequence in C1/2. Since S is
a bounded sequence, this means that

∑
sj∈S

(
σj −

1
2

)
< +∞.

We argue by duality, using the following lemma of R. P. Boas [83], [6].

Lemma 4.4 (Boas 1941). Suppose (fj)∞j=1 is a sequence of unit vectors in
a Hilbert space H. Then the moment problem 〈f, fj〉H = aj has a solution
f in H for every sequence (aj)∞j=1 in `2 if and only if there is a positive
constant m such that ∥∥∥∥∥∥

∑
j

cjfj

∥∥∥∥∥∥
H

≥ m‖(cj)‖`2 (4.5)

for every finite sequence of scalars (cj).

Thus we need to prove (4.5) with H = H 2 and fj = kH 2

sj /‖kH 2

sj ‖H 2 for
sj in Sε.
To simplify the writing, we set ks = kH 2

s and suppress the index in
the norm setting ‖F‖ = ‖F‖H 2 . Let T be a positive number such that
|tj | ≤ T − 1 for every sj = σj + itj in S. We start by using the embedding
4.3: ∥∥∥∥∥∥

∑
sj∈Sε

cj
ksj
‖ksj‖

∥∥∥∥∥∥
2

≥ mT

∫ T

−T

∣∣∣∣∣∣
∑
sj∈Sε

cj
ksj (it+ 1

2)
‖ksj‖

∣∣∣∣∣∣
2

dt.
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4 Interpolating sequences and Carleson measures

The trick is now to replace the kernels of H 2 by the kernels of H2(C1/2).
We use (2.5) and the triangle inequality:∫ T

−T

∣∣∣∣∣∣
∑
sj∈Sε

cj
ksj (it+ 1

2)
‖ksj‖

∣∣∣∣∣∣
2

dt

1/2

≥

∫ T

−T

∣∣∣∣∣∣
∑
sj∈Sε

cj
‖ksj‖−1

it+ s̄j − 1
2

∣∣∣∣∣∣
2

dt

1/2

−

∫ T

−T

∣∣∣∣∣∣
∑
sj∈Sε

cjψ

(
it+ s̄j +

1
2

)
‖ksj‖−1

∣∣∣∣∣∣
2

dt

1/2

.

(4.6)

We split the first term on the right into two pieces:

∫ T

−T

∣∣∣∣∣∣
∑
sj∈Sε

cj
‖ksj‖−1

it+ s̄j − 1
2

∣∣∣∣∣∣
2

dt =

(∫ ∞
−∞
−
∫
|t|>T

)∣∣∣∣∣∣
∑
sj∈Sε

cj
‖ksj‖−1

it+ s̄j − 1
2

∣∣∣∣∣∣
2

dt.

(4.7)
The point is now that the first term on the right in (4.7) is just

2π

∥∥∥∥∥∥
∑
sj∈Sε

cj
ksj
‖ksj‖

∥∥∥∥∥∥
2

H2

,

so that by using the hypothesis on S and Lemma 4.4, we arrive at the
inequality

1
mT

∥∥∥∥∥∥
∑
sj∈Sε

cj
ksj
‖ksj‖

∥∥∥∥∥∥ ≥ m′‖(cj)‖`2
−

∫ T

−T

∣∣∣∣∣∣
∑
sj∈Sε

cjψ

(
it+ s̄j +

1
2

)
‖ksj‖−1

∣∣∣∣∣∣
2

dt

1/2

−

∫
|t|>T

∣∣∣∣∣∣
∑
sj∈Sε

cj
‖ksj‖−1

it+ s̄j − 1
2

∣∣∣∣∣∣
2

dt

1/2

.
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4.3 Local interpolation in the spaces H 2
α and Dα

The two terms that are subtracted on the right are easily estimated.
Indeed, by applying the triangle inequality to get the sums outside of the
integrals and then the Cauchy–Schwarz inequality, we see that the first
term is bounded by

∑
sj∈Sε

|cj |‖ksj‖−1

(∫ T

−T

∣∣∣∣ψ(it+ s̄j −
1
2

)∣∣∣∣2 dt

)1/2

≤ B

∑
sj∈Sε

‖ksj‖−2

1/2

‖(cj)‖`2

with B depending only on h, S, and T . The second term is treated in a
similar way, and we find that it is bounded by

∑
sj∈Sε

|cj |‖ksj‖−1

∫
|t|>T

∣∣∣∣∣ 1
s̄j − 1

2 + it

∣∣∣∣∣
2

dt

1/2

≤ 2

∑
sj∈Sε

‖ksj‖−2

1/2

‖(cj)‖`2 .

By (4.2), ‖ksj‖−2 ≤ C(σj − 1/2) with C depending only on S. In view of
(4.4), we obtain (4.5) by choosing ε sufficiently small. This completes the
proof of the theorem.

4.3 Local interpolation in the spaces H 2
α and Dα

In this section we explain how the previous theorem is extended to the
spaces H 2

α for α ≤ 1 and Dα for α ∈ R ∪ {+∞}. The key observation
is that along with Lemma 4.4 one only needed the relation (4.2) and the
estimate (4.3). Note that for α > 1 the reproducing kernels for H 2

α are
uniformly bounded and there are no non-trivial interpolating sequences.
The appropriate analogues for the spaces H 2

α were found in section 2.3
and are given by the relation (2.14) and the estimates (2.15) and (2.16).
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4 Interpolating sequences and Carleson measures

The proof of the following extension of Theorem 4.3 is now essentially a
plain rewriting of the proof in the previous section. We trust that the
interested reader may check the details.

Theorem 4.5 (Olsen and Seip 2008). Suppose S is a bounded sequence
of distinct points from C1/2 and assume α ≤ 1. Then S is a (universal)
interpolating sequence for H 2

α if and only if it is a (universal) interpolating
sequence for Dα(C1/2).

In section 2.5 we found the relations (2.24) and (2.25), and the estimates
(2.26), (2.27) and (2.28) as appropriate analogues to (4.2) and (4.3) for the
spaces Dα for α ∈ R ∪ {+∞}. This yields the following theorem.

Theorem 4.6. Suppose S is a bounded sequence of distinct points from
C1/2 and α ∈ R ∪ {+∞}. Then S is a (universal) interpolating se-
quence for Dα if and only if it is a (universal) interpolating sequence for
D1−2−α(C1/2).

We refer the reader to page 23 for references to the characterisations of
interpolating sequences for the spaces Dα(C1/2).

4.4 A constructive approach to local interpolation

In this section we give a second proof of the non-trivial implication of The-
orem 4.3, namely that if a sequence S = (sn) is interpolating for H2(C1/2)
then it is also interpolating for H 2. The idea is simple and uses the Paley-
Wiener theorem as follows. Write sn = σn + itn and suppose that (cn) is
a sequence such that (cn/‖kH

2

sn ‖) ∈ `2. Then there exists f ∈ H2(C1/2)
that satisfies f(sn) = cn. The Paley-Wiener theorem1 now says that there
exists g ∈ L2(0,∞) such that

f(s) =
1√
2π

∫ ∞
0

g(ξ)e−(s−1/2)ξdξ. (4.8)

In fact, Fg is equal almost everywhere to the non-tangential limits of f on
σ = 1/2. In particular this implies that ‖g‖L2(0,∞) = ‖f‖H2 . The point is

1See Rudin’s book [73][p. 180].
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4.4 A constructive approach to local interpolation

that by considering Riemann sums of this formula, one is led to consider
the Dirichlet series

F (s) =
∑
n∈N

1√
2π

∫ log(n+1)

logn
g(ξ)n−(s−1/2)dξ. (4.9)

By a simple application of the Cauchy-Schwarz inequality we obtain that
‖F‖H 2 ≤ ‖f‖H2(C1/2). We use this idea to construct a sequence of Dirichlet
series in H 2 that converges to a solution of the interpolating problem
sn 7→ cn.

Approximating by Dirichlet series

In order to establish approximating properties of Dirichlet series of the
type (4.9), we note the following trick. Given f ∈ H2(C1/2) we multiply
both sides of (4.8) by e−(s−1/2)A. By making a change of variables in the
integral, this yields

e−(s−1/2)Af(s) =
1√
2π

∫ ∞
A

g(ξ −A)e−(s−1/2)ξdξ.

Let FA denote the approximation of the type (4.9) of the function defined
by this expression. The following lemma describes in quantitative terms
the quality of this approximation.

Lemma 4.7. Let A > 0 and f ∈ H2(C1/2). If FA is the approximation of
e−(s−1/2)Af(s) given by (4.9) then ‖FA‖H 2 ≤ ‖f‖H2 and

|e−(s−1/2)Af(s)− FA(s)| ≤ |s− 1/2|e−A‖f‖H2(C1/2). (4.10)

Proof. Let A > 0, f and FA be as in the hypothesis. Then

|e−(s− 1
2

)Af(s)− FA(s)|

=
1√
2π

∣∣∣∣∣∣
∑
n≥eA

∫ log(n+1)

logn
g(ξ −A)(e−(s−1/2)ξ − n−(s−1/2))dξ

∣∣∣∣∣∣
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4 Interpolating sequences and Carleson measures

By expressing the difference e−(s−1/2)ξ − n−(s−1/2) as an integral, and ap-
plying the Cauchy-Schwarz inequality repeatedly, we find that this is less
than (2π)−1/2 multiplied by

|s− 1/2|
∑
n≥eA

1
nσ+1/2

∫ log(n+1)

logn
|g(ξ −A)|dξ

≤ |s− 1/2|
∑
n≥eA

1
nσ+1

(∫ log(n+1)

logn
|g(ξ −A)|2dξ

)1/2

≤ |s− 1/2|

∑
n≥eA

1
n3

1/2∑
n≥eA

∫ log(n+1)

logn
|g(ξ −A)|2dξ

1/2

≤ |s− 1/2|e−A‖f‖H2 .

The lemma now follows.

The construction2

To simplify notation we write kH2

sn = kn and drop subscripts on the norms.
Suppose that S = (sj) is a bounded sequence of points in C1/2 which is
interpolating for H2(C1/2). We now describe an iterative process which
produces a sequence of Dirichlet series which converges in H 2 to a solution
for any given data (cj/‖kH

2

sj ‖H2) ∈ `2.
First, we note that by the proof of Theorem 4.3 we only need to consider

sequences S = (sj) for which σj < 1 for all n ∈ N. We assume that the
sj are enumerated in such a way that σj ≥ σj+1. Next, recall that since
the sequence S = (sj) is interpolating for H2(C1/2) it has a constant of
interpolation C > 0. Based on this constant we fix some number A > 0
(to be determined later). Let f1 be the solution of minimal norm of the
interpolation problem

f1 : sj 7−→ e(sj−1/2)Acj .

2We thank H. Queffélec for pointing out that the iterative part of this construction
is contained in Lemma 4.14.

110



4.4 A constructive approach to local interpolation

By the definition of the constant of interpolation it follows that

‖f1‖H2 ≤ Ce(σ1−1/2)A

∥∥∥∥( cj
‖kj‖

)∥∥∥∥
`2
.

We let F1 be the Dirichlet series of the type (4.9) that approximates the
function e−(s−1/2)Af1. It follows by Lemma 4.7 that ‖F1‖ ≤ ‖f1‖. We set
∆cj = e−(sj−1/2)f1(sj)− F1(sj). By the same lemma, we get the bound

|∆cj | ≤ C|sj − 1/2|e(σ1−3/2)A

∥∥∥∥( cj
‖kj‖

)∥∥∥∥
`2
.

We now iterate this procedure, trying to capture as much of the error ∆cj
as possible. At the n’th iteration we find the function fn of minimal norm
solving

fn : sj 7−→ e(sj−1/2)A∆(n−1)cj .

We let Fn be the Dirichlet series of the type (4.9) that approximates the
function e−(s−1/2)Afn. We set ∆(n)cj = e−(sj−1/2)Afn(sj)−Fn(sj). Lemma
4.7 now give the bounds

‖Fn‖ ≤ Cn sup
j∈N

∣∣∣∣sj − 1
2

∣∣∣∣n−1

en(σ1−3/2)A+A

∥∥∥∥( 1
‖kj‖

)∥∥∥∥n−1

`2

∥∥∥∥( cj
‖kj‖

)∥∥∥∥
`2
,

and

|∆(n)cj | ≤ Cn
∣∣∣∣sj − 1

2

∣∣∣∣n en(σ1−3/2)A

∥∥∥∥( 1
‖kj‖

)∥∥∥∥n−1

`2

∥∥∥∥( cj
‖kj‖

)∥∥∥∥
`2
.

We sum up the functions Fn at the point sj . This gives a telescoping sum.

F1(sj) + F2(sj) + · · ·+ Fn(sj)

= (cj −∆cj) + (∆cj −∆(2)cj) · · ·+ (∆(n−1)cj −∆(n)cj)

= cj −∆(n)cj .
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4 Interpolating sequences and Carleson measures

We set Gn =
∑n

k=1 Fk. The norm of this function has the bound

‖Gn‖ ≤ Ce(σ1−1/2)A

∥∥∥∥( cj
‖kj‖

)∥∥∥∥
`2

×
n∑
k=1

(
C sup
j∈N
|sj − 1/2|e(σ0−3/2)A

∥∥∥∥( 1
‖kj‖

)∥∥∥∥
`2

)k−1

.

The sequence Gn converges and ∆(n)cj → 0 for all j ∈ N if and only if

A >
1

3
2 − σ1

log

(
C sup
j∈N
|sj − 1/2|

∥∥∥∥( 1
‖kj‖

)∥∥∥∥
`2

)
.

Recall that we reduced to the case σ1 < 1. Hence, we conclude that the
function G = limn→∞Gn satisfies G(sj) = cj and G ∈H 2.

4.5 A necessary condition for interpolation in H p

Suppose S is a local interpolating sequence for H 2. As we saw in the proof
of Theorem 4.3, it follows essentially immediately from the embedding (4.3)
and the relation (4.2) that S is also interpolating for H2(C1/2).
In this section we show that for universal interpolating sequences an em-

bedding is not needed, neither is the restriction to bounded sequences. We
recall from section 2.2 that by Lemma 2.3 the norm of the point evaluation
of the space H p at the point s ∈ C, which we denote by ωH (s), satisfies

ωH p(s)p = ζ(2σ). (4.11)

By using the formula (2.2) for the Riemann zeta function, this implies

ωH p(s)p = CpωHp(s)p +O (1) , σ → 1/2+, (4.12)

where Cp > 0 are constants only depending on p.

Theorem 4.8 (Olsen and Saksman 2009). Let p ∈ [1,∞) and assume that
S is a sequence of points in C1/2. If S is a universal interpolating sequence
for H p then it is an interpolating sequence for Hp(C1/2).
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4.5 A necessary condition for interpolation in H p

The theorem follows by Carleson’s geometric description of the interpo-
lating sequences for the spaces Hp(C1/2) given in Lemma 4.1 in combina-
tion with the two following lemmas.

Lemma 4.9 (Olsen and Saksman 2009). Let p ∈ [1,∞) and assume that
µ is a positive measure on C1/2. If µ is a Carleson measure for H p then
µ is a Carleson measure for Hp(C1/2).

Lemma 4.10 (Olsen and Saksman 2009). Let p ∈ [1,∞) and assume that
S = (sn) is a sequence of points in C1/2. If S is a universal interpolating
sequence for H p then S is separated in the pseudo-hyperbolic metric, i.e.

inf
n6=m

∣∣∣∣ sn − sm
sn + s̄m − 1

∣∣∣∣ > 0.

Proof of Lemma 4.9. Assume that µ is a Carleson measure for H p with
constant C > 0. Let Q be a small Carleson box in C1/2. Let s0 be the
mid-point of the right edge of the box. Next we compute the norm of
ζ

2/p
s0 (s) = ζ2/p(s+ s0) in H p. Consider the function

F (z1, · · · ) =
∏(

1
1− p−s0n zn

)2/p

on the infinite dimensional torus. We compute,

‖F‖pLp(T∞) =
∏
n∈N

∥∥∥∥∥
(

1
1− p−s0n zn

)2/p
∥∥∥∥∥
p

Lp(T)

=
∏
n∈N

(
1

1− p−2σ0
n

)
= ζ(2σ0).

It follows by the Bohr correspondence that B−1F = ζ
2/p
s0 ∈ H p with

‖ζ2/p
s0 ‖

p
H p = ‖ζs0‖2H 2 = ζ(2σ0).

Next, we combine this with the fact that µ is a Carleson measure for
H p to get ∫

Q

|ζ2/p
s0 (s)|p

‖ζs0‖2H 2

dµ ≤ C 1
‖ζs0‖2H 2

‖ζ2/p
s0 ‖

p
H p = C. (4.13)

On the other hand, by the formula (2.2) for the Riemann zeta function it
follows that ζ(2σ0)−1 = ‖ζs0‖−2

2 = (2σ0 − 1)(1 + o (1)) as σ0 → 1/2. So,
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4 Interpolating sequences and Carleson measures

for s0 close to the abscissa σ = 1/2, the left hand side of (4.13) is greater
than some constant times

(2σ0 − 1)
∫
Q
|ζ(s+ s0)|2 dµ

= (2σ0 − 1)
∫
Q

∣∣∣∣ 1
s+ s0 − 1

+ ψ(s+ σ0)
∣∣∣∣2 dµ

≥ 2σ0 − 1
2

∫
Q

1
|s+ s0 − 1|2

dµ+O (2σ0 − 1) . (4.14)

By geometric considerations, for s ∈ Q it follows that |s + s0 − 1|2 ≤
(5/4)(1− 2σ0)2. Hence, the expressions in (4.14) are greater than

2
5

1
2σ0 − 1

µ(Q) +O (2σ0 − 1) .

It follows that there is some constant D > 0 such that for any Carleson
box with σ0 < 1 we have

µ(Q) ≤ D(2σ0 − 1).

We verify that this implies that µ is a Carleson measure for H p. Since
1 ∈ H p it follows that µ(C1/2) ≤ C. So for any Carleson box Q2 with
sides σ0 ≥ 1, it follows that

µ(Q2) ≤ C ≤ C(2σ0 − 1).

Hence, by Carleson’s characterisation of Carleson measures (Lemma 4.1) µ
is a Carleson measure for the spaces Hp(C1/2) with constant smaller than
max{2D, 2C}

Proof of Lemma 4.10. Assume that S = (sj) is a universal interpolating
sequence for H p with constant of interpolation C > 0 and which is not
separated in the pseudo-hyperbolic metric. Without loss of generality we
assume that the sj are enumerated with decreasing real parts.
Let s, w ∈ C1/2 satisfy Re s := σs ≤ Rew. Then

|F (s)− F (w)| = |
∫ w

s
F ′(z)dz| ≤ |s− w| sup

z∈(s,w)
|F ′(z)|.
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4.5 A necessary condition for interpolation in H p

By (s, w) we mean the straight line with endpoints in s and w. Let D
denote the cigar-shaped contour (two semi-circles with centres in s and w
connected by lines fg to (s, w)) that holds a constant distance (2σs − 1)/4
from the line (s, w). By Cauchy’s formula, we get the estimate

|F ′(z)| ≤ 1
2π

∫
D

|F (ξ)|
|ξ − z|2

|dξ| ≤ 8
π

|D|
(2σs − 1)2

sup
ξ∈D
|F (ξ)|

≤ 8
π

|D|
(2σs − 1)2

ζ

(
σs +

1
2

)1/p

‖F‖H p .

Here we used (4.11) which says that the norm of the point evaluation at
s ∈ C1/2 in H p is ωs,p = ζ(2σ)1/p. Note that the symbol |D| denotes
the arc-length of D. If both s and w are in a pseudo-hyperbolic ball of
radius ε, an elementary argument shows that the diameter of this ball is
less than 2ε

(1−ε)2 (2σs − 1). The combined length of the semi-circular parts
is π

2 (2σs − 1), and so

|D| ≤
(
π

2
+

2ε
(1− ε)2

)
(2σs − 1)

Hence, for ε > 0 small enough

|F (s)− F (w)| . |s− w|
2σs − 1

ζ

(
σs +

1
2

)1/p

‖F‖H p .

The implicit constant depends only on ε. Recall that C > 0 denotes the
constant of interpolation for S. Hence, for the data (δmn) there exists
Fm ∈ H p that solves the problem Fm(sn) = δmn with norm ‖Fm‖H p ≤
Cζ(2σm)−1/p. This implies

1 = |Fm(sm)− Fm(sm−1)| . |sm − sm−1|
2σm − 1

(
ζ(σm + 1

2)
ζ(2σm)

)1/p

.
|sm − sm−1|

2σm − 1
.

The last inequality follows again by considering the formula ζ(s) = (s −
1)−1+ψ(s), where ψ is some entire function. By elementary considerations,
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4 Interpolating sequences and Carleson measures

it now follows that if ρ(sm, sm−1)→ 0 in the pseudo-hyperbolic metric then
the right hand side gets arbitrarily small. This leads to a contradiction.

4.6 A sufficient condition for interpolation in H p

We turn to the converse problem. If a sequence S is interpolating for
Hp(C1/2), under what circumstances may we claim that it is also inter-
polating for some of the spaces in the range H p? We remark that by
the theory in [19] it is possible to define the quasi Banach spaces H p

for 0 < p < 1 along the same lines as for p ≥ 1, extending the iden-
tity ωH p(s)p = ζ(2σ) to 0 < p < 1. We therefore tacitly draw conclusions
about interpolation in these spaces in the following lemma and in Theorem
4.13.

Lemma 4.11 (Olsen and Saksman 2009). Let p ∈ [1,∞) and assume that
S is a bounded sequence of points in C1/2. If S is interpolating for H p

then it is interpolating for H p/k for all k ∈ N.

Proof. Let S = (sn) and recall that the bounded point evaluation in H p/k

at sn satisfies ωH p/k(sn)p/k = ζ(2σn). Let (cn) be a sequence of complex
numbers such that

∑ |cn|p/k

ωH p/k(sn)p/k
=
∑ |c1/k

n |p

ωH p(sn)p
<∞. (4.15)

By the hypothesis there exists G ∈ H p such that G(sn) = c
1/k
n . This

means that F = Gk satisfies F (sn) = cn. It is clear that F ∈H p/k.

As an immediate consequence we get the following result.

Theorem 4.12 (Olsen and Saksman 2009). Let S be a bounded sequence
of points in C1/2. If S is interpolating for H1 then it is also interpolating
for H 1.
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4.6 A sufficient condition for interpolation in H p

From the embedding 4.3 it follows trivially that for k ∈ N and F ∈H 2k

we have ∫
I

∣∣∣∣F (1
2

+ it
)∣∣∣∣2k dt ≤ CI‖F‖2kH 2k . (4.16)

In particular this implies that if µ is a local Carleson measure forH2k(C1/2)
it is also one for H 2k. In addition, it implies that the bounded in-
terpolating sequences in the weak sense for H 2k are interpolating for
H2k. The next result says that if we could show an analogue of The-
orem 3.5 for exactly these spaces, then we can in fact find the local
interpolating sequences for the spaces H p for all p ∈ Q. Recall that
CI =

{
s ∈ C : i(s− 1/2) /∈ R\I

}
.

Theorem 4.13 (Olsen and Saksman 2009). Let S be a bounded sequence
of points in C1/2. Suppose that for all k ∈ N and open intervals I ⊂ R
there exists Ck > 0, depending on k ∈ N, such that the following holds:
Given f ∈ H2k(C1/2) there exists F ∈ H 2k such that F − f ∈ Hol(CI)
and ‖F‖H 2k ≤ Ck‖f‖H2k . Under these assumptions it holds that if S is an
interpolating sequence for the spaces Hp(C1/2) then S is an interpolating
sequence for the spaces H q for all q ∈ Q.

We need the following lemma. Since we are unable to find a reference
in the literature3, we give a short proof.

Lemma 4.14. Suppose that X, Y are Banach spaces and that Z : X → Y
is bounded and linear. Let BX and BY denote the unit balls of X and Y ,
respectively. If M ⊂ Y is such that supy∈M ‖y‖Y ≤ 1/2 and ZBX +M ⊃
BY , then the operator Z is surjective.

Proof of Lemma 4.14. The hypothesis implies that M ⊂ 1
2BY , whence

ZBX +
1
2
BY ⊃ BY .

The idea of the proof is to use the fact that by iterating this relation we
get

1
2n
ZBX +

1
2n+1

BY ⊃
1
2n
BY .

3We thank H. Queffélec for bringing to our attention that this Lemma may be found
in [69, chaptre 6, p. 202].
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4 Interpolating sequences and Carleson measures

To be more precise, take y ∈ BY . Then there exists x0 ∈ BX such that
y1 = Zx0 + y ∈ 2−1BY . Reiterating, we find x1 ∈ 2−1BX such that
y2 = Zx1 + y1 ∈ 2−2BY . After n steps we find xn ∈ 2−nBX such that
yn+1 = Zxn + yn ∈ 2−n−1BY . Summing up, this implies that

Z(x0 + x1 + · · ·+ xn) = −y + yn+1.

Since everything converges as n→∞, this means that for y ∈ BY we have
found x ∈ X such that Zx = y, hence Z is surjective.

Proof of Theorem 4.13. We begin by noting that by the assumption of the
theorem, it follows that there exists a constant D > 0 such that given
f ∈ H2k and a bounded subset Γ that is a positive distance from C\CI

then the inequality ‖F‖ ≤ C‖φ‖ implies that

sup
s∈Γ
|φ(s)| ≤ D‖f‖H2k .

Indeed, the same argument as was used in the proof of Theorem 3.5 may
be used word by word.
We turn to the proof proper. Assume that S = (sn)n∈N is a bounded

interpolating sequence for H2k(C1/2). By Lemma 4.2 the interpolating and
universal interpolating sequences for the spaces H2k(C1/2) coincide. This
means that the interpolation operator

T : f ∈ H2k(C1/2) 7−→
(

f(sn)
ωH2k(sn)

)
n∈N
∈ `2k

is bounded and onto `2k. By the inequality (4.16) and the equivalence
of the point evaluations, it follows that T is also bounded as an operator
from H 2k into `2k. Without loss of generalisation, we may assume that
the sequence (sn)n∈N satisfies σn+1 ≥ σn. With this in mind we let SN =
(sn)n≥N and define the family of operators

TN : f ∈H 2k(C1/2) 7−→
(

f(sn)
ωH 2k(sn)

)
n≥N

∈ `2k.

By same procedure as in the proof of Theorem 4.3 it follows that if TN is
surjective, then the operator T is also surjective.
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4.6 A sufficient condition for interpolation in H p

We now show that Lemma 4.14 implies that for N large enough the
operator TN is onto `2k. Note that the constants of interpolation of the
sequences SN is at most that of S, say c0 > 0. Let BH2k denote the unit
ball of H2k. Then it is clear that c0T BH2k ⊃ B`2k . Next, let Γ be an open
ball in C1/2 that contains S, and let I ⊂ R be some interval, symmetric
with respect to the origin, such that sup

{
|=s| : s ∈ I

}
≥ 2 sup

{
|=s| :

s ∈ Γ
}
. By the hypothesis and the remark at the start of the proof,

there exist constants C,D > 0 such that for every f ∈ H2k there is an
F ∈H 2k and φ ∈ Hol(CI) such that f = F +φ, with ‖F‖H 2k ≤ C‖f‖H2k

and ‖φ‖L∞(Γ) ≤ D‖f‖H2k . In other words, BH2k ⊂ CBH 2k + DBC(Γ).
Applying TN , this implies

B`2k ⊂ c0CTNBH 2k + c0DTNBC(Γ). (4.17)

Set AN = c0CTN and KN = c0DTNBC(Γ). Then we may express (4.17) as

B`2k ⊂ ANBH 2k +KN .

We need to show that the set KN is compact for all N ∈ N and that for
N large enough, we have

sup
(an)∈KN

‖(an)‖`2k ≤ 1/2. (4.18)

The set TNBC(Γ) is contained in the set
{

(an)n≥N ∈ `2k : |an| ≤ 1/w2k,n

}
.

It is readily checked that this set is both closed and totally bounded in
`2k and therefore compact. (See, e.g., appendix A.4 in [73].) Since KN =
DTNBC(Γ) (changing the constant if necessary), for (an) ∈ KN there exists
φ ∈ BC(Γ) such that (an) = DTNφ. From this it follows that

‖(an)‖2k`2k = D2k
∑
n≥N

|φ(sn)|2k

ωH 2k(sn)2k
.
∑
n≥N

1
ωH 2k(sn)2k

.

However, since this sum is finite, it follows that we can make it arbitrarily
small by increasing N . In particular, we can choose N large enough for
(4.18) to hold, and so by Lemma 4.14 the operator TN is onto `2k.
The result now follows from Lemma 4.11.
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4 Interpolating sequences and Carleson measures

4.7 A distinguished subspace of H 1

Let K denote the projective tensor space H 2⊗H 2. Recall that this space
is the closure of the Dirichlet polynomials in the norm

‖F‖K = inf

{∑
finite

‖fi‖H 2‖gi‖H 2 : F =
∑
finite

figi, fi, gi ∈H 2

}
.

In other words, the infimum is taken over all representations of F as a finite
sum of elementary tensors. It follows from the definition that K ⊂ H 1.
We mentioned in the introduction that Helson conjectured that K = H 1.
The truth of this conjecture would be convenient as the space K is easier
to work with than H 1. As a case in point, the embedding∫

I

∣∣∣∣F (1
2

+ it
)∣∣∣∣dt ≤ C|I|‖F‖K

follows immediately by the corresponding embedding for H 2. We note
that the norm of the point evaluation in K, which we denote by ωK, is the
same as the one in H 1.

Lemma 4.15. The function F in Corollary 3.8 may be chosen from the
space K in such a way that (1) and (2) of the corollary hold with ‖F‖K
replacing ‖F‖H 1 where appropriate.

Proof. The function F chosen in the proof of the theorem is clearly from
K. Since K is a Banach space and FG ∈ K for F,G ∈H 2 the statements
(1) and (2) follow as before.

Theorem 4.16 (Olsen and Saksman 2009). Let S be a bounded sequence.
Then S is an interpolating sequence for K if and only it is interpolating for
H1. Moreover, the local interpolating and universal interpolating sequences
of K coincide.

Proof. One implication follows immediately by the embedding for K. In-
deed, assume that S = (sn) is bounded and interpolating for K and that S
is indexed by decreasing real parts. We denote the norm of the point eval-
uation in K and H1 at the point sn by ωK(sn) and ωH1(sn), respectively.
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4.8 Carleson measures and the H p embedding problem

For a sequence (cn) ⊂ C such that (cnωH1(sn)−1) ∈ `1 we need to find
f ∈ H1(C1/2) such that f(sn) = cn. Recall that by (4.12) it holds that
ωH1(s) ' ωH 1(s) as σ → 1/2+, so by the remark immediately preceding
Lemma 4.15 we have ωH1(s) ' ωK(s) under the same limit. This means
that (s2

ncnωK(sn)−1) ∈ `1. By hypothesis there exists F ∈ K such that
F (sn) = s2

ncn. Hence, f(s) = F (s)/s2 ∈ H1(C1/2) solves the problem.
Next we note that by the interpolation theorem in [65] it follows that if

a bounded sequence S is interpolating for H1 then it is also interpolating
for H 2. By Lemma 4.11 this implies that S is also interpolating for H 1.
However, by examining the proof, it is seen that given a sequence (cn) such
that (cn/ωH1(sn)) ∈ `1 then it is solved by F = G2, where G ∈ H 2. In
particular, this implies F ∈ K.

4.8 Carleson measures and the H p embedding
problem

In this section we prove the following theorem.

Theorem 4.17 (Olsen and Saksman 2009). Let p ∈ [1,∞). Then the
following statements are equivalent.

(a) For every bounded interval I ⊂ R there exists a constant C > 0 such
that for all finite sequences (an) of complex numbers it holds that∫

I

∣∣∣∑ ann
− 1

2
−it
∣∣∣p dt ≤ C

∥∥∥∑ ann
−s
∥∥∥p

H p
.

(b) Every local Carleson measure for Hp(C1/2) is also a Carleson mea-
sure for H p.

(c) There exists a constant D > 0 such that every local Carleson measure
for Hp(C1/2) of the form

µS =
∑

δsn(2σn − 1), sn = σn + itn,
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4 Interpolating sequences and Carleson measures

is also a Carleson measure for H p with∫
|F (s)|pdµS(s) ≤ D‖µ‖CMp(Hp)‖F‖

p
H p ∀F ∈H p.

Before we prove this theorem, we give a lemma on which the implication
(b) ⇒ (c) hinges. To do this we need to make some definitions. Let Γ be
some bounded subset of C1/2 and let M(Γ) denote the complex measures
with support in the closure of Γ. This forms a Banach space under the
norm ‖µ‖ =

∫
Γ d|µ|. For fixed p ∈ [1,∞) let X denote either of the spaces

Hp(C1/2) or H p. By CMp
Γ(X) we denote the space of all signed measures

supported on a bounded subset Γ ⊂ C1/2 equipped with the norm

‖µ‖CMp
Γ(X) = sup

‖f‖X=1

∫
Γ
|f(s)|pd|µ(s)|.

Here ν = |µ| denotes the total variation measure of µ (see [29, p. 93]).

Lemma 4.18. For fixed p ∈ [1,∞) let X denote either of the spaces
Hp(C1/2) or H p. Then the space CMp

Γ(X) is a Banach space.

Proof. Since 1 ∈H p and s−2 ∈ Hp it follows that

‖µn‖M(Γ) =
∫

Γ
d|µn| . ‖µn‖CMp

Γ(X). (4.19)

Assume that (µn) ⊂ CMp
Γ(X) is such that

∑
‖µn‖CMp

Γ(X) <∞. It suffices
to show that

∑
µn is convergent in CMp

Γ(X). By the inequality (4.19), we
have ∑

‖µn‖M(Γ) ≤
∑
‖µn‖CMp

Γ(X) < +∞,

and so
∑
µn converges some element µ ∈M(Γ). Moreover µ ∈ CMp

Γ(X).
Indeed, for any polynomial D,∫

|D(s)|pd|µ| ≤ ‖D‖pX
∑
‖µn‖CMp

Γ(X).

Finally, we confirm that µn → µ in the sense of CMp
Γ(X). But this follows

immediately, since ‖µ −
∑N

n=1 µn‖ ≤
∑

n>N ‖µn‖CMp
Γ(X). In conclusion,

CMp
Γ(X) is a Banach space.
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4.8 Carleson measures and the H p embedding problem

Proof of Theorem 4.17. It is clear that (a) ⇒ (b). We proceed to show
(b)⇒ (c) and (c)⇒ (a).

(b)⇒ (c): Let Γ be some bounded subset of C1/2. Consider the operator

I : µ ∈ CMp
Γ(Hp) 7−→ µ ∈ CMp

Γ(H p).

By the hypothesis and Lemma 4.18 the operator I is well-defined. It
suffices to show that it is continuous. By the closed graph theorem this
follows if it has a closed graph. Assume that µn → µ in CMp

Γ(Hp) and
that µn → ν in CMp

Γ(H p). By (4.19) , this implies that both µn → µ
and µn → ν in the topology of M(Γ), and so µ = ν as measures. Hence I
has a closed graph. Finally, (c) is just a special case of boundedness of I
applied to sums of the point masses δsn .

(c)⇒ (a): Let F ∈H p be a Dirichlet polynomial and consider∫ T

0

∣∣∣∣F (1
2

+ ε+ it
)∣∣∣∣p dt.

For ε > 0 small enough, the above is less than

T [ε−1]∑
n=0

∫ ε(n+1)

εn

∣∣∣∣F (1
2

+ ε+ it
)∣∣∣∣p dt =

∑∫ ε

0

∣∣∣∣F (1
2

+ ε+ it+ inε
)∣∣∣∣p dt

=
1
ε

∫ ε

0

∫
C
|F (s)|p dµε,t(s)dt,

where µε,t = ε
∑T [ε−1]

n=0 δ 1
2

+ε+it+inε. By Carleson’s geometric characterisa-
tion of Carleson measures (Lemma 4.1), the quantities ‖µε,t‖CMp(Hp) are
uniformly bounded for ε ∈ (0, 1). Let Γ ⊂ C1/2 be a bounded subset of
C1/2 such that the supports of the measures µε,t for ε ∈ (0, 1) are contained
in Γ. Then the uniform boundedness also holds in the norm of CMp

Γ(Hp).
By (c), this implies that for ε ∈ (0, 1) we have∫

C
|F (s)|p dµε,t(s) . ‖F‖pH p .

Hence, ∫ T

0

∣∣∣∣F (1
2

+ ε+ it
)∣∣∣∣p dt . ‖F‖pH p
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4 Interpolating sequences and Carleson measures

as ε→ 0, and the embedding theorem holds for H p.
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5 A class of modified zeta functions

In this chapter we study a class of modified zeta functions that we call the
K-zeta functions. Recall that the Riemann zeta function has a meromor-
phic extension to the entire complex plane with a single pole at s = 1.
Inspired by this, we completely characterise the behaviour of the K-zeta
functions close to the point s = 1.
We begin by recalling some important notions and stating some prelim-

inary results.

5.1 Preliminaries

For arbitrary K ⊂ N set

ζK(s) =
∑
n∈K

1
ns
, s = σ + it.

We call the Dirichlet series obtained in this manner the K-zeta functions.
By the triangle inequality it is clear that they are functions analytic on
the half-plane σ > 1. The choice K = N yields the Riemann zeta function
which satisfies the formula

ζ(s) =
1

s− 1
+ ψ(s), (5.1)

for some entire function ψ. It follows from [46, 67] that for general K ⊂ N
these functions may have the abscissa σ = 1 as their natural boundary.

Counting functions and Mellin transforms

For a subset K ⊂ N we define the counting function

πK(x) =
∑
n∈K
n≤x

1.
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5 A class of modified zeta functions

It enables us to write the K-zeta functions in the form

1
s
ζK(s) =

∫ ∞
1

x−s−1πK(x)dx. (5.2)

We call the right-hand side the Mellin transform of the counting func-
tion πK . The formula follows by integrating the right hand side by parts
and identifying the resulting expression with the sum defining the K-zeta
function.

Pseudo functions and pseudo measures

Let S(R) be the Schwartz class equipped with the usual topology. We call
the dual elements T ∈ S ′(R) distributions and denote their distributional
Fourier transform by T̂ . Following [52], we say that T is a pseudo-measure
if T̂ ∈ L∞(R). If, in addition, T̂ decays as |x| → ∞ we say that T is a
pseudo-function.
By doing a change of variables, we observe that (5.2) may be expressed

as
1
s
ζK(s) =

√
2πF

{
e−(σ−1)uπK(eu)

eu

}
(t).

It is readily checked that this implies that ζK(s)/s converges as σ → 1,
in the sense of distributions, to a pseudo-measure. We say that ζK(s)/s
extends to a pseudo-measure on σ = 1.

Compact operators

We deal with operators of the type

g ∈ L2(I) 7−→ χI

∫
I
g(τ)φ(t− τ)dτ ∈ L2(I), (5.3)

where I = (−T, T ) for some T > 0 and φ ∈ L1(2I). These operators are
convolution operators followed by the projection onto L2(I). The following
lemma is standard.
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5.1 Preliminaries

Lemma 5.1. Let φ ∈ L1(2I). Then (5.3) defines a compact operator
on L2(I). More generally, if (φδ)δ∈(0,1) is a net of functions in L1

loc(R)
converging in the sense of distributions to a pseudo-function φ, then the
operator

Φg(t) = lim
δ→0

∫
I
g(τ)φδ(t− τ)dτ

is bounded and compact on L2(I).

Proof. Let en(t) denote the Fourier characters of L2(2I), and let the Fourier
expansion of φ on L2(2I) be

φ(t) =
∑
n∈Z

cnen(t).

Hence, for g ∈ L2(I),

Φg(t) = |2I|1/2
∑
n∈Z

cn(g, en)L2(I)en(t). (5.4)

By the Riemann-Lebesgue lemma it follows that |cn| → 0 as |n| → ∞ and
the operator Φ is seen to be compact.
We turn to the second part of the statement. Let g ∈ C∞0 (I). Then

lim
δ→0

∫
R
g(t− τ)φδ(τ)dτ = (g(t− ·), φ)

=
∫

R
ĝ(ξ)φ̂(ξ)eitξdξ.

By the dual expression of the L2(I) norm this is seen to be bounded by
some constant times the L2 norm of g. To see that it is compact, define
an operator on C∞0 (I) by

ΦNg(t) =
∫

R
ĝ(ξ)φ̂N (ξ)eitξdξ,

with φ̂N = χN φ̂. Since F φ̂N ∈ L1(2I) this is a compact operator by the
first part of the lemma. Moreover,

‖Φg − ΦNg‖L2 ≤ ‖g‖L2‖φ̂‖L∞(|ξ|>N).
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5 A class of modified zeta functions

Hence the sequence of compact operators ΦN approximates Φ in the uni-
form operator topology as N →∞.

We also restate the following lemma from chapter 3.

Lemma 5.2 (Second stability theorem of Semi-Fredholm theory). Let
X,Y be Banach spaces and Z : X → Y a continuous linear operator
that is bounded below. If Φ : X → Y is a compact operator and Z + Φ is
injective, then it follows that Z + Φ is bounded below.

5.2 The operator ZK,I and two questions

Let K ⊂ N and I ⊂ R be a bounded interval symmetric about the origin.
Define the operator

ZK,I : g ∈ L2(I) 7−→ lim
δ→0

χI
π

∫
I
g(τ) Re ζK(1 + δ + i(t− τ))dτ

As in the previous chapters, we use the notation

ZK,Ig = lim
δ→0

χI
π

(g ∗ Re ζK,1+δ).

For K = N this is a constant multiple of the operator RIR∗I of chapter 3.
We define the more general operator on finite sequences

RI,K : (an)n∈K∪(−K) 7−→ χI
∑
n∈K

ann
−it + a−nn

it

√
n

.

Since

‖R∗I,Kg‖2`2 = 2π
∑
n∈K

|ĝ(log n)|2 + |ĝ(− log n)|2

n
, (5.5)

the boundedness of RI implies the boundedness of RI,K for all K ⊂ N. By
exactly the same argument used to establish Lemma 3.6 we get the follow-
ing result, which in particular implies that ZK,I is a bounded operator on
L2(I) for all K ⊂ N and all intervals of the type I = (−T, T ) for T <∞.
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5.2 The operator ZK,I and two questions

Lemma 5.3. Let K ⊂ N and I = (−T, T ). Then for g ∈ L2(I) we have

RI,KR
∗
I,Kg = 2πZK,Ig.

In the case K = N, this can by pushed a bit further since by the formula
(5.1) it holds for g ∈ L2(I) that

ZN,Ig = g +
χI
π

(g ∗ Reψ1),

where ψ1(t) = ψ(1 + it). Let Id denote the identity operator on L2(I). It
follows from Lemma 5.1 that we may rewrite this as

ZN,I = Id + ΨN,I , (5.6)

for a compact operator ΨN,I . Recall that in the introduction we used this
to motivate the following questions.

(1) For which K ⊂ N does the formula ZK,I = AId + ΨK,I , with ΨK,I a
compact operator, hold for some A ≥ 0?

(2) For which K ⊂ N is ZK,I bounded below?

The following Theorem will be instrumental in answering both questions.
It provides a formula which may be thought of as a generalisation of (5.6)
to arbitrary K ⊂ N.

Theorem 5.4. Let K ⊂ N be arbitrary, I ⊂ R be a bounded and symmetric
interval, and set

L =
⋃
k∈K

((
− log(n+ 1),− log n

]
∪
[

log n, log(n+ 1)
))
. (5.7)

Then there exists a compact operator ΦK,I such that

ZK,I = χIF−1χLF + ΦK,I . (5.8)
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5 A class of modified zeta functions

Proof. To make the notation easier we fix K ⊂ N and I ⊂ R, and drop
subscripts indicating dependence on these sets. The argument centres
around the operator

R : (an)n∈K∪(−K) 7−→ χI
∑
n∈K

ann
−it + a−nn

it

√
n

.

It is straight-forward to compute that for g ∈ L2(I) we have

RR∗g(t) =
√

2π
∑
n∈K

(
ĝ(log n)

n
nit +

ĝ(− log n)
n

n−it

)
. (5.9)

Note that for g ∈ C∞0 (I) this sum converges absolutely since ĝ(ξ) =
O
(
(1 + ξ2)−1

)
. Lemma 5.3 says exactly that RR∗ = 2πZ. Hence, the

formula (5.8) in the statement of the theorem follows if we show that for
g ∈ C∞0 (I) the difference

∑
n∈K

(
ĝ(log n)

n
nit +

ĝ(− log n)
n

n−it

)
−
∫
L
ĝ(ξ)eitξdξ

is given by a compact operator Φ. In order to simplify notation we set
L+ = L∩(0,∞) and consider the difference of only the positive frequencies,

∑
n∈K

ĝ(log n)
n

nit −
∫
L+

ĝ(ξ)eitξdξ. (5.10)

It suffices to show that this is given by a compact operator, say 2πΦ+. The
same argument then works on the negative frequencies by taking complex
conjugates, giving us a compact operator 2πΦ−. By choosing Φ = Φ++Φ−
the proof is complete.
By adding and subtracting intermediate terms we see that the difference
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5.2 The operator ZK,I and two questions

(5.10) can be expressed as

∑
n∈K

1
n log(1 + 1

n)

∫
Ln

(
ĝ(log n)nit − ĝ(ξ)eitξ

)
dξ︸ ︷︷ ︸

(I)

+
∑
n∈K

(
1

n log(1 + 1
n)
− 1

)∫
Ln

ĝ(ξ)eitξdξ︸ ︷︷ ︸
(II)

.

We want to interchange the integral and sum signs in these expressions.
For (I), it suffices to show that∑

n∈K

∫
Ln

|ĝ(log n)nit − ĝ(ξ)eiξt|dξ ≤ C‖g‖L2(I). (5.11)

for some constant C > 0. Note that by expressing the difference inside the
absolute value as a definite integral, we have∫

Ln

|nit − eitξ|dξ ≤ |t| 1
n2
.

Pulling the absolute value sign inside of the expression for the Fourier
transforms in combination with this, gives us the bound∫

Ln

|ĝ(log n)nit − ĝ(ξ)eiξt|dξ ≤
∫
I
|g(τ)|

∫
Ln

|ni(t−τ) − ei(t−τ)ξ|dξdτ

≤ 1
n2

∫
I
|t− τ ||g(τ)|dτ ≤ 2|I|

n2

(∫
I
|g(τ)|2dτ

)1/2

.

Taking the sum, and using the Cauchy-Schwarz inequality, we get (5.11)
with constant C = 2|I|ζ(4)1/2. Interchanging the integral and sum signs,
we get

(I) =
∫
I
g(τ)α(t− τ)dτ,

131



5 A class of modified zeta functions

where
α(τ) =

1√
2π

∑
K

1
n log(1 + 1/n)

∫
Ln

(niτ − eiξτ )dξ.

By the same bound we used above, this sum converges absolutely and
therefore the function α(t) is continuous on I. Similar arguments show
that

(II) =
∫
I
g(τ)β(t− τ)dτ,

where
β(τ) =

∑
K

(
1

n log(1 + 1/n)
− 1
)∫

Ln

eitξdξ

is a continuous function on I. Hence,

2πΦ+g(t) =
1√
2π

∫
I
g(τ)

(
α(t− τ) + β(t− τ)

)
dτ,

and so the compactness of Φ+ follows from Lemma 5.1. By the comments of
the first half of the proof this implies that Φ is also a compact operator.

5.3 Korevaar’s theorem and the first question

The following theorem of J. Korevaar [52, Theorem 1.1] generalises the
Wiener-Ikehara tauberian theorem [43].

Lemma 5.5 (Korevaar 2005). Let S(t) be a non-decreasing function with
support in (0,∞), and such that the Laplace transform

F (s) = LS(s) =
∫ ∞

0

S(u)
eu

e−(s−1)udu

exists for σ > 1. For some constant A, let

g(s) = F (s)− A

s− 1
.

Then g(s) extends to a pseudo-function on σ = 1 if and only if

lim
t→∞

S(u)
eu

= A.
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5.3 Korevaar’s theorem and the first question

In the setting of theK-zeta functions the Ikehara-Wiener-Korevaar The-
orem has the following consequence.

Lemma 5.6. Let K ⊂ N and A ≥ 0. Then the function defined by

ψK(s) =
1
s
ζK(s)− A

s− 1

extends to a pseudo-function on σ = 1 if and only if

lim
x→∞

πK(x)
x

= A. (5.12)

Proof. This follows by setting S(u) = πK(eu) in the Wiener-Ikehara-
Korevaar Theorem.

In terms of the operator ZK,I this points the way to an answer to ques-
tion (1). Indeed, when we combine Lemma 5.6 with Lemma 5.1 it follows
immediately that if the condition (5.12) holds for some A ≥ 0 then there
exists a compact operator ΨK,I such that

ZK,I = AId + ΨK,I .

We prove the converse statement as an application of Theorem 5.4

Theorem 5.7. Let K ⊂ N be arbitrary and A ≥ 0. Then the operator
defined by

ΨK,I = ZK,I −AId

is compact for all intervals of the form I = (−T, T ) if and only if

lim
x→∞

πK(x)
x

= A.

Proof. What remains is to prove the necessity of the density condition. By
Theorem 5.4 we have the identity

ZK,I −AId = χIF−1χLF −AId + ΦK,I ,
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5 A class of modified zeta functions

for some compact operator ΦK,I . Since the identity operator on L2(I)
can be expressed as Id = χIFF−1 it follows from the hypothesis that the
operator

Ψ̃ : g ∈ L2(I) 7−→ χI

∫
R

(χL −A)ĝ(ξ)eiξtdξ

is compact on L2(I) for all bounded and symmetric I ⊂ R. It is known
that compact operators map sequences that converge weakly to zero to
sequences that converge to zero in norm. We use this to show that for all
δ > 0 it holds that

|L ∩ (ξ − δ, ξ)|
δ

−A→ 0, as ξ →∞. (5.13)

We let ε > 0, write I = (−T, T ), for some T > 0, and for ξ ∈ R define
the L2(−T, T ) functions

gξ(t) = χ(−T,T )F−1{χ(ξ−δ,ξ)}(t) =

√
2
π

eit(ξ− δ
2

) sin( δ2 t)
t

.

It is clear that by choosing T > 0 large the real valued functions ĝξ ap-
proximate the characteristic functions χ(ξ−δ,ξ) to an arbitrary degree of
accuracy in L2(R) uniformly in ξ. In particular, we may choose T > 0
such that

1
2
δ ≤ ‖gξ‖L2(I) ≤ 2δ.

We fix some sequence |ξn| → ∞. It follows readily that the functions gξn
converge weakly to zero in L2(I). Hence, ‖Ψgξn‖ → 0 as n → ∞. To
obtain the connection to the set L, we use the dual expression for the
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5.3 Korevaar’s theorem and the first question

norm of Ψ̃gξn to get

‖Ψ̃gξn‖L2(I) ≥
1

‖gn‖L2(I)

∣∣∣∣∫
R

(χL −A)ĝξn(ξ)2dξ
∣∣∣∣

≥ 1
2δ

∣∣∣∣∫
R

(χL −A)χ(ξn−δ,ξn)(ξ)dξ
∣∣∣∣︸ ︷︷ ︸

(∗)

− 1
2δ

∣∣∣∣∫
R

(χL −A)
(
ĝξn(ξ)2 − χ(ξn−δ,ξn)(ξ)

)
dξ
∣∣∣∣︸ ︷︷ ︸

(∗∗)

.

It is clear that

(∗) =
1
2

∣∣∣∣ |L ∩ (ξn − δ, ξn)|
δ

−A
∣∣∣∣ .

Since |χL − A| ≤ 1 and χ(ξn−δ,ξn) = χ2
(ξn−δ,ξn) we can use the formula

(a2 − b2) = (a+ b)(a− b) and the Cauchy-Schwarz inequality to get

(∗∗) ≤ 1
2δ
‖ĝξn + χ(ξn−δ,ξn)‖L2(I)‖ĝξn − χ(ξn−δ,ξn)‖L2(I)

≤ 3
2
‖ĝξn − χ(ξn−δ,ξn)‖L2(I).

By choosing T > 0 large enough, we can make (∗∗) ≤ ε/6. Hence,∣∣∣∣ |L ∩ (ξn − δ, ξn)|
δ

−A
∣∣∣∣ ≤ 2‖Ψ̃gξn‖L2(I) +

ε

2
.

By choosing n sufficiently large for ‖Ψ̃gξn‖L2(I) < ε/4, this establishes
(5.13).
To get a contradiction, we assume that πK(x)/x does not tend to the

limit A. Without loss of generality, we assume that there exists a number
κ > 0 such that

lim sup
x→∞

πK(x)
x

= A+ κ.
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5 A class of modified zeta functions

This means that for any number η ∈ (0, 1) we may find a strictly increasing
sequence of positive numbers ξn, with arbitrarily large separation, such
that ξn →∞ as n→∞ and

πK(eξn)
eξn

> A+ ηκ for n ∈ N,

Moreover, since the counting function πK changes slowly there exists a
number δ0 > 0 such that for n ∈ N and ξ ∈ (ξn − δ0, ξn) we have

πK(eξ)
eξ

−A > κ/2.

Next, for ξn > 2, it holds that

|L ∩ (ξn − δ0, ξn)| &
∑

n∈(eξn−δ0 ,eξn−1)
n∈K

log
(

1 +
1
n

)

&
∑

n∈(eξn−δ0 ,eξn
n∈K

1
n

=
∫ eξn

eξn−δ0

1
x

dπK(x)

=
πK(eξn)

eξn
− πK(eξn−δ0)

eξn−δ0
+
∫ eξn

eξn−δ0

1
x

πK(x)
x

dx.

The last line follows from partial integration, and the implicit constants
are absolute. By the choices of ξn, this implies that

|L ∩ (ξn − δ0, ξn)| & −(1− η)κ+
(
A+

κ

2

)
δ = Aδ +

(
η +

δ

2
− 1
)
κ.

By choosing η = (4− δ)/4, we find that for ξn > 2 we have

|L ∩ (ξn − δ0, ξn)|
δ0

−A >
κ

4
.

This contradicts (5.13).
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5.4 Panejah’s theorem and the second question

5.4 Panejah’s theorem and the second question

The following result is a theorem due to B. Panejah . For a proof we refer
the reader to [66]. Recall that F denotes the Fourier transform on L2(R)
and that L2(I) is considered as a subspace of L2(R).

Lemma 5.8 (Panejah 1966). Let L ⊂ R. Then the operator χLF is
bounded below from L2(I) to L2(R) if and only if there exists a δ > 0 such
that

inf
ξ∈R
|L ∩ (ξ − δ, ξ)| > 0.

This Lemma will be essential in answering the second question. We
also include a technical lemma on the injectivity of the operator ZK,I . It
generalises part of the argument of Lemma 3.7.

Lemma 5.9. Let K ⊂ N. A sufficient condition for ZK,I to be injective
is that ∑

n∈K

1
n

= +∞.

Proof. Recall that Z = (2π)−1RI,KR
∗
I,K . Since an operator is always

injective on the image of its adjoint it suffices to check that the hypothesis
implies that R∗I,K is injective. In light of the expression (5.5) we need
to check that for g ∈ L2(I) then ĝ(± log n) = 0 for all n ∈ K implies
g = 0. To get a contradiction, assume that the function f is non-zero.
The function ĝ is entire and of exponential type |I|/2. In particular it is
bounded on R and is therefore of the Cartwright class. A basic property
of functions in this class (see [54, lesson 17]) is that the number of zeroes
with modulus less than r > 0, which we denote by λ(r), has to satisfy

lim
r→∞

λ(r)
r

=
|I|
π
.

Let πK(x) be the counting function for K. Then λ(r) ≥ πK(er). The exis-
tence of the limit implies that πK(n) ≤ C log n for some C > 0. Summing
by parts and using this estimate, we see that

N∑
n∈K

1
n

=
πK(N)
N

+
N−1∑
n=1

πK(n)
n(n+ 1)

≤ 1 + C

N∑
n=1

log n
(n+ 1)2

, (5.14)
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5 A class of modified zeta functions

which converges as N → +∞. Hence, we have a contradiction and so g
has to equal zero, as was to be shown.

In order to state our theorem, we define the sequence

GK =

(
. . . ,

(−n)it√
(−n)

, . . . ,
n−it

√
n
, . . .

)
, (5.15)

where n is understood to run through K ∪ (−K). In other words GK is
the two-sided sequence containing the elements n±it/

√
n for n ∈ K.

Theorem 5.10. Let K ⊂ N be arbitrary, I ⊂ R be a bounded symmetric
interval, GK be given by (5.15) and L ⊂ R by the relation (5.7). Then the
following conditions are equivalent.

ZK,I is bounded below on L2(I) (a)

GK is a frame for L2(I) (b)

χIF−1χLF is bounded below on L2(I) (c)

There exists δ ∈ (0, 1) such that lim inf
x→∞

πK(x)− πK(δx)
x

> 0. (d)

Proof. To make the notation easier we fix K ⊂ N and I ⊂ R, and drop
subscripts indicating dependence on these sets.

(a) ⇐⇒ (b). By Lemma 5.3 it holds that RR∗ = 2πZ. This implies
that the operator Z may be considered to be the frame operator for the
sequence G , defined by (5.15). Therefore, by Lemma 3.2, the boundedness
and boundedness below of Z is equivalent to the sequence G being a frame.

(c) ⇐⇒ (d). Condition (c) says that χIF−1χLF is bounded below
on L2(I). We begin by establishing that this is equivalent to χLF being
bounded below from L2(I) to L2(R). Indeed, one direction is clear since

‖χLFg‖L2(R) = ‖F−1χLFg‖L2(R) ≥ ‖χIF−1χLFg‖L2(I).

To prove the converse, assume that there exists some δ > 0 such that for
g ∈ L2(I)

‖χLFg‖L2(R) ≥ δ‖g‖L2(I). (5.16)
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5.4 Panejah’s theorem and the second question

Moreover, assume that for all ε > 0 there exists an gε ∈ L2(I) such that

‖χIF−1χLFgε‖L2(I) ≤ ε2‖gε‖L2(I).

This implies that

‖χIF−1χLCFgε‖L2(I) ≥ ‖gε‖L2(I) − ‖χIF−1χLFgε‖L2(I)

≥ (1− ε2)‖gε‖L2(I).

On the other hand, the inequality (5.16) implies that

‖χIF−1χLCFgε‖2L2(I) ≤ ‖F−1χLCFgε‖2L2(R)

= ‖gε‖2L2(I) − ‖F
−1χLFgε‖2L2(R)

≤ (1− δ2)‖gε‖2L2(I).

Combining these two inequalities, we find that ε ≥ δ. This leads to a
contradiction since we may choose ε2 = δ2/2.

We now invoke Panejah’s theorem which says that the lower norm bound
of χLF on L2(R) is equivalent to the condition that there exists a δ > 0
such that

inf
ξ∈R
|L ∩ (ξ − δ, ξ)| > 0.

Finally, this is equivalent to

lim inf
ξ→∞

πK(eξ−δ, eξ)
eξ

> 0,

which is exactly condition (d). Indeed, this is just a matter of observing
that

πK(eξ−δ, eξ)
eξ

≤
∑

log k∈(ξ−δ,ξ)

1
k
≤ eδ

πK(eξ−δ, eξ)
eξ

.

(a) ⇐⇒ (c). This equivalence follows essentially from the result from
semi-Fredholm theory given as Lemma 5.2 and the identity Z = F−1χLF+
Φ, where Φ is a compact operator on L2(I) and L is given by (5.7). What
needs to be checked is that the lower bound of Z implies the injectivity of
χIF−1χLF , and vice versa.
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5 A class of modified zeta functions

By the equivalence of (c) and (d), which we just established, we know
that if the operator F−1χLF is bounded below, then there exists δ ∈ (0, 1)
such that infx∈R(πK(x) − πK(δx))/x > 0. This is readily seen to imply
that

∑
n∈K n

−1 = ∞. By Lemma 5.9 we know that this is sufficient for
the operator Z to be injective. We now apply Lemma 5.2 to conclude that
Z is bounded below on all of L2(I).
The same argument holds if we reverse the roles of Z and F−1χLF since

the latter operator is injective whenever K is non-empty. Indeed, if K is
non-empty then the operator χIF−1χLF is injective on L2(I). Assume
that K 6= ∅ and let g ∈ L2(I) be such that g 6= 0. Neither χLFg nor
F−1χLFg can be equal to zero almost everywhere as functions in L2(R).
To conclude, we use the Plancherel-Parseval formula. For assume that
χIF−1χLFg = 0. Since g = χIF−1χLCFg + χIF−1χLFg, this implies
χIF−1χLCFg = g. And so

‖g‖2L2(I) = ‖F−1χLFg‖2L2(R) + ‖F−1χLCFg‖2L2(R)

≥ ‖F−1χLFg‖2L2(R) + ‖χIF−1χLCFg‖2L2(I)

= ‖F−1χLFg‖2L2(R) + ‖g‖2L2(R).

But from what is already established ‖F−1χLFg‖L2(R) > 0, which leads
to a contradiction. This concludes the proof of the theorem.
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6 Modified zeta functions and prime
numbers

In this chapter we study the consequences of the results obtained in the
previous chapter under the additional hypothesis of arithmetic structure on
the subset K ⊂ N. It turns out that the question of the lower boundedness
of the operator ZK,I becomes easier to determine. However, in this case
more can be said about the function ψK appearing in Korevaar’s theorem.
We also make a remark in the context of Beurling’s generalised prime
numbers.

6.1 Preliminaries

We say that K has arithmetic structure if for some subset Q of the prime
numbers P we have

K = {pν1
1 · · · p

νn
n : p1, . . . , pn ∈ Q} .

In other words, K is the multiplicative semi-group generated by Q. We
simply say that Q generates K.

Euler products

Suppose that Q ⊂ P generates K. This means that we may write

ζK(s) =
∏
q∈Q

(
1

1− q−s

)
,

i.e. ζK admits an Euler product. Let J be the integers generated by the
prime numbers not in Q. Then it follows that

ζK(s) =
ζ(s)
ζJ(s)

.
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6 Modified zeta functions and prime numbers

Moreover, it follows by a simple computation that we have

lim
σ→1+

ζJ(σ) <∞ ⇐⇒
∑
p∈P\Q

1
p
<∞.

Asymptotic density

A fundamental fact is that every set K with arithmetic structure has an
asymptotic density.

Lemma 6.1. Let Q ⊂ P generate the integers K ⊂ N, and J be the
integers generated by the primes not in Q. Then

lim
x→∞

πK(x)
x

= lim
σ→1+

1
ζJ(σ)

.

Proof. This lemma seems to be folklore, indeed for finite P\Q it is readily
known that it holds. See for instance [60, theorem 3.1]. An immediate
consequence is that for infinite P\Q, then

lim sup
x→∞

πK(x)
x

≤ lim
σ→1+

1
ζJ(σ)

.

In particular, if ζJ(1) diverges, then πK(x)/x tends to zero. However, the
remaining part of the lemma seems to be more difficult, and no analytic
proof, or indication thereof, seems to be readily available in the literature.
Therefore we show how one follows from the tauberian theorem of Korevaar
given as Lemma 5.6.
Assume that ζJ(1) < ∞ and recall that ζ(s) = (s − 1)−1 + ψ(s) for

some entire function ψ. We need to calculate the distributional Fourier
transform of

ζK(s)
s
− 1
ζJ(1)

1
s− 1

=
ζ(s)
sζJ(s)

− 1
ζJ(1)

1
s− 1

=
1

s− 1

(
1

sζJ(s)
− 1
ζJ(1)

)
+

ψ(s)
sζJ(s)

,

on σ = 1. Since ζJ(1) <∞ it is not hard to use the Euler product formula
to see that ζJ(1 + it) is bounded above and below in absolute value for
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6.1 Preliminaries

all t ∈ R. This means that the last term extends to a pseudo-function on
σ = 1. Hence, the left hand side extends to a pseudo-function on σ = 1 if
and only if the same holds true for the first term on the right hand side.
It is readily seen that this function extends to a pseudo-function on σ = 1
if and only if the same is true for

1
s− 1

(
ζJ(s)
s
− ζJ(1)

)
. (6.1)

We calculate its distributional Fourier transform. Let φ be a test function.
Since we may write

ζJ(s)
s

=
1
s

∫ ∞
1

x−sdπJ(x) =
∫ ∞

0

πJ(eu)
eu

e−(σ−1)−itudu

it follows that

lim
δ→0

∫
R
φ̂(t)

1
δ + it

(
ζJ(1 + δ + it)

1 + δ + it
− ζJ(1)

)
dt

= lim
δ→0

∫
R

1
δ + it

φ̂(t)
∫ ∞

0
g(u)(e−δu−iut − 1)dudt,

where g(u) = πJ(eu)e−u. Using the smoothness of φ, we change the order
of integration,

lim
δ→0

∫ ∞
0

g(u)
∫

R
φ̂(t)

e−δu−iut − 1
δ + it

dtdu

=
∫ ∞

0
g(u) lim

δ→0

∫
R
φ̂(t)

e−δu−iut − 1
δ + it

dtdu

=
∫ ∞

0
g(u)F (u)du,

where F ′(u) = −
√

2πφ(−u) and F (0) = 0. This means that

F (u) = −
√

2π
∫ 0

−u
φ(x)dx for u ≥ 0.
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6 Modified zeta functions and prime numbers

So,

lim
δ→0

∫
R
φ̂(t)

1
δ + it

(
ζJ(1 + δ + it)

1 + δ + it
− ζJ(1)

)
dt

= −
√

2π
∫ ∞

0
g(u)

∫ 0

−u
φ(x)dxdu

= −
√

2π
∫

R
φ(x)χ(−∞,0)(x)

∫ ∞
−x

g(u)dudx.

Since g(u) is integrable, this implies that

χ(0,∞)(x)
∫ ∞
x

g(u)du

decays as |x| → ∞ and so the Fourier transform of (6.1) on σ = 1 is by
definition a pseudo-function.

6.2 Lower boundedness of ZK,I and
arithmetic structure

Let K ⊂ N have arithmetic structure. This means that Theorem 5.10
reduces to the following.

Theorem 6.2. Let Q ⊂ P generate the integers K, and J be the integers
generated by the primes not in Q. Then

ZK,I = ζ−1
J (1)Id + ΨK,I ,

for a compact operator ΨK,I . Moreover, the operator ZK,I is bounded below
on L2(I) if and only if ∑

p∈P\Q

1
p
<∞.

Proof. By Lemma 6.1 the limit

lim
x→∞

πK(x)
x

= A
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6.3 Boundary behaviour and arithmetic structure

always holds with A = ζ−1
J (σ). With this, Theorem 5.7 implies the formula

for ZK,I .
Finally, Theorem 5.10 says that ZK,I is bounded below if and only if

A > 0. By considering the Euler product of ζJ(s) it follows that ζJ(1) <
+∞ is exactly the condition of the theorem.

6.3 Boundary behaviour and arithmetic structure

In light of Lemma 6.1, we know that when the set K has arithmetic struc-
ture the limit limπK(x)/x always exists. This means that ψK always gives
a pseudo-function. In fact, we are able to say more.
The proof of the following theorem is given in section 6.5.

Theorem 6.3. Let Q ⊂ P generate the integers K, and J be the integers
generated by the primes not in Q, and assume that∑

P\Q

1
p
<∞.

Then the pseudo-function defined by

ψK(s) =
1
s
ζK(s)−

ζ−1
J (1)
s− 1

is locally in L1 on the abscissa σ = 1 if and only if

∑
p∈P\Q

log log p
p

<∞.

For q > 1, it is locally in Lq(I) on the abscissa σ = 1 if

∑
p∈P\Q

log1/q′ p

p
<∞,
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6 Modified zeta functions and prime numbers

where q′ > 1 is the real number satisfying q−1 + q′−1 = 1. Conversely, if∑
p∈P\Q

log1/q′ p

p
=∞,

then ψ is not locally in Lr(I) for r > q.

6.4 Some remarks on the Prime number theorem
for K

Let Q ⊂ P generate K ⊂ N. In this section we consider such K in the
more general context of Beurling prime numbers. As we mentioned in
the introduction, the setup is to consider any increasing sequence R =
(ri)i∈N of real numbers as being a substitute for the prime numbers. The
multiplicative semi-group generated by these Beurling primes are called
Beurling integers. In our case Q corresponds to the Beurling primes and
K to the Beurling integers. We make a definition.

Definition 6.4. Let Q ⊂ P generate K ⊂ N. We say that the prime
number theorem for the set Q (or equivalently K) holds if

πQ(x) ∼ x

log x
.

We get the following characterisation of when such a prime number
theorem holds.

Lemma 6.5. Let Q ⊂ P generate K ⊂ N and let J denote the integers
generated by the primes not in Q. Then the prime number theorem holds
for the set K if and only if∑

p∈P\Q∩(δx,x)

log p
p

= o (1) , for all δ ∈ (0, 1). (6.2)

Proof. Let P = P\Q. It is clear that the prime number theorem holds for
K if and only if πP (x) = o(x/ log x). Moreover, it is readily seen that

log x
x

(πP (x)− πP (δx)) ≤
∑

p∈(δx,x)

log p
p
≤ log δx

δx
(πP (x)− πP (δx)).
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6.4 Some remarks on the Prime number theorem for K

So we have to show that πP (x) = o(x/ log x) is equivalent to the statement
that for all δ > 0 it holds that πP (x)−πP (δx) = o(x/ log x). One direction
is immediate. For the other, assume that πP (x) − πP (δx) = o (x/ log x).
Rewrite this assumption in the form

πP (x)
log x
x

= δ

(
πP (δx)

log δx
δx

)
log x
log δx

+ o (1) .

Hence, for all δ > 0, we have

lim sup
x→∞

πP (x)
log x
x

< δ.

Since the condition of this lemma resembles the condition of Theorem
6.2, it is natural to check if the validity of the prime number theorem for
a set K with arithmetic structure is related to the lower bound of the
operator ZK,I . We get the following theorem.

Theorem 6.6. Let Q ⊂ P generate K ⊂ N. Then the prime number
theorem for Q neither implies nor is implied by the lower boundedness of
the operator ZK,I .

Proof. Recall that by Theorem 6.2, the lower boundedness of the operator
ZK,I is equivalent to the condition

∑
p∈P\Q

1
p
<∞, (6.3)

and that by Lemma 6.1 this is equivalent to the condition

lim inf
x→∞

πK(x)
x

> 0. (6.4)

First we seek a set of primes Q for which Panejah’s condition holds but
the prime number theorem does not. This part of the theorem follows
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6 Modified zeta functions and prime numbers

by comparing the condition (6.4) to the condition (6.2) of Lemma 6.5 in
combination with a variant of Merten’s formula (see e.g. [60][p. 50]):∑

p≤x

log p
p

= log x+O (1) . (6.5)

One the one hand, (6.5) implies that for δ > 0 small enough, then

lim inf
x→∞

∑
δx≤p≤x

log p
p

> 0.

We choose a sequence (xn)n∈N which realises this condition and for which
the intervals (δxn, xn) do not overlap. On the other hand, (6.5) implies
that ∑

δx≤p≤x

1
p

.
1

log δx
.

Choose a sub-sequence of (xnk) for which
∑

k(log xnk)−1 < ∞. Let P =
P ∩ (∪(δxnk , xnk)), and set Q = P\P . This set does the job.

Next, we seek a set Q for which the prime number theorem holds,
but Panejah’s condition fails. Consider the consecutive intervals Ik =
(2k, 2k+1). In each interval choose essentially the first 2k/(k log k) prime
numbers. This is seen to be exactly possible for large k using the fact that
the n’th prime pn ∼ n log n. Denote the set of primes chosen in this way
from the interval Ik by Pk. Set P = ∪Pk and let Q = P\P . It now follows
that the condition (6.3) does not hold, since∑

p∈P

1
p

&
∑
k∈N

1
k log k

=∞.

To see that the prime number theorem for Q holds, we let δ ∈ (0, 1) and
readily check that for x > xδ we have∑

p∈P∩(δx,x)

log p
p

.
log x
x

x

log x log log x
=

1
log log x

.

Hence the condition (6.2) of Lemma 6.5 holds.
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6.5 Proof of Theorem 6.3

6.5 Proof of Theorem 6.3

We give a series of lemmas before before turning to the proof of Theorem
6.3. The three first are standard exercises in Fourier analysis. Although
we give an elementary proof, the fourth, Lemma 6.10, follows from a more
general result by P. Malliavin [55]. Throughout this section we fix T > 0.

Lemma 6.7. Let φ ∈ L1(0, T ). Then∫ u

0
φ̂(t)dt =

1√
2π

∫ T

0
φ(ξ)

e−iuξ − 1
−iξ

dξ.

Proof. This follows by applying Fubini’s theorem to the left hand side.

Lemma 6.8. Let φ ∈ L1(0, T ) and ζJ(1) <∞. Then∫ T

0

φ(t)
t

(ζJ(1 + it)− ζJ(1)) dt = −
√

2π
∑
n∈J

1
n

∫ logn

0
φ̂(t)dt.

Proof. We compute:∫ T

0

φ(t)
t

(ζJ(1 + it)− ζJ(1)) dt =
∫ T

0

φ(t)
t

∫ ∞
1

x−it − 1
x

dπJ(x)dt

=
∫ ∞

1

∫ T

0
φ(t)

x−it − 1
t

dt
dπJ(x)
x

By Lemma 6.7 this is the same as

−
√

2π
∫ ∞

1

∫ log x

0
φ̂(t)dt

dπJ(x)
x

= −
√

2π
∑
n∈J

1
n

∫ logn

0
φ̂(t)dt.

Lemma 6.9. For φ ∈ L∞(0, T ) we have∣∣∣∣∫ x

0
φ̂(t)dt

∣∣∣∣ . ‖φ‖∞ log x,
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6 Modified zeta functions and prime numbers

and for 1 < q <∞ and φ ∈ Lq(0, T ) we have∣∣∣∣∫ x

0
φ̂(t)dt

∣∣∣∣ . ‖φ‖qx 1
q .

Moreover, this is best possible in the sense that there exist φ ∈ L∞(0, T )
for which

√
2π
∫ x

0
φ̂(t)dt = log x+O (1) ,

and for all r > q there exists φ ∈ Lq(0, T ) for which

√
2π
∫ x

0
φ̂(t)dt = x

1
r +O (1) .

Proof. We only show the part of the statement dealing with φ ∈ L∞. The
rest is shown in a similar way. The upper-bound part runs as follows. By
Lemma 6.7 and a change of variables, we get

√
2π
∣∣∣∣∫ x

0
φ̂(t)dt

∣∣∣∣ =
∣∣∣∣∫ T

0
φ(u)

e−ixu − 1
u

du
∣∣∣∣

=
∣∣∣∣∫ Tx

0
φ

(
−u
x

)
eiu − 1
u

du
∣∣∣∣ ≤ ‖φ‖∞ ∫ Tx

0

|e−iu − 1|
u

du.

The integral in the last term is O (log x). We claim that φ(x) = χ(0,T )(x)
gives the last part of the statement. For with this choice

√
2π
∫ x

0
φ̂(t)dt =

∫ T

0

e−itx − 1
it

dt =
∫ Tx

0

e−it − 1
it

dt.

The result follows, since it is clear that∫ Tx

0

e−it − 1
t

dt <∞ and
∫ Tx

0

1
t
dt = log x+ log T.
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6.5 Proof of Theorem 6.3

Lemma 6.10. Let f : N→ R+ satisfy f(nm) ≤ f(n)+f(m) and f(n) ≥ 1
for n big enough. If the primes P generate the integers J then∑

n∈J

f(n)
n

<∞ ⇐⇒
∑
p∈P

f(p)
p

<∞.

Proof. One way to prove this is for σ > 1 to show the inequality

∑
n∈J

f(n)n−σ .

∑
p∈P

f(p)p−σ

 e
P
p p
−σ
,

and then conclude by the monotone convergence theorem. To prove this
we study the linear map Df :

∑
ann

−σ →
∑
anf(n)n−σ. It is not hard

to show that the abscissa of absolute convergence is invariant under Df .
Moreover, for Dirichlet series F,G with positive coefficients it holds that
Df (FG)(σ) ≤ Df (F )G(σ) + FDf (G)(σ). We use this on the identity∑

n∈J
n−σ = e

P
p∈P p

−σ
φ(σ),

where the function

φ(σ) = e−
P
p∈P log(1−p−σ)−

P
p∈P p

−σ

is given by a Dirichlet series that converges absolutely for σ > 1/2. Here
we used the Euler product formula for the function ζJ . The inequality is
now seen to hold since

Df (e
P
p∈P p

−σ
) ≤

∑
p∈P

f(p)p−σ

 e1+
P
p∈P p

−σ
.

Proof of Theorem 6.3. The fact that we have the formula

ZK,I = ζ−1
J (1)Id + ΨK,I ,
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6 Modified zeta functions and prime numbers

for a compact operator ΨK,I and the statement that ψK extends to a
pseudo-function on σ = 1 both follow immediately from Theorem 5.7.
Assume that ζ−1

J (1) > 0. By the factorisation ζ(s) = ζK(s)ζJ(s) and
the formula ζ(s) = (s−1)−1 +ψ(s) for the Riemann zeta function we have
the identity

ψK(s) =
ζK(s)
s
− 1
ζJ(1)

1
s− 1

=
1

s− 1

(
1

sζJ(s)
− 1
ζJ(1)

)
+
ψ(s)
s

.

As mentioned in the proof of Lemma 6.1, it follows from the Euler product
formula that ζJ(1 + it) is a continuous function bounded away from zero.
Therefore

1
t

(
1

ζJ(1 + it)
− 1
ζJ(1)

)
∈ Lploc(R) ⇐⇒ ζJ(1 + it)− ζJ(1)

t
∈ Lploc(R).

We prove the L1 condition. It follows from lemmas 6.8 and 6.9 that∥∥∥∥ζJ(1 + it)− ζJ(1)
t

∥∥∥∥
L1(I)

=
√

2π sup
φ∈L∞(I)

∣∣∣∣∣∑
n∈J

1
n

∫ logn

0
φ̂(t)dt

∣∣∣∣∣
≤
√

2π
∑
n∈J

1
n

log logn <∞.

We apply the Lemma 6.10 to the function f(n) = log log n to find that∑
n∈J

log log n
n

<∞ ⇐⇒
∑
p∈P\Q

log log p
p

<∞.

This proves the sufficiency. As for the necessity, assume that we have∑
p∈P\Q p

−1 log log p =∞. By the dual expression for the L1(I) norm and
the optimality of Lemma 6.9, it is clear that

ζJ(1 + it)− ζJ(1)
t

/∈ L1(I).

Let q > 1 and q′ > 1 be as given by the hypothesis. The necessity is
exactly the same as when p = 1 and the sufficiency follows by a slight
modification.
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