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Abstract: The design of Cellular Manufacturing Systems (CMS) has attained 
the significant interest of academicians, researchers and practitioners over the 
last three decades. CMS is regarded as an efficient production strategy for 
batch type of production. Literature suggests that since the last two decades 
neural network based methods have been intensively used in cell formation 
problems while production factor such as operation time is merely considered. 
This paper presents a new hybrid neural network approach, Fuzzy ART-
Centroid Linkage Clustering Technique (FACLCT), to solve the part machine 
grouping problems in cellular manufacturing systems considering operation 
time. The performance of the proposed technique is tested with problems from 
open literature and the results are compared with the existing clustering models 
such as simple C-Linkage, K-Means, modified ART1 and genetic algorithm 
and achieved better performance. The novelty of this study lies in the simple 
and efficient methodology to produce quick solutions with least computational 
efforts. 
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1 Introduction 

Over the past three decades, in response to the competitive markets need for increased 
industrial automation, product diversification and the trend towards shorter product life 
cycles, new manufacturing philosophies have been adopted by many of the established 
manufacturing firms. Among those new manufacturing philosophies, group technology 
(GT) has been used to reduce throughput and material handling times, to decrease work-
in-progress and finished goods inventories and to increase the ability to handle forecast 
errors (Won and Currie, 2007). Group technology can be defined as a manufacturing 
philosophy identifying similar parts and grouping them together to take advantage of 
their similarities in manufacturing and design (Selim et al., 1998). Cellular manufacturing 
(CM) is an application of GT and has emerged as a promising alternative manufacturing 
system. CM could be characterised as a hybrid system linking the advantages of both the 
jobbing (flexibility) and mass (efficient flow and high production rate) production 
approaches. CM entails the creation and operation of manufacturing cells. Parts are 
grouped into part families and machines into cells. As reported by Wemmerlöv and Hyer 
(1989), the aim of CM is to reduce set-up and flow times and therefore to reduce 
inventory and market response times. Set-up times are reduced by using part-family 
tooling and sequencing, whereas flow times are reduced by minimising set-up and move 
times, wait times for moves and by using small transfer batches. Group technology 
addresses issues such as average lot size decreasing, part variety increasing and increased 
variety of materials with diverse properties and requirements for closer tolerances. As 
described in a review (Venugopal, 1999), the basic idea behind GT/CM is to decompose 
a manufacturing system into sub-systems by identifying and exploiting the similarities 
amongst part and machines. The very first step in this process is to solve the complex 
Part Machine Grouping (PMG) problem and the problem being quite challenging under 
real-time scenario, various approaches have been developed, and among which soft 
computing approach has an eminent role in the GT/CM literature. Soft computing is  
the state-of-the-art approach to artificial intelligence which mostly comprises fuzzy  
logic, artificial neural network and evolutionary computing. This paper presents a new 
hybrid neural network approach, Fuzzy ART Centroid Linkage Clustering Technique 
(FACLCT), to solve the PMG problem in cellular manufacturing systems considering 
operation time. In light of the literature survey, it is well understood that very few studies 
focus on cell formation considering production factors such as operational time, 
operational sequence, batch size, production volume and other factors. In this work, it is 
attempted to form the cells considering operation time, a real-time production factor. To 
solve such problem the zero-one Machine Part Incidence Matrix (MPIM) is converted 
into real valued workload data. The workload represents the operational time required by 
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the parts in the machines. The proposed hybrid model has been tested on wide variety of 
problems from literature and compared to the solutions obtained from simple C-Linkage, 
K-Means, modified ART1 and genetic algorithm in the recent literature. 

2 Literature review 

Burbidge (1977) viewed group technology as a change from an organisation of people 
mainly on process, to an organisation based on completed products, components and 
major completed tasks. Since 1960, various approaches were presented to solve the 
machine part grouping problem. Initially the methods like Similarity Coefficient Methods 
(SCM) (Seifoddini and Wolfe, 1986), graph theory (Rajagopalan and Batra, 1975) and 
Rank Order Clustering (ROC) (King, 1980) methods were developed only to group the 
similar machines into machine cells while the grouping of parts into part families was 
done in the supplementary step of the procedure. Later clustering methods such as the 
MODROC (Chandrasekharan and Rajagopalan, 1986), ZODIAC (Chandrasekharan and 
Rajagopalan, 1987) MACE (Waghodekar and Sahu, 1984) are reported for solving the 
cell formation problems. Since late 1980s soft-computing approaches began to gain 
popularity (Venugopal, 1999; Papaioannou and Wilson, 2009) which included artificial 
neural network, fuzzy logic and meta-heuristics like simulated annealing (SA) algorithm, 
genetic algorithm (GA), tabu search (TS). 

2.1 Artificial neural network 

Neural networks are massively parallel computer algorithms (Wasserman, 1989) with  
an ability to learn from experience. They have the capability to generalise, adapt, 
approximate given new information, and provide reliable classifications of data. These 
algorithms involve numerous computational nodes that have a high connectivity. Each  
of the nodes operates in a similar manner which makes them ideal for a parallel 
implementation. During the execution, each node receives an input, processes this 
information, and produces an output which is provided as an input to other nodes in the 
network. The connections between the nodes, and in particular the learning rules that 
modify the strength between the connections, give neural networks their power and 
flexibility (Enke et al., 2000). The neural network approach has been the subject of 
intensive study by interdisciplinary researchers for a long time. Though neural networks 
have been successfully applied in a variety of fields, their use in cellular manufacturing 
problems started in the late 1980s and early 1990s. Recognising ANN’s pattern 
recognition ability, several researchers began to investigate neural network methods for 
the part-machine grouping problem. Neural network is of major interest because when it 
is connected to computer, it mimics the brain and bombard people with much more 
information. 

2.2 Fuzzy adaptive resonance theory 

Fuzzy ART proposed by Grossberg (Carpenter et al., 1991) belongs to the class of 
unsupervised, adaptive neural networks. Adaptive neural networks always had an 
important role in cellular manufacturing beginning in the early 1990s in the works of Kao 
and Moon (1991), Malave and Ramachandran (1991), Dagli and Huggahalli (1991) and 
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Moon and Chi (1992). Dagli and Huggahalli used ART1 in such problems while Malave 
and Ramachandran used competitive learning. Fuzzy ART was another common adaptive 
resonance framework as presented in the works of Suresh and Kaparthi (1994), Burke 
and Kamal (1995), Kamal and Burke (1996), Suresh et al. (1999), Peker and Kara (2004), 
Won and Currie (2007) and Ozdemir et al. (2007) which provided a unified architecture 
for both binary and continuous valued inputs. Although fuzzy ART does not require a 
completely binary representation of the parts to be grouped, it possesses the same 
desirable stability properties as ART1 and a simpler architecture than that of ART2. 
Figure 1 shows the architecture of the fuzzy ART network (Chang et al., 2005). It 
consists two layers of computing cells or neurons, and a vigilance sub-system controlled 
by an adjustable vigilance parameter. The input vectors are applied to the fuzzy ART 
network one by one. The network seeks for the ‘nearest’ cluster that ‘resonates’ with the 
input pattern according to a ‘winner-take-all’ strategy and updates the cluster to become 
‘closer’ to the input vector. In the process, the vigilance parameter determines the 
similarity of the inputs belonging to the same cluster. For the same set of inputs, the 
similarity of elements in one cluster grows as the vigilance parameter increases, leading 
to a larger number of trained clusters. The choice parameter and the learning rate are two 
other factors that influence the quality of the clustering results. In this paper, fuzzy ART 
is used to form the part families while agglomerative centroid linkage-hierarchical 
clustering algorithm is used to form the machine groups. The detailed description of the 
hybrid algorithm is discussed in the next section. 

Figure 1 Topological structure of the fuzzy ART architecture 
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3 The proposed hybrid approach 

This study presents a hybrid FACLCT, a new pattern recognition neural network 
approach, for clustering problems, and illustrates its use for machine cell design in group 
technology. FACLCT is a bimodal clustering model. While mode1 is concerned with the 
identification of part families using the fuzzy ART architecture, mode2 is concerned with 
the formation of machine groups using the centroid linkage-agglomerative hierarchical 
clustering algorithm. The fuzzy ART neural network was introduced by Carpenter et al. 
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(1991) and Suresh and Kaparthi (1994) implemented it to the CF problem. The latter 
found that in terms of bond energy recovery, fuzzy ART outperformed ART1 and 
ART1/KS. The execution time of fuzzy ART was higher than ART1 and ART1/KS, but 
for larger datasets, execution times were significantly lower than DCA and ROC2. The 
fuzzy ART neural network involves several changes to ART 1: (a) non-binary input 
vectors can be processed; (b) there is a single weight vector connection (wij); and (c) in 
addition to vigilance threshold (ρ), two other parameters have to be specified; a choice 
parameter (α) and a learning rate (β). The step-by-step illustration of fuzzy ART network 
is as follows (Suresh and Kaparthi, 1994): 

Step 1: Initialisation 
           Connection weights: wij (0) = 1. 
           0 ≤ I ≤ N – 1, 0 ≤ j ≤ (M – 1) 
           Select values for: α > 0, β ε (0, 1), ρε (0, 1) 
Step 2: Read a new input vector I consisting of binary or analogue elements 
Step 3: Compute choice function (Tj) for every input node 
           Tj = ||I ^ wj|| / [α + ||wj||], 0 ≤ j ≤ (M – 1), 
           where ^ is the fuzzy AND operator, defined as: (x^y) = min (xi, yi) 
Step 4: Select the best matching exemplar. 
           TӨ = max {Tj} 
Step 5: Resonance test: 
           If ||I^wӨ|| / ||I|| ≥ ρ then go to step 7 otherwise go to step 6 
Step 6: Mismatch reset: set TӨ = –1 and go to step 4 
Step 7: update best matching exemplar (learning law) 

           wӨ
new = [β × (I^wӨ

old)] + [(1 – β) × wӨ
old] 

Step 8: Repeat: go to step 2. 

The above algorithm although could produce efficient clustering solutions, the literature 
suggests that hybrid approaches often produced better clusters. To establish the fact, 
centroid linkage-hierarchical clustering algorithm is integrated to the fuzzy ART neural 
network to form the machine group based on the part families formed by the neural 
model. 

Hierarchical Agglomerative Clustering (HAC) is conceptually and mathematically 
simple algorithm practised in clustering analysis of data (Anderberg, 1973).[AQ1] It 
delivers informative descriptions and visualisation of potential data clustering structures. 
When there exists hierarchical relationship in data this approach can be more competent. 
The algorithm in contrast to machine grouping is presented below. 

3.1 Step 1: formation of input dataset 

An input dataset for HAC is a machine–part incidence matrix. Machines are the items 
that should be grouped based on their similarities. Parts are the components that contain 
routing information. The type of input dataset can be classified into binary data (contains 
only 0 or 1, i.e. the routing information) and ratio data (contains information about 
production volume, operation time). Figure 2 shows a 5 × 7 binary dataset. 

AQ1: The references 
flagged with [AQ1] 
are not included in the 
reference list. Please 
provide the complete 
reference details to 
include in the 
reference list.
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Figure 2 5 × 7 input matrix 

p1 p2 p3 p4 p5 p6 p7
m1 0 1 0 1 1 1 0
m2 1 0 1 0 0 0 0
m3 1 0 1 0 0 1 1
m4 0 1 0 1 0 1 0
m5 1 0 0 0 1 0 1

 

3.2 Step 2: computing pair-wise distance between  
pairs of machines 

This function computes the distance between each pairs of machines of the given input of 
data matrix. It produces an output vector of length m(m – 1)/2 where m is the number of 
rows of the input matrix. This output is commonly used as dissimilarity matrix in 
clustering or in multidimensional scaling. Instead of a matrix the output is considered as a 
vector in order to minimise the time and space complexities. The distance is computed 
using Minkowski distance metric. The computation is performed using following 
formula: 

1

pnp
ik jkk

m m
=

−∑  (1) 

This matrix is a generalised form of Euclidian, Chebychev and City block distance 
matrices. M is denoted as machines of the incidence matrix. The computational result 
obtained by applying this method on above-mentioned 5 × 7 input matrix is a vector 

[ ]1.0000 2.4495 2.4495 2.2361 2.2361 2.2361 2.4495 1.4142 1.7321 1.7321=D  

3.3 Step 3: HAC tree formation 

This function is developed on the basis of hierarchical cluster formation. If cell r is 
formed from cell p and q, and nr is the number of machines in cell r, xri is the i-th 
machine of cell r, then centroid linkage is computed using the formula 

( ) 2
, r sd r s x x= −  (2) 

which is the Euclidean distance between the centroids of two cells where 

1

1 rn
r rii

r

x x
n =

= ∑  (3) 

This linkage function is applied on the vector obtained from 5 × 7 input matrix in the  
step 2. It generates the matrix Z defining a tree of hierarchical clusters of the rows of the 
vector D. Z is a (m – 1) × 3 matrix, where m is the number of machines in the original 
dataset. Columns 1 and 2 of Z contain cluster indices linked in pairs to form a binary tree.  
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The leaf nodes are numbered from 1 to m. Leaf nodes are the singleton clusters from 
which all higher clusters are built. The dendrogram obtained from Z is shown in Figure 2. 
It clearly indicates the hierarchical structure and relationship between clusters. 

[1.0000 2.0000 1.0000
3.0000 4.0000 1.4142

Z
5.0000 7.0000 1.5812
6.0000 8.0000 2.0883]

=  

Figure 3 Dendrogram obtained from centroid linkage algorithm (see online version for colours) 
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3.4 Step 4: constructing agglomerative clustering from centroid linkage 

This routine constructs clusters from the agglomerative hierarchical cluster tree, as 
generated by the linkage function. Z is a matrix of size (m – 1) × 3, where m is the 
number of machines in the original data. A threshold value is used for cutting Z into 
clusters. Clusters are formed when a node and all of its sub-nodes have inconsistent value 
less than the threshold value. All leaves at or below the node are grouped into a cluster. 
Output is a vector of size m containing the cluster assignments of each machine row. 

In the hybrid model the centroid linkage-hierarchical clustering algorithm is 
integrated into the fuzzy ART architecture and on execution both the part and machine 
group clusters are produced. This integrated approach helps reduce computational time 
and often produce better or comparable results when tested on the problems found in the 
literature. Another important aspect of the model proposed in this work is the ability to 
handle workload data. The model is equally capable of handling workload matrix as 
compared to Part Machine Incidence Matrix (MPIM) and the machine cells are formed 
based on the operation time, a real-time production factor. The detailed step-by-step 
approach of the integrated model is presented below. 
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Step 1: Input the workload matrix 
           Machines in rows and parts in columns 
Step 2: Normalise input matrix by complement coding 
Step 2.1: Determine the size of the data. 
            [totalNumofMachines, TotalNumofParts] = size(workloadMatrix); 
Step 2.2: Create the return variable. 
           C = ones(2* totalNumofMachines, TotalNumofParts); 
Step 2.3: For each part do the complement coding 
           for j = 1: TotalNumofParts 
           count = 1; 
           for i = 1:2:(2* totalNumofMachines) 
           C(i, j) = data(count, j); 
           complementCodedData(i + 1, j) = 1 - data(count, j); 
           count = count + 1; 
Step 3: Create and initialise the fuzzy ART network 
Step 3.1: Create and initialize the weight matrix. 
           weight = ones(totalNumofMachines, 0); 
Step 3.2: Create the structure and return 
           FuzzyArt = struct(‘totalNumofMachines’, { totalNumofMachines }, 
            ‘TotalNumofCategories’, {0}, ‘MaximumNumofCategories’, {100}, ‘weight’, {weight}, 
            ‘vigilance’, {0.75}, ‘bias’, {0.000001}, ‘totalNumOfEpochs’, {200},  
            ‘learningRate’, {1.0}); 
Step 4: Training the fuzzy ART network 
Step 4.1: Set the return variables 
           FuzzyArt = {}; 
           Classification = ones(1, TotalNumofParts); 
Step 4.2: for each epoch go through the complement coded workload matrix 
Step 4.3: Classify and learn on each part 
Step 4.3.1: Activate the classifications 
Step 4.3.2: Rank the activations 
Step 4.3.3: In the sorted list go through each classification and find the best match. 
Step 4.3.4: must create a new classification if no classifications yet found 
Step 4.3.5: Calculate the match 
Step 4.3.6: if the match is greater than the vigilance then update the weights and induce 
resonance 
Step 4.3.7: else choose the next classification in the sorted classification list 
Step 4.4: if at the last epoch the network does not change at all, equilibrium is reached and  
stop training 
Step 5: Final Part machine clustering 
Step 5.1: Set up the return variables. 
           Classification = ones(1, TotalNumofParts ); 
Step 5.2: Classify and learn on each part 
Step 5.3.1: Activate the classifications 
Step 5.3.2: Rank the activations 
Step 5.3.3: look for the best match 
Step 5.4: if the match is greater than the vigilance then induce resonance 
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Step 5.5: else choose the next classification in the sorted classification list 
           If it is the last classification in the list, set the classification for the return value  
as –1 and induce resonance. 
Step 5.6: from the return variable part group is identified 
Step 5.7: Compute the pair-wise distance between pairs of machines in the workload matrix 
Step 5.8: HAC tree formation 
Step 5.9: Construct agglomerative clustering from centroid linkage 
Step 5.10: based on the return variable machine groups are identified. 
Step 6: Show Results 

4 Results and discussion 

In this study, an efficient artificial neural network based hybrid model FACLCT has been 
proposed for cell formation considering operational time of the parts to be processed in 
the machines instead of conventional zero-one incidence matrix based on part visit to 
respective machines with the objective of minimising exceptional elements and voids 
while improving the grouping efficiency. In order to measure the grouping efficiency of 
an algorithm for machine-part cell formation, a performance measure is needed. Many 
performance measures for evaluating the goodness of PMG have been proposed over the 
years. Some popular performance measures that have been widely adopted in literature 
(Won and Currie, 2007) are grouping efficiency proposed by Chandrasekharan and 
Rajagopalan in 1986, grouping efficacy, proposed by Kumar and Chandrasekharan in 
1990 [AQ1] and Grouping Capability Index (GCI), proposed by Seifoddini and Hsu in 
1994. [AQ1] However, the above-mentioned measures are not applicable to the proposed 
FACLCT model for part machine grouping since they are based on the block diagonal 
configuration of binary part machine PMIM and they do not incorporate the real-field 
data such as the operation time. To measure the clustering efficiency considering 
operation time, in this work Modified Grouping Efficiency (MGE) (Mahapatra and 
Sudhakarapandian, 2008) is used. The MGE is calculated using the following formulation 
in equation (4). 

pti

c c vk
pto ptk ptkk 1 k 1

ek

T
MGE

NT + T T
N= =

=
+∑ ∑

 (4) 

where Tpti: Total processing time inside the cells 
Tpto: Total processing time outside the cells 
Tptk: Total processing time of cell k 
Nvk: No. of voids in cell k 
Nek: Total number of elements in cell k 

Unlike grouping efficiency, modified grouping efficiency does not treat all the operations 
equally. Moreover, a weighting factor for voids is considered to reflect the packing 
density of the cells. It produces 100% efficiency when the cells are perfectly packed 
without any voids and exceptional elements. The FACLCT algorithm is coded in 
MATLAB 7.1 and tested on the Intel Celeron M processor. The real valued workload 
matrix is presented to the algorithm as input. The proposed approach is tested on  
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18 datasets available in the GT/CM literature which were converted to workload matrix. 
The results obtained are compared to simple C-Linkage, K-Means, modified ART1 and 
genetic algorithm as present in the literature (e.g. Mahapatra and Sudhakarapandian, 
2005; Mahapatra and Sudhakarapandian, 2006; Ponnambalam et al., 2007). In order to 
compare the performance with the mentioned work in the literature, instead of generating 
the workload matrix from the PMIM in the literature in a random manner, the  
same workload matrix is taken as referred in the above-mentioned published works 
(Sudhakarapandian, 2007). Around 27.77% of the solutions indicated clear improvement 
compared to the four other techniques as measured in terms of minimum exceptional 
elements and maximum MGE. Apart from the above mentioned 27.77%, most of the 
other solutions obtained from the proposed hybrid neural approach often outperformed at 
least three of the compared techniques while the rest demonstrated similar results with 
minor exceptions. The learning rate is initialised to 1 and the vigilance parameter is 
considered as 0.75. Table 1 presents the source of the datasets used from the literature to 
demonstrate the proposed model and Table 2 presents the comparison between the results 
obtained from FACLCT and the C-Linkage, K-Means, modified ART1 and genetic 
algorithm available literature. 
Table 1 Source of the datasets used from the literature 

DS No. Source Problem size DS No. Source Problem size 

1 King and Nakornchai 
(1982) [AQ1] 5 × 7 10 Askin et al. (1987) 

[AQ1] 14 × 23 

2 Seifoddini (1989) 
[AQ1] 5 × 18 11 Srinivasan et al. (1990) 

[AQ1] 16 × 30 

3 Kusiak (1992) [AQ1] 6 × 8 12 Carrie (1973) [AQ1] 20 × 35 

4 Kusiak (1987) [AQ1] 7 × 11 13 Kumar et al. (1986) 
[AQ1] 23 × 20 

5 Seifoddini and Wolfe 
(1986) 8 × 12 14 Chandrasekharan et al. 

(1989a) [AQ1] 24 × 40 

6 Chandrasekharan et 
al. (1986a) [AQ1] 8 × 20 15 Stanfel (1985a) [AQ1] 30 × 50 

7 Chandrasekharan et 
al. (1986b) [AQ1] 8 × 20 16 Boe et al. (1991) [AQ1] 20 × 35 

8 Mosier et al. (1985) 
[AQ1] 10 × 10 17 Mccornick et al. (1972) 

[AQ1] 24 × 16 

9 Chan et al. (1982) 
[AQ1] 10 × 15 18 Kumar et al. (1987) 

[AQ1] 30 × 41 

Table 2 Comparison between C-Linkage, K-Means, modified ART1, GA and FACLCT 

  C-Linkage K-Means Modified ART1 Genetic algorithm FACLCT 
DS NC EE MGE EE MGE EE MGE EE MGE EE MGE 
1 2 2 77.25 2 77.25 2 77.25 2 77.25 2 77.26 
2 2 7 81.87 7 81.87 7 81.87 7 81.87 7 81.88 
3 2 2 79.85 2 79.85 2 79.85 2 79.85 2 79.85 
4 2 3 61.77 3 61.77 3 61.77 3 61.77 3 62.06* 
5 2 6 57 6 57 4 69.7 6 69.7 4 64.15 
6 2 28 60 28 60 25 61.3 28 61.3 22 60.75 
7 3 9 83.4 9 83.4 9 83.4 9 83.4 9 83.45 
8 3 0 77.14 0 77.14 0 77.14 0 77.14 0 77.17 
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Table 2 Comparison between C-Linkage, K-Means, modified ART1, GA and FACLCT 
(continued) 

  C-Linkage K-Means Modified ART1 Genetic algorithm FACLCT 
DS NC EE MGE EE MGE EE MGE EE MGE EE MGE 
9 3 0 93.28 0 93.28 0 93.28 0 93.28 0 93.06 
10 2 2 59.43 2 59.43 2 60.59 0 62.42 0 59.81 
11 3 15 64.81 15 64.81 15 64.81 20 64.81 16 67.2* 
12 3 1 71 1 71 1 71.15 1 71.15 1 70.96 
13 3 38 51.7 38 51.7 42 50.5 42 51.92 40 48.17 
14 6 0 90.28 0 90.28 0 90.28 0 94.58 0 90.28 
15 6 20 61.84 20 61.84 26 55.51 22 62.23 17 59.3 
16 4 31 61.5 31 61.5 28 61.71 32 61.7 27 61.63* 
17 4 30 51.39 34 46.7 30 51.39 29 52.02 27 54.03* 
18 3 17 53.98 12 56.65 17 53.98 15 56.14 7 57.62* 

Notes: *improvement; DS: dataset number; NC: number of cells; EE: exceptional 
elements; MGE: modified grouping efficiency. 

From Tables 1 and 2, it could be seen that a wide variety of datasets have been chosen 
from the literature with part machine workload matrices ranging from 5 × 7 to 30 × 50. 
From the results the efficiency of the hybrid model in handling workload data and 
capability of clustering machine part workload matrix with minimum exceptional 
elements and maximum possible MGE is justified and hence could be established as a 
simple and efficient methodology to produce quick solutions for shop floor managers 
with least computational efforts and time. Figure 4 shows an input workload matrix while 
Figures 5–7 demonstrate the solution sets obtained from FACLCT. 

Figure 4 Input workload matrix for example problem of size 5 × 7, dataset 1 

 

Figure 5 Output matrix by the proposed FACLCT-based algorithm for example problem of size 
5 × 7, dataset 1 
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Figure 6 Output matrix by the proposed FACLCT-based algorithm for example problem of size 
20 × 35, dataset 16 

 

Figure 7 Output matrix by the proposed FACLCT-based algorithm for example problem of size 
30 × 41, dataset 18 

 

In cellular manufacturing systems the number of cells formed often has an effective  
role in maximising MGE and minimising exceptional elements. More number of cells 
increases exceptional elements thus affecting the MGE while in other cases it may 
increase MGE by reducing voids. Again under some circumstances it increases MGE  
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without affecting the exceptional elements and could be referred as ideal number of cells. 
The optimal number of cells is thus required to find the best solution. The analysis is 
demonstrated in Figures 8–10 and finally concluded in Figure 11. 

Figure 8 Dataset 5 with 2 cells 

 

Figure 9 Dataset 5 with 3 cells 

 

Figure 10 Dataset 5 with 4 cells 
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Figure 8 shows a clustered result of a workload matrix of size 8 × 12 (dataset 5). In this 
case, 2 cells are formed with 4 exceptional elements and 64.15% MGE. Figure 9 shows 
the clustered result of the same workload matrix of size 8 × 12(dataset 5) as in Figure 8. 
In this case, 3 cells are formed. Number of exceptional elements is still 4 while MGE 
changes to 68.56%. Figure 10 also shows the clustered result of the same workload 
matrix of size 8 × 12 (dataset 5) as in Figures 8 and 9. In this case, 4 cells are formed. 
Number of exceptional elements increases to 10 while MGE reduces to 65.86%. 

From the above experiment it could be seen that for the referred workload matrix of 
size 8 × 12, the optimal number of cells needed is 3 which gives the best solution as 
shown in Figure 11. 

Figure 11 Optimal number of cells, dataset 5(8 × 12) 

 

5 Conclusion 

In this work an artificial neural network based hybrid clustering model (FACLCT) is 
proposed to solve the cell formation problem using the non-binary real valued workload 
data as an input matrix. The proposed algorithm is tested with benchmark problems found 
in the literature and the results are compared to the results achieved from C-Linkage,  
K-Means, modified ART1 and genetic algorithm. To measure the performance of the 
proposed model considering the workload data modified grouping efficiency (MGE) is 
used. The results obtained which often outperformed the results in the literature justified 
the efficiency of the model in cell formation and sets a new milestone for the hybrid 
neural network approaches in GT/CM literature. The work can be further extended  
in future incorporating production data like operation sequence, machine capacity, 
production volume, layout considerations and material handling systems enhancing it to a 
more generalised manufacturing environment. 
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