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1. INTRODUCTION 

Graphene nanoribbons (GNRs) are quasi�one�
dimensional carbon structures that can be obtained by
“cutting” a graphene sheet into strips of nanometer
width [1]. As a theoretical model for the study of edge
properties of graphite, these structures were consid�
ered in [2]. Since the preparation of graphene in a
free�standing state [3], such objects have been actively
studied both theoretically [4–8] and experimentally
[9–11]. In parallel to the aforementioned studies,
methods of their synthesis have been developed rapidly
[1, 11–12]. Following the simplest single�layer rib�
bons, two�layer systems have been investigated [14–
16], and the influence of stacking of layers on their
properties has been analyzed [17]. Investigations have
also been undertaken into the influence of an electric
field [18], mechanical stresses [19], edge defects [20],
and disordering of the nanoribbon edge [6, 21] on the
properties of such systems. A number of GNR�based
superlattices [22–24] and “tracks” on a graphene
sheet [25–27] have been considered. The develop�
ment of the method for synthesizing graphene nanor�
ibbons, which made it possible, through self�assembly,
to obtain armchair graphene nanoribbons with atomi�
cally smooth edges, as well as nanoribbons with a more
complex edge shape [13], has stimulated further inves�
tigation of systems similar to superlattices [28, 29]. 

In this work, we have studied edge�modified zigzag
graphene nanoribbons (ZGNRs). We have considered

structures that differ from the structures studied in [24]
by the asymmetry with respect to the longitudinal nan�
oribbon axis and from those examined in [28, 29] by
the apex angle. We have developed a method for
describing edge�modified ZGNRs within the formal�
ism for carbon nanotubes (CNTs), which allows con�
sideration of the structures that are asymmetric with
respect to the transverse axis lying in the nanoribbon
plane and do not fit into the framework of the models
discussed in [28, 29]. On this basis, we have revealed
new interesting features in the behavior of the band
gap in the energy spectra of edge�modified ZGNRs. 

2. CRYSTAL STRUCTURE
AND CLASSIFICATION 

Below, we consider periodic edge�modified zigzag
graphene nanoribbons (Fig. 1). A distinctive feature of
these structures is the presence of the following ele�
ments: two arms (L1 and L2), i.e., straight�line seg�
ments, with the apex angle ϕ between them. In the
considered structures, one edge can be obtained by a
simple translation of the other edge by a vector W
whose magnitude determines the “width” of the edge�
modified ZGNR (see Fig. 1). Therefore, any edge�
modified ZGNR can be described by a set of vectors
L1, L2, and W. Since each of them is the vector of the
crystal lattice of graphene, they can be expressed in
terms of the vectors a1 and a2 of the graphene unit cell.
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Fig. 1. Structures of the graphene nanoribbons with periodically jagged edges and the vectors L1, L2, and W (the corresponding
elementary vectors I1, I2, and w) characterizing these structures, T is the translation period of the unit cell of the edge�modified
GNR, and A is the carbon atom of the A sublattice of the graphene (the carbon atom of the B sublattice is located at the origin of
the coordinates): (a) edge�modified zigzag GNR (compare with Fig. 2a) and (b) edge�modified armchair GNR (compare with
Fig. 2c). Shown in the lower left corner are the basis vectors of the unit cell of the graphene hexagonal lattice a1 and a2. After the
parallel translation by the vector S, the gray area covers all carbon atoms of the graphene lattice, which enter into the composition
of the edge�modified GNR. 

The arbitrary vector of the crystal lattice of graphene V
can be represented in the form 

(1)

Among all the possible directions of the vector V,
there are directions along which, after the cutting of
the graphene sheet, we obtain armchair (A) or zigzag
(Z) edges, i.e., lines 1–1 and 2–2 in Fig. 1, respec�
tively. For these directions, the vector V can be written
as 

(2)

where v is the vector of the unit translation along this
direction and ν is an integer. Considering the vectors
L1, L2, and W, we restrict ourselves to their directions
Z and A. Then, for each of them, we can introduce the
elementary vector (see Fig. 1). Hence, the magnitude
of the vector can be expressed in terms of an integer
index. For a given subset of elementary vectors I1, I2,
and w, there can be a set of subsets of indices (l1, l2, w),

V na1 ma2.+=

V νv,=

each corresponding to a specific set of vectors L1, L2,
and W. Therefore, we can say that a set of elementary
vectors I1, I2, and w specifies the type of ribbons and a
set of integer indices defines a particular ribbon within
the specified type. The structures characterized by dif�
ferent sets of elementary vectors, in essence, differ
only in the arm edge type and in the value of the apex
angle ϕ, which can also be defined as the angle
between the vectors I1 and I2. We restrict ourselves to
edge�modified ZGNRs of four types (T ϕ), where T
takes on values “Z” or “A” for the cases of ribbons with
zigzag or armchair arms, respectively, and ϕ corre�
sponds to the apex angle ϕ = 60° or 120° (Fig. 2).
Other types of ribbons with ϕ = 30°, 90°, and 150°, if
we follow the directions Z and A for the vectors I1 and
I2, as well as ribbons with other values of ϕ upon devi�
ation from these directions, can be considered simi�
larly. The table presents the coordinates of the elemen�
tary vectors I1, I2, and w in the basis of vectors a1 and
a2 for each of the four types of edge�modified ZGNRs.
The considered structures are also characterized by
the following two features: the vector of width W is the
bisector of the apex angle ϕ, and one edge of the unit
cell of the superlattice of the edge�modified ZGNR,
which is translated by the vector W, coincides with its
other edge. 

The period of translation T of the unit cell of the
edge�modified ZGNR can be expressed in terms of
the introduced quantities as follows: 

(3)T L1 L2– l1I1 l2I2,–= =

Coordinates of the elementary vectors characterizing differ�
ent types of edge�modified ZGNRs

Elementary 
vectors Z60 Z120 A60 A120

I1 (1, 0) (1, –1) (2, –1) (2, –1)

I2 (0, 1) (0, 1) (1, 1) (–1, 2)

w (1, 1) (1, 0) (1, 0) (1, 1)
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and the number of atoms in the unit cell is given by the
formula 

(4)N λ l1 l2+( )w,=

where λ = 2 in the case of the nanoribbons Z60, Z120,
and A60 and λ = 6 in the case of the nanoribbon A120.
The difference in the values of λ for different types of
nanoribbons is associated with the fact that an increase

(a) (b) (c) (d)

Zigzag Armchair

60°

120°

60°

120°

A 60 A 120Z 120Z 60

Fig. 2. Four types of edge�modified GNRs with different types of arms and angles ϕ: (a) Z60, (b) Z120, (c) A60, and (d) A120. 
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Fig. 3. Increase in the width of the edge�modified GNRs: (a) Z60, (b) Z120, (c) A60, and (d) A120. 
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in the nanoribbon width by unity (i.e., index w) corre�
sponds to the addition of a chain of dimers consisting
of atoms belonging to different graphene sublattices A
and B in the first case and to the addition of a chain of
hexagons the second case (see Fig. 3). 

3. RELATION TO OTHER CARBON 
NANOSTRUCTURES 

Before investigating the electronic properties of the
edge�modified ZGNRs, we establish their relation to
another class of carbon nanostructures, namely, car�
bon nanotubes. As can be seen, the edge�modified
ZGNRs considered above can be rolled into cylinders,
which are nothing else than nanotubes. The opposite
is also true: an edge�modified ZGNR, like the con�
ventional GNRs [12], can be obtained by cutting any
CNT. In our case (see Fig. 4), it can be a zigzag or arm�
chair nanotube. Of course, unlike the case of conven�
tional GNRs, in the case of edge�modified ZGNRs,
the CNT should be cut along a broken zigzag line (not
to be confused with the zigzag edge), which is formed
by the vectors L1 and L2 and, upon rotation of the nan�
otube, transforms into edges of the considered nanor�
ibbons. For edge�modified ZGNRs of any type, there
is a simple relation between the chirality vector C of
the CNT [30] and the vector of width W of the edge�
modified ZGNR: W = C. Using formulas (1) and (2),

we can easily obtain the relationship for the edge�
modified ZGNRs 

from which it follows that n = w, where n is the index
characterizing the zigzag or armchair CNTs [30]. 

4. METHOD OF INVESTIGATION 

The electronic properties of edge�modified
ZGNRs were investigated using the π�electron tight�
binding method [30, 31]. This method is simple and
economical in respect of the required computational
power and, hence, time. Furthermore, this method
adequately reproduces the character of the band spec�
tra of the considered carbon nanostructures [1].
Under this method, the energy bands are obtained by
solving the problem of the eigenvalues of the Hamilto�
nian matrix. The dimension of this matrix is equal to σ
× σ, where σ is the number of carbon atoms in the unit
cell of the nanoribbon. If the atoms in the unit cell are
numbered, each element of the Hamiltonian matrix
Hij has the form 

(7)

W ww C na1 ma2+= = =

=
na1 0a2, zigzag+

na1 na2, amchair+

n a1 0a2+( )

n a1 a2+( )
,=

Hij tij0 ikri jp( )ϑ Δ rij0 rijp––( ),exp
p 1=

n

∑=

(a)

(b)

Fig. 4. Folding of (a) edge�modified GNR A60 (4, 3, 10) and (b) conventional armchair graphene nanoribbon in the CNT(10,0).
The vector in the figure is the vector of width W of the edge�modified GNR (the vector of width of the GNR and chirality of the
corresponding CNT). Similarly, this figure can be interpreted as the zigzag and straight (for GNR) cutting of the CNT. 
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where tij0 is the hopping integral between the ith and jth
atoms (for the nearest neighbors, this integral was cho�
sen to be 3.12 eV [31]) separated by the distance rij0, rij1

is the distance between ith and jth atoms in the given
unit cell, rijp is the distance between the ith atom in the
given unit cell and the jth atom of one of the adjacent
unit cells (p ≠ 1), k is the electron quasi�wave vector, rijp

is the vector connecting positions of the ith atom (the
beginning of the vector) and the jth atom (the end of
the vector), and ϕ is the Heaviside function. As can be
seen from formula (7), if the distance between the ith
and jth atoms (rijp) differs from the distance between
these atoms in the ideal graphene lattice (rij0) by more
than Δ (for a better understanding, we should imagine
the edge�modified ZGNR built into the graphene lat�
tice as in Fig. 1; in this case, the graphene plays the
role of a reference system), the bond between these
atoms is ignored. Hence, the parameter Δ can be
called the sensitivity of the algorithm used. Actually,
for large values of Δ, the corresponding hopping inte�
gral should also change: its value should increase with
a decrease in the C–C bond length and, on the con�
trary, it should decrease as the C–C bond length
increases. These deformations occur at the edge of the
nanoribbon and can be taken into account by general�
izing formula (7) as follows [32]: 

(8)

where tij is the hopping integral, which depends on the
distance between the atoms. In formula (8), the
dependence of the hopping integral on the distance is
described by formula (2) from [32] 

where β = 3 is the parameter determining the rate of
decrease in the hopping integral with increasing dis�
tance between the atoms. 

The matrix filling algorithm corresponding to for�
mula (8) was tested by filling the matrix for GNRs [5],
CNTs [33], graphene and bigraphene [31]. The results
of calculations for these nanostructures demonstrated
an excellent agreement with the results of the afore�
mentioned studies and reproduce such features of
band structures as the cone for graphene, the trigonal
structure of bands near the K point when taking into
account the hopping integrals between the A–A and
A–B atoms in adjacent layers for bigraphene, doubly
degenerate levels for CNTs, and special states at zigzag
edges for GNRs [2]. 

The electronic band structures were calculated for
optimized geometries of the edge�modified ZGNRs.
The nanoribbon edges were passivated by hydrogen
atoms; then, the geometry of the structure was opti�
mized using the Large�Scale Atomic/Molecular Mas�

Hij tij ikrijp( )ϑ Δ rij0 rijp––( ),exp
p 1=

n

∑=

tij tij0 β
rij0 rijp–

rij0

���������������⎝ ⎠
⎛ ⎞exp ,=

sively Parallel Simulator (LAMMPS) package [34].
This package implements the classical molecular
dynamics based on specified potentials. The geometry
of the system was optimized using the Adaptive Inter�
molecular Reactive Empirical Bond Order (AIREBO)
potential proposed by Stuart et al. [35] for systems
consisting of carbon and hydrogen atoms. In the
LAMMPS package, this potential is realized in its
original formulation [35]. In the geometry optimiza�
tion, we used the method of the conjugate gradient in
the Polak–Ribiére version, which is more effective in
comparison with other versions of the conjugate gradi�
ent method. This algorithm minimizes not only the
potential energy of the system but also the forces act�
ing on individual atoms, so that the changes in the
energy would be only negative. In this case, we used
the following criteria for the termination of iterations:
the relative change in the energy is less than 10–4; all
the forces acting on the atoms do not exceed 10–6

eV/Å; the change in the position of the atoms is less
than the computer accuracy of the calculations; the
excess of the maximum number of iterations (15000);
and the excess of the maximum number of calcula�
tions of energies/forces (30000). 

5. THE BAND GAP 

Using the methods described above, we investi�
gated the dependences of the band gap Eg on the indi�
ces characterizing the edge�modified ZGNRs. First,
we considered the dependence of the band gap on the
width of nanoribbons for the case where the GNR
arms remain unchanged. The obtained results are pre�
sented in Figs. 5 and 6. Our attention was drawn to the
fact that, for the edge�modified ZGNR Z60, the band
gap significantly decreased with an increase in the
nanoribbon width. Therefore, we decided to use two
types of functions for the approximation of the calcu�
lated data: the exponential function and the inverse
power function. 

It can be seen from Fig. 5 that the exponential
function better describes the set of data for the Z60
nanoribbons. In contrast, the dependence of the band
gap Eg on the width of the A120 nanoribbon is better
described by the inverse power function. It should be
noted that the power�law decay of the band gap Eg is
also characteristic of the conventional armchair GNR
[7, 8, 36]. The exponential decay was mentioned in
[37], where the authors investigated, in the most gen�
eral form, periodic modifications of the zigzag edges
of the graphene hexagonal lattice. In that paper, how�
ever, the authors restricted their consideration to the
so�called minimum edge, where for each carbon atom
at the boundary there is one bond passivated by hydro�
gen. At the same time, because of the presence of an
angular atom with two attached hydrogen atoms in the
Z60 nanoribbons, they should be assigned to a more
general case, where the exponential decay of the band
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gap has still not been confirmed by numerical calcula�
tions. 

For the nanoribbons Z120 and A60, as can be seen
from Fig. 6, there are oscillations of the band gap. The
period of these oscillations is multiple of three. There�
fore, nanoribbons of this type, as well as the conven�
tional armchair GNRs, can be conditionally divided
into three series. Each of these series behaves in accor�
dance with the law of inverse proportionality of the
band gap Eg. However, there is a fundamental differ�
ence between the oscillations of the band gap Eg for the
nanoribbons Z120 and A60. In the first case, the oscil�
lations decay with an increase in the difference
between the indices of the GNR arms, as well as with
an increase in the indices of both GNR arms, whereas
in the second case, for the A60 nanoribbons, the oscil�
lations of the band gap are retained. 

This type of oscillations is known for zigzag CNTs
(the edge�modified GNRs Z120 and A60 are rolled

into such CNTs), armchair GNRs [36], and some
other semiconducting graphene nanoribbons [4]. It is
of interest that, in [4], the authors observed in GNRs
the decay of oscillations of the band gap Eg as a func�
tion of the angle of chirality of the original nanotube.
In that paper, GNRs were considered as unfolded
nanotubes of different chiralities (the folding of an
achiral zigzag CNT is shown in Fig. 4b). However, as
was noted above, the vector of width of the edge�mod�
ified ZGNR corresponds to the chirality vector of the
CNT; hence, in our case, the crystallographic orienta�
tion of the nanoribbons remained constant. The decay
of oscillations of the band gap Eg can be explained as
follows. Depending on the ratio between the indices
(l1, l2, w), all the nanoribbons can be conditionally
divided into three groups 

(1) l1, l2 < w. 
(2) l1 (l2) < w < l2 (l1). 
(3) w < l1, l2. 
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Fig. 5. Dependences of the band gap Eg on the width of the edge�modified GNR: (a) Z60, l1 = l2 = 3; (b) Z60, l1 = 3, l2 = 6; (c)
A120, l1 = l2 = 3; and (d) A120, l1 = 3, l2 = 6. 

ASUS
Comment on Text
6

ASUS
Comment on Text
ZgGNR

ASUS
Comment on Text
SAROKA



PHYSICS OF THE SOLID STATE  Vol. 56  No. 10  2014

EDGE�MODIFIED ZIGZAG GRAPHENE NANORIBBONS 2141

Nanoribbons of the first group can be represented
as GNRs (the armchair GNRs for the nanoribbons
Z120 and A60; see the corresponding nanoribbons in
Fig. 2) from which the GNRs can be obtained by cut�
ting triangular segments, Nanoribbons of the third
group can be represented as a sequence of GNRs con�
nected at particular angles (the zigzag GNRs for the
Z120 nanoribbons and the armchair GNRs for the
A60 nanoribbons). For large indices of the arms, the
influence of junction regions on the band gap Eg

becomes negligible, and the band structure of the Z120
nanoribbons tends to the band structure of the zigzag
GNR, in which, if the ordering of spins at the edge of
the nanoribbon is ignored [2, 36], the band gap is
absent. At the same time, the band structure of the A60
nanoribbons tends to the band structure of the arm�
chair GNR, which, as noted above, are characterized
by oscillations of the band gap [7, 8]. For small indices
of the arms, the behavior of the band gap Eg repro�

duces the behavior of the band gap of the armchair
GNR. 

It is known that the width of GNRs is a good con�
trol parameter for the band gap. According to our cal�
culations, the same is true for edge�modified ZGNRs.
This behavior is explained by the localization of charge
carriers in one of the directions of the two�dimen�
sional graphene lattice due to the reflection from the
edge potential barrier. However, in quantum mechan�
ics, a particle with a certain probability can be
reflected not only from the barrier but also on the
potential step, which can also be responsible for the
localization of charge carriers. In the considered
structures, according to their geometry the potential
undergoes rotations in the range of apex angles, which
represent potential steps. Since the probability of
reflection from the step is less than the probability of
reflection from the barrier (at the edge of the nanorib�
bon, the potential barrier is infinite, because the parti�
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Fig. 6. Dependences of the band gap Eg on the width of the edge�modified GNR: (a) Z120, l1 = l2 = 3; (b) Z120, l1 = 3, l2 = 6;
(c) A60, l1 = l2 = 3; and (d) A60, l1 = 3, l2 = 6. 
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cle nowhere tunnel), the localization of charge carriers
should be weaker. In other words, changes in the band
gap due to variations in the parameters l1 and l2 will be
less than the changes in the band gap due to variations
in the parameter w. This assumption was verified by
analyzing the dependence of the band gap Eg on the
index l1 for each type of edge�modified ZGNRs (see
Figs. 7, 8). Figure 7 shows the dependences for A60
nanoribbons of the series 3n = 1 and 3n + 2. The line
Eg, which corresponds to the series 3n of A60 nanorib�
bons, as can be seen from Fig. 5, almost does not
change its position. It can be seen from Figs. 7a and 7b
that, for different series of A60 nanoribbons, the
dependences of the band gap on the length of the
GNR arm have opposite characters. In both cases, it is
seen that, with an increase in the arm length l1, these
dependences of the band gap Eg tend to a certain limit,
which is close to the band gap of the armchair GNRs
constituting the edge�modified ZGNR. In the case of

the A60 nanoribbon with w = 7, the band gap of the
armchair GNR with 14 carbon atoms in the unit cell is
equal to 1.3 eV, and the limiting values in the corre�
sponding graph lie in the range of 1.0–1.2 eV (see Fig.
7a). In addition, it should be noted that the most effec�
tive control of the band gap by varying the arm length
is observed for small indices of the arms l1 < 10. This
observation also holds true for other types of edge�
modified GNRs shown in Figs. 7 and 8. It can be seen
from Fig. 7 for the Z60 nanoribbons that, if we exclude
from our consideration the point l1 = 1, the depen�
dence is monotonic: it has no maxima which are
present, for example, in the dependence shown in Fig.
7d for the A120 nanoribbons. The position of the max�
imum in this dependence shifts toward higher values of
l1 with an increase in the parameter l2, and the edges of
the maximum become more gently sloping. Interest�
ingly, the maximum value of the band gap Eg in the
dependence for the A120 nanoribbons does not
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Fig. 7. Dependences of the band gap Eg on the length of the GNR arm l1 for the nanoribbons A60 (w = 7, 8), Z60 (w = 3), and
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decrease with an increase in the length of the arm (see
Fig. 7d), which is the case for other edge�modified
ZGNRs. For the same width of the A120 nanoribbons
with equal lengths of the arms, the band gap is larger
than that for the nanoribbons with different lengths of
the arms. 

Despite the fact that, for the Z120 nanoribbons, as
well as for the A60 nanoribbons, there are oscillations
of the band gap as a function of w (see Fig. 6), we
should note that, within this type of edge�modified
ZGNRs, the series 3n, 3n + 1, and 3n + 2 are distin�
guished only conditionally. The point is that, while the
series for the A60 nanoribbons can be defined as a
sequence of minima, maxima, and intermediate val�
ues in oscillations of the band gap, in the case of the
Z120 nanoribbons this cannot be done. It can be seen
from Figs. 6a and 6b that the series of minimum values
for some of the arm length can become the series of
intermediate values for other arm lengths. This behav�
ior is observed in Fig. 8. The change in the band gap

due to variations in the arm index l1 for nanoribbons
with a large index of the width can be larger (see Fig.
8, l2 = 4) and smaller (in Fig. 8, l2 = 7) than those for
the nanoribbons with a lower index. As a result, the
maxima in Figs. 8a and 8c for l2 = 4 are smaller than
the corresponding maxima of the band gap Eg in Figs.
8b and 8d. The jumps of the band gap Eg can reach 0.3
eV, which, in the order of magnitude, are comparable
with the jumps caused by variations in the width of the
edge�modified ZGNRs. However, this is rather the
exception than the rule and is characteristic of only the
Z120 nanoribbons. In contrast to the series 3n + 2 (see
Figs. 8b, 8d), the series 3n + 1 (see Figs. 8a, 8c) is
characterized not only by a decrease in the absolute
value of the maximum of the band gap Eg, but also by
a larger shift of this maximum toward higher values of
l1 with an increase in the length l2 of the GNR arm. 

The presented values of the band gap of the edge�
modified ZGNRs correspond to radiative electronic

1 3 5 7 9 11 13

w . 0.426, nm

15
0

0.2

0.4

0.6

0.8

1.0
Z120 w = 4 Z120 w = 5

E
g,

 e
V

0

0.2

0.4

0.6

0.8

1.0

E
g,

 e
V

l2 = 4

l2 = 7
l2 = 10

l2 = 4

l2 = 7
l2 = 10

1 3 5 7 9 11 13

w . 0.426, nm

15
0

0.2

0.4

0.6

0.8

1.0

E
g,

 e
V

1 3 5 7 9 11 13

w . 0.426, nm

15
0

0.2

0.4

0.6

0.8

1.0

E
g,

 e
V

1 3 5 7 9 11 13

w . 0.426, nm

15

Z120 w = 7 Z120 w = 8

l2 = 4

l2 = 7
l2 = 10

l2 = 4

l2 = 7
l2 = 10

(a) (b)

(c) (d)

Fig. 8. Dependences of the band gap Eg on the length of the GNR arm l1 for the nanoribbons Z120 with different widths (w = 4,
5, 7, 8). 
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transitions occurring in the infrared frequency range
(Eg < 1 eV). Thus, the field of application of materials
containing edge�modified ZGNRs can be the region
of functional nanomaterials for the infrared spectral
range, which can be used in the fabrication of detec�
tors, emitting devices, protective coatings, etc. 

6. CONCLUSIONS 

In this work, we have proposed that the band gap of
graphene nanoribbons can be controlled by varying
two new parameters of the periodic edge�modified
zigzag GNR, namely, two GNR arms. We considered
a class of graphene nanoribbons that are asymmetric
with respect to the nanoribbon axis due to the edge�
modified ZGNR structure. For these structures, we
proposed a classification of edge�modified ZGNRs
and a method for the description of their geometry,
which is similar to the description of CNTs. It is
important to emphasize that this description takes into
account the asymmetry associated with different
lengths of the GNR arms. This circumstance can be
extended to other classes of graphene structures, for
example, graphene nanowigglers, for which methods
of synthesis already exist and are rapidly developing
[13, 38]. It is quite probable that these methods can
also be used for the synthesis of edge�modified
ZGNRs. Using the developed classification of edge�
modified ZGNRs and method for the description of
their structures, we investigated the dependence of the
band gap on the nanoribbon length and GNR arm in
terms of the π�electron tight�binding method taking
into account possible deformations of carbon bonds. It
was shown that the band gap decreases exponentially
with increasing width of the Z60 nanoribbons. The
dependence of the band gap on the width of the nan�
oribbons Z120 and A60 exhibits oscillations. It was
demonstrated that the band gap of the structure can be
smoothly changed by varying the GNR arm. This can
be used in optical nanodevices operating in the infra�
red frequency range. It is of interest that, even for
structures of the same type, the GNR arm can differ�
ently affect the band gap of the edge�modified ZGNR,
as is the case for different series of A60 nanoribbons.
The results obtained in this study provide a basis for
the investigation of electromagnetic and transport
properties of objects of this type. Moreover, they can
find use in graphene�based nanoelectronics when cre�
ating active elements and their junctions. 
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