
Helge Langseth

Bayesian Networks
with Applications in Reliability Analysis

Dr. Ing. Thesis

Department of Mathematical Sciences

Norwegian University of Science and Technology

2002

Preface

This thesis is submitted in partial fulfillment of the requirements for the degree “Doktor
Ingeniør” (Dr.Ing.) at the Norwegian University of Science and Technology (NTNU). The
work is financed by a scholarship from the Norwegian Research Council of Norway.

I would like to thank my supervisors Bo Lindqvist and Agnar Aamodt for their guidance
and support. I would also like to thank the members of the Decision Support Systems
Group at Aalborg University for teaching me most of what I know about Bayesian net-
works and influence diagrams. My stay in Denmark from August 1999 to July 2001 was
a wonderful period, and a special thanks to Thomas D. Nielsen, Finn Verner Jensen and
Olav Bangsø for making those years so memorable. Furthermore, I would like to thank
my co-authors Agnar Aamodt, Olav Bangsø, Finn Verner Jensen, Uffe Kjærulff, Brian
Kristiansen, Bo Lindqvist, Thomas D. Nielsen, Claus Skaanning, Jǐŕı Vomlel, Marta Vom-
lelová, and Ole Martin Winnem for inspiring cooperation. Finally, I would like to thank
Mona for keeping up with me over the last couple of years. Her part in this work is larger
than anybody (including myself, unfortunately) will ever know.

Trondheim, October 2002

Helge Langseth

iv

List of papers

The thesis consists of the following 5 papers:

Paper I: Helge Langseth and Bo Henry Lindqvist: A maintenance model for compo-
nents exposed to several failure modes and imperfect repair. Technical
Report Statistics 10/2002, Department of Mathematical Sciences, Norwe-
gian University of Science and Technology. Submitted as an invited paper
to Mathematical and Statistical Methods in Reliability Kjell Doksum and
Bo Henry Lindqvist (Eds.), 2002.

Paper II: Helge Langseth and Finn Verner Jensen: Decision theoretic troubleshooting
of coherent systems. Reliability Engineering and System Safety. Forth-
coming, 2002.

Paper III: Helge Langseth and Thomas D. Nielsen: Classification using hierarchical
näıve Bayes models. Technical Report TR-02-004, Department of Com-
puter Science, Aalborg University, Denmark, 2002.

Paper IV: Helge Langseth and Olav Bangsø: Parameter learning in object oriented
Bayesian networks. Annals of Mathematics and Artificial Intelligence, 32
(1/4):221–243, 2001.

Paper V: Helge Langseth and Thomas D. Nielsen: Fusion of domain knowledge with
data for structural learning in object oriented domains. Journal of Machine
Learning Research. Forthcoming, 2002.

The papers are selected to cover most of the work I have been involved in over the last
years, but s.t. they all share the same core: Bayesian network technology with possible
applications in reliability analysis.

All papers can be read independently of each other, although Paper IV and Paper V are
closely related. Paper I is concerned with building a model for maintenance optimization;
it is written for an audience of reliability data analysts. Papers II – V are related to
problem solving (Paper II and Paper III) and estimation (Paper IV and Paper V) using
the Bayesian network formalism. These papers are written for an audience familiar with
both computer science as well as statistics, but with a terminology mostly collected from
the computer scientists’ vocabulary.

v

vi

Background

Reliability analysis is deeply rooted in models for time to failure (survival analysis). The
analysis of such time-to-event data arises in many fields, including medicine, actuarial
sciences, economics, biology, public health and engineering. The Bayesian paradigm has
played an important role in survival analysis because the time-to-event data can be sparse
and heavily censored. The statistical models must therefore in part be based on expert
judgement where a priori knowledge is combined with quantitative information repre-
sented by data (Martz and Waller 1982; Ibrahim et al. 2001), see also (Gelman et al.
1995). Bayesian approaches to survival analysis has lately received quite some attention
due to recent advances in computational and modelling techniques (commonly referred to
as computer-intensive statistical methods), and Bayesian techniques like flexible hierarchi-
cal models have for example become common in reliability analysis.

Reliability models of repairable systems often become complex, and they may be difficult
to build using traditional frameworks. Additionally, reliability analyses that historically
were mostly conducted for documentation purposes are now used as direct input to complex
decision problems. The complexity of these decision problems can lead to a situation where
the decision maker looses his overview, which in turn can lead to sub-optimal decisions.
This has paved the way for formalisms that offer a transparent yet mathematically sound
modelling framework; the statistical models must build on simple semantics (to interact
with domain experts and the decision maker) and at the same time offer the mathematical
finesse required to model the actual decision problem at hand.

The framework employed in this thesis is (discrete) Bayesian networks (BNs); BNs are
described in (Pearl 1988; Jensen 1996; Lauritzen 1996; Cowell et al. 1999; Jensen 2001).
A discrete BN encodes the probability mass function governing a set {X1, . . . , Xn} of
discrete random variables by specifying a set of conditional independence assumptions
together with a set of conditional probability tables (CPTs). More specifically, a BN
consists of a qualitative part; a directed acyclic graph where the nodes mirror the random
variables Xi, and a quantitative part; the set of CPTs. We call the nodes with outgoing
edges directed into a specific node the parents of that node, and say that a node Xj is a
descendant of Xi if and only if there is a directed path from Xi to Xj in the graph. Now, the
edges of the graph represent the assertion that a variable is conditionally independent of its
non-descendants in the graph given its parents (other conditional independence statements
can be read off the graph using d-separation rules (Pearl 1988)). Next, a CPT is specified
for each variable, describing the conditional probability mass for that variable given the
state of its parents. Note that a BN can represent any probability mass function, and
through its factorized representation it does so in a cost-efficient manner (wrt. the number
of parameters required to describe the probability mass function).

The most important task in a BN is inference, i.e., to calculate conditional probabilities over
some target variables conditioned on the observed values of other variables (for example
the probability of a system being broken given the state of some of its components). Both

vii

exact as well as approximate inference in a BN is in general NP-hard (Cooper 1990; Dagum
and Luby 1993), but fortunately both exact propagation-algorithms (Shafer and Shenoy
1990; Jensen et al. 1990; Jensen 1996) as well as MCMC simulation (Geman and Geman
1984; Gilks et al. 1994; Gilks et al. 1996) have shown useful in practice.

The Bayesian formalism offers an intuitive way to estimate models based on the combina-
tion of statistical data and expert judgement. For a given graphical structure, estimation
of the conditional probability tables was considered by Spiegelhalter and Lauritzen (1990),
who showed how the full posterior distribution over the parameter-space can be obtained
in closed form by local computations. The EM-algorithm by Dempster et al. (1977) is par-
ticularly intuitive in BN models, as the sufficient statistics required for parameter learning
are available in the cliques after propagation (Lauritzen 1995). The EM-algorithm can also
be used to find MAP-parameters (Green 1990). Structural learning, i.e., to estimate the
graphical structure of a BN (the edges of the graph), is considered in (Cooper and Her-
skovits 1992; Heckerman et al. 1995; Friedman 1998). A BN structure constrains the set
of possible CPTs by defining their scopes, and this is utilized in (Cooper and Herskovits
1992), where it is shown how a posterior distribution over the space of directed acyclic
graphs can be obtained through local computations. Heckerman et al. (1995) examine the
usage of priors over the model-space, and empirically investigate the use of (stochastic)
search over this space. Friedman (1998) extends these results to cope with missing data.

The fast inference algorithms and simple semantics of the BN models have lead to a
continuous trend of building increasingly larger BN models. Such large models can be
time consuming to build and maintain, and this problem is attacked by defining special
“types” of BNs tailor-made for complex domains: Both (Koller and Pfeffer 1997) as well as
(Bangsø and Wuillemin 2000) describe modelling languages where repetitive substructures
play an important role during model building; these frameworks are called object oriented
BNs. A language for probabilistic frame-based systems is proposed in (Koller and Pfeffer
1998), and rational models (i.e., models associated with a relational domain structure as
defined for instance by a relational database) is described in (Getoor et al. 2001).

Historically, BNs have been used in two quite different settings in the safety and reliability
sciences. The first body of work uses BNs solely as a tool for building complex statistical
models. Analysis of lifetime data, models to extend the flexibility of classical reliability
techniques (such as fault trees and reliability block diagrams), fault finding systems, and
models for human errors and organizational factors all fall into this category. On the other
hand, some researchers regard BNs as causal Markov models, and use them in for example
accident investigation. The recent book by Pearl (2000), see also (Spirtes et al. 1993), gives
a clear exposition of BNs as causal models, and although statisticians have traditionally
been reluctant to the use of causal models (Speed (1990) wrote: “Considerations of causal-
ity should be treated as they have always been treated in statistics: preferably not at all
but, if necessary, then with great care.”) a statistical treatment of causal mechanisms and
causal inference in association with Bayesian networks and influence diagrams is starting
to dawn, see e.g., (Lauritzen 2001; Dawid 2002).

viii

Summary

A common goal of the papers in this thesis is to propose, formalize and exemplify the use
of Bayesian networks as a modelling tool in reliability analysis. The papers span work in
which Bayesian networks are merely used as a modelling tool (Paper I), work where models
are specially designed to utilize the inference algorithms of Bayesian networks (Paper II and
Paper III), and work where the focus has been on extending the applicability of Bayesian
networks to very large domains (Paper IV and Paper V).

Paper I is in this respect an application paper, where model building, estimation and
inference in a complex time-evolving model is simplified by focusing on the conditional
independence statements embedded in the model; it is written with the reliability data
analyst in mind. We investigate the mathematical modelling of maintenance and repair
of components that can fail due to a variety of failure mechanisms. Our motivation is to
build a model, which can be used to unveil aspects of the “quality” of the maintenance
performed. This “quality” is measured by two groups of model parameters: The first
measures “eagerness”, the maintenance crew’s ability to perform maintenance at the right
time to try to stop an evolving failure; the second measures “thoroughness”, the crew’s
ability to actually stop the failure development. The model we propose is motivated by the
imperfect repair model of Brown and Proschan (1983), but extended to model preventive
maintenance as one of several competing risks (David and Moeschberger 1978). The com-
peting risk model we use is based on random signs censoring (Cooke 1996). The explicit
maintenance model helps us to avoid problems of identifiability in connection with im-
perfect repair models previously reported by Whitaker and Samaniego (1989). The main
contribution of this paper is a simple yet flexible reliability model for components that
are subject to several failure mechanisms, and which are not always given perfect repair.
Reliability models that involve repairable systems with non-perfect repair, and a variety
of failure mechanisms often become very complex, and they may be difficult to build using
traditional reliability models. The analysis are typically performed to optimize the main-
tenance regime, and the complexity problems can, in the worst case, lead to sub-optimal
decisions regarding maintenance strategies. Our model is represented by a Bayesian net-
work, and we use the conditional independence relations encoded in the network structure
in the calculation scheme employed to generate parameter estimates.

In Paper II we target the problem of fault diagnosis, i.e., to efficiently generate an inspec-
tion strategy to detect and repair a complex system. Troubleshooting has long traditions
in reliability analysis, see e.g. (Vesely 1970; Zhang and Mei 1987; Xiaozhong and Cooke
1992; Norstrøm et al. 1999). However, traditional troubleshooting systems are built us-
ing a very restrictive representation language: One typically assumes that all attempts to
inspect or repair components are successful, a repair action is related to one component
only, and the user cannot supply any information to the troubleshooting system except for
the outcome of repair actions and inspections. A recent trend in fault diagnosis is to use
Bayesian networks to represent the troubleshooting domain (Breese and Heckerman 1996;

ix

Jensen et al. 2001). This allows a more flexible representation, where we, e.g., can model
non-perfect repair actions and questions. Questions are troubleshooting steps that do not
aim at repairing the device, but merely are performed to capture information about the
failed equipment, and thereby ease the identification and repair of the fault. Breese and
Heckerman (1996) and Jensen et al. (2001) focus on fault finding in serial systems. In
Paper II we relax this assumption and extend the results to any coherent system (Barlow
and Proschan 1975). General troubleshooting is NP-hard (Sochorová and Vomlel 2000);
we therefore focus on giving an approximate algorithm which generates a “good” trou-
bleshooting strategy, and discuss how to incorporate questions into this strategy. Finally,
we utilize certain properties of the domain to propose a fast calculation scheme.

Classification is the task of predicting the class of an instance from as set of attributes
describing it, i.e., to apply a mapping from the attribute space to a predefined set of classes.
In the context of this thesis one may for instance decide whether a component requires
thorough maintenance or not based on its usage pattern and environmental conditions.
Classifier learning, which is the theme of Paper III, is to automatically generate such a
mapping based on a database of labelled instances. Classifier learning has a rich literature
in statistics under the name of supervised pattern recognition, see e.g. (McLachlan 1992;
Ripley 1996). Classifier learning can be seen as a model selection process, where the task
is to find the model from a class of models with highest classification accuracy. With
this perspective it is obvious that the model class we select the classifier from is crucial for
classification accuracy. We use the class of Hierarchical Näıve Bayes (HNB) models (Zhang
2002) to generate a classifier from data. HNBs constitute a relatively new model class which
extends the modelling flexibility of Näıve Bayes (NB) models (Duda and Hart 1973). The
NB models is a class of particularly simple classifier models, which has shown to offer very
good classification accuracy as measured by the 0/1-loss. However, NB models assume
that all attributes are conditionally independent given the class, and this assumption is
clearly violated in many real world problems. In such situations overlapping information
is counted twice by the classifier. To resolve this problem, finding methods for handling
the conditional dependence between the attributes has become a lively research area; these
methods are typically grouped into three categories: Feature selection, feature grouping,
and correlation modelling. HNB classifiers fall in the last category, as HNB models are
made by introducing latent variables to relax the independence statements encoded in
an NB model. The main contribution of this paper is a fast algorithm to generate HNB
classifiers. We give a set of experimental results which show that the HNB classifiers can
significantly improve the classification accuracy of the NB models, and also outperform
other often-used classification systems.

In Paper IV and Paper V we work with a framework for modelling large domains. Us-
ing small and “easy-to-read” pieces as building blocks to create a complex model is an
often applied technique when constructing large Bayesian networks. For instance, Prad-
han et al. (1994) introduce the concept of sub-networks which can be viewed and edited
separately, and frameworks for modelling object oriented domains have been proposed in,
e.g., (Koller and Pfeffer 1997; Bangsø and Wuillemin 2000). In domains that can appro-

x

priately be described using an object oriented language (Mahoney and Laskey 1996) we
typically find repetitive substructures or substructures that can naturally be ordered in a
superclass/subclass hierarchy. For such domains, the expert is usually able to provide in-
formation about these properties. The basic building blocks available from domain experts
examining such domains are information about random variables that are grouped into
substructures with high internal coupling and low external coupling. These substructures
naturally correspond to instantiations in an object-oriented BN (OOBN). For instance,
an instantiation may correspond to a physical object or it may describe a set of entities
that occur at the same instant of time (a dynamic Bayesian network (Kjærulff 1992) is a
special case of an OOBN). Moreover, analogously to the grouping of similar substructures
into categories, instantiations of the same type are grouped into classes. As an example,
several variables describing a specific pump may be said to make up an instantiation. All
instantiations describing the same type of pump are said to be instantiations of the same
class. OOBNs offer an easy way of defining BNs in such object-oriented domains s.t. the
object-oriented properties of the domain are taken advantage of during model building, and
also explicitly encoded in the model. Although these object oriented frameworks relieve
some of the problems when modelling large domains, it may still prove difficult to elicit
the parameters and the structure of the model. In Paper IV and Paper V we work with
learning of parameters and specifying the structure in the OOBN definition of Bangsø and
Wuillemin (2000).

Paper IV describes a method for parameter learning in OOBNs. The contributions in this
paper are three-fold: Firstly, we propose a method for learning parameters in OOBNs
based on the EM-algorithm (Dempster et al. 1977), and prove that maintaining the object
orientation imposed by the prior model will increase the learning speed in object oriented
domains. Secondly, we propose a method to efficiently estimate the probability parameters
in domains that are not strictly object oriented. More specifically, we show how Bayesian
model averaging (Hoeting et al. 1999) offers well-founded tradeoff between model complex-
ity and model fit in this setting. Finally, we attack the situation where the domain expert
is unable to classify an instantiation to a given class or a set of instantiations to classes
(Pfeffer (2000) calls this type uncertainty; a case of model uncertainty typical to object
oriented domains). We show how our algorithm can be extended to work with OOBNs
that are only partly specified.

In Paper V we estimate the OOBN structure. When constructing a Bayesian network,
it can be advantageous to employ structural learning algorithms (Cooper and Herskovits
1992; Heckerman et al. 1995) to combine knowledge captured in databases with prior
information provided by domain experts. Unfortunately, conventional learning algorithms
do not easily incorporate prior information, if this information is too vague to be encoded
as properties that are local to families of variables (this is for instance the case for prior
information about repetitive structures). The main contribution of Paper V is a method for
doing structural learning in object oriented domains. We argue that the method supports
a natural approach for expressing and incorporating prior information provided by domain
experts and show how this type of prior information can be exploited during structural

xi

learning. Our method is built on the Structural EM-algorithm (Friedman 1998), and we
prove our algorithm to be asymptotically consistent. Empirical results demonstrate that
the proposed learning algorithm is more efficient than conventional learning algorithms in
object oriented domains. We also consider structural learning under type uncertainty, and
find through a discrete optimization technique a candidate OOBN structure that describes
the data well.

xii

References

Aamodt, A. and H. Langseth (1998). Integrating Bayesian networks into knowledge
intensive CBR. In American Association for Artificial Intelligence, Case-based rea-
soning integrations; Papers from the AAAI workshop – Technical Report WS-98-15,
Madison, WI., pp. 1–6. AAAI Press.

Bangsø, O., H. Langseth, and T. D. Nielsen (2001). Structural learning in object oriented
domains. In Proceedings of the Fourteenth International Florida Artificial Intelligence
Research Society Conference, Key West, FL., pp. 340–344. AAAI Press.

Bangsø, O. and P.-H. Wuillemin (2000). Top-down construction and repetitive structures
representation in Bayesian networks. In Proceedings of the Thirteenth International
Florida Artificial Intelligence Research Society Conference, Orlando, FL., pp. 282–
286. AAAI Press.

Barlow, R. E. and F. Proschan (1975). Statistical Theory of Reliability and Life Testing:
Probability Models. Silver Spring, MD.: To Begin With.

Breese, J. S. and D. Heckerman (1996). Decision-theoretic troubleshooting: A framework
for repair and experiment. In Proceedings of the Twelfth Conference on Uncertainty
in Artificial Intelligence, San Francisco, CA., pp. 124–132. Morgan Kaufmann Pub-
lishers.

Brown, M. and F. Proschan (1983). Imperfect repair. Journal of Applied Probability 20,
851–859.

Cooke, R. M. (1996). The design of reliability data bases, Part I and Part II. Reliability
Engineering and System Safety 52, 137–146 and 209–223.

Cooper, G. F. (1990). Computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence 42 (2–3), 393–405.

Cooper, G. F. and E. Herskovits (1992). A Bayesian method for the induction of prob-
abilistic networks from data. Machine Learning 9, 309–347.

Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter (1999). Probabilistic
Networks and Expert Systems. Statistics for Engineering and Information Sciences.
New York: Springer Verlag.

Dagum, P. and M. Luby (1993). Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence 60 (1), 141–153.

xiii

David, H. A. and M. L. Moeschberger (1978). Theory of Competing Risks. London:
Griffin.

Dawid, A. P. (2002). Influence diagrams for causal modelling and inference. International
Statistical Review 70 (2), 161–189.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39, 1–38.

Duda, R. O. and P. E. Hart (1973). Pattern Classification and Scene Analysis. New
York: John Wiley & Sons.

Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence, San Fransisco, CA., pp.
129–138. Morgan Kaufmann Publishers.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). Bayesian data analysis.
London, UK: Chapman and Hall.

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distribution and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence 6, 721–741.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer (2001). Learning probabilistic rela-
tional models. In Relational Data Mining, pp. 307–338. Berlin, Germany: Springer
Verlag.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter (1996). Markov Chain Monte Carlo
in Practice. London, UK.: Chapman & Hall.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994). A language and program for
complex Bayesian modelling. The Statistician 43 (1), 169–178.

Green, P. J. (1990). On use of the EM algorithm for penalized likelihood estimation.
Journal of the Royal Statistical Society, Series B 52 (3), 443–452.

Heckerman, D., D. Geiger, and D. M. Chickering (1995). Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning 20 (3), 197–
243.

Hoeting, J., D. Madigan, A. Raftery, and C. T. Volinsky (1999). Bayesian model aver-
aging: A tutorial (with discussion). Statistical Science 14 (4), 382–417.

Ibrahim, J. G., M.-H. Chen, and D. Sinha (2001). Bayesian survival analysis. New York:
Springer.

Jensen, F. V. (1996). An introduction to Bayesian Networks. London, UK.: Taylor and
Francis.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. New York: Springer
Verlag.

xiv

Jensen, F. V., U. Kjærulff, B. Kristiansen, H. Langseth, C. Skaanning, J. Vomlel,
and M. Vomlelová (2001). The SACSO methodology for troubleshooting complex
systems. Artificial Intelligence for Engineering, Design, Analysis and Manufactur-
ing 15 (5), 321–333.

Jensen, F. V., S. L. Lauritzen, and K. G. Olesen (1990). Bayesian updating in causal
probabilistic networks by local computations. Computational Statistics Quarterly 4,
269–282.

Kjærulff, U. (1992). A computational scheme for reasoning in dynamic probabilistic
networks. In Proceedings of the Eighth Conference on Uncertainty in Artificial Intel-
ligence, San Fransisco, CA., pp. 121–129. Morgan Kaufmann Publishers.

Koller, D. and A. Pfeffer (1997). Object-oriented Bayesian networks. In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial Intelligence, San Fransisco,
CA., pp. 302–313. Morgan Kaufmann Publishers.

Koller, D. and A. Pfeffer (1998). Probabilistic frame-based systems. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI), Madison, WI., pp.
580–587. AAAI Press.

Langseth, H. (1998). Analysis of survival times using Bayesian networks. In S. Lydersen,
G. K. Hansen, and H. A. Sandtorv (Eds.), Proceedings of the ninth European Con-
ference on Safety and Reliability - ESREL’98, Trondheim, Norway, pp. 647 – 654. A.
A. Balkema.

Langseth, H. (1999). Modelling maintenance for components under competing risk. In
G. I. Schuëller and P. Kafka (Eds.), Proceedings of the tenth European Conference on
Safety and Reliability – ESREL’99, Munich, Germany, pp. 179–184. A. A. Balkema.

Langseth, H., A. Aamodt, and O. M. Winnem (1999). Learning retrieval knowledge
from data. In S. S. Anand, A. Aamodt, and D. W. Aha (Eds.), Sixteenth Interna-
tional Joint Conference on Artificial Intelligence, Workshop ML-5: Automating the
Construction of Case-Based Reasoners, Stockholm, Sweden, pp. 77–82.

Langseth, H. and O. Bangsø (2001). Parameter learning in object oriented Bayesian
networks. Annals of Mathematics and Artificial Intelligence 32 (1/4), 221–243.

Langseth, H. and F. V. Jensen (2001). Heuristics for two extensions of basic troubleshoot-
ing. In H. H. Lund, B. Mayoh, and J. Perram (Eds.), Seventh Scandinavian conference
on Artificial Intelligence, SCAI’01, Frontiers in Artificial Intelligence and Applica-
tions, Odense, Denmark, pp. 80–89. IOS Press.

Langseth, H. and F. V. Jensen (2002). Decision theoretic troubleshooting of coherent
systems. Reliability Engineering and System Safety. Forthcoming.

Langseth, H. and B. H. Lindqvist (2002a). A maintenance model for components exposed
to several failure modes and imperfect repair. Technical Report Statistics 10/2002,
Department of Mathematical Sciences, Norwegian University of Science and Tech-
nology.

xv

Langseth, H. and B. H. Lindqvist (2002b). Modelling imperfect maintenance and repair
of components under competing risk. In H. Langseth and B. H. Lindqvist (Eds.),
Third International Conference on Mathematical Methods in Reliability – Method-
ology and Practice. Communications of the MMR’02, Trondheim, Norway, pp. 359.
Tapir Trykk.

Langseth, H. and T. D. Nielsen (2002a). Classification using Hierarchical Näıve Bayes
models. Technical Report TR-02-004, Department of Computer Science, Aalborg
University, Denmark.

Langseth, H. and T. D. Nielsen (2002b). Fusion of domain knowledge with data for
structural learning in object oriented domains. Journal of Machine Learning Re-
search. Forthcoming.

Lauritzen, S. L. (1995). The EM-algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis 19, 191–201.

Lauritzen, S. L. (1996). Graphical Models. Oxford, UK: Clarendon Press.

Lauritzen, S. L. (2001). Causal inference from graphical models. In O. E. Barndorff-
Nielsen, D. R. Cox, and C. Klüppelberg (Eds.), Complex Stochastic Systems, pp.
63–107. London, UK: Chapman and Hall/CRC.

Mahoney, S. M. and K. B. Laskey (1996). Network engineering for complef belief net-
works. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelli-
gence, San Fransisco, CA., pp. 389–396. Morgan Kaufmann Publishers.

Martz, H. F. and R. A. Waller (1982). Bayesian reliability analysis. New York: Wiley.

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition.
New York: Wiley.

Norstrøm, J., R. M. Cooke, and T. J. Bedford (1999). Value of information based
inspection-strategy of a fault-tree. In Proceedings of the tenth European Conference
on Safety and Reliability, Munich, Germany, pp. 621–626. A. A. Balkema.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA.: Morgan Kaufmann Publishers.

Pearl, J. (2000). Causality – Models, Reasoning, and Inference. Cambridge, UK: Cam-
bridge University Press.

Pfeffer, A. J. (2000). Probabilistic Reasoning for Complex Systems. Ph.D. thesis, Stanford
University.

Pradhan, M., G. Provan, B. Middleton, and M. Henrion (1994). Knowledge engineering
for large belief networks. In Proceedings of the Tenth Conference on Uncertainty in
Artificial Intelligence, San Fransisco, CA., pp. 484–490. Morgan Kaufmann Publish-
ers.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge, UK: Cam-
bridge University Press.

xvi

Shafer, G. R. and P. P. Shenoy (1990). Probability propagation. Annals of Mathematics
and Artificial Intelligence 2, 327–352.

Sochorová, M. and J. Vomlel (2000). Troubleshooting: NP-hardness and solution meth-
ods. In The Proceedings of the Fifth Workshop on Uncertainty Processing, WU-
PES’2000, Jindřich̊uv Hradec, Czech Republic, pp. 198–212.

Speed, T. P. (1990). Complexity, calibration and causality in influence diagrams. In
R. M. Oliver and J. Q. Smith (Eds.), Influence Diagrams, Belief Nets and Decision
Analysis, pp. 49–63. New York: Wiley.

Spiegelhalter, D. J. and S. L. Lauritzen (1990). Sequential updating of conditional prob-
abilities on directed graphical structures. Networks 20, 579–605.

Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, Prediction, and Search.
New York: Springer Verlag.

Vesely, W. E. (1970). A time-dependent methodology for fault tree evaluation. Nuclear
Engineering and design 13, 339–360.

Whitaker, L. R. and F. J. Samaniego (1989). Estimating the reliability of systems subject
to imperfect repair. Journal of American Statistical Association 84, 301–309.

Xiaozhong, W. and R. M. Cooke (1992). Optimal inspection sequence in fault diagnosis.
Reliability Engineering and System Safety 37, 207–210.

Zhang, N. (2002). Hierarchical latent class models for cluster analysis. In Proceedings of
the Eighteenth National Conference on Artificial Intelligence, Menlo Park, CA., pp.
230–237. AAAI Press.

Zhang, Q. and Q. Mei (1987). A sequence of diagnosis and repair for a 2-state repairable
system. IEEE Transactions on Reliability R-36 (1), 32–33.

xvii

xviii

I

A Maintenance Model for Components Exposed to Several Failure

Modes and Imperfect Repair

A MAINTENANCE MODEL FOR COMPONENTS

EXPOSED TO SEVERAL FAILURE MECHANISMS

AND IMPERFECT REPAIR

HELGE LANGSETH

Department of Mathematical Sciences
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

and

BO HENRY LINDQVIST

Department of Mathematical Sciences
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

We investigate the mathematical modelling of maintenance and repair of components
that can fail due to a variety of failure mechanisms. Our motivation is to build a model,
which can be used to unveil aspects of the quality of the maintenance performed. The
model we propose is motivated by imperfect repair models, but extended to model pre-
ventive maintenance as one of several “competing risks”. This helps us to avoid problems
of identifiability previously reported in connection with imperfect repair models. Param-
eter estimation in the model is based on maximum likelihood calculations. The model
is tested using real data from the OREDA database, and the results are compared to
results from standard repair models.

1. Introduction

In this paper we employ a model for components which fail due to one of a series
of “competing” failure mechanisms, each acting independently on the system. The
components under consideration are repaired upon failure, but are also preventively
maintained. The preventive maintenance (PM) is performed periodically with some
fixed period τ , but PM can also be performed out of schedule due to casual observa-
tion of an evolving failure. The maintenance need not be perfect; we use a modified
version of the imperfect repair model by Brown and Proschan1 to allow a flexi-
ble yet simple maintenance model. Our motivation for this model is to estimate
quantities which describe the “goodness” of the maintenance crew; their ability to
prevent failures by performing thorough maintenance at the correct time. The data
required to estimate the parameters in the model we propose are the intermediate

1

2 H. Langseth and B. H. Lindqvist

failure times, the “winning” failure mechanism associated with each failure (i.e. the
failure mechanism leading to the failure), as well as the maintenance activity. This
data is found in most modern reliability data banks.

The rest of this paper is outlined as follows: We start in Section 2 with the
problem definition by introducing the type of data and parameters we consider.
Next, the required theoretical background is sketched in Section 3, followed by a
complete description of the proposed model in Section 4. Empirical results are
reported in Section 5, and we make some concluding remarks in Section 6.

2. Problem definition, typical data and model parameters

Consider a mechanical component which may fail at random times, and which after
failure is immediately repaired and put back into service. In practice there can
be several root causes for the failure, e.g. vibration, corrosion, etc. We call these
causes failure mechanisms and denote them by M1, . . . , Mk. It is assumed that each
failure can be classified as the consequence of exactly one failure mechanism.

Critical
Failure

Performance

Degraded

Good as new

Unacceptable

t

Figure 1: Component with degrading performance.

The component is assumed to undergo preventive maintenance (PM), usually
at fixed time periods τ > 0. In addition, the maintenance crew may perform
unscheduled preventive maintenance of a component if required. The rationale
for unscheduled PM is illustrated in Figure 1: We assume that the component is
continuously deteriorating when used, so that the performance gradually degrades
until it falls outside a preset acceptable margin. As soon as the performance is
unacceptable, we say that the component experiences a critical failure. Before
the component fails it may exhibit inferior but admissible performance. This is a
“signal” to the maintenance crew that a critical failure is approaching, and that
the inferior component may be repaired. When the maintenance crew intervenes
and repairs a component before it fails critically, we call it a degraded failure, and
the repair action is called (an unscheduled) preventive maintenance. On the other
hand, the repair activity performed after a critical failure is called a corrective
maintenance.

The history of the component may in practice be logged as shown in Table 1.
The events experienced by the component can be categorized as either (i) Critical

A model for components exposed to several failure mechanisms and imperfect repair 3

Time Event Failure mech. Severity
0 Put into service — —

314 Failure Vibration Critical
8.760 (Periodic) PM External —

17.520 (Periodic) PM External —
18.314 Failure Corrosion Degraded
20.123 Taken out of service External —

Table 1: Example of data describing the history of a fictitious component.

failures, (ii) Degraded failures, or (iii) External events (component taken out of
service, periodic PM, or other kind of censoring).

The data for a single component can now formally be given as an ordered se-
quence of points

(Yi, Ki, Ji); i = 1, 2, . . . , n , (1)

where each point represents an event (see Figure 2). Here

Yi = inter-event time, i.e. time since previous event

(time since start of service if i = 1)

Ki =
{

m if failure mechanism Mm (m = 1, . . . , k)
0 if external event

Ji =

0 if critical failure
1 if degraded failure
2 if external event .

(2)

The data in Table 1 can thus be coded as (with M1 = Vibration, M2 = Corro-
sion),

(314, 1, 0), (8446, 0, 2), (8760, 0, 2), (794, 2, 1), (1809, 0, 2) .

A complete set of data will typically involve events from several similar compo-
nents. The data can then be represented as

(Yij , Kij , Jij); i = 1, 2, . . . , nj ; j = 1, . . . , r , (3)

where j is the index which labels the component.
In practice there may also be observed covariates with such data. The models

considered in this paper will, however, not include this possibility even though they
could easily be modified to do so.

Our aim is to present a model for data of type (1) (or (3)). The basic ingredients
in such a model are the hazard rates ωm(t) at time t for each failure mechanism
Mm, for a component which is new at time t = 0. We assume that ωm(t) is a
continuous and integrable function on [0,∞). In practice it will be important to
estimate ωm(·) since this information may, e.g., be used to plan future maintenance
strategies.

4 H. Langseth and B. H. Lindqvist

The most frequently used models for repairable systems assume either perfect re-
pair (renewal process models) or minimal repair (nonhomogeneous Poisson-process
models). Often none of these may be appropriate, and we shall here adopt the
idea of the imperfect repair model presented by Brown and Proschan1. This will
introduce two parameters per failure mechanism:

pm = probability of perfect repair for a preventive maintenance of Mm

πm = probability of perfect repair for a corrective maintenance of Mm.

These quantities are of interest since they can be used as indications of the quality
of maintenance. The parameters may in practice be compared between plants and
companies, and thereby unveil maintenance improvement potential.

Finally, our model will take into account the relation between preventive and
corrective maintenance. It is assumed that the component gives some kind of “sig-
nal”, which will alert the maintenance crew to perform a preventive maintenance
before a critical failure occurs. Thus it is not reasonable to model the (potential)
times for preventive and corrective maintenance as stochastically independent. We
shall therefore adopt the random signs censoring of Cooke2. This will eventually
introduce a single new parameter qm for each failure mechanism, with interpreta-
tion as the probability that a critical failure is avoided by a preceding unscheduled
preventive maintenance.

In the cases where there is a single failure mechanism, we shall drop the index
m on the parameters above.

3. Basic ingredients of the model

In this section we describe and discuss the two main building blocks of our final
model. In Section 3.1 we consider the concept of imperfect repair, as defined by
Brown and Proschan1. Then in Section 3.2 we introduce our basic model for the
relation between preventive and corrective maintenance. Throughout the section
we assume that there is a single failure mechanism (k = 1).

3.1. Imperfect repair

Our point of departure is the imperfect repair model of Brown and Proschan1,
which we shall denote BP in the following. Consider a single sequence of failures,
occurring at successive times T1, T2, . . . As in the previous section we let the Yi be
times between events, see Figure 2. Furthermore, N(t) is the number of events in
(0, t], and N(t−) is the number of events in (0, t).

For the explanation of imperfect repair models it is convenient to use the con-
ditional intensity

λ(t | F t−) = lim
∆t↓0

P (event in [t, t + ∆t) | F t−)
∆t

,

where F t− is the history of the counting process3 up to time t. This notation enables
us to review some standard repair models. Let ω(t) be the hazard rate of a com-

A model for components exposed to several failure mechanisms and imperfect repair 5

ponent of “age” t. Then perfect repair is modelled by λ (t | F t−) = ω
(
t− TN(t−)

)
which means that the age of the component at time t equals t − TN(t−), the time
elapsed since the last event. Minimal repair is modelled by λ (t | F t−) = ω (t), which
means that the age at any time t equals the calendar time t. Imperfect repair can
be modelled by λ (t | F t−) = ω

(
ΞN(t−) + t− TN(t−)

)
where 0 ≤ Ξi ≤ Ti is some

measure of the effective age of the component immediately after the ith event, more
precisely, immediately after the corresponding repair. In the BP model, Ξi is defined
indirectly by letting a failed component be given perfect repair with probability p,
and minimal repair with probability 1− p.

Ξ1

Y1

Ξ3

Ξ2

0 T3Y3
T2Y2

T1

t

Figure 2: In imperfect repair models there are three time dimensions to measure
the age of a component: Age versus calendar time Ti, age versus inter-event times
Yi, and effective age Ξi. The values of Ξi, i > 1, depend upon both inter-event
times and maintenance history. This is indicated by dotted lines for the Ξi.

For simplicity of notation we follow Kijima4 and introduce random variables Di

to denote the outcome of the repair immediately after the ith event. If we put
Di = 0 for a perfect repair and Di = 1 for a minimal one, it follows that

Ξi =
i∑

j=1

 i∏

k=j

Dk

Yj . (4)

The BP model with parameter p corresponds to assuming that the Di are i.i.d. and
independent of Y1, Y2, . . ., with P (Di = 0) = p, P (Di = 1) = 1− p, i = 1, . . . , n.

BP type models have been considered by several authors, including Block et al.5

who extended the model to allow the parameter p to be time varying, Kijima4 who
studied two general repair models for which BP is a special case, Hollander et al.6

who studied statistical inference in the model, Dorado et al.7 who proposed a more
general model with BP as a special case, and most notably for the present work,
Whitaker and Samaniego8 whose results we discuss in further detail below.

Whitaker and Samaniego8 found non-parametric maximum likelihood estima-
tors for (p, F) in the BP model, where F is the distribution function corresponding
to the hazard ω(·). They noted that p is in general not identifiable if only the inter-
event times Yi are observed. The problem is related to the memoryless property
of the exponential distribution, and is hardly a surprise. To ensure identifiability,
Whitaker and Samaniego made strong assumptions about data availability, namely
that the type of repair (minimal or perfect) is reported for each repair action (i.e.,

6 H. Langseth and B. H. Lindqvist

50 44 102 72 22 39 3 15
197 188 79 88 46 5 5 36
22 139 210 97 30 23 13 14

Table 2: Proschan’s air conditioner data; inter-event times of plane 7914.

the variables Dj are actually observed). In real applications, however, exact in-
formation on the type of repair is rarely available. As we shall see in Section 4.2,
identifiability of p is still possible in the model by appropriately modelling the
maintenance actions.

In order to illustrate estimation in the BP model based on the Yi alone, we
consider the failure times of Plane 7914 from the air conditioner data of Proschan9

given in Table 2. These data were also used by Whitaker and Samaniego8. The joint
density of the observations Y1, . . . , Yn can be calculated as a product of conditional
densities,

f(y1, . . . , yn) = f(y1)f(y2|y1) · · · f(yn|y1, . . . , yn−1) .

For computation of the ith factor we condition on the unobserved D1, . . . , Di−1,
getting

f(yi | y1, . . . , yi−1) =
∑

d1,...,di−1

f(yi | y1, . . . , yi−1, d1, . . . , di−1)

× f(d1, . . . , di−1 | y1, . . . , yi−1)

=
i∑

j=1

f(yi | y1, . . . , yi−1, dj−1 = 0, dj = · · · = di−1 = 1)

× P (Dj−1 = 0, Dj = · · · = Di−1 = 1)

=
i∑

j=1

ω

 i∑

k=j

yk

 e

−
[
Ω
(∑

i

k=j
yk

)
−Ω

(∑
i−1

k=j
yk

)]
(1− p)i−j pδ(j>1) ,

where Ω(x) =
∫ x

0
ω(t)dt is the cumulative hazard function and δ(j > 1) is 1 if j > 1

and 0 otherwise. The idea is to partition the set of vectors (d1, . . . , di−1) according
to the number of 1s immediately preceding the ith event.

Let the cumulative hazard be given by Ω(x) = µxα for unknown µ and α. The
profile log likelihoods of the single parameter p and the pair (α, p) are shown in
Figure 3a) and Figure 3b) respectively. The maximum likelihood estimates are
α̂ = 1.09, µ̂ = exp(−4.81), and p̂ = 0.01. However, the data contain very little
information about p; this is illustrated in Figure 3a). It is seen that both p = 0,
corresponding to an NHPP, and p = 1, corresponding to a Weibull renewal process
are “equally” possible models here. The problem is closely connected to the problem
of unidentifiability of p, noting that the maximum likelihood estimate of α is close to
1. Indeed, the exponential model with α = 1 fixed gives the maximum log likelihood
−123.86 while the maximum value in the full model (including µ, α and p) is only
marginally larger, −123.78.

A model for components exposed to several failure mechanisms and imperfect repair 7

-130

-129

-128

-127

-126

-125

-124

-123

0 0.2 0.4 0.6 0.8 1
-130

-129

-128

-127

-126

-125

-124

-123

0 0.2 0.4 0.6 0.8 1
p

log likelihood

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

p

a) Profile log likelihood of p b) Profile log likelihood of (α, p)

Figure 3: Profile log likelihoods for the data in Table 2. Figure 3a) shows the profile
likelihood of p, Figure 3b) shows the (α, p)-profile likelihood.

3.2. Modelling preventive versus corrective maintenance

Recall from Section 2 that PM interventions are basically periodic with some fixed
period τ , but that unscheduled preventive maintenance may still be performed
within a PM period, reported as degraded failures. Thus degraded failures may
censor critical failures, and the two types of failure may be highly correlated.

A number of possible ways to model interaction between degraded and critical
failures are discussed by Cooke2. We adopt one of these, called random signs cen-
soring. In the notation introduced in Section 2 we consider here the case when we
observe pairs (Yi, Ji) where the Yi are inter-event times whereas the Ji are indi-
cators of failure type (critical or degraded). For a typical pair (Y, J) we let Y be
the minimum of the potential critical failure time X and the potential degraded
failure time Z, while J = I(Z < X) is the indicator of the event {Z < X} (assum-
ing that P (Z = X) = 0 and that there are no external events). Thus we have a
competing risk problem. However, while X and Z would traditionally be treated
as independent, random signs censoring makes them dependent in a special way.

The basic assumption of random signs censoring is that the event of successful
preventive maintenance, {Z < X}, is stochastically independent of the potential
critical failure time X . In other words, the conditional probability q(x) = P (Z <

X |X = x) does not depend on the value of x.
Let X have hazard rate function ω(x) and cumulative hazard Ω(x). In addition

to the assumption of random signs censoring, we will assume that conditionally,
given Z < X and X = x, the distribution of the intervention time Z satisfies

P (Z ≤ z | X = x, Z < X) =
Ω(z)
Ω(x)

, 0 ≤ z ≤ x . (5)

To see why (5) is reasonable, consider Figure 4. When “Nature” has chosen in
favour of the crew and has selected the time to critical failure, X = x, which the

8 H. Langseth and B. H. Lindqvist

crew will have to beat, she first draws a value u uniformly from [0, Ω(x)]. Then
the time for preventive maintenance is chosen as Z = Ω−1(u), where Ω−1(·) is the
inverse function of Ω(·). Following this procedure makes the conditional density
of Z proportional to the intensity of the underlying failure process. This seems
like a coarse but somewhat reasonable description of the behaviour of a competent
maintenance crew.

t

Z X

Ω(t)

Ω(X)

u

Ω−1(u)

Figure 4: Time to PM conditioned on {Z < X, X = x}.

Our joint model for (X, Z) is thus defined from the following:

(i) X has hazard rate ω(·).

(ii) {Z < X} and X are stochastically independent.

(iii) Z given Z < X and X = x has distribution function (5).

These requirements determine the distribution of the observed pair (Y, J) as
follows. First, by (ii) we get

P (y ≤ Y ≤ y + dy, J = 0) = P (y ≤ X ≤ y + dy, X < Z)

= (1− q)ω(y) exp(−Ω(y)) dy

where we introduce the parameter q = P (Z < X). Next,

P (y ≤ Y ≤ y + dy, J = 1)

= P (y ≤ Z ≤ y + dy, Z < X)

=
∫ ∞

y

P (y ≤ Z ≤ y + dy|X = x, Z < X)

× P (Z < X |X = x)ω(x) exp(−Ω(x)) dx

= q ω(y) dy

∫ ∞

y

ω(x) exp(−Ω(x)) / Ω(x) dx

= q ω(y) Ie(Ω(y)) dy ,

where Ie(t) =
∫ ∞

t
exp(−u)/u du is known as the exponential integral10.

A model for components exposed to several failure mechanisms and imperfect repair 9

It is now straightforward to establish the density and distribution function of Y ,

fY (y) = (1− q) ω(y) exp (−Ω(y)) + q ω(y) Ie(Ω(y)) (6)

and
FY (y) = P (Y ≤ y) = 1− exp(−Ω(y)) + q Ω(y) Ie(Ω(y)) . (7)

Note that the proposed maintenance model introduces only one new parameter,
namely q. We can interpret this parameter in terms of the alertness of the mainte-
nance crew; a large value of q corresponds to a crew that is able to prevent a large
part of the critical failures.

The distribution (6) for Y is a mixture distribution, with one component repre-
senting the failure distribution one would have without preventive maintenance, and
the other mixture component being the conditional density of time for PM given
that PM “beats” critical failure. It is worth noticing that the distribution with
density ω(y) Ie(Ω(y)) is stochastically smaller than the distribution with density
ω(y) exp(−Ω(y)); this is a general consequence of random signs censoring.

4. General model

Recall that the events in our most general setting are either critical failures, de-
graded failures or external events; consider Figure 2. We shall assume that correc-
tive maintenance is always performed following a critical failure, while preventive
maintenance is performed both after degraded failures and external events. More-
over, in the case of several failure mechanisms, any failure is treated as an external
event for all failure mechanisms except the one failing.

4.1. Single failure mechanism

In this case the data for one component are (Yi, Ji); i = 1, . . . , n with Ji now defined
as in (2) with three possible values. Suppose for a moment that all repairs, both
corrective and preventive, are perfect. Then we shall assume that the (Yi, Ji) are
i.i.d. observations of (Y, J) where Y = min(X, Z, U), (X, Z) is distributed as in
Section 3.2, and U is the (potential) time of an external event. The U is assumed
to be stochastically independent of (X, Z) and to have a distribution which does
not depend on the parameters of our model. It follows that we can disregard the
terms corresponding to U in the likelihood calculation. The likelihood contribution
from an observation (Y, J) will therefore be as follows (see Section 3.2):

f(y, 0) = (1− q)ω(y) exp (−Ω(y))

f(y, 1) = q ω(y) Ie(Ω(y)) (8)

f(y, 2) = exp (−Ω(y))− q Ω(y) Ie(Ω(y)) .

The last expression follows from (7) and corresponds to the case where all we know
is that max(X, Z) > y.

To the model given above we now add imperfect repair. Recall that in the BP
model there is a probability p of perfect repair (Di = 0) after each event. We shall

10 H. Langseth and B. H. Lindqvist

here distinguish between preventive maintenance and corrective maintenance by let-
ting Di equal 0 with probability p if the ith event is a preventive maintenance or an
external event, and with probability π if the ith event is a critical failure. Moreover,
we shall assume that for all i we have D1, . . . , Di conditionally independent given
y1, . . . , yi, j1, . . . , ji.

From this we are able to write down the likelihood of the data as a product of the
following conditional distributions. The derivation is a straightforward extension of
the one in Section 3.1.

f
(
(yi, ji) | (y1, j1), . . . , (yi−1, ji−1)

)
=

∑
d1,...,di−1

f((yi, ji) | (y1, j1), . . . , (yi−1, ji−1), d1, . . . , di−1)

× f(d1, . . . , di−1|(y1, j1), . . . , (yi−1, ji−1))

=
i∑

j=1

f

(yi, ji)

∣∣∣∣∣∣ξi−1 =
i−1∑
k=j

yk

× P (Dj−1 = 0, Dj = · · · = Di−1 = 1|j1, . . . , ji−1) .

Here P (Dj−1 = 0, Dj = · · · = Di−1 = 1 | j1, . . . , ji−1) is a simple function of p and
π. Thus, what remains to be defined are the conditional densities f ((yi, ji)|ξi−1), i.e.
the conditional densities of (Yi, Ji) given that the age of the component immediately
after the (i − 1)th event is ξi−1. We shall define these to equal the conditional
densities given no event in (0, ξi−1), of the distribution given in (8). Thus we have

f ((yi, 0) | ξi−1) =
(1− q)ω(ξi−1 + yi) exp(−(Ω(ξi−1 + yi)))

exp(−Ω(ξi−1))− q Ω(ξi−1) Ie(Ω(ξi−1))

f ((yi, 1) | ξi−1) =
q ω(ξi−1 + yi) Ie(Ω(ξi−1 + yi))

exp(−Ω(ξi−1))− q Ω(ξi−1) Ie(Ω(ξi−1))

f ((yi, 2) | ξi−1) =
exp(−Ω(ξi−1 + yi))− q Ω(ξi−1 + yi) Ie(Ω(ξi−1 + yi))

exp(−Ω(ξi−1))− q Ω(ξi−1) Ie(Ω(ξi−1))
.

If we have data from several independent components, the complete likelihood
is given as the product of the individual likelihoods.

The model for a single failure mechanism is displayed as a directed acyclic
graph11,12 in Figure 5. Due to the imperfect repair we do not have guaranteed
renewals at each event, hence we have to use a time evolving model to capture the
dynamics in the system. For clarity, only time-slice r (i.e., the time between event
r − 1 and r) is shown.

4.2. Identifiability of parameters

The present discussion of identifiability is inspired by the corresponding discussion
by Whitaker and Samaniego8, who considered the simple BP model.

Refer again to the model of the previous subsection. We assume here that,
conditional on (Y1, J1), (Y2, J2), . . . , (Yi−1, Ji−1), the (potential) time to the next

A model for components exposed to several failure mechanisms and imperfect repair 11

Ξr−1

Zr

Xr Yr Ξr

Jr

Figure 5: The model for a single failure mechanism, when only time-slice r is shown.
The double-lined nodes represent the observable variables. Ξr is the effective age
immediately after the rth repair, Ξr depends on Ξr−1 together with what happens
during the rth time-slice. Xr is the potential time to critical failure (given the
history), and Zr is the corresponding potential time to a degraded failure. Yr is the
rth inter-event time, and Jr = I(Zr < Xr).

external event is a random variable U with continuous distribution G and support
on all of (0, τ] where τ as before is the regular maintenance interval. Moreover, the
distribution G does not depend on the parameters of the model, and it is kept fixed
in the following.

We also assume that ω(x) > 0 for all x > 0 and that 0 < q < 1. The parameters
of the model are ω, q, p, π. These, together with G, determine a distribution of
(Y1, J1), . . . , (Yn, Jn) which we call F(ω,q,p,π). Here n is kept fixed.

The question of identifiability can be put as follows: Suppose

F(ω,q,p,π) = F(ω∗,q∗,p∗,π∗) , (9)

which means that the two parameterizations lead to the same distribution of the
observations (Y1, J1), . . . , (Yn, Jn). Can we from this conclude that ω = ω∗, q = q∗,
p = p∗, π = π∗?

First note that (9) implies that the distribution of (Y1, J1) is the same under
the two parameterizations; Y1 = min(X, Z, U). It is clear that each of the following
two types of probabilities are the same under the two parameterizations,

P (x ≤ X ≤ x + dx, Z > x, U > x)

P (z ≤ Z ≤ z + dz, X > z, U > z).

By independence of (X, Z) and U , and since P (U > x) > 0 if and only if x < τ , we
conclude that each of the following two types of probabilities are equal under the
two parameterizations,

P (x ≤ X ≤ x + dx, Z > x); x < τ

P (z ≤ Z ≤ z + dz, X > z); z < τ.

These probabilities can be written respectively

(1− q)ω(x) e−Ω(x) dx; x < τ

q ω(z) Ie(Ω(z)) dz; z < τ .

12 H. Langseth and B. H. Lindqvist

Thus, by integrating from 0 to x we conclude that (9) implies for x ≤ τ

(1− q)
(
1− e−Ω(x)

)
= (1− q∗)

(
1− e−Ω∗(x)

)
(10)

q
(
1− e−Ω(x) + Ω(x)Ie(Ω(x))

)
= q∗

(
1− e−Ω∗(x) + Ω∗(x)Ie(Ω∗(x))

)
. (11)

We shall now see that this implies that q = q∗ and Ω(x) = Ω∗(x) for all x ≤ τ .
Suppose, for contradiction, that there is an x0 ≤ τ such that Ω(x0) < Ω∗(x0). Then
since both 1−exp(−t) and 1−exp(−t)+ t Ie(t) are strictly increasing in t, it follows
from respectively (10) and (11) that 1 − q > 1 − q∗ and q > q∗. But this is a
contradiction. In the same manner we get a contradiction if Ω(x0) > Ω∗(x0). Thus
Ω(x) = Ω∗(x) for all x ≤ τ (so ω(x) = ω∗(x) for all x ≤ τ) and hence also q = q∗.

We shall see below that in fact we have Ω(x) = Ω∗(x) on the interval (0, nτ),
but first we shall consider the identifiability of p and π. For this end we consider the
joint distribution of (Y1, J1), (Y2, J2). In the same way as already demonstrated we
can disregard U in the discussion, by independence, but we need to restrict y1, y2

so that y1 + y2 ≤ τ . First, look at

P
(
y1 ≤ Y1 ≤ y1 + dy1, J1 = 0, y2 ≤ Y2 ≤ y2 + dy2, J2 = 0

)
(12)

= (1− q)ω(y1) e−Ω(y1)
[
π(1 − q)ω(y2)e−Ω(y2)

+(1− π) (1− q)
ω(y1 + y2) exp(−Ω(y1 + y2))

exp(−Ω(y1))− q Ω(y1) Ie(Ω(y1))

]
dy1 dy2 .

This is a linear function of π with coefficient of π proportional to

ω(y2) exp(−Ω(y2))− ω(y1 + y2) exp(−Ω(y1 + y2))
exp(−Ω(y1))− q Ω(y1) Ie(Ω(y1))

. (13)

Using the assumption that 0 < q < 1 we thus conclude that π = π∗ unless (13)
equals 0 for all y1 and y2 with y1+y2 ≤ τ . Making the similar computation, putting
J2 = 1 instead of J2 = 0 in (12), we can similarly conclude that π = π∗ unless

ω(y2)Ie(Ω(y2))− ω(y1 + y2) Ie(Ω(y1 + y2))
exp(−Ω(y1))− q Ω(y1) Ie(Ω(y1))

(14)

equals 0 for all y1 and y2 with y1 + y2 ≤ τ . Now, if both (13) and (14) were 0 for
all y1 and y2 with y1 + y2 ≤ τ , then we would necessarily have

exp(−Ω(y2))
Ie(Ω(y2))

=
exp(−Ω(y1 + y2))

Ie(Ω(y1 + y2))
(15)

for all y1 and y2 with y1 + y2 ≤ τ . Since we have assumed that ω(·) is strictly
positive, (15) would imply that exp(−t)/Ie(t) is constant for t in some interval
(a, b). This is of course impossible by the definition of Ie(·), and it follows that not
both of (13) and (14) can be identically zero. Hence π is identifiable.

Identifiability of p is concluded in the same way by putting J1 = 1 instead of
J1 = 0 in (12).

A model for components exposed to several failure mechanisms and imperfect repair 13

So far we have concluded equality of the parameters q, p, π under the two pa-
rameterizations, while we have concluded that Ω(x) = Ω∗(x) for all x ≤ τ . But
then, putting y1 = τ in (12), while letting y2 run from 0 to τ , it follows that
Ω(x) = Ω∗(x) also for all τ < x ≤ 2τ . By continuing we can eventually conclude
that Ω(x) = Ω∗(x) for all 0 < x ≤ nτ .

If τ =∞, then of course the whole function ω(·) is identifiable. However, even if
τ <∞ we may have identifiability of all of ω(·). For example, suppose Ω(x) = µxα

with µ, α positive parameters. Then the parameters are identifiable since (10) in
this case implies that

µxα = µ∗xα∗

for all x ≤ τ . This clearly implies the pairwise equality of the parameters.

4.3. Several failure mechanisms

We now look at how to extend the model of Section 4.2 to k > 1 failure mechanisms
and data given as in (1) or (3).

Our basic assumption is that the different failure mechanisms M1, . . . , Mk act
independently on the component. More precisely we let the complete likelihood
for the data be given as the product of the likelihoods for each failure mechanism.
Note that the set of events is the same for all failure mechanisms, and that failure
due to one failure mechanism is treated as an external event for the other failure
mechanisms.

The above assumption implies a kind of independence of the maintenance for
each failure mechanism. Essentially we assume that the pairs (X, Z) are indepen-
dent across failure mechanisms. This is appropriate if there are different mainte-
nance crews connected to each failure mechanisms, or could otherwise mean that
the “signals” of degradation emitted from the component are independent across
failure mechanisms.

Another way of interpreting our assumption is that, conditional on

(y1, k1, j1), . . . , (yi−1, ki−1, ji−1)

the next vector (Yi, Ki, Ji) corresponds to a competing risk situation involving m

independent risks, one for each failure mechanism, and each with properties as for
the model given in Section 4.1.

The parameters (ω, q, p, π) may (and will) in general depend on the failure mech-
anism. As regards identifiability of parameters, this will follow from the results for
single failure mechanisms of Section 4.2 by the assumed independence of failure
mechanisms.

If we have data from several independent components of the same kind, given
as in (3), then the complete likelihood is given as the product of the likelihoods for
each component.

Figure 6 depicts the complete model for time-slice r represented by a directed
acyclic graph, confer also Figure 5.

14 H. Langseth and B. H. Lindqvist

..

.

Ξk
r

Ξ1
r

..

.

Ξk
r−1

Ξ1
r−1

Y k
r

Jk
r

Xk
r

Zk
r

Yr

Jr

Z1
r

X1
r

J1
r

Y 1
r

Figure 6: The complete model, but only showing time-slice r. The random variables
are given a subscript index indicating the time-slice, and a superscript index showing
the failure mechanism. For example, Ξm

r is the effective age of the m’th failure
mechanism immediately after the r’th event. Only nodes drawn with double-line
are observed.

Deformation Leakage Breakage Other
Critical failures 4 1 1 2
Degraded failures 8 2 0 4

Table 3: Number of failures per failure mechanism.

5. Parameter estimation

5.1. Calculation scheme

The complete model as described in Section 4 involves some important conditional
independence properties that both special purpose maximum-likelihood estimator
algorithms as well as Markov Chain Monte Carlo simulations can benefit from. In
this section we have used maximum likelihood methods.

5.2. A case study

To exemplify the merits of the proposed model, we use Phase IV of the Gas Turbine
dataset from the Offshore Reliability Database13. Only the Gas Generator subsys-
tem is included in the study. We analyse data from a single offshore installation
to ensure maximum homogeneity of the data sample. The dataset consists of 23
mechanical components, which are followed over a total of 603.690 operating hours.
There are 22 failures, out of which 8 are classified as critical and 14 as degraded. The
failures are distributed over four different failure mechanisms (so k = 4), namely
deformation, leakage, breakage and other mechanical failure.

A model for components exposed to several failure mechanisms and imperfect repair 15

Deformation Leakage Breakage Other
Hazard (µm) 2.5 · 10−6 1.3 · 10−5 8.3 · 10−7 5.6 · 10−6

Preventive maint. (pm) 0.6 0.3 1.0 0.8
Corrective maint. (pκ

m) 1.0 1.0 1.0 1.0

Table 4: Estimated hazard rate and probability of successful maintenance.

Deformation Leakage Breakage Other̂MTTFFNaked 4.0 · 105 7.7 · 104 1.2 · 106 1.8 · 105̂MTTFFOFR 6.0 · 105 1.5 · 105 6.0 · 105 3.0 · 105

Table 5: Estimated MTTFF in our model and the “observed failure rate” model.

The PM history for the gas turbines consists of 78 PM events. The PM intervals
(“τ”) for the different components vary between 8 and 12 calendar months.

5.3. Results

The data can be put on the form (3) so the complete likelihood can be calculated
as described in Section 4. Having a small number of critical failures, the estimates
of π1, . . . , π4 will not be reliable; the number of critical failures is simply too small.
To reduce the number of parameters we introduce κ > 0 defined so that πm = pκ

m

for m = 1, . . . , 4. Here κ indicates the difference between the effect of preventive
and corrective maintenance. A small value of κ means that corrective maintenance
is much more beneficial than the preventive, and a value close to 1 judges the two
maintenance operations about equal. In the same way, we assume that q1 = · · · = q4,
and use q to denote these variables.

We also use a simple parametric forms of the ωi(·), namely the constant haz-
ards ωi(t) = µi, i = 1, . . . , 4. The results of maximum likelihood estimation are
presented in Table 4. The estimated value of q is q̂ = .4, while κ̂ = 1 · 10−2. The
latter value indicates that corrective maintenance actions are highly effective.

It is also interesting to calculate the mean time to first failure (MTTFF) had
there been no maintenance. This value, which we name MTTFFNaked, shows the
nature of the underlying failure process unbiased by the maintenance regime; it
can be estimated directly by 1/µ̂i in the present setting. In Table 5 we comparêMTTFFNaked to the “observed failure rate” estimators given by

̂MTTFFOFR =
#Total Operating Time

#Critical Failures

to see the effect of including maintenance in the model.
It is worth noticing that the OFR-estimates are inclined to be more optimistic

than the estimators from our model. This is because degraded failures tend to
censor potential critical failures, and this influences the OFR-estimate.

16 H. Langseth and B. H. Lindqvist

6. Concluding remarks

In this paper we have proposed a simple but flexible model for maintained compo-
nents which are subject to a variety of failure mechanisms. The proposed model
has the standard models of perfect and minimal repair as special cases. Moreover,
some of the parameters we estimate (namely pm, πm and qm) can be used to ex-
amine the sufficiency of these smaller models. “Small” values of q̂m accompanied
by “extreme” values of all p̂m and π̂m (either “close” to one or zero) indicate that
reduced models are detailed enough to capture the main effects in the data. Mak-
ing specific model assumptions regarding the preventive maintenance we are able
to prove identifiability of all parameters.

We note that many models simpler than ours may be useful if explicit notion
of maintenance quality is considered unimportant14,15,16. In our experience, the
model of Lawless and Thiagarajah17,

λ(t | F t−) = exp
(
α + β g1(t) + γ g2(t− TN(t−)

)
, (16)

where α, β and γ are unknown parameters, and g1 and g2 are known functions,
offers good predictive ability in the setting corresponding to Section 3.2. Observe
that the conditional intensity in (16) depends both on the age t and the time since
last failure t − TN(t−); hence it can be considered to be an imperfect repair model
with perfect and minimal repair as special cases. However, the model is difficult to
interpret with respect to the physical meaning of the parameters, and is therefore
not satisfactory in our more general setting. Our motivation has been to build a
model that could be used to estimate the effect of maintenance, where “effect” has
been connected to the model parameters qm, pm and πm. Here qm is indicative of
the crew’s eagerness, their ability to perform maintenance at the correct times to try
to stop evolving failures. The pm and πm indicate the crew’s thoroughness; their
ability to actually stop the failure development. The proposed model indirectly
estimates the naked failure rate, and on a specific case using real life data these
estimates are significantly different from those found by “traditional” models.

We make modest demands regarding data availability: Only the inter-failure
times and the failure mechanisms leading to the failure accompanied by the pre-
ventive maintenance program are required. This information is available in most
modern reliability data banks.

Acknowledgements

We would like to thank Tim J. Bedford for an interesting conversation about the
model for PM versus critical failures and Roger M. Cooke for discussions regard-
ing the applicability of random signs censoring with respect to the OREDA data.
Previous short versions of this manuscript18,19 were presented at the conferences
ESREL‘99 and MMR‘02. The first author was supported by a grant from the Re-
search Council of Norway.

A model for components exposed to several failure mechanisms and imperfect repair 17

References

1. M. Brown and F. Proschan. Imperfect repair. Journal of Applied Probability, 20:851–
859, 1983.

2. R. M. Cooke. The design of reliability data bases, Part I and Part II. Reliability
Engineering and System Safety, 52:137–146 and 209–223, 1996.

3. P. Andersen, Ø. Borgan, R. Gill, and N. Keiding. Statistical models based on counting
processes. Springer, New York, 1992.

4. M. Kijima. Some results for repairable systems with general repair. Journal of Applied
Probability, 26:89–102, 1989.

5. H. Block, W. Borges, and T. Savits. Age dependent minimal repair. Journal of Applied
Probability, 22:370–385, 1985.

6. M. Hollander, B. Presnell, and J. Sethuraman. Nonparametric methods for imperfect
repair models. Annals of Statistics, 20:879–896, 1992.

7. C. Dorado, M. Hollander, and J. Sethuraman. Nonparametric estimation for a general
repair model. Annals of Statistics, 25:1140–1160, 1997.

8. L. R. Whitaker and F. J. Samaniego. Estimating the reliability of systems subject to
imperfect repair. Journal of American Statistical Association, 84:301–309, 1989.

9. F. Proschan. Theoretical explanation of observed decreasing failure rate. Technomet-
rics, 5:375–383, 1963.

10. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover
Publ., New York, 1965.

11. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, San Mateo, CA., 1988.

12. F. V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, New York,
2001.

13. OREDA. Offshore Reliability Data. Distributed by Det Norske Veritas, P.O. Box
300, N-1322 Høvik, 3rd edition, 1997.

14. H. Pham and H. Wang. Multivariate imperfect repair. European Journal of Opera-
tions Research, 94:425–428, 1996.

15. P. A. Akersten. Imperfect repair models. In S. Lydersen, G. K. Hansen, and H. A.
Sandtorv, editors, Proceedings of the ninth European Conference on Safety and
Reliability – ESREL’98, pages 369–372, Rotterdam, 1998. A. A. Balkema.

16. B. H. Lindqvist. Repairable systems with general repair. In G. I. Schuëller and P. Kafka,
editors, Proceedings of the tenth European Conference on Safety and Reliability
– ESREL’99, pages 43–48, München, Germany, 1999. A. A. Balkema.

17. J. F. Lawless and K. Thiagarajah. A point process model incorporating renewals and
time trends, with applications to repairable systems. Technometrics, 38:131–138, 1996.

18. H. Langseth. Modelling maintenance for components under competing risk. In G. I.
Schuëller and P. Kafka, editors, Proceedings of the tenth European Conference on
Safety and Reliability – ESREL’99, pages 179–184, München, Germany, 1999. A. A.
Balkema.

19. H. Langseth and B. H. Lindqvist. Modelling imperfect maintenance and repair of
components under competing risk. In H. Langseth and B. H. Lindqvist, editors, Com-
munuications of the Third International Conference on Mathematical Methods
in Reliability – Methodology and Practice, page 359, Trondheim, Norway, 2002.

II

Decision Theoretic Troubleshooting of Coherent Systems

Decision Theoretic Troubleshooting of

Coherent Systems

Helge Langseth 1 and Finn V. Jensen

Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E,
DK-9220 Aalborg Ø, Denmark

Abstract

We present an approach to efficiently generating an inspection strategy for fault
diagnosis. We extend the traditional troubleshooting framework to model non-
perfect repair actions, and we include questions. Questions are troubleshooting steps
that do not aim at repairing the device, but merely are performed to capture infor-
mation about the failed equipment, and thereby ease the identification and repair
of the fault. We show how Vesely and Fussell’s measure of component importance
extends to this situation, and focus on its applicability to compare troubleshooting
steps. We give an approximate algorithm for generating a “good” troubleshooting
strategy in cases where the assumptions underlying Vesely and Fussell’s component
importance are violated, and discuss how to incorporate questions into this trou-
bleshooting strategy. Finally, we utilize certain properties of the domain to propose
a fast calculation scheme.

Key words: Repair strategies, Bayesian networks, fault diagnosis, Vesely and
Fussell component importance.

Email addresses: helgel@math.ntnu.no (Helge Langseth), fvj@cs.auc.dk
(Finn V. Jensen).
1 Current affiliation: Department of Mathematical Sciences, Norwegian University
of Science and Technology, N-7491 Trondheim, Norway.

To appear in Reliability Engineering and System Safety

1 Introduction

This paper describes a troubleshooting system which has been developed in
the SACSO 2 project, and which is partly implemented in the BATS 3 tool.
This is a troubleshooting (TS) system for performing efficient troubleshooting
of electro-mechanical equipment, and it is currently employed in the printer
domain. It is important to notice that the BATS tool is created to offer printer
users a web-based interface to a decision-theoretic TS-system; it is not in-
tended exclusively for maintenance personnel who are trained to handle the
equipment that is to be repaired. The goal is that any user, however inexpe-
rienced, should be able to repair the failed equipment on his own instead of
relying on professional help. By design the TS-system we describe therefore
differs from other TS-systems (see e.g. [1–7]) in several aspects. Most impor-
tantly the users of the TS-system may be inexperienced with handling and
repairing the failed equipment. Hence, they may fail to repair broken com-
ponents, e.g., by seating a new network card incorrectly. Furthermore, this
may even happen without the user realizing the mistake. It is therefore cru-
cial for the TS-system to explicitly include the possibility that users perform
prescribed repair actions incorrectly in the TS-model.

Secondly, the users are expected to have limited knowledge about (and interest
in) the design of the malfunctioning equipment. They cannot be expected to
be interested in finding the cause of a problem; they merely want to repair
it. Focusing on the identification of the faulty minimal cutset, as in [4–7],
is therefore not expected to be relevant for the foreseen group of users. The
troubleshooting will thus be terminated as soon as the equipment is repaired;
that is, we assume that the user is satisfied with a minimal repair of the failed
equipment. Perfect repair is not necessarily accomplished by using our TS-
system (and not by the methods in [4–7] either), but may be considered using
other means.

Finally, as the faulty device can be located under a variety of external con-
ditions, the TS-system can pose questions to the user in order to survey the
faulty equipment’s surroundings. Although these questions initially increase
the cost of the troubleshooting, they may shed light on the situation, and
ultimately decrease the overall cost of repairing the equipment.

To formalize, let the faulty equipment consist of K components X = {X1, . . . ,
XK}. Each component is either faulty (Xi = faulty) or operating (Xi = ok),
and as the status of each component is unknown to the TS-system when the

2 The SACSO (Systems for Automated Customer Support Operations) project
constitutes joint work between the Research Unit for Decision Support Systems at
Aalborg University and Customer Support R&D at Hewlett-Packard.
3 BATS (Bayesian Automated Troubleshooting System) is available from Dezide
over the internet: http://www.dezide.dk/.

2

troubleshooting starts, X is considered a set of random variables. The equip-
ment consists of R Minimal Cut Sets (MCSs), and we use C = {C1, . . . , CR}
for the collection of these. A MCS is faulty (Ci = faulty) if all its members are
faulty. Otherwise it is operating (Ci = ok). The equipment is assumed to be
faulty at the time when troubleshooting starts; troubleshooting is terminated
as soon as the equipment is brought back to operating modus. We will assume
that only one MCS is in its faulty state, and use CF to denote the faulty
MCS (named the actual MCS in [4]). This assumption is common for most
TS-systems, and it is usually justified by considering systems that are used
almost continuously, and thus (like a printer) tested frequently. It is unlikely
that several components should fail approximately simultaneously. Common
cause failures (due to, e.g., stroke of lightning, pouring coffee into the printer,
etc.) are easily detected, and are handled separately. Note that if more than
one MCS is faulty the proposed method will still repair the equipment, al-
though not necessarily in an optimal fashion. 4 The TS-system may choose
from a set of N possible actions and will ask the user to perform (some of)
them to remedy the problem. The outcome of the actions are modelled by a
set of random variables A = {A1, . . . , AN} in the TS-system. There are also
M predefined questions that the TS-system may pose to the user; the answers
to these questions are modelled by the random variables Q = {Q1, . . . , QM}.
Since there is a one-to-one mapping between actions the TS-system can ask
the user to perform and the random variables in the set A, we will refer to
A as the set of actions and say “perform A ∈ A” when we really mean that
the action associated with A is executed. In the same manner we call Q the
questions, and use the term “pose the question Q ∈ Q” when strictly speaking
a question is posed, and the random variable Q models the answer to that
question. A TS-step is a step in a TS-strategy, either a repair step (termed
action) or an information-gathering step (termed question). To each TS-step
Bi the associated cost is denoted by Ci. The system is informed about the
outcome of each TS-step after it has been performed (i.e., the state of the
associated random variable is observed).

The goal of a TS-system is to provide a “good” TS-strategy. Formally, a TS-
strategy S is an ordering of TS-steps, such that new TS-steps are prescribed
until the equipment is repaired or all steps have been performed. The ordering
of steps may depend on the outcome of the steps already performed in the

4 Srinivas [8] presents a modified algorithm to handle troubleshooting in serial
systems where more than one component (and hence more than one MCS) may
be faulty; it turns out that optimal troubleshooting in this case requires a balance
between cost and probability of successful repair that is different from what is
optimal in our situation. When presented with a system where more than one MCS
is in its faulty state, our system may thus perform sub-optimally: The user may be
asked to perform the repair in a way more expensive than had been required if we
had not made this assumption.

3

strategy (there is for instance no need to examine the network connection if
the printer test-page is printed correctly). Any TS-strategy can be represented
by a strategy tree, see Fig. 1 for an example. The internal nodes in the strategy
tree (depicted as ovals) represent chance nodes; TS-steps that we do not know
the outcome of initially. Each possible outcome of a chance node corresponds
to a unique sub-tree in the strategy tree, which is found by selecting the edge
labelled with that particular outcome. The TS-strategy depicted in Fig. 1
starts by posing QS , and if the answer is QS = yes, the TS-strategy prescribes
to perform action A2; if QS = no, then the question QK should be posed.
The terminal nodes (depicted as diamonds) signify that the troubleshooting
strategy has ended, either because the problem is solved or because the set
of actions has been exhausted. Note that this is a simple example, where we
assume only two possible answers (yes and no) to the questions QS and QK .

QS

A2 A4 A3 A1 A5

A4 A2 A5 A1

A5 A1 A4 A3 A2

j

q

ok ok ok ok ok

ok ok ok ok okok ok ok ok

ok ok ok ok ok

A3

yes

a b c d e

f g h i

k l n o

QK

yes

no

no

p

r
no no no no no

no no no nono

no no no no no

m

Fig. 1. A TS-strategy represented by a strategy tree; A = {A1, . . . , A5} and
Q = {QS , QK}.

How “good” a TS-strategy is, is judged by its expected cost of repair, ECR,
which is a function of the Ci. This is in accordance with the decision-theoretic
formulation of the troubleshooting task: One should balance the cost of a TS-
step with the likelihood of the step to be beneficial, so that the optimal TS-
strategy can be found [3]. Breese and Heckerman [9] used Bayesian networks
to model the troubleshooting domain, and Jensen et al. [10] report extensions
to that framework. In [9,10] the domains under study were restricted to be
serial systems, i.e., systems where all cutsets were singletons. In this paper we
will extend these frameworks to work with any coherent system (represented
by its cutsets). Finding the strategy which minimizes the ECR is NP-hard in
general [11], so we our goal will be to approximate the optimal strategy.

The printer industry spends millions of dollars every year on customers sup-
port; mainly to provide telephone-support and on-site troubleshooting. This
has sparked an interest for building automated troubleshooting systems which

4

can resolve some of the printer users’ problems without requiring support from
call agents. A printing system consists of several components: The application
from which the printing command is sent, the printer driver, the network con-
nection, the server controlling the printer, the printer itself, etc. It typically
has about 40 different failure-modes, e.g., Light print. Each failure-mode can
be caused by several component failures, and we have one TS-system for each
of them. 5 The typical size of these TS-models is about 30 actions and 15
questions. We will not describe the printer model in further detail, as the TS-
system we propose is general in nature; the interested reader is referred to
[10,12].

The rest of the paper is outlined as follows: In Section 2 we describe the
basic system model, and the formal language used to describe it. Section 3 is
devoted to how the TS-system sequences actions, and handling of questions
are described in Section 4. The calculation scheme is described in detail in
Section 5, and we conclude in Section 6.

2 The troubleshooting model

In this section we will describe the troubleshooting model, and in partic-
ular focus on the modelling assumptions that we make. To do so, we start
by introducing Bayesian networks (BNs), which constitute the representation
language we employ. We then give a detailed description of how we generate
a BN-representation of the troubleshooting domain.

2.1 Bayesian networks

Our system represents the TS-domain by a Bayesian network [13,14]. BNs
have a long history of usage in the reliability and safety sciences, ranging from
the early works [15,16] to the more recent contributions, see, e.g., [8–12,17–
20]. BNs offer a flexible language to describe the TS-model, and we utilize
this to make a realistic model of the interactions one can have with the failed
equipment; specifically we can define repair steps including non-perfect repair,
as well as information-gathering steps.

A Bayesian network over the discrete random variables X is a compact rep-
resentation of the probability mass function P (X = x). A BN consists of
a qualitative part; a directed acyclic graph, and a quantitative part; a set of
conditional probability tables. More formally, a Bayesian network representing
the probability mass function of a stochastic vector X is a 2-tuple

(
G,ΘG

)
.

G is a directed acyclic graph G = (V, E), where V is the set of nodes in the
graph and E is the set of directed edges. There is a bijection between X and

5 The first information the user enters into the system is the failure-mode he wants
to troubleshoot. If some failure-modes are not easily distinguishable we have joined
them into one TS-model.

5

V, and the edges are used to represent dependence between the variables. In
the TS-domain we only work with discrete BNs, where each node V ∈ V takes
on values from a finite state-space denoted sp(V). We define the parent set
of V , pa(V), as the set of nodes having outgoing edges directed into V . The
graph is associated with the probability distributions ΘG by letting each node
V ∈ V be labelled with a conditional probability table P (V | pa(V)). The full
joint distribution over the variables V (and hence of X) can now be calculated
as P (V) =

∏
V ∈V P (V | pa(V)).

The essential property of the distribution function that is utilized in the BN
representation of P (X = x) is the set of conditional independencies encoded in
the distribution function: If Y , Z and W are vectors of random variables with
joint probability distribution P (Y , Z, W), then we say that Y is conditionally
independent of Z given W , written Y ⊥⊥ Z |W , if P (Y |Z, W = w) =
P (Y |W = w) for all w where P (W = w) > 0. If Y ⊥⊥ Z | {∅}, then Y and
Z are (marginally) independent (written Y ⊥⊥ Z for short).

An example of conditional independence from our domain is as follows. If
the toner is low, then this can be detected in at least two ways: i) There
may be an error message on the control panel, and ii) the last page may
be printed lightly. There is a slight possibility for the error message not to
show up, and for the last page not be visibly light-printed, even when the
toner is low. If we learn that the last page was printed lightly, we may assume
this was because the toner is low, and that will in turn increase our belief
in finding the error message on the control panel; hence these two events
are not (marginally) independent. On the other hand, if we know that the
toner is low, then information about a message on the control panel will not
change our belief regarding the last page being light-printed. The two events
are conditionally independent given the toner’s status.

X2

L

K

C1 C3C2 C4

X1 X3 X5

A4A3A1 A5

R(A1) R(A2) R(A3) R(A4) R(A5)

X4

QS

A2

QK question layer

system layer

action layer

result layer

Fig. 2. The BN representation of the example model. Note that this model is
extremely simple; more complex models in which, e.g., an action Ai can repair
more than one component can easily be defined.

6

2.2 The basic troubleshooting model

The faulty equipment and the effect of interactions between the repair per-
sonnel and this equipment are modelled in a BN. As our starting point we use
a BN model of the system generated from the MCS representation (see [20] for
how this translation can be done). This part of the BN is denoted the system
layer in Fig. 2; the system layer is the part of the BN that mimics the fault
tree in Fig. 3. Note that we have introduced a constraint node 6 L to enforce
the assumption that exactly one MCS is in its faulty state. All calculations
are performed conditional on this assumption, and we will for simplicity of
exposition not mention this conditioning explicitly in the following. Next, the
MCSs are modelled by logical functions, such that Ci = faulty if and only if all
the components in the MCS are in the faulty state. Hence, pa(Ci) are exactly
those components that are members of the cutset Ci, and P (Ci | pa(Ci)) is used
to encode this deterministic relationship. Note that the cutset nodes of the
system layer are not really required to encode the equipment model; the prob-
abilistic relationship could have been encoded in the constraint node L. There
are however at least two reasons to include the cutset nodes in the model:
Firstly, reliability engineers are used to working with the notion of cutsets,
and including the cutsets explicitly makes the model more understandable
and easier to build. Secondly, including the cutset nodes in the model typi-
cally makes the overall model more compact (i.e., the total number of required
parameters is reduced). 7 P (X` = faulty) is given as the a priori probability
for the component to have failed, i.e., the probability unconditioned on the
equipment failure. After a propagation in the Bayesian network (see [21] for a
description of how this is done) the posterior probability for a component fail-
ure given that the equipment is faulty (enforced by using the constraint node)
can be read off the node representing that component in the BN, and the prob-
ability for each MCS to be the actual MCS can be found in the corresponding
nodes.

The system model is extended by an explicit model of the effect of the in-
teraction between the equipment and the repair personnel. These interactions
are limited to the predefined sets of actions A and questions Q. First, we look

6 A constraint node is a node which is used to enforce other variables into specific
configurations. In the example model we use L to enforce that exactly one cutset is
faulty. This is done by defining L = yes if exactly one of the cutsets is faulty and
L = no otherwise. The evidence {L = yes} is entered into the system before the
calculations are performed, and the cutset nodes are thereby constrained s.t. the
MCS assumption is fulfilled.
7 If we choose not to include the cutset nodes in the BN representation we can, at
the cost of a larger model, relax the binary system-model we employ. This can be
utilized to create multi-state systems to, e.g., model “degrees of failure”. We have
nevertheless chosen to work with the MCS representation, primarily to render the
fast calculation scheme of Section 5 possible.

7

X3 X5

q = .05q = .065

X3

q = .065

X1

q = .03

G1

X2

q = .035q = .045

TOP

G2

G3 G4X4

Fig. 3. A fault tree describing our example model.

at how the actions are modelled (see the action layer in Fig. 2).

Actions are connected to the system layer by making them children of the
components they can repair, that is, pa(Ai) ⊆ X . We explicitly describe the
joint effect an action A has on all the components it can repair. This is done by
extending the state space of A. For the state space we use the notation +rX
for the event that A repairs X and −rX otherwise; note that this notation is
unconditioned on the state of X. For an example see Fig. 4, where action A can
repair the components Xk and X`. Then, pa(A) = {Xk, X`}, and the state-
space of A is sp(A) = {+rXk + rX`, +rXk − rX`,−rXk + rX`,−rXk − rX`}.
Without referring to sp(A) we use the notation {A↓X = yes} for the event
that A repairs X, and {A↓X = no} otherwise. Thus, in the current example
the shorthand {A↓Xk = yes} denotes the event {A = +rXk + rX` ∨ A =
+rXk − rX`}.

��
��

��
��

��
��

X`Xk

A

HHHj
����

Fig. 4. Action A can repair both Xk and X`.

We make a number of assumptions about the TS-domain. Some are made to
simplify the model definition, whereas others turn out to be beneficial when
we perform calculations in the BN:

• We disregard component failure induced by troubleshooting personnel; 8

note that this is related to the assumption that only one MCS is faulty.
• By construction of the model it is made sure that an action only can repair

components in its parent set, P (A↓X = yes |X = faulty) = 0 whenever
X 6∈ pa(A).

8 In the models underlying the BATS tool we have increased the cost of an action
to partly reflect the risk of performing it. If the probability of introducing new
component failures into the domain is high, then the risk is high, and the cost will
be increased to reflect this potential danger.

8

• The state of a component X` does not influence the user’s ability to repair
component Xk, A↓Xk ⊥⊥ X` |Xk, k 6= `. That is, we assume for instance that
it is not more difficult to replace an MIO card when the toner cartridge is
faulty than it would have been had the toner cartridge been operating.
• If we were to receive information about a user’s failure to perform one repair

action, then this would not influence our beliefs about his ability to perform
other actions. Thus, when the user fails to repair some component we assume
it is due to “bad luck” and not “clumsiness”. Formally we write A↓Xk

i ⊥⊥
A↓X`

j | {Xk, X`} whenever i 6= j. This assumption can be problematic if the
group of users in is not homogeneous, in which case it may be beneficial
to infer if the user is “skilled” or not. In real-world applications, where we
typically have “novice” and “expert” users, it can be beneficial to maintain
two TS-systems; one for the “novices” and one for the “experts”.
• We use the convention that an action cannot repair a component that is

already operating, P (A↓X = yes |X = ok) = 0. This may seem counterintu-
itive, but we use A↓X = yes to denote the event that the user has improved
the system, it is not used to describe the state of the system.

These assumptions suffice for the TS-system to be operational, and for the
calculation scheme (Section 5) to work. For simplicity we may also make the
additional assumption that A↓Xk ⊥⊥ A↓X` | {Xk, X`} whenever k 6= `. This
means that a conditional probability P (A | pa(A)) is fully specified by the
collection of probabilities {P (A↓Xk = yes | Xk = faulty) : Xk ∈ pa(A)}; this
is often referred to as independence of causal influence [22]. Hence, if A can
repair t components, then it is enough to enter only t conditional probabilities
to describe P (A | pa(A)). This should be compared to the 2t numbers needed
if this independence assumptions had not been made. Note that we do not
require the repair actions to be perfect; non-perfect repair is modelled by
P (A↓X` = yes |X` = faulty) = γ, 0 ≤ γ < 1.

There is an important difference between what is modelled in the action layer
and what is actually observed. The action layer describes the events {A↓X =
yes |X = faulty}, however, we may only observe whether the equipment is
repaired or not, i.e., if the event {A↓X = yes ∧ X ∈ CF} occurs. To be able
to work with the actual observations as evidence, we extend the model with a
result layer consisting of a set of nodes R(A), one for each A ∈ A. R(A), the
result of A at the system level, is defined as R(A) = ok if A↓X = yes for some
X ∈ CF and R(A) = no otherwise.

The probability that action A repairs the equipment, P (R(A) = ok), naturally
extends Vesely and Fussell’s measure of component importance 9 [23] when A

9 IVF(X) is defined as the probability that at least one minimal cutset which con-
tains component X is faulty, given that the system is faulty. Under the assumptions
in this paper this is simply IVF(X) = P (X ∈ CF).

9

can repair only one component X. Let IVF(X) be defined as the probability
for X to be critical, i.e., X ∈ CF , given that the equipment is faulty. Then

P (R(A) = ok)= P (X ∈ CF) · P (A↓X = yes |X = faulty)

= IVF(X) · P (A↓X = yes |X = faulty). (1)

When A can repair a set of components, we have (with a slight abuse of
notation):

P (R(A) = ok)= P

 ∨

X∈X

{
A↓X = yes

∧
X ∈ CF

}

=
∑
C` ∈ C

IVF(C`)
∐

X ∈ C` ∩ pa(A)

P (A↓X = yes |X = faulty),

where IVF(C`) is the probability that all components in C` are critical, i.e.,
IVF(C`) equals the probability that C` is the actual cutset.

Regarding questions, we distinguish between symptom questions and config-
uration questions. Symptom questions are used to examine possible failure
manifestations; an example from the printer-domain is “Does the printer

test-page print correctly?”. These questions are designed to shed light on
the fault at the cutset level, e.g., by trying to replicate the equipment’s faulty
modus in other slightly different situations. (If the test-page prints correctly
the problem is probably related to the application generating the print job.)
Symptom questions are connected to the MCS nodes in the domain, see the
node QS in Fig. 2. The edges are pointing in the direction of the causal influ-
ence, i.e., from the MCS nodes to the questions. The parent set of a symptom
question QS, pa(QS) ⊆ C, determines the set of MCSs that directly influences
the likelihood of the different answers to the question.

Configuration questions are used to uncover the environment in which the
equipment is embedded, by trying to reveal any configuration settings that are
applied. An example from our domain is “What operating system do you

use?”. Configuration settings does not directly relate to a given MCS, but may
change the likelihood for components to be operating. (If the operating system
is Linux, the printing problem is not related to the Windows printer drivers.)
The edges connecting a configuration node to the system layer are therefore
directed from the configuration node to the components, see K in Fig. 2. The
user may be unable to correctly answer questions regarding the configuration
settings. The answer to a configuration question is therefore modelled as a
random variable, see QK in Fig. 2. That is, we will receive information about
QK (and not K directly) when the model is used, and QK is therefore needed
explicitly in the model together with K.

10

2.3 Building the TS-models

The theme of this paper is to find a close to optimal TS-strategy in a given
TS-model, but we will close this section by briefly touching upon the knowl-
edge acquisition process used to generate the TS-model. 10 Building BNs has
traditionally been considered such a complex task that BN experts would have
to be deeply involved in the process. The BATS system consists of about 40
separate Bayesian network models, each representing a specific failure-mode.
Some models are quite small, but the largest contains about 80 actions and
40 questions. To build these models we solely relied on a team of 6–7 experts.
The number of models made it necessary to build a special tool for knowledge
acquisition, see [24]. This tool, which is termed BATS Author, is designed to
ensure that no knowledge about BNs is required to build the TS-models. The
information required to generate the models can be specified in a terminology
close to the experts’ own, and the conditional probabilities can be expressed
in the direction most natural for the expert. The BN structure is made s.t. the
conditional independence statements encoded in the graph are easily verified.
Skaanning [24] reports that all the models required to describe the failure-
modes for another printer was built and validated in one man-month using
this tool.

3 Action sequences

In this section we look at the situation where the only available troubleshoot-
ing steps are actions. In this case the TS-strategy is simply a TS-sequence,
i.e., a string of actions performed one after another until the equipment is
repaired. Let ε denote arbitrary evidence collected so far during troubleshoot-
ing, i.e., a list of actions that all have failed to repair the equipment. To
be more specific, we use ej to denote the evidence that the first j actions
in the sequence S = 〈A1, . . . , AN 〉 have all failed to repair the equipment,
ej = {R(Ai) = no : i = 1, . . . , j}. If Ak solves the problem with certainty, then
P (ek) = 0, which reflects the fact that the TS-sequence is terminated after
the k’th step. Note that e0 = {∅}, and P (e0) = 1 as the equipment is assumed
to be faulty at the beginning of the troubleshooting.

The expected cost of repair of a troubleshooting sequence S = 〈A1, . . . , An〉,
where action Ai is allocated the cost Ci, is the mean cost until an action
succeeds or all actions have been performed:

ECR(S) =
N∑

i=1

Ci · P (ei−1) . (2)

10 This outline is based on Skaanning [24] and Jensen et al. [10]; further details can
be found in those papers.

11

A TS-sequence is said to be optimal if it achieves the minimum ECR of
all TS-sequences. Note that it might be slightly misleading to use the term
“Expected cost of repair” as we consider a situation where a repair sequence
may fail to repair the equipment (since some actions may be imperfect, and
therefore fail to fix the critical components). Thus, a repair sequence S may
leave the equipment faulty, and the ECR is in this case the expected cost of
performing the sequence and not of repairing the equipment (see the terminal
nodes p, q and r in Fig. 1). The probability of a sequence failing to repair
the equipment is however determined by the set A only, and does not depend
on the sequencing of the actions. Hence, as we are only interested in finding
the cheapest sequence, we will disregard this slight twist. 11 In this paper we
focus our attention towards the cost of performing the TS-strategy, and we
will continue to call this cost the ECR.

3.1 The greedy approach

Vesely and Fussell’s component importance is commonly regarded as the best
search heuristic when each component is repaired by a perfect action, and all
repair actions have the same cost. Furthermore, when the costs are unequal the
Vesely and Fussell’s component importance can be scaled by the action’s cost.
The idea of using IFV(·) to sequence the actions generalizes to our situation,
see Equation 1, and we therefore define an action’s efficiency in the following
way:

Definition 1. Let A ∈ A be a repair action, let CA be the cost of performing
A, and let ε be the evidence compiled so far during troubleshooting. The
efficiency of A given ε is defined as

ef(A | ε) =
P (R(A) = ok | ε)

CA
.

The efficiency has an important property when verifying that a TS-sequence
S is sub-optimal:

Proposition 2. Let S = 〈A1, . . . , AN〉 be an optimal TS-sequence of actions
for which the cost of each action is independent of the other actions taken.
Then it must hold that ef(Ai | ei−1) ≥ ef(Ai+1 | ei−1).

11 If, on the other hand, we were interested in the monetary value of the expected
cost of the cheapest sequence, our approach would be misleading. To work in such
situations, Breese and Heckerman [9] propose to introduce a new action named
Call Service as the final act in a TS-sequence. Performing this action will put the
equipment back in operating modus, but presumably at a high cost since external
personnel is involved in fixing the problem.

12

Proof. Examine the two TS-sequences S = 〈A1, . . . , Ai, Ai+1, . . . , AN〉 and
S ′ = 〈A1, . . . , Ai+1, Ai, . . . , AN 〉. From Equation 2 we get

ECR(S)− ECR(S ′) = (Ci · P (ei−1) + Ci+1 · P (ei−1, R(Ai) = no))

−
(
Ci+1 · P (ei−1) + Ci · P (ei−1, R(Ai+1) = no)

)

hence, ECR(S)− ECR(S ′) ≤ 0 iff

P (R(Ai) = ok | ei−1)

Ci
≥ P (R(Ai+1) = ok | ei−1)

Ci+1
.

�

Note that Proposition 2 can in general not be used to decide whether a TS-
sequence S is optimal, it is merely a characterization of some sub-optimal
sequences.

A direct corollary of Proposition 2 is that if action Ai has the highest effi-
ciency amongst all remaining actions given the aggregated evidence ε, and no
evidence ε′ ⊃ ε excluding Ai exists such that this changes, then it is optimal
to perform Ai before any other action. Some situations where this formulation
is useful is given in the following Proposition, which is a simple reformulation
of [10, Proposition 1]:

Proposition 3. Assume that the following holds

(1) The equipment has N components and N actions.
(2) There are no questions.
(3) Exactly one MCS is faulty.
(4) Each action has a specific probability of repairing the components. It is

given by P (A↓Xi
i = yes |Xi = faulty) > 0, P (A

↓Xj

i |Xj = faulty) = 0 for
i 6= j.

(5) The cost Ci of action Ai does not depend on the sequencing of the actions.
(6) The equipment is designed as a serial system, i.e., the MCSs are single-

tons: Ci = {Xi}, i = 1, . . . , N .

Then we have:
If ef(Aj | e0) ≤ ef(Ak | e0) then ef(Aj | ε) ≤ ef(Ak | ε), where ε is any evidence
of the type “Actions A′ ⊆ A \ {Aj, Ak} have failed”.

Propositions 2 and 3 motivate the greedy approach:

Algorithm 1 (Greedy approach).

(1) For all Aj ∈ A Calculate ef(Aj | e0);

13

(2) Let S be the list of actions ordered according to ef(· | e0);
(3) Return S;

It follows that the greedy approach is optimal under the assumptions of
Proposition 3. Note that it is not always optimal to sequence the actions
based on the efficiencies. A counter-example is given below:

Example 4. Consider the domain described in Fig. 2 (with failure data from
Fig. 3). We assume perfect repair actions, let Ci = 1 for all actions, and dis-
regard the questions QS and QK . The greedy approach selects the sequence
〈A3, A2, A4〉 with ECR = 1.58. The optimal sequence found by exhaustive
search is 〈A2, A4〉, with ECR = 1.47. (Note that this result is not contra-
dictory to Proposition 2; the efficiencies are calculated as ef(A2 | e0) = .529,
ef(A3 | e0) = .624 and ef(A4 | e0) = .486, hence it is in accordance with Propo-
sition 2 to start with A2 as long as it is not followed by A3.)

An obvious attempt to improve the results of Example 4 is to recalculate the
efficiencies each time new evidence comes in. In this way we make sure that
all information available when the i’th step is to be chosen is actually taken
into account; recall that we use Bj to denote the j’th step in the strategy S:

Algorithm 2 (Greedy approach with recalculations).

(1) ε← {∅}; A′ ← {A1, . . . , AN}; S = 〈·〉;
(2) For i = 1 to N

(a) For all Aj ∈ A′ Calculate ef(Aj | ε);
(b) Select Ak ∈ A′ s.t. ef(Ak | ε) is maximized;

(c) Bi ← Ak; A′ ← A′ \ {Ak}; ε← ε ∪ {R(Ak) = no}.
(3) Return S;

Applied to the model in Example 4 this algorithm generates the sequence S =
〈A3, A4, A2〉 with ECR = 1.53. This is better than the greedy approach, but
still not optimal. A result similar to Proposition 3 can be shown for arbitrary
sized but disjoint MCSs if we assume that all actions are perfect:

Proposition 5. Let S = 〈A1, . . . , An〉 be a repair sequence for a trou-
bleshooting problem fulfilling conditions 1 – 5 in Proposition 3. The MCSs
are disjoint, Ci ∩ Cj = {∅}, i 6= j, and all repair actions are perfect, i.e.,

P (A↓Xi
i = ok |Xi = faulty) = 1 for i = 1, . . . , N . Let S be the output of

Algorithm 2. Then S is an optimal repair sequence.

It should be emphasized that the actions are assumed to be perfect in Propo-
sition 5. When the actions are non-perfect, optimality is no longer assured, as
can be seen from the example below:

Example 6. Consider a TS-model with two cutsets C1 = {X1, X2} and
C2 = {X3, X4, X5}. Let P (Xi = faulty) = 3 · 10−6 for i = 1, 3, 4, 5 and P (X2 =

14

faulty) = 7 · 10−6. Each component Xi is repaired by a dedicated action Ai.
Let the cost of the actions be C1 = 9, C2 = 12, and Ci = 10 for i = 3, 4, 5.
Finally, P (X↓A1

1 = ok |X1 = faulty) = .9, P (X↓Ai
i = ok |Xi = faulty) = .98 for

i = 2, 3, and P (X↓Ai
i = ok |Xi = faulty) = .95 for i = 4, 5. Then Algorithm 2

returns S1 = 〈A5, A1, A3, A4, A2〉 with ECR(S1) = 14.95, whereas the optimal
sequence is S2 = 〈A5, A3, A4, A1, A2〉 with ECR(S2) = 14.84.

3.2 Dependent actions

The crucial step when optimality is proven in the setting of Propositions 3
is the fact that no evidence obtained during troubleshooting can change the
ordering of the remaining actions under consideration; the residual probability
mass, i.e., the probability P (R(Ai) = ok | ei−1), is absorbed uniformly by all
these actions. Hence, the initial ordering of two actions, Ai ≺ Aj , say, cannot
change when some new evidence R(Ak) = no, Ak 6∈ {Ai, Aj} arrives. In the
general case, however, the ordering of a subset of actions A′ ⊂ A may depend
on what evidence ε is collected, even if ε does not contain explicit information
about any of the actions in A′. We call this situation dependent actions [25].

A domain for which the cost of an action does not depend on the sequence of
actions taken is said to have dependent actions whenever there exists actions
Ai, Aj and Ak s.t.

ef(Ai | ∅)
ef(Aj | ∅) 6=

ef(Ai |R(Ak) = no)

ef(Aj |R(Ak) = no)
.

A domain has dependent actions if there exists two actions Ai and Aj s.t.
pa(Ai) ∩ pa(Aj) 6= ∅ or there exists two actions Ai and Aj, two components
Xk ∈ pa(Ai) and X` ∈ pa(Aj), and an MCS Cm s.t. {Xk, X`} ⊆ Cm. An exam-
ple from the printer domain is the action-pair “Reseat toner cartridge.”
and “Change toner cartridge.” as both may solve problems related to bad
seating of the cartridge.

Examples 4 and 6 showed that Vesely and Fussell’s component importance is
not optimal in general when the domain has dependent actions. This is hardly
a surprise, since the problem of finding an optimal troubleshooting strategy is
known to be NP-hard in this case [11]. To try to improve a suboptimal strat-
egy we employ an adapted version of a standard algorithm for combinatorial
optimization (similar to the algorithm presented by Norstrøm et al. [7]). This
algorithm starts from an initial seed, and iteratively improves this sequence
until it converges to a local optimum. Note that B

(i)
k (Step 2a) denotes the k’th

TS-step in the action sequence S when starting the i’th step of the iteration.
Note also that the algorithm is said to converge (Step 3) when the ECR of the
found sequence is not lower than the ECR of the sequence found previously.

15

Algorithm 3 (Discrete optimization).

(1) Initialization: S ← 〈B1, . . . , BN〉 for some ordering of A;
(2) For i = 1 to N

(a) For j = i to N
Rj ← 〈B(i)

1 , . . . , B
(i)
i−1, B

(i)
j , B

(i)
i , . . . , B

(i)
j−1, B

(i)
j+1, . . . , B

(i)
N 〉;

(b) Select j0 ∈ [i . . . N] s.t. ECR(Rj0) is minimized;

(c) S ← Rj0;

(3) If not converged then goto 2;

(4) Return S;

A sequence S = 〈A1, A2, . . . , Ai, . . . , Aj, . . . , AN〉 is a local optimum if, when-
ever we insert Aj before Ai (j > i) in S to obtain S ′ = 〈A1, A2, . . . , Ai−1, Aj ,
Ai, . . . , Aj−1, Aj+1, . . . , AN 〉, then ECR(S) ≤ ECR(S ′). It is obvious that
Algorithm 3 converges to a local optimum since ECR(S) is guaranteed to be
non-increasing after each loop of the algorithm (the algorithm can decide to
stay put by selecting j0 s.t. Rj0 = S in Step 2b). It is however not guaranteed
that the algorithm converges to the globally optimal sequence. The crucial
choice to be made in Algorithm 3 is the initialization of S in Step 1. To ensure
quick convergence to an approximately optimal solution, it can be beneficial
to select a seed sequence that is close to the optimum. A natural choice is
to initialize S as found by Algorithm 2. It is however easy to see that this
sequence is a local optimum itself (confer Proposition 2), and it will therefore
not be improved by Algorithm 3. Instead, we suggest to initialize the action
sequence by ordering wrt. the observation-based efficiency (obef). We outline
the derivation of the observation-based efficiency [25] below.

Consider a situation where the evidence ε has been collected and it has been
decided that the next action to perform is A. To calculate the observation-
based efficiency, the TS-system should consider what information can be gained
about the failed equipment by just getting to know that A does not solve the
problem, and more importantly, the value of this information. It is natural to
quantify this value as the difference in ECR between two degenerate models:
i) The TS-system where the collected evidence is ε′ = {ε, R(A = no)} and ii)
The TS-system where A has been made unavailable, but where the collected
evidence is ε′′ = ε. Assume that the sequence of remaining actions when given
evidence ε′ is S(ε′) and that the sequence of the actions when given evidence ε′′

and A is unavailable is S(ε′′). We define the conditional ECR of the sequence
S = 〈A1, . . . , AN〉 given ε′ as ECR(S | ε′) =

∑N
j=1 Cj · P (ej−1 | ε′). Finally, we

define the value of the information contained in the event that R(A) = no
given the current evidence ε as

VOI(R(A) = no | ε) = ECR(S(ε′) | ε′)− ECR(S(ε′′) | ε′),

i.e., VOI(R(A) = no | ε) is the difference of the expected cost of the strategies
S(ε′) and S(ε′′). Note that both expected costs are calculated conditioned on

16

ε′, the evidence actually collected as the two strategies are considered to be
employed.

To recapitulate, we want to consider the value of information an action that
fails has to offer when we determine how to sequence the actions. This amount
is calculated as VOI(R(A) = no | ε), and we receive this gain with probabil-
ity P (R(A) = no | ε). If we regard this amount as a refund, it is natural to
approximate the “real” cost of action A as

C̃A = CA − P (R(A) = no | ε) · VOI(R(A) = no | ε).

C̃A is the cost we “spend” by performing A; CA−C̃A is the expected reduction
in ECR of the remaining sequence of action, which is obtained by learning that
A fails. It is argued by Langseth and Jensen [25] that if one couples Definition
1 with Algorithm 2, one implicitly assumes that VOI(R(A) = no | ε) = 0. On
the other hand, if C̃A is used as the cost of A in the efficiency calculation, this
will change the troubleshooting strategy in a way that attempts to incorporate
the actual value of the information we receive. This leads to the definition of
the observation-based efficiency:

Definition 7. Let A ∈ A be a repair action, let the cost of A be CA, and let ε
be the evidence compiled so far during troubleshooting (i.e., not containing A).
Let VOI(R(A) = no | ε) be the value of information A will have if it fails (by
altering the sequencing of the remaining actions). Then the observation-based
efficiency of A given ε is:

obef(A | ε) =
P (R(A) = ok | ε)

CA − P (R(A) = no | ε) · VOI(R(A) = no | ε) .

An algorithm that orders the actions according to the observation-based effi-
ciency does in general not offer an optimal solution; a sequence ordered in this
way may even violate the optimality check of Proposition 2. This is however
of minor importance, as we only use the sequence as a seed to Algorithm 3
and do not regard it as a final solution on its own. Note however, that the
probability update is proportional under the assumptions in Proposition 3,
which means that VOI(R(A) = no | ε) = 0 in this case. The observation-based
efficiency is therefore exact under the assumptions of Proposition 3. “Cycle
power.” is an example of an action from our domain which has high value of
information. Power cycling repairs many temporal problems, and ruling these
out can be very beneficial for the future troubleshooting.

A problem with Definition 7 is that VOI(R(A) = no | ε) cannot be calculated
unless one is able to correctly sequence all remaining actions (after perform-
ing A) in order to calculate ECR(S(ε′) | ε′) and ECR(S(ε′′) | ε′); a computa-
tionally prohibitive task. Langseth and Jensen discuss two approximations of

17

VOI(R(A) = no | ε): One based on the Shannon entropy of the efficiencies of
the remaining actions, and the computationally simpler approach to use the
myopic ordering of actions (i.e., based on Definition 1), see [25] for details.

Table 1 shows results of a small simulation study. Three troubleshooting
models have been used: The example model of Fig. 3 (with N = 5 actions and
R = 4 cutsets), the CPQRA model [26] (N = 25, R = 20) and Norstrøm et
al.’s example [7] (N = 6, R = 4). For each model the actions’ costs and the
failure probabilities of the components have been randomized. Additionally,
the probability of an action to successfully repair a component in its parent
set was randomly selected in the interval [0.9, 1.0]. Then Algorithm 2 and
Algorithm 3 were run, and compared by difference in ECR. 12 The simulations
were run for 500 iterations. The reported numbers give the relative number of
times Algorithm 2 found a result inferior to that of Algorithm 3 (Rel.num.),
the average relative difference in ECR in those runs (Avg.rel.diff.), and the
maximum relative difference in ECR (Max.rel.diff.).

Rel.num. Avg.rel.diff. Max.rel.diff.

Example model of Fig. 3 8.2% 4.0% 7.5%

The CPQRA model [26] 9.4% 4.2% 8.2%

Norstrøm et al.’s example [7] 4.0% 4.9% 9.2%

Table 1
Algorithm 2 and Algorithm 3 are compared through a small simulation study.

The results in Table 1 show that even for the relatively small models we
have considered, a strategy generated by the Vesely and Fussell’s component
importance (Algorithm 2) fails fairly frequently, and the additional cost of
following an inferior sequence may be considerable.

As it is NP-hard to find the optimal repair sequence, Algorithm 3 is not
infallible; it may sometimes be stuck in sub-optimal solutions. This did for
instance happen for the CPQRA model (see Table 1), where Algorithm 3 even
was inferior to Algorithm 2 in 1.2% of the simulations, with maximum relative
cost difference equal to 2.1%.

4 Questions

When we add questions to our TS-model, the strategy is represented by a
strategy tree, see Fig. 1. Note that the ECR cannot be calculated by Equation

12 Algorithm 3 was initialized by the sequence obtained when the actions were
ordered according to the observation-based efficiency; the value of information was
approximated by employing a myopic strategy.

18

2 in this case, instead we use a recursive calculation scheme to compute the
expected cost of repair:

Proposition 8. Let S be a TS-strategy which starts with the step B(1) and
then continues with the strategy conditioned on the possible outcomes of B(1).
Then the ECR of S can be calculated recursively as:

ECR(S) = C(1) +
∑

b(1)∈sp(B(1))

P
(
B(1) = b(1)

)
· ECR

(
S |B(1) = b(1)

)
. (3)

where C(1) is the cost of step B(1) and ECR
(
S |B(1) = b(1)

)
is the ECR of

the sub-tree S following the branch for which B(1) = b(1). The recursion is
terminated by ECR (∅ | ·) = ECR (· |R(Aj) = ok) = 0.

The obvious way to decide whether it pays to pose a question Q, is to calcu-
late the value of information for that particular question. Let the strategy be
defined as 〈Q,S〉, where S is the optimal strategy conditioned on the answer
to the question Q, and let S ′ be the optimal strategy when we are refused to
pose Q. We define VOI(Q) as:

VOI(Q) = ECR(S ′)−∑
q∈sp(Q)

P (Q = q) · ECR(S |Q = q) .

The system should pose the question if VOI(Q) > CQ.

A problem with this approach is that we must correctly position all other ques-
tions in the strategy before we can calculate ECR(S ′) and ECR(S |Q = q);
this will lead to a too expensive recursion. Breese and Heckerman [9] pro-
pose to use a myopic approach to this problem: Assume that it is sufficient
to sequence only actions when VOI(Q) is to be calculated, i.e., one should
consider the effect of the question Q only on the sequencing of actions, and
disregard the effect of the other questions. The two action sequences S and S ′

are then approximated by ordering the actions according to their efficiencies
by Algorithm 2. In [10] it is argued that this approach will over-rate the effect
of the question, because one in this case only compares the effect of asking
the question now, with ECRNow = CQ +

∑
q∈sp(Q) P (Q = q) · ECR(S |Q = q),

or never, ECRNever = ECR(S ′). The decision rule is to pose the question iff

ECRNow < ECRNever. (4)

Jensen et al. [10] argue that one should also compare ECRNow to the ECR
of a strategy starting with what appears to be the best action, followed by Q,
and thereafter a TS-sequence S ′′, which depends on the outcome of Q. This
approach has ECR given by

19

ECRA,Q(A, Q,S ′′) = CA + P (R(A) = no) · CQ +∑
q∈sp(Q)

P (Q = q, R(A) = no) · ECR(S ′′ |Q = q, R(A) = no) .

The question should be posed iff

ECRNow < min{ECRA,Q(A, Q,S ′′), ECRNever}. (5)

N M Optimal Alg. 2 + Eq. 5 Alg. 2 + Eq. 4 Alg. 2

6 2 433.24 442.39 442.43 444.54

9 3 129.21 129.21 205.54 155.10

11 3 106.20 108.07 111.75 116.80

12 3 38.38 40.01 52.86 43.05

13 4 124.32 125.56 125.94 300.85

14 4 115.41 115.86 116.74 236.58

9 9 70.67 77.67 76.53 121.10

16 5 161.38 162.25 162.49 286.75

10 10 250.45 256.96 445.93 479.96

Avg. rel. diff. from opt. 2.51% 21.5% 59.16%

Table 2
Empirical comparison of the effect of including questions into 9 of the BATS TS-

models. The results are extended from those reported by Vomlel [27].

To emphasize the importance of including questions in the troubleshooter
system we reproduce and extend a set of experimental results from Vomlel [27].
We have examined 9 of the troubleshooter models included in the BATS tool;
for each of them we calculated the ECR of the optimal TS-strategy, the ECR of
the TS-strategy produced when combining Algorithm 2 with Equation 5, the
ECR of the TS-strategy produced when combining Algorithm 2 with Equation
4, and finally the ECR of the TS-sequence generated from Algorithm 2 when
questions were disregarded. The models we used for testing were moderately
sized with N (number of actions) ranging from 6 to 16 and M (number of
questions) in the interval from 2 to 10. The results clearly show how important
the questions are in these real-life TS-models, and they also indicate that
the approximations made in Algorithm 2 combined with the decision rule of
Equation 5 may be quite reasonable.

20

5 Calculation scheme

In this section we will consider how to perform the required calculation in the
model. As the TS-system will continuously interact with the user, it is impor-
tant that the system can perform its calculations in “real time” (that is, the
calculations should be performed using an amount of time that seems negligi-
ble to the user). The important point to make is that performing calculations
is in principle of time complexity exponential in the number of components
in the model. It is therefore crucial to identify the “idle time” of the system
(i.e., the time when the user is not interacting with it), and use those points
in time to perform the calculations. Idle time is available before the system
is put into use, and at times when the user is busy performing an action or
trying to find information to answer a question. Before the system is ready to
be used it has to go through an initialization phase, which basically amounts
to calculating the initial probabilities for each component to be in its faulty
state given that the equipment is faulty, the probabilities for the actions to
be successful, and the initial beliefs regarding possible answers to the differ-
ent questions. These calculations can be performed off-line and are thus not
subject to speed requirements. In the following we will therefore focus on how
to incorporate information from the performed TS-steps into the system, that
is, how to update the probability distributions when the compiled evidence ε
is extended.

5.1 Action sequences

First we will look at TS-systems that only consists of actions, and describe a
method for calculating P (R(A) = ok | ε) for an action A ∈ A where ε is some
evidence not involving A. Next, we will describe a method to calculate P (ε)
(required by the ECR-calculations, see Equation 2). Note that the evidence
ε will contain only a list of failed actions, i.e., ε = {R(A) = no : A ∈ A′}.
If an action is successful, the troubleshooting ends, and there is no need to
incorporate that evidence into the system.

The key point during the calculations is that of conditional independence.
Let nd(V) be the non-descendants of V in a directed graph G; Y ∈ nd(X) iff
there is no directed path X → . . . → Y in G. An important result we shall
use frequently is that V ⊥⊥ nd(V) | pa(V) for any variable V ∈ V.

The backbone of our calculating scheme is the observation that if we know that
Ci is the actual cutset, then it is easy to calculate the success probabilities given
the evidence ε. It turns out that P (R(A) = ok | Ci = faulty, ε) = P (R(A) =
ok | Ci = faulty), see Lemma 9 below. Since the actual cutset is not known
during troubleshooting, we use

21

P (R(A) = ok | ε)=
∑
C`∈C

P (R(A) = ok | C` = faulty, ε) · P (C` = faulty | ε)

=
∑
C`∈C

P (R(A) = ok | C` = faulty) · P (C` = faulty | ε)

to calculate P (R(A) = ok | ε). Next, we formalize the above statement:

Lemma 9. Let A ∈ A be a repair action, and let evidence compiled during
troubleshooting be denoted by ε, ε = {R(Ai) = no : Ai ∈ A′} (A 6∈ A′). As-
sume that the user’s ability to repair one component X does not depend on the
state of the other components, A↓X ⊥⊥ X ′ |X for all X ′ ∈ X \{X}, and that in-
formation about the user failing to perform one repair action will not influence
our beliefs about his ability to perform other actions, A↓Xk

i ⊥⊥ A↓X`
j | {Xk, X`}

whenever i 6= j. Then P (R(A) | Cm = faulty, ε) = P (R(A) | Cm = faulty). That
is, the evidence ε does not influence R(A) when conditioning on the actual
MCS.

Proof. First, notice that if P (R(A) = ok | Cm = faulty) = 0, then no evidence
ε can change this belief. Hence, P (R(A) | Cm = faulty, ε) = P (R(A) | Cm =
faulty) if A cannot repair any component in Cm. Next, assume that the action
A can repair components in only one MCS, C`. If C` = faulty, then all com-
ponents Xj ∈ C` are in their faulty state. Hence, we have evidence on the set
pa(A), and since ε only contains non-descendant of A by construction of the
domain model, A ⊥⊥ ε | {C` = faulty}. It follows that R(A)⊥⊥ε | {C` = faulty},
and therefore P (R(A) | C` = faulty, ε) = P (R(A) | C` = faulty). (See A1 in
Fig. 5; the probability for A1 to repair the equipment is determined by the
state of C1 only. If C1 is the actual MCS then A1 repairs the equipment with
probability P (A↓X1

1 = yes |X1 = faulty) no matter what actions have earlier
been performed; if C1 is not faulty, then A1 can never repair the equipment.)

In the general case action A can repair more than one MCS. To see that the
Lemma holds also in this case, we introduce the random variable ζ(C`), which is
defined s.t. ζ(C`) = yes if {Xi = faulty : Xi ∈ C` ∧Xj = ok : Xj 6∈ C`}; ζ(C`) =
no otherwise. Notice that the effect of conditioning on the event ζ(C`) = yes is
that all X ∈ X are given evidence, and by construction of the domain model,
the set pa(A) ⊆ X is instantiated. Hence P (R(A) = ok | ζ(C`) = yes, ε) =
P (R(A) = ok | ζ(C`) = yes). Since A↓X ⊥⊥ X ′ |X for X ′ ∈ X \ {X}, we
have P (R(A) | C` = faulty, ε) = P (R(A) | ζ(C`) = yes, ε). Finally, it follows
that P (R(A) | C` = faulty, ε) = P (R(A) | C` = faulty). (Look at action A3 in
Fig. 5, and assume that C3 is known to be faulty, which means that X3 =
X4 = faulty. The event {R(A3) = ok} is in this case equivalent to {A↓X3

3 =
yes∨A↓X4

3 = yes}. So far we only have observations on X3 and X4; X1 and X2

are not instantiated. Hence, information may flow from R(A1) to R(A3), and

22

thereby break the required independence (which is problematic if {R(A1) =

no} has been observed). The assumption A
↓Xj

i ⊥⊥ Xk |Xj does however justify
that we may set X1 = X2 = ok without changing the required probability
P (R(A3) | C3 = faulty, ε). All flow of information from any compiled evidence
ε to R(A3) is blocked when these stochastic variables are instantiated, and
the desired conditional independence follows.) �

X2

C2 C3

L

C1

X1 X3

A3A1

R(A1) R(A2) R(A3)

X4

A2

Fig. 5. Example TS-model to exemplify the proof of Lemma 9.

We utilize Lemma 9 to calculate the probability that an action A ∈ A repairs
the equipment:

P (R(A) | ε) =
∑
C` ∈ C

P (R(A) | C` = faulty) · P (C` = faulty | ε) . (6)

That is, calculating P (R(A) | ε) amounts to finding P (R(A) | C` = faulty) and
P (C` = faulty | ε) for all C` ∈ C. The values of P (R(A) | C` = faulty) can easily
be calculated from the model description before the troubleshooting starts,
whereas P (C` = faulty | ε) must be calculated in each case.

We now show that Lemma 9 can be used also to calculate P (C` = faulty | ei)
rather efficiently; recall that ei is used to denote the evidence that the first i
actions in the sequence S = 〈A1, . . . , AN〉 have all failed to repair the equip-
ment. We first use Bayes’ rule to investigate how to update this probability
when new evidence {R(Ai) = no} is received and appended to the compiled
knowledge ei−1:

P (C` = faulty | ei)= P (C` = faulty | ei−1, R(Ai) = no)

=
P (R(Ai) = no | C` = faulty, ei−1) · P (C` = faulty | ei−1)

P (R(Ai) = no | ei−1)

=
P (R(Ai) = no | C` = faulty) · P (C` = faulty | ei−1)

P (R(Ai) = no | ei−1)
. (7)

23

P (R(Ai) = no | ei−1) is just a normalization constant in this calculation, which
can be found by

P (R(Ai) = no | ei−1) =
∑
Ck ∈ C

P (R(Ai) = no | Ck = faulty)·P (Ck = faulty | ei−1) .

Hence P (C` = faulty | ei) can be calculated by expanding the evidence itera-
tively. The first step of this procedure requires the a priori distribution over
the MCSs, P (C` = faulty | e0). This distribution should be calculated by a full
propagation in the Bayesian network, see [21]; remember that this propagation
can be performed off-line (i.e., before troubleshooting starts). The evidence ei

is then incorporated by using Equation 7 until we obtain P (C` = faulty | ei).
This means that calculating P (R(A) | ei) is of complexity O(R), where R is
the number of MCSs in the domain if we have stored P (C` = faulty | ei−1). As
a consequence, the complexity of Algorithm 1 is O(NR + N log(N)) and the
complexity of Algorithm 2 is O(N(NR + N)) = O(N2R).

Next, we look at how to calculate P (ei); a number required by the ECR
calculations, see Equation 2. This can be done by using the identity P (ei) =
P (R(Ai) = no | ei−1)P (ei−1) and make the calculations iteratively; P (R(Ai) =
no | ei−1) is given by Equation 6; P (e0) = 1 by convention. Calculating P (ei)
is therefore of complexity O(R) if we store the values P (ei−1). In total, the
calculation of ECR is thus of time complexity O(NR).

The time complexity of generating a full action sequence based on the obser-
vation-based efficiency (Definition 7) is dominated by the expensive calcula-
tions required to find VOI(· | ε). If this value is approximated by calculating
the ECR of the sequence generated by Algorithm 2, then the time complexity
of generating a complete action sequence by the observation-based efficiency is
O(N3R). If one settles for the cruder approximation offered by Algorithm 1 the
time complexity of generating the sequence is reduced to O (N2(log(N) + R)).

The time complexity of Algorithm 3 is given by the complexity of the initial-
ization and the cost of O(N2) calculations of ECR. This means that the total
complexity of Algorithm 3 when initialized according to the obef-sequence
is O(N3R). This should be compared to the corresponding calculations per-
formed in a fault tree, which Norstrøm et al. [7] report to be O(N23N).

5.2 Questions

In this section we consider the cost of belief updating when the TS-model is
extended to incorporate questions.

24

5.2.1 Symptom questions
We start the treatment of questions by considering symptom questions. Recall
that symptom questions are used to examine possible failure symptoms; they
are connected to the system layer at the MCS level, with edges directed from
problem causes to the questions, see QS in Fig 2. By construction, the parent
set of a symptom question QS in our BN representation is therefore restricted
to the MCS nodes, pa(QS) ⊆ C. Furthermore, symptom questions do not have
descendants in the graph. It follows that QS ⊥⊥ V \ {C, QS} |C. Therefore,
to calculate the effect of a symptom question on the remaining strategy, it
is only required to calculate the effect on the distribution over the MCSs,
P (C` = faulty |QS = q, ε). This can be done by using Bayes’ rule:

P (C` = faulty |QS = q, ε)=
P (QS = q | C` = faulty, ε) · P (C` = faulty | ε)

P (QS = q | ε)
=

P (QS = q | C` = faulty) · P (C` = faulty | ε)
P (QS = q | ε) , (8)

where P (QS = q | ε) =
∑
Ck ∈ C P (QS = q | Ck = faulty) · P (Ck = faulty | ε).

Hence, the complexity of calculating P (C` = faulty |QS = q, ε) from P (C` =
faulty | ε) isO(R). If we assume that the ordering of actions needed to calculate
the ECR values in the decision rule of Equation 5 is based on Algorithm 2,
then a question can be evaluated in time complexity O(N2R). Note that the
calculations will require the computation of ECR for several action sequences
(described in Section 5.1); one for each possible answer to the question.

Note that QS ⊥⊥ V \ {C, QS} |C implies that symptom questions will not
corrupt the calculations of R(A | ε) in Equation 6; we can use that calculation
scheme to calculate R(A | ε) even when the evidence ε contains answers to
symptom questions.

5.2.2 Configuration questions
Configuration questions are designed to highlight the likelihood of compo-

nent failures by uncovering the environment in which the failed equipment
is embedded. Configuration nodes are connected to the system layer via the
component layer, with edges directed from question to components, see K in
Fig. 2. The answer to the question is modelled as a random variable dependent
on the configuration, see QK in Fig. 2.

As for symptom questions, we are interested in evaluating QK according
to Equation 5. First, however, we note that R(A) ⊥⊥ ε | {C` = faulty} also
when configuration questions have been posed, {QK = q} ⊆ ε. Recall that
P (R(A) | ε′, C` = faulty) = P (R(A) | C` = faulty) when ε′ is a list of ac-
tions (not containing A) that have failed. This result trivially extends to the

25

case where ε contain answers to questions because configuration questions are
non-descendants of the actions’ result nodes. We can therefore calculate the
efficiency of an action using Equation 6 also in the case when configuration
questions have been answered. Similarly, we can calculate the ECR-values
required to evaluate a configuration question QK (according to Equation 5)
efficiently by incorporating the effect of a question QK at the cutset nodes by
using Equation 8.

Special attention is however required for the case when one configuration
question QK1 is evaluated, and the evidence ε already contains the answer to
another configuration question QK2 together with a list of failed actions ε′,
ε = {QK2 = q, ε′}. The answer to the two configuration questions QK1 and
QK2 are not independent given the actual cutset; we have P (QK1 = q | ε, C` =
faulty) = P (QK1 = q |QK2 = q, C` = faulty). Hence, we must take the answers
to all earlier configuration questions into account when we want to calculate
P (QK1 = q | ε). A consequence of this conditional dependence is that the fast
rules to incorporate new evidence into the system, see Equations 7 and 8,
cannot be generalized to evidence containing configuration questions if the
distribution of other configuration questions should be updated correctly. We
therefore have to perform a propagation in the model as soon as a configuration
question is answered; note that it is not required to perform any propagations
as long as the TS-system just considers to pose the question. The complexity of
evaluating a configuration question is therefore O(N2R); the time complexity
of incorporating the answer into the system is exponential in the number of
components.

6 Concluding remarks

We have described a decision-theoretic troubleshooting system, which builds
on a Bayesian network describing the faulty equipment and its surroundings.
The expressive power of the BN framework outperforms that of more com-
monly used model description paradigms as, e.g., fault trees, see [20]. We
utilized this to make a rich description of the troubleshooting domain, which
may include, e.g., non-perfect actions and information-gathering troubleshoot-
ing steps. Finally, we showed how our BN models allow fast calculation of the
probabilities required to generate a reasonable troubleshooting strategy.

Acknowledgements

We would like to thank our project coworkers, in particular Claus Skaanning,
Jǐŕı Vomlel, and Olav Bangsø, for interesting discussions. Jǐŕı Vomlel also
supplied the software used to generate the results in Table 2. An anonymous
referee gave comments that helped improving the paper.

26

References

[1] W. E. Vesely, Fault tree handbook, Tech. Rep. NUREG-0492, US Nuclear
Regulatory Committee, Washington DC (1981).

[2] Q. Zhang, Q. Mei, A sequence of diagnosis and repair for a 2-state repairable
system, IEEE Transactions on Reliability R-36 (1) (1987) 32–33.

[3] J. Kalagnanam, M. Henrion, A comparison of decision analysis and expert
rules for sequential analysis, in: Uncertainty in Artificial Intelligence 4, North-
Holland, New York, 1990, pp. 271–281.

[4] W. Xiaozhong, Fault tree diagnosis based on Shannon entropy, Reliability
Engineering and System Safety 34 (1991) 143–167.

[5] W. Xiaozhong, R. M. Cooke, Optimal inspection sequence in fault diagnosis,
Reliability Engineering and System Safety 37 (1992) 207–210.

[6] R. Reinertsen, W. Xiaozhong, General inspection strategy for fault diagnosis–
minimizing the inspection costs, Reliability Engineering and System Safety
48 (3) (1995) 191–197.

[7] J. Norstrøm, R. M. Cooke, T. J. Bedford, Value of information based
inspection-strategy of a fault-tree, in: Proceedings of the tenth European
Conference on Safety and Reliability, A. A. Balkema, Munich, Germany, 1999,
pp. 621–626.

[8] S. Srinivas, A polynomial algorithm for computing the optimal repair strategy
in a system with independent component failures, in: Proceedings of the
Eleventh Annual Conference on Uncertainty in Artificial Intelligence, San
Francisco, CA., 1995, pp. 515–522.

[9] J. S. Breese, D. Heckerman, Decision-theoretic troubleshooting: A framework
for repair and experiment, in: Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San
Francisco, CA., 1996, pp. 124–132.

[10] F. V. Jensen, U. Kjærulff, B. Kristiansen, H. Langseth, C. Skaanning, J. Vomlel,
M. Vomlelová, The SACSO methodology for troubleshooting complex systems,
Artificial Intelligence for Engineering, Design, Analysis and Manufacturing
15 (5) (2001) 321–333.

[11] M. Sochorová, J. Vomlel, Troubleshooting: NP-hardness and solution methods,
in: The Proceedings of the Fifth Workshop on Uncertainty Processing,
WUPES’2000, Jindřich̊uv Hradec, Czech Republic, 2000, pp. 198–212.

[12] C. Skaanning, F. V. Jensen, U. Kjærulff, P. Pelletier, L. Ropstrup-Jensen,
Printing system diagnosis: A Bayesian network application, Workshop on
Principles of Diagnosis, Cape God, MA. (2000).

[13] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann Publishers, San Mateo, CA., 1988.

27

[14] F. V. Jensen, Bayesian Networks and Decision Graphs, Springer Verlag, New
York, 2001.

[15] R. E. Barlow, Using influence diagrams, in: C. A. Clarotti, D. V. Lindley (Eds.),
Accelerated life testing and experts’ opinions in reliability, 1988, pp. 145–157.

[16] H. J. Call, W. A. Miller, A comparison of approaches and implementations
for automating decision analysis, Reliability Engineering and System Safety 30
(1990) 115–162.

[17] J. G. Torres-Toledano, L. E. Sucar, Bayesian networks for reliability analysis of
complex systems, Lecture Notes in Artificial Intelligence 1484 (1998) 195–206.

[18] N. Fenton, B. Littlewood, M. Neil, L. Strigini, A. Sutcliffe, D. Wright, Assessing
dependability of safety critical systems using diverse evidence, IEE Proceedings
Software Engineering 145 (1) (1998) 35–39.

[19] P. H. Ibargüengoytia, L. E. Sucar, E. Morales, A probabilistic model approach
for fault diagnosis, in: Eleventh International Workshop on Principles of
Diagnosis, Morelia, Mexico, 2000, pp. 79–86.

[20] A. Bobbio, L. Portinale, M. Minichino, E. Ciancamerla, Improving the
analysis of dependable systems by mapping fault trees into Bayesian networks,
Reliability Engineering and System Safety 71 (3) (2001) 249–260.

[21] F. V. Jensen, S. L. Lauritzen, K. G. Olesen, Bayesian updating in
causal probabilistic networks by local computations, Computational Statistics
Quarterly 4 (1990) 269–282.

[22] D. Heckerman, J. S. Breese, A new look at causal independence, in: Proceedings
of the Tenth Annual Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers, San Francisco, CA., 1994, pp. 286–292.

[23] W. E. Vesely, A time-dependent methodology for fault tree evaluation, Nuclear
Engineering and design 13 (1970) 339–360.

[24] C. Skaanning, A knowledge acquisition tool for Bayesian-network trouble-
shooters, in: Uncertainty in Artificial Intelligence: Proceedings of the Sixteenth
Conference, Morgan Kaufmann Publishers, San Francisco, CA., 2000, pp. 549–
557.

[25] H. Langseth, F. V. Jensen, Heuristics for two extensions of basic
troubleshooting, in: Seventh Scandinavian Conference on Artificial Intelligence,
SCAI’01, Frontiers in Artificial Intelligence and Applications, IOS Press,
Odense, Denmark, 2001, pp. 80–89.

[26] Center for Chemical Process Safety, Guidelines for Chemical Process
Quantitative Risk Analysis, American Institute of Chemical Engineers, New
York, 1989.

[27] J. Vomlel, On quality of BATS troubleshooter and other approximative
methods, Technical report, Department of Computer Science, Aalborg
University, Denmark (2000).

28

III

Classification using Hierarchical Näıve Bayes models

Classification using Hierarchical Näıve Bayes models

Helge Langseth Thomas D. Nielsen
Dept. of Mathematical Sciences Dept. of Computer Science

Norwegian University of Science and Technology Aalborg University
N-7491 Trondheim, Norway DK-9220 Aalborg Øst, Denmark

helgel@math.ntnu.no tdn@cs.auc.dk

Abstract

Classification problems have a long history in the machine learning literature. One
of the simplest, and yet most consistently well performing set of classifiers is the Näıve
Bayes models. However, an inherent problem with these classifiers is the assumption
that all attributes used to describe an instance are conditionally independent given
the class of that instance. When this assumption is violated (which is often the case in
practice) it can reduce classification accuracy due to “information double-counting”
and interaction omission.

In this paper we focus on a relatively new set of models, termed Hierarchical Näıve
Bayes models. Hierarchical Näıve Bayes models extend the modelling flexibility of
Näıve Bayes models by introducing latent variables to relax some of the independence
statements in these models. We propose a simple algorithm for learning Hierarchical
Näıve Bayes models in the context of classification. Experimental results show that
the learned models can significantly improve classification accuracy as compared to
other frameworks. Furthermore, the algorithm gives an explicit semantics for the
latent structures (both variables and states), which enables the user to reason about
the classification of future instances and thereby boost the user’s confidence in the
model used.

1 Introduction

Classification is the task of predicting the class of an instance from a set of attributes
describing that instance, i.e., to apply a mapping from the attribute space into a predefined
set of classes. When learning a classifier we seek to generate such a mapping based on a
database of labelled instances. Classifier learning, which has been an active research field
over the last decades, can therefore be seen as a model selection process where the task is to
find the single model, from some set of models, with the highest classification accuracy. The
Näıve Bayes (NB) models (Duda and Hart 1973) is a set of particularly simple models which

1

has shown to offer very good classification accuracy. NB models assume that all attributes
are conditionally independent given the class, but this assumption is clearly violated in
many real world problems; in such situations overlapping information is counted twice by
the classifier. To resolve this problem, methods for handling the conditional dependence
between the attributes have become a lively research area; these methods are typically
grouped into three categories: Feature selection (Kohavi and John 1997), feature grouping
(Kononenko 1991; Pazzani 1995), and correlation modelling (Friedman et al. 1997).

The approach taken in this paper is based on correlation modelling using Hierarchical
Näıve Bayes (HNB) models, see (Zhang et al. 2002). HNBs are tree-shaped Bayesian
networks, with latent variables between the class node (the root of the tree) and the
attributes (the leaves), see Figure 1. The latent variables are introduced to relax some of
the independence statements of the NB classifier. For example, in the HNB model shown
in Figure 1, the attributes A1 and A2 are not independent given C because the latent
variable L1 is unobserved. Note that if there are no latent variables in the HNB, it reduces
to an NB model.

C

L1

A1 A2

A3 L2

A4 A5

Figure 1: An HNB designed for classification. The class attribute C is in the root, and the
attributes A = {A1, . . . , A5} are leaf nodes. L1 and L2 are latent variables.

The idea to use HNBs in classification was first explored by Zhang et al. (2002). Zhang
et al. (2002) search for the model maximizing the BIC score, which is a form of penalized
log likelihood, see (Schwarz 1978); hence they look for a scientific model (Cowell et al.
1999) where the key is to find an interesting latent structure. In this paper we take
the technological modelling approach: Our goal is mainly to build an accurate classifier.
As a spin-off we also provide the latent variables with an explicit semantics, including a
semantics for the state-spaces: Informally, a latent variable can be seen as aggregating
the information from its children which is relevant for classification. Such a semantic
interpretation is extremely valuable for a decision maker employing a classification system,
as she can inspect the classification model and extract the “rules” which the system uses
for the classification task.

The remainder of this paper is organized as follows: In Section 2 we give a brief overview
of some approaches to Bayesian classification, followed by an introduction to HNB models
in Section 3. In Section 4 we present an algorithm for learning HNB classifiers form data,

2

and Section 5 is devoted to empirical results. We discuss some aspects of the algorithm in
further detail in Section 6 and conclude in Section 7.

2 Bayesian classifiers

A Bayesian network (BN) (Pearl 1988; Jensen 2001) is a powerful tool for knowledge
representation, as it provides a compact representation of a joint probability distribution
over a set of variables. Formally, a BN over a set of discrete random variables X =
{X1, . . . , Xm} is denoted by B = (BS,ΘBS

), where BS is a directed acyclic graph and ΘBS

is the set of conditional probabilities. To describe BS, we let pa (Xi) denote the parents
of Xi in BS, we use sp (Xi) to denote the state-space of Xi, and for a set of variables we
have sp (X) = ×X∈X sp (X). In the context of classification, we shall use C to denote
the class variable (sp (C) is the set of possible classes), and A = {A1, . . . , An} is the set of
attributes describing the possible instances to be classified.

When doing classification in a probabilistic framework, a new instance (described by a ∈
sp (A)) is classified to class c∗ according to:

c∗ = arg min
c∈sp (C)

∑
c′∈sp (C)

L(c, c′)P (C = c′ |a),

where L(·, ·) defines the loss function, i.e., L(c, c′) is the cost of classifying an instance to
class c when the correct class is c′. The two most commonly used loss functions are the
0/1-loss and the log-loss: The 0/1-loss is defined s.t. L(c, c′) = 0 if c′ = c and 1 otherwise,
and the log-loss is given by L(c, c′) = log(P (c′ |a)) independently of c.

Since we rarely have access to P (C = c |A), learning a classifier amounts to estimating
this probability distribution from a set of labelled training samples which we denote by

DN = {D1, . . . , DN}; N is the number of training instances and Di =
(
c(i), a

(i)
1 , . . . , a

(i)
n

)
is the class and attributes of instance i, i = 1, . . . , N . Let P (C = c |A,DN) be the a
posteriori conditional probability for C = c given A after observing DN . Then an optimal
Bayes classifier will classify a new instance with attributes a to class c∗ according to (see
e.g. (Mitchell 1997)):

c∗ = arg min
c∈sp (C)

∑
c′∈sp (C)

L(c, c′)P (C = c′ |a,DN). (1)

An immediate approach to estimate P (C = c |A) is to use a standard BN learning algo-
rithm, where the training data is used to give each possible classifier a score which signals
its appropriateness as a classification model. One such scoring function is based on the

3

minimum description length (MDL) principle (Rissanen 1978; Lam and Bacchus 1994):

MDL(B | DN) =
log N

2

∣∣∣Θ̂BS

∣∣∣− N∑
i=1

log
(
PB

(
c(i), a(i)

∣∣∣ Θ̂BS

))
. (2)

That is, the best scoring model is the one that minimizes MDL(· | DN), where Θ̂BS
is the

maximum likelihood estimate of the parameters in the model, and
∣∣∣Θ̂BS

∣∣∣ is the dimension

of the parameter space (i.e., the number of free parameters in the model). However, as
pointed out in (Greiner et al. 1997; Friedman et al. 1997) a “global” criteria like MDL
may not be well suited for learning a classifier, as:

N∑
i=1

log
(
PB

(
c(i), a(i)

))
=

N∑
i=1

log
(
PB

(
c(i)
∣∣a(i)

))
+

N∑
i=1

log
(
PB

(
a

(i)
1 , . . . , a(i)

n

))
.

In the equation above, the first term on the right-hand side measures how well the classifier
performs on DN , whereas the second term measures how well the classifier estimates the
joint distribution over the attributes. Thus, only the first term is related to the classification
task, and the latter term will therefore merely bias the model search; in fact, the latter
term will dominate the score if n is large. To overcome this problem, Friedman et al.
(1997) propose to replace MDL with predictive MDL, MDLp, defined as:

MDLp(B | DN) =
log N

2

∣∣∣Θ̂BS

∣∣∣− N∑
i=1

log
(
PB

(
c(i)
∣∣a(i) , Θ̂BS

))
. (3)

However, as also noted by Friedman et al. (1997),
∑N

i=1 log
(
PB

(
c(i)
∣∣∣a(i), Θ̂BS

))
cannot

be calculated efficiently in general.

The argument leading to the use of predictive MDL as a scoring function rests upon the
asymptotic theory of statistics. That is, model search based on MDLp is guaranteed to
select the best classifier w.r.t. both log-loss and 0/1-loss when N → ∞. Unfortunately,
though, the score may not be successful for finite data sets (Friedman 1997). To over-
come this potential drawback, Kohavi and John (1997) describe the wrapper approach.
Informally, this method amounts to estimating the accuracy of a given classifier by cross
validation (based on the training data), and to use this estimate as the scoring function.
The wrapper approach relieves the scoring function from being based on approximations
of the classifier design, but at the potential cost of higher computational complexity. In
order to reduce this complexity when learning a classifier, one approach is to focus on a
particular sub-class of BNs. Usually, these sub-classes are defined by the set of indepen-
dence statements they encode. For instance, one such restricted set of BNs is the Näıve
Bayes models which assume that P (C|A) ∝ P (C)

∏n
i=1 P (Ai|C), i.e., that Ai⊥⊥Aj |C.

Even though the independence statements of the NB models are often violated in practice,
these models have shown to provide surprisingly good classification results. Resent research

4

into explaining the merits of the NB model has emphasized the difference between the 0/1-
loss function and the log-loss, see e.g. (Friedman 1997; Domingos and Pazzani 1997).
Friedman (1997, p. 76) concludes:

Good probability estimates are not necessary for good classification; similarly,
low classification error does not imply that the corresponding class probabilities
are being estimated (even remotely) accurately.

The starting point of Friedman (1997) is that a classifier learned for a particular do-
main is a function of the training set. As the training set is considered a random sample
from the domain, the classifier generated by a learner can be seen as a random variable;
we shall use P̂ (C = c |A) to denote the learned classifier. Friedman (1997) character-

izes a classifier based on its bias (i.e., EDN

[
P (C |A)− P̂ (C |A)

]2
) and its variance (i.e.,

VarDN

(
P̂ (C |A)

)
); the expectations are taken over all possible training sets of size N .

Friedman (1997) shows that in order to learn classifiers with low 0/1-loss it may not be
sufficient to simply focus on finding a model with low classifier bias; robustness in terms
of low classifier variance can be just as important.

An example of a class of models where low bias (i.e., fairly high model expressibility) is
combined with robustness is the Tree Augmented Näıve Bayes (TAN) models, see (Fried-
man et al. 1997). TAN models relax the NB assumption by allowing a more general
correlation structure between the attributes. More specifically, a Bayesian network model
is initially created over the variables in A, and this model is designed s.t. each variable
Ai has at most one parent (that is, the structure is a directed tree). Afterwards, the class
attribute is included in the model by making it the parent of each attribute. Friedman
et al. (1997) use an adapted version of the algorithm by Chow and Liu (1968) to learn
the classifier, and they prove that the structure they find is the TAN which maximizes the
likelihood of DN ; the algorithm has time complexity O (n2(N + log(n))).

3 Hierarchical Näıve Bayes models

A special class of Bayesian networks is the so-called Hierarchical Näıve Bayes (HNB) mod-
els, a concept first introduced by Zhang et al. (2002), see also (Zhang 2002; Kočka and
Zhang 2002). An HNB is a tree-shaped Bayesian network, where the variables are parti-
tioned into three disjoint sets: {C} is the class variable, A is the set of attributes, and L
is a set of latent (or hidden) variables. In the following we use A to represent an attribute,
whereas L is used to denote a latent variable; X and Y denote variables that may be
either attributes or latent variables. In an HNB the class variable C is the root of the tree
(pa(C) = ∅) and the attributes are at the leaves (ch(A) = ∅, ∀A ∈ A); the latent variables
are all internal (ch (L) 6= ∅, pa (L) 6= ∅, ∀L ∈ L). The use of latent variables allows

5

conditional dependencies to be encoded in the model (as compared to e.g. the NB model).
For instance, by introducing a latent variable as a parent of the attributes Ai and Aj , we
can represent the (local) dependence statement Ai 6⊥⊥Aj |C. Being able to model such local
dependencies is particularly important for classification, as overlapping information would
otherwise be double-counted. Note that the HNB model reduces to the NB model in the
special case when there are no latent variables.

When learning an HNB we can restrict our attention to the parsimonious HNB models;
we need not consider models which encode a probability distribution that is also encoded
by another model which has fewer parameters. Formally, an HNB model, H = (BS, ΘBS

),
with class variable C and attribute variables A is said to be parsimonious if there does not
exist another HNB model, H ′ = (B′

S, Θ′
BS

), with the same class and attribute variables
s.t.:

i) H ′ has fewer parameters than H , i.e., |ΘBS
| > |Θ′

BS
|.

ii) The probability distributions over the class and attribute variables are the same in
the two models, i.e., P (C,A|BS, ΘBS

) = P (C,A|B′
S, Θ′

BS
).

In order to obtain an operational characterization of these models, Zhang et al. (2002)
define the class of regular HNB models. An HNB model is said to be regular if for any
latent variable L, with neighbours (parent and children) X1, X2, . . .Xn, it holds that:

|sp(L)| ≤
∏n

i=1 |sp(Xi)|
maxi=1,...,n |sp(Xi)| ,

and strict inequality holds when L has only two neighbours and at least one of them is a
latent node.

Zhang et al. (2002) show that i) any parsimonious HNB model is regular, and ii) for a
given set of class and attribute variables, the set of regular HNB model structures is finite.
Observe that these two properties ensure that when searching for an HNB model we only
need to consider regular HNB models and we need not deal with infinite search spaces.

As opposed to other frameworks, such as NB or TAN models, an HNB can model any
correlation among the attribute variables by simply choosing the state-spaces of the latent
variables large enough (although the encoding is not necessarily done in a cost-effective
manner in terms of model complexity); note that the independence statements are not
always represented explicitly in the graphical structure, but are sometimes only encoded
in the conditional probability tables. On the other hand, the TAN model, for instance,
is particular efficient for encoding such statements but may fail to represent certain types
of dependence relations among the attribute variables. A TAN model is, e.g., not able to
represent the statement “C = 1 if and only if exactly two out of the three attributes A1,
A2 and A3 are in state 1”.

6

4 Learning HNB classifiers

4.1 The main algorithm

Our search algorithm is based on a greedy search over the space of all HNBs; we initiate the
search with an HNB model, H0, and learn a sequence {Hk}, k = 1, 2 . . . of HNB models.
The search is conducted s.t. at each step we investigate the search boundary of the current
model (denoted B (Hk)), i.e., the set of models that can be reached from Hk in a single
step. From this set of models the algorithm always selects a model with a higher score
than the current one; if no such model can be found, then the current model is returned
(see Algorithm 1).

Algorithm 1 (Greedy search)

1. Initiate model search with H0;

2. For k = 0, 1, . . .

(a) Select H ′ = arg max
H∈B(Hk)

Score(H | DN);

(b) If Score(H ′ | DN) > Score(Hk | DN) then:
Hk+1 ← H ′; k ← k + 1;

else
return Hk;

In order to make the above algorithm operational we need to specify the score function
Score(· | DN) as well as the search operator (which again defines the search boundary).

The score-function is defined s.t. a high value corresponds to what is thought to be a
structure with good classification qualities (as measured by the average loss on unseen
data), i.e., Score(H | DN) measures the “goodness” of H . Note that the algorithm makes
sure that Score(Hk+1 | DN) > Score(Hk | DN) for k = 0, 1, . . . which ensures convergence
as long as the score is finite for all models. In order to apply a score metric that is closely
related to what the search algorithm tries to achieve, we use the wrapper approach by
Kohavi and John (1997). That is, we use cross validation (over the training set DN)
to estimate an HNB’s classification accuracy on unseen data; notice that the test-set (if
defined) is not used when the score is calculated.

The search operator is defined s.t. the HNB structure is grown incrementally. More specif-
ically, if Lk is the set of latent variables in model Hk, then the set of latent variables in
Hk+1, is enlarged s.t. Lk+1 = Lk∪{L}, where L is a new latent variable. We restrict ourself
to only considering candidate latent variables which are parents of two variables X and Y
where {X, Y } ⊆ ch (C) in Hk. Hence, we define Hk+1 as the HNB which is produced from

7

Hk by including a latent variable L s.t. pa (L) = {C} and pa (X) = pa (Y) = {L}; Hk+1 is
otherwise identical to Hk. Thus, the search boundary B(Hk) consists of all models where
exactly one latent variable has been added to Hk; there is one model in B(Hk) for each
possible definition of the state-space of each possible new latent variable. Finally, as our
starting point, H0, we use the NB model structure; this implies that each Hk is a tree with
a binary internal structure, i.e., any latent node L′ ∈ Lk has exactly two children but the
class node C may have up to n children. It is obvious that any distribution is in principle
reachable by the search algorithm but, as the score function is multi-modal over the search
space, the search will in general only converge towards a local optimum.

4.2 Restricting the search boundary

Unfortunately, B(Hk) is too large for the search algorithm to efficiently examine all models.
To overcome this problem we shall instead focus the search by only selecting a subset of the
models in B(Hk), and these models are then used to represent the search boundary. The
idea is to pinpoint a few promising candidates in the search boundary without examining
all models available. Basically the algorithm proceeds in two steps by first deciding where
to include a latent variable, and then defining the state-space of the new latent variable:1

1. Find a candidate latent variable.

2. Select the state-space of the latent variable.

Note that when using this two-step approach for identifying a latent variable, we cannot
use scoring functions such as the wrapper approach, MDL, or MDLp in the first step; this
step does not select a completely specified HNB.

Before describing the two steps in detail, recall that the algorithm starts out with an NB
model, and that the goal is to introduce latent variables to improve upon that structure,
i.e., to avoid “double-counting” of information when the independence statements of the
NB model are violated.

4.2.1 Step 1: Finding a candidate latent variable

To facilitate the goal of the algorithm, a latent variable L is proposed as the parent of
{X, Y } ⊆ ch (C) if the data points towards X 6⊥⊥Y |C. That is, we consider variables
that are strongly correlated given the class variable as indicating a promising position for
including a latent variable; from this perspective there is no reason to introduce a latent
variable as a parent of X and Y if X⊥⊥Y |C. Hence, the variables that have the highest

1Ideally, a candidate latent variable should be selected directly (that is, defining location and state-space
at the same time), but this is computationally prohibitive.

8

correlation given the class variable may be regarded as the most promising candidate-
pair. More specifically, we calculate the conditional mutual information given the class
variable, I(·, · |C), for all (unordered) pairs {X, Y } ⊆ ch (C). However, as I(X, Y |C)
is increasing in both |sp (X)| and |sp (Y)| we cannot simply pick the pair {X, Y } that
maximizes I(X, Y |C); this strategy would unintentionally bias the search towards latent
variables with children having large domains. Instead we utilize that:

2N · I(X, Y |C)
L→ χ2∣∣∣sp (C)

∣∣∣(∣∣∣sp (X)
∣∣∣−1

)(∣∣∣sp (Y)
∣∣∣−1

),

where
L→ means convergence in distribution as N →∞, see e.g. (Whittaker 1990). Finally,

we calculate
Q(X, Y | DN) = P (Z ≤ 2N · I(X, Y |C)) , (4)

where Z is χ2 distributed with |sp (C)| (|sp (X)| − 1) (|sp (Y)| − 1) degrees of freedom. The
pairs {X, Y } are ordered according to these probabilities, s.t. the pair with the highest
probability is picked out. By selecting the pairs of variables according to Q(X, Y | DN),
the correlations are normalized w.r.t. the size differences in the state-spaces.

Unfortunately, to greedily select a pair of highly correlated variables as the children of a
new latent variable is not always the same as improving classification accuracy, as can be
seen from the example below:2

Example 1 Consider a classifier with binary attributes A = {A1, A2, A3} (all with uni-
form marginal distributions) and target concept C = 1 ⇔ {A1 = 1 ∧ A2 = 1}. Assume
that A1 and A2 are marginally independent but that P (A2 = A3) = 0.99. It then follows
that:

P (Q(A2, A3 | DN) > Q(A1, A2 | DN))→ 1

as N grows large (the uncertainty is due to the random nature of DN). Hence, the heuristic
will not pick out {A1, A2} which is most beneficial w.r.t.˙ classification accuracy, but will
propose to add a variable L′ with children ch (L′) = {A2, A3}.

4.2.2 Step 2: Selecting the state-space

To find the cardinality of a latent variable L, we use an algorithm similar to the one
by Elidan and Friedman (2001): Initially, the latent variable is defined s.t. |sp (L)| =∏

X∈ch(L) |sp (X)|, where each state of L corresponds to exactly one combination of the
states of the children of L. Let the states of the latent variable be labelled l1, . . . , lt.
We then iteratively collapse two states li and lj into a single state l∗ as long as this is
“beneficial”. Ideally, we would measure this benefit using the wrapper approach, but as
this is computationally expensive we shall instead use the MDLp score to approximate the

2This issue is also discussed in Section 6.

9

classification accuracy. Let H ′ = (B′
S,ΘB′

S
) be the HNB model obtained from a model

H = (BS,ΘBS
) by collapsing states li and lj . Then li and lj should be collapsed if and only

if ∆L(li, lj | DN) = MDLp (H | DN) −MDLp (H ′ | DN) > 0. For each pair (li, lj) of states
we therefore compute:

∆L(li, lj | DN) = MDLp(H|DN)−MDLp(H
′|DN)

=
log(N)

2

(|ΘBS
| − ∣∣ΘB′

S

∣∣)+ N∑
i=1

[
log
(
PH′(c(i)|a(i))

)− log
(
PH(c(i)|a(i))

)]
.

For the second term we first note that:

N∑
i=1

[
log
(
PH′(c(i)|a(i))

)− log
(
PH(c(i)|a(i))

)]
=

N∑
i=1

log
PH′(c(i)|a(i))

PH(c(i)|a(i))

=
∑

D∈DN :f(D,li,lj)

log
PH′

(
cD|aD

)
PH (cD|aD)

,

where f(D, li, lj) is true if case D includes either {L = li} or {L = lj}; cases which does not
include these states cancel out. This is also referred to as local decomposability in (Elidan
and Friedman 2001), i.e., the gain of collapsing two states li and lj is local to those states
and it does not depend on whether or not other states have been collapsed. In order to
avoid considering all possible combinations of the attributes we approximate the difference
in predictive MDL as the difference w.r.t. the relevant subtree. The relevant subtree is
defined by C together with the subtree having L as root:3

∑
D∈DN :f(D,li,lj)

log
PH′

(
cD|aD

)
PH (cD|aD)

(5)

≈ log
∏

c∈sp (C)

[(
N(c, li)

N(li)

)N(c,li)

·
(

N(c, lj)

N(lj)

)N(c,lj)

/

(
N(c, li) + N(c, lj)

N(li) + N(lj)

)N(c,li)+N(c,lj)
]

,

where N(c, s) and N(s) are the sufficient statistics, e.g., N(c, s) =
∑N

i=1 γ(C = c, L = s :
Di); γ(C = c, L = s : Di) takes on the value 1 if (C = c, L = s) appears in case Di, and
0 otherwise; N(s) =

∑
c∈sp (C) N(c, s). Note that Equation 5 is in fact an equality if the

relationship between C and ch (C) satisfy independence of causal influence (Heckerman
and Breese 1994).

States are collapsed in a greedy manner, i.e., we find the pair of states with highest
∆L(li, lj | DN) and collapse those two states if ∆L(li, lj | DN) > 0. This is repeated (making
use of local decomposability) until no states can be collapsed, see also Algorithm 2.

3The relevant subtree can also be seen as the part of the classifier structure that is directly affected by
the potential collapse of the states li and lj .

10

Algorithm 2 (Determine state-space of L)

1. Initiate state-space s.t. |sp (L)| = ∏
X∈ch (L) |sp (X)|;

Label the states s.t. each state corresponds to a unique combination of ch (L);

2. For each {li, lj} ⊆ sp (L) do:
Calculate ∆L(li, lj | DN);

3. Select {l′i, l′j} ⊆ sp (L) s.t. ∆L(l′i, l
′
j | DN) is maximized;

4. If ∆L(l′i, l
′
j | DN) > 0 then:

Collapse states l′i and l′j ; goto 2;

5. Return state-space of L.

It should be noted that Elidan and Friedman (2001) initialize their search with one state
in L for each combination of the variables in the Markov blanket of L, whereas we use the
smaller set of variables defined by ch (L). This is done to facilitate a semantic interpretation
of the latent variables (described below), and it does not exclude any regular HNB models.4

Example 2 (Example 1 cont’d) The state-space of L′ with ch (L′) = {A2, A3} is col-
lapsed by Algorithm 2 after L′ is introduced. For large N the penalty term in MDLp ensures
that the state-space will be collapsed to two states mirroring the states of A2 because L′

will not significantly change the predictive likelihood from what the model previously held
(note that P (C = c |A2, A3,DN) ≈ P (C = c |A2,DN)). Hence, by introducing L′ we get
a more robust classifier, where the classification noise introduced by A3 is removed. The
latent variable L′′ with children ch (L′′) = {L′, A1} will be introduced in the next iteration
of Algorithm 1, and the target concept can eventually be learned.

An important side-effect of Algorithm 2 is that we can give a semantic interpretation to
the state-spaces of the latent variables: L ∈ L aggregates the information from its children
which is relevant for classification. If, for example, L is the parent of two binary variables
A1 and A2, then Algorithm 2 is initiated s.t. L’s state-space is sp (L) = {A1 = 0 ∧ A2 =
0, A1 = 0∧A2 = 1, A1 = 1∧A2 = 0, A1 = 1∧A2 = 1}. When the algorithm collapses states,
we can still maintain an explicit semantics over the state-space, e.g., if the first and second
state is collapsed we obtain a new state defined as (A1 = 0∧A2 = 0)∨(A1 = 0∧A2 = 1), i.e.,
A1 = 0. Having such an interpretation can be of great importance when the model is put
into use: The semantics allows a decision maker to inspect the “rules” that form the basis
of a given classification. Through this insight she can consider whether the classification
of the system should be overruled or accepted.

Another important aspect of the semantic interpretation, is that it allows us to infer data
for the latent variables due to the deterministic relations encoded in the model. This

4Note that we do not consider regular HNB models with singly connected latent variables.

11

fact provides us with a fast calculation scheme, as we “observe” all the variables in A
and L. Therefore, it also follows that we can represent the HNB classifier using only the
class variable and its children. Hence, the representation we will utilize is a Näıve Bayes
structure where the “attributes” are represented by the variables which occur as children
of the class variable in the HNB model. It is simple to realize that the number of free
parameters required to represent this structure equals:

|ΘBS
| = (|sp (C)| − 1) + |sp (C)|

∑
X∈ch (C)

(|sp (X)| − 1) , (6)

see also (Kočka and Zhang 2002). Hence, the difference in predictive MDL (used in Algo-
rithm 2) can be approximated by:

∆L(li, lj) ≈ log2(N)
|sp (C)|

2
(7)

−
∑

c∈sp (C)

N(c, li) log2

(
N(c, li)

N(c, li) + N(c, lj)

)

−
∑

c∈sp (C)

N(c, lj) log2

(
N(c, lj)

N(c, li) + N(c, lj)

)

+ N(li) log

(
N(li)

N(li) + N(lj)

)
+ N(lj) log

(
N(lj)

N(li) + N(lj)

)
.

Note again that the approximation is exact if the relationship between C and the children
of C can be modelled using independence of causal influence.

4.2.3 The search boundary

By following the two-step procedure described above, the focusing algorithm produces a
single candidate model H ′ ∈ B(Hk) to represent the search boundary. However, from
our experiments we have found that picking out a single model to represent the search
boundary is not an adequate representation of B(Hk). We can easily solve this drawback
in at least two different ways:

i) Go through the candidate latent nodes one at a time in order of decreasing Q(·, · | DN),
and accept the first candidate model H ′′ ∈ B(Hk) for which Score(H ′′ | DN) >
Score(Hk | DN) in Step 2b of Algorithm 1.

ii) Limit the number of candidates used to represent the boundary to κ > 1 models,
and do a greedy search over these models.

The first approach can be seen as a hill-climbing search, where we use Equation 4 to guide
the search in the right direction. Step 2a will in this case not be a maximization over

12

B(Hk), but merely a search for a model which can be accepted in Step 2b. In Step 2a the
algorithm may have to visit all models in the boundary B′(Hk) ⊂ B(Hk) where B′(Hk) is
defined s.t. each possible latent node is represented by exactly one state-space specification,
i.e., a total of O(n2) models. On the other hand, the second approach will only examine κ
models in Step 2a. It follows that alternative i) has higher computational complexity; in
fact we may have to inspect O(n3) candidates before the algorithm terminates (Step 2 may
be repeated n−1 times), and since inspecting each candidate latent variable involves costly
calculations it may be computationally expensive. For the results reported in Section 5 we
have therefore used the second alternative: A fixed number of candidate models (κ = 10)
are selected from the search boundary, and the search proceeds as in Algorithm 1. The
computational complexity of this approach is detailed in Section 4.3.

An immediate approach for implementing this refined algorithm would be to: 1) pick
out the κ node pairs that have the strongest correlation (according to Equation 4), 2)
find the associated state-spaces, and 3) select the model with the highest score in Step
2a. However, to increase the robustness of the algorithm, we do it slightly differently:
Initially, we randomly partition the training data DN in κ partly overlapping subsets,
each containing (κ− 1)/κ of the training data, and then each of these subsets are used to
approximate the best model in the search boundary; this results in a list of up to κ different
candidate models. We let these models represent B(Hk), and continue as if this was the
whole boundary: If the best model amongst them (the one with the highest accuracy
estimated by cross validation over the training data) is better than the current model
candidate, we select that one and start all over again. If the best model is inferior to the
current model, the search algorithm terminates, and the current model is returned (see
Algorithm 3).

Algorithm 3 (Find HNB classifier)

1. Initiate model search with H0;

2. Partition the training-set into κ partly overlapping subsets D(1), . . . ,D(κ);

3. For k = 0, 1, . . . , n− 1

(a) For i = 1, . . . , κ

i. Let {X(i), Y (i)} = arg max{X,Y }⊆ch (C) Q
(
X, Y | D(i)

)
(i.e.,

{
X(i), Y (i)

} ⊆ ch (C) in Hk), and define the latent

variable L(i) with children ch
(
L(i)
)

=
{
X(i), Y (i)

}
;

ii. Collapse the state-space of L(i) (Algorithm 2 with D(i) used
in place of DN);

iii. Define H(i) by introducing L(i) into Hk;

(b) H ′ = arg max
i=1,...,κ

Score
(
H(i) | DN

)
;

13

(c) If Score(H ′ | DN) > Score(Hk | DN) then:
Hk+1 ← H ′; k ← k + 1;

else
return Hk;

4. Return Hn;

4.3 Complexity analysis

When analyzing the complexity of the algorithm we can divide the description into three
steps:

1) Find a candidate latent variable.

2) Find the state-space of a candidate latent variable, and check if it is useful.

3) Iterate until no more candidate latent variables are accepted.

Part 1
Proposing a candidate latent variable corresponds to finding the pair (X, Y) of variables
having the strongest correlation (Equation 4). There are at most (n2 − n)/2 such pairs,
where n is the number of attribute variables. Calculating the conditional mutual informa-
tion for a pair of variables can be done in time O(N) (N being the number of cases in the
database) hence, calculating the correlation measure for each pair of variables can be done
in time O(N · n2). Finally, the list is sorted (to accommodate future iterations), and the
resulting time complexity is O(n2 · (N + log(n))).

Part 2
When determining the cardinality of a latent variable, L, we consider the gain of collaps-
ing two states as compared to the current model; the gain is measured as the difference
in predictive MDL. The time complexity of calculating the gain of collapsing two states
is simply O(N), see Equation 7. Due to local decomposability, the gain of collapsing
two states has no effect on collapsing two other states, and there are therefore at most
(|sp (L)|2 − |sp (L)|)/2 possible combinations, i.e., O(|sp (L)|2 · N). When two states are
collapsed, ∆L(·, ·) must be calculated for |sp (L)| − 1 new state combinations, next time
|sp (L)|−2 state combinations are evaluated, and so on; the collapsing is performed at most
|sp (L)| − 1 times. The time complexity of finding the state-space of a candidate latent
variable is therefore O

(
N · |sp (L)|2 + N · |sp (L)| (|sp (L)| − 1)/2

)
= O(|sp (L)|2 ·N).

Having found the cardinality of a candidate variable, say L, we test whether it should
be included in the model using the wrapper approach. From the rule-based propagation
method it is easy to see that the time complexity of this task is O(n ·N). Thus, the time
complexity of Part 2 is O((n + |sp (L)|2) ·N).

14

Part 3
Each time a latent variable is introduced we would in principle need to perform the above
steps again, and the time complexity would therefore be n− 1 times the time complexities
above. However, as described below some of the previous calculations can be reused.

First of all, as Q(X, Y |D) is a local measure we only need to calculate Q(L, Z|D), Z ∈
ch (C), where L is the latent variable introduced in the previous iteration. Moreover, since
we need to calculate Q(L, ·|D) at most n− 2 times, the time complexity will be O(n ·N),
and, as the pairs (X, Y) are still sorted according to Q(X, Y |D), we only need to sort
n − 2 pairs, i.e., after having included a latent variable the re-initialization of step 1 has
complexity O(n ·N + (n− 1) · log(n− 1)) = O(n · (N + log(n))).

Moreover, after having introduced a latent variable L with children X and Y , we cannot
create another latent variable having either X or Y as a child (due to the structure of the
HNB model). Thus, after having included a latent variable the cardinality of the resulting
set of candidate pairs is reduced by n− 1. This implies that we will perform at most n− 2
re-initializations, thereby giving the overall time complexity O(n2 ·N +n·(n·(N +log(n))+
(|sp (L)|2 ·N))) = O(n2 · (log(n) + |sp (L)|2 ·N)).

5 Empirical results

In this section we will investigate the merits of the proposed learning algorithm by using
it to learn classifiers for a number of different domains. All data-sets are taken from the
Irvine Machine Learning Repository (Blake and Merz 1998), see Table 1 for a summary of
the 22 datasets used in this empirical study.

We have compared the results of the HNB classifier to those of the Näıve Bayes model
(Duda and Hart 1973), the TAN model (Friedman et al. 1997), C5.0 (Quinlan 1998),
and a standard implementation of neural networks with one hidden layer trained by back-
propagation.5 As some of the learning algorithms require discrete variables, the attributes
were discretized using the entropy-based method of (Fayyad and Irani 1993). In addi-
tion, instances containing missing attribute-values were removed; all pre-processing was
performed using MLC++ (Kohavi et al. 1994).

The accuracy-results are given in Table 2. For each dataset we have estimated the accuracy
of each classifier (in percentage of instances which are correctly classified), and give a
standard deviation of this estimate. The standard deviations are the theoretical values
calculated according to (Kohavi 1995), and are not necessarily the same as the empirical
standard deviations observed during cross validation. For comparison of the algorithms

5We used Clementine (SPSS Inc. 2002) to generate the C5.0 and neural network models. We have
not compared our system to that of (Zhang et al. 2002) because of the high computational complexity of
Zhang et al.’s algorithm. However, the numerical results reported by Zhang et al. (2002) point towards
our model offering significantly better classification accuracy.

15

#Inst #Inst
Database #Att #Cls Train Test Database #Att #Cls Train Test
postop 8 3 90 CV(5) cleve 13 2 296 CV(5)
iris 4 3 150 CV(5) wine 13 3 178 CV(5)
monks-1 6 2 124 432 thyroid 5 3 215 CV(5)
monks-2 6 2 124 432 ecoli 7 8 336 CV(5)
monks-3 6 2 124 432 breast 10 2 683 CV(5)
glass 9 7 214 CV(5) vote 16 2 435 CV(5)
glass2 9 2 163 CV(5) crx 15 2 653 CV(5)
diabetes 8 2 768 CV(5) australian 14 2 690 CV(5)
heart 13 2 270 CV(5) chess 36 2 2130 1066
hepatitis 19 2 155 CV(5) vehicle 18 4 846 CV(5)
pima 8 2 768 CV(5) soybean-large 35 19 562 CV(5)

Table 1: A summary of the 22 databases used in the experiments: #Att indicates the
number of attributes; #Cls is the number of classes; #Inst is the number of instances
(given separately for training and test sets). CV(5) denotes 5-fold cross validation. Further
details regarding the datasets can be found at the UCI Machine Learning Repository.

we made sure that the same cross validation folds were used for all the different learning
methods. The best result for each dataset is given in boldface. We note that the HNB
classifier achieves the best result for 10 of the 22 datasets, comes top-two for all but 5
datasets, and also has the best performance averaged over all datasets.

To quantify the difference between the HNB classifier and the other classifiers we advocate
the method of (Kohavi 1995); Kohavi (1995) argues that the true merit of a classifier
cannot be found by calculating the accuracy on a finite test-set. Instead we define α as the
true accuracy of a classifier (only to be found if the target concept of the domain is known
or fully described by an infinite test set), and we use α̂ to denote the estimate of α based
on a test set of size N . Kohavi (1995) argues that α̂ is approximately Gaussian distributed
with expectation α and variance α · (1− α)/N for large N . In our setting we have several
datasets (indexed by i = 1, . . . , t; t is the number of datasets, i.e., t = 22 in this study) and
several classifier algorithms (indexed by j), and with this notation Kohavi’s approximation
can be written as α̂ij ∼ N (αij, αij · (1 − αij)/Ni). To simplify, we assume α̂ij⊥⊥α̂ik for
j 6= k and α̂ij⊥⊥α̂`j for i 6= `. Finally, we use the estimated standard deviation sij (given
in Table 2) as if it was known. It follows that under the hypothesis that classifiers j and
k are equally capable (αij = αik, i = 1, . . . , t) then:

Λi(j, k) = α̂ij − α̂ik ∼ N (0, s2
ij + s2

ik) , Λ(j, k) =
t∑

i=1

Λi

t
∼ N

(
0,

t∑
i=1

s2
ij + s2

ik

t2

)
.

This enables us to test the hypothesis that the HNB classifier is not better than the other
classifiers; more precisely we test the hypothesis H0: Λ(·, ·) ≤ 0 against H1: Λ(·, ·) > 0,

16

Database NB TAN C5.0 NN HNB
postop 64.25+/-5.0 63.20+/-5.1 67.31+/-4.9 63.04+/-5.1 68.95+/-4.9
iris 94.00+/-2.0 94.00+/-2.0 93.55+/-2.0 90.32+/-2.4 94.00+/-2.0
monks-1 71.53+/-2.2 95.83+/-1.0 75.50+/-2.1 96.54+/-0.9 100.0+/-0.1
monks-2 62.04+/-2.3 66.90+/-2.3 65.05+/-2.3 99.77+/-0.3 66.20+/-2.0
monks-3 97.22+/-0.8 96.06+/-0.9 97.22+/-0.8 97.22+/-0.8 97.22+/-0.8
glass 71.04+/-3.1 70.56+/-3.1 72.42+/-3.1 68.50+/-3.2 71.04+/-3.1
glass2 81.61+/-3.0 81.69+/-3.0 80.37+/-3.1 82.21+/-3.0 84.11+/-3.1
diabetes 75.65+/-1.5 75.25+/-1.6 74.25+/-1.6 73.08+/-1.6 75.25+/-1.5
heart 83.70+/-2.2 84.07+/-2.2 80.36+/-2.4 81.45+/-2.4 85.93+/-2.3
hepatitis 92.34+/-2.1 87.25+/-2.7 84.89+/-2.9 74.23+/-3.5 93.29+/-2.1
pima 76.17+/-1.5 74.74+/-1.6 73.68+/-1.6 72.96+/-1.6 76.04+/-1.5
cleve 83.46+/-2.1 81.38+/-2.2 79.08+/-2.4 80.36+/-2.3 83.45+/-2.2
wine 98.86+/-0.8 96.03+/-1.5 93.45+/-1.9 94.49+/-1.7 98.86+/-0.8
thyroid 92.56+/-1.8 93.02+/-1.7 93.64+/-1.7 92.73+/-1.8 93.02+/-1.7
ecoli 80.95+/-2.1 79.76+/-2.2 82.70+/-2.1 78.89+/-2.2 82.44+/-2.1
breast 97.36+/-0.6 96.19+/-0.7 94.92+/-0.8 96.36+/-0.7 97.36+/-0.6
vote 90.11+/-1.4 92.64+/-1.3 94.55+/-1.1 95.00+/-1.1 93.15+/-1.3
crx 86.22+/-1.3 83.93+/-1.4 85.71+/-1.4 85.71+/-1.4 86.51+/-1.3
australian 85.80+/-1.3 82.32+/-1.5 85.61+/-1.3 83.88+/-1.4 84.64+/-1.4
chess 87.12+/-1.0 92.48+/-0.8 89.60+/-0.9 97.78+/-0.5 93.71+/-0.7
vehicle 59.09+/-1.7 68.79+/-1.6 67.80+/-1.6 66.74+/-1.6 63.59+/-1.7
soybean-large 92.90+/-1.0 91.28+/-1.1 93.82+/-1.0 92.25+/-1.1 92.36+/-1.1
Average 82.91 83.97 82.98 84.71 85.52

Table 2: Calculated accuracy for the 22 datasets used in the experiments. The results are
given together with their theoretical standard deviation.

17

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

NB classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

TAN classification error

a) NB vs. HNB b) TAN vs. HNB

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

C5.0 classification error

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35 40 45

H
N

B
 c

la
ss

ifi
ca

tio
n

er
ro

r

NN classification error

c) C5.0 vs. HNB d) NN vs. HNB

Figure 2: Scatter plot of classification error for HNB and a selection of other classification
systems. In each plot, a point represents a dataset. The HNB’s classification error is given
on the x-axis, whereas the other system’s error is given on the y-axis. Hence, data points
below the diagonal corresponds to datasets where the HNB is superior, whereas points
above the diagonal are datasets where the HNB classifier is inferior to the other system.

where the classifiers are labelled s.t. higher average accuracy for the HNB classifier coincides
with a positive value of Λ(·, ·). With this setup H0 is rejected at level p = 5 · 10−12 (NB),
p = 6 · 10−6 (TAN), p = 6 · 10−11 (C5.0) and p = .02 (NN).

Finally, we note that in some of the domains the HNB models come up with an interesting
latent structure. We are not experts to tell whether these structures are in fact meaningful,
but some of them are at least worth attention. For example, in the heart model the HNB
aggregates information about “Chest pain” and “Training induced angina”. The probabil-
ity of a heart disease increases slightly when chest pain is of a certain type; this probability
can then again be increased dramatically if the instance also contains information about a
training induced angina. Training induced angina has no effect in the model if chest pain is
not of this particular type. Note that the classifier in this example uses the latent variable
to encode context specific independence (Boutilier et al. 1996).

18

6 Discussion

6.1 Parameter learning

The parameters in the model are estimated by their maximum likelihood values. This
may not be optimal for classification, and recent research has shown some improvement
in classification accuracy when the parameters are chosen otherwise (Wettig et al. 2002).
However, to support the interpretation of the empirical results in Section 5 we have delib-
erately not taken the opportunity of improving the classification accuracy further in this
way. Optimization of the model is left for future work.

6.2 Finding candidate latent variables

As described by Example 1 and Example 2 the search for candidate latent variables may
introduce a latent variable for a pair of variables which are marginally dependent, but where
only one of the variables is actually dependent on the class variable C; as also shown is
the examples, this does not jeopardize classification accuracy (actually it can be seen as
a form of feature selection). Similarly, if several attributes are marginally dependent but
independent of the class variable, the algorithm performs some redundant computations:
For each such pair of attributes we include a latent variable, but as these attributes are
independent of the class variable all states of such a latent variable are collapsed and the
effect of the attributes on the classification result is removed.

Obviously both of the above mentioned problems can be overcome by simply performing
a feature selection before initializing the learning algorithm. However, another approach
would be to apply a correlation measure which directly considers the probability distribu-
tion over the class variable conditioned on the two variables X and Y in question. That is,
the difference between the probability distribution P (C|X, Y) and the probability distribu-
tion P ′(C|X, Y), where the latter is encoded by the model where X⊥⊥Y |C. This distance
can be described using the well-known Kullback-Leibler (KL) divergence (Kullback and
Leibler 1951) averaged over the possible states of X and Y :

E(KL(P ; P ′)|X, Y) =
∑
x,y

P (x, y)
∑

c

P (c|x, y) log

(
P (c|x, y)

P ′(c|x, y)

)
.

In the context of classification, this distance measure can also be given another interpre-

19

tation by observing that:

E(KL(P ; P ′)|X, Y) =
∑
c,x,y

P (c, x, y) log

(
P (c, x, y)

P (x, y)
· 1

P ′(c|x, y)

)

=
∑
c,x,y

P (c, x, y) log

(
P (c, x, y)

P (x, y)
·
∑

c(P (x|c)P (y|c)P (c))

P (x|c)P (y|c)P (c)

)

=
∑
x,y,c

P (x, y, c) log

(
P (x, y|c)

P (x|c)P (y|c)
)

−
∑
x,y

P (x, y) log

(
P (x, y)∑

c P (x|c)P (y|c)P (c)

)

= I(X, Y |C)−KL(P (X, Y), P ′(X, Y)).

Thus, the expected KL-divergence can be interpreted as the difference in conditional mu-
tual information between X and Y conditioned on C, and the KL-divergence between
P (X, Y) in the unconstrained model and the model where X⊥⊥Y |C. In particular, if X
and Y are marginally dependent but independent of the class variable C, we would have
E(KL(P ; P ′)|X, Y) = 0 whereas I(X, Y |C) > 0 would have suggested that a latent variable
should be introduced. Thus, this distance measure also takes into account that variables
may be marginally dependent but independent of the class variable.

6.3 Inference and model structure

The algorithm for collapsing the state-space of a latent variable is the source of the se-
mantics for these nodes, and in turn the reason why we can represent the HNB as a Näıve
Bayes model with aggregations in place of the attributes. This compact representation
requires a “deterministic inference engine” to calculate P (C |a), because the aggregations
defined by the semantics of the latent variables can in general not be encoded by the condi-
tional probability tables for the variables. Assume, for instance, that we have three binary
variables L, X, Y , ch (L) = {X, Y }, and “L = 1 if and only if X = Y ”. This relationship
cannot be encoded in the model X ← L→ Y , and to infer the state of the latent variable
L from X and Y we would therefore need to design a special inference algorithm which
explicitly uses the semantics of L. To alleviate this potential drawback we can simply re-
define the network-structure: Introduce a new latent variable L′, and change the network
structure s.t. ch (L) = pa (X) = pa (Y) = {L′}; L′ is equipped with at most one state for
each possible combination of its children’s states. This enlarged structure is capable of
encoding any relation between {X, Y } and L using the conditional probability tables only.
Hence, the enlarged structure can be handled by any standard BN propagation algorithm
and, since the structure is still an HNB, the inference can be performed extremely fast.

20

7 Concluding remarks

In this paper we have used Hierarchical Näıve Bayes models for classification, and through
experiments we have shown that the HNB classifiers offer results that are significantly
better than those of other commonly used classification methods. Moreover, a number
of existing tools may be able to improve the classification accuracy even further. These
include feature selection (Kohavi and John 1997), smoothing (significant improvements
reported by (Friedman et al. 1997) for some model classes), and supervised learning of the
probability parameters (Wettig et al. 2002). We leave the investigation of these sources
of potential improvements for future work. Finally, the proposed learning algorithm also
provides an explicit semantics for the latent structure of a model. This allows a decision
maker to easily deduce the rules which govern the classification of some instance hence,
the semantics may also increase the user’s confidence in the model.

Acknowledgements

We have benefited from interesting discussions with the members of the Decision Support
Systems group at Aalborg University, in particular Tomás Kočka, Nevin L. Zhang, and
Jǐŕı Vomlel. We would like to thank Hugin Expert (www.hugin.com) for giving us access
to Hugin Decision Engine which forms the basis for our implementation. The first author
was supported by a grant from the Research Council of Norway.

References

Blake, C. and C. Merz (1998). UCI repository of machine learning databases. URL:
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Boutilier, C., N. Friedman, M. Goldszmidt, and D. Koller (1996). Context-specific inde-
pendence in Bayesian networks. In Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence, Portland, OR., pp. 115–123.

Chow, C. K. and C. Liu (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory 14, 462–467.

Cowell, R. G., A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter (1999). Probabilistic
Networks and Expert Systems. Statistics for Engineering and Information Sciences.
New York: Springer Verlag.

Domingos, P. and M. Pazzani (1997). On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29 (2–3), 103–130.

Duda, R. O. and P. E. Hart (1973). Pattern Classification and Scene Analysis. New
York: John Wiley & Sons.

21

Elidan, G. and N. Friedman (2001). Learning the dimensionality of hidden variables. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
San Francisco, CA., pp. 144–151. Morgan Kaufmann Publishers.

Fayyad, U. M. and K. B. Irani (1993). Multi-interval discretization of continuous-valued
attributes for classification learning. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, San Mateo, CA., pp. 1022–1027. Morgan
Kaufmann Publishers.

Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse of dimensionality.
Data Mining and Knowledge Discovery 1 (1), 55–77.

Friedman, N., D. Geiger, and M. Goldszmidt (1997). Bayesian network classifiers. Ma-
chine Learning 29 (2–3), 131–163.

Greiner, R., A. J. Grove, and D. Schuurmans (1997). Learning Bayesian nets that per-
form well. In Proceedings of the Thirteenth Annual Conference on Uncertainty in
Artificial Intelligence, San Francisco, CA., pp. 198–207. Morgan Kaufmann Publish-
ers.

Heckerman, D. and J. S. Breese (1994). A new look at causal independence. In Proceed-
ings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence, San
Francisco, CA., pp. 286–292. Morgan Kaufmann Publishers.

Jensen, F. V. (2001). Bayesian Networks and Decision Graphs. New York: Springer
Verlag.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, San Mateo, CA., pp. 1137–1143. Morgan Kaufmann
Publishers.

Kohavi, R., G. John, R. Long, D. Manley, and K. Pfleger (1994). MLC++: A machine
learning library in C++. In Proceedings of the Sixth International Conference on
Tools with Artificial Intelligence, pp. 740–743. IEEE Computer Society Press.

Kohavi, R. and G. H. John (1997). Wrappers for feature subset selection. Artificial
Intelligence 97 (1–2), 273–324.

Kononenko, I. (1991). Semi-naive Bayesian classifier. In Proceedings of Sixth European
Working Session on Learning, Berlin. Springer Verlag.

Kočka, T. and N. L. Zhang (2002). Dimension correction for hierarchical latent class
models. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence, San Francisco, CA., pp. 267–274. Morgan Kaufmann Publishers.

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. Annals of Math-
ematical Statistics 22, 79–86.

Lam, W. and F. Bacchus (1994). Learning Bayesian belief networks: An approach based
on the MDL principle. Computational Intelligence 10 (4), 269–293.

22

Mitchell, T. M. (1997). Machine Learning. Boston, MA.: McGraw Hill.

Pazzani, M. (1995). Searching for dependencies in Bayesian classifiers. In Proceedings of
the Fifth International Workshop on Artificial Intelligence and Statistics.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Mateo, CA.: Morgan Kaufmann Publishers.

Quinlan, R. (1998). C5.0: An informal tutorial. Available from the internet at URL:
http://www.rulequest.com/see5-unix.html.

Rissanen, J. (1978). Modelling by shortest data description. Automatica 14, 465–471.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461–
464.

SPSS Inc. (2002). Clementine v6.5. http://www.spss.com/spssbi/clementine/index.htm.

Wettig, H., P. Grünwald, T. Roos, P. Myllymäki, and H. Tirri (2002). On supervised
learning of Bayesian network parameters. HIIT Technical Report 2002-1, Helsinki
Institute for Information Technology.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Chichester:
John Wiley & Sons.

Zhang, N. (2002). Hierarchical latent class models for cluster analysis. In Proceedings of
the Eighteenth National Conference on Artificial Intelligence, Menlo Park, CA., pp.
230–237. AAAI Press.

Zhang, N., T. D. Nielsen, and F. V. Jensen (2002). Latent variable discovery in classifi-
cation models. Available from the first author upon request.

23

IV

Parameter Learning in Object Oriented Bayesian Networks

Paper IV is not included due to copyright.

V

Fusion of Domain Knowledge with Data for Structural Learning in

Object Oriented Domains

To appear in Journal of Machine Learning Research

Fusion of Domain Knowledge with Data for Structural
Learning in Object Oriented Domains

Helge Langseth∗
hl@cs.auc.dk

Thomas D. Nielsen tdn@cs.auc.dk

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, DK-9220 Aalborg Ø, Denmark

Editor: Richard Dybowski

Abstract

When constructing a Bayesian network, it can be advantageous to employ structural learn-
ing algorithms to combine knowledge captured in databases with prior information provided
by domain experts. Unfortunately, conventional learning algorithms do not easily incor-
porate prior information, if this information is too vague to be encoded as properties that
are local to families of variables. For instance, conventional algorithms do not exploit prior
information about repetitive structures, which are often found in object oriented domains
such as computer networks, large pedigrees and genetic analysis.

In this paper we propose a method for doing structural learning in object oriented
domains. It is demonstrated that this method is more efficient than conventional algo-
rithms in such domains, and it is argued that the method supports a natural approach for
expressing and incorporating prior information provided by domain experts.
Keywords: Bayesian networks, structural learning, object orientation, knowledge fusion

1. Introduction

The Bayesian network (BN) framework (Pearl, 1988, Jensen, 1996, 2001) has established
itself as a powerful tool in many areas of artificial intelligence. However, eliciting a BN
from a domain expert can be a laborious and time consuming process. Thus, methods for
learning the structure of a BN from data have received much attention during the last years,
for an overview see e.g. (Buntine, 1996, Krause, 1998). Current learning methods have been
successfully applied in learning the structure of BNs based on databases. Unfortunately,
though, only to a small extent do these methods incorporate prior information provided
by domain experts. Prior information is typically encoded by specifying a prior BN hence,
this information is restricted to the occurrence/absence of edges between specific pairs of
variables.

In domains that can appropriately be described using an object oriented language (Ma-
honey and Laskey, 1996, Mathiasen et al., 2000) we typically find e.g. repetitive substruc-
tures or substructures that can naturally be ordered in a superclass–subclass hierarchy. For
such domains, the expert is usually able to provide information about these properties.

∗. Current address: Department of Mathematical Sciences, Norwegian University of Science and Technol-
ogy, N-7491 Trondheim, Norway. helgel@math.ntnu.no.

c©2002 Helge Langseth and Thomas D. Nielsen.

Langseth & Nielsen

However, this information is not easily exploited by current learning methods due to the
practice mentioned above.

Recently, object oriented versions of the BN framework (termed OOBNs) have been
proposed in the literature, see e.g. (Mahoney and Laskey, 1996, Laskey and Mahoney, 1997,
Koller and Pfeffer, 1997, Bangsø and Wuillemin, 2000b). Although these object oriented
frameworks relieve some of the problems when modeling large domains, it may still prove
difficult to elicit the parameters and the structure of the model. Langseth and Bangsø
(2001) describe a method to efficiently learn the parameters in an object oriented domain
model, but the problem of specifying the structure still remains.

In this paper we propose a method for doing structural learning in an object oriented
domain based on the OOBN framework. We argue that OOBNs supply a natural frame-
work for encoding prior information about the general structure of the domain. Moreover,
we show how this type of prior information can be exploited during structural learning.
Empirical results demonstrate that the proposed learning algorithm is more efficient than
conventional learning algorithms in object oriented domains.

2. Object Oriented Bayesian Networks

Using small and “easy-to-read” pieces as building blocks to create a complex model is an
often applied technique when constructing large Bayesian networks. For instance, Prad-
han et al. (1994) introduce the concept of sub-networks which can be viewed and edited
separately, and frameworks for modeling object oriented domains have been proposed in
(Mahoney and Laskey, 1996, Laskey and Mahoney, 1997, Koller and Pfeffer, 1997, Bangsø
and Wuillemin, 2000b).

In what follows the framework of Bangsø and Wuillemin (2000b) will be described, as it
forms the formal basis for the proposed learning method. Note that we limit the description
to those parts of the framework that are relevant for the learning algorithm; further details
can be found in (Bangsø and Wuillemin, 2000a,b).

2.1 The OOBN framework

Consider a farm with two milk cows and two meat cows, and assume that we are interested
in modeling the environment’s effect on the milk and meat production of these cows.1

Following the object oriented idea (Mathiasen et al., 2000), we construct a Generic cow
class that describes the general properties common to all cows (see Figure 1): Specifically,
as we are interested in the milk and meat production, we let Milk and Meat be output
nodes of the class (depicted by shaded ellipses), i.e., nodes from a class usable outside the
instantiations of the class. Assuming that both the mother of a cow and the food a cow eats
influence its milk and meat production, we let Mother and Food be input nodes (depicted
by dashed ellipses) of the class; an input node is a reference to a node defined outside the
scope of the instantiations of the class. Nodes that are neither input nodes nor output
nodes are termed normal nodes. Note that the input nodes and output nodes form the
interface between an instantiation and the context in which the instantiation exists. In the
remainder of this paper we assume that all nodes are discrete.

1. A milk cow primarily produces milk and a meat cow primarily produces meat.

2

Knowledge Fusion for Structural Learning in OO Domains

A class may be instantiated several times with different nodes having influence on the
different instantiations through the input nodes hence, only the state space (the states
and their ordering) of the input nodes is known at the time of specification2 (e.g. the
cows might have different mothers). To avoid ambiguity when referring to a node in a
specific instantiation, the name of the node will sometimes be prefixed by the name of the
instantiation (i.e., Instantiation-name.Node-name).

Food

bolism
Meta-

Mother

Milk Meat

Generic cow

Figure 1: General properties common to all cows are described using the class Generic
cow. The arrows are links as in normal BNs. The dashed ellipses are input
nodes, and the shaded ellipses are output nodes.

In order to model the different properties of milk cows and meat cows, we introduce
the two classes Milk cow and Meat cow (see Figure 2). These two cow specifications
are subclasses of the Generic cow class (hence the “IS A Generic cow” in the top left
corner of each of the class specifications). In a general setting, a class S can be a subclass
of another class C if S contains at least the same set of nodes as C. This ensures that
an instantiation of S can be used anywhere in the OOBN instead of an instantiation of
C (e.g., an instantiation of Milk cow can be used instead of an instantiation of Generic
cow). Each node in a subclass inherits the conditional probability table (CPT) of the
corresponding node in its superclass unless the parent sets differ, or the modeler explicitly
overwrites the CPT. The sub–superclass relation is transitive but not anti-symmetric, so
to avoid cycles in the class hierarchy it is required that a subclass of a class cannot be a
superclass of that class as well. Furthermore, multiple inheritance is not allowed, so the
structure of the class hierarchy will be a tree or a collection of disjoint trees (called a forest).

Finally, to model the four cows in the live-stock we construct a class Stock that encap-
sulates the corresponding instantiations. In Figure 3 the boxes represent instantiations, e.g.
Cow1 is an instantiation of the class Meat cow, which is indicated by Cow1:Meat cow
inside the Cow1 instantiation. Note that only input nodes and output nodes are visible,
as they are the only part of an instantiation which directly interact with the encapsulat-
ing context (in this case the Stock class); this does not impose any constraints on which
variables may be observed, it is merely a design technique to easier maintain large domain
models. The double arrows are reference links. A reference link indicates that the leaf of

2. This is also referred to as strong type-checking, see (Bangsø and Wuillemin, 2000a) for details.

3

Langseth & Nielsen

Food

Meta-

mind

Music

bolism
State of

Mother

Milk cow IS A Generic cow

MeatMilk

Mother

mind

State of

Weather

Meta-
bolism

Food

Meat cow IS A Generic cow

MeatMilk

a) The Milk cow specification b) The Meat cow specification

Figure 2: a) A refined specification of a Milk cow. b) A refined specification of a Meat
cow.

the link is a reference (or pointer) to the root of that link.3 For instance, the input node
Mother of Cow1 is a reference to the node Daisy. This means that whenever the node
Mother is used inside the instantiation Cow1, the node Daisy will be the node actually
used (e.g., during inference).

MathildaWeatherFood

Cow1:Meat cow

Food WeatherMother

Cow3:Milk cow

FoodMother Mother

Cow4:Milk cow

MusicFood MotherFood Weather Music

MusicDaisy

Stock

Cow2:Meat cow

MeatMilk Milk Meat Milk Meat Milk Meat

Figure 3: The Stock class with two instantiations of the Milk cow class and two instan-
tiations of the Meat cow class. Note that some input nodes are not referencing
any nodes.

If there is more than one instantiation of a class (e.g. Cow1 and Cow2), the OOBN
framework gives rise to the OO assumption (Langseth and Bangsø, 2001). This assumption
states that the CPTs of one instantiation of a class are identical to the corresponding
CPTs of any other instantiation of that class (meaning that the domains of the CPTs are
compatible and that the table entries are identical).

As the subclasses in a class hierarchy may have a larger set of nodes than their super-
classes, the input set of a subclass S might be larger than the input set of its superclass
C. Thus, if an instantiation of S is used instead of an instantiation of C, the extra input

3. To avoid confusion with the normal links in the model we do not use the terms “parent” and “child”
when referring to reference links.

4

Knowledge Fusion for Structural Learning in OO Domains

nodes will not be referencing any nodes. To ensure that these nodes are associated with
potentials, the notion of a default potential is introduced: A default potential is a probabil-
ity distribution over the states of an input node, which is used when the input node is not
referencing any node. Note that a default potential can also be used when no reference link
is specified, even if this is not a consequence of subclassing. As an example we have that
not all the Mother nodes in Figure 3 reference a node, but because of the default potential
all nodes are still associated with a CPT. It is also worth noticing that the structure of
references is always a tree or a forest; cycles of reference links are not possible (Bangsø and
Wuillemin, 2000a).

Finally, inference can be performed by translating the OOBN into a multiply-sectioned
Bayesian network (Xiang et al., 1993, Xiang and Jensen, 1999), see (Bangsø and Wuil-
lemin, 2000a) for details on this translation. Alternatively, we can construct the underlying
BN of the OOBN: The underlying BN of an instantiation I, BNI, is the (conventional)
BN that corresponds to I including all encapsulated instantiations. There is exactly one
such underlying BN for a given instantiation, and it can be constructed using the following
algorithm (Langseth and Bangsø, 2001):

Algorithm 1 (Underlying BN)

1. Let BNI be the empty graph.

2. Add a node to BNI for all input nodes, output nodes and normal nodes in I.

3. Add a node to BNI for each input node, output node and normal node of the in-
stantiations encapsulated in I, and prefix the name of the instantiation to the node
name (Instantiation-name.Node-name). Do the same for instantiations contained
in these instantiations, and so on.

4. Add a link for each normal link in I, and repeat this for all instantiations as above.

5. For each reference tree, merge all the nodes into one node. This node is given all the
parents and children (according to the normal links) of the nodes in the reference tree
as its family. Note that only the root of the tree can have parents, as all other nodes
are references to this node.

An input node that does not reference another node will become a normal node equipped
with a default potential; this can also be seen in Figure 4 which depicts the underlying BN
of an instantiation of the Stock-class (Figure 3).

Cow4.

mind
State of

Cow1. Cow2. Cow3. Cow4.

Mother
Cow4.Cow2.

Meat MilkMilkMilkMilk
Cow1. Cow1.

Meat
Cow2. Cow3.Cow2. Cow3.

Meat

Mother
Weather

State of

FoodDaisy Mathilda Music

Cow4. Cow4.
Meat

Metabolism

Cow1.

mind
Metabolism Metabolism MetabolismState of

Cow2.

mind
State of

Cow3.

mind

Figure 4: The underlying BN for the OOBN depicted in Figure 3.

5

Langseth & Nielsen

Note that the nodes associated with default potentials (Cow2.Mother and Cow4.Mother)
can be marginalized out as they have no effect in the underlying BN. It is also worth em-
phazising that an OOBN is just a compact representation of a (unique) BN which satisfies
the OO assumption, namely the underlying BN (this can also immediately be seen from
Algorithm 1).

2.2 The insurance network

In order to emphasize the possible use of encapsulating classes, we give an OOBN represen-
tation of the insurance network by Binder et al. (1997). The insurance network, depicted
in Figure 5, is taken from The BN repository (Friedman et al., 1997b). The network, which
consists of 27 nodes, is designed for classifying car insurance applications based on the
expected claim cost; this information is captured in the nodes PropCost (Property cost),
ILiCost (Liability cost) and MedCost (Medical cost).

SocioEcon

GoodStudent RiskAversion

VehicleYear MakeModel

AntiTheft HomeBase

OtherCar

Age

DrivingSkill

SeniorTrain

MedCost

DrivQuality DrivHistRuggedAuto AntilockCarValue Airbag

Accident

ThisCarDam OtherCarCost ILiCost

ThisCarCost

Cushioning

Mileage

PropCost

Theft

Figure 5: The insurance network, used for classifying car insurance applications.

The corresponding OOBN representation of this network is based on six classes (Insur-
ance, Theft, Accident, Car, Car owner and Driver), which can be seen as describing
different (abstract) entities in the domain. These classes are designed s.t. they adhere to
the design principle of high internal coupling and low external coupling, see e.g. (Mahoney
and Laskey, 1996, Mathiasen et al., 2000).

For instance, the class Car describes the properties associated with a car (specific for
this domain); the nodes Cushioning, Mileage, CarValue, RuggedAuto and Antilock are the
only nodes “used” outside the class hence, they occur as output nodes whereas Vehicle
year and Make model are input nodes and Airbag is a normal node (see also the encap-

6

Knowledge Fusion for Structural Learning in OO Domains

sulated instantiation C:Car in Figure 6). As another example, consider the class Driver
which models the driving characteristics of a car owner. In the insurance context, driving
characteristics are an integral part of the notion of a car owner and (by the above men-
tioned design principle) an instantiation of Driver is therefore encapsulated in the class
CarOwner. The class Insurance encapsulates the corresponding instantiations of the
other classes. Figure 6 depicts the final OOBN model (i.e., the Insurance class). Note
that only the interfaces of the encapsulated instantiations are shown.

ThisCarDam

CarCost
Other-

D:Driver

Insurance

C:CarT:Theft

CO:CarOwner

SocioEcon SocioEcon Age

HomeBase

AntiTheft

DrivQuality

DrivQuality

MakeModelVehicleYear

RiskAversion

Mileage

A:Accident

AccidentCarValue

MileageCushioning

DrivQuality

AntilockAntilock

VehicleYear MakeModel

AgeAge

HomeBase

AntiTheft

CarValueTheft

MedCost PropCostThisCarCost

RuggedAuto

ILiCost

Figure 6: An OOBN representation of the insurance network. Notice that only the in-
terfaces of the encapsulated instantiations are shown. Note also that we use a
slightly non-standard graphical presentation for visualization purposes.

The Insurance-class is constructed s.t. the underlying BN of an instantiation of that
class corresponds to the BN given in Figure 5. In this respect it is worth noticing the
active use of reference links: For example, there are two CarValue-nodes in the OOBN;
C.CarValue is defined in C:Car, but as C.CarValue is a parent of T.Theft (confer also
the underlying BN in Figure 5), it is imported into T:Theft using an input node (which
is named T.CarValue). The reference link between these two nodes shows that it is the
same random variable that is used in both situations. That is, T.CarValue is a reference to
C.CarValue; this is required since CarValue is defined outside the scope of the instantiations
of the Theft-class.

2.3 OOBNs and dynamic Bayesian networks

An important set of Bayesian networks is dynamic Bayesian networks (DBNs), which model
the stochastic evolution of a set of random variables over time, see e.g. (Kjærulff, 1992).

7

Langseth & Nielsen

Traditionally, a DBN specification consists of i) a BN over the variables at t = 0, and ii) a
transition BN over the variables at t = 0 and t = 1. These two networks can alternatively
be described using OOBN classes, where the time-dependence is encoded by self-references
between nodes; a self-reference is a reference between a node and an input node in the
same class.4 More precisely, when using the OOBN framework for modeling DBNs we
construct two classes: One class representing the time-slice at t = 0, and another class whose
instantiations correspond to the time-slices at t > 0. The dependence relation between a
time-slice and the previous time-slice is then represented using self-references within the
class specification, see also (Bangsø and Wuillemin, 2000b). Note that using OOBN classes
for modeling time-slices also supports the introduction of encapsulated instantiations within
the time slices.

3. Structural learning

In what follows we review the basis for performing structural learning. The notation will,
whenever possible, follow that of Cooper and Herskovits (1991) and Heckerman et al. (1995).

Consider a Bayesian network BN = (BS ,ΘBS
) over a set of discrete variables {X1,X2,

. . . ,Xn}, where BS is the graphical structure and ΘBS
is the quantitative information. To

describe BS, the qualitative aspects of BN , we will use the following notation: ri is the
number of states for variable Xi, qi is the number of configurations over the parents for Xi

in BS (denoted by Πi), i.e., qi =
∏

Xl∈Πi
rl, and Πi = j denotes the event that Πi takes on

its j’th configuration. For the quantitative properties, we use θijk = P (Xi = k|Πi = j, ξ)
(we assume θijk > 0), where ξ is the prior knowledge. For ease of exposition we define:

Θij = ∪ri
k=1θijk; Θi = ∪qi

j=1Θij ; ΘBS
= ∪n

i=1Θi .

Note that ∀i, j :
∑ri

k=1 θijk = 1. Finally, we let D = {D1, . . . ,DN} denote a database of N
cases, where each case is a configuration x over the variables X = (X1, . . . ,Xn).

The task is now to find a structure BS that best describes the observed data, or in a more
abstract formulation, to find the parameter space ΩBS

which best restricts the parameters
used to describe the family of probability distributions FΩBS

= {f(x |Θ) : Θ ∈ ΩBS
}. For

example, let Ω′ be the parameter space required to describe all probability distributions
compatible with the complete graph for two binary variables X1 and X2 (see Figure 7a).
With the above notation, Ω′ is defined s.t. (θ1, θ21, θ22) ∈ Ω′. For the empty graph in Figure
7b, the parameter space Ω′′ ⊂ Ω′ corresponds to the parameter space Ω′ where θ21 = θ22,
i.e., Ω′′ is a hyperplane in Ω′. Learning the structure BS is therefore equivalent to finding
the parameter space ΩBS

that best describes the data; when learning the structure of a BN
there is an injective mapping from the BN structure, BS , to the associated parameter space
ΩBS

. However, as we shall see in Section 5, when we focus on learning OOBNs this is no
longer true; some aspects of an OOBN (i.e., the OO-assumption) are not reflected in the
underlying graphical structure, and in that case it may be beneficial to think of structural
learning as learning a parameter space Ω.

4. Self-references differ from reference links as the root of a self-reference is defined inside the instantiation,
whereas the root of a reference link is defined outside the scope of the instantiation.

8

Knowledge Fusion for Structural Learning in OO Domains

X1 X2 X1 X2

a) Complete graph b) Empty graph

Figure 7: The two BN model structures for the domain X = (X1,X2).

3.1 The BD metric

A Bayesian approach for measuring the quality of a BN structure BS , is its posterior
probability given the database:

P (BS |D, ξ) = c · P (BS |ξ)P (D|BS , ξ),

where c = 1/(
∑

B P (B|ξ)P (D|B, ξ)). The normalization constant c does not depend on
BS , thus P (D, BS |ξ) = P (BS |ξ)P (D|BS , ξ) is usually used as the network score. Note that
the main computational problem is the calculation of the marginal likelihood:

P (D|BS , ξ) =
∫

ΘBS

P (D|BS ,ΘBS
, ξ)P (ΘBS

|BS , ξ)dΘBS
, (1)

since the integral is over all possible parameters (conditional probabilities) ΘBS
, i.e., over

all possible BNs that encode at least the same conditional independence relations as the
structure BS .

Cooper and Herskovits (1991) showed that this probability can be computed in closed
form based on the following five assumptions: 1) the database D is a multinomial sample
from some Bayesian network BG with parameters ΘBG

, 2) the cases in the database D
are independent given the BN model, 3) the database is complete, i.e., there does not
exist a case in D with missing values, 4) for any two configurations over the parents for
a variable Xi, the parameters for the conditional probability distributions associated with
Xi are marginally independent, i.e., Θij ⊥⊥ Θij′ for j 6= j′, and 5) the prior distribution of
the parameters in every Bayesian network BS has a Dirichlet distribution5, i.e., there exist
numbers (virtual counts) N ′

ijk > 0 s.t.:

P (Θij |BS , ξ) =
Γ(

∑ri
k=1 N ′

ijk)∏ri
k=1 Γ(N ′

ijk)

ri∏
k=1

θ
N ′

ijk−1

ijk , (2)

where Γ is the Gamma function satisfying Γ(x + 1) = xΓ(x). Note that the virtual counts
can be seen as pseudo counts similar to the sufficient statistics derived from the database.
An implicit assumption by Cooper and Herskovits (1991) is parameter modularity: The
densities of the parameters Θij depend only on the structure of the BN that is local to
variable Xi.

Now, let Nijk be the sufficient statistics, i.e., Nijk =
∑N

l=1 γ(Xi = k,Πi = j : Dl), where
γ(Xi = k,Πi = j : Dl) takes on the value 1 if (Xi = k,Πi = j) occurs in case Dl, and 0

5. Cooper and Herskovits (1991) actually assumes a uniform distribution which is a special case of the
Dirichlet distribution; the correctness of this generalization is proven in (Cooper and Herskovits, 1992).

9

Langseth & Nielsen

otherwise. From assumption 1, 2 and 3 we then have:

P (D|BS ,ΘBS
, ξ) =

n∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk . (3)

Substituting Equation 3 into Equation 1 gives:

P (D|BS , ξ) =
∫

ΘBS

n∏
i=1

qi∏
j=1

ri∏
k=1

θ
Nijk

ijk P (ΘBS
|BS , ξ)dΘBS

, (4)

and by assumptions 4 and 5 we get:

P (D|BS , ξ) =
n∏

i=1

qi∏
j=1

∫
Θij

ri∏
k=1

θ
Nijk

ijk

[
Γ(

∑ri
k=1 N ′

ijk)∏ri
k=1 Γ(N ′

ijk)

ri∏
k=1

θ
N ′

ijk−1

ijk

]
dΘij

=
n∏

i=1

qi∏
j=1

Γ(
∑ri

k=1 N ′
ijk)∏ri

k=1 Γ(N ′
ijk)

∫
Θij

ri∏
k=1

θ
Nijk+N ′

ijk−1

ijk dΘij .

The expression
∏ri

k=1 θ
Nijk+N ′

ijk−1

ijk corresponds to the last term of the Dirichlet distribution
for the parameters Θij having counts Nijk + N ′

ijk. Since this is a probability distribution
over the parameters, the value of the integral can be read directly from Equation 2 (the
integral over all parameters evaluates to 1) and we get:

P (D, BS |ξ) = P (BS |ξ)
n∏

i=1

qi∏
j=1

Γ(N ′
ij)

Γ(Nij + N ′
ij)

ri∏
k=1

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

, (5)

where Nij =
∑ri

k=1 Nijk and N ′
ij =

∑ri
k=1 N ′

ijk. This metric is known as the BD metric
(Bayesian metric with Dirichlet priors), and it was first derived by Cooper and Herskovits
(1992). Unfortunately it requires the specification of the virtual counts N ′

ijk for all variable–
parent configurations and for all values i, j and k.

3.2 The BDe metric

One drawback of the BD metric is that networks, which are likelihood equivalent, need
not be given the same score.6 Note that data cannot be used to discriminate between
such networks. Another shortcoming of the BD metric is that it does not provide an
easy way of specifying prior information concerning network structure and parameters. To
overcome these problems, Heckerman et al. (1995) describe the BDe metric (Bayesian metric
with Dirichlet priors and equivalence) which gives the same score to likelihood equivalent
networks. Hence, the metric is based on the concept of sets of likelihood equivalent network
structures, where all members in a set are given the same score.

The BDe metric also provides a simple way of identifying the virtual counts N ′
ijk (in

Equation 5) by having the user specify a prior Bayesian network Bp for X and an equivalent
sample size N ′:

N ′
ijk = P (Xi = k,Πi = j|Bp, ξ) ·N ′. (6)

6. Two networks are said to be likelihood equivalent if they encode the same assertions about conditional
independence.

10

Knowledge Fusion for Structural Learning in OO Domains

Note that Heckerman et al. (1995) actually condition on a complete network BSc consistent
with Bp; conditioning on BSc allows Heckerman et al. (1995) to show that the Dirichlet
assumption (Assumption 5) is not required. Finally, to evaluate Equation 5 we also need
to define a prior probability P (BS |ξ) for the network structures. Different prior probabil-
ities have been proposed in the literature, most of which obey the structural modularity
assumption:

P (BS |ξ) ∝
n∏

i=1

ρ(Xi,Πi).

That is, the prior probability decomposes into a product with one term for each family in
the network. From this assumption Equation 5 can be expressed as:

P (D, BS |ξ) ∝
n∏

i=1

ρ(Xi,Πi) · score(Xi,Πi,D),

where

score(Xi,Πi,D) =
qi∏

j=1

Γ(N ′
ij)

Γ(Nij + N ′
ij)

ri∏
k=1

Γ(Nijk + N ′
ijk)

Γ(N ′
ijk)

. (7)

Hence, when comparing two network structures we only need to consider the (local) scores
and priors for the families for which they differ.

3.3 Learning from incomplete data

In real world problems we rarely have access to a complete database, i.e., assumption 3
of the BD metric (and the BDe metric) is likely to be violated. This implies that the
parameters for a model become dependent, and known closed-form expressions cannot be
used to calculate the marginal likelihood of the data. In such situations, a common ap-
proach is to apply asymptotic approximations such as the Laplace approximation, see e.g.
(Ripley, 1996), the Bayesian Information Criterion (Schwarz, 1978), the Minimum Descrip-
tion Length (Rissanen, 1987) or the Cheeseman-Stutz approximation (Cheeseman and Stutz,
1996), see also (Chichering and Heckerman, 1997) for a discussion. These approximations
assume that the posterior over the parameters is peaked, and the maximum a posteriori
(MAP) parameters are used when approximating the integral in Equation 1. Thus, in or-
der to apply these approximations we need to find the MAP parameters (using e.g. the
expectation-maximization (EM) algorithm (Dempster et al., 1977, Green, 1990)) before we
can calculate the score of a model. I.e., for each candidate model we may need to invest a
considerable amount of time in order to evaluate the model.

As an alternative, Friedman (1998) describes the Structural EM (SEM) algorithm which
basically “fills in” the missing values before searching the joint space of network structures
and parameters (we therefore avoid the computational expensive step of calculating the
MAP parameters for each candidate model). The validity of the SEM algorithm is based
on the assumption that the data is missing at random (Little and Rubin, 1987), which is

11

Langseth & Nielsen

also assumed in the remainder of this paper; informally, this means that the pattern of
missingness may only depend on the values of the observed variables.7

The SEM algorithm maximizes P (D, BS |ξ), but instead of maximizing this score directly
it maximizes the expected score. Let o be the set of observations from the database D, and
let h be the set of unobserved entries in D. The general algorithm can then be outlined as:

Algorithm 2 (SEM)

Loop for n = 0, 1, . . . until convergence

1) Compute the posterior P (ΘBn
S
|Bn

S ,o).

2) E-step: For each BS, compute:

Q(BS : Bn
S) = Eh[log P (h,o, BS)|Bn

S ,o]

=
∑
h

P (h|o, Bn
S) log P (h,o, BS)

3) M-step: Choose Bn+1
S ← BS that maximizes Q(BS : Bn

S).

4) If Q(Bn
S : Bn

S) = Q(Bn+1
S : Bn

S) then
Return Bn

S.

In the E-step, the algorithm completes the database by “filling-in” the unobserved entries
based on the observations o, the current best model Bn

S , and the posterior over the parame-
ters for Bn

S (calculated in step 1). From the completed database the best candidate model is
then selected in the M-step, which ensures that Q(Bl+1

S :Bl
S)−Q(Bl

S :Bl
S) ≥ 0. Friedman

(1998) proves that by increasing the expected score at each iteration we always obtain a
better network in terms of its marginal score (this result also implies that the algorithm
converges).

By exploiting linearity of expectation in the E-step, Friedman (1998) shows that the
expected score decomposes as if the data were complete, i.e., local changes to the model does
not require that the entire model is reevaluated. In our context this yields (for notational
convenience we assume that the structural prior,

∏n
i=1 ρ(Xi,Πi), is normalized):

Eh[log P (h,o, BS)|Bn
S ,o] =

n∑
i=1

Eh[log Fi(Ni··(h,o), BS)|Bn
S ,o], (8)

where Ni··(h,o) specifies the collection Nijk according to (h,o), for all j and k, and
Fi(Ni··(h,o), BS) = ρ(Xi,Πi)score(Xi,Πi,h,o). Note that if

∏n
i=1 ρ(Xi,Πi) is not normal-

ized we simply subtract log(c), where c is the normalization constant, i.e., normalization of
the prior distribution is not required. Friedman (1998) also examines an approximation for
Eh[log Fi(Ni··(h,o), BS)|Bn

S ,o]:

Eh[log Fi(Ni··(h,o), BS)|Bn
S ,o] ≈ log Fi(Eh[Ni··(h,o)|Bn

S ,o], BS). (9)

7. An active research area within the learning community is the discovery of hidden variables, i.e. variables
that are never observed (Spirtes et al., 1993, Friedman et al., 1998, Elidan et al., 2000, Elidan and
Friedman, 2001), however, hidden variables will not be considered in this paper.

12

Knowledge Fusion for Structural Learning in OO Domains

The approximation is exact if log Fi is linear in its arguments; this is, however, not the case
when using the BD or BDe metric.8 Finally, the term Eh[Ni··(h,o)|Bn

S ,o] can be computed
as:

∀j, k : Eh[Nijk(h,o)|Bn
S ,o] =

N∑
l=1

P (Xi = k,Πi = j|Dl, B
n
S).

3.4 Learning dynamic Bayesian networks

Friedman et al. (1998) describe an algorithm for learning DBNs from both complete and
incomplete data. The methods proposed in (Friedman et al., 1998) extend both the Bayesian
Information Criterion (BIC) and the BDe score for learning DBNs from complete data; when
lifting the assumption that the database is complete, Friedman et al. (1998) extend the SEM
algorithm accordingly.

Friedman et al. (1998) define a DBN by partitioning the variables into time-slices s.t.
the variables which occur at time t are denoted X[t]. Thus, a DBN with l time-slices
consists of the variables X[0]∪X[1]∪ · · · ∪X[l]. It is assumed that the DBN is Markovian,
i.e., P (X[t + 1]|X [0], . . . ,X[t]) = P (X [t + 1]|X [t]). By also assuming that the DBN is
stationary (the CPTs associated with the variables in X [t] are independent of t, for t > 0),
a DBN can be completely described by two parts: i) An initial network, B0, that specifies
a distribution over X[0] and ii) a transition network, B→, over the variables X[0] ∪X[1].

In the context of DBNs, the database is assumed to consist of N cases, where the m’th
case specifies a configuration over the variables X[0]∪X[1]∪ · · · ∪X[l]. Now, consider the
situation where the database is complete and let θ0

ij′k and θ→ijk be defined as in Section 3.1
for B0 and B→, respectively; we use j′ and j to indicate that the parents for Xi may
be different in B0 and B→. Additionally, let the sufficient statistics be given by N0

ij′k =∑N
m=1 γ(Xi[0] = k,Πi = j′ : Dm) and N→

ijk =
∑l

t=1

∑N
m=1 γ(Xi[t] = k,Πi = j : Dm).

By derivations similar to those of the BD metric, the following closed form expression for
P (D, (B0, B→)|ξ) is obtained:

P (D, (B0, B→)|ξ) = P ((B0, B→)|ξ)

·

 n∏

i=1

q′i∏
j′=1

Γ(N
′0
ij′)

Γ(N0
ij′ + N

′0
ij′)

ri∏
k=1

Γ(N0
ij′k + N

′0
ij′k)

Γ(N ′0
ij′k)

·

 n∏

i=1

qi∏
j=1

Γ(N
′→
ij)

Γ(N→
ij + N

′→
ij)

ri∏
k=1

Γ(N→
ijk + N

′→
ijk)

Γ(N ′→
ijk)

 .

Note that when maximizing this expression we can consider the two terms independently
assuming that P (B0, B→|ξ) = P (B0|ξ) · P (B→|ξ).

Friedman et al. (1998) overcome the problem of specifying the virtual counts for the
candidate network structures by advocating the method of Heckerman et al. (1995). That
is, given a prior DBN Bp = (B0

p , B→
p) and two equivalent sample sizes for B0

p and B→
p , the

virtual counts are found as in Equation 6.

8. Friedman (1998) shows that the error of the linear approximation vanishes as the size of the database
approaches infinity.

13

Langseth & Nielsen

4. Specifying prior information

When learning a Bayesian network, the prior information about the domain is represented
by i) a prior distribution over the discrete space of all candidate structures, and ii) a prior
distribution over the continuous space of probability parameters for each model. In Section
3.2 we briefly described a prior for the probability parameters, and in this section we will
focus on the use of prior information regarding the structure of BNs and OOBNs.

4.1 Structural priors in BNs

The use of structural priors when learning BNs has received only little attention in the
learning community. The most obvious reason is that in most cases the effect of the prior
is dominated by the likelihood term, even for relatively small databases. One exception,
however, is when some of the network structures are given zero probability a priori, in which
case the data cannot change that belief.

Common to most (if not all) structural priors proposed in the literature is that they
obey the structural modularity assumption (see Section 3.2):

P (BS | ξ) ∝
n∏

i=1

ρ(Xi,Πi) .

That is, the prior decomposes into a product with one term for each family in the network
structure. This assumption ensures that during structure search (given complete data – or
data “completed” by the SEM algorithm) we can compare two candidate structures by only
considering the local scores and priors for the families for which they differ.

Because of their relatively small influence upon the selected model, structural priors
are most often used to encode ignorance, and in some cases to restrict model complexity.
Examples include the uniform prior ρ(Xi,Πi) = 1 (Cooper and Herskovits, 1991), and

ρ(Xi,Πi) =
(

n− 1
|Πi |

)−1

used in e.g. (Friedman and Koller, 2000). Another prior which is frequently used is ρ(Xi,Πi)
= κδi (Heckerman et al., 1995), where 0 < κ ≤ 1 and

δi = | {Πi(BS) ∪Πi(Bp)} \ {Πi(BS) ∩Πi(Bp)} |

denotes the number of parents for Xi that differs in the prior model Bp and the candidate
structure BS . Thus, each such parent is penalized by a constant κ. The flexibility of this
prior can easily be extended by setting

δi =
∑
j 6=i

(ω+
ij δ+

ij + ω−
ij δ−ij) , (10)

where δ+
ij is 1 if there is an edge from Xj to Xi in the candidate structure but not in the prior

model, and 0 otherwise; δ−ij is 1 if there is an edge from Xj to Xi in the prior model, but not
in BS , and 0 otherwise. (ω+

ij , ω
−
ij) ∈ R

+×R
+ is a pair of weights that indicates how certain

14

Knowledge Fusion for Structural Learning in OO Domains

the domain expert is about the occurrence/absence of a specific edge: Complete ignorance is
encoded by ω+

ij = 0, whereas certainty is encoded by ω+
ij =∞, and similarly for ω−

ij . When
ω+

ij = ω−
ij = 1, ∀ i, j, the prior reduces to that of Heckerman et al. (1995). Note that since

both the prior model as well as each candidate model are restricted to be directed acyclic
graphs it is not possible to give these weights a straightforward probabilistic interpretation;
the occurrence of one edge is in general dependent on the occurrence of the other edges in
the network structure. Finally, we note that this prior has a potential drawback since it
in principle requires the elicitation of the 2n · (n − 1) weights ω

(·)
ij , where n is the number

of variables in the domain. In practical usage, however, one can use an elicitation scheme
where these weights are grouped according to the values 0, 1 or ζ (where ζ � 0 is used to
model almost certainty), see below.

4.2 Structural priors in OOBNs

In this section we consider the additional sources of prior information available when learn-
ing in object oriented domains. We will argue that the OOBN framework is a natural
language for specifying prior information, and we show how the underlying object oriented
modeling assumptions naturally lead to zero prior probabilities for large parts of the model
space.

4.2.1 The OO assumption

Langseth and Bangsø (2001) claim that for OOBN learning to be meaningful one should
assume that the domain is in fact object oriented (such that the OO assumption is fulfilled).
As an example, consider the special case of learning DBNs. In this situation the OO
assumption states that the CPT associated with a variable Xi[tk] (tk > 0) is identical to
the CPT associated with any other variable Xi[t`] (t` > 0), i.e., the CPTs associated with
the variables in X[t] are independent of t for t > 0. Hence, when learning DBNs, the OO
assumption corresponds to the assumption that the domain is stationary (as done by e.g.
Friedman et al. (1998)). If the DBN is not stationary, one cannot define the evolving model
X[t] (t > 0) as identical instantiations of a class, and according to Langseth and Bangsø
(2001) it is not necessarily reasonable to use an object oriented domain specification in this
case.

Note that the effect of making the OO assumption is that all models that violate this
assumption are given zero probability a priori. Note also that the OO assumption cannot
be modeled using a conventional BN as a prior model, if this model should obey structural
modularity; the structural part of the OO assumption is not local to one family in the
graph.

4.2.2 Relations among variables

When modeling object oriented domains, the domain expert is usually able to group the
variables into substructures with high internal coupling and low external coupling. These
substructures naturally correspond to instantiations in an OOBN. Moreover, analogously
to the grouping of similar substructures into categories, instantiations of the same type are
grouped into classes (Mahoney and Laskey, 1996, Mathiasen et al., 2000). For instance,

15

Langseth & Nielsen

a set of substructures may correspond to the same type of physical object or they may
describe a set of entities that occur at the same instant of time.

Such types of prior information can be represented by a (partial) OOBN specification
(i.e. a prior model). The a priori specification of an OOBN contains a list of class speci-
fications and a grouping of the nodes into instantiations which are classified according to
the classes. This prior OOBN model can then be used as in the case of conventional prior
models, and we can in principle use any of the definitions of ρ(Xi,Πi) outlined above.

When specifying the relations among the variables, it may be difficult for the domain
expert to indicate the presence or absence of edges between specific nodes in the model.
If, for example, two variables X and Y in an instantiation I are strongly correlated, the
domain expert may be uncertain whether another node Z in the encapsulating context of
I should be the parent of X or Y , even though he believes that Z should influence at least
one of them. In the OOBN framework, this prior information can be encoded by specifying
the interface between the instantiation I and its encapsulating context. For instance, the
domain expert can indicate which instantiations are allowed (and more importantly, denied)
to reference a particular node (see Figure 8). Specifically, the domain expert could be asked
questions like “Do you think it is possible that a variable Z directly influences any of the
variables in instantiation I?”

Z

X Y

W

I:C

Figure 8: The figure depicts a possible way to describe knowledge about the structure of
the domain; it shows an instantiation I and some of its encapsulating context
(note that this is not strictly speaking an OOBN).

The use of such prior models is also supported by Equation 10, since edges that are not
considered possible a priori are penalized strongly (ω+

ij = ζ � 0). On the other hand, the
interface of an instantiation defines edges from a single node to a group of nodes hence,
missing reference links cannot be penalized (as the prior specification at the class level
should obey structural modularity), and we therefore use ω−

ij = 0. As an example, see
Figure 8, where we assume that the instantiation I consists of the two nodes X and Y ,
and that (a priori) only Z is regarded as a possible node to be referenced from I. From
the discussion above, it follows that a candidate network where no node is referenced from
I will not be penalized by this prior, because ω−

XZ = ω−
Y Z = 0. If we were to use a prior

which penalizes the “missing” link between Z and the instantiation I, then this prior would
have to encode that the probability for a link between Z and X depends on the existence
of a link between Z and Y ; the prior only penalizes a link missing between Z and X if
there is no link from Z to Y . This violates structural modularity, which says that the prior
should factorize into a product of terms, where each term only depends on one family in

16

Knowledge Fusion for Structural Learning in OO Domains

the graph, see Section 3.2. On the other hand, if a candidate model is designed so that
another node, say W , is referenced from I, it will be given a lower a priori belief (because
ω+

XW = ω+
Y W = ζ). Note that the OOBN framework is not required to model this vague

prior information; it is merely a straight forward usage of Equation 10. However, to elicit
such information it turns out to be useful to have grouped the nodes into what corresponds
to instantiations, and then focus on the interfaces of these, i.e., to work in the framework
of OOBNs.

To verify the ease of determining the interfaces a priori we conducted an experiment
amongst our co-workers: The task was to identify the interfaces of the instantiations in
the object oriented version of the insurance domain, see Section 2.2. The test-persons were
familiar with the OOBN framework, but they had not seen the insurance network before.
Initially they were given the object oriented version of the insurance network, where each
node was allocated to one of the instantiations (with all edges removed). The task was
then to identify the interface of all instantiations in the domain, simply by indicating which
nodes inside an instantiation Ii could (possibly) be referenced from an instantiation Ij. The
test-persons had no other information about the domain, except for what they were able to
deduce from the names of the nodes. They where guided through the knowledge acquisition
by questions of the type “Is it possible that a person’s Age can directly influence any of the
nodes in the instantiation of the Driver-class (RiskAversion, SeniorTrain, DrivingSkill,
DrivQuality or DrivHist)?” The result of the experiment was that out of the 702 edges that
can be included in the model, only 253 were marked possible. All the 52 edges actually in
the model were considered legal. The elicitation of this information took about 10 minutes;
this result at least suggests that the approach is promising.

5. Learning in OOBNs

In this section we describe a method for learning in object oriented domains, casted as the
problem of finding the maximum a posteriori OOBN structure given a database D.

The basic idea of the object oriented learning method resembles that of Langseth and
Bangsø (2001) who utilizes the OO assumption when learning the parameters in an OOBN.
Specifically, based on this assumption, Langseth and Bangsø (2001) propose to learn at the
class level of the OOBN instead of in the underlying BN; cases from the instantiations of
a class are considered (virtual) cases of that class.9 Langseth and Bangsø (2001) give both
theoretical as well as empirical evidence that this learning method is superior to conventional
parameter learning in object oriented domains.

5.1 Structural OO learning

The goal of our learning algorithm is to find a good estimate of the unknown underlying
statistical distribution function, i.e., the task of density estimation (Silverman, 1986). Note
that if focus had been on e.g. causal discovery (Heckerman, 1995a), classification (Friedman
et al., 1997a), or generating a model that was able to predict well according to a predefined

9. Note that this approach can be seen as a generalization of the method for parameter learning in DBNs,
see e.g. (West and Harrison, 1997).

17

Langseth & Nielsen

query distribution (Greiner et al., 1997), the learning method would have been slightly
different (the general approach, however, would still apply).

The proposed method is tightly connected to the SEM-algorithm, described in Section
3.3; the main differences concern structure search and the calculation of the expected score
of a network structure. When doing structure search we restrict the space of candidate
structures by employing the search operations in the class specifications instead of in the
underlying BN. This has the advantages that i) the current best model is always guaranteed
to be an OOBN, and ii) the learning procedure will in general require fewer steps than
conventional learning because the search space is smaller.

The difference in the calculation of the expected score of an OOBN structure compared
to a BN structure is a consequence of the OO assumption: Since we assume all instantiations
of a given class to be identical, we treat cases from the instantiations of a given class as
(virtual) cases of that class. Note that this approach can be seen as a generalization of the
learning method for DBNs, described in Section 3.4, where all cases from the time-slices
for t > 0 are used for calculating the sufficient statistics for the transition network. Before
giving a formal definition of the expected score of an OOBN structure we introduce the
following notation (for now we shall assume that all input sets are empty): Let BCm be
an OOBN for class Cm, and let {i : Xi ∈ C`} be the set of nodes defined in class C`.
Let I define the set of instantiations, let T(I) be the class of instantiation I ∈ I, and let
{I : T(I) = C`} be the set of instantiations of class C`; recall that we use I.X to denote
node X in instantiation I.

The sufficient statistics NC`
ijk for a class C`, given a complete database, is then given by:

NC`
ijk =

∑
I:T(I)=C`

N∑
t=1

γ(I.Xi = k, I.Πi = j : Dt). (11)

Based on the sufficient statistics for a class we can under assumptions similar to those of
(Cooper and Herskovits, 1991) derive the score for a node Xi in class C` as:

O-score(Xi, Πi,N
C`
i·· (D),C`) =

qi∏
j=1

Γ(N ′
ij)

Γ(NC`
ij + N ′

ij)

ri∏
k=1

Γ(NC`
ijk + N ′

ijk)

Γ(N ′
ijk)

, (12)

where NC`
i·· (D) specifies the collection NC`

ijk according to D, and NC`
ij =

∑ri
k=1 NC`

ijk .
Finally, we can define the BDe score for an OOBN BS as:

P (D, BS | ξ) ∝
∏

C`∈C

∏
i:Xi∈C`

ρ(Xi,Πi,C`) ·O-score(Xi,Πi,N
C`
i·· (D),C`) , (13)

where C is the set of all classes, and ρ(Xi,Πi,C`) is a function of the prior specification of
C`, such that:

P (BS |ξ) ∝
∏

C`∈C

∏
i:Xi∈C`

ρ(Xi,Πi,C`).

In the situation with missing data we apply a modified version of the SEM algorithm.
Recall that the SEM algorithm requires the calculation of

Q(BS : Bn
S) = Eh[log P (o,h, BS) |Bn

S ,o],

18

Knowledge Fusion for Structural Learning in OO Domains

where o and h denote the observed and unobserved entries in D, respectively, and Bn
S is

the current best model. In accordance with Equation 8 and Equation 13 we have (again we
assume that the prior distribution is normalized):

Eh[log P (o,h, BS) |Bn
S ,o] =

∑
C`∈C

∑
i:Xi∈C`

Eh[log Fi,C`
(NC`

i·· (h,o), BS)|Bn
S ,o] (14)

where

Fi,C`
(NC`

i·· (h,o), BS) = ρ(Xi,Πi,C`) ·O-score(Xi,Πi,N
C`
i·· (h,o),C`).

Now, analogously to the SEM algorithm we advocate the approximation proposed in Equa-
tion 9 hence, for an OOBN we approximate:

Eh[log Fi,C`
(NC`

i·· (h,o), BS)|Bn
S ,o] ≈ log Fi,C`

(Eh[NC`
i·· (h,o)|Bn

S ,o], BS).

Finally, the expected counts Eh[NC`
i·· (h,o)|Bn

S ,o] for node Xi in class C` is given by:

∀j, k : Eh[NC`
ijk(h,o)|Bn

S ,o] =
∑

I:T(I)=C`

N∑
t=1

P (I.Xi = k, I.Πi = j |Dt, B
n
S).

Now, both Q(BS :Bn
S) and the posterior P (D, BS | ξ) factorizes over the variables (and

therefore also over the classes). Hence, in order to compare two candidate structures which
only differ w.r.t. the edge Xi → Xj we only need to re-calculate the score (Equation 12)
and ρ(Xj ,Πj ,C`) for node Xj in the class C` where Xj is defined. Note that this property
also supports the proposed search procedure which is employed at the class level.

Unfortunately, this type of locality to a class is violated when the input sets are non-
empty (this is for instance the case with the two instantiations of the class Milk Cow that
are embedded in the Stock class). The problem occurs when new input nodes are added to
a class interface, since the search for a “good” set of parents is not necessarily local to a class
when the interface is not given; recall that the actual nodes included through the interface
of an instantiation is not defined in the class specification, but locally in each instantiation.
This may result in a serious computational overhead when determining the interface since
we require that the OO assumption is satisfied. As an example, assume that the node X in
instantiation Ii is assigned an input node Y ′ as parent, and assume that Y ′ references the
node Y . Then, due to the OO assumption, the algorithm should find a node Z that has
the same influence on Ij.X as Y has on Ii.X, for all instantiations Ij where T(Ij) = T(Ii).
The search for Z must cover all nodes in the encapsulating context of Ij; note that Z may
be non-existent in which case the default potential for the input node should be used. The
complexity of finding the best candidate interface for all instantiations is exponential in the
number of instantiations, and we risk using a non-negligible amount of time to evaluate
network structures with low score, e.g., if Y ′ (or more precisely the node Y referenced by
Y ′) is actually not needed as a parent for Ii.X.

To overcome this computational difficulty we propose the following algorithm which is
inspired by the SEM algorithm (Algorithm 2). Basically, the algorithm iteratively learns
a) the interfaces of the instantiations by keeping the structure inside the instantiations

19

Langseth & Nielsen

fixed according to the classes (Step i and ii), and b) learns the structure inside each class
based on the candidate interfaces found in the previous steps (Step iii). Observe that Step
3 corresponds to the E-step in the SEM algorithm and that Step 4 corresponds to the
M-step.

Algorithm 3 (OO–SEM)

a) Let B0
S be the prior OOBN model.

b) Loop for n = 0, 1, . . . until convergence

1) Compute the posterior P (ΘBn
S
|Bn

S ,o), see (Langseth and Bangsø, 2001) and
(Green, 1990).

2) Set Bn,0
S ← Bn

S.

3) For i = 0, 1, . . .

i) Let BS be the model which is obtained from Bn,i
S by employing either none or

exactly one of the operations add-edge and remove-edge, for each instantia-
tion I; each edge involved must have a node in both I and in the encapsulating
context of I (directed into I). The OO assumption is disregarded.10

ii) For each node X which is a child of an input node Y ′ (found in step (i))
in instantiation Ij , determine if Ik.X has an input node as parent with the
same state space as Y ′, for all k 6= j where T(Ik) = T(Ij). If this is the
case, use the BDe score to determine if they should be assigned the same
CPT (due to the OO assumption); otherwise introduce default potentials to
ensure that they have the same CPTs.11 Let B′

S be the resulting network.
iii) For each class C` in B′

S employ the operations add-edge or remove-edge
w.r.t. the nodes in the class (excluding the input set) based on the candidate
interface found in step (ii). Note that edges from instantiations encapsulated
in C` into nodes defined in C` are also considered in this step.12 Let B′′

S be
the resulting OOBN.

iv) Set Bn,i+1
S ← B′′

S.

4) Choose Bn+1
S ← Bn,i

S that maximizes Q(Bn,i
S : Bn

S) (Equation 14).

5) If Q(Bn
S : Bn

S) = Q(Bn+1
S : Bn

S) then
Return Bn

S .

Note that in Step (ii) it may seem counterintuitive to compare CPTs using the BDe score,
however, observe that this step is actually used to restrict the parameter space and the BDe
score is therefore appropriate, cf. the discussion in Section 3.

10. The number of operations is bounded by the product of the number of nodes in I and the number of nodes
in the encapsulating context, but only the terms local to the involved families need to be re-calculated.

11. The CPTs are estimated by setting θ̂C`
ijk =

(
NC`

ijk + N ′
ijk

)
/

(
NC`

ij + N ′
ij

)
, where NC`

ijk is the expected

sufficient statistics calculated according to Equation 11. Note that introducing default potentials have
no effect on the underlying BN (they can just be marginalized out).

12. An example of this situation is illustrated in Figure 6, where an instantiation of Driver is encapsulated in
the class CarOwner; observe that only the terms local to the involved families need to be re-calculated.

20

Knowledge Fusion for Structural Learning in OO Domains

In case of a complete database, the outer loop is simply evaluated once; evaluating the
network structures using Q(BS : Bn

S) is identical to using the BDe score for OOBNs in this
case.

Theorem 1 Let D be a complete database of size N generated by an OOBN model with
structure B∗

S. If N → ∞, then the structure BS returned by Algorithm 3 is likelihood
equivalent to B∗

S.

Proof Notice that the space of OOBN structures is finite, and that each OOBN structure
can be visited by the inner loop of Algorithm 3. Note also that the greedy approach in step
(ii) is asymptotically correct as the associated search space is uni-modal (as N →∞) and
the operations are transitive. From these observations the proof is straightforward as the
BDe score is asymptotically correct, see (Heckerman, 1995b, Geiger et al., 1996).

Notice that the theorem above only holds when the database is complete; when the database
is incomplete we have the following corollary.

Corollary 2 Let B0
S , B1

S , . . . be the sequence of structures investigated by Algorithm 3, and
let D be a database. Then limn→∞ P (o, Bn

S) exists, and it is a local maximum of P (o, BS)
when regarded as a function of BS.

Proof Follows immediately from (Friedman, 1998, Theorem 3.1 and Theorem 3.2) by ob-
serving that a) the space of OOBN structures is finite and the variables in the domain have
discrete state spaces, and b) in Steps (i − iii) we are always sure to increase the expected
score of the candidate model.

Observe that in order to complete the operational specification of Algorithm 3, we need a
search algorithm, e.g. simulated annealing, for investigation the candidate structures (Step
(i) and Step (iii) constitute the choice points). Note also that in order to maximize the score
in Step (ii) we would in principle need to investigate the set of all subsets of instantiations
and nodes (which have an input node as parent). To avoid this computational problem we
instead consider the instantiations and nodes pairwise (randomly chosen). This still ensures
that the expected score increases in each iteration, i.e., the algorithm will converge even
though we apply hill-climbing in Step (ii), see also Corollary 2.

Finally it should be emphazised that the main computational problem of Algorithm
3 is in establishing the interfaces of the instantiations hence, we propose to elicit prior
information based on specific enquiries about the interfaces. For instance, the domain
expert can be asked to specify the nodes each instantiation is allowed to reference; as
argued in Section 4.2 this is easily elicitated in an object oriented domain.

5.2 Type uncertainty

So far we have assumed that the domain expert is able to unambiguously classify each
instantiation to a specific class. Unfortunately, however, this may not be realistic in real-
world applications. Not being able to classify an instantiation is an example of what is
called type uncertainty in (Pfeffer, 2000); the expert is uncertain about the type (or class in
our terminology) of an instantiation. However, even though we may be unable to determine

21

Langseth & Nielsen

whether e.g. Cow1 is a Milk cow or a Meat cow, see Section 2, we would still like to
employ the learning algorithm using all available data.

When subject to type uncertainty the main problem is as follows. Consider the situation
where we have two instantiations Ii and Ij whose classes are uncertain. Assume that both
Ii and Ij are a priori classified as being instantiations of Ck, and assume that the data from
Ii and Ij are somewhat different. If the data from Ii is initially used for learning in Ck, then
the class specification for Ck is updated and the probability of Ij being an instantiation
of Ck may therefore change. Thus, the probability of Ij belonging to Ck is dependent on
the classification of Ii. An immediate approach to overcome this problem is brute force,
where we consider all possible combinations of allocating the uncertain instantiations to the
classes. However, this method is computationally very hard, and is not suited for practical
purposes if the number of combinations of instantiations and classes is large; the complexity
is O

(
|C||I |

)
.

In what follows we propose an alternative algorithm for handling type uncertainty; we
shall assume that the domain expert encodes his prior beliefs about the classification of
the instantiations I as a distribution over the classes C (this also allows us to restrict
our search in the class tree to specific subtrees, if the domain expert encodes his prior
belief in that way). Recall that the main problem with type uncertainty is that learn-
ing can only be performed locally in a class specification if all instantiations are allocated
to a class (with certainty). This observation forms the basis for the following algorithm,
which iteratively classifies the instantiations based on the MAP distribution over the clas-
sifications of the instantiations. Note that since the learned model is dependent on the
classification of the uncertain instantiations, the algorithm maximizes the joint probabil-
ity P (D, BS(T),T), where T = T(I); we use the notation BS(T) to indicate that the
learned model is a function of the classifications. This probability can be computed as
P (D, BS(T),T) = P (D|BS(T),T)P (BS(T) | T)P (T) where BS(T) is a model consistent
with the classification T . In the following we will let T̂ denote the current estimate of the
classification T(I). Furthermore, we use T̂ I ← C` to denote that the estimate of T(I) is
set to C`, and we use T̂ −I to denote the estimate of T(I \ {I}).
Algorithm 4 (Type Uncertainty)

a) Initialization: Find the classification with maximum probability according to the
prior distribution over the classifications P (T(I)), and classify the instantiations ac-
cordingly. Let T̂ 0

be this initial classification.

b) Loop for n = 0, 1, . . . until convergence

1) T̂ ′ ← T̂ n
.

2) For each uncertain instantiation I:
i) For each classification C of I s.t. P (T(I) = C) > 0:

A) Classify I as an instantiation of class C: T̂ ′
I ← C.

B) Learn the OOBN B′
S(T̂ ′

) for the current classification of all instanti-
ations (Algorithm 3).13 Calculate the joint probability of the data, the

13. Note that only those parts of the domain that have been changed by the classification of I need to be
re-learned.

22

Knowledge Fusion for Structural Learning in OO Domains

model B′
S(T̂ ′

) and T̂ ′
:

f(C)← P
(
D, B′

S(T̂ ′
), T̂ ′)

.

ii) Classify I to the class maximizing the joint probability
P (D, B′

S(T̂ ′
), T̂ ′

) by keeping the classifications T(I \ {I}) fixed:
T̂ ′

I ← arg maxC:P (T(I)=C)>0 f(C).

3) Let T̂ n+1 ← T̂ ′
and let Bn+1

S be the model found according to the classification

T̂ n+1
.

4) If P
(
D, Bn+1

S (T̂ n+1
), T̂ n+1

)
= P

(
D, Bn

S(T̂ n
), T̂ n

)
then

Return Bn
S(T̂ n

).

The algorithm attempts to maximize the joint probability P (D, BS(T),T) by iteratively
maximizing 1) P (D, BS(T̂ n

), T̂ n
) over the models BS with the current classification T̂ n

(Step B), and 2) P (D, Bn
S(T̂ n

−I,T(I)), (T̂ n

−I,T(I))) over T(I) given the classification T̂ n

−I

(Step ii). This also implies that the algorithm converges to a (local) maximum.

6. Empirical study

In this section we describe a set of empirical tests, which have been conducted to verify the
proposed learning method. First, Algorithm 3 was employed to learn the OOBN model of
the insurance domain. This was done to identify the effect of prior information that is not
easily exploited when the domain is not regarded as object oriented. Secondly, Algorithm
3 was employed on the stock domain to consider the effect of the OO assumption, and
Algorithm 4 was used to verify the method for type uncertainty calculations. Finally,
Algorithm 3 was tested w.r.t. predictive accuracy in the insurance domain.

6.1 Setup of the empirical study

The goal of the empirical study was to evaluate whether or not the proposed learning
methods generate good estimates of the unknown statistical distribution. Let f(x|Θ) be
the unknown gold standard distribution; x is a configuration of the domain and Θ are the
parameters. f̂N (x|Φ̂N) (or simply f̂N) will be used to denote the approximation of f(x|Θ)
based on N cases from the database.

Since an estimated model may have other edges than the gold standard model, the
learned CPTs of Φ̂N may have other domains than the CPTs of Θ. Hence a global measure
for the difference between the gold standard model and the estimated model is required. In
the tests performed, we have measured this difference by using the Kullback-Leibler (KL)
divergence (Kullback and Leibler, 1951) between the gold standard model and the estimated
model. The KL divergence is defined as

D
(

f || f̂N

)
=

∑
x

f(x|Θ) log

[
f(x|Θ)

f̂N(x|Φ̂N)

]
. (15)

There are many arguments for using this particular measurement for calculating the
quality of the approximation, see (Cover and Thomas, 1991). One of them is the fact that

23

Langseth & Nielsen

the KL divergence bound the maximum error in the assessed probability for a particular
event A, (Whittaker, 1990, Proposition 4.3.7):

sup
A

∣∣∣∣∣
∑
x∈A

f(x |Θ)−
∑
x∈A

f̂N (x|Φ̂N)

∣∣∣∣∣ ≤
√

1
2
·D

(
f || f̂N

)
.

Similar result for the maximal error of the estimated conditional distribution is derived in
(van Engelen, 1997). These results have made the KL divergence the “distance measure”14

of choice in Bayesian network learning, see e.g. (Pearl, 1988, Lam and Bacchus, 1994,
Heckerman et al., 1995, Friedman and Yakhini, 1996, Dasgupta, 1997, Friedman, 1998,
Cowell et al., 1999).

The learning method was tested by randomly generating a database of size N from the
gold standard model, where 25% of the data was missing completely at random15(Little
and Rubin, 1987, Heitjan and Basu, 1996); note that the proposed algorithms actually only
depend on the assumption that the data is missing at random. It is also worth emphazising
that all nodes in the underlying BN are observable in our tests (recall that input nodes
are not part of the underlying BN as these nodes are merged with the referenced nodes,
see Algorithm 1). The database was used as input to the structural learning algorithms.
This was repeated a total of 50 times, with N varying from 100 to 10.000. In our tests we
used Algorithm 3 with a maximum of 10 iterations (approximate convergence was typically
reached in 4–5 iterations). In each iteration a simulated annealing with parameters T0 = 50,
α = 100, β = 100, γ = 0.75 and δ = 220 (see (Heckerman et al., 1995) for notation) was
performed; we refer the interested reader to (Myers et al., 1999) for additional discussion
on stochastic search algorithms for learning Bayesian networks.

Observe that in the tests we do not consider the issue of running time. However, even
though the proposed algorithms might seem more complex than the SEM algorithm (due
to the nested iterations) the search space is in fact smaller and we therefore expect that the
algorithm require fewer steps than the ordinary SEM algorithm, see also Section 5.

6.2 The empirical results

Consider again the OOBN version of the insurance network described in Section 2.2, and
recall the small experiment we performed in our research group to elicit object oriented
prior information in this domain (described in Section 4.2). The goal of the experiment was
to find edges in the OOBN we could disregard a priori, and the result was that out of the
702 edges that can be included in the network structure, only 253 were marked possible,
including all the 52 edges actually in the network structure. Based on this experiment, we
employed the algorithm to examine to what extent this prior information could benefit the
search algorithm.

The empirical results for the insurance domain is given in Figure 9a. The object oriented
prior information regarding the interfaces was coded as absolutely certain (ω+

ij = ∞ if an
edge Xi → Xj required a larger interface than given by the prior information). As expected,

14. The KL divergence is not a distance measure in the mathematical sense, as D (f || g) = D (g || f) does
not hold in general. The term here is used in the everyday-meaning of the phrase.

15. Informally, missing completely at random means that the observability of a variable does not depend on
the value of any other variable (neither missing nor observed).

24

Knowledge Fusion for Structural Learning in OO Domains

0
1
2
3
4
5
6
7
8
9

10

2000 4000 6000 8000 10000

K
L

Size of training set

OO priors
Conventional priors

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2000 4000 6000 8000 10000

K
L

Size of training set

OO priors
Conventional priors

a) Insurance domain b) Stock domain

Figure 9: The KL divergence of the gold standard model vs. the generated models for
the two cases “Conventional priors” (ρ(Xi, Πi(BS)) = 1/65|Πi(BS) |) and “OO
priors”, where parts of the search-space violating the prior information regarding
the interfaces were disregarded.

the KL divergence decreases with the level of information available to the learning algorithm,
such that the results based on the “OO priors” is superior to the ones based on “conventional
priors” (i.e., the standard SEM algorithm) for smaller databases. The results seem to be at
the same level for large databases, say N > 8.000.

The second test was conducted to analyze the effect of making the OO assumption,
and was based on the stock domain. This domain consists of 2 instantiations of the Meat
cow class and 2 instantiations of the class Milk cow, and it was expected that knowing
that pairs of cows were identical would increase the learning speed; the results in Figure 9b
clearly show this effect. Note that learning of DBNs (see Section 3.4) is simply a special
case of OOBN learning, since any DBN can be modeled by the usage of two OOBN classes
(see Sections 2 and 4.2). Hence, the results in (Friedman et al., 1998) can be regarded as
the effect of the OO assumption in that special case.

A test was also performed to verify the type uncertainty algorithm. The test was
based on the stock domain, and we assumed that the domain expert was ignorant about
the classification of Cow1. We employed Algorithm 4 to this problem, and the results
are shown in Figure 10, together with the results when consistently choosing the wrong
classification (Milk Cow) and when consistently choosing the correct classification (Meat
Cow) averaged over five runs. The results are fairly promising, as the algorithm was able
to build a model which is comparable to the correct classification. Note that this problem
was made fairly difficult, as can be seen from the difference in the KL divergence between
the correct and the wrong classifications in Figure 10; the domain used in (Langseth and
Bangsø, 2001) has been modified to make the differences between the classes sufficiently
small for the problem to be challenging.16

16. When we used the domain as defined in (Langseth and Bangsø, 2001) we were able to classify the
instantiation correctly for databases as small as N = 10 observations.

25

Langseth & Nielsen

0

0.5

1

1.5

2

2.5

3

3.5

4

2000 4000 6000 8000 10000

K
L

Size of training set

Type Uncertainty classification
Correct classification
Wrong classification

Figure 10: The KL divergence of the gold standard model vs. the generated models for
the three cases “Type uncertainty classification” (Algorithm 4), the results of
“Correct classification” and “Wrong classification”.

Finally, a test was performed to compare the predictive performance of networks learned
using Algorithm 3 and the SEM algorithm (Algorithm 2). We generated two databases from
the insurance network; the databases consisted of 2000 and 8000 cases, respectively, and
25% of the data was missing completely at random. For this specific situation we tried to
predict the expected cost of insurance, i.e., the sum of the expected costs as indicated by
the variables ILiCist, MedCost and PropCost (we assumed that the utility was linear w.r.t.
the monetary values). The expected costs in the learned networks was then compared to
the expected cost in the gold standard network. This was done 25.000 times in each net-
work. The test-scenarios were sampled without missing values, but some of the variables
were subsequently removed; specifically, we removed the variables RiskAversion, Mileage,
DrivingSkill, DrivQuality, Theft, Accident, Cushioning, ThisCarDam, OtherCarCost, This-
CarCost, ILiCost, MedCost and PropCost. The results of the test is shown is Table 1, which
specifies the relative absolute error of the predictions.

2000 cases, Algorithm 2 with uniform priors 0.49
2000 cases, Algorithm 3 with “OO priors” 0.24
8000 cases, Algorithm 2 with uniform priors 0.29
8000 cases, Algorithm 3 with “OO priors” 0.22

Table 1: The table shows the relative absolute error of the predictions for networks learned
using the OO-SEM algorithm and the traditional SEM algorithm.

26

Knowledge Fusion for Structural Learning in OO Domains

The results show that the predictive performance of networks learned using Algorithm 3
is superior to networks learned using the SEM algorithm for databases of 2000 cases.17

Similar to the results using the KL divergence, we see that for 8000 cases the predictive
performance of the two networks are almost the same.

7. Conclusion

In this paper we have proposed a method for doing structural learning in object oriented
domains. The learning algorithm is based on the OOBN framework by (Bangsø and Wuil-
lemin, 2000b), and has been implemented using a tailor-made version of the Structural EM
algorithm by Friedman (1998). The proposed learning algorithm exploits an intuitive way
of expressing prior information in object oriented domains, and it was shown to be more
efficient than conventional learning algorithms in this setting.

Although the proposed learning algorithm is set in the framework of Bayesian model
selection we conjecture that the general idea of learning in the class specifications, instead
of in the underlying BN, has a broader applicability. For instance, we expect the overall
approach to be applicable when learning OOBNs using constraint-based methods (Spirtes
et al., 1993, Steck and Tresp, 1996).

A related area of work is the framework of probabilistic relational models (PRMs) (Getoor
et al., 2001). A PRM specifies a probability model for classes of objects, which can then be
used in multiple contexts. Getoor et al. (2001) describe how these models can be learned
from relational databases: as opposed to OOBNs the focus is on learning a PRM for a
specific context, instead of learning subnetworks (classes) that can be applied in different
contexts. Somewhat similar to the proposed algorithms, Getoor et al. (2001) also performs
learning at the class level, but avoids the problem of identifying the “input sets” as the
context is known, see also (Taskar et al., 2001).

Acknowledgments

We would like to thank our colleagues at the Decision Support Systems group, Aalborg
University, for interesting discussions and helpful comments. In particular, Olav Bangsø
participated in the outset of this work (Bangsø et al., 2001). We would also like to thank
Hugin Expert (www.hugin.com) for giving us access to the Hugin Decision Engine which
forms the basis for our implementation. Finally, we would like to thank the anonymous
reviewers for constructive comments and suggestions for improving the paper.

References

Olav Bangsø, Helge Langseth, and Thomas D. Nielsen. Structural learning in object oriented
domains. In Proceedings of the Fourteenth International Florida Artificial Intelligence
Research Society Conference, pages 340–344. AAAI Press, 2001.

17. Note that due to this particular setup of the tests, it is not reasonable to argue about the general
predictive performance of the learned networks.

27

Langseth & Nielsen

Olav Bangsø and Pierre-Henri Wuillemin. Object oriented Bayesian networks. A framework
for topdown specification of large Bayesian networks with repetitive structures. Techni-
cal report CIT-87.2-00-obphw1, Department of Computer Science, Aalborg University,
2000a.

Olav Bangsø and Pierre-Henri Wuillemin. Top-down construction and repetitive struc-
tures representation in Bayesian networks. In Proceedings of the Thirteenth International
Florida Artificial Intelligence Research Society Conference, pages 282–286. AAAI Press,
2000b.

John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic
networks with hidden variables. Machine Learning, 29(2–3):213–244, 1997.

Wray L. Buntine. A guide to the literature on learning probabilistic networks from data.
IEEE Transactions on Knowledge and Data Engineering, 8:195–210, 1996.

Peter Cheeseman and John Stutz. Bayesian classification (AutoClass): Theory and results.
In Advances in knowledge discovery and data mining, pages 153–180. AAAI/MIT Press,
1996. ISBN 0-262-56097-6.

David M. Chichering and David Heckerman. Efficient approximations for the marginal
likelihood of Bayesian networks with hidden variables. Machine Learning, 29(2–3):181–
212, 1997.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for constructing Bayesian
belief networks from databases. In Proceedings of the Seventh Conference on Uncertainty
in Artificial Intelligence, pages 86–94. Morgan Kaufmann Publishers, 1991.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of prob-
abilistic networks from data. Machine Learning, 9:309–347, 1992.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York,
1991. ISBN 0-471-06259-6.

Robert G. Cowell, A. Phillip Dawid, Steffen L. Lauritzen, and David J. Spiegelhalter.
Probabilistic Networks and Expert Systems. Statistics for Engineering and Information
Sciences. Springer Verlag, New York, 1999. ISBN 0-387-98767-3.

Sanjoy Dasgupta. The sample complexity of learning fixed-structure Bayesian networks.
Machine Learning, 29(2–3):165–180, 1997.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series
B, 39:1–38, 1977.

Gal Elidan and Nir Friedman. Learning the dimensionality of hidden variables. In Pro-
ceedings of the Seventeenth Conference on Uncertainty of Artificial Intelligence, pages
144–151. Morgan Kaufmann Publishers, 2001.

28

Knowledge Fusion for Structural Learning in OO Domains

Gal Elidan, Noam Lotner, Nir Friedman, and Daphne Koller. Discovering hidden variables:
A structure-based approach. In Advances in Neural Information Processing Systems 13,
pages 479–485. MIT Press, 2000.

Nir Friedman. The Bayesian structural EM algorithm. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, pages 129–138. Morgan Kaufmann
Publishers, 1998.

Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network classifiers. Machine
Learning, 29(2–3):131–163, 1997a.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic rela-
tional models. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 1300–1309. Morgan Kaufmann Publishers, 1999.

Nir Friedman, Moises Goldszmidt, David Heckerman, and Stuart Russell. Challenge: Where
is the impact of Bayesian networks in learning? In Proceedings of the Fifteenth Interna-
tional Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers, 1997b.
URL: http://www.cs.huji.ac.il/labs/compbio/Repository/.

Nir Friedman and Daphne Koller. Being Bayesian about network structure. In Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 201–210. Morgan
Kaufmann Publishers, 2000. To appear in Machine Learning, 50(1–2), 2003.

Nir Friedman, Kevin P. Murphy, and Stuart Russell. Learning the structure of dynamic
probabilistic networks. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, pages 139–147. Morgan Kaufmann Publishers, 1998.

Nir Friedman and Zohar Yakhini. On the sample complexity of learning Bayesian networks.
In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pages
274–282. Morgan Kaufmann Publishers, 1996.

Dan Geiger, David Heckerman, and Christopher Meek. Asymptotic model selection with
hidden variables. In Proceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence, pages 283–290. Morgan Kaufmann Publishers, 1996.

Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational
models. In Relational Data Mining, pages 307–338. Springer Verlag, Berlin, Germany,
2001. ISBN 3-540-42289-7. See also (Friedman et al., 1999).

Peter J. Green. On use of the EM algorithm for penalized likelihood estimation. Journal
of the Royal Statistical Society, Series B, 52(3):443–452, 1990.

Russell Greiner, Adam J. Grove, and Dale Schuurmans. Learning Bayesian nets that per-
form well. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial In-
telligence, pages 198–207. Morgan Kaufmann Publishers, 1997.

David Heckerman. A Bayesian approach to learning causal networks. Technical Report
MSR-TR-95-04, Microsoft Research, 1995a.

29

Langseth & Nielsen

David Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-
TR-95-06, Microsoft Research, 1995b.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20(3):197–243,
1995.

Daniel F. Heitjan and Srabashi Basu. Distinguishing “Missing At Random” and “Missing
Completely At Random”. The American Statistician, 50(3):207–213, 1996.

Finn V. Jensen. An introduction to Bayesian networks. UCL Press, London, UK, 1996.
ISBN 1-857-28332-5.

Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, New York, 2001.
ISBN 0-387-95259-4.

Uffe Kjærulff. A computational scheme for reasoning in dynamic probabilistic networks.
In Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, pages
121–129. Morgan Kaufmann Publishers, 1992.

Daphne Koller and Avi Pfeffer. Object-oriented Bayesian networks. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 302–313. Morgan
Kaufmann Publishers, 1997.

Paul J. Krause. Learning probabilistic networks. The Knowledge Engineering Review, 13
(4):321–351, 1998.

Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22:79–86, 1951.

Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence, 10(4):269–293, 1994.

Helge Langseth and Olav Bangsø. Parameter learning in object oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence, 31(1/4):221–243, 2001.

Kathryn B. Laskey and Suzanne M. Mahoney. Network fragments: Representing knowledge
for constructing probabilistic models. In Proceedings of the Thirteenth Conference on
Uncertainty in Artificial Intelligence, pages 334–341. Morgan Kaufmann Publishers, 1997.

Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data. John
Wiley & Sons, 1987. ISBN: 0-471-80254-9.

Suzanne M. Mahoney and Kathryn B. Laskey. Network engineering for complef belief net-
works. In Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence,
pages 389–396. Morgan Kaufmann Publishers, 1996.

Lars Mathiasen, Andreas Munk-Nielsen, Peter A. Nielsen, and Jan Stage. Object-oriented
analysis & design. Marko Publishing ApS, Aalborg, Denmark, 2000. ISBN 8-777-51150-6.

30

Knowledge Fusion for Structural Learning in OO Domains

James W. Myers, Kathryn B. Laskey, and Tod S. Levitt. Learning Bayesian networks
from incomplete data with stochastic search algorithms. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pages 476–485. Morgan Kaufmann
Publishers, 1999.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, San Mateo, CA., 1988. ISBN 0-934-61373-7.

Avrom J. Pfeffer. Probabilistic Reasoning for Complex Systems. Ph.D. thesis, Stanford
University, 2000.

Malcolm Pradhan, Gregory Provan, Blackford Middleton, and Max Henrion. Knowledge en-
gineering for large belief networks. In Proceedings of the Tenth Conference on Uncertainty
in Artificial Intelligence, pages 484–490. Morgan Kaufmann Publishers, 1994.

Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge, UK, 1996. ISBN 0-521-46086-7.

Jorma Rissanen. Stochastic complexity (with discussion). Journal of the Royal Statistical
Society, 49(3):223–239 and 253–265, 1987.

Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464,
1978.

Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Monographs
on statistics and applied probability. Chapman and Hall, London, UK, 1986. ISBN 0-
412-24620-1.

Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Prediction, and Search.
Springer Verlag, New York, 1993. ISBN 0-387-97979-4.

Harald Steck and Volker Tresp. Bayesian belief networks for data mining. In Proceedings
of the 2. Workshop on Data Mining und Data Warehousing als Grundlage moderner
entscheidungsunterstützender Systeme, pages 145–154, University of Magdeburg, Ger-
many, 1996. ISBN 3-929-75726-5.

Benjamin Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clustering
in relational data. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence, pages 870–876. Morgan Kaufmann Publishers, 2001.

Robert A. van Engelen. Approximating Bayesian belief networks by arc removal. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(8):916–920, 1997.

Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models. Springer Verlag,
New York, 2nd edition, 1997. ISBN 0-387-94725-6.

Joe Whittaker. Graphical models in applied multivariate statistics. Wiley, Chichester, 1990.
ISBN 0-471-91750-8.

31

Langseth & Nielsen

Yang Xiang and Finn V. Jensen. Inference in multiply sectioned Bayesian networks with
extended Shafer-Shenoy and lazy propagation. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, pages 680–687. Morgan Kaufmann Publishers,
1999.

Yang Xiang, David Poole, and Michael P. Beddoes. Multiply sectioned Bayesian networks
and junction forests for large knowledge-based systems. Computational Intelligence, 9(2):
171–220, 1993.

32

	thesis.pdf
	binder.pdf
	thesis.pdf
	thesis.pdf
	LangsethLindqvist02.pdf
	LangsethJensen02.pdf
	LangsethNielsen02a.pdf
	LangsethBangsoAMAI.pdf
	LangsethNielsen02.pdf

	thesis-wrapper.pdf

	thesis-wrapper.pdf

	aa.pdf

