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Foreword

The availability of drinking water in the right quantity and quality is
critical for the socio-economic transformation of every country.
Nevertheless, in many parts of the world, systems for ensuring the
provision of drinking water in the right quality and quantity are
significantly challenged. In Norway, most water supply systems depend
on surface water sources for the provision of drinking water. These
surface water sources are often susceptible to microbial contamination.
Consequently, all kinds of microbial organisms of significant public
health concern such as viruses, bacteria, parasites and protozoa can be

found in the raw water sources used for drinking water supply.

Machine learning models have been employed in attempts to predict the
concentration of microbial organisms to varying degrees of success. In
this thesis some of these algorithms will undergo further enhancement
by performing hyperparameter optimization combined with various
methods for data pre-processing. Ideally, the water treatment plants
should be able to rely on these models to enhance reaction times when
deploying countermeasures for microbial contamination. Not only could
this serve to further protect public health, but also reduce the cost of

operating such water treatment plants.
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Abstract

The collection and analysis of data on the concentration of pathogenic
organisms in raw water sources is critical for the optimization of
disinfection processes in water treatment plants. Nevertheless, there
are no robust real-time sensors for determining microbial concentrations
in raw water sources, and many water treatment plants still rely on very
laborious, time consuming and costly traditional laboratory methods. In
the traditional laboratory methods, the concentration of faecal indicator
bacteria in a raw water that is to be treated may not be known until 18-
24 hours after the water has been distributed to the population, while
that of virus and parasites may take several days to determine.
Consequently, waterborne disease outbreaks associated with water
supply systems often occur before remedial actions are taken because
the concentrations of microbial pathogens in the raw water sources is

not known beforehand.

To achieve the ultimate goal of protecting public health, early detection
of microbial organisms in raw water is necessary for the development of
proactive risk management strategies. Besides enhancing microbial
detection tools, mathematical models can be employed to reliably predict
the concentration of microbial organisms in raw water. For this purpose,
several mathematical models have been developed including Machine
Learning Algorithms to predict the occurrence/concentration of
pathogenic organisms in raw water sources. These models use easily
analysable physio-chemical parameters (e.g. temperature, pH, turbidity,
electrical conductivity, colour, etc) in the raw water to predict the
occurrence/concentration of microbial pathogens. Machine learning
models that have been successfully applied in predicting the
concentration of microbial organisms in raw water sources include
support vector machines, random forests, extreme learning machines
and adaptive neuro-fuzzy inference systems. However, these models are

often built to predict the concentration of microbial pathogens in a single



water source and are therefore often poor in predicting the

concentrations of pathogens when applied to other water sources.

The overall aim of this work is to apply hyperparameter optimization of
machine learning models combined with various methods of data pre-
processing to improve the adaptability and effectiveness of models
developed for a plant in predicting the concentrations of microbial

organisms in other plants.

Data used in this work were obtained from Brusdalsvatnet in Alesund
and Maridalsdalsvannet in Oslo. Brusdalsvatnet is the main drinking
water source for Alesund Kommune and surrounding communities,
while Maridalsvannet is the main drinking water source for parts of Oslo
Kommune. Using a library for the programming language Python called
hyperopt-sklearn, hyperparameter optimized models were trained and
the best configuration was selected. Hyperopt-sklearn, is based on scikit-
learn, a package for Python containing a wide variety of tools for
machine learning applications, and hyperopt, a tool for hyperparameter
optimization in Python. In each experiment, the optimizer evaluates 100
different configurations of hyperparameters and pre-processors. The
learners that have been used are limited to those available in the library.
Of the machine learning algorithms that have been used previously to
predict the concentration of microbial organisms in water, support
vector machine and random forest are the only ones available in the tool.
However, to see if any other of the available learners could potentially
be successful in predicting microbial organisms, the optimizer was
allowed to choose the learner itself as well. Optimized random forest,
support vector machine and k nearest neighbour along with default
random forest and support vector machine were the machine learning
algorithms trained to predict the concentration of coliform bacteria and
E. Coli in the data from Maridalsvannet. A visual inspection of the
predictions made by these algorithms was done by plotting them against

the observed values. The plots showed that that the optimized model

V1



clearly performs better than the default ones. Particularly since these
values have a tendency to rise in several peaks over values that
otherwise are close to zero, and the optimized models were better at
recognizing these peaks and their magnitudes. However, the machine
learning package comes with scoring metrics which tell a different story.
These scoring metrics would in many cases score the default algorithms
better than the optimized ones. Since the optimizer uses one such
scoring method by default in its internal model selection mechanism, it
is reasonable to assume that even better results might be achieved if the
scoring methods could recognize that predicting the peaks are much
more important than accurately predicting small values around zero.
Moreover, there are some challenges caused by the different water
treatment plants not having the same standard procedures for

accounting for different parameters in their raw water sources.

The study has shown that optimized models can significantly improve
the models’ ability to predict the concentration of microbial organisms
in raw water sources. It is recommended that these procedures be used
in further developing models for water treatment plants. Ideally, to
improve the usability of these models the water treatment plants should
work on a more standardized procedure as well. Furthermore,
developing a new scoring method tailored for this problem in particular

might further improve optimization of these models.
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1 Introduction

1.1 Problem definition

1.1.1 Background and traditional models

The availability of drinking water in the right quantity and quality is
critical for the socio-economic transformation of every country.
Nevertheless, in many parts of the world, systems for ensuring the
provision of drinking water in the right quality and quantity are
significantly challenged. In Norway, where most water supply systems
depend on surface water sources for the provision of drinking water to
the population. These surface water sources are often susceptible to
significant contamination. Consequently, pathogens of significant public
health concern such as viruses, bacteria, parasites and protozoa origins
can be found in raw water sources used for drinking water supply. To
protect public health, the water treatment plants must deploy proactive
and reactive risk management strategies. For the proactive risk
management strategies to work effectively, early detection of microbial
organisms in raw water is necessary. Besides improving the tools used
for microbial detection, statistical models can be employed to reliably
predict the concentration of microbial organisms in raw water. The
water treatment plants can use live measurements of physical and
chemical parameters to predict this concentration of microbial
organisms. Measurements of microbial data is typically non-negative
integers, possibly skewed with a large number of zeroes. In general, this
zero-inflatedness i1s being accounted for by approximation to normal
distribution in multiple linear regression models (Eregno, et al., 2014;
Herring, et al., 2015). However, studies have shown that such
transformations do not entirely eliminate certain violations of

traditional regression models such as heteroscedasticity and could



produce biased parameter estimates (Coxe, et al., 2009; Beaujean &

Morgan, 2016).

Fresh Water Treatment Plant
‘ o ! ‘ Distribution
LY n
{ |
Measuring station Live sensor data

Figure 1.1 Measuring stations and treatment plant

1.1.2 Addressing the challenges with the traditional models

To address the challenges associated with traditional linear models, a
suite of Al, random forest models and zero-inflated models have been
developed to predict the occurrence of microbial organisms in Norwegian
water supply systems (Mohammed, et al., 2018; Mohammed, et al., 2017;
Wu, et al., 2012). These models have been shown to have very good
predictive capabilities for indicator organisms in raw water sources
given a set of physical and chemical parameters. The models were based
on data from the Oset Water Treatment Plant, which has advanced
systems for the collection and collation of water quality data. However,
the applicability of the models to other water supply systems in Norway
has been encumbered by the availability and quality of predictive data.

1.1.3 New challenges

The main issue is that the type of measurements, the frequency for
which these measurements are recorded, and how the measurements
are recorded vary greatly across different treatment plants. Given this
issue the models that are designed for, and trained on data from, one
water treatment plant cannot necessarily be used for the data from other

plants.



1.2 Motivation

Being able to predict microbial pathogens in drinking water supplies
could significantly improve response time in water treatment plants and
reduce cost of operation by increasing the use of “cheap” data provided
by live sensors instead of expensive lab tests. To increase the capacity
and adaptability of the existing models could potentially increase the
accuracy and usability of these models for a wider variety of treatment

plants.

1.3 Scope

The scope of this project is a study of the existing models and the
available data, identification of possible model adaptation methods and
the application of at least one of these model adaptation methods and
study of the model’s performance when applied to other data sources.
The project will not include an infrastructure for use of these model
adaptation methods but is limited to identifying what methods can be

used and whether these methods could improve the existing models.

1.4 Objectives

The objective of this thesis is to understand the existing data and the
existing models, to understand parameters and hyperparameters and
perform data pre-processing. To evaluate the existing data and existing
models and identify possible hyperparameter optimization methods.
And to assess (semi)-automatic model adaptation and fine-tuning
methods for the applicability of the developed models for water supply

systems in Norway.



1.4.1 Research questions
e Could pre-processing the data before training the models improve
the results?
e What methods can be used for fine-tuning of the existing models?
e Could hyperparameter optimization improve the models’ ability

to predict concentration of microbial organisms?



2 Literature Review

The literature search leading to this literature review was mostly
conducted via Google’s search engine for academic texts Google Scholar
and Oria. Keywords used to find these texts include but are not limited
to:  “machine learning”, “hyperparameter’, “hyperparameter
optimization”, “model selection”, “imputation” and “pathogens in water
supplies”. Some of the books that have been studied are books that has

been used as learning material in the courses during the Simulation and

Visualization MSc program at NTNU Alesund.

2.1 Machine Learning

Machine Learning is about making computers modify or adapt their
actions so that these actions get more accurate, where accuracy is
measured by how well the chosen action reflect the correct answer
(Marsland, 2015). In machine learning the computer is learning from
data, which is used in situations where we don’t have an analytic
solution, but we do have data that we can use to construct an empirical

solution (Abu-Mostafa, et al., 2012).

2.1.1 Types of learning

The main types of learning are: supervised learning, reinforcement
learning and unsupervised learning (Russel & Norvig, 2010). In
supervised learning the machine learning model is provided by a
labelled dataset where each set of inputs are marked with the correct
answer. In reinforcement learning the ML model is not provided with an
exact answer, but rather an indication of whether or not its action was
good. Finally, in unsupervised learning a ML model is tasked with
making sense of the inputs without any feedback on what the correct
answer is. Evolutionary learning is also seen as a form of learning, a

process inspired by evolutionary biology (Marsland, 2015).



2.1.2 Popular approaches to ML
The most popular approaches to machine learning are artificial neural

networks and genetic algorithms (Negnevitsky, 2011).

An Artificial Neural Network (ANN) seeks to imitate the way our
brains work based on a hypothesis from neuroscience that metal activity
primarily consists of electrochemical activity in networks of brain cells
called neurons (Russel & Norvig, 2010). A simple mathematical model
devised by McCulloch and Pitts (McCulloch & Pitts, 1943) is shown in
Figure 2.1.

Inputs  Weights
Wi

Threshold T

Figure 2.1 A simple mathematical model for a neuron

In short, the neuron activates when a linear combination of its inputs I,
Is, ..., Iy exceeds some threshold T. A neural network is just a collection
of units connected together where the properties of the network are
determined by its topology and the properties of the neurons (Russel &
Norvig, 2010).

A Genetic Algorithm (GA) is a computational approximation to how
evolution performs search, which is by producing modifications of the
parent genomes in their offspring and thus producing new individuals
with different fitness (Marsland, 2015). While there is no universally
accepted definition, most of the methods called “GAs” have at least the
following components: population of chromosomes, selection according
to fitness, crossover to produce new offspring, and random mutation of

new offspring (Mitchell, 1998).



2.1.3 Hyperparameters

A common trait across all ML methods is that they are parameterized
by a set of hyperparameters, denoted by A, which must be set
appropriately by the user to maximize the usefulness of the approach
(Claesen & De Moor, 2015). Examples of such hyperparameters in ANNs
are number of layers and number of neurons in each layer, learning rate

and threshold function.

2.2 Other intelligent systems

2.2.1 Decision Tree

A decision tree i1s a prediction algorithm using recursive binary
partitioning of the data space, fitting a simple prediction model within
each partition, to create a predictive model (Loh, 2011). There is a wide
variety of decision tree algorithms available, one of these is CART —
Classification and Regression Trees (Breiman, et al., 1984). As a result
of the binary partitioning, the algorithm can be represented graphically
as a decision tree. An example is given in Figure 2.2 with the partitioned
dataset shown on the left and the decision tree structure shown on the

right.
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Figure 2.2 Partitions (left) and decision tree structure (right) (Loh, 2011).



2.2.2 Rule-based expert system

A rule-based expert system is a knowledge-based system where
knowledge is represented by simple IF-THEN rules. These rules are
determined by a domain expert, which means that the system is only as
good as a human expert (Negnevitsky, 2011). A general rule-based
expert system consists of a knowledge base where the rules are stored,
a database containing the knows facts of a given problem, and an
inference engine that can infer an answer based on the rules and the
facts in its database (Buchanan & Duda, 1982). In addition to these
components, an expert system typically has some kind of explanation

facility that can explain how it arrived at the conclusion it did.

2.2.3 Fuzzy expert system

Fuzzy expert systems are systems based on the same rules of logic as
the rule-based expert system, but instead of using crisp values they
operate on fuzzy logic. Fuzzy logic was first introduced by the Polish
philosopher and logician Lukasiewiecz (Lukasiewiecz, 1930) whose work
led to an inexact reasoning technique often referred to as possibility
theory. Another philosopher, Max Black, argued that continuum implied
degrees and not just true or false (Black, 1937). As an example, Black
said to imagine a line of countless chairs where at one end there was a
Chippendale. Next to it is a very similar chair, in fact so similar that
they are indistinguishable by the bare eye. Further along the line are
less and less chair like items until it finally ends with a log. Black asked
at what point on the line is the item in question no longer a chair?
Professor Lotfi A. Zadeh later rediscovered this fuzziness and published
his famous paper Fuzzy Sets (Zadeh, 1965). Zadeh’s work extended
Lukasiewiecz’s possibility theory into a formal system of mathematical
logic and introduced a new concept for applying natural language terms
(Negnevitsky, 2011). As opposed to Boolean logic, which have only two

values, fuzzy logic is multi-valued and has degrees of membership.



Fuzzy inference, according to Negnevitsky (2011), can be defined as a
process of mapping from a given input to an output, using the theory of
fuzzy sets. There are two fuzzy inference techniques: Mamdani and

Sugeno.

The Mamdani method is the most commonly used fuzzy inference
technique, applied by London University Professor Ebrahim Mamdani
(Mamdani & Assilian, 1975). The Mamdani-style fuzzy inference method
consists of four steps: fuzzification of the inputs, rule evaluation,
aggregation of the rule outputs, and defuzzification. During the
fuzzification step the inputs, which are crisp values, are mapped to
membership degrees for their respective fuzzy sets. In the rule
evaluation step the fuzzified inputs are applied to the antecedents of the
fuzzy rules. After all the relevant rules has been applied the results are
aggregated into a single fuzzy set in the third step. Finally, in the fourth
step the output from the rule aggregation step is defuzzified to a single
number. While there are several methods of performing defuzzification
(Cox, 1998), the most popular one is probably the centroid technique
(Negnevitsky, 2011). This technique finds a point where a vertical line
would split the set into two equal masses, a centre of gravity (COG).

_ b uatox
oG = Yo qnatx)

The basic structure of a Mamdani-type fuzzy inference method is shown

in Figure 2.3.
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Figure 2.3 The basic structure of Mamdani-style fuzzy inference (Negnevitsky, 2011, p. 108).
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The Sugeno method of fuzzy inference offers a less precise but more
computationally efficient method, introduced by Michio Sugeno (Sugeno,
1985). Sugeno’s method uses a spike, or singleton, as the membership
function of the rule consequent. Sugeno-type fuzzy inference is very
similar to the Mamdani-type, only the rule consequent is different. The
output is calculated by finding a weighted average (WA) of the singletons
(Negnevitsky, 2011, p. 113):

- u(kl) = k1 + u(k2) * k2 + u(k3) * k3
B p(kl) + p(k2) + u(k3)

The basic structure of a Sugeno-type fuzzy inference method is shown in

Figure 2.4.
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Figure 2.4 The basic structure of Sugeno-style fuzzy inference (Negnevitsky, 2011, p. 114).
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2.3 ML methods used for predicting pathogens

Currently the main machine learning models used for predicting
pathogens in drinking water supplies are: Adaptive Neuro-Fuzzy
Inference System (ANFIS), Random forest, Support Vector Machine
(SVM), and Extreme Learning Machine (ELM).

2.3.1 ANFIS

ANFIS i1s a hybrid intelligent system integrating artificial neural
network and fuzzy logic principles. ANFIS was proposed by Roger Jang
(1993) and is a neural network functionally equivalent to the Sugeno
fuzzy inference model (Ch. 2.2.3). The ANFIS architecture, ref. Figure
2.5, usually has five or six layers depending on whether the inputs are
counted as a layer. A short description of each layer follows (Jang, 1993;

Negnevitsky, 2011; Suparta & Alhasa, 2016):

Layer 2 Layer 3

Layer 1 Layer 4
Figure 2.5 ANFIS Architecture (Suparta & Alhasa, 2016, p. 12)

The first layer, often called the fuzzification layer, has square nodes
representing membership functions. In Jang’s model, these neurons
have a bell activation function. The output from this layer is the

membership degrees of each input.
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The second layer, often called the rule layer, consists of circular nodes
labelled 1. These neurons multiply their input and outputs the product.

Each of these nodes represent the firing strength of a rule.

The third layer, often called the normalisation layer, has circular nodes
labelled N. Each neuron in this layer receives the output from all the
neurons in the previous layer and calculates a normalised firing

strength of a given rule.

The fourth layer is often called the defuzzification layer. In this layer
the neurons receive the normalised output from the previous layer, as
well as the initial inputs, and calculates a weighted consequent value of

a given rule.

The fifth and final layer is a single summation neuron. This neuron
calculates the sum of all the outputs from the defuzzification layer and

produces the overall output.

2.3.2 Random forest

Random forest is the idea of using several decision trees (2.2.1) with
variation for either classification or regression (Breiman, 2001). It works
by creating a number of trees trained on slightly different data. To
achieve this, bootstrap samples are taken from the dataset for each tree
(Marsland, 2015). In addition, the number of features a tree can choose

from 1is reduced.

2.3.3 Support Vector Machine

SVM is a very popular algorithm in modern machine learning
introduced by Vapnik in 1995 (Vapnik, 1995). The SVM attempts to
separate classes in a dataset with a hyperplane. Optimal separation is
given by the margin, labelled M, which is the largest possible region
around the separating hyperplane with no data points entering the

region (Negnevitsky, 2011).
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Figure 2.6 Hyperplane with margin separating two classes (Negnevitsky, 2011, p. 171).

The classifier that has the largest margin is called the maximum margin
linear classifier, and the data points closest to the classification line is
called support vectors. To achieve linear separability, it is often
necessary to transform the data. The kernel function provides a solution

by adding an additional dimension (Noble, 2006).

KZ A

Figure 2.7 Modified space to achieve linear separability (Negnevitsky, 2011, p. 176).

2.3.4 Extreme Learning Machine

ELM 1is an algorithm for single-hidden layer feedforward neural
networks (SLNFs) which randomly choses the input weights and
analytically determines the output weights of SLNFs (Huang, et al.,
2005).
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2.4 Hyperparameter optimization

Hyperparameter optimization, also called hyperparameter tuning or
hyperparameter search, is the problem of finding the optimal set of
hyperparameters for a given machine learning algorithm. According to
Claesen and De Moor (Claesen & De Moor, 2015) this has commonly
been performed by manually, either via rules-of-thumb (Hinton, 2012;
Hsu, et al., 2003) or by testing sets of hyperparameters on a predefined
grid (Pedregosa, et al., 2011). However, these methods are lacking in
terms of reproducibility and proves to be quite impractical when the
number of hyperparameters increase (Claesen, et al., 2014). For these
reasons, automated hyperparameter search has gained increasing

amounts of attention in machine learning over the years.

2.4.1 Random search

Claesen and De Moor (Claesen & De Moor, 2015) lists several
optimization methods that have been applied for hyperparameter
tuning: particle swarm optimization (Lin, et al.,, 2008), genetic
algorithms (Tsai, et al., 2006), coupled simulated annealing (Souza, et

al., 2010) and racing algorithms. (Birattari, et al., 2010).

2.4.2 Bayesian optimization

Bayesian optimization, or sequential model-based optimization (SMBO),
is a general term for techniques that involve Bayesian methods for
optimizing a function (Groch, et al., 1981; Bergstra, et al., 2013). These
algorithms are typically used for applications where it is expensive to
evaluate the function because these methods minimize the number of

evaluations (Bergstra, et al., 2013).
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2.5 Microbial pathogens in water supply systems

The World Health Organization (WHO) is constantly working on a
framework for assessing and improving the quality of drinking water
(World Health Organization, 2011). In the WHO publication Guidelines
for Drinking-water quality (World Health Organization, 2011) they
consider the drinking-water quality with respect to microbial- and
chemical water quality. The relevant part for this thesis is the microbial

water quality.

2.5.1 Indicator organisms

Traditionally, detection of pathogens in water bodies has been done with
the use of indicator organisms (Berg, 1978). Smith (1895) showed that a
type of bacteria, known then as Bacillus coli communis, could be ‘a
valuable indication or symptom of pollution’, and was the first
bacteriologist to promote what later became known as the coliform group
of bacteria as indicators of faecal pollution (Horan, 2003). Faecal
indicator organisms remain at the forefront of water and wastewater
microbiology (Horan, 2003). The ideal indicator organism would be
suitable for all categories of water, is present in wastewaters and
polluted waters whenever pathogens are present, is present in greater
numbers than pathogens, have similar survival characteristics as
pathogens, is unable to multiply in waters, is non-pathogenic, and is
reliably detectable in low numbers at low cost (Bonde, 1962; World
Health Organization, 1993; Grabow, 1996; Godfree, et al., 1997).
Naturally, such an ideal organism does not exist, but there are some who
come close (Horan, 2003). World Health Organization (2011) lists
several indicator organisms along with their indicator value and source,
and occurrence. Among these are total coliform bacteria, Escherichia coli
(E. coli) and thermotolerant coliform bacteria, and intestinal enterococci.
These organisms are easily detectible, at low cost and within a short
time span. For this reason, water treatment plants both in Norway and

globally analyse for these organisms as indicators for pathogens. While
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these organisms have proven useful in indicating bacterial pathogens in
water, difficulties still remain in detecting non-bacterial pathogens like

viruses and protozoa (Horan, 2003).

2.5.2 Pathogens of concern for Norwegian drinking water

According to a report from the Norwegian Institute of Public Health
(Andersen, 2016) the most common outbreak of pathogens in food and
water are norovirus, Campylobacter and Cryptosporidium. In 2016 one
outbreak and several incidents were confirmed to be waterborne.
Between 2012 and 2016 there were 8 outbreaks confirmed to be
waterborne. Another report from the Norwegian Institute of Public
Health (Herrador, et al., 2016) shows 4 outbreaks since 1992 with over
1000 incidents. The most common sources of infection were norovirus
and Campylobacter, and there was one large outbreak of Giardia in

Bergen in 2004.
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Figure 2.8 Number of incidents from outbreaks in Norway 1992-2014 (Andersen, 2016, p. 9)

Campylobacter is a genus of bacteria, Cryptosporidium and Giardia are
protozoa, and norovirus is a virus. Most of these pathogens remain
hard to detect and prevent due to the aforementioned problem of lack
of easily detectable indicator organisms. Testing for these pathogens
are typically expensive and takes longer time because they need more

extensive lab tests. Likewise, the availability of data on these

18



organisms are severely lacking since water treatment plants typically

does not gather such expensive data.
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3 Methodology

This chapter presents the approach used during this thesis. Several
models have already been made by others for the purpose of predicting
indicator organisms in drinking water. As previously mentioned, the
idea of this thesis is to further tune these models in an attempt to
make them better suitable for their purpose. This was done by

experiments with hyperparameter optimization.

3.1 Set-up

The experiments were done in Python using Hpopt-Sklearn (Komer, et
al., 2014) which is built on the Scikit-Learn (Pedregosa, et al., 2011) and
Hyperopt (Bergstra, et al., 2013) libraries. The data is stored in CSV files
and 1s loaded in python using pandas (McKinney, 2011). Trained models
are saved as “.sav’-files using joblib which is included in the scikit-learn

library. Joblib can also load the models for later use.

3.2 Pre-study

A short pre-study was conducted on the data and on the existing models
before the experiments started. The study of the data was mostly
conducted working in a Jupyter Notebook (Kluyver, et al., 2016) using
the pandas library. The study included analysing the frequency of
measurements, looking for empty or NaN values, plotting the observed
values and visually inspecting them, performing a correlation analysis
of the data, and determining the integrity of the data by looking at the

values.

3.3 Experiments

Using the set-up explained in section 3.1 a set of experiments were
systematically run. Each experiment begun with the selection of a
learner and a pre-processor from the list of available ones. An overview

of the overall methodology is shown in Figure 3.1.
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Figure 3.1 Methodology flow chart

A more specific chart of the experiments themselves are shown in Figure
3.2. Random Forest and Support Vector Machine were specifically
chosen as learners because they have been used in previous attempts

(Mohammed, et al., 2018). Other learners were chosen by the optimizer.
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Figure 3.2 Experiments flow chart
The optimizer was configured to test 100 different configurations for
each experiment. Each configuration was trained on the data until it
met its internal stopping criterion. When choosing a pre-processor, the

optimizer could choose from all available pre-processors the first few
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experiments. Later, to reduce the search space, a specific pre-processor
that has shown to give good results was chosen specifically and

optimized together with the learner.

Each configuration was optimized at least 3 times. If, by visual
inspection, a learner pre-processor combination did not return any
usable result, it could be run several more times to ensure that it is not

able to produce any good results.

Pre-processors that has been used is explained in the following
sections. There were more pre-processing methods available in the
library, like TfidfVectorizer and OneHotEncoder, but these are the

ones that were actually used.

3.3.1 Principal Component Analysis
PCA is a method derived from statistics. Essentially it is linear
dimensionality reduction using Singular Value Decomposition of the

data to project it to a lower dimensional space (Scikit-Learn, 2017).

3.3.2 Standard Scaler
Standard scaler is a pre-processing method that transforms the data
such that the distribution has a mean of 0 and a standard deviation of

1. If the mean u is given as

_ D=1 %
n

And the standard deviation o 1s

iz (i — w)?
n

Then standardization z is given as:
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3.3.3 Min-Max Scaler
Min-Max scaling transforms features by scaling each of them to a given

range. The scaling is given by
Xscated = Xsta * (max — min) + min
If min and max is the feature range and X4 is

X — X _Xmin
std Xmax - Xmin

3.4 Model comparisons

By the end of the experiments all the best models from each
configuration were compared to each other. Models are compared by two
methods: using the built-in scoring metrics in the scikit-learn library,
and visually comparing their accuracy by plotting the predicted values

and comparing it to a plot of the observed values.
Following is a description of the built-in metrics (Scikit-Learn, 2017):

3.4.1 Mean Absolute Error

The scoring metric used in the first comparison is the Mean Absolute
Error. MAE is a measure of the average vertical distance between the
predictions and the observed values. If y; is the predicted value of the i-
th sample, and y; is the corresponding observed value, then the MAE

estimated over n samples is defined as

MAE = Yizalyi = il
n

3.4.2 Mean Squared Error
Mean Squared Error, the second scoring metric used, is quite similar to

MAE. The only difference is that the error is squared.

MSE = Z?=1(Yi - j;i)z
n
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Squaring the error means that greater deviations is punished more than

smaller deviations from the observed values.

3.4.3 Median Absolute Error
The Median Absolute Error is the median of all absolute differences

between predicted and observed values.
n
MedAE = median(E ly; — 9
i=1

MedAE is interesting because it is robust to outliers.

3.4.4 Explained Variance
Explained Variance is calculated by:

_Var{y -3}

EV =1
Var{y}

The best possible score 1s 1.0 where lower values are worse.

3.4.5 R2score

The R2 score, also called the coefficient of determination, provides a
measurement of how well future samples are likely to be predicted by
the model.

_ Yic (i — }A’i)z

R*=1 =

Like EV the best possible score is 1.0 and can be negative because models

can be arbitrarily worse.
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4 Results

In this chapter all the results are presented. Firstly, the results from the
study of the data, including correlation analyses and distribution of the
measurements, is presented. Then the results from the hyperparameter
optimization experiments are presented along with a comparison of the

various models’ performance scores.

4.1 The Data

The data used for this thesis is from Maridalsvannet in Oslo and

Brusdalsvatnet in Aalesund.

4.1.1 Maridalsvannet

The data from Maridalsvannet has 6 values and 4 labels: pH,
temperature, conductivity, turbidity, colour, alkalinity, coliform
bacteria, E. coli, intestinal enterococci and Clostridium perfringens. The
data is indexed by the date it was measured. The frequency of

measurement varies from 4 days to 21 days at most.

Error! Reference source not found. Table 4.1 is the result from a

correlation analysis of the data from Maridalsvannet.

pH Temp Cond Turb Color Alk  Coliform Ecoli Int ClPerf

pH 1.000000 -0.242632 -0.302769 0.131410 0.254255 0.284041 -0.195577 0.060660 0.083013 0.089076
Temp -0.242692 1.000000 -0.265657 0.014205 0.189¥81 0.053020 0288676 0.180323 0.207606 0.098679
Cond -0.302789 -0.265657 1.000000 0.006289 -0.724396 -0.395128 -0.054450 -0.097312 -0.243094 -0.235224
Turb  0.131410 0.014205 0.006283 1.000000 -0.187929 -0.255866 0.033801 0.042158 0123178 0.029312
Color 0.254255 0.189781 -0.724396 -0.18792% 1.000000 0672443 0.031702 0036532 0.051683 0.187595

A

k 0284041 0.053020 -0.395128 -0.255866 0.672443 1.000000 0.010181 -0.023871 -0.005203 0.112252
Coliform -0.195577 0.288676 -0.054450 0.033801 0.031702 0.010181 1.000000 0.299571 0.079823 0.087543
Ecoli 0.060660 0.180323 -0.087312 0.042158 0.036532 -0.023871 0.299571 1.000000 0.246538 0.151833

Int 0.083013 0207606 -0243094 0123178 0051683 -0.005203 0.079823 0.246538 1.000000 0.214801
CIPerf 0.089076 0.098679 -0.235224 0.029312 0187595 0.112252 0087543 0.151833 0.214801 1.000000

Table 4.1 Correlation analysis on the data from Maridalsvannet
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Figure 4.1 Coliform Bacteria in Maridalsvannet
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Figure 4.2 E. Coli in Maridalsvannet
Figure 4.3 is a box plot of the values in the data from Maridalsvannet.

Save for alkalinity, all the variables have non-zero medians (green lines)

and a distribution to some degree.
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Figure 4.3 Box plot of the values from Maridalsvannet

4.1.2 Brusdalsvatnet

The data from Brusdalsvatnet has 5 values and 4 labels: colour,
turbidity, pH, conductivity, alkalinity, coliform bacteria, thermotolerant
coliform bacteria, E. coli and intestinal enterococci. The data is indexed
by the date it was measured. The frequency of measurement varies from

1 day to 21 days at most. Unlike the data for Maridalsvannet, the data
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for Brusdalsvatnet does not contain measurements of temperature.

Table 4.2 is the result from a correlation analysis of the data from

Brusdalsvatnet.
Color Turbidity Conductivity Alkalinity Coliform bacteria Termotol. Coliform bacteria E. coli Int. enterococci
Color 1.000000 0335513 0.608176 NaM -0.044545 -0.042751  0.040547 0477463
Turbidity 0.395519  1.000000 0.290282 Nal -0.040568 -0.034207 -0.013932 0.244682
Conductivity 0608176 0.290282 1.000000 Nal -0.026144 -0.039662 -0.026024 0.654542
Alkalinity MNah Mal MaN Nal NER Mal NaM Mal
Coliform bacteria -0.044545 -0.040568 -0.026144 Nal 1.000000 0.358883 -0.034106 0.076619
Termotol. Coliform bacteria -0.042751 -0.034207 -0.039662 NaM 0.358883 1.000000 -0.069763 0.012267
E.coli 0040547 -0.013932 -0.026024 NaM -0.034106 -0.069763  1.000000 -0.023879
Int. enterococci 0477463 0244682 0.654542 NaM 0.076619 0.012267 -0.023879 1.000000
Table 4.2 Correlation analysis on the data from Brusdalsvatnet
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Figure 4.4 Coliform Bacteria in Brusdalsvatnet

Figure 4.5 1s a box plot of the values from the Brusdalsvatnet data. For

all values but the colour, the typical value is 0 (the green lines) and

makes up such large portions of the data that all non-zero values are

considered to be outliers (circles).
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Figure 4.5 Box plots of the values from Brusdalsvatnet
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4.2 Web-based optimization tool

A web-based tool for creating hyperparameter-optimized models was
developed as a utility for this thesis. The tool allows uploading a file
containing the measurements from water treatment plants and the
training of hyperparameter-optimized models. These models are stored
by the tool and can be reviewed to see the parameters used or tested on

other datasets. For more information see Appendix A: Optimization tool.

4.3 Hyperparameter optimization results

The optimized and default models are compared to each other using built
in scoring metrics in the Scikit-Learn library and plotting the scores as

box plots.

4.3.1 Predicting Coliform Bacteria
For the first set of experiments the level of coliform bacteria is predicted
using pH, conductivity, temperature, colour, turbidity and alkalinity as

inputs.

4.3.2 Coliform Bacteria: Comparison of scoring metrics

Figure 4.6 shows a box plot of the negative mean absolute error score for
optimized k-nearest neighbours, random forest and support vector
machine as well as default random forest and support vector machine.
According to the MAE scoring, the optimized KNN is clearly the best
algorithm with the least median error and a small distribution. The
default SVM comes second with a median error of around -12 compared
to the KNN’s -9, however, it has a wider distribution. Next comes the
optimized Random Forest, the default Random Forest, and finally the
optimized SVM all of which have greater median errors and wider

distributions.
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Figure 4.6 Comparing models using Mean Absolute Error

Figure 4.7 shows a box plot of the mean squared error scores for the
same models. This figure mostly reflects the same results as Figure 4.6,
but the greater errors are emphasized. This have improved the default
random forest score relative to the others, but the order remains roughly

the same as in Figure 4.6.
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Model comparisons (MSE)
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Figure 4.7 Comparing models using Mean Squared Error

Figure 4.8 shows a comparison of the models using median absolute
error (MedAE). MedAE gives a slightly different ranking of the models
from the previous two. Here the default random forest is the best. The
default SVM and optimized random forest algorithm are similar, the
default SVM has a better median but the random forest has a tighter
distribution and a better lower quartile. The optimized knn is rated
fourth in this list although it is better on its best score, its distribution
and median are worse than that of the optimized random forest. The
optimized SVM is poorest, as it scores worst among these five models

although it has a relatively narrow distribution.
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Model comparisons (MedAE)
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Figure 4.8 Comparing models using Median Absolute Error

Figure 4.9 and Figure 4.10 respectively compares the models using
explained variance and R2 score which give quite similar results. From
these results KNN is best model, followed by the default SVM, default
Random Forest, optimized Random Forest, and finally optimized SVM.
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Figure 4.9 Comparing models using Explained Variance
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Figure 4.10 Comparing models using R? score
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According to these results it seems like the default Random Forest and
SVM algorithms give the best results. However, visual comparison
between observed values and the values that are predicted by the

models show different results.

4.3.3 Coliform Bacteria: Visual comparison

In addition to model comparisons using scoring methods, the models’
accuracy is compared visually by making a plot of the observed values
and placing it above a plot of the values that were predicted by the
trained model. Finally, a plot of the observed values overlaid by the

predicted value is located at the bottom of each figure.

Figure 4.11 shows a comparison between the observed and predicted
values from an optimized Random Forest model with no pre-processing

on the data:
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Figure 4.11 Optimized Random Forest with no pre-processing

The optimized Random Forest captures most of the spikes quite nicely

and has only a few false spikes with the size of the smallest observed
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peaks. In general, this trained model seems to understand the data quite

well and is able to predict the spikes with few mistakes.

Figure 4.12 shows the result from an optimized SVM with no pre-

processing on the data:
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Figure 4.12 Optimized SVM with no pre-processing

Like the optimized RF, this model is able to predict most of the spikes,
however, it performs slightly worse around the two first spikes. The

model does predict some false positives, but they are mostly quite small.

Figure 4.13 shows the result from an optimized SVM trained on data
that has been pre-processed using Principal Component Analysis. Like
the SVM and RF without pre-processing, the optimized SVM also predict

the spikes fairly well, but this one has a lot more noise in its predictions.
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Figure 4.13 Optimized SVM pre-processed with PCA
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Figure 4.14 shows the result from an optimized K-Nearest Neighbours

trained on the data with no pre-processing:
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Like the others so far, the optimized KNN is able to predict the spikes
quite well. From this visual comparison it looks to be the best so far
given that it has a relatively low level of noise and no large false

positives.

Figure 4.15 shows the best result that was achieved using a Random

Forest with non-optimized hyperparameters:
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Figure 4.15 Default Random Forest

While the result is not the worst that has been seen during these
experiments it i1s having a harder time correctly predicting the
magnitude of the spikes and predicts several spikes that is not present

in the observed data.

Figure 4.16 shows the best result that was achieved using a Support
Vector Machine with default hyperparameters and no pre-processing on

the data.
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Figure 4.16 Default SVM

Much like the default RF, the default SVM is mostly able to recognize
the spikes but can’t quite predict their magnitude. The default SVM

also predicts some spikes where there are none observed

4.3.4 Predicting E. coli

For the second set of experiments the level of E. coli is predicted using
the same inputs as with Coliform bacteria. The first thing to note is that
the range of values on the measurements of E. coli is much smaller than
that of Coliform Bacteria. The measurements range from 0 to 6. As can
be seen later in section 4.3.6 there are not many clear peaks in the E.

coli measurements in contrast to the Coliform bacteria measurements.

4.3.5 E. coli: Comparison of scoring metrics

Like the models predicting Coliform Bacteria, these models are
compared to each other using the built-in scoring metrics in the Scikit-
learn library. Figure 4.17 is a box plot showing the distribution of the

Mean Absolute Error scoring for the models predicting E. coli.
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Figure 4.17 Mean Absolute Error comparison predicting E. coli

The Mean Absolute Error ranks the algorithms: SVM, KNN + Min-Max
Scaler, KNN, SVM + PCA, and both RFs last.

Looking at Figure 4.18, which is a plot of the Mean Squared Error
scoring for the same models, the results are a bit different. Interpreting
this result, the KNN sores best followed by SVM + PCA, which is
arguably better than KNN + Min-Max although it’s median is worse,
SVM, RF + Min-Max, and finally RF.
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Figure 4.18 Mean Squared Error comparison predicting E. coli

Figure 4.19 is a box plot of the Median Absolute Error scoring:
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Figure 4.19 Median Absolute Error comparison predicting E. colt
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The Median Absolute Error ranks the models differently. Here the SVM
is clearly the best followed by KNN + Min-Max, KNN, RF + Min-Max,
SVM + PCA and finally RF.

Figure 4.20 is a box plot of the Explained Variance for the models:
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Figure 4.20 Explained Variance comparison predicting E. coli

According to this metric the models are ranked KNN, SVM, SVM + PCA,
KNN + Min-Max, and the RF's last.

Figure 4.21 is a box plot of the R2 scores for the models. The scores are
similar relative to each other compared to that of the EV, but some minor
differences changed the order of which the models are ranked. Here the
KNN comes first followed by SVM + PCA, SVM, KNN + Min-Max, RF +
Min-Max and RF.
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Figure 4.21 R? comparison predicting E. Coli

4.3.6 E. coli: Visual Comparison

The performance of the models trained to predict E. coli is measured
visually as well, as with the ones for Coliform Bacteria. Again, there are
three plots per figure showing the observed and predicted values

separately and then overlaid on each other.

The first figure, Figure 4.22, shows the result from the best Random

Forest that was found:
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Figure 4.22 Optimized Random Forest with no pre-processing

The optimized Random Forest is mostly able to predict the E. coli data.
It does not recognize the magnitude of the largest peak, and it has some
false positives, particularly around late 2014, but in general it does a

decent job.

Searching for the optimal Random Forest with pre-processing returned
Min-Max Scaler as the best alternative. Figure 4.23 shows one such
result. Pre-processing the data with Min-Max Scaler does not seem to
improve the result, however, initially no good solutions were found using
Random Forest with no pre-processing and it is therefore included in the

results.
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Figure 4.23 Optimized Random Forest pre-processed with Min-Max Scaler

Figure 4.24 is the result from an attempt at training an SVM on the E.

coli data:
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Figure 4.24 Optimized SVM with no pre-processing
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An SVM with no pre-processing does not seem to be able to make much
sense of the data. Several attempts to train SVMs without pre-
processing were made, all yielding similar results. Adding all available
pre-processors to the search space for the SVM yielded the result seen

in Figure 4.25.
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Figure 4.25 Optimized SVM pre-processed with PCA

An optimized SVM trained on data pre-processed with PCA appears to
be far better suited for understanding the E. coli data. The model is able
to correctly predict much of the data but fails in some cases where it’s

not able to predict the magnitude or predicts negative values.

Figure 4.26 is the result from a trained KNN with optimized parameters
and no pre-processing. Like the SVM, the KNN appears to be unable to

make sense of the data.
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Figure 4.26 Optimized KNN with no pre-processing

Adding the available pre-processors to the search space for an optimal
KNN yielded the result seen in Figure 4.27. When the data is pre-
processed using Min-Max Scaler it is better able to predict the data.

However, it is still not particularly good.
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Figure 4.27 Optimized KNN pre-processed with Min-Max Scaler
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4.3.7 Training models on the data without temperature

All the results that have been presented so far are from the data for
Maridalsvannet. As can be noted in the description of the data in section
4.1, the data from Brusdalsvatnet does not have measurements of
temperature. For this reason, some attempts were made to train models
on the data from Maridalsvannet, excluding the temperature
measurements, for the sake of testing whether these models could
accurately predict the levels from Brusdalsvatnet. Training models on
the data without temperature proved to be a lot harder, which makes
sense since one could expect that temperature has great impact on
bacterial growth. This is reflected in the correlation analysis in Error! R
eference source not found. where Coliform bacteria has a strong
correlation to temperature compared to the other parameters, as

mentioned in Section 4.1.

Figure 4.28 is the result from the best model that was achieved on the

data from Maridalsvannet without temperature. Several other learners
like SVM (Figure 4.30) and KNN (Figure 4.31) were tested, none of

which produced any usable result.
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Figure 4.28 Optimized Random Forest on data without temperature

This optimized RF is able to predict the levels of Coliform Bacteria in
the data from Maridalsvannet as well as any of the other models
presented so far even without using temperature as input. Since this
model does not require temperature as input it can be tested on the data
from Brusdalsvatnet to see if it is able to generalise enough to work on

data from other treatment plants.

Figure 4.29 shows the predictions the model made on the data from
Brusdalsvatnet. The model does not seem to be able to make any

sensible prediction on the data at all.
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Figure 4.29 Predictions on the data from Brusdalsvatnet using model trained on the data from
Maridalsvannet

Figure 4.30 shows the best SVM that was achieved on the data from

Maridalsvannet without temperature.
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Figure 4.30 Optimized SVM on the data from Maridalsvannet without temperature
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Similarly, Figure 4.31 shows the best result that was achieved on the

data from Maridalsvannet without temperature using KNN as learner.
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Figure 4.31 Optimized KNN on the data from Maridalsvannet without temperature
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5 Discussion

5.1 The Data

There are several issues with the data that limits the effectiveness of
the models. Firstly, the treatment plants do not account for the same
parameters in their raw water sources, as this generally depend on the
size of the plant. For instance, the plant supplying the data from
Brusdalsvatnet do have some records of the temperature. However, it is
not kept together with the rest of the data and so the only temperature
data that was acquired for this thesis was the temperature measured
each day in 2017. Likewise, there was data from a water treatment plant
in Bergen and elsewhere, but neither of those included measurements of
temperature. Moreover, they didn’t include any record of the water’s
alkalinity either, which is included for both Brusdalsvatnet and
Maridalsvannet. Temperature is a very easy variable to measure, and it
stands to reason that temperature would have an impact on bacterial

growth.

Secondly, it would appear that the different treatment plants do not
have the same standard procedure for accounting for different
parameters in their raw water sources. According to a domain expert,
the plants use different methods of measuring levels of bacteria, and so
a number from one of them would not mean the same on the other. In
addition, some treatment plants have larger budgets and may have
employed water engineers or other people with special training while
others are run by staff with limited training. Obviously, this greatly
impedes a model’s ability to generalise and understand the data in such

a manner that it is able to make accurate predictions for any plant.

5.1.1 Differences in raw-water catchments
The way the data is measured might not be the only element making
general predictions hard, but the source could be an issue as well.

Although the two main water sources used in this are lakes, they have
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different catchment characteristics that may contribute to different
microbial contamination dynamics in the two lakes. Also,
Brusdalsvatnet is in Alesund Kommune on the north-western coast of
Norway, while Maridalsvannet is in Oslo Kommune to the south-east of
Norway. These locations have different climates, which to some degree

may affect the dynamics of microbial pathogens in both lakes.

5.2 Hyperparameter optimization results

Hyperparameter-optimized models have shown promising results in
improving the models’ ability to learn from the data. In all cases
presented in Chapter 4.3, the optimized models performed better than
the default ones.

5.2.1 The scoring metrics

Each section in the previous chapter starts by comparing the models
using box plots of scores generated by various scoring algorithms. These
algorithms score a model’s performance by calculating “how wrong” the
prediction was compared to the observation in some way or another.
Usually this is a fair indicator of the model’s performance since it means
that the better score 1s, the more accurate the model is all over. However,
for this particular purpose we are not interested in whether the model
1s very accurate in predicting the lower levels of the indicator organisms.
The most important cases are the peaks, naturally, since the treatment
plants would have to deploy countermeasures for them. One of the
problems mentioned in the introduction for this thesis is that the data
is often zero-inflated. While this is not a problem for the machine
learning algorithms themselves, it remains a problem for the scoring
metrics in this case. For simplicity, let’s say that there are 200 points of
measurements of which there are 10 peaks and the rest is zero or close
to zero. A model that predicts only zeroes would be right in 95% of the
cases, which in general is quite good. On the other hand, a model that
tries to capture the peaks might be slightly off even around all the zeroes

and thus receive a worse score overall than the model predicting only
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zeroes even though we can clearly see it’s better. Mean Squared Error is
the only scoring algorithm that might be fairer for this purpose since
larger errors are punished more than small errors. Still, looking at the
scoring in Figure 4.7 and visual comparisons in Figure 4.11 through
Figure 4.16 we can clearly see that the optimized models are better than

the default ones as opposed to what the scores tell us.

By default, the hyperopt-sklearn library uses this loss function:

loss = 1.0 — r2_sc0re(ymrget, yprediction)

Given that the scoring methods does not seem to favour models that
properly predicts the peaks, it stands to reason that a tailored loss
function specifically made for this purpose could further improve the

optimized models.

5.2.2 Stochasticity in training the models

All the results presented in the previous chapters were, of course, the
best result from each experiment. Each combination of learning
algorithm, data pre-processor, and label was optimized at least 3 times.
The hyperopt-sklearn optimizer takes a parameter “max_evals” which
defines how many different configurations the fit function will try. The
results varied greatly from experiment to experiment. For instance,
training models on the data from Maridalsvannet without temperature
yielded no usable result until near the end of the experiments when it
was decided to try once more. There are a couple possible reasons for the
highly variable results. Firstly, the data was randomly split for each
experiment where 20% was kept for testing and the rest used for
training. Since there are very few peaks in the data it might be that too
few was included in the training data for the model to be able to

recognize them properly.

Secondly, during all the experiments the “max_evals” parameter was set

to 100. In other words, the optimizer evaluated a maximum of 100

52



configurations for each learner. While this have indeed lead to better
configurations than the default ones in many cases, there might be
better configurations to be found yet. Furthermore, depending on how
the optimizer is progressing, limiting it to a relatively small number of

configuration might be another source for the variable results.

5.2.3 Training models on the data from Brusdalsvatnet

Several attempts have been made to make models using the data from
Brusdalsvatnet, none of which have produced any usable results. As
mentioned in the description of the data in section 4.1.2, the data from
Brusdalsvatnet does not contain measurements of the water’s
temperature. Presumably the lack of temperature measurements has a
great impact on the models’ ability to predict the level of indicator
organisms. Looking at the correlation analysis of the data from
Maridalsvannet, the temperature does indeed have a strong correlation
with the level of most indicator organisms. This is, however, likely a
small part of the problem. Looking at the box plot of the values in the
data from Brusdalsvatnet (Figure 4.5, p.27), most of them is mainly

zZeroes.

5.2.4 The choice of learners

As mentioned in section 3.3, where the experiment methodology is
explained, Random Forest and Support Vector Machine were specifically
chosen as learners because they were used in earlier attempts. However,
one might have noticed that existing models also includes other learners
like Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference
System, but do not include K Nearest Neighbours. The main reason is
simple, the experiments were limited to those learners offered by the
hyperopt-sklearn library. Since the goal has been not only to improve
the existing models but also to explore other models with potential, the
optimizer was allowed to choose the best learner. For some cases it

turned out to be K Nearest Neighbours.
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6 Concluding Remarks

The study shows that optimized models instead of default models can
significantly improve the prediction of microbial organisms’
concentration in raw water sources. In some cases, pre-processing the
data before training improves the results, like when training models to
recognize E. Coli in the data from Maridalsvannet. In other words,
whether pre-processing will improve the results depends on the choice
of learner and the data. It is recommended that these procedures be used
in further developing models for water treatment plants. Ideally, the
water treatment plants should use the same standardized procedures
for accounting for the parameters in the raw water sources as that would
greatly improve the reusability of the models. Furthermore, developing
a new scoring method tailored for this problem in particular might

further improve optimization of these models.
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Appendix A: Optimization tool

A web-based optimization tool was created as a utility for use during the
thesis, and so that others might explore hyperparameter optimized

models without the need for programming.

On the “Projects” home page a list of current projects is shown on the

left.

erCusaty <

« c @ P ts - @ L iINDP O P =
@ Geting Siaried @ > Prect 2 Vs 1920 5 e

WQ Model

Projects

Brusdsisvatne Click on a project to the left to explare optimized models
or create new models

Click “New project” to upload a csv file and start creating

models.

Figure A.1: Projects home page

Adding a new project is simple. Click “+ New Project”, fill in the form

with a title and a CSV file containing the data for the project.
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Figure A.2: Adding a new project

Clicking the name of a project on the left-hand side on the Projects page
will show some recent models created for this project, the total model

count and a link to the data used.
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Click on a model to see more details. The data source can be downloaded by clicking on the link above.
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Figure A.3: Project start page



The options “Models” and “Data” have now appeared under the selected
project. If this is a newly created project the data file might not be
properly interpreted by the system. For instance, if the data is not

separated by commas but by some other character, this would need to be

specified on the “Data” page.
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Data:
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Figure A.4: Project data configuration

For each dataset that is uploaded to a project provide the separator if it
is anything other than a comma, the date format if it looks like the date
is parsed incorrectly, the title of the date column, and whether the data
should be indexed by the date. The date format is given by the C
standard format code. The tool will use the first line in the data as
headers if all the columns are strings and automatically detect where
the data start. Ideally, the data should be comma separated and the first
line should be the headers for each column. The file must be a CSV file.

No further preparation is needed.

If the tool has been able to correctly parse the data, then each column in

the data should be separated in the table below the data set options. This



table has two rows: “Column” and “Match”. The second row is for
matching the columns when there are multiple data sets available.
Clicking on these boxes will give each column a number. The columns
are matched by clicking the respective columns in a second data set in
the order they appear in the first data set. Columns that the two data
sets do not have in common will be left out. This option is used for
combining the data from two files in order to train optimized models on

the combined data.
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Figure A.5: Two data sets for one project

Clicking the other option below the selected project: “Models”, will allow
the user to select inputs and output from the data and train optimized
models. A specific learning algorithm can be selected, or “Any” to
perform a general search over all the learning algorithms. The same goes
for pre-processors with the addition of “None” where no pre-processor

will be used.
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Figure A.6: Creating models

Further down on the models page a list of all models trained for this
project is shown. Clicking any of these will show the details of that model
including the type of learner, its parameters, pre-processing used, and
some scoring metrics. A link to the model is also provided which can be

used to download it and load the model into python for later use.
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Figure A.7: Model details

Below the model details is a form that can be used to see what the model
would predict given a specific set of measurements. Scrolling further
down, an option to crosscheck the model with an entire dataset will
appear. A dialog window appears with a dropdown for which to select
the project to get the data to use on this model. Upon selecting a project
several boxes will appear representing the columns in the data for the
selected project next to the columns that the model requires. Clicking
the boxes in the order presented to the left will allow the model to use
the correct columns for its predictions. If there is a column required by
the model that does not exist in the data from the other project, the

crosscheck cannot be done.
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Figure A.8: Crosschecking model with other datasets

If all the columns are matched, then a crosscheck can be done. Upon
completion a new page will appear showing a plot of the original
“observed vs predicted” values and a plot showing the same type of plot

only from the prediction made on the other data set.



