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Abstract: This paper presents a system for automatic robotic welding based on offline
programming using CAD data. The welding paths are corrected before execution with 3D vision
where the 3D image is aligned with the CAD model of the workpiece to be welded. The system
is successfully validated in experiments, and the results are presented in the paper.
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1. INTRODUCTION

Robotic welding gives good repeatability of the welding
path trajectories, as robots performs well in structured en-
vironments. Due to tolerances in the workpiece geometries
and uncertainty in workpiece position and orientation,
the desired welding path will vary from one workpiece to
another. In contrast to manual welders, the robot is not
able to modify the welding path continuously by itself.
To make robotic welding systems more flexible in dealing
with varying workpieces, external inputs such as computer
vision must be introduced.

Robot programming with a teach pendant is often charac-
terized as tedious and time-consuming, with a lack of intu-
itive tools for interaction. Many small and medium-sized
enterprises (SMEs) are not using robots in their facilities
because the configuration and programming process of this
type of equipment is time-consuming and requires workers
with a high level of expertise in the field (Neto and Mendes,
2013). Thus, there is a great potential for improvements in
programming that enable cost-effective production of high
quality welds at shorter cycle times.

In Offline Robot Programming (OLP), the robot motions
are programmed without using a real robot. CAD systems
are used to model the particular robot, workpiece, tool,
and workspace. The models are then used to simulate
robot tasks and path planning, and to generate programs
that are downloaded and executed by the robot controller.
Before the program can be executed, it is usually necessary
to perform verification and small changes to the program
(Pan et al., 2010). This part of the process is called pro-
gram touch-up and is typically performed as Lead-Through
or Walk-Through programming. By current methods, the
robot programs is about 75 percent completed before man-
ual touch-up (Pires et al., 2006).

Conventional approaches for program touch-up includes
using a set of calibration points within the robot cell,

or compensating for the discrepancies through the use
of sensors on the real robot. Some adaptation strategies
focus on real-time tracking of the welding seams based on
2D laser sensors (Manorathna et al., 2014), (Fang et al.,
2011), or by through-the-arc sensing of fluctuations of
welding current or voltage occurring when the welding
torch is advanced in a weaving pattern (Jeong et al., 2001).
Force feedback or tactile sensing can be used to locate the
start point of the welding seams, by determining contact
points between the welding torch and workpiece (Sanders
et al., 2010). These approaches has to be reconfigured for
each specific workpiece and is often best suited for simple
workpiece geometries.

Other approaches focus on precise localization of the
workpiece before offline programming of the robot motions
(Pan et al., 2010). The actual workpiece pose can be
registered and calibrated to correspond to the CAD model
by using optical sensors (Rajaraman et al., 2013), (Dietz
et al., 2012). In some approaches, computer vision is
used for approximation and reconstruction of the actual
workpiece geometry and then automatic generation of
robot programs for each new workpiece (Dinham and
Fang, 2012).

Enhanced use of computer vision for detecting and measur-
ing the physical location and orientation of workpieces to
be welded could improve the efficiency of welding processes
by offline programmed robots, and the required level of
competence for using a robotic welding system could po-
tentially be lowered. This will allow many more enterprises
to benefit from robotic welding systems.

RGB cameras are available in a wide range and at low cost.
However, developing robust and efficient vision guided
robotic systems can be a challenging task to accomplish
when using 2D images that inherently only captures a
projection of the 3D world. The recent arrival of Time-
of-Flight (ToF) depth cameras and the even more recent
introduction of the Microsoft KinectTM depth camera has
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Fig. 1. Graphical model of the test cell layout. The Kinect
camera is mounted over the worktable, with its field
of view oriented towards the table.

made 3D data streams at video rate widely available. This
enables new methods for helping robots to make more
useful decisions.

This paper studies the possibility of using a low cost
3D camera and CAD model data for correcting offline
programmed welding path trajectories. An experimental
system has been developed and implemented, and a series
of tests have been performed to evaluate the performance
of the system. The paper is organized as follows: The
second section of this paper presents the necessary steps
used in the computer vision part of this work. The third
section describes the implementation of the system, with
focus on the information flow and an example of a pose
estimation performed by the system is presented. Finally,
the last section is a discussion on the results obtained.

2. OBJECT POSE ESTIMATION FROM CAD
MODEL AND 3D-CAMERA DATA

2.1 Point Cloud Acquisition

The Microsoft Kinect TMis an optical time-of-flight (ToF)
camera which measures the depth of a scene by illu-
minating the scene with a modulated light source, and
observing the reflected light (Payne et al., 2014). The
Kinect for Xbox One is the second generation of sensor
input devices developed for the Microsoft Xbox video game
console systems, comprising state of the art depth sensing
technology at a low cost. This version of the 3D camera
includes a 512 x 424 pixel wide-angle ToF camera. The
ToF camera is of the Continuous Wave Modulation type,
with 70◦ horizontal and 60◦ vertical field of view.

Calibration of the 3D camera can be performed by using
the Camera Calibration Toolbox for MATLAB (Bouguet,

2004), an implementation of the method proposed by
Zhang (1999).

2.2 Point Cloud Processing

The acquired depth data is processed in order to enhance
the quality of the data obtained in the point cloud ac-
quisition step. When acquired, the point clouds are often
degraded due to distortion and noise in the camera system.
Another problem is the massive amount of data captured
in each point cloud, which can greatly reduce the effect
of recognition and alignment algorithms. Down-sampling,
smoothing, segmentation, and estimation of local surface
geometry are examples of operations necessary to make
the data in point clouds more useful.

2.3 Object Alignment

For point clouds, object alignment is the problem of finding
correct point correspondences in a given dataset, and esti-
mating transformations that can rotate and translate each
individual dataset into a consistent coordinate framework.

One of the strategies for aligning point clouds is to search
for the right transformation by estimating correspon-
dences, then estimate a transformation given a correspon-
dence, and repeating (Forsyth and Ponce, 2012). Such
approaches can be classified as local optimization methods,
and in this category a widely used method is the Itera-
tive Closest Point (ICP) algorithm (Rusu et al., 2009).
Development of an offline programmed robotic welding
sequence includes establishing the pose of a simulated rep-
resentation (i.e., a CAD model) of the object to be welded.
This pose usually provides a good initial guess of the true
physical object pose, and serves as a good starting point for
object aligning by local approaches. The initial alignment
is relatively easy to obtain for applications described in
this work. ICP, which is considered a fine tuning alignment
method (Rusu and Cousins, 2011), then emerges as a good
alternative for object alignment. The ICP algorithm was
introduced by Chen and Medioni (1991) and Besl and
McKay (1992) in the early 90s, but many variations on
the basic ICP concept have later been introduced.

3. SYSTEM IMPLEMENTATION

3.1 Robot Cell

A robot cell was set up for experimental evaluation of the
solution. The robot cell layout is illustrated in Fig. 1. The
robotic welding system had a KUKA KR 5 robot and a
Fronius TransSteel 5000 welding machine. The welding
machine was mounted on the KR 5 robot manipulator
and communicates with the robot controller. The welding
machine was set up for Metal Active Gas (MAG) welding.

3.2 Information Flow

The system combines data from the depth camera with
prior knowledge from a CAD model and an offline pro-
grammed welding sequence to determine the location
and orientation of the welding path trajectories. Existing
KUKA software was the basis for distributing information
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Fig. 1. Graphical model of the test cell layout. The Kinect
camera is mounted over the worktable, with its field
of view oriented towards the table.
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in the system. A self-developed C++ application served
as the interface between the Kinect camera and the robot,
and handled the different algorithms and calculations.
Fig. 2 gives an overview of the information flow in the
system.

The simulated 3D position and orientation of the compo-
nent to be welded are the required input parameters for the
object alignment. It represents the system’s initial guess
for the pose of the physical component, and any deviations
are measured relative to this pose. The input parameters
were represented in terms of (X,Y, Z,Rx, Ry, Rz) values.

The simulation suite called KUKA.Sim was used for both
building a 3D model of the robot cell and for program-
ming the welding sequences. In addition to information
about planned positions, velocities, and accelerations, the
programmed sequences also included welding parameters
such as welding current and weaving data for each weld.
The 3D points in the offline programmed robot welding
sequence originated from a coordinate frame located on
the worktable. If the system detected deviations from the
programmed and simulated component pose, the points
were transformed into the new location and orientation.
This transformation was performed by the robot controller
at program runtime, by transforming the origin of the co-
ordinate frame. The new pose estimation was represented
in terms of (X ′, Y ′, Z ′, R′

x, R
′
y, R

′
z) values.

The depth stream from the Kinect 3D camera was running
at 30 frames per second. This stream was captured and
converted into point clouds by using the standard driver
provided by Microsoft. In order to align the CAD model
with the captured point clouds, the model was converted
to a point cloud by sampling a specified number of points
on all surfaces of the model. In the developed system, CAD
files of the STereoLithography (STL) format was used.

Fig. 3 shows a captured point cloud and the point cloud
representation of the CAD model before and after align-
ment. Object alignment was performed by using the ICP
algorithm with Levenberg-Marquardt optimization. When
the algorithm has converged to a solution, it returns a 4×4
transformation matrix and the correction is transmitted to
the robot controller. The commands are sent to the robot
as cartesian corrections. The KUKA KR5 robot system
describes orientations by Tait-Bryan angles, using the Yaw
Pitch Roll (Z, Y,X) composite rotation convention.

4. RESULTS

4.1 System Performance

The system has been evaluated by performing welding op-
erations at various component positions and orientations.
A fillet weld was performed in both horizontal and vertical
direction for various poses. In Fig. 4, the two welding
paths are marked on a sample component. The horizontal
welding joint is performed by following an edge through a

Fig. 3. Object alignment by Iterative Closest Point (ICP).
The left side shows the acquired point cloud and the
point cloud representation of the CAD model (white
points). The right side shows how ICP aligns the CAD
model to the acquired data (yellow points).

Fig. 4. The welding path trajectories used for testing the
system performance marked on a sample component.
The fillet weld in horizontal position is illustrated by
brown, solid arrows. The fillet weld in vertical position
is illustrated by a blue, dashed arrow.

90 degree corner, and therefore runs in both directions of
the robot XY plane. The vertical welding joint is carried
out almost straight down along the robot Z axis.

In all tests, the performance has been evaluated by com-
paring the offline programmed welding path to the cor-
rected welding path from the developed system, and a
manually optimized welding path. The manually opti-
mized path was made by teaching the path with the
walk-through robot programming method. The measured
deviations were thus found by using the robot end-effector,
i.e., the tip of the welding electrode.

Case I: No Object Alignment As a reference for the
comparisons, the system was first tested without correc-
tions from the 3D camera. This corresponds to normal
offline robot programming, where welding sequences are
programmed based on pre-measured or assumed values
for the component location and orientation. The results
achieved from this standard approach were for the most
part unfinished welding programs. The precision obtained
were not good enough to perform welding directly.
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Fig. 2. Information flow of the developed system. A CAD model and data from a Kinect 3D camera are the inputs to
the system. The CAD model is used for offline programming of the welding sequence, and as input to the object
alignment process. The developed C++ application estimates a corrected component pose, and communicates the
pose to the robot controller. In the illustration, the activities handled by the C++ application is shown in the
rightmost (purple) box. Finally, the offline programmed welding paths are performed by the robot, based on the
corrected component pose.

Case II: 2D Object Alignment. The next test included
object alignments from the system, but was performed
with limitations in the estimation of the object pose. The
3D camera was placed over the worktable with its field
of view oriented towards the table. Because the camera Z
axis is perpendicular to a coordinate system on the table
surface, a simple 2D rigid transformation (X,Y,Rz) could
be estimated as a first step.

When comparing the reference test without corrections
with the results from the 2D object alignment, the latter
showed clearly improved welding paths. As shown in Fig. 5,
the adjusted trajectories are close to those of the desired
welding paths. The accuracy in Z direction is equivalent
of that achieved in the reference test.

Case III: 3D Object Alignment In this case, a full
3D transformation (X,Y, Z,Rx, Ry, Rz) is estimated. The
offline programmed and resulting transformed welding
paths are illustrated in Fig. 6. Compared to Case I
and II, this solution performs similar to the 2D object
alignment for estimations in X and Y directions. The full
3D alignment also has good performance for estimations
in Z direction and for rotations.

The absolute errors of the welding path trajectories in Case
I to III are shown in Fig. 7. For the solution in Case III,
a mean absolute error of approximately 2.4 mm with a
maximum of approximately 5.7 mm was achieved. This
is not a sufficient result for all applications, but it is an
acceptable deviation for many welding applications and
promising for future work.

5. CONCLUSIONS

A 3D computer vision solution was developed in order
to improve the process of offline programming a welding
robot, by estimating a corrected pose of the object to be
welded. The results were demonstrated by programming
and welding a series of welding path trajectories at various
component positions and orientations

The results show small variations in the corrected object
pose estimation. A mean absolute error of approximately
2.4 mm with a maximum of approximately 5.7 mm was
achieved.

ACKNOWLEDGEMENTS

This work was supported by Brunvoll AS, Oshaug Metall
AS, and the Norwegian Research Council under the EF-
FEKT project.

2017 IFAC IMS
December 5-7, 2016. Austin, TX, USA

84



 Eirik B. Njaastad et al. / IFAC-PapersOnLine 49-31 (2016) 73–78 77

Fig. 2. Information flow of the developed system. A CAD model and data from a Kinect 3D camera are the inputs to
the system. The CAD model is used for offline programming of the welding sequence, and as input to the object
alignment process. The developed C++ application estimates a corrected component pose, and communicates the
pose to the robot controller. In the illustration, the activities handled by the C++ application is shown in the
rightmost (purple) box. Finally, the offline programmed welding paths are performed by the robot, based on the
corrected component pose.

Case II: 2D Object Alignment. The next test included
object alignments from the system, but was performed
with limitations in the estimation of the object pose. The
3D camera was placed over the worktable with its field
of view oriented towards the table. Because the camera Z
axis is perpendicular to a coordinate system on the table
surface, a simple 2D rigid transformation (X,Y,Rz) could
be estimated as a first step.

When comparing the reference test without corrections
with the results from the 2D object alignment, the latter
showed clearly improved welding paths. As shown in Fig. 5,
the adjusted trajectories are close to those of the desired
welding paths. The accuracy in Z direction is equivalent
of that achieved in the reference test.

Case III: 3D Object Alignment In this case, a full
3D transformation (X,Y, Z,Rx, Ry, Rz) is estimated. The
offline programmed and resulting transformed welding
paths are illustrated in Fig. 6. Compared to Case I
and II, this solution performs similar to the 2D object
alignment for estimations in X and Y directions. The full
3D alignment also has good performance for estimations
in Z direction and for rotations.

The absolute errors of the welding path trajectories in Case
I to III are shown in Fig. 7. For the solution in Case III,
a mean absolute error of approximately 2.4 mm with a
maximum of approximately 5.7 mm was achieved. This
is not a sufficient result for all applications, but it is an
acceptable deviation for many welding applications and
promising for future work.

5. CONCLUSIONS

A 3D computer vision solution was developed in order
to improve the process of offline programming a welding
robot, by estimating a corrected pose of the object to be
welded. The results were demonstrated by programming
and welding a series of welding path trajectories at various
component positions and orientations

The results show small variations in the corrected object
pose estimation. A mean absolute error of approximately
2.4 mm with a maximum of approximately 5.7 mm was
achieved.

ACKNOWLEDGEMENTS

This work was supported by Brunvoll AS, Oshaug Metall
AS, and the Norwegian Research Council under the EF-
FEKT project.

2017 IFAC IMS
December 5-7, 2016. Austin, TX, USA

84

Fig. 5. In Case II, the robot executed the welding path corrected by 2D (X,Y,Rz) object alignment (dot-dashed, green
line). In addition, the robot executed a welding path that was manually optimized (solid, red line). The horizontal
fillet weld is shown to the left, and vertical fillet weld to the right. The offline programmed path is shown for both
cases by the dashed, blue line.

Fig. 6. In Case III, the robot executed the welding path corrected by 3D (X,Y, Z,Rx, Ry, Rz) object alignment (dot-
dashed, green line). In addition, the robot executed a welding path that was manually optimized (solid, red line).
The horizontal fillet weld is shown to the left, and vertical fillet weld to the right. The offline programmed path
is shown for both cases by the dashed, blue line. The deviation between the two welding paths demonstrated the
quality of the automatic method.
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Fig. 7. Absolute error observed for the welding welding path trajectories in Case I to III. The horizontal fillet weld is
shown to the left and vertical fillet weld to the right, where P1 to P6 is the actual programmed 3D poses for the
robot manipulator. The errors were found by comparing the offline programmed and corrected welding paths from
the developed system to an manually optimized welding path.
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