
1

Model Reference Adaptive Control of 2× 2
Coupled Linear Hyperbolic PDEs

Henrik Anfinsen and Ole Morten Aamo

Abstract—We solve a model reference adaptive control prob-
lem for a class of linear 2 × 2 hyperbolic partial differential
equations (PDEs) with uncertain system parameters subject to
harmonic disturbances, from a single boundary measurement
anti-collocated with the actuation. This is done by transforming
the system into a canonical form, from which filters are designed
so that the states can be expressed as linear combinations of
the filters and uncertain parameters, a representation facilitating
for the design of adaptive laws. A stabilizing controller is
then combined with the adaptive laws to make the measured
signal asymptotically track the output of a reference model. The
reference model is taken as a simple transport partial differential
equation. Moreover, pointwise boundedness of all variables in the
closed loop is proved, provided the reference signal is bounded.
The theory is demonstrated in a simulation.

I. INTRODUCTION

In this paper, we investigate a model reference adaptive
control problem for a class of 2× 2 coupled linear hyperbolic
partial differential equations (PDEs) with uncertain system
parameters and influenced by harmonic disturbances. Linear
hyperbolic PDEs have attracted considerable attention due to
the vast amount of different physical systems that can be
modeled by them, ranging from open channel flows [1] and
oil wells [2] to road traffic [3] and predator-pray systems
[4]. Linear hyperbolic PDEs therefore give rise to important
estimation and control problems, for which early results can
be found in [5], [6], [7] and more recently in [8].

Infinite-dimensional backstepping for distributed systems,
originally presented in [9], has in the last couple of decades
emerged as a general framework for stabilization of PDEs.
When using backstepping for PDE control synthesis, one
designs a Volterra transformation and a control law that
map the system of interest into an auxiliary ”target” system
designed with some desirable stability properties. It is then
proved that the transformation is boundedly invertible, so that
the two systems’ stability properties are the same. While
the infinite-dimensional backstepping method was originally
developed for parabolic equations, it has later been extended
to 1-D PDEs of hyperbolic type in [10], and to linear 2 × 2
coupled hyperbolic PDEs of the type investigated in this
paper in [11]. Extensions to higher dimensions have also been
made in [12] (n + 1 systems) and [13] (n + m systems). A
slight modification of the method from [13] resulted in [14]
to a controller and observer for n + m systems converging
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in minimum time. A controller and observer for hyperbolic
PIDE systems with non-strict feedback terms in the form of
Fredholm integrals was presented in [15], while a Luenberger-
type observer was designed in [16] for PIDE systems with
time-varying coefficients.

Adaptive control of PDEs, where one or several of the
system parameters are unknown, is a well-established field
when it comes to PDEs of parabolic type [17], [18], [19],
[20], and has recently also started to emerge for hyperbolic
PDEs. The first result on the latter was presented in [21],
where a single hyperbolic partial-integro differential equation
(PIDE) was mapped to a target system using an invertible
backstepping transformation, before a filter-based control law
was designed. Backstepping was then used once more to
establish closed-loop stability and convergence to zero. A full-
state feedback stabilizing controller for a subclass of the 1-
D hyperbolic PDEs investigated in [21] was offered in [22],
while adaptive full-state feedback controllers for coupled 2×2
systems with uncertain in-domain parameters were given in
[23], using identifier-based design, and [24], using the swap-
ping filter-based design originally presented for hyperbolic
systems in [25]. The output-feedback solution from [21] has
also in [26] been extended to 2 × 2 hyperbolic PDEs of the
type investigated in the present paper, offering an adaptive
stabilizing controller using a single boundary measurement
only. A similar problem was solved in [27], allowing non-
local source terms to be present but limited to the case of
having constant and equal transport speeds, and also requiring
sensing to be taken at both boundaries.

A disturbance rejection problem was investigated for 2× 2
systems in [28]. In that paper, a disturbance entered at one
boundary, while sensing and actuation were limited to the
opposite boundary. The disturbance was modeled as a linear
autonomous ordinary differential equation (ODE), particularly
aimed at modeling periodic disturbances with a bias, as in the
present paper. The point of rejection was the boundary where
the disturbance entered, a limitation later relaxed in [29] where
the point of rejection could be anywhere in the domain. Ex-
tensions to n+1 systems were done in [30], assuming sensing
at both boundaries, and in [31] where sensing was restricted
to the boundary of actuation. The general n + m case was
covered in [32]. Common for all of these methods is that they
apply the separation principle of linear systems, combining
state feedback laws with state observers, and also assume
all system parameters to be known. An adaptive disturbance
rejection scheme was recently developed in [33], where the
disturbance’s bias, frequencies, amplitudes and phases were
all unknown, and in [34], where the system’s parameters were
allowed to be uncertain.
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A tracking problem for the same type of systems considered
in the present paper was solved in [35]. In that paper, a
reference trajectory was generated by ”inversely” using back-
stepping on a very simple reference model, before a standard
PI controller was used to drive the measured output to the
generated reference signal. A similar problem was solved in
[13] for n+m systems of coupled PDEs with known, constant
coefficients. In [36] a tracking problem for n + m systems
with known, spatially varying coefficients was solved. The
convergence time was lower than in [13], since the control
design was based on the minimum-time controller derived in
[14]. A related problem was investigated in [37], where both
a disturbance rejection problem and tracking problem for the
same type of systems investigated in the present paper were
solved simultaneously. However, in all of these papers, all
system parameters were assumed known.

In the problem to be investigated in this paper - formally
stated in Section II - actuation is on one boundary only, while
the measurement is restricted to the opposite boundary. Both of
these are allowed to be scaled by uncertain nonzero constants,
and affected by the disturbance. The goal is to make the
measured signal track the output of a reference model. The
reference model is essentially a transport delay, with the delay
corresponding to the propagation time from the actuated to
the measured boundary, an unavoidable restriction that only
can be overcome if some sort of prediction can be made
on the reference signal. The only assumption made on the
system, is that the total transport delays in each direction,
the disturbances’ frequencies and the sign of the product of
the actuation and measurement scaling constants are known.
All other parameters are unknown. We believe the work
presented here to be the first result on model reference adaptive
control for coupled linear hyperbolic PDEs. A subproblem
only involving disturbance rejection was solved in [34], but
the objective was rather restrictive, and the actuation and
measurement were not allowed to be scaled. We offer here an
extension to the general disturbance rejection case, and also
solve a model reference adaptive control problem. The method
we use is an extension of the filter-based stabilizing controller
derived for 2× 2-systems in [26].

In this paper, we only consider variables that are real. For
a variable z(x, t) defined for 0 ≤ x ≤ 1, t ≥ 0, we will in
subsequent sections denote by ||z|| the L2-norm

||z(t)|| =

√∫ 1

0

z2(x, t)dx. (1)

For a time-varying, real signal f(t),

f ∈ Lp([a, b])⇔

(∫ b

a

|f(t)|pdt

) 1
p

<∞ (2)

for p ≥ 1 with the particular case

f ∈ L∞([a, b])⇔ sup
a≤t≤b

|f(t)| <∞. (3)

The argumentless shorthand notations

Lp = Lp([0,∞]), L∞ = L∞([0,∞]) (4)

will also be used. Moreover, we will in subsequent sections
often omit writing the argument in time, so that e.g. ||u|| =
||u(t)|| and z(x) = z(x, t).

II. PROBLEM STATEMENT

In this paper, we investigate systems on the form

ut(x, t) + λ(x)ux(x, t) = c1(x)v(x, t) + d1(x, t) (5a)
vt(x, t)− µ(x)vx(x, t) = c2(x)u(x, t) + d2(x, t) (5b)

u(0, t) = qv(0, t) + d3(t) (5c)
v(1, t) = k1U(t) + d4(t) (5d)
y(t) = k2v(0, t) + d5(t) (5e)

where u(x, t), v(x, t) are the system states, and d1(x, t),
d2(x, t), d3(t), d4(t), d5(t) are biased, harmonic disturbances
containing a known number of known frequencies, but with
unknown amplitudes, phases and biases. The parameters µ, λ,
c1, c2, q, k1, k2 are unknown, but assumed to satisfy

µ, λ ∈ C1([0, 1]), µ(x), λ(x) > 0 ∀x ∈ [0, 1] (6a)

c1, c2 ∈ C0([0, 1]) (6b)
q, k1, k2 ∈ R\{0}. (6c)

Although the exact profiles of λ and µ are not needed, we
assume the total transport delays in each direction are known,
that is

dα = λ̄−1 =

∫ 1

0

dγ

λ(γ)
, dβ = µ̄−1 =

∫ 1

0

dγ

µ(γ)
(7)

are known quantities, also the sign of the product k1k2, that
is

sign (k1k2) , (8)

is assumed known. The initial conditions u(x, 0) = u0(x),
v(x, 0) = v0(x) are assumed to satisfy

u0, v0 ∈ B, (9)

where the space B is the set of functions defined over [0, 1],
so that

f ∈ B ⇔ |f(x)| <∞, ∀x ∈ [0, 1] (10)

with norm

||f ||∞ = sup
x∈[0,1]

|f(x)|. (11)

Remark 1: Under the above conditions, (5) has a unique
weak solution for all (x, t) ∈ [0, 1] × [0, T ] for any T > 0.
The solution can be constructed by transforming (5) to an
integral equation and applying successive approximations (see
[38] for details). In fact, it can be shown [38] that

sup
t∈[0,T ]

(||u||∞ + ||v||∞) (12)

is bounded, with bound depending on T , supt∈[0,T ] |U(t)|,
||u0||∞, ||v0||∞, as well as bounds on di, i = 1, . . . , 5. That
is, u, v ∈ B for all t ≥ 0. The significance of these facts is
that even though the Lyapunov analysis that follows in this
paper is carried out in the L2-norm, pointwise evaluation of
the distributed states makes sense.
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The goal is to design an adaptive control law U(t) in (5d) so
that system (5) is adaptively stabilized, in the sense that the
objective

lim
t→∞

∫ t+T

t

(y(s)− yr(s))2ds = 0 (13)

is obtained for some bounded constant T > 0, where the
reference signal yr is generated from the reference model

bt(x, t)− µ̄bx(x, t) = 0 (14a)
b(1, t) = r(t) (14b)
yr(t) = b(0, t) (14c)

with some initial condition

b(x, 0) = b0(x) (15)

of choice, provided b0 ∈ B. The signal r(t) is a bounded
signal of choice. The goal (13) should be achieved from using
the sensing (5e) only. Moreover, all additional variables in the
closed loop system should be bounded pointwise in space.

The disturbance rejection problem solved in [34] is a
subproblem of (13), corresponding to k1 = k2 = 1, d1 =
d2 = d4 = d5 ≡ 0 and r ≡ 0.

III. TRANSFORM TO CANONICAL FORM

A. Disturbance parametrization

In the transformations to follow, we will need a parametriza-
tion of the disturbance terms d1, d2, d3, d4, d5. As they are all
assumed to be biased, harmonic disturbances with a known
number n of distinct frequencies, they can all be represented
as outputs of an autonomous linear system. Hence, we param-
eterize the disturbances as follows

d1(x, t) = gT1 (x)X(t), d2(x, t) = gT2 (x)X(t) (16a)

d3(t) = gT3 X(t), d4(t) = gT4 X(t) (16b)

d5(t) = gT5 X(t), Ẋ(t) = AX(t), (16c)

where the matrix A ∈ R(2n+1)×(2n+1) is known and has the
form

A = diag {0, A1, A2, . . . , An} (17)

where

Ai =

[
0 ωi
−ωi 0

]
(18)

for i = 1 . . . n. The vectors g1, g2, g3, g4, g5 and the distur-
bance model’s initial condition X(0) = X0, however, are
unknown.

B. Decoupling

Lemma 2: System (5) is through an invertible backstepping
transformation, which is characterized in the proof, equivalent
to the system

α̌t(x) + λ(x)α̌x(x) = 0 (19a)

β̌t(x)− µ(x)β̌x(x) = 0 (19b)

α̌(0) = qβ̌(0) (19c)

β̌(1) = k1U −
∫ 1

0

m1(ξ)α̌(ξ)dξ

−
∫ 1

0

m2(ξ)β̌(ξ)dξ −mT
3 X (19d)

y = k2β̌(0) (19e)

for some (continuous) functions m1,m2,m3 of the unknown
parameters µ, λ, c1, c2, q.

Proof: We will prove that the systems (5) and (19) are
connected through an invertible backstepping transformation.
To ease the derivations to follow, we write system (5) on vector
form as follows

ζt(x) + Λ(x)ζx(x) = Π(x)ζ(x) +G(x)X (20a)
ζ(0) = Q0ζ(0) +G3X (20b)
ζ(1) = R1ζ(1) + k1Ū +G4X (20c)

where

ζ(x) =

[
u(x)
v(x)

]
, Λ(x) =

[
λ(x) 0

0 −µ(x)

]
(21a)

Π(x) =

[
0 c1(x)

c2(x) 0

]
, G(x) =

[
gT1 (x)
gT2 (x)

]
(21b)

Q0 =

[
0 q
0 1

]
, R1 =

[
1 0
0 0

]
(21c)

Ū =

[
0
U

]
, G3 =

[
gT3
0

]
(21d)

G4 =

[
0
gT4

]
. (21e)

Consider the backstepping transformation

γ(x) = ζ(x)−
∫ x

0

K(x, ξ)ζ(ξ)dξ − F (x)X (22)

where

γ(x) =

[
α̌(x)

β̌(x)

]
(23)

contains the new set of variables, and

K(x, ξ) =

[
Kuu(x, ξ) Kuv(x, ξ)
Kvu(x, ξ) Kvv(x, ξ)

]
(24a)

F (x) =

[
fT1 (x)
fT2 (x)

]
. (24b)

Differentiating (22) with respect to time, inserting the dynam-
ics (20a) and (16c) and integration by parts, we find

ζt(x) = γt(x)−K(x, x)Λ(x)ζ(x) +K(x, 0)Λ(0)ζ(0)

+

∫ x

0

[
Kξ(x, ξ)Λ(ξ) +K(x, ξ)Λ′(ξ)

+K(x, ξ)Π(ξ)

]
ζ(ξ)dξ

+

∫ x

0

K(x, ξ)G(ξ)Xdξ + F (x)AX. (25)

Equivalently, differentiating (22) with respect to space, we find

ζx(x) = γx(x) +K(x, x)ζ(x)

+

∫ x

0

Kx(x, ξ)ζ(ξ)dξ + F ′(x)X. (26)



4

Inserting (25) and (26) into (20a), we find

γt(x) + Λ(x)γx(x) +K(x, 0)Λ(0)Q0ζ(0)

+ [Λ(x)K(x, x)−K(x, x)Λ(x)−Π(x)] ζ(x)

+

∫ x

0

[Λ(x)Kx +KξΛ(ξ) +KΠ(ξ) +KΛ′(ξ)] ζ(ξ)dξ

+

[
Λ(x)F ′(x)−G(x) + F (x)A+

∫ x

0

K(x, ξ)G(ξ)dξ

+K(x, 0)Λ(0)G3

]
X = 0. (27)

If K and F satisfy the following equations

0 = Λ(x)Kx +KξΛ(ξ) +KΠ(ξ) +KΛ′(ξ) (28a)
0 = Λ(x)K(x, x)−K(x, x)Λ(x)−Π(x) (28b)
0 = K(x, 0)Λ(0)Q0 (28c)
0 = Λ(x)F ′(x)−G(x) + F (x)A

+

∫ x

0

K(x, ξ)G(ξ)dξ +K(x, 0)Λ(0)G3, (28d)

we obtain the target system equations (19a)–(19b). Inserting
the transformation (22) into the boundary condition (5c) and
the measurement (5e), we obtain

α̌(0) + fT1 (0)X = qβ̌(0) + qfT2 (0)X + gT3 X (29a)

y = k2β̌(0) + k2f
T
2 X + gT5 X. (29b)

Choosing

fT1 (0) = − q

k2
gT5 + gT3 (30a)

fT2 (0) = − 1

k2
gT5 (30b)

we obtain (19c) and (19e). The equations consisting of (28a)–
(28c) have a unique, continuous solution K according to [11].
The equations consisting of (28d) and (30) is a standard matrix
ODE which can be explicitly solved for F . The inverse of (22)
is given as

ζ(x) = γ(x) +

∫ x

0

L(x, ξ)γ(ξ)dξ +R(x)X (31)

where

L(x, ξ) =

[
Lαα(x, ξ) Lαβ(x, ξ)
Lβα(x, ξ) Lββ(x, ξ)

]
(32a)

R(x) =

[
rT1 (x)
rT2 (x)

]
. (32b)

Inserting the backstepping transformation (22) into (31) and
changing the order of integration in the double integral, we
find

0 =

∫ x

0

[
L(x, ξ)−K(x, ξ)−

∫ x

ξ

L(x, s)K(s, ξ)ds

]
ζ(ξ)dξ

+

[
R(x)− F (x)−

∫ x

0

L(x, ξ)F (ξ)dξ

]
X (33)

Hence, the gains L,R in the inverse transformation are given
from the backstepping gains as

L(x, ξ) = K(x, ξ) +

∫ x

ξ

L(x, s)K(s, ξ)ds (34a)

R(x) = F (x) +

∫ x

0

L(x, ξ)F (ξ)dξ. (34b)

From inserting x = 1 into (31), we obtain (19d), where

m1(ξ) = Lβα(1, ξ) (35a)

m2(ξ) = Lββ(1, ξ) (35b)

mT
3 = rT2 (1)− gT4 . (35c)

C. Scaling and mapping to constant transport speeds
We now use a transformation to get rid of the spatially

varying transport speeds in (19), and also scale the variables
to ease subsequent analysis.

Lemma 3: System (19) is equivalent to the system

αt(x) + λ̄αx(x) = 0 (36a)
βt(x)− µ̄βx(x) = 0 (36b)

α(0) = β(0) (36c)

β(1) = ρU −
∫ 1

0

κ(ξ)α(ξ)dξ

−
∫ 1

0

σ(ξ)β(ξ)dξ −mT
4 X (36d)

y = β(0) (36e)

where ρ, κ, σ,m4 are continuous functions of m1,m2,m3, k1

and k2.
Proof: Consider the invertible mapping

α(x) =
k2

q
α̌(h−1

α (x)) (37a)

β(x) = k2β̌(h−1
β (x)) (37b)

where

hα(x) = λ̄

∫ x

0

dγ

λ(γ)
(38a)

hβ(x) = µ̄

∫ x

0

dγ

µ(γ)
(38b)

with λ̄, µ̄ defined in (7), are strictly increasing and hence
invertible functions. The invertiblility of the transform (37)
therefore follows. The rest of the proof follows immediately
from insertion and noting that

h′α(x) =
λ̄

λ(x)
, h′β(x) =

µ̄

µ(x)
(39a)

hα(0) = hβ(0) = 0, hα(1) = hβ(1) = 1 (39b)

and is therefore omitted. The new parameters are given as

ρ = k1k2 (40a)

κ(x) = qdαλ(h−1
α (x))m1(h−1

α (x)) (40b)

σ(x) = dβµ(h−1
β (x))m2(h−1

β (x)) (40c)

m4 = k2m
T
3 . (40d)

D. Extension of reference model and error dynamics
In view of the structure of system (36), we extend the

reference model (14) with an additional variable a as follows
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at(x) + λ̄ax(x) = 0 (41a)
bt(x)− µ̄bx(x) = 0 (41b)

a(0) = b(0) (41c)
b(1) = r (41d)

with initial conditions (15) and

a(x, 0) = a0(x) (42)

with a0 ∈ B.
Lemma 4: Consider the system (36) and the extended

reference model (41). The error variables

w(x) = α(x)− a(x) (43a)
ž(x) = β(x)− b(x) (43b)

satisfy the dynamics

wt(x) + λ̄wx(x) = 0 (44a)
žt(x)− µ̄žx(x) = 0 (44b)

w(0) = ž(0) (44c)

ž(1) = ρU − r +

∫ 1

0

κ(ξ)(w(ξ) + a(ξ))dξ

+

∫ 1

0

σ(ξ)(ž(ξ) + b(ξ))dξ +mT
4 X (44d)

with the measurement (36e) becoming

y = ž(0) + b(0). (45)

Proof: The proof is straight forward, and therefore omit-
ted.

E. Canonical form

Lemma 5: System (44) is equivalent to the system

wt(x) + λ̄wx(x) = 0 (46a)
zt(x)− µ̄zx(x) = µ̄θ(x)z(0) (46b)

w(0) = z(0) (46c)

z(1) = ρU − r +

∫ 1

0

κ(ξ)(w(ξ) + a(ξ))dξ

+

∫ 1

0

θ(ξ)b(1− ξ)dξ +mT
4 X (46d)

with measurement

y = v(0) = z(0) + b(0) (47)

where

θ(x) = σ(1− x). (48)

Proof: Consider the transformation

z(x) = ž(x)−
∫ x

0

σ(1− x+ ξ)ž(ξ)dξ, (49)

which is invertible with inverse

ž(x) = z(x) +

∫ x

0

ω(x− ξ)z(ξ)dξ (50)

where ω satisfies the Volterra equation

ω(x) =

∫ x

0

ω(x− ξ)σ(1− ξ)dξ − σ(1− x). (51)

This can be verified from insertion and changing the order
of integration in the double integral. Differentiating (49) with
respect to time and space, respectively, we find

žt(x) = zt(x) + µ̄σ(1)ž(x)− µ̄σ(1− x)ž(0)

−
∫ x

0

µ̄σ′(1− x+ ξ)ž(ξ)dξ (52)

and

žx(x) = z(x) + σ(1)ž(x)−
∫ x

0

σ′(1− x+ ξ)ž(ξ)dξ. (53)

Inserting (52) and (53) into (44b), we obtain

žt(x)− µ̄žx(x) = zt(x)− µ̄z(x)− µ̄σ(1− x)ž(0)

= 0 (54)

which gives (46b) with θ defined in (48), since

ž(0) = z(0). (55)

Lastly using (49) and (44d), we have

z(1) = ρU − r +

∫ 1

0

κ(ξ)(w(ξ) + a(ξ))dξ

+

∫ 1

0

σ(ξ)(ž(ξ) + b(ξ))dξ

−
∫ 1

0

σ(1− 1 + ξ)ž(ξ)dξ +mT
4 X

= ρU − r +

∫ 1

0

κ(ξ)(w(ξ) + a(ξ))dξ

+

∫ 1

0

σ(ξ)b(ξ)dξ +mT
4 X (56)

which gives (46d), in view of the identity∫ 1

0

σ(ξ)b(ξ)dξ =

∫ 1

0

θ(1− ξ)b(ξ)dξ

=

∫ 1

0

θ(ξ)b(1− ξ)dξ. (57)

Remark 6: It is important to notice that the formulas
expressing how θ, ρ, κ and m4 relate to the original system
parameters of (5), even though specified in Lemmas 2–5, are
not needed in the control design that follows. The adaptive
parameter update laws are designed for the parameters of the
system in canonical form (46).

IV. ADAPTIVE CONTROL

We have thus shown that stabilizing (46) is equivalent
to stabilizing the original system (5), because the reference
system (41) itself is stable for any bounded r. Moreover, the
objective (13) can be stated in terms of z as

lim
t→∞

∫ t+T

t

z2(0, s)ds = 0. (58)
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The goal is to design a control law U so that z and w
converge in B at least asymptotically to zero, while at the
same time ensuring pointwise boundedness of all variables
and convergence of z(0) to zero in the sense of (58).

A. Reparametrization of X

We reparameterize the disturbance term mT
4 X as follows

mT
4 X = χT ν (59)

where

χT = χT (t)

=
[
1 sin(ω1t) cos(ω1t) . . . sin(ωnt) cos(ωnt)

]
(60)

contains known components, while

ν =
[
a0 a1 b1 . . . an bn

]T
(61)

contains the unknown amplitudes and bias.

B. Filter design

We introduce the following filters

ψt(x)− µ̄ψx(x) = 0, ψ(1) = U (62a)
φt(x)− µ̄φx(x) = 0, φ(1) = y − b(0) (62b)
ϑt(x)− µ̄ϑx(x) = 0, ϑ(1) = χ (62c)

Pt(x, ξ) + λ̄Pξ(x, ξ) = 0, P (x, 0) = φ(x) (62d)

and the derived filters

p0(x) = P (0, x) (63a)
p1(x) = P (1, x) (63b)

and also the filtered reference variables

Mt(x, ξ)− µ̄Mx(x, ξ) = 0, M(1, ξ) = a(ξ) (64a)
Nt(x, ξ)− µ̄Nx(x, ξ) = 0, N(1, ξ) = b(1− ξ) (64b)

with the derived filtered reference variables

n0(x) = N(0, x) (65a)
m0(x) = M(0, x) (65b)

for some initial conditions ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x),
ϑ(x, 0) = ϑ0(x), P (x, ξ, 0) = P0(x, ξ), M(x, ξ, 0) =
M0(x, ξ), N(x, ξ, 0) = N0(x, ξ) satisfying

ψ0, φ0, ϑ0 ∈ B (66a)
P0(x, ·), P0(·, ξ),M0(x, ·),M0(·, ξ)

N0(x, ·), N0(·, ξ) ∈ B, ∀x, ξ ∈ [0, 1]. (66b)

One can now construct non-adaptive estimates of the variables
w and z as

w̄(x) = p1(x) (67a)

z̄(x) = ρψ(x)− b(x) +

∫ 1

x

θ(ξ)φ(1− (ξ − x))dξ

+

∫ 1

0

κ(ξ) [P (x, ξ) +M(x, ξ)] dξ

+

∫ 1

0

θ(ξ)N(x, ξ)dξ + ϑT (x)ν. (67b)

Lemma 7: Consider the system (46) and state estimates (67)
generated using the filters (62) and (63). After a finite time tF
given as

tF = dα + dβ (68)

we will have

w̄ ≡ w and z̄ ≡ z. (69)

Proof: Consider the non-adaptive estimation errors

e(x) = w(x)− w̄(x) (70a)
ε(x) = z(x)− z̄(x). (70b)

Then the dynamics can straight forwardly be shown to satisfy

et(x) + λ̄ex(x) = 0 (71a)

εt(x)− µ̄εx(x) =

∫ 1

0

κ(ξ) [µ̄Px(x, ξ)− Pt(x, ξ)] dξ (71b)

e(0) = 0 (71c)

ε(1) =

∫ 1

0

κ(ξ)e(ξ)dξ. (71d)

It can be shown using the boundary condition P (x, 0) = φ(x)
in (62d) and the dynamics of φ in (62b), that Pt(x, ξ) =
µ̄Px(x, ξ) for t ≥ dα. Moreover, from (71a) and (71c), it
is observed that e ≡ 0 for t ≥ dα, and therefore (71b) and
(71d) imply that ε ≡ 0 for t ≥ tF where tF is given by (68).

C. Adaptive laws

We start by assuming the following:
Assumption 8: Bounds on ρ, θ, κ, ν are known. That is,

we are in knowledge of some constants ρ, ρ̄, θ, θ̄, κ, κ̄, νi, ν̄i,
i = 1 . . . (2n+ 1) so that

ρ ≤ ρ ≤ ρ̄ (72a)

θ ≤ θ(x) ≤ θ̄, ∀x ∈ [0, 1] (72b)
κ ≤ κ(x) ≤ κ̄, ∀x ∈ [0, 1] (72c)
νi ≤ νi ≤ ν̄i, i = 1 . . . (2n+ 1) (72d)

for all x ∈ [0, 1], where

ν =
[
ν1 ν2 . . . ν2n+1

]T
(73a)

ν =
[
ν1 ν2 . . . ν2n+1

]T
(73b)

ν̄ =
[
ν̄1 ν̄2 . . . ν̄2n+1

]T
(73c)

and with

0 /∈ [ρ, ρ̄]. (74)

The assumption (74) is equivalent to knowing the sign of
the product k1k2. The remaining assumptions should not be a
limitation, since the bounds can be made arbitrary large.

Motivated by the parametrization (67), we generate an
estimate of z from

ẑ(x) = ρ̂ψ(x)− b(x) +

∫ 1

x

θ̂(ξ)φ(1− (ξ − x))dξ

+

∫ 1

0

κ̂(ξ) [P (x, ξ) +M(x, ξ)] dξ
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+

∫ 1

0

θ̂(ξ)N(x, ξ)dξ + ϑT (x)ν̂ (75)

and the corresponding prediction error as

ε̂(x) = z(x)− ẑ(x). (76)

The dynamics of (75) is

ẑt(x)− µ̄ẑx(x) = µ̄θ̂(x)z(0)

+

∫ 1

0

κ̂(ξ) [Pt(x, ξ)− µ̄Px(x, ξ)] dξ

+ ˙̂ρψ(x)

+

∫ 1

x

θ̂t(ξ)φ(1− (ξ − x))dξ

+

∫ 1

0

κ̂t(ξ)[P (x, ξ) +M(x, ξ)]dξ

+

∫ 1

0

θ̂t(ξ)N(x, ξ)dξ + ϑT (x) ˙̂ν (77a)

ẑ(1) = ρ̂U − r +

∫ 1

0

κ̂(ξ)(p1(ξ) + a(ξ))dξ

+

∫ 1

0

θ̂(ξ)b(1− ξ)dξ (77b)

where the term in the first integral of (77a) will be zero in a
finite time dα. Moreover, we have

y = z(0) + b(0)

= ρψ(0) +

∫ 1

0

θ(ξ) [φ(1− ξ) + n0(ξ)] dξ

+

∫ 1

0

κ(ξ) [p0(ξ) +m0(ξ)] dξ

+ ϑT (0)ν + ε(0) (78)

where the error term ε(0) converges to zero in a finite time
tF = dα + dβ . From (78), we propose the adaptive laws

˙̂ρ =

{
0 for t < tF

projρ,ρ̄ {τ1, ρ̂} for t ≥ tF
(79a)

θ̂t(x) =

{
0 for t < tF

projθ,θ̄
{
τ2(x), θ̂(x)

}
for t ≥ tF

(79b)

κ̂t(x) =

{
0 for t < tF

projκ,κ̄ {τ3(x, κ̂(x)} for t ≥ tF
(79c)

˙̂ν =

{
0 for t < tF

projν,ν̄ {τ4, ν̂} for t ≥ tF
(79d)

where

τ1 = γ1
ε̂(0)ψ(0)

1 + f2
(80a)

τ2(x) = γ2(x)
ε̂(0)(φ(1− x) + n0(x))

1 + f2
(80b)

τ3(x) = γ3(x)
ε̂(0)(p0(x) +m0(x))

1 + f2
(80c)

τ4 = Γ4
ε̂(0)ϑ(0)

1 + f2
(80d)

with

ε̂(0) = z(0)− ẑ(0) = y − b(0)− ẑ(0) (81)

and

f2 = ψ2(0) + ||φ||2 + ||p0||2

+ ||m0||2 + ||n0||2 + |ϑ(0)|2 (82)

with γ1 > 0, γ2(x), γ3(x) > 0 for all x ∈ [0, 1] and Γ4 >
0 being some bounded design gains, the initial guesses are
chosen inside the feasible domain

ρ ≤ ρ̂(0) ≤ ρ̄ (83a)

θ ≤ θ̂(x, 0) ≤ θ̄, ∀x ∈ [0, 1] (83b)
κ ≤ κ̂(x, 0) ≤ κ̄, ∀x ∈ [0, 1] (83c)
νi ≤ ν̂i(0) ≤ ν̄i, i = 1 . . . (2n+ 1) (83d)

and the projection operator is given as

proja,b(τ, ω) =


0 if ω = a and τ ≤ 0

0 if ω = b and τ ≥ 0

τ otherwise.
(84)

We note that

|ϑ(0)|2 = n+ 1 (85)

for t ≥ dβ .
Lemma 9: The adaptive laws (79) with initial conditions

(83) have the following properties

ρ ≤ ρ̂ ≤ ρ̄, t ≥ 0 (86a)

θ ≤ θ̂(x) ≤ θ̄,∀x ∈ [0, 1], t ≥ 0 (86b)
κ ≤ κ̂(x) ≤ κ̄,∀x ∈ [0, 1], t ≥ 0 (86c)
νi ≤ ν̂i ≤ ν̄i, i = 1 . . . (2n+ 1), t ≥ 0 (86d)
|ε̂(0, ·)|√

1 + f2
∈ L∞([tF ,∞]) ∩ L2([tF ,∞]) (86e)

| ˙̂ρ|, ||θ̂t||, ||κ̂t||, | ˙̂ν| ∈ L∞ ∩ L2 (86f)

where ρ̃ = ρ− ρ̂, θ̃ = θ − θ̂, κ̃ = κ− κ̂, ν̃ = ν − ν̂, with f2

given in (82).
Proof of Lemma 9: The properties (86a)–(86d) follow

from the projection operator used in (79) and the initial
conditions (83). Consider the Lyapunov function candidate

V =
1

2γ1
ρ̃2 +

1

2

∫ 1

0

γ−1
2 (x)θ̃2(x)dx

+
1

2

∫ 1

0

γ−1
3 (x)κ̃2(x)dx+

1

2
ν̃TΓ−1

4 ν̃. (87)

Differentiating with respect to time, inserting the adaptive
laws and using the property −ν̃T projν,ν̄(τ, ν̂) ≤ −ν̃T τ ([39,
Lemma E.1]), and similarly for ρ̂, θ̂ and κ̂, we get

V̇ = 0 for t < tF (88)

and

V̇ ≤ − ε̂(0)

1 + f2

[
ρ̃ψ(0) +

∫ 1

0

(
θ̃(x)(φ(1− x) + n0(x))

+ κ̃(x)(p0(x) +m0(x))

)
dx+ ϑT (0)ν̃

]
, for t ≥ tF (89)
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We note that

ε̂(0) = ε(0) + ρ̃ψ(0) +

∫ 1

0

θ̃(ξ)(φ(1− ξ) + n0(ξ))dξ

+

∫ 1

0

κ̃(ξ)(p0(ξ) +m0(ξ))dξ + ϑT (0)ν̃, (90)

where ε(0) = 0 for t ≥ dα + dβ = tF , and inserting this into
(89), we obtain

V̇ ≤

0 for t < tF

− ε̂2(0)

1 + f2
for t ≥ tF

. (91)

This proves that V is bounded and nonincreasing, and hence
has a limit as t → ∞. Integrating (91) from zero to infinity
gives

|ε̂(0, ·)|√
1 + f2

∈ L2([tF ,∞]) (92)

Using (90), we obtain, for t ≥ tF
|ε̂(0, ·)|√

1 + f2
≤ |ρ̃| |ψ(0)|√

1 + f2
+ ||θ̃|| ||φ||+ ||m0||√

1 + f2

+ ||κ̃|| ||p0||+ ||n0||√
1 + f2

+ |ν̃| |ϑ(0)|√
1 + f2

≤ |ρ̃|+ ||θ̃||+ ||κ̃||+ |ν̃| (93)

which gives

|ε̂(0, ·)|√
1 + f2

∈ L∞([tF ,∞]). (94)

From the adaptation laws (79), we have, for t ≥ tF

| ˙̂ρ| ≤ γ1
|ε̂(0)|√
1 + f2

|ψ(0)|√
1 + f2

≤ γ1
|ε̂(0)|√
1 + f2

(95a)

||θ̂t|| ≤ ||γ2||
|ε̂(0)|√
1 + f2

||φ||+ ||n0||√
1 + f2

≤ ||γ2||
|ε̂(0)|√
1 + f2

(95b)

||κ̂t|| ≤ ||γ3||
|ε̂(0)|√
1 + f2

||p0||+ ||m0||√
1 + f2

≤ ||γ3||
|ε̂(0)|√
1 + f2

(95c)

| ˙̂ν| ≤ |Γ4|
|ε̂(0)|√
1 + f2

|ϑ(0)|√
1 + f2

≤ |Γ4|
|ε̂(0)|√
1 + f2

(95d)

which, along with (86e), gives (86f).

D. Main theorem

Theorem 10: Consider the system (5), the filters (62) and
(63b), the reference model (41), and the adaptive laws (79).
Suppose r is bounded. Then the control law

U =
1

ρ̂

(
r +

∫ 1

0

ĝ(1− ξ)ẑ(ξ)dξ −
∫ 1

0

κ̂(ξ)(p1(ξ) + a(ξ))dξ

−
∫ 1

0

θ̂(ξ)b(1− ξ)dξ − χT ν̂
)

(96)

where ẑ is generated using (75), and ĝ is the on-line solution
to the Volterra equation

ĝ(x) =

∫ x

0

ĝ(x− ξ)θ̂(ξ)dξ − θ̂(x), (97)

with ρ̂, θ̂, κ̂ and ν̂ generated from the adaptive laws (79)
guarantees (13). Moreover, all additional variables in the
closed loop system are bounded for t ≥ tF .

This Theorem is proved in Section IV-F, but first, we
introduce a backstepping transformation which facilitates a
Lyapunov analysis, and also establish some useful properties.

E. Backstepping

Consider the transformation

η(x) = ẑ(x)−
∫ x

0

ĝ(x− ξ)ẑ(ξ)dξ = T [ẑ](x) (98)

where g is the solution to

ĝ(x) = −T [θ̂](x) =

∫ x

0

ĝ(x− ξ)θ̂(ξ)dξ − θ̂(x). (99)

The transformation (98) is invertible, with inverse

ẑ(x) = η(x)−
∫ x

0

θ̂(x− ξ)η(ξ)dξ = T−1[η](x), (100)

which is easily verified from inserting (100), (98), changing
the order of integration in the double integral and using (97).

Lemma 11: The transformation (98) with inverse (100) and
controller (96) maps the system (77) into

ηt(x)− µ̄ηx(x) = −µ̄ĝ(x)ε̂(0)

+ T

[∫ 1

0

κ̂(ξ) [Pt(x, ξ)− µ̄Px(x, ξ)] dξ

]
+ T

[
˙̂ρψ(x)

]
+ T

[∫ 1

x

θ̂t(ξ)φ(1− (ξ − x))dξ

]
+ T

[∫ 1

0

κ̂t(ξ) [P (x, ξ) +M(x, ξ)] dξ

]
+ T

[∫ 1

0

θ̂t(ξ)N(x, ξ)dξ

]
+ T

[
ϑT (x)

]
˙̂ν

−
∫ x

0

ĝt(x− ξ)T−1[η](ξ)dξ (101a)

η(1) = 0. (101b)

Moreover

||ĝ|| ≤Mg, ||ĝt|| ≤M1||θ̂t|| (102)

for some positive constants Mg and M1.
The proof of this Lemma is given in Appendix A.

F. Proof of the main theorem

Proof of Theorem 10: First off, we note that, since r, χ ∈
L∞, we have

a(x, ·), b(x, ·),m0(x, ·), n0(x, ·) ∈ L∞ (103a)
M(x, ξ, ·), N(x, ξ, ·) ∈ L∞ (103b)

||a||, ||b||, ||M ||, ||N ||, ||m0||, ||n0|| ∈ L∞ (103c)
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ϑ(x, ·) ∈ L∞ (103d)
||ϑ|| ∈ L∞ (103e)

for all x, ξ ∈ [0, 1]. Consider the Lyapunov function candidates

V1 = µ̄−1

∫ 1

0

(1 + x)η2(x)dx (104a)

V2 = µ̄−1

∫ 1

0

(1 + x)φ2(x)dx (104b)

V3 = λ̄−1

∫ 1

0

∫ 1

0

(2− ξ)P 2(x, ξ)dξdx (104c)

V4 = λ̄−1

∫ 1

0

(2− x)p2
0(x)dx (104d)

V5 = λ̄−1

∫ 1

0

(2− x)p2
1(x)dx (104e)

V6 = µ̄−1

∫ 1

0

(1 + x)ψ2(x)dx. (104f)

It is possible to show that these satisfy, for t ≥ dα (see
Appendix B for details)

V̇1 ≤ −η2(0)− µ̄

4
V1 + h1

ε̂2(0)

1 + f2
ψ2(0)

+ l1V1 + l2V2 + l3V3 + l4V4 + l5V6 + l6 (105a)

V̇2 ≤ −φ2(0) + 4η2(0)− µ̄

2
V2 + 4

ε̂2(0)

1 + f2
ψ2(0)

+ l7V2 + l8V4 + l9 (105b)

V̇3 ≤ −
1

2
λ̄V3 + 2µ̄V2 (105c)

V̇4 ≤ 2φ2(0)− λ̄

2
V4 (105d)

V̇5 ≤ 4η2(0)− λ̄

2
V5 + 4

ε̂2(0)

1 + f2
ψ2(0)

+ l7V2 + l8V4 + l9 (105e)

V̇6 ≤ −ψ2(0)− µ̄

2
V6 + h2r

2 + h3V1 + h4V5

+ h5||a||2 + h6||b||2 + h7||χ||2. (105f)

for some bounded, integrable functions l1 . . . l9, and positive
constants h1 . . . h7. Forming

V7 = 64V1 + 8V2 + V3 + 4V4 + 8V5 + 2k1V6 (106)

where

k1 = min{µ̄h−1
3 , λ̄h−1

4 }, (107)

we obtain

V̇7 ≤ −cV7 + l10V7 + l11

−
(

2k1 − 64(1 + h1)
ε̂2(0)

1 + f2

)
ψ2(0) + 2k1h2r

2

+ 2k1h5||a||2 + 2k1h6||b||2 + 2k1h7||χ||2 (108)

for some positive constant c and integrable functions l9 and
l10. The terms in r, ||a||, ||b|| and ||χ|| are all bounded, and
hence for V7 to be unbounded, the term in the brackets needs to
be negative on a set whose measure increases unboundedly as
t→∞. This is the persistence of excitation (PE) requirement

of V in (91), meaning that V converges exponentially to zero,
and hence |ρ̃|, ||θ̃||, ||κ̃||, |ν̃| can be made as small as one
pleases. However, by (93), this means that the fraction ε̂2(0)

1+f2

can also be made as small as desired, and eventually, we will
have ε̂2(0)

1+f2 < k1
32(1+h1) , contradicting the initial assumption.

Hence V7 ∈ L∞ and

||η||, ||φ||, ||P ||, ||p0||, ||p1||, ||ψ|| ∈ L∞. (109)

and from the transform (100), we will also have

||ẑ|| ∈ L∞. (110)

From the definition of the filter ψ in (62a) and the control law
U in (96), we will then have U ∈ L∞, an

ψ(x, ·) ∈ L∞ (111)

and particularly, ψ(0, ·) ∈ L∞. Now forming

V8 = 64V1 + 8V2 + V3 + 4V4 + 8V5 (112)

we obtain in a similar way

V̇8 ≤ −c̄V8 + l12V8 + l13 + 64(1 + h1)
ε̂2(0)

1 + f2
ψ2(0) (113)

for some positive constant c̄ and integrable functions l12 and
l13. Since ε̂2(0)

1+f2 ∈ L1([dα,∞]) and ψ(0) ∈ L∞, the latter
term is integrable, and hence

V̇8 ≤ −c̄V8 + l12V8 + l14 (114)

for an integrable function l14. It then follows from [40, Lemma
B.6] that

V8 ∈ L1 ∩ L∞, (115)

and hence

||η||, ||φ||, ||P ||, ||p0||, ||p1|| ∈ L∞ ∩ L2. (116)

From (100), it then follows that

||ẑ|| ∈ L∞ ∩ L2 (117)

while from (75), we have

||ψ|| ∈ L∞. (118)

From the invertibility of the transforms, and the fact that ||a||
and ||b|| are bounded, we obtain

||u||, ||v|| ∈ L∞. (119)

We proceed by proving pointwise boundedness. From (67b),
(70b), (75) and (76) we have

ε̂(x) = ε(x)− ρ̃ψ(x)−
∫ 1

x

θ̃(ξ)φ(1− (ξ − x))dξ

−
∫ 1

0

κ̃(ξ)[P (x, ξ) +M(x, ξ)]dξ

−
∫ 1

0

θ̃(ξ)N(x, ξ)dξ (120)

and

z(x) = ρ̂ψ(x)− b(x) +

∫ 1

x

θ̂(ξ)φ(1− (ξ − x))dξ
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+

∫ 1

0

κ̂(ξ)[P (x, ξ) +M(x, ξ)]dξ

+

∫ 1

0

θ̂(ξ)N(x, ξ)dξ + ε̂(x) (121)

with ε converging to zero in a finite time dβ . From this, we
find

ε̂(x, ·) ∈ L∞([dβ ,∞]) (122)

and

z(x, ·) ∈ L∞([dβ ,∞]). (123)

From z(0, ·) ∈ L∞([dβ ,∞]), we then obtain

φ(x, ·),P (x, ξ, ·), p0(x, ξ, ·),
p1(x, ξ, ·) ∈ L∞([dβ ,∞]). (124)

From (67a) and (70a), we get

w(x, ·) ∈ L∞([tF ,∞]). (125)

Since a and b are also pointwise bounded, we obtain

α(x, ·), β(x, ·) ∈ L∞([tF ,∞]). (126)

From the invertibility of the transforms, we finally get

u(x, ·), v(x, ·) ∈ L∞([tF ,∞]). (127)

Lastly, we prove that the tracking goal (13) is achieved.
Using Lemma 12 in Appendix C on (114) with g = V8 and
f = l12V8 + l14 ∈ L1, yields

V8 → 0 (128)

and hence

||η||, ||φ||, ||P ||, ||p0||, ||p1|| → 0. (129)

By solving (62b), we find

φ(x, t) = φ(1, t− dβ(1− x)) = z(0, t− dβ(1− x)) (130)

for t ≥ dβ(1− x). Moreover, we have

||φ||2 =

∫ 1

0

φ2(x, t)dx

=

∫ 1

0

z2(0, t− dβ(1− x))dx→ 0 (131)

for t ≥ dβ . Which proves that∫ t+T

t

z2(0, s)ds→ 0 (132)

for any T > 0, and from the definition of z(0, t) in (47), this
implies that ∫ t+T

t

(y(s)− yr(s))2ds→ 0 (133)

for any T > 0.

V. SIMULATION

The system (5), the reference model (41) and the filters
(62)–(65) were implemented in MATLAB along with the
adaptive laws (79) and the controller of Theorem 10. The

Fig. 1: System states in the open loop case.

system parameters were set to

λ(x) = 1 + x, µ(x) = ex (134a)

c1(x) = 1 + x, c2(x) =
1

2
(1 + sin(x)) (134b)

q = 2 (134c)

with the disturbance terms being

d1(x, t) =
1

2
x
[
1 1 0

]
χ(t) (135a)

d2(x, t) =
1

20
ex
[
0 0 1

]
χ(t) (135b)

d3(t) =
1

4

[
2 −1 1

]
χ(t) (135c)

d4(t) =
1

4

[
1 1 2

]
χ(t) (135d)

d5(t) =
1

4

[
−1 −1 2

]
χ(t) (135e)

where

χ(t) =
[
1 sin(t) cos(t)

]T
. (136)

The reference signal r was set to

r(t) = 1 + sin
( π

10
t
)

+ 2 sin

(√
2

2
t

)
, (137)

while the initial conditions of the system were set to

u0(x) = x, v0(x) = sin(2πx). (138)

All initial conditions for the filters and parameter estimates
were set to zero, except

ρ̂(0) = 1. (139)

The adaptation gains were set to

γ1 = 5 (140a)
γ2(x) = γ3(x) = 5, ∀x ∈ [0, 1] (140b)

Γ4 = 5I3×3 (140c)

with the bounds on ρ, θ, κ and ν set to

ρ = 0.1, ρ̄ = 100 (141a)

θ = κ = νi = −100 (141b)
θ̄ = κ̄ = ν̄i = 100 (141c)

for i = 1 . . . 3. The integral equation (97) was solved using
successive approximations. System (5) with parameters (134)
is unstable, as seen from the open loop (U ≡ 0) simulation
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Fig. 2: System states in the adaptive tracking case.

Fig. 3: Estimated system parameters.

displayed in Figure 1. With the controller active, it is noted
from Figures 2 and 5 that the states are bounded, and that the
measured output y tracks the signal yr after approximately
60 seconds. It is also noted from Figures 3 and 4 that the
estimates ρ̂, θ̂, κ̂ and ν̂ do not stagnate, but continuously adapt.
The reason for this may be that the values of θ and κ for which
the goal is achieved are not unique.

VI. CONCLUSIONS

We have solved a model reference adaptive control problem
for a class of linear 2 × 2 hyperbolic partial differential
equations with uncertain boundary parameters and harmonic
disturbances, with sensing restricted to the boundary anti-
collocated with the actuation. This was achieved using a series
of transformations that mapped the system into a canonical
form, before a filter-based control law was designed that
ensured pointwise boundedness of all variables in the system,
and also asymptotic tracking of the measured signal. The
theory was verified in a simulation.
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0 50 100
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0 50 100
−0.5

0

0.5
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2

0 50 100
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0
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3

Fig. 4: Estimated ρ and ν.
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a
n
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r
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Fig. 5: Objective: measured signal y (dashed) and reference
yr (solid).
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APPENDIX

A. Proof of Lemma 11

Proof of Lemma 11: Differentiating (98) with respect to
time inserting the dynamics (77a) and integration by parts, we
obtain

ẑt(x) = ηt(x) + ĝ(0)µ̄ẑ(x)− ĝ(x)µ̄ẑ(0)

+

∫ x

0

ĝx(x− ξ)µ̄ẑ(ξ)dξ +

∫ x

0

ĝ(x− ξ)µ̄θ̂(ξ)z(0)dξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

0

κ(s) [Pt(ξ, s)− µ̄Px(ξ, s)] dsdξ

+

∫ x

0

ĝ(x− ξ) ˙̂ρψ(ξ)dξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

ξ

θ̂t(s)φ(1− (s− ξ))dsdξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

0

κ̂t(s)[P (ξ, s) +M(ξ, s)]dsdξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

0

θ̂t(s)N(ξ, s)dsdξ

+

∫ x

0

ĝ(x− ξ)ϑT (ξ) ˙̂νdξ

+

∫ x

0

ĝt(x− ξ)ẑ(ξ)dξ. (142)

Equivalently, differentiating (98) with respect to space, we find

ẑx(x) = ηx(x) + ĝ(0)ẑ(x) +

∫ x

0

ĝx(x− ξ)ẑ(ξ)dξ. (143)

Inserting the results into (77a), yields

ηt(x)− µ̄ηx(x)−
[
µ̄θ̂(x)−

∫ x

0

ĝ(x− ξ)µ̄θ̂(ξ)dξ
]
ε̂(0)

−
∫ 1

0

κ(ξ) [Pt(x, ξ)− µ̄Px(x, ξ)] dξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

0

κ(s) [Pt(ξ, s)− µ̄Px(ξ, s)] dsdξ

− ˙̂ρψ(x) +

∫ x

0

ĝ(x− ξ) ˙̂ρψ(ξ)dξ

−
∫ 1

x

θ̂t(ξ)φ(1− (ξ − x))dξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

ξ

θ̂t(s)φ(1− (s− ξ))dsdξ

−
∫ 1

0

κ̂t(ξ)[P (x, ξ) +M(x, ξ)]dξ

+

∫ x

0

ĝ(x− ξ)
∫ 1

0

κ̂t(s)[P (ξ, s) +M(ξ, s)]dsdξ

−
∫ 1

0

θ̂t(ξ)N(x, ξ)dξ +

∫ x

0

ĝ(x− ξ)
∫ 1

0

θ̂t(s)N(ξ, s)dsdξ

− ϑT (x) ˙̂ν +

∫ x

0

ĝ(x− ξ)ϑT (ξ) ˙̂νdξ

+

∫ x

0

ĝt(x− ξ)ẑ(ξ)dξ = 0 (144)

which can we rewritten as (101a). The boundary condition
(101b) follows from inserting x = 1 into (98), and using (77b)
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and (96).
Note that, from invertibility of the transforms (98) and (100)

and the fact that the estimate θ̂ and hence also ĝ are bounded
by projection, we have the inequalities

||T [u]|| ≤ G1||u||, ||T−1[u]|| ≤ G2||u|| (145)

for some positive constants G1 and G2. This means, from (99),
that

||ĝ|| ≤ G1||θ̂|| ≤ G1Mθ (146)

where Mθ = max{|θ|, |θ̄|}. Taking Mg = G1Mθ proves the
first part of (102). Differentiating (97) with respect to time,
we find

ĝt(x)−
∫ x

0

θ̂(x− ξ)ĝt(ξ)dξ

=

∫ x

0

ĝ(x− ξ)θ̂t(ξ)dξ − θ̂t(x), (147)

which, using (98) and (100) can be written

T−1[ĝt](x) = −T [θ̂t](x), (148)

and hence ĝt(x) = −T [T [θ̂t]](x). Taking M1 = G2
1 proves

the last part of (102).

B. Details regarding Theorem 10
1) Bounds on V1: From differentiating V1 in (104a) with

respect to time and inserting the dynamics (101a), we find, for
t ≥ dα

V̇1 = 2

∫ 1

0

(1 + x)η(x)ηx(x)dx

− 2

∫ 1

0

(1 + x)η(x)g(x)dxε̂(0)

+
2

µ̄

∫ 1

0

(1 + x)η(x)T
[

˙̂ρψ(x)
]
dx

+
2

µ̄

∫ 1

0

(1 + x)η(x)T

[∫ 1

x

θ̂t(ξ)φ(1− (ξ − x))dξ

]
dx

+
2

µ̄

∫ 1

0

(1 + x)η(x)T

[∫ 1

0

κ̂t(ξ)P (x, ξ)dξ

]
dx

+
2

µ̄

∫ 1

0

(1 + x)η(x)T

[∫ 1

0

κ̂t(ξ)M(x, ξ)dξ

]
+

2

µ̄

∫ 1

0

(1 + x)η(x)T

[∫ 1

0

θ̂t(ξ)N(x, ξ)dξ

]
dx

+
2

µ̄

∫ 1

0

(1 + x)η(x)T
[
ϑT ˙̂ν

]
(x)dx

− 2

µ̄

∫ 1

0

(1 + x)η(x)

∫ x

0

gt(x− ξ)T−1[η](ξ)dξdx (149)

where we have utilized that Pt−µ̄Px is zero for t ≥ dα. Using
integration by parts and Cauchy-Schwartz’ inequality on the
cross terms, we find the following upper bounds

V̇1 ≤ −η2(0)

− µ̄
[

1

2
− ρ1 − ρ2 − ρ3 − ρ4 − ρ5 − ρ6 − ρ7 − ρ8

]
V1

+
1

ρ1µ̄2

∫ 1

0

(1 + x)T
[

˙̂ρψ(x)
]2
dx

+
1

ρ2µ̄2

∫ 1

0

(1 + x)T

[∫ 1

x

θ̂t(ξ)φ(1− (ξ − x))dξ

]2

dx

+
1

ρ3

∫ 1

0

(1 + x)g2(x)dxε̂2(0)

+
1

ρ4µ̄2

∫ 1

0

(1 + x)T

[∫ 1

0

κ̂t(ξ)P (x, ξ)dξ

]2

dx

+
1

ρ5µ̄2

∫ 1

0

(1 + x)T

[∫ 1

0

κ̂t(ξ)M(x, ξ)dξ

]2

dx

+
1

ρ6µ̄2

∫ 1

0

(1 + x)T

[∫ 1

0

θ̂t(ξ)N(x, ξ)dξ

]2

dx

+
1

ρ7µ̄2

∫ 1

0

(1 + x)T [ϑT (x) ˙̂ν]2dx

+
1

ρ8µ̄2

∫ 1

0

(1 + x)

[∫ x

0

gt(x− ξ)T−1[η](ξ)dξ

]2

dx, (150)

for some arbitrary positive constants ρi, i = 1 . . . 8. V̇1 can be
upper bounded by

V̇1 ≤ −η2(0)

− µ̄
[

1

2
− ρ1 − ρ2 − ρ3 − ρ4 − ρ5 − ρ6 − ρ7 − ρ8

]
V1

+
2

ρ1µ̄2
G2

1| ˙̂ρ|2||ψ||2 +
2

ρ2µ̄2
G2

1||θt||2||φ||2

+
2ḡ2

ρ3
ε̂2(0) +

2

ρ4µ̄2
G2

1||κ̂t||2||P ||2

+
2

ρ5µ̄2
G2

1||κ̂t||2||M ||2 +
2

ρ6µ̄2
G2

1||θ̂t||2||N ||2

+
2

ρ7µ̄2
G2

1| ˙̂ν|2||ϑ||2 +
2

ρ8µ̄2
G2

2||gt||2||η||2. (151)

Let

ρi =
1

32
, i = 1 . . . 8, (152)

then

V̇1 ≤ −η2(0)− µ̄

4
V1 +

64

µ̄2
G2

1| ˙̂ρ|2||ψ||2 +
64

µ̄2
G2

1||θt||2||φ||2

+ 64M2
g

ε̂2(0)

1 + f2
+ 64M2

g

ε̂2(0)

1 + f2
ψ2(0)

+ 64M2
g

ε̂2(0)

1 + f2
||φ||2 + 64M2

g

ε̂2(0)

1 + f2
||p0||2

+ 64M2
g

ε̂2(0)

1 + f2
||m0||2 + 64M2

g

ε̂2(0)

1 + f2
||n0||2

+ 64M2
g

ε̂2(0)

1 + f2
|ϑ(0)|2 +

64

µ̄2
G2

1||κ̂t||2||P ||2

+
64

µ̄2
G2

1||κ̂t||2||M ||2 +
64

µ̄2
G2

1||θ̂t||2||N ||2

+
64

µ̄2
G2

1| ˙̂ν|2||ϑ||2 +
64

µ̄2
G2

2||gt||2||η||2. (153)

Define the bounded, integrable functions

l1 =
64

µ̄
G2

2||gt||2 (154a)

l2 =
64

µ̄
G2

1||θt||2 + 64µ̄M2
g

ε̂2(0)

1 + f2
(154b)
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l3 =
64λ̄

µ̄2
G2

1||κ̂t||2 (154c)

l4 = 64λ̄M2
g

ε̂2(0)

1 + f2
(154d)

l5 =
64

µ̄
G2

1| ˙̂ρ|2 (154e)

l6 = 64M2
g

ε̂2(0)

1 + f2
+ 64M2

g

ε̂2(0)

1 + f2
||m0||2

+ 64M2
g

ε̂2(0)

1 + f2
||n0||2 + 64M2

g

ε̂2(0)

1 + f2
|ϑ(0)|2

+
64

µ̄2
G2

1||κ̂t||2||M ||2 +
64

µ̄2
G2

1||θ̂t||2||N ||2

+
64

µ̄2
G2

1| ˙̂ν|2||ϑ||2 (154f)

and the positive constant

h1 = 64M2
g (155)

then (153) can be written as

V̇1 ≤ −η2(0)− µ̄

4
V1 + h1

ε̂2(0)

1 + f2
ψ2(0)

+ l1V1 + l2V2 + l3V3 + l4V4 + l5V6 + l6. (156)

2) Bounds on V2: Similarly, differentiating V2 in (104b)
with respect to time, inserting the dynamics (62b), and inte-
gration by parts, we find

V̇2 = 2

∫ 1

0

(1 + x)φ(x)φx(x)dx

= 2φ2(1)− φ2(0)−
∫ 1

0

φ2(x)dx

≤ −φ2(0) + 4η2(0)− 1

2
µ̄V2 + 4ε̂2(0) (157)

where we have inserted the boundary condition in (62b).
Inequality (157) can be written as

V̇2 ≤ −φ2(0) + 4η2(0)− µ̄

2
V2 + 4

ε̂2(0)

1 + f2

(
1 + ψ2(0)

+ ||φ||2 + ||p0||2 + ||m0||2 + ||n0||2 + |ϑ(0)|2
)
. (158)

Defining the functions

l7 = 4µ̄
ε̂2(0)

1 + f2
(159a)

l8 = 4λ̄
ε̂2(0)

1 + f2
(159b)

l9 = 4
ε̂2(0)

1 + f2
(1 + ||m0||2 + ||n0||2 + |ϑ(0)|2) (159c)

which from (86e) are bounded and integrable, we obtain

V̇2 ≤ −φ2(0) + 4η2(0)− µ̄

2
V2 + 4

ε̂2(0)

1 + f2
ψ2(0)

+ l7V2 + l8V4 + l9. (160)

3) Bounds on V3: Differentiating V3 in (104c) with respect
to time and inserting the dynamics (62d), we find

V̇3 = −2

∫ 1

0

∫ 1

0

(2− ξ)P (x, ξ)Pξ(x, ξ)dξdx

= −
∫ 1

0

P 2(x, 1)dx+ 2

∫ 1

0

P 2(x, 0)dx

−
∫ 1

0

∫ 1

0

P 2(x, ξ)dξdx. (161)

Inserting the boundary condition in (62d), we obtain

V̇3 ≤ −
1

2
λ̄V3 + 2µ̄V2 (162)

4) Bounds on V4: From differentiating V4 in (104d) with
respect to time and inserting p0’s dynamics derived from the
relationship given in (63a), we find

V̇4 = −2

∫ 1

0

(2− x)p0(x)∂xp0(x)dx

= −p2
0(1) + 2p2

0(0)− λ̄

2
V4. (163)

Using (63a) and (62d) yields

V̇4 ≤ 2φ2(0)− λ̄

2
V4. (164)

5) Bounds on V5: Similarly, differentiating V5 in (104e)
with respect to time and, we find

V̇5 = −2

∫ 1

0

(2− x)p1(x)∂xp1(x)dx

= −p2
1(1) + 2p2

1(0)− λ̄

2
V5. (165)

Using (63a) and (62d) yields

V̇5 ≤ 2φ2(1)− λ̄

2
V5 (166)

≤ 4η2(0)− λ̄

2
V5 + 4

ε̂2(0)

1 + f2

(
1 + ψ2(0) + ||φ||2

+ ||p0||2 + ||m0||2 + ||n0||2 + |ϑ(0)|2
)

(167)

which can be written as

V̇5 ≤ 4η2(0)− λ̄

2
V5 + 4

ε̂2(0)

1 + f2
ψ2(0)

+ l7V2 + l8V4 + l9, (168)

for the integrable functions defined in (159a).
6) Bounds on V6: Lastly, from differentiating V6 in (104f)

with respect to time and the dynamics (62a), we find

V̇6 = 2

∫ 1

0

(1 + x)ψ(x)ψx(x)dx

= 2ψ2(1)− ψ2(0)− µ̄

2
V6. (169)

Inserting the boundary condition (63a) and the control law
(96), we can bound this as

V̇6 ≤ −ψ2(0)− µ̄

2
V6 + 12M2

ρ r
2

+ 12M2
ρ

∫ 1

0

ĝ2(1− ξ)ẑ2(ξ)dξ

+ 12M2
ρ

∫ 1

0

κ̂2(ξ)p2
1(ξ)dξ + 12M2

ρ

∫ 1

0

κ̂2(ξ)a2(ξ)dξ

+ 12M2
ρ

∫ 1

0

θ̂2(ξ)b2(1− ξ)dξ + 12M2
ρ (χT ν̂)2 (170)
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where

Mρ =
1

min{|ρ|, |ρ̄|}
. (171)

Inequality (170) can be bounded as

V̇6 ≤ −ψ2(0)− µ̄

2
V6 + 12M2

ρ r
2 + 12M2

ρM
2
gG

2
2||η||2

+ 12M2
ρM

2
κ ||p1||2 + 12M2

ρM
2
κ ||a||2

+ 12M2
ρM

2
θ ||b||2 + 12(2n+ 1)M2

ρM
2
ν ||χ||2 (172)

where

Mκ = max{|κ|, |κ̄|} (173a)
Mν = max

i∈[1...(2n+1)]
{|νi|, |ν̄i|} (173b)

Defining the positive constants

h2 = 12M2
ρ (174a)

h3 = 12M2
ρM

2
gG

2
2µ̄ (174b)

h4 = 12M2
ρM

2
κ λ̄ (174c)

h5 = 12M2
ρM

2
κ (174d)

h6 = 12M2
ρM

2
θ (174e)

h7 = 12(2n+ 1)M2
ρM

2
ν (174f)

then (172) can be written as

V̇6 ≤ −ψ2(0)− µ̄

2
V6 + h2r

2 + h3V1 + h4V5

+ h5||a||2 + h6||b||2 + h7||χ||2. (175)

C. Lemma 2.17 from [41]

Lemma 12 (Lemma 2.17 from [41]): Consider a signal g
satisfying

ġ(t) = −ag(t) + bh(t) (176)

for a signal h ∈ L1 and some constants a > 0, b > 0. Then

g ∈ L∞ (177)

and

lim
t→∞

g(t) = 0. (178)
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