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Abstract—With the majority of video distribution services
relying on the HTTP adaptive streaming paradigm, a great
deal of research is geared towards developing algorithms and
solutions for improving user perceived quality while making
efficient use of available resources. Our goal is to provide
the means for benchmarking such solutions in the context of
multiple users accessing Video on Demand content while sharing
a bottleneck link. For that purpose, we propose a quadratic
problem formulation to compute the theoretical optimum in
terms of adaptation strategies and corresponding segment down-
loads across multiple users under given bandwidth constraints.
By aiming to maximize both service quality and fairness, we
quantify and compare the impact of different fairness objectives
(bandwidth fairness, pattern fairness, and session fairness) on
resulting quality and achieved QoE fairness. Based on conducted
simulations and parameter studies, our results demonstrate the
benefits of optimizing for session fairness as compared to other
approaches.

I. INTRODUCTION

With the highest share of today’s Internet traffic being
consumed by video streaming services, both service and
network providers face challenges in providing end users
with high quality services. The majority of video distribution
services have adopted the HTTP Adaptive Streaming (HAS)
paradigm, whereby content is stored and delivered in small
segments available in multiple quality levels. Decisions related
to the quality levels at which to retrieve segments are made
by adaptation algorithms run on clients and are driven by
bandwidth estimations and/or buffer status.

A great deal of research has focused on the QoE-driven
design of adaptation algorithms, with the goal being to deliver
video content at high quality levels while avoiding stalling,
long initial delays, and frequent quality switches. Faced with
the question of how to benchmark the performance of HAS
adaptation algorithms compared to a theoretical QoE opti-
mum, the authors in [1] propose problem formulations to
compute the theoretical optimum for both single- and multi-
user scenarios. Their addressed multi-user scenario assumes
users concurrently watching and downloading the same video
over a shared bottleneck link.

In this paper, we extend previous work by formulating a
QoE optimal download strategy in the case of multiple HAS
users accessing Video on Demand (VoD) content via a shared

bottleneck link, i.e., users watch different videos at different
starting points. A well-known issue linked to such a scenario
is that the on/off nature of flows often results in inaccurate
client-side bandwidth estimation and leads to potentially unfair
resource demands, quality oscillations, and poor bandwidth
utilization [2], [3], [4], [5]. While different approaches in
literature propose methods to mitigate these problems by em-
ploying various monitoring and control solutions at different
points along the service delivery path [5], [6], [7], what is
missing is a methodology for comparing and benchmarking
these different approaches.

We thus propose a quadratic problem formulation to com-
pute the theoretical optimum in terms of adaptation strategies
and corresponding segment downloads across multiple users
under given bandwidth constraints. We specify the objective
as being to maximize average quality, minimize the number of
quality switches, and ensure equal utility (QoE) among users
while avoiding stalling events. With respect to specifying the
optimization objective, previous research has suggested a two-
step approach [1], [8]. In a first step, a solution is found that
maximizes the sum of overall quality or average quality. In a
second step, the number of quality switches is minimized to
a number where the maximum quality can still be achieved.
However, this constraint does not leave much room to optimize
the number of quality switches. An extension to this approach
proposed in [9] modifies this constraint by introducing a trade-
off parameter α that allows for almost maximum quality,
while allowing for much fewer quality switches. In this paper,
we combine the aforementioned steps into a weighted linear
combination and perform a parameter study to investigate the
impact of different assigned weights.

In addition to maximizing quality across multiple users,
an inherent question is that of how to address the issue of
fairness. There is a clear need to distinguish between QoS
fairness (e.g., resulting in equal bitrate allocations) vs. QoE
fairness, leading to equal utility among users [10]. While
client-side bitrate adaptation algorithms may in a best-case
scenario achieve flow-based fairness, this will rarely translate
to session-level fairness (or QoE level fairness for a given
session) [11]. Recent papers have argued that a QoS fair
system is not necessarily QoE fair, e.g., [5], [8], given the



lack of consideration of service QoE models. Such models
specify the relationships between user-level QoE and various
application-layer performance indicators (e.g., file loading
times, video re-buffering) or influence factors such as device
capabilities, context of use, network and system requirements,
user preferences, etc.

By aiming to maximize both service quality and fairness,
we quantify and compare the impact of different fairness
objectives (bandwidth fairness, pattern fairness, and session
fairness) on resulting quality and achieved QoE fairness. Based
on conducted simulations and parameter studies, our results
demonstrate the benefits of optimizing for session fairness as
compared to other approaches.

The remainder of this paper is structured as follows. Sec-
tion II further provides background and an overview of related
work. Section III introduces the quadratic program and used
notation. Simulation results are presented in Section IV, while
concluding remarks and outlook are given in Section V.

II. RELATED WORK

A. Fairness

In a shared system where scarce resource must be shared,
fairness is always a concern. Jain’s fairness index is a popular
fairness index for QoS [12] that determines the ratio between
the square of the mean and the mean of the squares for a
set of values. However, it is only suitable for measures on a
ratio scales [13], i.e. an interval scale with a true zero point.
Resources are allocated according to max-min fairness among
users if a user only receives more resources when no other user
will suffer and obtain less [13]. A rather novel fairness index
for QoE has been presented in Hoßfeld et al. [10]. Hoßfeld’s
fairness index is defined via the ratio between the observed
standard deviation of QoE values and the maximal possible
standard deviation F = 1 − σ/σmax which makes it suitable
for any interval scales. In Section IV we use this index to
quantify fairness from a user-centric point of view for quality
layers that serve as QoE indicators. A detailed discussion of
QoS and QoE fairness is provided in [13] focusing on the
notion of fairness in shared environments and in networking,
as well as fairness from the user’s perspective.

B. Quality of Experience in Video Streaming

The QoE is "the degree of delight or annoyance of the user
of an application or service" [14]. There are many metrics for
the QoE of video streaming, which are summarized in [15].
Key performance indicators for QoE include the number of
stalling events, the average video quality and the number of
quality switches [16]. Some studies claim that switches have
no significant impact on the QoE [17], while others include
them as key performance indicators [18], [19]. In a recent
ITU-T standard from 2017 [20], the number of switches was
not included in the QoE model. Nevertheless, we include it
since we know from [9] that the number of switches can
be reduced drastically at a very low cost in terms of video
quality. Furthermore, in the model that we present, a scenario
where switches are disregarded can be defined by setting the

Table I
NOTATIONS AND VARIABLES

u = 1, 2, 3 . . . index for users (in order of requests)
U number of users
Yu video that is downloaded/watched by user u
Tu time of request of video Yu by user u (second)
i index for segments
n number of segments
j index for quality layer

rmax number of quality layers
Suij size of segment i of video Yu in quality j

(Byte)
Dui deadline of segment i of video Yu until which

download must be completed (second)
V (t1, t2) data that can be downloaded between the points

in time t1 and t2 (second)
xuij ∈ {0, 1} solution whether segment i of video Yu is

downloaded in quality j or not
wuij weight for segment i of video Yu in quality j,

e.g. QoE value
Fui absolute fairness for the quality of segment i

between user u and other users
Fu absolute fairness for the mean quality of all

segments between user u and other users
α relative importance of the average video quality
β relative importance of quality switches
γ relative importance of quality fairness
δ relative importance of upward switches com-

pared to downward switches

importance parameter for switches β = 0. This corresponds
to a scenario with α = 1 in [9].

Since we know that stalling events have the highest negative
impact on QoE, the proposed quadratic program is constrained
to completely avoid stalling. The other KPIs have been iden-
tified to have some impact, however, the exact degree of the
impact is not fully clear. Therefore, we only propose relative
importance using a weighting for each of these parameters.

III. OPTIMIZATION PROBLEM

We assume a set of users U . Each user u downloads
exactly one video Yu. Each video is divided into n segments
which must be downloaded in exactly one of rmax resolu-
tions/layers1. The volume of segment i on layer j of video
Yu is defined as Suij . Each segment i of video Yu must be
completely downloaded before its deadline Dui to play the
video without stalling. Each user u requests a video at a point
in time Tu. We assume that users request videos sequentially,
i.e., User 1 requests his video before User 2. The function
V (t1, t2) describes the data that can be downloaded between
the points in time t1 and t2. For V (0, t1) we may use the
shortened notation of V (t1).

The optimization problem that we tackle can be formulated
as follows: Optimize the average video quality of all users,
while minimizing the number of downward quality switches
and maximizing the number of upward switches. Quality
switches are weighted with the difference in quality. Further,
we minimize the difference between the average quality among
users, while avoiding stalling events. The weight of each

1If videos may have different numbers of layers or segments, we replace
rmax with ru,max or n with nu



maximize α

U∑
u=1

n∑
i=1

rmax∑
j=1

wuijxuij − β
U∑

u=1

n∑
i=1

(

rmax∑
j=2

j−1∑
k=1

(j − k)xuijxu,i+1,k

− δ
rmax−1∑

j=1

rmax∑
k=j

(k − j)xuijxu,i+1,k)− γ 1

nU

U∑
u=1

Fu (1)

subject to xuij ∈ {0, 1} ∀u = 1, ..., U, ∀i = 1, ..., n, ∀j = 1, ..., rmax (2)
rmax∑
j=1

xuij = 1, ∀u = 1, ..., U, ∀i = 1, . . . , n (3)

U∑
u=l

k∑
i=1

rmax∑
j=1

Suijxuij ≤ V (Tl, Duk), ∀k = 1, . . . , n, ∀l = 1, . . . , U (4)

Fu ≥
n∑

i=1

rmax∑
j=1

wuij((U − 1)xuij −
U∑

ũ=1,ũ6=u

xũij), ∀u = 1, . . . , U (5)

Fu ≥ −
n∑

i=1

rmax∑
j=1

wuij((U − 1)xuij −
U∑

ũ=1,ũ6=u

xũij), ∀u = 1, . . . , U. (6)

variable that is the subject of the optimization is defined by
α for the average quality, β for the number of switches and
γ for the fairness in quality among users. Upward switches
may have a different impact on the user experience than
downward switches. Therefore, we introduce a parameter
δ that reflects the relative importance of upward switches
compared to downward switches. We arbitrarily chose δ = 0.5
for the remainder of this paper. An overview of all parameters
is given in Table I.

Currently QoS fairness is employed via protocols that
ensure that users who share the same link may use the same
share of resources available. This means, we have fair network
QoS. In the following we present two fairness schemes for
application layer QoS.

Please note that in the quadratic program we do not use a
fairness index such as Jain’s or Hoßfeld’s QoE fairness metric
directly. The optimization problem formulates a theoretical
implementation of a QoE management mechanism. Thereby,
we rely on a very simple fairness measure for the sake of
simplifying the quadratic program. For example, instead of
relying on the standard deviation, we use the mean differ-
ence, avoiding squares in the formulation. More sophisticated
fairness indexes such as the above can be applied to it
nevertheless.

A. Session-Fairness

This approach corresponds to how fairness is evaluated over
the whole session. Each user u has an average quality QoEu

in which he has viewed the video. The average quality QoEu

of each user should be as similar as possible to achieve high
fairness.

The values α, β and γ are normalized so that the minimum
and maximum value of their term is 0 and 1. Equation 3
means that each segment of any video of any user must

be downloaded in exactly one resolution. Equation 4 means
that for each User l, the sizes of all segments, which are
downloaded by users who requested a video after User l, may
in their sum never exceed the data that can be downloaded
since User l joined the system. Equation 5 and 6 are used to
implement the absolute value for the difference to the mean.
If Tũ − Tu < 0 or Tũ − Tu > max(T ) then the constraint for
this u is omitted. This has been left out of the equations for
the sake of clarity. A downside of this approach for fairness is
the difficulty of its implementation since do not know if users
abandon videos early. A possibility to solve this problem is
to implement a history-based fairness system, that considers
all segments from the past, and tries to equalize the average
quality of users over time. It is also possible to model this
problem as a 2-step approach: In the first step, we ignore
switches and determine the maximum quality and fairness W
that is possible. In the second step, we try to reach at least
W − ε and then minimize the number of switches. For the
sake of brevity this approach is not presented in further detail.

B. Segment-Fairness

Another way to implement fairness for application layer
QoS is to minimize the difference in quality between users
for each video segment. This means that the nth segment
watched by all users has similar quality, independently of when
it is watched, e.g. in the case of maximum quality, the quality
pattern in which videos are viewed is the same for each user. If
we use segment-fairness (also referred to as pattern fairness),
we have the following equations. We replace the last term of
Equation 1 with

−γ
U∑

u=1

n∑
i=1

1

nU
Fui (7)



and Equations 5 and 6 with

Fui ≥
rmax∑
j=1

wuij((U − 1)xuij −
U∑

ũ=1

x
ũ,i+

Tũ−Tu
τ ,j

), (8)

∀u = 1, . . . , U, ∀i = 1, . . . , n

Fui ≥ −
rmax∑
j=1

wuij((U − 1)xuij −
U∑

ũ=1

x
ũ,i+

Tũ−Tu
τ ,j

), (9)

∀u = 1, . . . , U, ∀i = 1, . . . , n

IV. RESULTS

In this section, we discuss the results. We first discuss a
sample run and then conduct parameter studies, to explain
the impact of input values (i.e., scenarios) of the quadratic
program.

A. Methodology

The scenario that we investigate in the following section
is a low bandwidth scenario. Three users request a YouTube
video (ID: CRZbG73SX3s, ∆t = 549s) at different starting
points t1 = 0s, t2 = 245s, t3 = 495. Videos start playing
after an initial delay of 5s. Each video is partitioned into video
segments that have an equal duration of 5s and are available
in four quality levels (1, 2, 3, 4) that differ in average bit rate:
144p (14 kBps), 240p (31 kBps), 360p (68 kBps) and 480p
(127 kBps). The users share the same bottlenecked link with
a constant effective bandwidth that we vary from 50 kBps to
150 kBps (indicated as 0.5, ...1.5 in the figures).

We used a constant parameter α = 1 which indicates that the
video quality should always be of high importance. We varied
the parameters β, γ ∈ {0, . . . 1} to account for scenarios in
which the degree of annoyance of quality switches and the
degree of importance of fair video quality among users varies.
We use δ = 0.5 in every scenario. The quadratic programs
were solved in Gurobi2 with Matlab3 as an interface. The
program was executed on an i7 CPU with four cores with
2.70 GHz and 16 GB RAM. The run time of the program
heavily depends on the scenario and the parameters used. The
calculation for bandwidth fairness takes 0.2 s for β = 0 and
0.5 s for β > 0. The calculation for pattern fairness takes
5 s for β = 0 and 1700 s for β > 0. In the latter case we
stop the program after 30 s and take non-optimal results to get
results within an acceptable time frame. These results are very
close to optimal results and do not differ visibly. For session
fairness a run takes 0.8 s for β = 0 and 2 s for β < 0. The
source code of the programs is available online4. We invite
any scientists to use it for their own research. QoS fairness
(also referred to as bandwidth fairness) was modeled by giving
each user 1

n bandwidth while n users were in the network.
Users always fully exhausted their available bandwidth. Then
we optimized quality and switches according to α and β for

2http://www.gurobi.com/
3https://www.mathworks.com/products/matlab.html
4https://github.com/ChristianMoldovan/Quadratic-Program-for-Optimal-
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Figure 1. Quality of segments over time for three users watching a video with
session-fairness employed and the following parameters: bandwidth = 1.5
Mbit/s, α = 1, β = 1, γ = 1.

the respective bandwidth pattern using Gurobi, ignoring QoE
fairness. In Figure 1 an example of a single run is given in
which we see the quality in which segments are watched over
time for each user. The three metrics that we investigate are:
average video quality, the fairness of the quality among users,
and the number of quality switches.

B. Trade-off Between Quality, Switches, and Fairness

As can be seen in Figure 2, the quality increases with
the bandwidth, the number of switches is reduced with β,
and fairness increases with γ. Furthermore, β and γ have no
significant impact on the video quality. It is noticeable that the
average quality is slightly lower when QoS fairness is enforced
since there is less room for optimally scheduling the segment
downloads. For example, when the third user joins the system
in Figure 1, the user can only use 1

3 of the available bandwidth
since it is fairly shared with the other users. Therefore, User
3 can only download low quality segments. Optimally, when
a new user starts a video, the user is given a larger share of
the bandwidth initially, so they can start with a higher quality
level. Other users may suffer with respect to obtained quality
but switching from 240p to 360p is more cost effective as
compared to going from 360p to 480p, if we consider the ratio
of the bit rate to the quality difference. A detailed analysis of
the trade-off between quality and switches has already been
conducted in [9].

In Figure 3 we see that a higher bandwidth leads to higher
fairness. Furthermore, the fairness parameter γ leads to higher
fairness, when approaching 0. In contrast, we can see the trade-
off in Figure 4. While higher bandwidth also leads to higher
quality, increasing γ leads to an increase in quality.

C. Bandwidth Fairness, Pattern Fairness, Session Fairness

Current systems mostly rely on network QoS fairness, due to
its simplicity. Each user receives the same share of resources
at any point in time. In the following, we emulate network
QoS fairness by reserving 1/n of the total bandwidth for each
user while n users are watching a video and are in the system.
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Figure 2. Impact of bandwidth, β and γ on the average video quality, the number of switches and the fairness of the video quality for α = 1.

With a network-QoS-fairly shared bandwidth, the average
quality is slightly lower, compared to a perfect optimization.
Even if perfect session fairness can be guaranteed, the mean
quality of every single user is higher than with QoS-fairness.
The fairness (in terms of Hoßfeld’s fairness index) of the
system is not impacted by γ, except for the simple case γ = 0
in which fairness is not considered in the optimization. This
means that optimizing fairness for single segments has no
impact on the overall fairness. Rather, it is impacted very much
by the bandwidth. In contrast to Figure 3, fairness is always
lower compared to optimizing session fairness. In Figure 4
we see that session-fairness leads to the highest quality with
an average of 3.03, then segment-fairness with 2.92 and last
network QoS fairness with 2.74. This means that the video
quality can be increased by 0.29 quality layers in the above
scenario on average, while resulting in fairer QoS on the
application layer.

V. CONCLUSION

Video Streaming is a widespread form of multimedia in the
Internet that is consumed by billions of people worldwide.
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Figure 3. QoS-Fairness: Videotrace number 1585. Impact of bandwidth and
gamma on quality with β = 0.4.

However, from an end user perspective, users care more about
QoS on the application layer than on the network layer.
Therefore, studies advocate the need to move from solutions
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Figure 4. Session-fairness, segment-fairness and network QoS-fairness:
impact of bandwidth on the video quality with β = 0.4. Mean over all γ
values.

targeting fair network QoS towards those geared towards
achieving fair application QoS. The first question is whether
it is worth taking such a challenging route.

In this paper, we propose a quadratic problem formulation
to compute the optimum in terms of quality, quality switches,
and fairness among multiple users sharing a bottleneck link,
given that we know in advance the bandwidth variations,
video request times, and available quality levels. As such,
the aim is to provide the means for benchmarking different
adaptation algorithms and solutions in the context of multiple
users accessing Video on Demand content while sharing a
bottleneck link.

We compare the impact of different fairness objectives (QoS
fairness, segment fairness and session fairness) on the video
quality and QoE fairness. Our results show that ensuring QoS
Fairness has no impact on the overall QoE fairness of a
session, while on the other hand it can be costly in terms
of quality. In contrast, optimizing for session fairness can be
realized at a lower cost in terms of quality to give all users
the same quality within 0.1 of Hoßfeld’s Fairness Index. This
demonstrates that it makes sense to look at QoS on application
layer, when attempting to distribute resources to users.

In future work, we plan to use the results of this paper
to present a decentralized system for video streaming that
improves session fairness for users that share a bottleneck link
with minimal impact on the average video quality.
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