

Bjørn Axel Gran

The use of Bayesian Belief Networks
for combining disparate sources of
information in the safety assessment
of software based systems

Dr.Ing. Thesis

Department of Mathematical Sciences

Norwegian University of Science and Technology

2002

Preface
This thesis is submitted in partial fulfilment of the requirements for the degree “Doktor
Ingeniør” (Dr.Ing.). The research has been carried out as a part of the long-term research
within the OECD Halden Reactor Project, hosted by the Institutt for energiteknikk.

I want to acknowledge the different persons that have taken part in this research. First of all,
I thank Gustav Dahll, which has been in-house supervisor, motivator, and taken active part in
all the discussions behind this research. I also thank Harald Thumen and my other former
and present colleagues in Halden, who have shown grate interest in the research.

I thank my supervisor at the Department of Mathematical Science Stian Lydersen for his
support and guidance, and I thank my co-supervisor Tor Stålhane for both critical feedback
as well as backing arguments. I enjoyed the year as guest in Trondheim. I am grateful to the
rest of the project team that performed the “M-ADS project”: Siegfried Eisinger from Det
Norske Veritas, and Eivind J. Lund, Jan Gerhard Norstrøm, Peter Strocka, and Britt J.
Ystanes from Kongsberg Defence & Aerospace AS (KDA). I also want to thank KDA for
allowing me to further work applying their observations. I also thank Atte Helminen and his
colleagues at VTT Automation for bringing in new ideas and co-operative work. Finally,
acknowledge to Hugin Expert A/S for allowing me to use the HUGIN tool for my Ph.D.

At last, I thank Frauke for her encouragement, love and care.

Thesis Outline
The thesis consist of the following articles:

I. The Use of Bayesian Belief Nets in Safety Assessment of Software Based Systems.

(with Gustav Dahll) In Special Issues of International Journal on Intelligent
Information Systems at FLINS'98, Int. J. General Systems, 24 (2), pp 205-229, 2000.

II. Assessment of programmable systems using Bayesian belief nets.

Submitted and accepted for Journal Safety Science, Special Issue on Safecomp-
2000. To be published 2002. (Extended version of the paper: Gran, B.A., Dahll, G.,
Eisinger, S., Lund, E., Norstrøm, J., Strocka, P., and Ystanes, B.: Estimating
Dependability of Programmable Systems Using BBNs. Computer Safety, Reliability
and Security, Proceedings from Safecomp 2000, (LNCS 1943), Koornneef F. and van
der Meulen, M. (Eds), Springer, Berlin , pp. 309-320, 2000.)

III. The use of Bayesian belief networks for combining disparate sources of information
in the safety assessment of software based systems.

Submitted and accepted for International Journal of Systems Science, Special Issue
on Intelligent Product Support Systems. To be published 2002.

IV. Applying Bayesian belief net in software safety assessment on a real, safety related
programmable system.

In Safety & Reliability, Towards a safer world. Zio, E., Demichela, M., and
Piccinini, N. (Eds), Politecnico di Torino, Torino, pp. 1045-1052, 2001.

Appendix: EISTRAM - Experimental Investigation of the PIE-technique.

(with Harald Thunem) In Safety and Reliability. Lydersen, S., Hansen, G., and
Sandtorv, H., (Eds), Balkema, Rotterdam, pp 409-416, 1998.

Paper I presents the motivation for applying Bayesian Belief Networks for combining
disparate sources of information in the safety assessment of software based systems. A part
of this motivation is the experiences from the project presented in the appendix. Paper I also
presents a first proposal for a BBN for �System Quality�. Paper II has its basis in a project,
in which the BBN-method was applied for evaluation of a real, safety related programmable
system (�M-ADS�), developed according to the avionic standard RTCA/DO-178B. The
results presented in the paper can be divided into two:

• = the possibility to transfer the requirements of a software safety standard into BBNs; and

• = the experiences with respect to the use of the BBN-method.

Paper III discuss some more on how to combine the Bayesian Belief Net method with the
software safety standard for safety assessment of software-based systems. It also presents
how the BBNs can be merged with a network, developed by VTT (Helminen 2000),
representing evidence from disparate operational environments. This provides additional
experiences on the applicability of the BBN methodology. Finally, paper IV describes some
of the findings from the �M-ADS project�, and discusses some of the results that were
pinpointed as interesting, strange or counter-intuitive. It is natural to read paper I before the
other papers, although they can be read independently of each other.

 page 2 of 45

The following chapters give an overview of the work covered by the papers, and can be read
on its own. All the sub-BBNs constructed with respect to how to combine the Bayesian
Belief Net method with the standard RTCA/DO-178B are also presented. These have been
left out in the papers due to the large number of BBNs.

Table of Content

Thesis Outline .. 1
1 Background .. 3

1.1 Reliability assessment of software... 3
1.2 Confidence in fault freeness... 3
1.3 Rule based, risk based and judgement based safety assessment 4

2 Safety assessment based on multiple evidences... 5
2.1 Evidences which influences a safety assessment ... 6
2.2 Information about producer and development process .. 7
2.3 Information about the programs... 7
2.4 Information about V&V and testing .. 7
2.5 Information about usage... 8

3 The BBN methodology .. 8
3.1 Applying BBN methodology for safety assessment .. 8
3.2 Background .. 8
3.3 The construction of BBN topology.. 9
3.4 The elicitation of probabilities ... 10
3.5 Making computations... 10

4 A BBN for System Quality .. 10
4.1 Computation on the BBN for system quality... 12
4.2 Conclusions from computation on the BBN for system quality 12

5 Standards and Guidelines for Safety Related Software ... 13
6 BBNs based upon RTCA/DO-178B (the �M-ADS project�) .. 14

6.1 RTCA/DO-178B .. 14
6.2 The M-ADS Airborne Equipment.. 15
6.3 The construction process.. 15
6.4 The higher-level BBN.. 16
6.5 The construction of BBNs on the lower level.. 17
6.6 The elicitation of probability tables ... 18
6.7 Results from the M-ADS project ... 19
6.8 Discussion of the M-ADS results... 24

7 Extending the BBNs based upon RTCA/DO-178B ... 24
7.1 The VTT approach... 25
7.2 Merging the HRP approach and the VTT approach... 26
7.3 Results from applying the merged BBN .. 27
7.4 Experiences from merging the BBNs .. 27

8 Conclusions.. 28
References.. 30
APPENDIX A: The lower-level BBNs.. 33
APPENDIX B: The questions related to DO-178B ... 40

 page 3 of 45

1 Background
With the use of programmable equipment in safety critical systems a new aspect was
introduced, to produce safe software. Therefore there is in many application areas necessary
with a thorough safety assessment of the system, including intelligent product support
systems, for a final acceptance or licensing of the system. In many application areas,
including the field of nuclear power, law regulates this, and a safety case must be put
forward for the licensing authorities for each safety critical application. A part of this safety
case is the assessment of the reliability of the system.

1.1 Reliability assessment of software

For a hardware component, even in a safety critical system, it is accepted to assume that a
failure can occur during the lifetime of the system, given that the expected frequency and/or
consequence of the failure is sufficiently low. The reliability of a hardware system is thereby
based on failure statistics, i.e. one measures the failure frequency in standard components
and computes the system reliability on the basis of this, although that this practise may
ignore the inherent faults in the hardware.

The characteristics of software make it difficult to carry out such a reliability assessment.
Software is not subject to ageing, and any failure that occurs during operation is due to faults
that are inherent in the software from the beginning. Any randomness in software failure is
due to randomness in the input data. It is also a fact that environments, such as hardware,
operating system and user needs, change over time. Furthermore, the software behaviour
may change over time due to maintenance activities. As a consequence, there is a problem
with the assessment and licensing of systems, both hardware and software, with inherent
faults.

Various reliability growth models (Xie, 1991) have been suggested, but they are mainly
applicable to large commercial systems, and not to safety critical software. The main reason
is that a computer program implemented in a safety critical system presumably contains no
known faults, since any revealed fault would be corrected. There is a possibility that it
contains unknown faults.

1.2 Confidence in fault freeness

An alternative reliability measure is the confidence in fault freeness of the program, or more
generally the upper limit of the �bug-size� (Voas et al. 1993, Gran and Thunem 1998). The
PIE-technique (Voas 1992) is a dynamic failure-based technique for performing program
sensitivity and testability analysis. The acronym stands for Propagation, Infection and
Execution, which during the analysis are performed in reverse order, i.e. execution of a
location, infection of the data state, and propagation of a fault to a discernible output. The
PIE-technique is related to mutation testing and fault-based testing (Ramamoorthy and
Bastani 1982, DeMillo and Offutt 1991), but while the purpose of most mutation testing
techniques is to prove the absence of certain classes of faults, the purpose of applying the
PIE-technique is to identify locations in a program, where faults, if they exist, are more
likely to remain undetected during testing.

By applying the PIE-technique to the two larger test cases (Gran and Thunem 1998), we
observed that the number of locations, which were likely to hide a fault during random

 page 4 of 45

testing, was very high. Using several input distributions to test the mutants reduced the
number of locations. However, the number of locations was still high, for the Power Range
Monitoring of a nuclear reactor (PRM) program 66 out of 122 tested locations, and for the
NEW_VTT program, a program that was developed in the Project on Diverse Software -
PODS (Barnes et al. 1985, Bishop et al. 1986), 142 out of 300 locations.

The high number of locations that would be likely to hide a fault during testing means that
one has a large number of pinpointed locations that are candidates for other testing methods
or testing techniques. In this view one could conclude that the PIE-technique was not very
efficient. On the other hand, the large number of �insensitive� locations could be an
indication of fault tolerant programs, e.g. it can later be proven that the simulated faults will
have no effect on the program.

We also wanted to compare the results from the PIE-analysis with the results from testing the
PODS programs (Barnes et al. 1985). The back-to-back testing of the PODS-programs and
the error seeding in one of the PODS-programs gave an indication of fault freeness.
However, there was no guarantee of absence of hidden faults. Furthermore, the results
depended upon the selected test input distributions and the number of tests. The PIE-analysis
ended up with a high number of locations that would be likely to hide a fault during testing.
This indicated that there might be hidden faults, and that one should decrease the confidence
in fault freeness of the program. On the other hand, the large number of �insensitive�
locations could also be an indication of fault tolerant programs, e.g. it can later be proven
that the simulated faults will have no effect on the program. If this is the case, one has
reasons to increase the confidence in fault freeness of the program.

Another problem with measuring the confidence in fault freeness based on statistical testing
is that the validity of this measurement is highly dependent on a proper choice of test data
(Leveson 1995). For the PRM program two different input distributions were applied, and
for the NEW_VTT program five different input distributions were applied. In both cases it
was observed that the effectiveness of the PIE-technique was improved in the sense that
more locations became sensitive. However, it is uncertain to which extent the choice of input
parameters and input distributions was representative with respect to the actual usage profile
for the programs.

A final remark from this experiment is that it demonstrates the need of a useful way to
combine different sources of information to produce a reliability figure. It should be able to
make use of more information than traditional software testing techniques.

1.3 Rule based, risk based and judgement based safety assessment

There are various principles for how system safety assessment is performed. One can,
however, classify these into some main types: rule based, risk based (probabilistic), and
judgement based (expert judgement) (Dahll and Gran 2000).

Rule based safety (also somewhat misleading called deterministic) assessment implies that
an assessor checks that a system fulfils a set of criteria given in a safety standard. The rule
based safety assessment approach is for nuclear safety based on two principles: �leak tight
barriers� and the concept of �defence-in-depth�. The principle of �leak tight barriers� is a
basic strategy to prevent releases of radioactive materials. The �defence-in-depth� consist of
taking into account all potential equipment failures and human errors, and it is applied in
both the design and the operation phase. In the safety assessment it is assumed that accidents

 page 5 of 45

may still occur. The systems are therefore designed and installed to ensure that the
consequences of such accidents are acceptable for both the public and the environment.

This type of safety assessment has some advantages. The rules are easy to follow for the
developer and easy to check for the assessor. On the other side, this method easily gets rigid
and inadequate to handle new technology. The rules for safe software are normally based on
consensus among experts of what is required for safety critical software. This is expressed
through standards and guidelines.

In a risk based safety assessment the objective is rather to base the licensing on assessing the
probability of potential risks associated with the system. The authorities, at least in the
nuclear power area, often require probabilistic safety assessment (PSA). The objective is to
check whether the probability of a major hazard is below a required limit. The first, and
probably the most well known, probabilistic safety assessment was carried out in 1974 and is
known as the Rasmussen report (Rasmussen, 1974). It provides the assessment of the
potential risk of core damage for two power reactors.

One can in this respect distinguish between the frequentist's and the subjectivist's (or
Bayesian) interpretation of the probability concept (Welsh, 1996). The frequentist's view on
probability is best suited to measure properties of mass-produced components, of parameters
where one has large statistical material, or with results from controlled experiments. This
interpretation can be applied on the hardware components of a system, and basic rules for
probability computation can be used to compute the probability of a hazard on the system as
a whole (Leveson, 1995). The former interprets the probability as the measured frequency
that a variable is in a specific state. The subjectivist, on the other hand, interprets probability
as a (subjective) belief in the same. This belief can be supported or refuted by existing
evidence.

The assessment of safety critical software is often faced with the problem of approving
systems for which there are no clear rules, and for which it is difficult to apply probabilistic
methods. The rules given in standards and guidelines are often imprecise, or they are not
directly applicable for an actual system.

Licensing authorities are in many cases faced with the problem of approving systems for
which there are no clear rules, as e.g. for safety assessment of computer based systems. One
possibility for assessors and licensing authorities is to make their judgement based on the
opinion of experts in various fields, including process knowledge, reliability engineering,
human factors etc. The combined judgement of the different evidences about the system and
its environment constitutes the basis for approval or not. Methods has been proposed to make
reliability estimates based on expert judgements about information from different evidences,
see e.g. research by Cooke (1991) and Pulkkinen (1994).

2 Safety assessment based on multiple evidences
The problem with the reliability measures is that they do not take into account that there are
several factors that are important to software reliability (Dahll 1997), even if they cannot be
put directly into a reliability formula. Some of these are of qualitative nature, like the
producer�s reputation, the development quality etc. Others are measurable, but not directly
connected to reliability estimation, like program size, program complexity etc. The
connection between these quantities and software reliability is also of qualitative nature. It is
suggested to apply traditional methods in probabilistic safety assessment (PSA) to software
(Leveson 1995, Dahll, 1997, Cudleigh and Catmur 1992). As reasons for this choice it is

 page 6 of 45

argued that these methods are well tried, standardised, documented and familiar to the
customers (Stålhane 1997). Furthermore, it allows the customer to contribute with their
knowledge about the system.

2.1 Evidences which influences a safety assessment

A combination of disparate evidences which influences a safety assessment is illustrated in
Figure 1 in the form of an �influence net�, i.e. a directed graph where each node represents
an aspect in the total assessment process (Dahll and Gran 2000).

The top nodes in the graph represent the basic information sources that are used in the
acceptance process. This information is penetrated through the net down to the bottom node.
This represents the safety assessment, which is the main basis for a final acceptance of the
system.

Figure 1: Influence graph of a safety acceptance and acceptance process.

The safety assessment is influenced by a reliability assessment of the system, as well as by
an evaluation of whether a failure in the system will jeopardise safety. This evaluation can be
achieved through a hazard analysis of potential risks to plant and environment. Safety
defences (both against hardware and software failures) may be implemented as additional
barriers against consequences of failures. A commonly used principle in this respect is
diversity, i.e. the same functional goal is obtained through different means. The highest
degree of diversity can be obtained if the same functional goal can be reached with
completely different functions. This is often required to reach the safety goals of a safety
critical system in a nuclear power plant.

The following sections discuss the basic information sources in more detail. In particular it is
referred to the particular problem concerning assessment of commercial-off-the-shelf
software (COTS). An important challenge in evaluating safety and reliability when reusing
software is that the information available to the analyst usually will be different from what is
normal. Typically, there will be more information from actual usage, while there might be
less information regarding the software development.

 page 7 of 45

2.2 Information about producer and development process

The avoidance of faults in the program is clearly related to the quality of the development
process of the software system. A lousy made program can of course be correct, but a well-
documented production procedure, in accordance with accepted standards, enhances the
assessor�s confidence in the reliability of the product. This confidence is also enhanced if the
producer can document a history of producing high quality products.

To obtain a sufficiently high confidence in the quality, one should require that all parties
involved in the development follow a quality assurance policy based on well-known
standards for safety related systems (e.g. IEC publication 880). This may, however, be
difficult when COTS software modules are concerned, since they are often delivered without
appropriate information on the development process as well as on the final product itself. It
may thus be difficult to assess whether the system has been developed according to the
standards required for safety critical software.

2.3 Information about the programs

Detailed information about the software is needed to assess the reliability of its application.
One aspect is to identify structural properties of the program that makes it vulnerable to
programming errors. Complexity is obviously one of these, i.e. the more complex a module
is, the more likely it is that it contains coding faults. Information about the complexity can be
gained through an analysis of the program listings. However, for COTS software such
listings are in general not available. It may be difficult to assess the complexity without this,
but an indication on the complexity of the module can be seen from the complexity of the
specification. A well-structured and comprehensible explanation of the use of the module is
also an indication of a well-structured program.

A third aspect is the inherent complexity of the actual function itself. It is intuitively obvious
that an adaptive controller is more complex to make, and therefore more error prone, than an
AND gate, to take two extremes. One way to measure the inherent complexity of a module,
where one does not have access to the source code, is to write it in a formal way, either as a
program in high-level language, or as a formal specification, and then define a metric to
measure the complexity.

2.4 Information about V&V and testing

A thorough verification and validation (V&V) and testing activity, at the module level as
well as on the program as a whole, will increase the confidence in the program, and thereby
its reliability. Information about the V&V activities can be obtained from various sources, as
debugging reports, factory acceptance tests, site acceptance tests etc. An important
information source, in particular for COTS software systems, is test data compiled during the
development of the system, and during modifications before new releases.

To measure statement and path coverage for a test, one needs to know the program code in
the software module. For a COTS module, however, the code is in general not available. An
alternative is to make a coverage measure based on the specification, e.g. to measure the
number of properties, or combinations of properties, which are checked by a certain test. If
an oracle program has been made, an alternative is to instrument this with counters, and
perform the coverage measurement on this.

 page 8 of 45

2.5 Information about usage

The producers of COTS systems often use �proven design� as an argument for high
reliability. This means that a wide range of users has used the system over a long period,
with no, or few, reported faults. The idea behind this claim is that long user experience
should reveal all inherent faults, if they exist. So if no faults have been reported over a long
period, this should be a strong indication on error freeness.

The number of versions of a COTS system that is released is also relevant information. A
new version implies changes in the system, and changes may have influence on its
reliability. It is therefore relevant to know which changes have been made, or at least where
the changes were made. In an actual application one should know whether any changes have
been made in the software modules that are used in this application.

3 The BBN methodology
A more qualitative type of reliability measure is expressed as a subjective judgement, as a
�belief� in fault freeness. The methodology proposed is to use the Bayesian Belief Network
(BBN) methodology to combine the evidences from different information sources for a
quantitative assessment of this belief. The objective of using BBNs in software safety
assessment is to show the link between basic information and the confidence one can have in
a system.

3.1 Applying BBN methodology for safety assessment

A literature survey on the BBN methodology (Chrisman, 1996) gives the impression that the
main activities in this area up to then have been rather theoretical, and related to the AI area.
However, there were also references to real applications medical diagnosis, geological
exploration. The survey contained no references to the use of BBNs in safety assessment of
programmable systems.

The SHIP (Safety of Hazardous Industrial Processes) project discusses, the possibility of
applying BBNs in software safety cases and how to use formalised probabilistic safety
arguments via BBNs (Delic, Mazzanti and Strigini, 1995, 1997).

More recently, it has also been applied to software safety assessment. Work in this area has
been performed in the European projects SERENE (1999), IMPRESS (2000) and DeVa, in
particular through previous research at the Centre for Software Reliability at City University,
and present research at Queen Mary, University in London. The research has resulted in
various papers, e.g. by Bertolino and Strigini (1996a, b, 1998), Neil et. al. (1996a, b, 1998,
2000, 2001), Fenton and Neil (1999) and Littlewood and Wright (1995, 1997). Ongoing
work on this topic is also performed at VTT in Finland (Korhonen, 1997, Helminen 2000).
This has also been the topic for research at the OECD Halden Reactor Project (HRP) (Dahll
and Gran 2000).

3.2 Background

The Bayesian Belief Networks methodology was introduced in the 1980s, and is in particular
described in the book by Pearl (1988) and the paper by Lauritzen and Spiegelhalter (1988).
In 1993 the tool HUGIN (Aldenryd, Jensen and Nielsen 1993, Jensen 1996) was introduced,
which made BBNs feasible. The theory, however, is based on the Bayes rule, discovered by

 page 9 of 45

Sir Thomas Bayes (1744-1809) which says for two variables X and Y that P(X|Y)=
P(Y|X)*P(X)/P(Y). By allowing {Xi} be a complete set of mutually exclusive instances of X,
this formula can be extended. A description of Bayesian interference, Bayesian network
methodology and theory for calculations on BBNs can also be found in the books by Gelman
et al. (1995), Welch (1996), Cowell et al. (1999), the report by Pulkkinen and Holmberg
(1997), and older references such as Whittaker (1990), and Speigelhalter et al. (1993).

A BBN is a connected and directed graph, consisting of a set of nodes and a set of directed
arcs (or links) between them. Uncertain variables, both events and singular propositions, are
associated to each node where the uncertainty is expressed by a probability density. The
probability density expresses our confidence to the various variable outcomes, and depends
conditionally on the status of the �parent� nodes at the incoming edges. The nodes and
associated variables can be classified into three groups:

• = Target node(s) - the node(s) about which the objective of the network is to make an
assessment. A typical example of such nodes is �No faults in a program�.

• = Intermediate nodes - nodes for which one have limited information, or only �beliefs�. The
associated variables are the hidden variables. Typical hidden variables represent quality
aspects such as �development quality�, �producer�s reputation�, or �quality at a certain
stage of the development� without discussing �quality� in detail.

• = Observable nodes - nodes that can be directly observed. Some examples are nodes
representing observable properties about the system for evaluation: �no failures during
testing� and �all quality requirements are fulfilled�.

Application of the BBN method consists of three tasks:

• = construction of BBN topology;

• = elicitation of probabilities to nodes and edges; and

• = making computations.

3.3 The construction of BBN topology

The literature on BBNs has mostly presented small �complete� BBNs (Neil et al. 2000). The
construction of small BBNs can be made gradually. Information about the system is
collected and expressed via the nodes. The nodes are connected to a directed graph that
expresses the conditional relationship between the variables. The aim is to combine the
information in the net. One way is to start from a target node and draw edges to influencing
nodes. To decide the direction of an edge, one can follow the causal direction (Dahll and
Gran 2000). However, this direction is not always obvious, in particular between nodes
representing qualitative variables. In these cases the direction of the arrow often goes from
higher abstraction to lower abstraction, or from the more general concept to the more
detailed. A general interpretation of an arrow between two nodes A and B is that a �belief�
in A implies expectations on B. The practical procedure is to start with constructing a BBN,
containing nodes representing high-level information.

When building larger-scale BBNs this procedure is rather effort consuming. Neil, Fenton and
Nielsen (2000) offer a solution based on building blocks (idioms), which serve solution
patterns. These can then be combined into larger BBNs. This approach is applied in the
SERENE project (1999), and has been applied to construct large-scale BBNs for predicting
software safety. The use of idioms is also applied for the construction of the BBNs presented

 page 10 of 45

in the next chapter. However, the BBNs are not of such large-scale, so it is also possible to
argue through the �causal direction approach�.

3.4 The elicitation of probabilities

The second step is the elicitation of probability distribution functions (pdfs) to the nodes and
edges. To begin with, one gives prior pdfs for the top nodes, and conditional pdfs for the
influences represented by the edges. These pdfs may be either continuous functions or they
have a discrete form. The latter means that the ranges of the variables are divided into finite
number of states.

The advantages of the pdfs in discrete form are that it becomes conceptually easier in an
expert judgement to assign discrete values, and that it makes the computation simpler. The
conditional probabilities for edges between discrete variables are given as conditional
probability tables between the states of the variables associated with the start node and the
end node of the edge respectively. However, since many of the aspects to be considered are
of qualitative nature and not directly measurable estimation may be difficult. This was
observed for the co-operative project between the Halden Project (HRP), Kongsberg
Defence & Aerospace AS (KDA) and Det Norske Veritas (DNV), even if some of the
project members can be considered as experts in their fields (Gran et. al. 2000). It is
therefore highly recommendable to make use of some expert judgment tools or expert
judgment expertise. Another observation was that the establishment of the BBNs and prior
conditional pdfs was rather time consuming.

The problem of defining the node probability tables is also addressed by Neil, Fenton and
Nielsen (2000). They apply a �divide and conquer� approach to build the BBNs. This
manages the complexity of the BBNs, and thereby reduces the number of probability values
to be addressed.

3.5 Making computations

Making computations with BBNs above a certain size and complexity is rather difficult by
hand, but is easy by applying the latest computerised tools. At HRP the HUGIN tool
(Aldenryd, Jensen and Nielsen 1993) has been used, and in the �M-ADS� project both the
HUGIN tool and the SERENE methodology (1999) were applied.

The computation of our belief about a specific node (target node) is based on the rules for
conditional probability calculations given by the Bayesian methodology. The procedure is to
insert observations in the observable nodes, and then use the rules for probability calculation
backward and forward along the edges, from the observable nodes, through the intermediate
nodes to the target node, which again can be an intermediate node in a BBN at a higher level.
Forward calculation is straight forward, while backward computation is more complicated
(Spiegelhalter et. al. 1993). For details on computations see the references in the beginning
of this section, and for good examples on making computations with BBNs see for example
Pearl (1988) and Jensen (1996).

4 A BBN for System Quality
A first attempt to construct a BBN for safety assessment, (Dahll and Gran 2000), was based
on the �influence net� given in Figure .1. An extended version of this influence graph can be
found as the �safety acceptance and acceptance process of the software� (Dahll 2001). These

 page 11 of 45

are not themselves BBNs, but quite similar, so it was fairly straightforward to construct a
high level BBN for �system quality� based on this (Dahll and Gran 2000), see the BBN
shown in Figure 2.

Figure 2: BBN for the node �System Quality�.

The BBN was constructed gradually by applying the causal approach, combining the target
node(s) with the observable and the intermediate nodes. The aim was to combine all
available relevant information into the net. One problem, however, was to decide when to
stop, i.e. how much details does one want to have in the BBN?

The highest node in this figure is the �producer quality�. This is a hidden variable
representing a fairly abstract quantity, which manifest itself through the variables it
influences in adjacent nodes. The producer quality has a direct influence on the system
quality, as indicated by an arrow. But this influence can also be seen indirectly, through the
process by which the system is actually developed. This is shown by the edge to the node
�development process�, which again has an edge to the node �product quality�. It has,
however, also an edge leading to the node �documentation�. This should be interpreted such
that the quality of the development process influences the quality of the documentation from
the development. The latter is an observable, and one may put some kind of measures on the
documentation quality. Evidences about the system quality are quality attributes such as
readability, structuredness etc. These are grouped into one node called �quality measures�.
This node could, however, be expanded further.

Another edge from �producer quality� leads to the node �QA policy�. The arrow of the edge
between them could be expressed as: �a producer of high quality is likely to have a good
Quality Assurance (QA) policy and use recommended development methods�. The further
argument is that a good QA policy implies that accepted QA standards are followed, and this
can be observed. It also implies that a strict QA control is followed, and this may be
observed through the QA control documentation, which is also observable.

Producer
Quality Development

Quality

Document
ation

System
Quality

Complexity

Testing

User
experience

Reliability

QA policy

Quality
control

QA
standards

Quality
control
documents

Producer�s
pedigree

User
experience

Quality
Measure

failures
in other
products

total
usage
time

no. of
products

 page 12 of 45

The producer quality also has impact on the reliability of other products from the same
producer. This again will clearly influence the number of failures observed in these products,
which can be directly measured. However, the number of failures found in these products are
clearly depending on the amount of user experience with these products, i.e. the more these
products are used, the higher is the likelihood that any inherent faults in the product will be
revealed through an observed failure. This user experience can be observed through user
reports, which is an observable node.

4.1 Computation on the BBN for system quality

To demonstrate the computation on a larger BBN the BBN for system quality was selected.
Notice that this was intended as an illustration of the method, and not as a real attempt to
compute the quality of a system. The computations were based on discrete variables and the
use of the HUGIN tool.

The first step was to divide the variables associated with each node into discrete states. To
limit the size of the problem, there was a maximum of three states for each variable. The
states of the nodes were selected as given in table 2 in (Dahll and Gran 2000). The target
node was selected to be the �System Quality�. The observable nodes were: �Quality-control-
documents�, �QA-standards�, �Failures-in-other-products�, �Number-of-products�, �Usage-
time�, �Documentation� and �Quality-measures�. All assignments of values to the variables
and relation matrices were chosen somewhat ad hoc, i.e. reasonable for an illustration, but
not based on any deeper analysis. The prior values for all the nodes are given in the appendix
in (Dahll and Gran 2000).

By placing findings on the �Number-of-products�, the pdfs for the �User-experience�,
�Usage time� and �Failures-in-other-prod.� changed, but the findings had no effect on the
rest of the variables. Similar observation was made for findings at �Usage-time�. This is in
accordance with the conditional independences observed. By placing findings on the �QA-
standards�, the pdfs for the �System quality� changed somewhat, but not as much as when
findings were placed on the �Documentation� and �Quality-measures�. This is in accordance
with what one should expect, and also in accordance with the independence graph where e.g.
the �Quality-measures� is directly connected to the �System Quality�. By placing findings
on the �Failures-in-other-products�, the pdfs for the �System Quality� changed in opposite
way as described above. This observation is not obvious by only observing the influence
graph.

The next step was to observe the BBN in the case of several findings at once. This was done
in two cases, assuming all observable variables to be in their worst state and in their best
state. The results did not show any unexpected results, except for the �Producer�s pedigree�
which had approximately similar results in the two cases.

4.2 Conclusions from computation on the BBN for system quality

The evaluation of the test case showed how a finding on one or more specific observable
variables would change the belief in a hidden explanatory variable such as the target node
�System Quality�. The evaluation also showed the effect of conditional dependence and
independence between variables. Further, the test case indicated that the HUGIN tool is
suitable to be used in the calculations of a complete realistic test case. On the other hand,
applying the BBN-methodology required that probability density functions were assigned for
all variables, something that requires the use of expert judgement and collection of real data.

 page 13 of 45

5 Standards and Guidelines for Safety Related Software
Recently much effort has been taken to make international standards and guidelines for the
development of programmable systems for safety related applications. A generic standard is
IEC 61508 �Functional safety of electrical/electronic/programmable electronic safety-related
systems� (IEC 61508). This standard will constitute a framework for other, more specific
standards. Examples of branch specific standards are IEC-880 (IEC 880), IAEA software
safety guide (IAEA ID NS 264) in the nuclear industry, and RTCA/DO-178B (1999) for
safety critical software in civil aviation.

A general impression from these standards is that they are built on the same basic
framework, and follow the same principles, although they may differ in the aspects they put
special emphasis on. The common framework is expressed in a software lifecycle model,
where the different stages in the system development are placed. For each of these stages
requirements or recommendations are given. The division into stages, and the starting and
end stages of the lifecycle model, may differ between the standards. The standards also differ
in the requirements they are particularly emphasising. Even if different standards vary in the
degree of detail, a general characteristic of software standards is that the requirements and
recommendations are of qualitative nature, in distinction from hardware standards where
there in general are clear and objective requirements. Ideally a requirement in a standard
should be objective in two ways: the requirement itself should be objective in an
unambiguous way, and there should be an objective way to state whether the requirement is
fulfilled or not. This problem is thoroughly discussed in (Neil and Fenton 1998).

A question in connection with software safety standards is whether the fulfilment of their
requirements actually guarantees that the system is safe. A standard is in general developed,
over a long time period, by a group of experts. Other experts around the world then review
the draft international standards. Such a thorough preparation by internationally renowned
experts should strongly indicate that a system made according to this standard is safe. There
is, however, no objective evidence that guarantees that this is true. Even the views of experts
are to a large degree based on judgement. These judgements also need to be calibrated,
which is an activity that dependents upon that the experts receive feedback on his/her
judgement. In addition, the experts in this field constitute a fairly limited society, so it is
likely that they are strongly influenced by each other.

Of course, the safety assessment is not necessarily based on qualitative judgement only.
There are analytical methods like e.g. fault tree analysis, reverse engineering, formal
verification, etc., as well as statistical reliability evaluation based on operating experience or
testing. Testing is essential for a safety assessment of the final product. A general impression
is, however, that the standards are not very precise on required strategies for testing, but
leave this to human judgement.

A conclusion from these considerations is that it is not straightforward to decide objectively
whether a software-based system is sufficiently safe on the basis of the criteria given in a
standard only. There is a need for a systematic decision support system associated with a
standard, which can help the licensing authority or any safety assessor. It is suggested that
Bayesian Belief Nets and associated tools can provide this help (Gran 2002 Safety Science).

 page 14 of 45

6 BBNs based upon RTCA/DO-178B (the “M-ADS project”)
The attempt to combine the Bayesian Belief Nets methodology with the rules of a standard
for safety critical software, RTCA/DO-178B (1999), hereafter referred to as DO-178B, was
done in an experimental project carried out by a consortium composed of Kongsberg
Defence & Aerospace AS (KDA), Det Norske Veritas (DNV) and the Halden Project (HRP).
The project goal was to evaluate the use of BBN for investigating the implementation of the
DO-178B standard for software approval in the commercials world. To reach that objectives
a computerized system for automated transmission of graphical position information from
helicopters to land based control stations (M-ADS) was selected and studied (Gran et. al.
2000, Gran 2002a). Please note that references to the system developed by KDA and
conclusions here represent by no means any official policy of KDA.

6.1 RTCA/DO-178B

The purpose of the DO-178B standard is to provide guidelines for the production of safety
critical software for airborne systems. This guideline was chosen for the study since the M-
ADS system is applied in civil aviation, and was previously qualified on the basis of this
standard. DO-178B discusses aspects of airworthiness certification pertaining to the
production of software for airborne systems and equipment used in aircraft. To aid in
understanding the certification process the system life cycle is briefly discussed to show
relationship to the software life cycle process. DO-178B does not provide guidelines
concerning the structure of the applicant�s organization, relations to suppliers and personnel
qualification criteria.

DO-178B defines a set of five software levels (A to E), based on the contribution from
software to potential failure conditions as determined by the system safety assessment
process. The main recommendations in DO-178B are given in a set of 10 tables, see table 1.
Each table relates to a certain stage in the development and validation process, and contains
a set of objectives. A difference between the DO-178B and e.g. IEC61508 is that most of the
requirements are mandatory in the latter, while the requirements are guidelines in DO-178B
(Neil and Fenton 1998).
Table 1: The stages in the development and validation process given by DO-178B

 Stage in the development and validation process
A1 Software planning process.
A2 Software development process.
A3 Verification of outputs of software requirements process.
A4 Verification of outputs of software design process.
A5 Verification of outputs of software coding & integration process.
A6 Testing of outputs of integration process.
A7 Verification of verification process results.
A8 Software configuration management process.
A9 Software quality assurance process.
A10 Certification liaison process.

 page 15 of 45

6.2 The M-ADS Airborne Equipment

The M-ADS airborne equipment was designed by KDA for installation in helicopter aircrafts
(Gran et. al. 2000). The system provides air traffic services transmitting aircraft parameters
upon request from the air traffic control where personnel will request positioning data. The
M-ADS system is designed to automatically transmit flight information via data link to one
or more requesting air control centres. M-ADS uses existing avionics on board the aircraft to
provide aircraft position, speed and additional optional data. The most important data are the
aircraft position, position accuracy, altitude and time stamp for the data validity. The main
purpose of the M-ADS Airborne Equipment is to aid in a rescue operation if the helicopter
has made an emergency landing on the sea. A correct localization is necessary for a
successful rescue operation, the system is therefore safety critical, and the system had to be
approved by the Norwegian Civil Aviation Authority. The software development process
was performed according to the DO-178B standard.

6.3 The construction process

The basic philosophy of the proposed process is to relate the safety of the system to the
fulfilment of the requirements in an internationally accepted safety standard. This philosophy
can of course be questioned, but such standards are based on consensus among experts in the
area relevant for an actual safety critical system. Even if conformance to a safety standard
does not imply safety, it is a strong indication of the effort put into making the system safe.
This indication can also be used as prior probability in a Bayesian model for a further safety
assessment based on safety testing. Recall that one want to achieve a way of stating how well
the development of a safety critical system conforms to the requirements of the standard.
However, such standards do not contain any measures of conformity, but rather a large
number of requirements of rather disparate nature, which should be fulfilled. The objective
of the M-ADS project was to use BBN methodology to construct such a measure.

The first action in the construction is to identify the main characteristics that may influence
the dependability of a system. One can distinguish between characteristics that are related to
the system itself and characteristic that are related to the interaction between the system and
its environment (usage of the system, potential hazards etc.). The former includes quality
characteristics, which are divided into four types:

• = Quality of the producer. (Qproducer) This includes the reputation and experience of the
producer, quality assurance policy, quality of staff etc.

• = Quality of the production process. (Qprocess) A high quality implies that the system is
developed according to guidelines for good software engineering, that all phases are well
documented, and that the documentation shows that the system at all development phases
possesses desirable quality attributes as completeness, consistency, traceability etc.

• = Quality of the product. (Qproduct) This includes quality attributes for the final product, as
reliability, simplicity, verifiability etc.

• = Quality of the analysis. (Qanalysis) This includes all activities performed to validate the
correctness of the system during all stages of the system development. Such activities
may include model checking of the specifications, inspections and walkthroughs of the
documentation, static analysis of code and testing of the system.

The next step is to construct the BBN in two levels. The higher level shows how nodes
representing the four types of characteristics listed above are combined with other nodes in

 page 16 of 45

the net and lead to nodes representing the reliability and safety of the system. At the lower
level there are four BBNs, where the four characteristics are represented as top nodes.

6.4 The higher-level BBN

The higher-level network consists of two parts: the quality-part (or soft-evidence part) and
the testing-part, as presented in Figure 3, (Gran 2002a).

Figure 3: The higher-level network: the quality-part (or soft-evidence part) and the testing-part

The quality-part consists of the four quality nodes listed in the previous section. In addition
it includes the nodes �problem complexity” and �solution complexity”. The initial nodes or
top nodes are the quality node Qproducer and the problem complexity, where the latter is an
attribute of the system to be developed, and can be measured. It is assumed that the
Qproducer directly influences the Qprocess, and that the solution complexity is influenced
by the problem complexity and the Qprocess. The same dependencies are assumed for the
Qproduct. The product quality depends upon how difficult it is to fulfil the requirements (the
complexity of the problem), and upon the ability of the development process to handle
complex systems. The Qanalysis is assumed to be influenced by the Qproducer, how well
prepared the organization is to perform an analysis, and the solution complexity, how
difficult it is to analyse. All these assumptions are based on the BBNs presented in the
SERENE project and in accordance with networks for system quality (see chapter 5).

The higher-level network leads to an end node N-hypothetical. The intention is to express
that the information in the quality-part is equivalent to that the system is tested with N
randomly chosen inputs without failure.

The testing-part represented by the node �P Y: failures in N new tests�, describes the
connection between hard evidences, Y=0 failures in N tests, and the failure probability of the
system (in the context, usage, environment, etc. the system is tested). The failure probability
can be interpreted either as a number of failures on a defined number of demands, or as a

N Hypotehtical

Solution Complexity

Problem complexity Qprocess

Qproduct

Qproducer

Qanalyses

P

Y

N

 page 17 of 45

number of failures on a defined time period. For the defined number of demands N with the
constant failure probability P the random number of failures Y has a binomial distribution.

The failure probability P can be linked to a node representing the system safety, which in
addition is also depending on the usage of the system and the consequences of eventual
failures. In the described project no modelling of the dependencies with respect to the system
safety was made. Of this reason these nodes are not included in Figure 3, and no calculations
related to this node were done.

The link between the quality-part and the testing-part is given by the edge between N-
Hypothetical and P. The dependency associated with this edge, leading to the results
presented, was given by �P = 1/ N-Hypothetical”'. However, it was applied in the way that
P(P∈ [p,q]) = P(N-Hypothetical ∈ [1/q,1/p]). The same dependency would have arisen by
assuming direct dependencies between P and the nodes Qanalysis, Solution Complexity and
QProduct. For the expert team it was, however, conceptual easier by this two-step procedure.

An alternative BBN for the quality-part is to replace the node N-hypothetical with a node
representing the �P(failed state)� directly, as presented in Figure 4 (Gran 2002b). This node
is not to be viewed as a failure rate representing a specific usage or safety function, but
rather as a deterministic property of the system expressing fault content. One interpretation is
the size of the inherent faults in the software. Assuming that no failures are found or
modifications are made during later testing of the system, this true failure rate is not
changed; only the confidence in the reliability, or freeness of faults, of the program is
enhanced. Thereby it also offers a support in the assessment of the software.

Figure 4: The upper network for DO-178B

6.5 The construction of BBNs on the lower level

At the lower level there are four BBNs, one for each of the four quality aspects, with the
quality aspects as top-nodes in the BBNs. Each top node is then linked to intermediate nodes
representing the 10 lifecycle stages represented by the tables A1 to A10 of DO-178B. Each
of these nodes are again linked to other intermediate nodes, representing the objectives of the
tables. The four BBNs are presented in Appendix A. (Remark that these figures are the ones
generated by the HUGIN tool, and contain misprints that are not corrected in accordance
with the text in this report. The text in the nodes is also amputated due to the selection of the
node size, which has to be equal for all nodes.)

P(failure state)

Solution Complexity

Problem complexity Qprocess

Qproduct

Qproducer

Qanalysis

 page 18 of 45

The associating of the different objectives to the different quality aspects can be done by a
group of experts, consisting of experts related to the standard itself, development in
accordance with the standard, and experts within safety assessment of critical systems. In the
M-ADS project each objective was identified to belong to one or more of the quality aspects.
In addition a stage �hmi-aspects� representing objectives related to human-machine
interfaces was added.

The further proposed step is to identify a list of questions to each objective. In the M-ADS
project these questions were based on the understanding of the text in the main part of DO-
178B, and formulated so that the answer could be given by a �yes� or a �no�. However, as
the questions often are of a qualitative nature, it may be difficult to give a straight answer. It
could therefore be possible to answer the question with a number between 0 and 1 as an
expression of the strength in the belief that the answer is yes (1) or no (0). A list of the
questions identified related to the �quality of product� for (A2) is presented in table 2. Figure
5 presents the same example as a BBN. A list of all the questions constructed is given in the
Appendix B.
Table 2: The questions related to the lifecycle stage A2: software development process

Objective Question:
sw req.
data

Are all system functional requirements, safety requirements and auxiliary requirements
specified in the software specification?
Are all tasks specified in the requirements also included in the design?
Does the design adequately describe the information flow between components?
Does the design address sequencing, concurrency and time related information?
Does the design adequately describe the data structures and their properties?
Is it a clear separation in the design between safety critical and not safety critical parts of
the system?
Are measures for fault tolerance, like diversity or redundancy designed into the system?
Are control and data flow monitored when safety requirements dictate, e.g. through
watchdog timers, reasonableness checks, input data checks etc.?

design
descrip-
tion

Are the responses to failure conditions consistent with safety related requirements?

6.6 The elicitation of probability tables

The elicitation of conditional probability tables (cpts) to the nodes and edges can be done as
a brainstorming exercise by the expert group. In general, this means that for each node, the
expert group has to assess two conditional probabilities of the type P(good measurement |
good quality) and P(bad measurement | bad quality).

The first probability is relatively easy to assess. Based on general knowledge and experience
in software development and evaluation, it can be done by ranking the importance of the
different sub nodes, giving them probabilities from a predefined set such as {0.5, 0.7. 0.9,
0.95, 0.99}. The latter, however, can be very difficult. Often, where the experts state that
there is a dependency between good quality and a specific good measurement, they cannot
state the opposite effect.

This was one of the lessons learned from the M-ADS project. Furthermore, also the approach
of ranking the nodes had restricted success. Even if some of the project members can be
considered as experts within their fields, it is, highly recommendable to make use of some

 page 19 of 45

expert judgement tools or expert judgement expertise. For the lower-level network about 130
conditional probability tables were assessed. The establishment of the BBNs and prior pdfs
was rather time consuming, and would be even more so for a system. On the other hand, the
generation of the BBNs was related to DO-178B and on safety assessment in general, and
not to the actual system. This implies that the BBNs have a general nature, and can be reused
in many applications. They can also be gradually improved based on experience. Note also
that on the lower level, as illustrated in Figure 5, all nodes have only one parent. This makes
the complexity of the BBNs manageable. In the case of nodes with more incoming edges, it
would be a good solution to apply the approach suggested by Neil et al. (2000)

Figure 5: Example of a list of questions associated with two of the objectives for the software
development process related to the quality of analyses

6.7 Results from the M-ADS project

All the BBNs were implemented, and all the conditional probability tables were fed into the
HUGIN and SERENE tools. This made it possible to make a variety of computations (Gran
et al. 2000), with the aim to investigate different aspects of the methodology, such as:

• = What is the effect of observations during only one lifecycle process?

• = How does the result change by subsequent inclusion of observations from the lifecycle
processes?

• = How sensitive is the result to changes in individual observations?

Since the number of possible scenarios is exploding when one wants to explore both
different sets of observations and prior cpts, a limited number of computations were made.
However, an interesting observation was that we rapidly found surprising results that

 Qanalyses

(...)

A2 - software development process

A2-11.9: Is tracability between ...

A2-11.11: Does the source code:

A2-11.12: Is the exutable object
code correct?

translation into executable code
made trustworthy?

high level req. spec. correct
unique and consistent?

(...)

possess verifiability?

possess tracability?

possess consistency?

possess correct implementation of all
low-level requirements?

 page 20 of 45

required further discussion and calculations. These results provided a list of topics for further
research, both with respect to topological issues and with respect to different cases of
observations.

The observations were done by KDA through several interview sessions with experts
involved in the project. Totally, experts representing the software design and coding role, as
well as project management role, were involved. In each session the questions associated
with the end nodes in the network were used to assess the module in view of the scope
defined by the node. The answers were, as discussed in section 6.5, given as weighted values
on the scale from zero to one. In general the value zero (0) means objective achieved with
poor quality, while the value one (1) means objective achieved at highest level of quality.
There also were a few cases where a score, say 0.95, indicated objective achieved at highest
level of quality for 95% of the modules. As an example refer to a question for the BBN for
Qanalysis: �is the software quality assurance process properly performed and recorded?�
The answer, 0.95, means that the expert board judged that software quality assurance process
is properly performed and recorded for 95% of the modules.

6.7.1 The partial scenarios results

In addition to surprising results, this research demonstrated the importance of a good quality
assurance of the observations entered into a BBN. The trigging event was the discovery of a
wrong entered observation. Correcting this error demonstrated that one negative observations
can have a significant effect on a partial results. By using the wrong observations it was
concluded that there were effects with respect to the different quality aspects, and in
particular with respect to the node �Qproducer� (Gran et al. 2000, Gran 2002a). After
correcting this error, the effect of the observations during only one stage in the development
and validation process showed that the effects, with respect to �QProducer�, were
approximately the same for all the processes (Gran 2001). The evaluation also showed that
the one wrong (negative) observation, as well as a set of a few negative observations, is not
enough to change the overall results.

6.7.2 The incremental scenarios

The observations could also be added subsequently, first during process A1, then A2 and so
on (Gran et al. 2000, Gran 2002a). This illustrates how the posterior probability distributions
change from the initial prior values towards a scenario given by all the KDA observations.
For the Qproducer the expected value came up to a top level already after observations
during processes A1 and A2 were made. This does not mean that the quality of the producer
will remain on this level independent of other additional observations, but means that
making additional �good� observations does not change our posterior results. With respect to
the nodes Qprocess, Qproduct, and Qanalysis we had to make positive observations on all
the processes A1 towards A8 before the posterior probability distributions achieved the top
level. For the node P, the posterior distribution was at its top level after observations were
made during process A1 up to A3. This is the similar effect as for the Qproducer. Note that,
although there is no direct link between these two nodes, they behave in the same manner
due to the propagation of positive measurements.

6.7.3 Sensitivity cases

A sensitivity analysis was performed for the node P given future observations on the node N

 page 21 of 45

(new tests) (Gran et al. 2000, Gran 2002a). That is, with all the observations on the quality
characteristics, represented in the node N_hypothetical, different measurements were made
on the node N. Note that making a measurement equal to m assumes that a failure occurred
after m failure free tests. The posterior probability distributions for P are shown in Figure 6.
Compared to testing alone, these results show that observing m failure free tests, where m is
higher than the hypothetical N failure free tests, will increase our belief in a shift left of the
distribution for P. In the same way, observing m lower than N will shift it right, due to the
situation that our prior belief is not in accordance with the real measurements.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1E-07 1E-06 0.00001 0.0001 0.001 0.01 0.1 P

100
0 1000
0 10000
0 100000
0 1000000
0

Probability Choices of N

Figure 6. The posterior probability distribution for P for different number of new tests

6.7.4 The effect of one negative and one “not positive” observation

As stated for the partial scenario it was discovered that one observation, with respect to
process A4, was given the value zero. This value corresponds to a negative answer to the
question �Is the software partitioning integrity confirmed?� However, whether this answer
was meant to be negative; i.e. that this question is of importance to the reliability of the
product, or if this question was ranked as irrelevant, was not further discussed. In the latter
case it would have been better not to give any value to this observable node at all. This is
equivalent to cutting the edge to this node. A further walk-through of the observations also
identified that 6 questions, which belong to two or more of the quality aspect networks, were
given different observations in the different sub-networks (Gran 2001). Of these 6 questions,
one belonged to the process A10, and was given a very low score for the �Qproduct�. For the
other divergences, the differences were smaller.

The result of correcting these faults was that the �surprising low effect for A4 and A10�
disappeared. And, the processes with low effect were now observed to be A1 and A8. These
were both also identified as contributors to low effect for the other quality aspects.

On the other hand, if one assumes that the questions should have been non-identical, and that
the observations on these in fact were negative or low as entered, then we have identified a
case where only two negative observations can lead to negative significant changes in the
partial scenarios.

 page 22 of 45

6.7.5 The effect of some negative observations

The latter result is related to the fact that the observations applied in the project were in
general positive. An open question is therefore: what would be the result if more
observations were negative? In particular, what are the overall results after entering
observations in all phases? And, is it possible to find a set of �negative observations� that
belong to all or more phases? The reason for the latter is that it is very little realistic to have
good observation within 9 phases, and negative observations within the others. More realistic
is that the negative observations are distributed over all phases.

An attempt to find such set of observations (out of a total of 71 observations) was to look
into the set of observations (19 observations) that is related to two or three processes (Gran
2001). These 19 observations can be divided into 5 groups as shown in Table 3.
Table 3: The 5 groups of observations related to more quality aspects

Group Related to quality aspect: Processes:
1 �QProduct�, �Qananlysis� A4, A5, A7, other
2 �QProcess�, �Qananlysis� A1, A2, A6
3 �QProduct�, �QProcess� A5, A6
4 �QProduct�, �QProcess�, �QProducer� A9, A10
5 �QProduct�, �QProcess�, �Qananlysis� A3, A5

By entering negative observations to the questions related to the three groups we observed
the effects as shown in Table 4 (Gran 2001). Remark that all the other observations are held
positive, and the effect of change is observed related to �as observed by KDA�, that is more
or less all positive. As shown in the table, we see that there was only a significant effect on
the �Qproducer�. That means that we by entering negative observations on the two questions
related to processes A9 and A10, we achieve a lower confidence in good quality of the
producer.
Table 4: The effect of negative observations related to the questions from the groups 1-5.

Gr. Observed Effect
1 Minor effect to �QProduct� and �Qananlysis�
2 Minor effect on �QProcess�, no effect on �Qananlysis�
3 Minor effect on �QProcess�, no effect on �QProduct�
4 No effect on �QProduct�, minor effect on �QProcess�, but significant effect on

�QProducer�
5 No effect on �QProduct�, minor effect on �QProcess�, and no effect on �Qananlysis�

6.7.6 The effect of 19 negative observations

Based on the results presented above, the next scenario was to enter a negative observation
on all the questions related to all the groups presented in Table 3. This had a significant
effect on all the quality aspects, and also the node �P(failure state)�as shown in Table 5 and
Table 6. An issue for further investigation is to look the combinations of these 19 to see how
the results turn from positive towards negative.

 page 23 of 45

Table 5: The effect of 19 negative observations on the node QProducer.

Scenario good=5 4 3 2 bad=1
KDA original1 0.145 0.782 0.070 8E-6 6E-8
KDA corrected2 0.184 0.804 0.011 1E-6 1E-8
19 negative 0.018 0.359 0.621 0.01 1E-6
(1) with wrong observation, (2) after corrections

Table 6: The effect of 19 negative obs. on the nodes Qprocess, Qproduct and Qanalysis.

Process Product Analysis Scenario
good bad good bad good bad

KDA original1 1.0 4E-7 1.0 3E-9 1.0 1E-9
KDA corrected2 1.0 2E-7 1.0 1E-10 1.0 1E-9
19 negative 0.039 0.961 0.117 0.883 0.993 0.007
(1) with wrong observation, (2) after corrections

6.7.7 Discussion of the results

One other observation from the results from the incremental scenario is that they reached
stable maxims very fast. This indicates that the activities in the later stages in the
development and validation process have little effect. Similarly, the partial results are almost
as good as complete results. These results are not expected.

One possible explanation is that a good score in one table is an indication of high quality
during all phases, so that there also should be high scores in other tables. Another
explanation is that 19 questions are repeated in two or three tables. However, these two
explanations are not necessarily different. The latter can be a way to use the BBN topology
to express the first explanation; i.e. that certain types of observations are relevant for several
of the development phases associated with the tables.

6.7.8 The difference in partial results for A4 and A5

A third observation from the project was obtained by comparing the partial results from the
lifecycle processes �verification of outputs of software design processes� (A4) and
�verification of outputs of software coding and integration process� (A5). The �good� score
for these are the same for the quality aspects �producer� and �analysis�, but A5 scores better
on �process� and in particular on �product�. To explain this difference, the differences in
BBN topology, in the cpts, and in the observations are investigated (Gran 2001).

The investigation showed related to the partial results for the processes A4 and A5, that we
have the effects of both neutralizing, conformity, enlargement and the effect of the
observations alone, see details in Table 7.

The comparison of the results for A4 and A5 can also explain the difficulty of finding a
subset of observations that turns the results negative. Accordingly we shall expect problems
with finding a subset of positive observations leading to stable maxims.

These results also indicate the problems of performing a verification of a Bayesian Belief
Network. The reason is that two different groups of experts can come up with two different

 page 24 of 45

BBNs. If one then enters somehow different observations into these networks, there is a
good chance of observing the same results for the target nodes. On the other hand, these
results also point in the direction that two different BBNs should be based up on the same
observations. This again is an argument in favour of the BBN-construction process applied:
each objective in the guideline associated to a list of questions.
Table 7: The partial results for the processes A4 and A5.

Quality
aspect

Observed
difference in
A4 and A5

Difference in
topology

Difference
in

observations

Effect of observations and
topology (A4 vs. A5)

Producer �A4 = A5� differences in the
cpts

different
observations neutralize each other

Analyses �A4 = A5� different number
of questions

no large
differences conformity, i.e. �A4 = A5�

Process �A4 ! A5� differences in the
cpts and topology

different
observations

topology and observations pull
in same direction (enlargement)

Product �A4 !! A5 different number
of questions

different
observations

although a different number of
questions, the observations
alone give the difference

6.8 Discussion of the M-ADS results

The research conducted addresses some of the observations pinpointed as interesting, strange
or counter-intuitive in the project on combining the Bayesian Belief Nets technology with
the rules of a standard for safety critical software, DO-178B for a real, safety related,
programmable system. One results is the importance of a good quality assurance of the
observations entered into a BBN. One the other hand, it also demonstrates that one negative
observations can have a significant effect on a partial results. The evaluation has also showed
that one negative observation, or a set of a few negative observations is not enough to change
the overall results.

The results also show that there can be a rapid change in the overall results, given a specific
order of turning the observations. This work indicates that this change takes place
somewhere in the �middle� of �negative observations on a few repeated questions� and
�negative observations on all repeated questions�. A further evaluation can give more
specific results. However, the evaluation has also showed that there is an effect of the
combination of topology, cpts and observations. A pinpointed set of observations could
therefore change by a change in the topology or a conditional probability table.

Finally the evaluation points on some of the problems that one will be faced with wanting to
perform a validation or verification of the BBN. One hypothesis is that the use of
questionnaires can be a vital point.

7 Extending the BBNs based upon RTCA/DO-178B
Within the nuclear field there is an increased focus on risk-based regulation of nuclear power
plants. This is in accordance with the new generic guideline for programmable safety related
systems, IEC-61508 (2000), where probabilistic safety integrity levels are given as
requirements for safe operation. Therefore, there is a need to establish methods to assess the

 page 25 of 45

reliability of programmable systems, including the software. One approach in this research is
an on-going long-term joint research activity between the Halden Project (HRP) and VTT
Automation (VTT) in Finland (Gran and Helminen 2001, Gran 2002b). One objective of this
co-operative project is to investigate how a network, representing the software safety
guideline and different quality aspects, as described in the previous chapter, can be merged
with a network, developed by VTT, representing evidence from disparate operational
environments (Helminen 2000).

7.1 The VTT approach

The main sources of reliability evidence in the case of safety critical systems considered in
the VTT approach are depicted in Figure 7 (Neil et. al 1996a). A similar version of this
model has been presented by Stålhane et al. (1993). Part of the evidence, such as the
evidence obtained through operational experience and testing, may be directly measurable
statistical evidence. Part of the evidence, such as the design features and the development
process of the system, may be qualitative characterization of the system.

Figure 7: Main sources of reliability evidence in a case of safety critical system

The qualitative characterization of the design features and the development process follows
certain quality assurance and quality control principles, which are based on applicable
standards. Running a good development process alone does not guarantee a more reliable
product. However, the more strict standards the characterizations fulfil, combined with good
testing results, the more confidence one will become in having a reliable system. The
evidence based on qualitative characterization can be considered as soft evidence, while
evidence obtained from operational experience and testing can be considered as hard
evidence. The exploitation of soft evidence in the reliability analysis of software-based
system requires extensive use of expert judgment making it quite an unforeseeable matter
and therefore the VTT approach is mainly focused to the utilization of hard evidence
(Helminen 2000).

The reliability of a software-based system is modelled as a failure probability parameter,
which reflects the probability that the automation system does not operate when demanded.
Information for the estimation of the failure probability parameter can be obtained from the
disparate sources of hard and soft evidence. To obtain the best possible estimate for the
failure probability parameter of the target system all evidence should to be combined.

The principle idea of the estimation method is to build a priori estimate for the failure
probability parameter of software-based system using the soft and hard evidence obtained
from the system development process, pre-testing and evaluating system design features
while system is produced, but before it is deployed. The prior estimation is then updated to a

Operational Experience

Development Process Design Features

Testing

System Reliability

 page 26 of 45

posterior estimate using the hard evidence obtained from testing after the system is deployed
and from operational experience while the system is operational. The difference between
disparate evidence sources can be taken care in the structural modelling of the Bayesian
Network model.

To analyse the applicability of Bayesian Networks to the reliability estimation of software-
based systems Bayesian Network models for safety critical systems are built. The different
models are distinguished by the evidence, which is collected from different systems and
from different operational profiles. The Bayesian Network shown in the �left-low� part of
Figure 8 describes a system, for which the observed number of failures Y is binomial
distributed with parameters N and P. The parameter N describes the number of demands in
the single test cycle and parameter P is the random failure probability parameter. To increase
the flexibility of the model depicted in the left part, a logit-transformed P parameter " is
included into the network, and the network becomes as shown to left in Figure 8.

Figure 8: The VTT-model for two operational profiles

Often the system is tested with different operational profiles under different operational
environments. The results from applying the different operational profiles provide different
failure probabilities for the same system. However, the failure probability from testing gives
us some information about the failure probability of the system functioning in a different
operational profile than where the testing was made. This evidence provided by testing is
valuable and one should make a good use of it by taking into account the difference in the
operational profiles when building the model. Helminen (2000) solve the problem of
different operational profiles by connecting the binomial distributed evidence from different
operational profiles to separate failure probability parameters. The Bayesian Network
representing the case is illustrated as the whole of Figure 8.

7.2 Merging the HRP approach and the VTT approach

The merging of the two approaches is based on the on the network presented in Figure 4 (the
higher level) and the left part of the network shown in Figure 8. The merged network is
displayed in Figure 9 (Gran and Helminen 2001). The merging is done by replacing the node
�P(failure state)� by the node �"priori�.

P

Y

N P*

Y*

N*

Θ
Θ*

Ω*

µ* σ*

 page 27 of 45

Figure 9: The merged network from the VTT and HRP approaches

7.3 Results from applying the merged BBN

Each of the quality aspect nodes was connected to quality aspects, as described in section 6.
That allowed us to directly insert the observations from the M-ADS evaluation in the
network. In addition the conditional probability tables for P(failure state) ware transformed
into continuous normal distributions. For the merged network we performed calculations for
the case of �no M-ADS observations� and for the case �with the M-ADS observations�,
running from N=100 to N=1000000.

For both scenarios the target was the node for the failure probability. In Figure 10 both the
median and the 97.5% percentile posterior distribution values for P on the logarithmic scale
are shown. The values for N=1, are the values representing the prior distributions, i.e. before
starting the testing (and observing Y=0). Remark that the curves for the 97.5% percentiles
are somewhat �bumpy�. This due to the fact, that the values are deduced from posterior
histograms.

7.4 Experiences from merging the BBNs

The main differences between the two studies lie in the difference of focus areas. The work
by VTT mainly focuses to studying explicitly the influence of prior distributions to the
reliability estimation and to the investigation of combining statistical evidence from
disparate operational environments. The work described in this thesis focuses mainly on how
to model a software safety guideline, DO-178B, and how to combine �soft evidences� in the
safety assessment of a programmable system. The key idea is to split the larger entities of
soft evidence into smaller quantities. Another difference is the comprehensive usage of
continuous distributions in the VTT work, which is somewhat a different approach than the
approach used in the BBNs for the DO-178B. This is however not discussed in this work.

The merged networks show how the two approaches can be merged. It gives an extended
description of the quality aspects, originally modelled by the node " in the VTT approach,
and it shows how different operational profiles, can be included in the approach described.

Solution Complexity

Problem complexity Qproces

Qproduct

Qproducer

Qanalyses

Y: failures in N ...

" priori

P N

"

 page 28 of 45

Figure 10: Median and 97.5% percentile posterior distribution values for P on the logarithmic scale,
for the scenario of no observations and the scenario with the observations

8 Conclusions
The objective of the research has been to investigate the possibility to transfer the
requirements of a software safety standard into Bayesian belief networks (BBNs). The BBN
methodology has mainly been developed and applied in the AI society, but more recently it
has been proposed to apply it to the assessment of programmable systems. The relation to AI
application is relevant in the sense that the method reflects the way of an assessor�s thinking
during the assessment process. Conceptually, software reliability is almost impossible to
compute, since many of the aspects of the software which influence the reliability are of
qualitative nature and not directly measurable, but have to be estimated e.g. by expert
judgement.

The conclusion from the research presented in this thesis is that the use of Bayesian Belief
Networks for combining disparate sources of information in the safety assessment of
software based systems, combined with questionnaires, offers a systematic way to combine
quantitative and qualitative evidences of relevance for the safety assessment of
programmable systems, e.g. in a licensing process or in a PSA analysis.

The BBN is constructed in two levels. The higher level is based on the four qualities: quality
of the producer, quality of the production, quality of the product, and quality of the analysis.
The higher-level BBN is general, and independent of the standard, and is based on the
research discussed in chapter 2. The lower-level BBNs reflect the recommendations of
RTCA/DO-178B. Each top node of the lower-level BBNs is linked to intermediate nodes
representing the 10 lifecycle stages identified in DO-178B. Each of these nodes are again
linked to other intermediate nodes, representing the objectives of each lifecycle. The further
proposed step is to identify a list of questions to each objective. In the described research

0,000001

0,000010

0,000100

0,001000

0,010000

0,100000

1,000000
1 10 100 1000 10000 100000 1000000

N

P
Sc.1, median HUGIN Sc.2, median, HUGIN

Sc.1, 97.5% HUGIN Sc.2, 97.5% HUGIN

 page 29 of 45

these questions are based on the understanding of the text in the main part of DO-178B, and
formulated so that the answer could be given by a �yes� or a �no�.

For both the higher and lower level networks there is a need for further validation. This is
demonstrated through the experimental investigation with the BBNs. However, a hypothesis
is that a reallocation of objectives or questions only will give local (or partial) effects, and
not changes in the overall assessment. A reason for this could be that there are a few �soft
evidences� and dependencies connecting these evidences that are more sensitive than the
other. So fare, there has, however, not been possible to find such evidences.

Although the BBNs and results are based upon a real application, this approach has not been
applied to a real development or assessment. A first try could be to apply the approach for
decision support in the approval of safety critical programmable systems. Another try could
be to apply the approach as decision support early in the development of a system, in order
to point on where to set in the effort and thus being able to reach specific objectives of the
final product.

The establishment of the BBNs and prior probability distributions can be rather time
consuming. However, the process of building up the network, e.g. by making questionnaires,
and doing the elicitation of the prior distributions related to a standard (RTCA/DO-178B),
and not to the actual system, implies that the network and questions are of a general nature,
and can be reused in many applications. They can also be gradually improved based on
experience. The experiences with modelling the requirements of the avionics standard
RTCA/DO-178B as BBNs, point in the direction that this approach can be transferred to the
modelling of other software standards built on the same basic framework, and which follow
the same principles. This holds even though they may differ in the aspect they put special
emphasis on.

Conceptually, estimation of the dependability of programmable systems is nearly impossible
to compute, since many of the characteristics to be considered are of qualitative nature and
not directly measurable, but have to be estimated. The most difficult activity in the
experiment described was to perform the expert judgment, in particular in the assignment of
values to the conditional probability distributions. Even if some of the project members can
be considered as experts within their fields, it is highly recommendable to make use of some
expert judgment tools or expert judgment expertise. Note also that knowledge within BBN
and probabilistic theory is of great advantage in the construction of the networks and the
assessment of the probability distributions, and also an advantage in the evaluation of the
results from the computations.

 page 30 of 45

References
Aldenryd, S.H., Jensen, K.B., Nielsen, L.B., (1993). Hugin Runtime for MS-Window, Tool made by

Hugin Expert a/s, Aalborg, <http://www.hugin.dk>

Barnes, M., Bishop, P.G., Bjarland, B., Dahll, G., Esp, D., Humphreys, P., Lahti, J., Yoshimura, S.,
Ball, A., Hatlewold, O., (1985). PODS (The Project on Diverse Software), OECD Halden Reactor
Rep. HPR-323.

Bertolino, A., Strigini, L., (1996a). Predicting Software Reliability from Testing Taking into Account
Other Knowledge about a Program. Proceedings 9th International Software Quality Week
(Software Research Institute, San Francisco).

Bertolino, A., Strigini L., (1996b). Acceptance Criteria for Critical Software Based on Testability
Estimates and Test Results. Proceedings SAFECOMP96, 15th International Conference on
Computer Safety, Reliability and Security, Schoitsch (Ed..), Springer-Verlag, pp 83-94.

Bertolino, A., Strigini, L., (1998). Assessing the risk due to software design faults: estimates of failure
rate vs. evidence of perfection, Software Testing, Verification and Reliability, 8(3), pp 155-166.

Bishop, P., Esp, D., Barnes, M., Humphreys, P., Dahll, G., Lahti, J., (1986). PODS - The Project on
Diverse Software. IEEE Transactions on Software Engineering, SE-12, no. 9.

Chrisman, L. (1996), A roadmap to research on Bayesian networks and other decomposable
probabilistic models, School of Computer Science, Pittsburg, PA.

Cooke, R. M. (1991), Experts in Uncertainty, Oxford University Press, New York.

Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J., (1999). Probabilistic Networks and
Expert Systems, Springer-Verlag.

Cudleigh, M., Catmur, J., (1992). Safety Assessment of Computer Systems using HazOp and Audit
Techniques, Safety of Computer Systems SAFECOMP’92, Frey (Ed.), Pergamon Press.

Dahll, G., (1997). Safety Assessment of Software Based Systems. SAFECOMP’97, Daniel (Ed.),
Springer-Verlag, pp. 14-24.

Dahll, G., (2001). Combining Disparate Sources of Information in the Safety Assessment of Software
Based Systems, submitted to Special Issue of Nuclear Engineering and Design.

Dahll, G., Gran, B.A., (2000). The Use of Bayesian Belief Nets in Safety Assessment of Software
Based Systems. Special Issues of International Journal on Intelligent Information Systems at
FLINS'98, Int. J. General Systems, 24 (2), 205-229.

Delic, K., Mazzanti, M., Strigini, L. (1995). Formalising a Software Safety Case via Belief Networks,
Technical report, CRS, City University, London.

Delic, K., Mazzanti, M., Strigini, L. (1997). Formalising Engineering Judgement on Software
Dependability via Belief Networks. In: DCCA-6, Sixth IFIP International Working Conference on
Dependable Computing for Critical Applications, “Can We Rely on computers?”, Garmisch-
Partenkirchen, Germany.

DeMillo, R.A., Offutt, A.J., (1991). Constraint-Based Automatic Test Data Generation, IEEE Trans.
Software Eng., 17 (9), pp 900-910.

Fenton, N., Neil, M., (1999). A Critique of Software Defect Prediction Models, IEEE Transactions on
Software Engineering, 25 (5), 675-689.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., (1995). Bayesian Data Analysis, Chapman & Hall,
London.

Gran, B.A., (2001). Applying Bayesian Belief Net in Software Safety Assessment on a Real, Safety
Related Programmable System. In Safety & Reliability, Towards a safer world. Zio, E.,
Demichela, M., and Piccinini, N. (Eds), Politecnico di Torino, Torino, pp. 1045-1052.

 page 31 of 45

Gran, B.A., (2002a). Assessment of programmable systems using Bayesian belief nets. Paper accepted
for Journal Safety Science, Special Issue on Safecomp-2000.

Gran, B.A., (2002b). The use of Bayesian belief networks for combining disparate sources of
information in the safety assessment of software based systems. Paper accepted for International
Journal of Systems Science, Special Issue on Intelligent Product Support Systems.

Gran, B.A., Helminen, A., (2001). A Bayesian Belief Network for Reliability Assessment, Computer
Safety, Reliability and Security (Lecture Notes in Computer Science 2187), Voges (Ed.), Springer,
pp. 35-45.

Gran, B.A., Thunem, H., (1998) EISTRAM - Experimental Investigation of the PIE-technique. Safety
and Reliability, Lydersen, Hansen and Sandtorv (eds), Balkema, Rotterdam, pp 409-416.

Gran, B.A., Dahll, G., Eisinger, S., Lund, E., Norstrøm, J., Strocka, P., Ystanes, B., (2000).
Estimating Dependability of Programmable Systems Using BBNs. Computer Safety, Reliability
and Security, Proceedings from Safecomp 2000, (Lecture Notes in Computer Science 1943),
Koornneef and van der Meulen (Eds) (Springer), pp. 309-320.

Helminen, A., (2000). Reliability Estimation of Software-based Digital Systems Using Bayesian
Networks, (Helsinki University of Technology, Espoo), pp. 1-50.

IAEA, ID NS 264, (1999). Software for Computer systems Important to Safety in NPPs: A Draft
Safety Guide.

IEC 61508, (2000). Functional safety of electrical/electronic/programmable electronic safety-related
systems.

IEC 880, (1986). Software for computers in the application of industrial safety related systems..

IMPRESS, (1999). Improving the software process using Bayesian nets. EPSRC project nr.
GR/L06683, <http://www.csr.city.ac.uk/csr_city/projects/impress.html>.

Jensen, F., (1996). An Introduction to Bayesian Networks, UCL Press, University College London.

Korhonen, J., (1997). Combining the Evidence in Software Reliability Assessment, Technical report,
VTT, Finland.

Lauritzen, S.L., Spiegelhalter, D.J., (1988). Local computations with probabilities on graphical
structures and their application to expert systems (with discussions), Journal of the Royal
Statistical Society, Series B 50 (2), pp. 157-224.

Leveson, N.G., (1995), Safeware – System Safety and Computers, Addison-Wesley.

Littlewood, B., Wright, D., (1995). A Bayesian Model that Combines Disparate Evidence for the
Quantitative Assessment of System Dependability. Proceedings SAFECOMP’95, Rabe (ed),
Springer-Verlag, pp. 173-188.

Littlewood, B., Wright, D., (1997). Some conservative stopping rules for the operational testing of
safety-critical software, IEEE Transactions of Software Engineering, 23(11), pp 673-683.

Neil, M., Fenton, N., (1996b). Predicting Software Quality using Bayesian Belief Networks,
Proceedings of 21st. Annual Software Engineering Workshop, (NASA Goddard Space Flight
Centre), pp. 217-230.

Neil, M., Fenton, N., (1998). A strategy for improving safety related software engineering standards,
IEEE Trans. on SW Eng., 24 (11).

Neil, M., Fenton, N., Nielsen, L., (2000). Building large-scale Bayesian Networks, The Knowledge
Engineering Review, 15 (3), pp. 257-284.

Neil, M., Fenton, N., Forey, S., Harris, R., (2001). Using Bayesian Belief Networks to Predict the
Reliability of Military Vehicles, IEEE Computing and Control Engineering, 12 (1), pp. 11-20.

Neil, M., Littlewod, B., Fenton, N., (1996a). Applying Bayesian Belief Nets to Systems Dependability
Assessment, Proceedings of 4th Safety Critical Systems Symposium, (Springer-Verlag), pp. 71-93.

 page 32 of 45

Pearl, J., (1988). Probabilistic Reasoning in Intelligent Systems: Networks forPlausible Inference,
Morgan Kaufman.

Pulkkinen, U., (1994). Statistical Models for Expert Judgement and Wear Prediction, Dissertation,
Helsinki University of Technology, Finland.

Pulkkinen, U., Holmberg, J., (1997). A Method for Using Expert Judgement in PSA, (Finnish Centre
for Radiation and Nuclear Safety, Helsinki), pp. 1-32.

Ramamoorthy, C.V., Bastani, F.B., (1982). Software Reliability - Status and Perspectives, IEEE
Trans. Software Eng., SE-8 (4), pp 354-371.

Rasmussen, (1974). Reactor Safety Study, U.S. Atomic Energy Commission Report WASH-1400.

RTCA/DO-178B, (1999), Software Considerations in Airborne Systems and Equipment Certifications
(Guideline).

SERENE, (1999). Safety and Risk Evaluation using Bayesian Nets. ESPRIT IV nr. 22187,
<http://www.hugin.dk/serene/>.

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., Cowell, R. G., (1993). Bayesian Analysis in
Expert Systems, Statistical Science, 8(3), pp 219-283

Stålhane, T., (1997). Safety in Software-Intensive Systems. Presented at the Eighth European
Workshop on Dependable Computing, EWDC-8, Gothenburg, Sweden.

Stålhane, T., Meulen, M.J.P van der, Cole, (1993). Reliability Assessment of PES, using Subjective
and Objective Categorcial Data. Presented at workshop on production control in the process
industry, 29-31 March, Dusseldorf, Germany.

Voas, J.M., Michael, C.C., Miller, K.W., (1993). Confidently Assessing a Zero Probability of
Software Failure, Proceedings of the 12th Int'l. Conference. on Computer Safety, Reliability, and
Security, Poznan and Poland (Eds), Springer-Verlag, pp 197-206.

Voas, J.M., (1992). PIE: A dynamic Failure-Based Technique, IEEE Trans. Software Eng., 18 (8), pp
717-727.

Welsh, A. H., (1996). Aspects of Statistical Inference, Wiley & Sons.

Whittaker, J., (1990). Graphical Models in Applied Multivariate Statistics, Wiley & Sons.

Xie, M., (1991). Software Reliability Modelling, World Scientific Publishing Co. Pte. Ltd.

 page 33 of 45

APPENDIX A: The lower-level BBNs

A7: Has the producer long practice in software V&V activities?

Qproducer_A8 - sw CMP

Qproducer_A10 - certification liasion process

Qproducer_A7 - vv of verification process results

Qproducer_A9 - SQA Process

A7: Has the producer an acceptable V&V philosophy?

A7: Has the producer sufficient and qualified resources for V&V?

Is the software quality assurance process properly performed and recorded

Are all software configuration management activities recorded in the Softw

cert_feed_obs

Qproducer_A5- vv of sw coding & integartion process

A2 producer experience

Qproducer_A4- vv of sw design process

Qproducer_A2 - sw development process

Qproducer_A3 - vv of sw req. process

Qproducer_A1 - sw planning

Quality of producer

A1-11.6 sw req. standards

A1-11.7 sw design standards

A1-11.8 sw code standards

A2 Are other products made by the producer reliable andof high quality

Figure A-1: The BBN for �Quality of producer�

 page 34 of 45

A1-11.4 Are there acceptable configuration manage

A1-11.2 Is the sw_development_plan complete?

A1-11.3 Is the sw verification plan complete with re

A1-11.5 SQA-Records

A2-11.9 Are all system functional requirements, safe

Are the responses to failure conditions consistent wit

Are control and data flow monitored when safety req

Are measures for fault tolerance, like diversity or re

Are measures for fault tolerance, like diversity or re

Is it a clear separation in the design between safety

Does the design adequately describe the data structu

Does the design address sequencing, concurrency and

Does the design adequately describe the information

Are all tasks specified in the requirements also inclu

A2-11.10 design description

A3-2 Are the high level requirement specification c

A3-6 Is tracability between the high level requireme

Qprocess_A2 - sw development process

Qprocess_A3 - vv of sw req. process

Qprocess_A1 - sw planning

Quality of process

Qualification routines for software systems

QA document for managing software projects

Qualification of vendors

QA in project management

Proper organisational structure?

Proper procedure for identification of items?

Acceptable procedure for secures storage?

Change control procedures acceptable?

Good revision control?

Organisation

Independence

Transition criteria for entering the verification proc

Partitioning considerations

Assumptions on compiler, linker etc.

Reverification

COTS

N-version software if applied

Are all future phases in the system lifecycle include

Are standards all future phases in the system lifecycl

Have software development environments been chos

Figure A-2: The BBN for "Quality of production process� (cont. next page)

 page 35 of 45

Is the software quality assurance process properly per

Qprocess_A5- vv of sw coding & integartion process

Qprocess_A6- testing integration process

Qprocess_A4- vv of sw design process

Qprocess_A8 - sw CMP

Qprocess_A10 - certification liasion process

Qprocess_A9 - SQA Process

Quality of process

Obs: Has the development been made in co-ordinati

A6 11-13 sw verification cases and procedures

A6 11-13 Hardware/software integration testing?

A6 11-13 Software integration testing?

A6 11-13 Low level testing?

A6 11-13 Simulation testing?

A6 11-13 Coverage test?

A6 11-13 Black box tests?

A6 11-13 White box tests?

A6 11-13 Stress tests?

A6 11-14 sw verification results

A6 11-14 Have all specified functions been tested?

A6 11-14 Have all specified safety actions been test

A6 11-14 Has fault injection been used to test the ro

A5-5 Is it a clear correspondance between each ele

A5-1 Is the code a correct and consistent refinement

A4-9 Has an analysis shown that the software archite

A4-6 Is it a clear correspondance between each item

A4-2 ll Is the design documents a correct and consist

Figure cont.: The BBN for "Quality of production process� (continued)

 page 36 of 45

A1-11.1 Is the syste

A1-11.3 Is the syste

Is the implementat

Is the translation o

Tracability

Verifiability

Consistency

Correct implementa

A2 11-12 Is the exec

A2-11.11 Does the so

A3-2 Is the high-lev

A3-3 Has the executa

A3-1 Do the software

A3-7 Have all algori

Quality of product

Qproduct_A1 - sw pla

Qproduct_A3 - vv of

Qproduct_A2 - sw dev

Qproduct_A4- vv of s

Qproduct_A5- vv of s

A5-2 Does the source

A5-5 Is it a clear c

A5-6 Is it verified

A5-1Is the code a co

Stack usage

Fixed point arithme

Resource contention

Worst case executio

Exception handling

Use of uninitialised

Unused variables or

Data corruption due

A4-1 Does the low-le

A4-3 Are there any c

A4-9 Has an analysis

A4-7 Have all algori

A4-8 Is the software

A4-2 Are the low-lev

A4-13 Is the softwar

Figure A-3: The BBN for "Quality of product� (cont. next page)

 page 37 of 45

A8 C11-18 Are all software configuration ma

Does the software development conform the S

Is the software quality assurance process prope

hsi_obs

cots_obs

A10_obs

Quality of product

Qproduct_A9 - SQA Process

Qproduct_A7 - vv of verification process res

Qproduct_A10 - certification liasion process

Qproduct_A8 - sw CMP

Qproduct_A6 - testing integration process

Qproduct quality of COTS

mmi_aspects

Is the test performed correctly?

Are all test results correct, or if not, are the dis

Does the test cover

Does the test reflect the actual usage of the fina

Is the 'oracle' correct?

hl requirments?

Test completness: Have all specified functions

ll requirments?

all software structures?

all decisions

all branches?

A6 11-14 sw verification results

Long list of questions

Figure cont.: The BBN for "Quality of product� (continued)

 page 38 of 45

QA in project management

Qualification of vendors

QA document for managing software projects

Qualification routines for software systems

Is the procedure used in each V&V activity recorded

Is the configuration item and version number related

Is the result from each V&V activity recorded?

A1-11.19 Is the recording of all software quality assu

A1-11.3 The software verification plan is satisfactor

A1-11.14 Is the recording of all software verification

A1-11.5 Does overall software quality assurance plan

Is the high-level requirement specification correct u

Is the translation of the source code into executable

· Correct implementation of all low-level requireme

Consistency

Verifiability

Tracability

A2-11.12 Is the executable object code correct?

A2-11.11 Does the source code possess the following

A2-11.9 Is tracability between the high level require

A3-4 Is the high-level requirement verifiable

A3-2 hl req. accurate and consistent

A4-11 Is the software architecture verifiable?

A4-10 Are there any conflicts between the software

A4-9 Has an analysis shown that the software archite

A4-8 Is the software architecture compatible with hi

A4-4 Is the high-level requirement verifiable

A4-3 Are there any conflicts between the low-level r

A4-2 Are the low-level requirements accurate and c

Quality of analyses

Qanalyses_A1 - sw planning

Qanalyses_A3 - vv of sw req. process

Qanalyses_A2 - sw development process

Qanalyses_A4- vv of sw design process

Figure A-4: The BBN for "Quality of analysis� (cont. next page)

 page 39 of 45

A5-5 Is it a clear correspondence between each ele

A5-4 Does the code conform to the coding standard?

A5-2 Does the source code match the data- and cont

A5-3 Is the source code verifiable?

Long_list

A6 11-13 Which types of tests have been performed

A7 3-8: Does the test cover

A7: Have all specified functions been tested? Have

A7_2: Are all test results correct, or if not, are the d

A7_1: Is the test performed correctly?

Are the corrections of all these problems reported?

Anomalous behaviour of software products

Deficiencies of output of software life cycle process

Non-compliance with software plans and standards

A8 11-17 Are all problems revealed during the softw

Analyses_team_obs

HMI_obs

A10_obs

Quality of analyses

Qanalyses_A9 - SQA Process

Qanalyses_A7 - vv of verification process results

Qanalyses_A8 - sw CMP

Qanalyses_A6- testing integration process

Qanalyses_A5- vv of sw coding & integartion process

A10 Has the development been made in co-ordinatio

How good is the analyses team performance?

Have Human-System Interaction aspects been proper

Figure cont.: The BBN for "Quality of analysis� (continued)

 page 40 of 45

APPENDIX B: The questions related to DO-178B
Questionnaires for “Quality of Producer”:

Node/table reference Question
Quality_Producer
 Qproducer_sw_plan_process/ A1
 sw_req_standards/ A1-11.6 Does the producer follow software requirement standards?
 sw_design_standards/ A1-11.7 Does the producer follow software design standards?
 sw_code_standards/ A1-11.8 Does the producer follow software coding standards?
 Qproducer_sw_dev_process/ A2
 producer_experience/ A2 Has the producer long experience in making similar systems?
 Producer pedigree Are other products made by the producer reliable and of high quality?
 Qproducer_vv_sw_req_process/ A3
 hl_vs_standards/ A3-5 Do the high-level requirements conform to the producer’s standard?
 Qproducer_vv_sw_design_process/ A4
 sw_arch_standards/ A4-12 Do the software architecture conform to the producer’s design

standard?
 Qproducer_vv_sw_coding_process/ A5
 code_traceable_ll/ A5-5 Is it a clear correspondence between each element of the design and

corresponding code modules?
 Qproducer_vv_vv_process/ A7
 vv_resources/ A7 Has the producer sufficient and qualified resources for V&V?
 vv_philosophy/ A7 Has the producer an acceptable V&V philosophy?
 vv_in_practice/ A7 Has the producer long practice in software V&V activities?
 Qproducer_sw_CMP/ A8
 CMP_exists_used/ A8 Are all software configuration management activities recorded in the

Software Configuration Records?
 Qproducer_SQAP/ A9
 sqa_in_practice/ A9 Is the software quality assurance process properly performed and

recorded?
 Qproducer_cl_process/ A10
 certification_feedback/ A10 Have Human-System Interaction aspects been properly considered

during the development of the system?

Questionnaires for “Quality of Production process”:

Node/table reference Question
Quality_Process
 Qprocess_sw_plan_process
 sw_development_plan /A1-11.2 Is the sw_development_plan complete?:

o Are all future phases in the system lifecycle included in the plans?
o Are standards for all phases in the system lifecycle included in

the plans?
o Have software development environments been chosen?

 Sw_verification_plan/A1-11.3 Is the sw verification plan complete with respect to:
o Organisation
o Independence
o Verification methods
o Transition criteria for entering the verification process into the

plan
o Partitioning considerations
o Assumptions on compiler, linker, etc.
o Reverification
o COTS
o N-version software if applied

 SCM_plan/A1-11.4 Are there acceptable configuration management plans for all phases?
o Proper organisational structure?
o Proper procedure for identification of items?
o Acceptable procedure for secures storage?
o Change control procedures acceptable?
o Good revision control?

 page 41 of 45

 SQA_records/ A1-11.5 Does overall software quality assurance plans exist for all phases?
Are there:
o Qualification routines for software systems
o QA document for managing software projects
o Qualification of vendors
o QA in project management

 Qprocess_sw_dev_process
 sw_req_data/A2-11.9 Are all system functional requirements, safety requirements and

auxiliary requirements specified in the software specification?
 design_description/A2-11.10

o Are all tasks specified in the requirements also included in the

design?
o Does the design adequately describe the information flow between

components?
o Does the design address sequencing, concurrency and time related

information?
o Does the design adequately describe the data structures and their

properties?
o Is there a clear separation in the design between safety critical

and not safety critical parts of the system?
o Are measures for fault tolerance, like diversity or redundancy

designed into the system?
o Are control and data flow monitored when safety requirements

dictate, e.g. through watchdog timers, reasonableness checks,
input data checks, etc.?

o Are the responses to failure conditions consistent with safety
related requirements?

 Qprocess_vv_sw_req_process
 hl_req_acurate/A3-2 Is the high level requirement specification correct, unique and

consistent?
 hl_req_traceable/A2-11.9 Is tracability between the high level requirement and the final

product facilitated?
 Qprocess_vv_sw_design_process
 ll_req_acurate/A4-2 ll Is the design documents a correct and consistent refinement of the

high level requirements?
 ll_req_ttraceable/A4-6 ll Is there a clear correspondence between each item of the high level

requirements and corresponding elements of the design?
 sw_arch_consistent/A4-9 Has an analysis shown that the software architecture does not

contain any internal inconsistencies?
 Qprocess_vv_sw_coding_process
 code_vs_ll_req/A5-1 Is the code a correct and consistent refinement of the low-level

requirements given in design documents?
 code_traceable_ll/A5-5 Is there a clear correspondence between each element of the design

and corresponding code modules?
 Qprocess_test_int_process/ A6
 vv_cases_procedures/A6 11-13 Which types of tests have been performed on the system?

o Hardware/software integration testing
o Software integration testing
o Low level testing
Which types of test data selection strategies have been used
o Simulation testing
o Coverage test
o Black box tests
o White box tests
o Stress tests

 vv_cases_procedures_1/A6 11-14 o Have all specified functions been tested?
o Have all specified safety actions been tested?
o Has fault injection been used to test the robustness of the system

sw verification cases and procedures?
 Qprocess_sw_CMP
 SLC_env_config_index/A8 11-15 Are all tools used to produce the software, in all life cycle phases,

identified, controlled and retrievable?
 sw_configuration/ A8 11-16 Is a software product baseline established and placed in a Software

Configuration Index?
 Qprocess_SQAP

 page 42 of 45

 sqa_exists/ A9 Is the software quality assurance process properly performed and
recorded?

 Qprocess_cl_process
 certification_feedback/ A10 Has the development been made in co-ordination with, and with

feedback from, the certification authorities?
 mmi_aspects Have Human-System Interaction aspects been properly considered

during the development of the system?

Questionnaires for “Quality of Product”:

Node/table reference Question
Quality_Product
 Qproduct_sw_plan_process
 plan_sw_certification/A1-11.1 Is the system made according to a plan which includes software

certification aspects?
 sw_verification_plan/ A1-11.3 Is the system made according to a plan which includes software

verification aspects?
 Qproduct_sw_dev_process
 source_code/ A2-11.11 Does the source code possess the following properties?:

o Correct implementation of all low-level requirements
o Consistency
o Verifiability
o Tracability

 ex_obj_code/ A2-11.12 o Is the executable object code correct?:
o Is the translation of the source code into executable code made in

a trustworthy way?
o Is the implementation of the executable code onto the target

computer made correctly?
 Qproduct_vv_sw_req_process A3
 sw_hl_vs_system_req/ A3-1 Do the software high level requirements comply with system

requirements?
 hl_req_accurate/ A3-2 Is the high-level requirement specification correct, unique and

consistent?
 hl_req_target_computer/ A3-3 Has the executable code been verified on the target computer?
 algorithm_accurate/ A3-7 Have all algorithms used in the program been verified with respect to

accuracy and correctness?
 Qproduct_vv_sw_design_process/ A4
 ll_req_vs_hl_req/ A4-1 ll Do the low-level requirements (design documents) comply with the

high level requirements?
 ll_req_acurate/ A4-2 ll Are the low-level requirements accurate and consistent?
 ll_req_target_computer/ A4-3 Are there any conflicts between the low-level requirements and the

hardware/software features of the target computer?
 alg_accurate/ A4-7 Have all algorithms used in the program been verified with respect to

accuracy and correctness?
 sw_arch_hl_req/ A4-8 Is the software architecture compatible with high level requirements?
 sw_arch_consistent/ A4-9 Has an analysis shown that the software architecture does not

contain any internal inconsistencies?
 sw_partitoning_int_confirmed/ A4-13 Is the software partitioning integrity confirmed?
 Qproduct_vv_sw_coding_process
 code_sw_arch/ A5-2 Does the source code match the data- and control flow defined in the

software architecture?
 code_traceable_ll_1/ A5-5 Is there a clear correspondence between each element of the design

and corresponding code modules?
 code_accurate_consistent/ A5-6 Is it verified that the code is accurate and consistent, also including

the attributes:
o Stack usage
o Fixed point arithmetic overflow and resolution
o Resource contention
o Worst case execution timing
o Exception handling
o Use of uninitialised variables or constants
o Unused variables or constants
o Data corruption due to task or interrupt conflicts

 code_vs_ll_req/ A5-1 Is the code a correct and consistent refinement of the low-level

 page 43 of 45

requirements given in design documents?
 Qproduct_test_int_process/ A6

 vv_cases_procedures/A6 11-13 Which types of tests have been performed on the system?
o Hardware/software integration testing
o Software integration testing
o Low level testing
Which types of test data selection strategies have been used?
o Simulation testing
o Coverage test
o Black box tests
o White box tests
o Stress tests

 Qproduct_vv_vv_process - tests/ A7
 Test procedure /A7-1 o Is the test performed correctly?

o Does the test reflect the actual usage of the final system?
o Is the ‘oracle’ correct?

 Test results/A7-2 Are all test results correct, or if not, are the discrepancies explained?
 Test completeness o Have all specified functions been tested?

o Have all specified safety actions been tested?
o Has fault injection been used to test the robustness of the system

sw verification cases and procedures?
 Test coverage/ A7-3 - 8 Does the test cover

o High-level requirements
o Low-level requirements
o All software structures
o All decisions
o All branches

 Qproduct_sw_CMP/ A8
 SCM_records/ A8 C11-18 Are all software configuration management activities recorded in the

Software Configuration Records?
 Qproduct_SQAP/ A9
 sqa_in_practice Is the software quality assurance process properly performed and

recorded?
 Software conformity Does the software development conform to the SQA requirements?
 Qproduct_cl_process/ A10
 certification_feedback Has the development been made in co-ordination with, and with

feedback from, the certification authorities?
 Qproduct_sw_metrics If any type of software measurement has been performed, what is the

result?
 Qproduct_COTS If the quality of all COTS used in the system has been evaluated,

what is the result?
 mmi_aspects Have Human-System Interaction aspects been properly considered

during the development of the system?

Questionnaires for “Quality of Analysis”:

Node/table reference Question
Quality_Analyses
 Qanalysis_sw_plan_process/ A1
 sw_verification_plan/ A1-11.3 Is the system made according to a plan which includes software

certification aspects?
 SQA_plan/ A1-11.5 Is the system made according to a plan which includes software

verification aspects?
 sw_verification_results/ A1-11.14
 Qanalysis_sw_dev_process/ A2
 sw_req_data/ A2-11.9 Does the source code possess the following properties?:

o Correct implementation of all low-level requirements
o Consistency
o Verifiability
o Tracability

 source_code/ A2-11.11 o Is the executable object code correct?:
o Is the translation of the source code into executable code made in

a trustworthy way?
o Is the implementation of the executable code onto the target

 page 44 of 45

computer made correctly?
 ex_object_code/ A2-11.12
 Qanalysis_vv_sw_req_process/A-3
 hl_req_accurat/ A3-2e Is the high-level requirement specification correct unique and

consistent?
 hl_req_target_computer/A3-3 Has the executable code been verified on the target computer?
 hl_req_verifiable/ A3-4 Is the high-level requirement verifiable?
 Qanalysis_vv_sw_design_process
 ll_req_acurate/ A4-2 Are the low-level requirements accurate and consistent?
 ll_req_target_computer/ A4-3 Are there any conflicts between the low-level requirements and the

hardware/software features of the target computer?
 ll_req_verifiable/ A4-4 Is the high-level requirement verifiable.
 sw_arch_hl_req/ A4-8 Is the software architecture compatible with high level requirements?
 sw_arch_consistent/ A4-9 Has an analysis shown that the software architecture does not

contain any internal inconsistencies?
 sw_arch_target_computer/A4-11 Are there any conflicts between the software architecture and the

hardware/software features of the target computer?
 sw_partitoning_int_confirmed/ A4-13 Is the software architecture verifiable?
 Qanalysis_vv_sw_coding_process/ A5
 code_sw_arch/ A5-2 Does the source code match the data- and control flow defined in the

software architecture?
 code_verifiable/ A5-3 Is the source code verifiable?
 code_standards/ A5-4 Does the code conform to the coding standard?
 code_traceable_ll/ A5-5 Is there a clear correspondence between each element of the design

and corresponding code modules?
 Qanalysis_test_int_process/ A6
 vv_cases_procedures/ A6 11-13 Which types of tests have been performed on the system?

o Hardware/software integration testing
o Software integration testing
o Low level testing
Which types of test data selection strategies have been used?
o Simulation testing
o Coverage test
o Black box tests
o White box tests
o Stress tests

 Qanalysis_vv_vv_process/A7
 Test procedure /A7-1 o Is the test performed correctly?

o Does the test reflect the actual usage of the final system?
o Is the ‘oracle’ correct?
o Are all test results correct, or if not, are the discrepancies

explained?
 Test results/A7-2 Are all test results correct, or if not, are the discrepancies explained?
 Test completeness o Have all specified functions been tested?

o Have all specified safety actions been tested?
o Has fault injection been used to test the robustness of the system

sw verification cases and procedures?
 Test coverage/ A7-3 – 8 Does the test cover

o High-level requirements
o Low-level requirements
o All software structures
o All decisions
o All branches

 Qproduct_sw_CMP/ A8
 problem_reports/ A8 11-17 Are all problems revealed during the software development reported,

including
o Non-compliance with software plans and standards?
o Deficiencies of output of software life cycle processes?
o Anomalous behaviour of software products?
o Are the corrections of all these problems reported?

 Qproduct_SQAP/ A9
 sqa_in_practice Is the software quality assurance process properly performed and

recorded?

 page 45 of 45

 Qproduct_cl_process/ A10
 certification_feedback Has the development been made in co-ordination with, and with

feedback from, the certification authorities?
 Qproduct_sw_metrics If any type of software measurement has been performed, what is the

result?
 mmi_aspects Have Human-System Interaction aspects been properly considered

during the development of the system?
 analysis_team How good is the analysis team performance?

I

The Use of Bayesian Belief Nets in Safety Assessment

of Software Based Systems
(with Gustav Dahll)

In Special Issues of International Journal on Intelligent Information Systems at FLINS'98,
Int. J. General Systems, 24 (2), pp 205-229, 2000.

Paper I is not included due to copyright.

II

Assessment of programmable systems using Bayesian belief nets
Submitted and accepted for Journal Safety Science, Special Issue on Safecomp-2000.

To be published 2002.

Extended version of the paper: Gran, B.A., Dahll, G., Eisinger, S., Lund, E., Norstrøm, J.,
Strocka, P., and Ystanes, B.: Estimating Dependability of Programmable Systems Using

BBNs. Computer Safety, Reliability and Security, Proceedings from Safecomp 2000, (LNCS
1943), Koornneef F. and van der Meulen, M. (Eds), Springer, Berlin , pp. 309-320, 2000.

URN:NBN:no-2126

ASSESSMENT OF PROGRAMMABLE SYSTEMS
USING BAYESIAN BELIEF NETS

Bjørn Axel Gran

OECD Halden Reactor Project, Institutt for energiteknikk,
P.O.Box 173, N-1751 Halden, Norway

<bjorn.axel.gran@hrp.no>

Abstract.

This paper discusses some software safety standards, with respect to how they can be used to
measure software safety. The possibility to transfer the requirements of a software safety
standard into Bayesian Belief Nets is also investigated. The aim is to utilise the BBN
methodology and associated tools, to transfer the software safety measurement into a
probabilistic quantity. In this way software can be included in probabilistic safety analysis of
the total programmable system. A project was performed in which the method was applied
for evaluation of a real, safety related programmable system that was developed according to
the avionic standard DO-178B. The test case, the standard, and the BBN methodology are
shortly described, followed by a description of the construction of the BBN used in this
project. Also a summary of some of the findings and experiences from the study is provided.

1. Introduction

During the last decades the digital revolution has made society increasingly dependent
on programmable digital equipment. Such equipment has to an increasing degree become of
importance for our safety, and one must therefore trust that it performs its tasks in a correct
and reliable way. Traditionally, there are various kinds of equipment one places confidence
in, from car breaks and train stop signals to emergency shut down systems in nuclear power
plants. The introduction of digital technology in safety critical systems has many advantages,
both concerning flexibility and reliability. In later years it is also becoming a necessity, as
conventional equipment is often no longer produced. There is, however, one aspect that has
caused a certain reluctance to use programmable equipment in safety critical systems, viz.
the complexity of safety assessment of the software in these systems.

The research programme at the Halden Project on software safety assessment was
argued through a joint project with Kongsberg Defence & Aerospace AS (KDA) and Det
Norske Veritas (DNV) (Gran et. al. 2000). The objective of this project was to investigate
the possibility of combining the Bayesian Belief Net (BBN) methodology with a software
safety standard, DO-178B (RTCA/DO-178B) for safety analysis of a programmable system.
Please note that this paper represents by no means any official policy of KDA.

2. Standards and Guidelines for Safety Related Software

Recently much effort has been taken to make international standards and guidelines
for the development of programmable systems for safety related applications. A generic
standard is IEC 61508 'Functional safety of electrical/electronic/programmable electronic
safety-related systems' (IEC 61508). This standard will constitute a framework for other,
more specific standards. Examples of branch specific standards are IEC-880 (IEC880),
IAEA software safety guide (IAEA ID NS 264) in the nuclear industry, and DO-178B for
safety critical software in civil aviation. A general impression from these standards is that
they are built on the same basic framework, and follow the same principles, although they
may differ in the aspects they put special emphasis on. The common framework is expressed

 2

in a software lifecycle model, where the different stages in the system development are
placed. For each of these stages requirements or recommendations are given. The division
into stages, and the starting and end stages of the lifecycle model, may differ between the
standards. The standards also differ in the requirements they are particularly emphasising.
Even if different standards vary in the degree of detail, a general characteristic of software
standards is that the requirements and recommendations are of qualitative nature, in
distinction from hardware standards where there in general are clear and objective
requirements. Ideally a requirement in a standard should be objective in two ways: the
requirement itself should be objective in an unambiguous way, and there should be an
objective way to state whether the requirement is fulfilled or not. This problem is thoroughly
discussed in (Neil and Fenton 1998).

A question in connection with software safety standards is whether the fulfilment of
their requirements actually guarantees that the system is safe. A standard is in general
developed, over a long time period, by a group of experts. Other experts around the world
then review the draft international standards. Such a thorough preparation by internationally
renowned experts should strongly indicate that a system made according to this standard is
safe. There is, however, no objective evidence that guarantees that this is true. Even the
views of experts are to a large degree based on judgement. In addition, the experts in this
field constitute a fairly limited society, so it is likely that they are strongly influenced by
each other. Of course, the safety assessment is not necessarily based on qualitative
judgement only. There are analytical methods like e.g. fault tree analysis, reverse
engineering, formal verification, etc., as well as statistical reliability evaluation based on
operating experience or testing. Testing is essential for a safety assessment of the final
product. A general impression is, however, that the standards are not very precise on
required strategies for testing, but leave this to human judgement.

A conclusion from these considerations is that it is not straightforward to decide
objectively whether a software-based system is sufficiently safe on the basis of the criteria
given in a standard only. There is a need for a systematic decision support system associated
with a standard, which can help the licensing authority or any safety assessor. It is suggested
that Bayesian Belief Nets and associated tools can provide this help.

3. Bayesian Belief Nets

Applying Bayesian Belief Nets (BBN) is a method to make reliability estimates based
on information of disparate nature, by combining quantitative observations and human
judgments. The objective of using BBNs in software safety assessment is to show the link
between observable properties and the confidence one can have in a system. The theory of
BBNs is well established, and the method has been applied with success in various areas,
including medical diagnosis and geological exploration. Recently, work has been performed
in the European projects SERENE (1999) and IMPRESS (2000) and research has resulted in
various papers, e.g. by Bertolino and Strigini (1996a, b, 1998), Neil et. al. (1996a, b, 1998,
2000, 2001), Fenton and Neil (1999), Littlewood and Wright (1995, 1997) and Dahll and
Gran 2000). There are tools to perform computations with BBNs. Here it is particularly
referred to the HUGIN tool (HUGIN; Alderyd et al. 1993; Jensen 1996) and the SERENE
methodology (SERENE).

A Bayesian Belief Net (BBN) is a connected and directed graph, consisting of a set of
nodes and a set of directed arcs between them. Uncertain variables, both events as well as
singular propositions, are associated to each node where the uncertainty is expressed by a
probability density. The probability density expresses our belief or confidence in the various
possible outcomes of the variable. This probability depends conditionally on the status of

 3

other nodes at the incoming edges to the node (the parent nodes). Some nodes are denoted as
'observable'. They represent the different observable properties of the software system and its
development. Network edges model relations between adjacent nodes, and the strength of
these relations is represented as conditional probability distributions. The computation of the
belief about a specific node (target node) is based on the rules for conditional probability
calculations backward and forward along the edges, from the observable nodes, through the
intermediate nodes to the target node (Casella and Berger 1990; Cowell et. al. 1999, Welsh
1996).

The construction of the BBN is normally made gradually. Information about the
software system and the standard (such as DO-178B) is collected and expressed via the
nodes. The nodes are connected together to a directed graph that expresses the conditional
relationship between the variables. The aim is to combine information in the net. One way is
to start from a target node and draw edges to influencing nodes. To decide the direction of an
edge, one follows the causal direction. However, this direction is not always obvious, in
particular between nodes representing qualitative variables. In these cases the direction of the
arrow often goes from higher to lower abstraction level, or from the general to the detailed
concept. For computations of a realistic BBN computer tools are necessary.

4. The test case M-ADS and the standard DO-178B

4.1 The M-ADS Airborne Equipment

The M-ADS airborne equipment was designed by KDA for installation in helicopter
aircrafts. The system provides air traffic services transmitting aircraft parameters upon
request from the air traffic control where personnel will request positioning data. The M-
ADS system is designed to automatically transmit flight information via data link to one or
more requesting air control centres. M-ADS uses existing avionics on board the aircraft to
provide aircraft position, speed and additional optional data. The most important data are the
aircraft position, position accuracy, altitude and time stamp for the data validity. The main
purpose of the M-ADS Airborne Equipment is to aid in a rescue operation if the helicopter
has made an emergency landing on the sea. A correct localization is necessary for a
successful rescue operation, the system is therefore safety critical, and the system had to be
approved by the Norwegian Civil Aviation Authority. The software development process
was performed according to the DO-178B standard.

4.2 The DO-178B Standard

The DO-178B standard is a mandatory guideline for the production of safety critical
software for airborne systems. This guideline was chosen for the study since the M-ADS
system is applied in civil aviation, and was previously qualified on the basis of this standard.
DO-178B discusses aspects of airworthiness certification that pertain to the production of
software for airborne systems and equipment used in aircrafts. To aid in understanding the
certification process the system life cycle is briefly discussed to show relationship to the
software life cycle process. It does not provide guidelines concerning the structure of the
applicant’s organization, relations to suppliers and personnel qualification criteria.

DO-178B defines, similar to IEC 61508, a set of five software levels (A, B, to E),
based on the contribution from software to potential failure conditions as determined by the
system safety assessment process. The main recommendations in DO-178B are given in a set
of 10 tables. Each table relates to a certain stage in the development and validation process,
and contains a set of objectives. The 10 stages in the development and validation process are:

 4

• = A1 Software planning process.
• = A2 Software development process.
• = A3 Verification of outputs of software requirements process.
• = A4 Verification of outputs of software design process.
• = A5 Verification of outputs of software coding & integration process.
• = A6 Testing of outputs of integration process.
• = A7 Verification of verification process results.
• = A8 Software configuration management process.
• = A9 Software quality assurance process.
• = A10 Certification liaison process.

A difference between the two standards is that most of the requirements are mandatory
in IEC61508, while the requirements are guidelines in DO-178B (Neil and Fenton 1998).

5. Construction of the BBN for M-ADS

5.1 The Construction Process

The basic philosophy of the proposed process is to relate the safety of the system to
the fulfilment of the requirements in an internationally accepted safety standard. This
philosophy can of course be questioned, but such standards are based on consensus among
experts in the area relevant for an actual safety critical system. Even if conformance to a
safety standard does not imply safety, it is a strong indication of the effort put into making
the system safe. This indication can also be used as prior probability in a Bayesian model for
a further safety assessment based on safety testing. Recall that one want to achieve a way of
stating how well the development of a safety critical system conforms to the requirements of
the standard. However, such standards do not contain any measures of conformity, but rather
a large number of requirements of rather disparate nature, which should be fulfilled. The
objective of the project was to use BBN methodology to construct such a measure.

The first action in the construction was to identify the main characteristics that may
influence the dependability of a system. One can distinguish between characteristics that are
related to the system itself and characteristic that are related to the interaction between the
system and its environment (usage of the system, potential hazards etc.). The former includes
quality characteristics, which were divided into four types:

• = Quality of the producer. (Qproducer) This includes the reputation and experience of the
producer, quality assurance policy, quality of staff etc.

• = Quality of the production process. (Qprocess) A high quality implies that the system is
developed according to guidelines for good software engineering, that all phases are
well documented, and that the documentation shows that the system at all development
phases possesses desirable quality attributes as completeness, consistency, traceability
etc.

• = Quality of the product. (Qproduct) This includes quality attributes for the final product,
as reliability, simplicity, verifiability etc.

• = Quality of the analysis. (Qanalysis) This includes all activities performed to validate the
correctness of the system during all stages of the system development. Such activities
may include model checking of the specifications, inspections and walkthroughs of the
documentation, static analysis of code and testing of the system.

The BBN was constructed in two levels. The higher level shows how nodes
representing the four types of characteristics listed above are combined with other nodes in

 5

the net and lead to nodes representing the reliability and safety of the system. At the lower
level there are four BBNs, where the four characteristics are represented as top nodes.

5.2 The Higher Level BBN

The higher-level network consists of two parts: the quality-part (or soft-evidence part)
and the testing-part, as presented in Figure 1.

Figure 1. The higher-level network, the nodes enclosed by '...' represent the 'quality-part', and
the nodes grouped by '---' represent the 'testing part'.

The quality-part consists of the four quality nodes listed in the previous section. In

addition it includes the nodes problem complexity and solution complexity. The initial nodes
or top nodes are the quality node Qproducer and the problem complexity, where the latter is
an attribute of the system to be developed, and can be measured. It is assumed that the
Qproducer directly influences the Qprocess, and that the solution complexity is influenced
by the problem complexity and the Qprocess. The same dependencies are assumed for the
Qproduct. The product quality depends upon how difficult it is to fulfil the requirements (the
complexity of the problem), and upon the ability of the development process to handle
complex systems. The Qanalysis is assumed to be influenced by the Qproducer, how well
prepared the organization is to perform an analysis, and the solution complexity, how
difficult it is to analyse. All these assumptions are in accordance with BBNs presented in the
SERENE project and networks presented by the HRP-project (Dahll and Gran 2000). The
higher-level network leads to an end node N-hypothetical. The intention is to express that the
information in the quality-part is equivalent to that the system is tested with N randomly
chosen inputs without failure. The computation of the 'quality-part' of the BBN is based on
observations in the lower level networks, and conditional probability tables associated with
the edges in the BBN.

The testing-part represented by the node 'Y: failures in N new tests', describes the

N Hypothetical

Solution Complexity

Problem complexity Qprocess

Qproduct

Qproducer

Qanalysis

P

Y

N

 6

connection between hard evidences, Y=0 failures in N tests, and the failure probability of the
system (in the context, usage, environment, etc. the system is tested). The failure probability
can be interpreted either as a number of failures on a defined number of demands, or as a
number of failures on a defined time period. For the defined number of demands N with the
constant failure probability P the random number of failures Y has a binomial distribution.

The failure probability P can be linked to a node representing the system safety, which
in addition is also depending on the usage of the system and the consequences of eventual
failures. In the described project no modelling of the dependencies with respect to the system
safety was made. Of this reason these nodes are not included in Figure 1, and no calculations
related to this node were done.

The link between the quality-part and the testing-part is given by the edge between N-
Hypothetical and P. The dependency associated with this edge, leading to the results
presented, was given by 'P = 1/ N-Hypothetical'. However, it was applied in the way that
P(P∈ [p,q]) = P(N-Hypothetical ∈ [1/q,1/p]). The same dependency would have arisen by
assuming direct dependencies between P and the nodes Qanalysis, Solution Complexity and
QProduct. For the expert team it was, however, conceptual easier by this two-step procedure.

5.3 The Lower Level BBN Identification Based on DO-178B

The lower-level BBNs were constructed by applying the quality characteristics with
top-nodes in four BBNs. Each top node was linked to intermediate nodes representing the 10
process stages of DO-178B (A1 – A10). Each of these nodes was again linked to other
intermediate nodes representing the objectives of the tables. In addition some additional
objectives to be considered in the networks were identified.

The further step was to identify a list of questions to each objective. These questions
were based on the understanding of the text in the main part of DO-178B, and they were in
general formulated so that the answer can be given by a yes or a no. However, as the
questions often are of a qualitative nature, it may be difficult to give a straight answer. It was
therefore possible to answer the question with a number between 0 and 1 as an expression of
the strength in the belief that the answer is yes (1) or no (0). This number was then used as
input to the computation of the BBN. In some cases a question was linked directly to an end-
node, in other cases the questions introduced a list of help questions to be considered, when
assessing ones belief in answering yes on the end-node.

An illustrating example is given in Figure 2. Start with the top node Qanalyses and
continue through the node referring to stage A2 'software development process', to the node
'does the source code', referring to the objective A2-11.11. To this node there is associated
four questions:
• = Does the source code possess correct implementation of all low-level requirements?
• = Does the source code possess consistency?
• = Does the source code possess tracability?
• = Does the source code possess verifiability?

 7

Figure 2. A part of the BBN for the Quality of the analysis

5.4 The prior and conditional probability tables

The probability distribution functions (pdfs) to the nodes and edges were based on
discrete probability tables. The advantages of the pdfs in discrete form are that it becomes
conceptually easier in an expert judgement to assign discrete values, and that it makes the
computation simple. An expert group assessed the conditional probability tables (cpt) to the
nodes and edges. This elicitation was done as a brainstorming exercise. In general, this
means that for each node, the expert group had to assess two conditional probabilities of the
type P(good measurement | good quality) and P(bad measurement | bad quality). Based on
general knowledge and experience in software development and evaluation, it was mostly
done by ranking the importance of the different sub nodes, and giving them probabilities
from a predefined such as {0.5, 0.7. 0.9, 0.95, 0.99}. The probability tables representing the
higher-level network, leading to the results in the next section, are presented in the
Appendix. However note, since the objective of this project was to investigate the possibility
of combining the BBN methodology with a software safety standard, the tables are not
validated. For the lower-level network about 130 conditional probability tables were
assessed.

possess consistency?

possess verifiability?

possess tracability?

possess correct
implementation of all

low-level requirements?

Qanalysis

(...)

A2 - software development process

A2-11.9: Is tracability
between ...

A2-11.11: Does the
source code:

A2-11.12: Is the
exutable object

translation into
executable code made

trustworthy?

high level req. spec.
correct unique and

(...)

 8

6. Computation on the M-ADS BBN

6.1 Description of Assumptions, Restrictions and Scenarios

As the project created a rather complex BBN (or system of BBNs), there were a large
number of conditional probability tables to be assessed. These were estimated based on
judgments in a brainstorming activity among the project participants. Of course, this opens
for some subjectivity. On the other hand, some of the project members were considered as
experts within their field.

After observing the results of four initial scenarios: no observations, KDA
observations, best case and worst case, some additional scenarios were defined. For all
scenarios observations had been made with respect to the four quality characteristics and the
node P. In this paper some results from these scenarios are presented:

• = Partial: the effect of observations during only one stage in the development and
validation process, such as A1, A2... A10.

• = Incremental: the effect of first observing during the stage A1, then A2, and so on,
representing the fact that the processes can be viewed as sequential.

• = Sensitivity analysis for the node P given different values on N.

6.2 Observations on the End Nodes

The observations were done by KDA through several interview sessions with experts
involved in the project. Totally, experts representing the software design and coding role, as
well as project management role, were involved. In each session the questions associated
with the end nodes in the network were used to assess the module in view of the scope
defined by the node. The answers were, as discussed in section 5.3, given as weighted values
on the scale from zero to one. In general the value zero means objective achieved with poor
quality, while the value one means objective achieved at highest level of quality. There also
were a few cases where a score, say 0.95, indicated objective achieved at highest level of
quality for 95% of the modules. As an example refer to a question for the BBN for
Qanalysis: 'is the software quality assurance process properly performed and recorded?' The
answer, 0.95, means that the expert board judged that software quality assurance process is
properly performed and recorded for 95% of the modules.

6.3 Results

6.3.1 The Partial Scenarios

The effect of the observations during only one stage in the development and validation
process showed that with respect to the Qproducer the processes with largest effect were the
software planning process (A1), the software development process (A2) and verification of
process results (A7). Note, however, that the effects were approximately the same for the
other processes. With respect to the Qprocess the processes with largest effect were
verification of outputs of software requirements process (A3), software configuration
management process (A8) and certification liaison process (A10), while 'other aspects' had
lowest effect.

With respect to the Qproduct the processes with largest effect were the process A7
and 'other aspects' including aspects such as e.g. human machine interfaces. Quite low effect
was observed for the processes: verification of outputs of software design processes (A4) and
the process A10. In particular it was noted that one observation, with respect to process A4,
was given the value 0. This value corresponded to a negative answer to the question 'is the

 9

software partitioning integrity confirmed?' Whether this answer was meant to be negative;
i.e. that this question is of importance to the reliability of the product, or if this question was
ranked as irrelevant, was not further discussed. In the latter case it would have been better
not to give any value to this observable node at all. This is equivalent to cutting the edge to
this node. A walk-through of the observations (Gran 2001) also identified 6 additional
questions with questionable observations. Of these 6 questions one belonged to the process
A10. The result of correcting these faults was that the surprising low effect for A4 and A10
disappeared. Further, the processes with low effect were now observed to be A1 and A8.
These were both also identified as contributors to low effect for the other quality
characteristics. On the other hand, if one assumes that the observations in fact were negative
or as low as entered, then there is identified a case where only a few negative observations
can lead to negative significant changes in the partial scenarios.

With respect to the Qanalysis the process 'other aspects' had largest effect, but also all
the other processes had a large effect. For the node P the largest effects were for the
processes A3, A7 and "other aspects", while the lowest effects were for the processes A4 and
A10. These results are in accordance with the dependency between the node P and the nodes
Qproduct and Qanalysis.

6.3.2 The Incremental Scenarios

The observations could also be added subsequently, first during process A1, then A2
and so on. This illustrates how the posterior probability distributions change from the initial
prior values towards a scenario given by all the KDA observations. For the Qproducer the
expected value came up to a top level already after observations during processes A1 and A2
were made. This does not mean that the quality of the producer will remain on this level
independent of other additional observations, but means that making additional 'good'
observations does not change our posterior results. With respect to the nodes Qprocess,
Qproduct, and Qanalysis we had to make positive observations on all the processes A1
towards A8 before the posterior probability distributions achieved the top level. For the node
P, the posterior distribution was at its top level after observations were made during process
A1 up to A3. This is the similar effect as for the Qproducer. Note that, although there is no
direct link between these two nodes, they behave in the same manner due to the propagation
of positive measurements.

6.3.3 Sensitivity Cases

A sensitivity analysis was performed for the node P given future observations on the
node N (new tests). That is, with all the observations on the quality characteristics,
represented in the node N_hypothetical, different measurements were made on the node N.
Note that making a measurement equal to m assumes that a failure occurred after m failure
free tests. The posterior probability distributions for P are shown in Figure 3. Compared to
testing alone, these results show that observing m failure free tests, where m is higher than
the hypothetical N failure free tests, will increase our belief in a shift left of the distribution
for P. In the same way, observing m lower than N will shift it right, due to the situation that
our prior belief is not in accordance with the real measurements.

 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1E-07 1E-06 0.00001 0.0001 0.001 0.01 0.1 P

100
0 1000
0 10000
0 100000
0 1000000
0

Probability Choices of N

Figure 3. The posterior probability distribution for P for different number of new tests.

7. Experiences from the Evaluation

The BBN methodology was mainly developed and applied in the AI society, but more
recently there have been attempts to apply it for estimation of the dependability of
programmable safety related systems. From the experiences from applying the methodology
on the M-ADS system, including a BBN modelling of the DO-178B guideline, we can
conclude that the BBN methodology offers a systematic way to combine quantitative and
qualitative evidences of relevance for the safety assessment of programmable systems.

Conceptually, estimation of the dependability of programmable systems is nearly
impossible to compute, since many of the characteristics to be considered are of qualitative
nature and not directly measurable, but have to be estimated. The most difficult activity was
to perform the expert judgment, in particular in the assignment of values to the conditional
probability distributions. Even if some of the project members can be considered as experts
within their fields, it is highly recommendable to make use of some expert judgment tools or
expert judgment expertise.

Another observation is that the establishment of the BBNs and prior probability
distributions was rather time consuming. However, the process of building up the network,
e.g. by making questionnaires, and the elicitation of the prior distributions were related to
DO-178B, and not to the actual system. This implies that the network and questions are of a
general nature, and can be reused in many applications. They can also be gradually improved
based on experience. Furthermore, it may be feasible to transfer this knowledge to other
safety related software engineering standards. It should also be remarked, that the project
provided an improved understanding of the DO-178B.

The experiences from collecting the different observable properties to be used in the
calculations, and performing the calculations, are that these tasks are fairly easy and not so
time consuming. Since tool support is necessary, we applied the HUGIN tool and the
SERENE methodology (Demo 1.0), and found them satisfactory.

Knowledge within BBN and probabilistic theory is of great advantage in the
construction of the networks and the assessment of the probability distributions. This
knowledge is also an advantage in the evaluation of the results from the computations.

 11

Another finding from the project is that the BBN methodology is not only applicable
in the final assessment of a system, but could be used at all stages throughout the whole
software lifecycle. The network could e.g. in this specific project be used to evaluate the
difference between two different safety levels before any other measurements are collected.
In this way it is possible to make assessments about the system before it is even designed or
implemented. In such a way corrections to e.g. the development process can be made early in
the project, in order to be able to reach specific objectives of the final product.

8. Further Work

The work presented in this paper is a part of a long-term research activity by the
OECD Halden Reactor Project (HRP), for example is a further analysis of the results
presented in (Gran 2001), and an approach to merge the networks presented here with a
network representing evidence from disparate operational environments is evaluated through
a joint-project between HRP and VTT Automation, Finland (Gran and Helminen 2001).

It has also been identified that the sub networks based upon DO-178B should be
revised and more clearly defined. That is, it should be checked that each selected node
belongs to the network, and one should also check for missing nodes. Further, the meaning
of each node state should be more clearly defined. The application of expert judgment tools
in order to obtain better expert judgments on the prior probability distributions is a related
possibility that should be exploited. The possibility of validating the BBNs or a sub network
including the topology (which node is connected to which node), and the probability
distributions (the probability of observing a certain state given that the parent node is in a
certain state) should also be investigated.

Acknowledgement

I want to acknowledge the rest of the team taking part in the modelling and evaluation
of the M-ADS case: Siegfried Eisinger, Det Norske Veritas; Eivind J. Lund, Jan Gerhard
Norstrøm, Peter Strocka and Britt J. Ystanes, all Kongsberg Defence & Aerospace; and
Gustav Dahll, OECD Halden Reactor Project. I also want to acknowledge Martin Neil for
advice and interest with respect to the use of SERENE (Demo 1.0), and Hugin Expert A/S
for allowing me the use of the HUGIN tool for my Ph.D. work, and for supporting help.

References

Aldenryd, S.H., Jensen, K.B., and Nielsen, L.B., 1993, Hugin Runtime for MS-Window, Tool
made by Hugin Expert a/s, Aalborg, <http://www.hugin.dk>

Bertolino, A., and Strigini, L., 1996a, Predicting Software Reliability from Testing Taking
into Account Other Knowledge about a Program. Proceedings 9th International
Software Quality Week (Software Research Institute, San Francisco).

Bertolino, A., and Strigini L., 1996b, Acceptance Criteria for Critical Software Based on
Testability Estimates and Test Results. Proceedings SAFECOMP96, 15th International
Conference on Computer Safety, Reliability and Security, Schoitsch (ed) (Springer-
Verlag), pp 83-94.

Bertolino, A., and Strigini, L., 1998, Assessing the risk due to software design faults:
estimates of failure rate vs. evidence of perfection, Software Testing, Verification and
Reliability, 8(3), 155-166.

Casella, G., Berger, R. L., 1990. Statistical Inference, Wadsworth & Brooks/Cole Advanced
Books & Software.

 12

Cowell, R.G., Dawid, A.P., Lauritzen, S.L., and Spiegelhalter, D.J., 1999, Probabilistic
Networks and Expert Systems (Springer-Verlag).

Dahll, G., and Gran, B.A., 2000, The Use of Bayesian Belief Nets in Safety Assessment of
Software Based Systems. Special Issues of International Journal on Intelligent
Information Systems at FLINS'98, Int. J. General Systems, 24(2), 205-229.

Fenton, N., and Neil, M., 1999, A Critique of Software Defect Prediction Models, IEEE
Transactions on Software Engineering, 25(5), 675-689.

Gran, B.A. 2001. Applying Bayesian Belief Net in Software Safety Assessment on a Real,
Safety Related Programmable System. Paper accepted for ESREL 2001, 16.-20.
September 2001, Torino, Italy.

Gran, B.A., Dahll, G., Eisinger, S., Lund, E., Norstrøm, J., Strocka, P., and Ystanes, B.,
2000, Estimating Dependability of Programmable Systems Using BBNs. Computer
Safety, Reliability and Security, Proceedings from Safecomp 2000, (Lecture Notes in
Computer Science 1943), Koornneef and van der Meulen (Eds) (Springer), pp. 309-320.

Gran, B.A., and Helminen, A., 2001, A Bayesian Belief Network for Reliability Assessment,
Computer Safety, Reliability and Security (Lecture Notes in Computer Science 2187),
Voges (Ed) (Springer), pp. 35-45.

IAEA, ID NS 264, 1999. Software for Computer systems Important to Safety in NPPs: A
Draft Safety Guide.

IEC publication 61508, 2000, Functional safety of electrical/electronic/programmable
electronic safety-related systems.

IEC 880, 1986, Software for computers in the application of industrial safety related
systems.

IMPRESS, 1999, Improving the software process using Bayesian nets. EPSRC project nr.
GR/L06683, <http://www.csr.city.ac.uk/csr_city/projects/impress.html>.

Jensen, F., 1996, An Introduction to Bayesian Networks, (UCL Press, University College
London).

Neil, M., Littlewood, B., and Fenton, N., 1996a, Applying Bayesian Belief Nets to Systems
Dependability Assessment, Proceedings of 4th Safety Critical Systems Symposium,
(Springer-Verlag), pp. 71-93.

Neil, M., and Fenton, N., 1996b, Predicting Software Quality using Bayesian Belief
Networks, Proceedings of 21st. Annual Software Engineering Workshop, (NASA
Goddard Space Flight Centre), pp. 217-230.

Neil, M., and Fenton, N., 1998, A strategy for improving safety related software engineering
standards, IEEE Trans. on SW Eng., 24(11).

Neil, M., Fenton, N., and Nielsen, L., 2000, Building large-scale Bayesian Networks, The
Knowledge Engineering Review, 15(3), 257-284.

Neil, M., Fenton, N., Forey, S., and Harris, R., 2001, Using Bayesian Belief Networks to
Predict the Reliability of Military Vehicles, IEEE Computing and Control Engineering,
12(1), 11-20.

RTCA/DO-178B, 1999, Software Considerations in Airborne Systems and Equipment
Certifications (Guideline).

SERENE, 1999, Safety and Risk Evaluation using Bayesian Nets. ESPRIT Framework IV
nr. 22187, <http://www.hugin.dk/serene/>.

Welsh, A. H., 1996, Aspects of Statistical Inference, (Wiley & Sons).

 13

Appendix: The probability tables for the higher-level network (7 tables)

5 good .06
4 .44
3 .45
2 .05

Quality of producer

1 bad .01

low .167
medium .500 Problem complexity
high .333

Quality of producer 5 good 4 3 2 1 bad

good .90 .80 .50 .10 .05
Quality of process

bad .10 .20 .50 .90 .95

Problem complexity low medium high
Quality of process good bad good bad good bad

good .90 .30 .60 .40 .30 .10
Quality of product

bad .10 .70 .40 .60 .70 .90

Problem complexity low medium high
Quality of process good bad good bad good bad

low .90 .70 .10 .10 .01 .00
medium .10 .20 .80 .60 .19 .05

Solution
complexity

high .00 .10 .10 .30 .80 .95

Solution complexity low medium high
Quality of producer 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1

good .99 .95 .90 .70 .30 .95 .90 .70 .30 .10 .80 .70 .50 .30 .10
Quality of analyses

bad .01 .05 .10 .30 .70 .05 .10 .30 .70 .90 .20 .30 .50 .70 .90

Quality of product good bad
Solution complexity low medium high low medium high
Quality of analyses g b g b g b g b g b g b

<1000000, Inf> .01 .01 0 0 0 0 0 0 0 0 0 0
<100000, 1000000] .70 .50 .01 .01 0 0 0 0 0 0 0 0
<10000, 100000] .25 .40 .70 .50 .01 .01 .01 .01 0 0 0 0
<1000, 10000] .04 .09 .25 .40 .70 .50 .70 .50 .01 .01 0 0
<100, 1000] 0 0 .04 .09 .25 .40 .25 .40 .70 .50 .10 0
<10, 100] 0 0 0 0 .04 .09 .04 .09 .25 .40 .80 .10

N
hypothetical

[0, 10] 0 0 0 0 0 0 0 0 .04 .09 .10 .90

III

The use of Bayesian belief networks for

combining disparate sources of information

in the safety assessment of software based systems
Submitted and accepted for International Journal of Systems Science, Special Issue on

Intelligent Product Support Systems.

To be published 2002.

 1

The use of Bayesian belief networks for combining disparate sources of
information in the safety assessment of software based systems

Bjørn Axel Gran

OECD Halden Reactor Project,
Institutt for energiteknikk,

P.O.Box 173, N-1751 Halden, Norway
<bjorn.axel.gran@hrp.no>

ABSTRACT: The paper discusses how disparate sources of information can be combined in
the safety assessment of software-based systems. The emphasis is put on an emerging
methodology, relevant for intelligent product support systems, to combine information about
disparate evidences in a systematic way based on Bayesian Belief Networks. The objective is
to show the link between basic information and the confidence one can have in a system. It is
also illustrated and discussed how to combine the Bayesian Belief Net (BBN) method with a
software safety standard (RTCA/DO-178B) for safety assessment of software-based systems.
Finally the applicability of the BBN methodology, and experiences from co-operative
research work together with Kongsberg Defence & Aerospace and Det Norske Veritas, and
ongoing research with VTT Automation are presented.

1 Introduction

With the use of programmable equipment in safety critical systems a new aspect was
introduced, to produce safe software. Therefore there is in many application areas necessary
with a thorough safety assessment of the system, including intelligent product support
systems, for a final acceptance or licensing of the system. For a hardware component, even
in a safety critical system, it is accepted to assume that a failure can occur during the lifetime
of the system, given that the expected frequency and/or consequence of the failure is
sufficiently low. The reliability of a hardware system is thereby based on failure statistics,
i.e. one measures the failure frequency in standard components and computes the system
reliability on the basis of this, although that this practise may ignore the inherent faults in the
hardware. The characteristics of software make it difficult to carry out such a reliability
assessment. Software is not subject to ageing, and any failure that occurs during operation is
due to faults that are inherent in the software from the beginning. Furthermore, any
randomness in software failure is due to randomness in the input data, because software
behaviour change over time due to maintenance activities, or due to the fact that
environments, such as hardware, operating system and user needs, change over time. As a
consequence, there is a problem with the assessment and licensing of systems, both hardware
and software, with inherent faults.

As discussed by Dahll and Gran (Dahll and Gran 2000) one can distinguish between
three principles for licensing: rule based, risk based, and judgement based. Rule based
licensing implies that an assessor checks that a system fulfils a set of criteria given in a
safety standard. The rules are easy to follow for the developer and easy to check for the
assessor. On the other side, this method easily gets very rigid and inadequate to handle new
technology. The rules for safe software are normally based on consensus among experts of
what is required for safety critical software. This is expressed through standards and

 2

guidelines. In a risk based assessment the objective is rather to base the licensing on
assessing the probability of potential risks associated with the system. This means to identify
potential hazards, and demonstrate that the probabilities of these hazards are kept under a
certain safety integrity level. In practice, however, the assessment of safety critical software
are often faced with the problem of approving systems for which there are no clear rules, and
for which it is difficult to apply probabilistic methods. The rules given in standards and
guidelines are often imprecise, or they are not directly applicable for an actual system. One
possibility for assessors and licensing authorities is to make their judgement based on the
opinion of experts in various fields, including process knowledge, reliability engineering,
human factors etc. The combined judgement of the different evidences about the system and
its environment constitutes the basis for approval or not.

Another approach to assess software with inherent faults is to apply various
reliability growth models (Xie, 1991). They are, however, mainly applicable to large
commercial systems, and not to safety critical software. The main reason is that a computer
program implemented in a safety critical system presumably contains no known faults, since
any revealed fault would be corrected. There is a possibility that it contains unknown faults.
An alternative reliability measure is then the confidence in fault freeness of the program, or
more generally the upper limit of the 'bug-size' (Voas et al. 1993, Gran and Thunem 1998).
A way to measure this confidence is based on statistical testing. The validity of this
measurement is, nevertheless, highly dependent on a proper choice of test data (Leveson
1995). Another problem with these measures is that they do not take into account that there
are several factors that are important to software reliability (Dahll 1997), even if they cannot
be put directly into a reliability formula. Some of these are of qualitative nature, like the
producer�s reputation, the development quality etc. Others are measurable, but not directly
connected to reliability estimation, like program size, program complexity etc. The
connection between these quantities and software reliability is also of qualitative nature. It is
also suggested to apply traditional methods in probabilistic safety assessment (PSA) to
software (Leveson 1995, Dahll, 1997, Cudleigh and Catmur 1992). As reasons for this
choice it is argued that these methods are well tried, standardised, documented and familiar
to the customers (Stålhane 1997). Furthermore, it allows the customer to contribute with
their knowledge about the system. An approach of combining traditional methods for risk
analysis with semi-formal modelling is argued through the description of the EU-project
CORAS (IST-2000-25031).

The focus of this paper is on the use of Bayesian Belief Nets (BBN) to combine
evidences from several information sources in the safety assessment of software based
systems. This methodology has mainly been developed and applied in the AI society. More
recently, it has also been applied to software safety assessment. Work in this area has been
performed in the European projects SERENE (1999), IMPRESS (2000) and DeVa, in
particular through previous research at the Centre for Software Reliability at City University,
and present research at Queen Mary, University in London. The research has resulted in
various papers, e.g. by Bertolino and Strigini (1996a, b, 1998), Neil et. al. (1996a, b, 1998,
2000, 2001), Fenton and Neil (1999) and Littlewood and Wright (1995, 1997).

This has also been the topic for research at the OECD Halden Reactor Project (HRP)
(Dahll and Gran 2000). An attempt to combine the BBN technology with the rules of a
standard for safety critical software, RTCA/DO-178B (1999) was done in an experimental
project, (Gran et al. 2000), carried out by a consortium composed of HRP, and the
Norwegian companies Kongsberg Defence & Aerospace AS (KDA) and Det Norske Veritas
(DNV). Another sub-project of this long-term research is a co-operative project between
HRP and VTT-Automation in Finland. One objective of this work is to investigate how the

 3

network, representing the software safety guideline RTCA/DO-178B and different quality
aspects, (Gran et al. 2000), can be merged with a network, developed by VTT (Helminen
2000), representing evidence from disparate operational environments. This paper describes
experiences from both projects.

Figure 1. Influence graph of a safety acceptance and acceptance process of software

information
on product

information
on production

iInformation
on previoiu
 usage

information
about
testing

develop-
ment
quality

fault
avoidance

complexity

fault
likelihood

testability

test data
post-
release
faults

pre-
release
 faults

usage
profile

'oracle'

reliability
models

 test
results

confidence
in fault
freeness

reliability
assessment

safety
defences

safety
assessment

- production method
- coding standard
- quality control
- previous products

- user reports
- number of installations
- total usage time
- usage of particular modules
- fault reports
- earlier assessments

- code listings
- functionality description
- modes of operation
- number and types of
- process input data
- code reviews

analysis results:
- failure modes
- software metrics
 - complexity
 - size
- comprehensibility
- time aspects

information about
testing:
- debugging reports
- producer's test data
- acceptance test

- diversity and redundancy
- dependent failures
- failure detectability
- safety checks

other acceptance
criteria

acceptance

potential risks
to plant and
environment

hazard/risk
analysis

analysis
 of
information

 4

2 The BBN methodology

2.1 Background

Bayesian Belief Networks (BBN) methodology was introduced in the 1980s, and is
in particular described in the book by Pearl (1988) and the paper by Lauritzen and
Spiegelhalter (1988). In 1993 the tool HUGIN (Aldenryd, Jensen and Nielsen 1993, Jensen
1996) was introduced, which made BBN's feasible. The theory, however, is based on the
Bayes Rule, discovered by Sir Thomas Bayes (1744-1809) which says for two variables X
and Y that P(X|Y)= P(Y|X)*P(X)/P(Y). By allowing {Xi} be a complete set of mutually
exclusive instances of X, this formula can be extended. A description of Bayesian
interference, Bayesian Network methodology and theory for calculations on BBNs can also
be found in the books by Gelman et al. (1995), Welch (1996), Cowell et al. (1999), the report
by Pulkkinen and Holmberg (1997), and older references such as Whittaker (1990), and
Speigelhalter et al. (1993).

A Bayesian Belief Net (BBN) is a connected and directed graph, consisting of a set
of nodes and a set of directed arcs (or links) between them. Uncertain variables, both events
and singular propositions, are associated to each node where the uncertainty is expressed by
a probability density. The probability density expresses our confidence to the various
variable outcomes, and depends conditionally on the status of the 'parent' nodes at the
incoming edges. The nodes and associated variables can be classified into three groups:
• = Target node(s) - the node(s) about which the objective of the network is to make an

assessment. A typical example of such nodes is 'No faults in a program'.
• = Intermediate nodes - nodes for which one have limited information, or only 'beliefs'. The

associated variables are the hidden variables. Typical hidden variables represent quality
aspects such as 'development quality', 'producer�s reputation', or 'quality at a certain stage
of the development' without discussing 'quality' in detail.

• = Observable nodes - nodes which can be directly observed. Some examples are nodes
representing observable properties about the system for evaluation: 'no failures during
testing' and 'all quality requirements are fulfilled'.

Application of the BBN method consists of three tasks:
• = construction of BBN topology,
• = elicitation of probabilities to nodes and edges, and
• = making computations.

2.2 The construction of BBN topology

The literature on BNN has mostly presented small 'complete' BBN's (Neil et al.
2000). The construction of small BBN can be made gradually. Information about the system
is collected and expressed via the nodes. The nodes are connected to a directed graph that
expresses the conditional relationship between the variables. The aim is to combine
information in the net. One way is to start from a target node and draw edges to influencing
nodes. To decide the direction of an edge, one follows the causal direction. However, this
direction is not always obvious, in particular between nodes representing qualitative
variables. In these cases the direction of the arrow often goes from higher abstraction to
lower abstraction, or from the more general concept to the more detailed. A general
interpretation of an arrow between two nodes A and B is that a 'belief' in A implies
expectations on B. The practical procedure is to start with constructing a BBN, containing
nodes representing high-level information. In figure 1 the influence graph of a 'safety

 5

acceptance and acceptance process of the software' (Dahll 2001) is presented. It is not itself a
BBN, but quite similar, so it is fairly straightforward to construct a high level BBN for safety
assessment based on this (Dahll and Gran 2000), see the BBN shown in figure 2.
When building larger-scale BBN's this procedure is rather effort consuming. Neil, Fenton
and Nielsen (2000) offers a solution based on building blocks (idioms), which serve solution
patterns. These can then be combined into larger BBN's. This approach is for example
applied in the SERENE project (1999), and has been applied to construct large-scale BBN's
for predicting software safety. The use of idioms is also applied for the construction of the
BBN's presented in the next chapter. However, the BBN's are not of such large-scale, so it is
also possible to argue through the 'causal direction approach'.

Figure 2. BBN for System Quality

2.3 The elicitation of probabilities

The second step is the elicitation of probability distribution functions (pdfs) to the
nodes and edges. To begin with, one gives prior pdfs the top nodes, and conditional pdfs for
the influences represented by the edges. These pdfs may be either continuous functions or
they have a discrete form. The latter means that the ranges of the variables are divided into
finite number of states. A typical example of a continuous conditional pdf is when the start
node is reliability and the end node is an observable node: 'number of failures in test'. The
variable corresponding to the start node could then be the probability (p) of failure per test
run, and the observation could be: n failures in N test runs. The conditional pdf would then
be given by the binomial distribution with parameters N and p.

The advantages of the pdfs in discrete form are that it becomes conceptually easier in
an expert judgement to assign discrete values, and that it makes the computation simpler.
The conditional probabilities for edges between discrete variables are given as conditional

Producer
Quality Development

Quality

Documen-
tation

System
Quality

Complexity

Testing

User
experience

Reliability

QA policy

Quality
control

QA
standards

Quality
control
documents

Producer�s
pedigree

User
experience

Quality
Measure

failures
in other
products

total
usage
time

no. of
products

 6

probability tables between the states of the variables associated with the start node and the
end node of the edge respectively. However, since many of the aspects to be considered are
of qualitative nature and not directly measurable estimation may be difficult. This was
observed for the co-operative project between HRP, KDA and DNV (Gran et. al. 2000), even
if some of the project members can be considered as experts in their fields. It is therefore
highly recommendable to make use of some expert judgment tools or expert judgment
expertise. Another observation was that the establishment of the BBNs and prior conditional
pdfs was rather time consuming.

The problem of defining the node probability tables is also addressed by Neil,
Fenton and Nielsen (2000). They applied a 'divide and conquer' approach to build the BBN's.
This manages the complexity of the BBN's, and thereby reduces the number of probability
values to be addressed.

2.4 Making computations

Making computations with BBNs above a certain size and complexity is rather
difficult by hand, but is rather easy by applying the latest computerised tools. At HRP the
HUGIN tool (Aldenryd, Jensen and Nielsen 1993) has been used, and in the co-operative
project with KDA and DNV both HUGIN and the SERENE methodology (1999) was
applied.

The computation of our belief about a specific node (target node) is based on the
rules for conditional probability calculations given by the Bayesian methodology. The
procedure is to insert observations in the observable nodes, and then use the rules for
probability calculation backward and forward along the edges, from the observable nodes,
through the intermediate nodes to the target node, which again can be an intermediate node
in a BBN at a higher level. Forward calculation is straight forward, while backward
computation is more complicated (Spiegelhalter et. al. 1993). For details on computations
see the references in the beginning of this chapter, and for good examples on making
computations with BBN's see for example Pearl (1988) and Jensen (1996).

3 BBN's based upon RTCA/DO-178B, the M-ADS project

3.1 Background

The attempt to combine the Bayesian Belief Nets technology with the rules of a
standard for safety critical software, RTCA/DO-178B (1999), hereafter referred to as DO-
178B, was done in an experimental project carried out by a consortium composed of KDA,
DNV, and the HRP. First of all the project goal was to evaluate the use of BBN for
investigating the implementation of the DO-178B standard for software approval in the
commercials world. To reach that objectives a computerized system for automated
transmission of graphical position information from helicopters to land based control stations
was selected and studied (Gran et. al. 2000). Please note that references to the system
developed by KDA and conclusions here represent by no mean any official policy of KDA.

The project emphasized the practical evaluation of the BBN methodology by trying
it out on a realistic test case: a computerized system for automated transmission of graphical
position information from helicopters to land based control stations (M-ADS). The M-ADS
airborne equipment was designed by KDA for installation in helicopter aircrafts. The system
provides air traffic services with aircraft parameters upon request from the air traffic control
where personnel will request positioning data. The work described below uses parts of the

 7

M-ADS system to exemplify the software development process according to DO-178B
standard.

3.2 RTCA/DO-178B

The purpose of the DO-178B standard (1999) is to provide guidelines for the
production of safety critical software for airborne systems. This guideline was chosen for the
study since the M-ADS system is applied in civil aviation, and was previously qualified on
the basis of this standard. DO-178B discusses aspects of airworthiness certification
pertaining to the production of software for airborne systems and equipment used in aircraft.
To aid in understanding the certification process the system life cycle is briefly discussed to
show relationship to the software life cycle process. It does not provide guidelines
concerning the structure of the applicant�s organization, relations to suppliers and personnel
qualification criteria.

DO-178B defines a set of five software levels (A to E), based on the contribution
from software to potential failure conditions as determined by the system safety assessment
process. The main recommendations in DO-178B are given in a set of 10 tables, see descrip-
tion in table 1. Each table relates to a certain stage in the development and validation proc-
ess, and contains a set of objectives. A difference between the DO-178B and e.g. IEC61508
(2000) is that most of the requirements are mandatory in the latter, while the requirements
are guidelines in DO-178B (Neil and Fenton 1998).

Table 1: The stages in the development and validation process given by DO-178B
 Stage in the development and validation process
A1 Software planning process.
A2 Software development process.
A3 Verification of outputs of software requirements process.
A4 Verification of outputs of software design process.
A5 Verification of outputs of software coding & integration process.
A6 Testing of outputs of integration process.
A7 Verification of verification process results.
A8 Software configuration management process.
A9 Software quality assurance process.
A10 Certification liaison process.

3.3 The Construction of BBN on the higher level

The BBN for DO-178B was constructed at two levels. The higher level shows how
nodes representing four quality aspects are combined with other nodes in the net, and leads
to a node 'P(failed state)', representing the 'probability of finding the system in a failed state',
see figure 3. The lower level shows how nodes representing the four quality aspects are
related to objectives of D0-178B. The four quality aspects were:
• = Quality of the producer. (Qproducer) This includes the reputation and experience of the

producer, quality assurance policy, quality of staff etc.
• = Quality of the production process. (Qprocess) A high quality implies that the system is

developed according to guidelines for good software engineering, that all phases are well
documented, and that the documentation shows that the system at all development phases
possesses desirable quality attributes as completeness, consistency, traceability etc.

• = Quality of the product. (Qproduct) This includes quality attributes for the final product, as
reliability, simplicity, verifiability etc.

 8

• = Quality of the analysis. (Qanalysis) This includes all activities performed to validate the
correctness of the system during all stages of the system development. Such activities
may include model checking of the specifications, inspections and walkthroughs of the
documentation, static analysis of code and testing of the system.

In addition to the quality nodes it includes the nodes 'problem complexity' and

'solution complexity'. The initial nodes or top nodes are the nodes: 'Qproducer' and 'problem
complexity', where the latter is an attribute of the system to be developed, and can be
assessed. It was assumed that the 'Qproducer' directly influences the 'Qprocess', ant that the
'solution complexity' was influenced by the initial 'problem complexity' and the 'Qprocess'.
The same dependencies were assumed for the 'Qproduct'. Remark however, that this does not
mean that the product quality depends only upon how difficult it is to fulfil the requirements
(the complexity of the problem), and upon how good the development process handle
complex systems. An assessment of the product will also be based upon assessments of the
lower nets. The 'Qanalysis' was assumed to be influenced by the 'Qproducer', how well
prepared the organization is to perform an analysis, and the 'solution complexity', how
difficult it is to analyse. All these assumptions were in accordance with BBNs presented in
the SERENE project (1999) and networks presented by HRP-project (Dahll and Gran 2000).

Finally it was assumed that a node representing the 'P(failed state)'is dependent on
the factors 'Qanalysis', the 'Qproduct' and the 'solution complexity'. This node is not to be
viewed as a failure rate representing a specific usage or safety function, but rather as a
deterministic property of the system expressing fault content. One interpretation is the size of
the inherent faults in the software. Assuming that no failures are found or modifications are
made during later testing of the system, this true failure rate is not changed; only the
confidence in the reliability, or freeness of faults, of the program is enhanced. Thereby it also
offers a support in the assessment of the software.

Figure 3. The upper network for DO-178B

3.4 The Construction of BBN on the lower level

We constructed a lower level BBN for each of the four quality aspects. This was
done by first putting the quality aspects as top-nodes in the BBNs. Each top node was then
linked to intermediate nodes representing the 10 lifecycle stages represented by the tables A1
to A10 of DO-178B. Each of these nodes were again linked to other intermediate nodes,
representing the objectives of the tables.

P(failure state)

Solution Complexity

Problem complexity Qprocess

Qproduct

Qproducer

Qanalysis

 9

The associating of the different objectives to the different quality aspects was done
by a group of experts, consisting of experts related to the standard itself, development in
accordance with the standard, and experts within safety assessment of critical systems. Each
objective was identified to belong to one or more of the quality aspects. In addition a stage
'hmi-aspects' representing objectives related to human-machine interfaces was added.

The further step was to identify a list of questions to each objective. These questions
were based on the understanding of the text in the main part of DO-178B, and then
formulated so that the answer could be given by a 'yes' or a 'no'. Figure 4 presents an
example representing the list of questions associated with two of the objectives for the
software development process (A2) related to the quality of analyses. A list of the questions
identified related to the 'quality of product' for (A2) is presented in table 2.

Table 2: The questions related to the lifecycle stage A2: software development process
Objective Question:
sw req.
data

Are all system functional requirements, safety requirements and auxiliary requirements
specified in the software specification?
Are all tasks specified in the requirements also included in the design?
Does the design adequately describe the information flow between components?
Does the design address sequencing, concurrency and time related information?
Does the design adequately describe the data structures and their properties?
Is it a clear separation in the design between safety critical and not safety critical parts of
the system?
Are measures for fault tolerance, like diversity or redundancy designed into the system?
Are control and data flow monitored when safety requirements dictate, e.g. through
watchdog timers, reasonableness checks, input data checks etc.?

design
descrip-
tion

Are the responses to failure conditions consistent with safety related requirements?

3.5 The elicitation of probability tables

The elicitation of conditional probability tables (cpt) to the nodes and edges was
done as a brainstorming exercise by the expert group. In general, this means that for each
node, the expert group had to assess two conditional probabilities of the type P(good
measurement | good quality) and P(bad measurement | bad quality).

The first probability was relatively easy to assess. Based on general knowledge and
experience in software development and evaluation, it was mostly done by ranking the
importance of the different sub nodes, and giving them probabilities from a predefined such
as {0.5, 0.7. 0.9, 0.95, 0.99}. The latter, however, became very difficult. Often, where the
experts had stated that there was a dependency between good quality and a specific good
measurement, they could not state the opposite effect. The approach of ranking the nodes
had also restricted success. Even if some of the project members can be considered as
experts within their fields, it is, however, highly recommendable to make use of some expert
judgement tools or expert judgement expertise.

The establishment of the BBNs and prior pdfs was rather time consuming, and
would be even more so for a system. However, the generation of the BBNs was related to
DO-178B and on safety assessment in general, and not to the actual system. This implies that
the BBNs have a general nature, and can be reused in many applications. They can also be
gradually improved based on experience. Remark also that on the lower level, as illustrated
in figure 4, all nodes had only one parent. This made the complexity of the BBN's
manageable. In the case of nodes with more incoming edges, it would be a good solution to
apply the approach suggested by Neil et al. (2000)

 10

Figure 4. Example of a list of questions associated with two of the objectives for the software
development process related to the quality of analyses

3.6 Computations

Finally all the BBNs were implemented, and all the conditional probability tables
together with observations from the system development (KDA) were fed into the HUGIN
and SERENE tools. This made it possible to make a variety of computations (Gran et al.
2000), with the aim to investigate different aspects of the methodology, such as:
• = What is the effect of observations during only one lifecycle process?
• = How does the result change by subsequent inclusion of observations from the lifecycle

processes?
• = How sensitive is the result to changes in individual observations?

Since the number of possible scenarios is exploding when one wants to explore both
different sets of observations and prior cpts, a limited number of computations were made.
However, an interesting observation was that we rapidly found surprising results that re-
quired further discussion and calculations. These results provided a list of topics for further
research, both with respect to topological issues and with respect to different cases of obser-
vations. The topics are all issues addressed through ongoing research activities.

One example from this research is the importance of a good quality assurance of the
observations entered into a BBN. The trigging event was the discovery of a wrong entered
observation. Correcting this error demonstrated that one negative observations can have a

Qanalyses

(...)

A2 - software development proc-

A2-11.9: Is tracability between ...

A2-11.11: Does the source code:

A2-11.12: Is the exutable object
code correct?

translation into executable code
made trustworthy?

high level req. spec. correct
unique and consistent?

(...)

possess verifiability?

possess tracability?

possess consistency?

possess correct implementation of
all low-level requirements?

 11

significant effect on a partial results. The evaluation also showed that one negative
observation, or a set of a few negative observations is not enough to change the overall
results.

3.7 Experiences from the M-ADS project

One objective of the project was to investigate the possibility to transfer the
requirements of a software safety standard into a BBN. A review of various software
standards revealed that they are built on the same basic framework, and follow the same
principles, although they may differ in the aspect they put special emphasis on. The results
and experiences with using the avionics standard DO-178B in the test case can therefore be
seen as representative also for other software safety standards, including those used in the
nuclear industry.

The BBN was constructed in two levels. The higher level based on the four qualities:
Quality of the producer, Quality of the production, Quality of the product, and Quality of the
analysis is general, and independent of the standard. The lower-level BBN reflects the
recommendations of DO-178B, in the way that the four qualities were represented as top
nodes in four sub-BBNs, whereas the objectives given in the tables in appendix A of DO-
178B were represented as observable end nodes in the BBNs. These objectives were
transformed into questions, and the answers to these were the observations used in the BBN
computation. The construction of the BBN as it was done in this study is not unique, but
should be considered as one possible solution in an experimental investigation.

The prior probability distributions and conditional belief distributions represent
quantities that reflect a confidence in the standard, and can therefore not be generated on the
basis of the standard itself. They were therefore determined in the 'expert judgement session'.
The use of subjective numbers, and the numbers itself can be a separate topic for discussion.
The objective of determining the numbers in this project was also not to find the best or most
correct numbers, but to illustrate the approach. The conclusion from the project was that this
way to construct the networks, combined with questionnaires, seems to be the promising
mode of proceeding. Furthermore, the BBN methodology offers a systematic way to
combine quantitative and qualitative evidences of relevance for the safety assessment of
programmable systems

Another observation through the project was that the BBN methodology is not only
applicable in the final assessment of a system, but could be used at all stages throughout the
software lifecycle. The network could e.g. in this specific project be used to evaluate the
difference between two different safety levels before any other measurements were
collected. In this way it is possible to make assessments about the system even before it is
designed or implemented. In such a way corrections to e.g. the development process can be
made early in the project, in order to be able to reach specific objectives of the final product.

4 Extending the BBNs based upon RTCA/DO-178B

Within the nuclear field there is an increased focus on risk based regulation of
nuclear power plants. This is in accordance with the new generic guideline for
programmable safety related systems, IEC-61508 (2000), where probabilistic safety integrity
levels are given as requirements for safe operation. Therefore, there is a need to establish
methods to assess the reliability of programmable systems, including the software. One
approach in this research is an on-going long-term joint research activity between HRP and
VTT Automation (VTT) in Finland.

 12

One objective of this co-operative project is to investigate how a network,
representing the software safety guideline and different quality aspects, as described in the
previous chapter, can be merged with a network, developed by VTT, representing evidence
from disparate operational environments (Helminen 2000).

4.1 The VTT Approach

The main sources of reliability evidence in the case of safety critical systems
considered in the VTT approach are depicted in fig 5, (Neil et. al 1996a). A similar version
of this model has been presented by Stålhane et al. (1993). Part of the evidence may be
directly measurable statistical evidence, such as the evidence obtained through operational
experience and testing. Part of the evidence may be qualitative characterization of the system
such as the design features and the development process of the system.

The qualitative characterization of the design features and the development process
follows certain quality assurance and quality control principles, which are based on
applicable standards. Running a good development process alone does not guarantee a more
reliable product. However, the more strict standards the characterizations fulfil, combined
with good testing results, the more confidence one will become in having a reliable system.
The evidence based on qualitative characterization can be considered as soft evidence, while
evidence obtained from operational experience and testing can be considered as hard
evidence. The exploitation of soft evidence in the reliability analysis of software-based
system requires extensive use of expert judgment making it quite an unforeseeable matter
and therefore the VTT approach is mainly focused to the utilization of hard evidence.

The reliability of a software-based system is modelled as a failure probability
parameter, which reflects the probability that the automation system does not operate when
demanded. Information for the estimation of the failure probability parameter can be
obtained from the disparate sources of hard and soft evidence. To obtain the best possible
estimate for the failure probability parameter of the target system all evidence should to be
combined.

The principle idea of the estimation method is to build a priori estimate for the
failure probability parameter of software-based system using the soft and hard evidence
obtained from the system development process, pre-testing and evaluating system design
features while system is produced, but before it is deployed. The prior estimation is then
updated to a posterior estimate using the hard evidence obtained from testing after the
system is deployed and from operational experience while the system is operational. The
difference between disparate evidence sources can be taken care in the structural modelling
of the Bayesian Network model.

Figure 5. Main sources of reliability evidence in a case of safety critical system

Operational Experience

Development Process Design Features

Testing

System Reliability

 13

To analyse the applicability of Bayesian Networks to the reliability estimation of
software-based systems Bayesian Network models for safety critical systems are built. The
different models are distinguished by the evidence, which is collected from different systems
and from different operational profiles. The modelling is done using the WinBUGS program
(Spiegelhalter et. al. 1996).

4.2 Evidence from one system with one operational profile

The Bayesian Network shown in the left part of figure 6 describes a system, for
which the observed number of failures Y is binomial distributed with parameters N and P
(Helminen 2000). Parameter N describes the number of demands in the single test cycle and
parameter P is the random failure probability parameter. This model can be further extended
to represent a system with several test cycles using the same operational profile (Helminen
2000).

To increase the flexibility of the model depicted in the left part, a logit-transformed
P parameter " is included into the network, and the network becomes as shown to right in
figure 6. The Bayesian network represented in model 1 can be used in the reliability
estimation of a software-based system attached with binomial distributed hard evidence
under unchanged operational profile.

The hard evidence obtained for the reliability estimation of software-based systems
is usually obtained from both testing and operational experience. If the testing has been
carried out under the same operational profile as the operational experience, the Bayesian
Network becomes same as the network shown in figure 6.

Figure 6. Bayesian network for one test cycle (right), and the Model 1 (left)

4.3 Evidence from one system with more operational profiles

Often the system is tested with different operational profiles under different
operational environments. The results from applying the different operational profiles
provide different failure probabilities for the same system. However, the failure probability
from testing gives us some information about the failure probability of the system
functioning in a different operational profile than where the testing was made. This evidence
provided by testing is valuable and one should make a good use of it by taking into account
the difference in the operational profiles when building the model.

Helminen (2000) solve the problem of different operational profiles by first
connecting the binomial distributed evidence from different operational profiles to separate
failure probability parameters. Then the logit-transformed failure probability parameters are
connected to equal each other. The difference in the operational profile of two failure
probability parameters is introduced in the model by adding a normal distributed random

P

Y

N P

Y

N

Θ

 14

term #*, with parameters µ* and $*, to the logit-transformed failure probability parameter
obtained from testing. The parameters of the normally distributed random term correspond to
our belief of the difference between the two operational profiles. The Bayesian Network
representing the case is illustrated in figure 7 when considering only the upper layer.

Figure 7. The model for two operational profiles

4.4 Merging the HRP approach and the VTT approach

The merging of the two approaches is based on the on the network presented in figure 3 and
the network shown in figure 6 (Gran and Helminen 2001). The merged network is displayed
in figure 8. The merging was done by replacing the node 'P(failure state)' by the node "priori.
This was done by transformation of the conditional probability tables for P(failure state) into
continuous normal distributions.

Figure 8. The merged network from the VTT and HRP approaches

P

Y

N P*

Y*

N*

Θ
Θ*

Ω*

µ* σ*

Solution Complexity

Problem complexityQproces

Qproduct

Qproducer

Qanalyses

Y: failures in N ...

" priori

P N

"

 15

Each of the quality aspect nodes was connected to quality aspects, as described in

section 3.4. That allowed us to directly insert the observations from the M-ADS evaluation
in the network, and for the merged network we performed calculations for two the case of no
M-ADS observations and with the M-ADS observations, running from N=100 to
N=1000000.

That allowed us to directly insert the observations from the M-ADS evaluation in the
network, and for the merged network we performed calculations for two different scenarios:
• = For were we have no M-ADS observations, but zero failures (Y=0), running from

N=100 to N=1000000.
• = For were we have the M-ADS observations, and zero failures (Y=0), running from

N=100 to N=1000000.
For both scenarios the target was the node for the failure probability. In figure 9 both

the median and the 97.5% percentile posterior distribution values for P on the logarithmic
scale are shown. The values for N=1, are the values representing the prior distributions, i.e.
before starting the testing (and observing Y=0). Remark that the curves for the 97.5%
percentiles are somewhat "bumpy". This due to the fact, that the values are deduced from
posterior histograms.

Figure 9. Median and 97.5% percentile posterior distribution values for P on the logarithmic
scale, for the scenario of no observations and the scenario with the observations

4.5 Experiences from the HRP-VTT project

The main differences between the two studies lie in the difference of focus areas. The work
by VTT mainly focuses to studying explicitly the influence of prior distributions to the
reliability estimation and to the investigation of combining statistical evidence from
disparate operational environments. The work by the HRP has mainly focused on how to

0,000001

0,000010

0,000100

0,001000

0,010000

0,100000

1,000000
1 10 100 1000 10000 100000 1000000

N

P
Sc.1, median HUGIN Sc.2, median, HUGIN

Sc.1, 97.5% HUGIN Sc.2, 97.5% HUGIN

 16

model a software safety guideline, DO-178B, and how to combine 'soft evidences' in the
safety assessment of a programmable system. The key idea is to split the larger entities of
soft evidence into smaller quantities. Another difference is the comprehensive usage of
continuous distributions in the VTT work, which is somewhat a different approach than the
approach used in the HRP study. This is however not discussed in this paper. The merged
networks show how the two approaches can be merged. It gives an extended description of
the quality aspects, originally modelled by the node " in the VTT approach, and it shows
how different operational profiles, can be included in the approach from HRP.

5 Conclusions

The conclusion from the research presented in this paper is that the use of Bayesian
Belief Networks for combining disparate sources of information in the safety assessment of
software based systems, combined with questionnaires, offers a systematic and promising
mode of proceeding.

The experiences with modelling the requirements of the avionics standard
RTCA/DO-178B as a BBN, point in the direction that this approach can be transferred to the
modelling of other software standards built on the same basic framework, and which follow
the same principles. This holds even though they may differ in the aspect they put special
emphasis on.

The BBN was constructed in two levels. The higher level was based on the four
qualities: quality of the producer, quality of the production, quality of the product, and
quality of the analysis is general, and independent of the standard. The BBN was based on
the research discussed in chapter 2 but there is a need for validation and experimental
investigation with respect to the network. Results obtained from calculations on the BBN, as
presented in (Gran et. al. 2000), seems not only to be a consequence of the 'soft evidences' in
the lower level networks or the 'hard evidences' in the testing, but also a result of the
underlying topology. The lower-level BBN, reflecting the recommendations of RTCA/DO-
178B, could also need a validation. A hypothesis is that a reallocation of objectives or
questions only will give local (or partial) effects, and not changes in the overall assessment.
A reason for this could be that there are a few 'soft evidences' and dependencies connecting
this evidences which are more sensitive than the other. So fare, there has, however, not been
possible to find such evidences.

Although the BBNs and results were based upon a real application, this approach has
not been applied to a real development or assessment. A first try could be to apply the
approach for decision support in the approval of safety critical programmable systems.
Another try could be to apply the approach as decision support early in the development of a
system, for example as an intelligent product support system, in order to point on where to
set in the effort and thus being able to reach specific objectives of the final product.

6 Acknowledgement

I want to acknowledge the different persons that have taken part in this research.
First of all Gustav Dahll, OECD Halden Reactor Project, which has taken active part in all
the discussions behind this research. Then the rest of the project team that performed the 'M-
ADS project': Siegfried Eisinger from Det Norske Veritas, and Eivind J. Lund, Jan Gerhard
Norstrøm, Peter Strocka, and Britt J. Ystanes from Kongsberg Defence & Aerospace AS. I
want to thank to KDA for allowing me to further work applying their observations. Also
thanks to Atte Helminen and his colleagues at VTT Automation for bringing in new ideas

 17

and co-operative work. Finally, acknowledge to Hugin Expert A/S for allowing me to use the
HUGIN tool for my Ph.D.

References

Aldenryd, S.H., Jensen, K.B., and Nielsen, L.B., 1993, Hugin Runtime for MS-Window, Tool
made by Hugin Expert a/s, Aalborg, <http://www.hugin.dk>

Bertolino, A., and Strigini, L., 1996a, Predicting Software Reliability from Testing Taking
into Account Other Knowledge about a Program. Proceedings 9th International Software
Quality Week (Software Research Institute, San Francisco).

Bertolino, A., and Strigini L., 1996b, Acceptance Criteria for Critical Software Based on
Testability Estimates and Test Results. Proceedings SAFECOMP96, 15th International
Conference on Computer Safety, Reliability and Security, Schoitsch (ed) (Springer-
Verlag), pp 83-94.

Bertolino, A., and Strigini, L., 1998, Assessing the risk due to software design faults:
estimates of failure rate vs. evidence of perfection, Software Testing, Verification and
Reliability, 8(3), 155-166.

CORAS, 2000, A Platform for Risk Analysis of Security Critical Systems. IST project
nr.2000-25031, <http://www.nr.no/coras/>.

Cowell, R.G., Dawid, A.P., Lauritzen, S.L., and Spiegelhalter, D.J., 1999, Probabilistic
Networks and Expert Systems (Springer-Verlag).

Cudleigh, M., and Catmur, J., 1992, Safety Assessment of Computer Systems using HazOp
and Audit Techniques, Safety of Computer Systems SAFECOMP’92, Frey (ed) (Pergamon
Press).

Dahll, G., 1997, Safety Assessment of Software Based Systems. SAFECOMP’97, Daniel
(ed) (Springer-Verlag), pp. 14-24.

Dahll, G., 2001, Combining Disparate Sources of Information in the Safety Assessment of
Software Based Systems, submitted to Special Issue of Nuclear Engineering and Design.

Dahll, G., and Gran, B.A., 2000, The Use of Bayesian Belief Nets in Safety Assessment of
Software Based Systems. Special Issues of International Journal on Intelligent
Information Systems at FLINS'98, Int. J. General Systems, 24 (2), 205-229.

Fenton, N., and Neil, M., 1999, A Critique of Software Defect Prediction Models, IEEE
Transactions on Software Engineering, 25 (5), 675-689.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., 1995, Bayesian Data Analysis,
(Chapman & Hall, London), 1-526.

Gran, B.A., and Thunem, H, 1998, EISTRAM - Experimental Investigation of the PIE-
technique. Safety and Reliability, Lydersen, Hansen and Sandtorv (eds), (Balkema,
Rotterdam), pp 409-416.

Gran, B.A., Dahll, G., Eisinger, S., Lund, E., Norstrøm, J., Strocka, P., and Ystanes, B.,
2000, Estimating Dependability of Programmable Systems Using BBNs. Computer
Safety, Reliability and Security, Proceedings from Safecomp 2000, (Lecture Notes in
Computer Science 1943), Koornneef and van der Meulen (Eds) (Springer), pp. 309-320.

Gran, B.A., and Helminen, A., 2001, A Bayesian Belief Network for Reliability Assessment,
paper to be presented at Safecomp 2001, 25�28 September 2001, Budapest, Hungary

Helminen, A., 2000, Reliability Estimation of Software-based Digital Systems Using
Bayesian Networks, (Helsinki University of Technology, Espoo), pp. 1-50.

IEC publication 61508, 2000, Functional safety of electrical/electronic/programmable
electronic safety-related systems.

IMPRESS, 1999, Improving the software process using Bayesian nets. EPSRC project nr.
GR/L06683, <http://www.csr.city.ac.uk/csr_city/projects/impress.html>.

 18

Jensen, F., 1996, An Introduction to Bayesian Networks, (UCL Press, University College
London).

Lauritzen, S.L., and Spiegelhalter, D.J., 1988, Local computations with probabilities on
graphical structures and their application to expert systems (with discussions), Journal of
the Royal Statistical Society, Series B 50 (2), 157-224.

Leveson, N.G., 1995, Safeware – System Safety and Computers, (Addison-Wesley
publishing company).

Littlewood, B., and Wright, D., 1995, A Bayesian Model that Combines Disparate Evidence
for the Quantitative Assessment of System Dependability. Proceedings SAFECOMP’95,
Rabe (ed), (Springer-Verlag), pp. 173-188.

Littlewood, B., and Wright, D., 1997, Some conservative stopping rules for the operational
testing of safety-critical software, IEEE Transactions of Software Engineering, 23(11), pp
673-683.

Neil, M., Littlewod, B., and Fenton, N., 1996a, Applying Bayesian Belief Nets to Systems
Dependability Assessment, Proceedings of 4th Safety Critical Systems Symposium,
(Springer-Verlag), pp. 71-93.

Neil, M., and Fenton, N., 1996b, Predicting Software Quality using Bayesian Belief
Networks, Proceedings of 21st. Annual Software Engineering Workshop, (NASA
Goddard Space Flight Centre), pp. 217-230.

Neil, M., and Fenton, N., 1998, A strategy for improving safety related software engineering
standards, IEEE Trans. on SW Eng., 24 (11).

Neil, M., Fenton, N., and Nielsen, L., 2000, Building large-scale Bayesian Networks, The
Knowledge Engineering Review, 15 (3), 257-284.

Neil, M., Fenton, N., Forey, S., and Harris, R., 2001, Using Bayesian Belief Networks to
Predict the Reliability of Military Vehicles, IEEE Computing and Control Engineering,
12 (1), 11-20.

Pearl, J., 1988, Probabilistic Reasoning in Intelligent Systems: Networks forPlausible
Inference, (Morgan Kaufman).

Pulkkinen, U., and Holmberg, J., 1997, A Method for Using Expert Judgement in PSA,
(Finnish Centre for Radiation and Nuclear Safety, Helsinki), pp. 1-32.

RTCA/DO-178B, 1999, Software Considerations in Airborne Systems and Equipment
Certifications (Guideline).

SERENE, 1999, Safety and Risk Evaluation using Bayesian Nets. ESPRIT Framework IV
nr. 22187, <http://www.hugin.dk/serene/>.

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L., and Cowell, R. G., 1993, Bayesian
Analysis in Expert Systems, Statistical Science, 8(3), pp 219-283

Spiegelhalter, D., Thomas, A., Best. N., and Gilks. W., 1996, BUGS 0.5 Bayesian Inference
Using Gibbs Sampling Manual (version ii), (MRC Biostatistic Unit, Cambridge), pp.1-59.

Stålhane, T., Meulen, M.J.P van der, Cole, 1993, Reliability Assessment of PES, using
Subjective and Objective Categorcial Data. Presented at workshop on production control
in the process industry, 29-31 March, Dusseldorf, Germany.

Stålhane, T., 1997, Safety in Software-Intensive Systems. Presented at the Eighth European
Workshop on Dependable Computing, EWDC-8, Gothenburg, Sweden.

Voas, J. M., Michael, C.C., and Miller, K. W., 1993, Confidently Assessing a Zero
Probability of Software Failure, Proceedings of the 12th Int'l. Conference. on Computer
Safety, Reliability, and Security, Poznan and Poland (eds), (Springer-Verlag), pp 197-206.

Welsh, A. H., 1996, Aspects of Statistical Inference, (Wiley & Sons).
Whittaker, J., 1990, Graphical Models in Applied Multivariate Statistics, (J. Wiley & Sons).
Xie, M., 1991, Software Reliability Modelling, (World Scientific Publishing Co. Pte. Ltd).

IV

Applying Bayesian belief net

in software safety assessment on a real,

safety related programmable system.
In Safety & Reliability, Towards a safer world. Zio, E., Demichela, M., and Piccinini, N.

(Eds), Politecnico di Torino, Torino, pp. 1045-1052, 2001.

APPLYING BAYESIAN BELIEF NET IN SOFTWARE SAFETY
ASSESSMENT ON A REAL, SAFETY RELATED PROGRAMMABLE

SYSTEM

Bjørn Axel Gran

OECD Halden Reactor Project,
Institutt for energiteknikk,

P.O.Box 173, N-1751 Halden, Norway
<bjorn.axel.gran@hrp.no>

ABSTRACT: This paper describes an attempt to combine the Bayesian Belief Nets technol-
ogy with the rules of a standard for safety critical software, DO-178B, together with the
evaluation of some of the results obtained by applying the approach on a real, safety related,
programmable system. The research was done in an experimental project carried out by a con-
sortium composed of Kongsberg Defence & Aerospace AS, Det Norske Veritas, and the
OECD Halden Reactor Project. First of all the project goal was to evaluate the use of BBN to
investigate the implementation of the DO-178B standard for software approval in the com-
mercials world. To reach that objectives a computerized system for atomised transmission of
graphical position information from helicopters to land based control stations was selected
and studied. This paper describes some of the findings from the project, and discusses some
of the results that were pinpointed as interesting, strange or counter-intuitive.

1 INTRODUCTION

There has been an increasing use of programmable digital equipment in safety critical
systems. A problem in this respect has been the licensing of these systems, in particular of the
embedded software. In practice the assessment of safety critical software is a matter of con-
sensus among experts based on judgement of a variety of evidences. To combine evidences
from different information sources the use of Bayesian Belief Nets (BBN) has been proposed
in quantitative assessment of the confidence in a programmable system.

This methodology has mainly been developed and applied in the AI society. More re-
cently, however, it has also been applied to software safety assessment. Work in this area has
been performed in two ESPRIT projects: SERENE and DeVa, and at the Centre for Software
Reliability at City University in London and at the OECD Halden Reactor Project [1]. An at-
tempt to combine the BBN technology with the rules of a standard for safety critical software,
DO-178B [2], was done in an experimental project, [3], carried out by a consortium composed
of the OECD Halden Reactor Project, Kongsberg Defence & Aerospace AS and Det Norske
Veritas. This paper shortly describes the test case (M-ADS) evaluated by the consortium, and
puts emphasis on the results that were pinpointed as interesting, strange or counter-intuitive,
and thereby needed an explanation.

2 THE BBN METHODOLOGY

A Bayesian Belief Net (BBN) is a connected and directed graph, consisting of a set of
nodes and a set of directed arcs between them. Uncertain variables, both events and singular
propositions are associated to each node where the uncertainty is expressed by a probability
density. The probability density expresses our confidence to the various variable outcomes,
and depends conditionally on the status of the �parent� nodes at the incoming edges. Some

nodes are denoted as �observables�. They represent the different observable properties about
the system for evaluation. The computation of our belief about a specific node (target node) is
based on the rules for conditional probability calculations backward and forward along the
edges, from the observable nodes, through the intermediate nodes to the target node [4], [5].

The construction of the BBN is normally made gradually. Information about the sys-
tem is collected and expressed via the nodes. The nodes are connected together to a directed
graph that expresses the conditional relationship between the variables. The aim is to combine
information in the net. One way is to start from a target node and draw edges to influencing
nodes. To decide the direction of an edge, one follows the causal direction. However, this di-
rection is not always obvious, in particular between nodes representing qualitative variables.
In these cases the direction of the arrow often goes from higher abstraction to lower abstrac-
tion, or from the more general concept to the more detailed. For computations of a realistic
BBN computer tools are necessary. We have applied both the SERENE methodology [6] and
the HUGIN tool [7].

3 THE TEST CASE

3.1 M-ADS

The project emphasized the practical evaluation of the BBN methodology by trying it
out on a realistic test case: a computerized system for atomised transmission of graphical po-
sition information from helicopters to land based control stations (M-ADS). The M-ADS air-
borne equipment was designed by Kongsberg Defence & Aerospace AS for installation in
helicopter aircraft. The system provides air traffic services with aircraft parameters upon re-
quest from the air traffic control where personnel will request positioning data. The M-ADS
system is designed to automatically transmit flight information via data link to one or more
requesting air control centers. M-ADS uses existing avionics on board the aircraft to provide
aircraft position, speed and additional optional data. Most important are the aircraft position,
position accuracy, altitude and time stamp for the data validity. The work described below
uses parts of the M-ADS system to exemplify the software development process according to
DO-178B standard.

3.2 DO-178B

The purpose of the DO-178B standard [2] is to provide a required guideline for the
production of safety critical software for airborne systems. This guideline was chosen for the
study since the M-ADS system is applied in civil aviation, and was previously qualified on
the basis of this standard. DO-178B discusses aspects of airworthiness certification that per-
tain to the production of software for airborne systems and equipment used in aircraft. To aid
in understanding the certification process the system life cycle is briefly discussed to show re-
lationship to the software life cycle process. It does not provide guidelines concerning the
structure of the applicant�s organization, relations to suppliers and personnel qualification cri-
teria.

The main recommendations in DO-178B are given in a set of 10 tables, see Table 3.1.
Each table relates to a certain stage in the development and validation process, and contains a
set of objectives. A difference between the DO-178B and IEC 61508 [8] is that most of the
requirements are mandatory in IEC 61508, while the requirements are guidelines in DO-
178B, [9].

Table 3.1: The main recommendations in DO-178B
 Stage in the development and validation process
A1 Software planning process.
A2 Software development process.
A3 Verification of outputs of software requirements process.
A4 Verification of outputs of software design process.
A5 Verification of outputs of software coding & integration process.
A6 Testing of outputs of integration process.
A7 Verification of verification process results.
A8 Software configuration management process.
A9 Software quality assurance process.
A10 Certification liaison process.

3.3 The M-ADS Evaluation

The M-ADS evaluation consisted of several tasks. The first was to construct BBNs on
the basis of DO-178B. The BBN was constructed in two levels. The higher level shows how
nodes representing four quality aspects are combined with other nodes in the net, and leads to
a node �P(failed state)�, representing the �probability of finding the system in a failed state�,
see Figure 3.1. The four quality aspects were:
• = Quality of the producer. (Qproducer) This includes the reputation and experience of the

producer, quality assurance policy, quality of staff etc.
• = Quality of the production process. (Qprocess) A high quality implies that the system is de-

veloped according to guidelines for good software engineering, that all phases are well
documented, and that the documentation shows that the system at all development phases
possesses desirable quality attributes as completeness, consistency, traceability etc.

• = Quality of the product. (Qproduct) This includes quality attributes for the final product, as
reliability, simplicity, verifiability etc.

• = Quality of the analysis. (Qanalysis) This includes all activities performed to validate the
correctness of the system during all stages of the system development. Such activities may
include model checking of the specifications, inspections and walkthroughs of the docu-
mentation, static analysis of code and testing of the system.

The lower level BBNs were constructed by identifying the quality aspects with top-
nodes in four BBNs. Each top node was linked to intermediate nodes representing the 10 life-
cycle processes represented by the tables A1 to A10 of DO-178B. Each of these nodes was
again linked to other intermediate nodes, representing the objectives of the tables. The further
step was to identify a list of questions to each objective, see example in Figure 3.2. These
questions were based on the understanding of the text in the main part of DO-178B, and then
in general formulated so that the answer could be given by a �yes� or a �no�.

The elicitation of conditional probability tables (cpt) to the nodes and edges was done
as �brainstorming� exercises by all project participants, based on general knowledge and ex-
perience in software development and evaluation.

Finally all this information together with observations from the system development
(KDA) were fed into the HUGIN and SERENE tools, to make a variety of computations, with
the aim to investigate different aspects of the methodology [3]. What is the effect of observa-
tions during only one lifecycle process? How does the result change by subsequent inclusion
of observations from the lifecycle processes? How sensitive is the result to changes in indi-
vidual observations?

Fig. 3.1: The upper network

Fig. 3.2: Example of a list of questions associated with a objective for the software develop-

ment process

4 RESULTS

4.1 What If More Observations Were Negative?

4.1.1 The Partial Scenarios Results

The effect of the observations during only one stage in the development and validation
process showed with respect to the �Qproducer� that the effects were approximately the same
for all the processes. With respect to the �Qprocess� the processes with largest effect were

possess verifiability?

possess consistency?

possess tracability?

possess correct impl. of all low-
level req.?

Qanalyses

(...) (...)

A2 - sw development process

A2-11.9: Is tracability between ...

A2-11.11: Does the source code ...

A2-11.12: Is the exutable object
code correct? ...

translation into executable code
made trustworthy?

high level req. spec. correct
unique and consistent?

P(failure state)

Solution Complexity

Problem complexityQprocess

Qproduct

Qproducer

Qanalyses

�verification of outputs of sw requirements process (A3)�, �sw configuration management
process (A8)� and �certification liaison process (A10)�, while an additional class �other as-
pects�, including aspects such as e.g. human machine interfaces, had lowest effect. With re-
spect to the �Qanalysis� the process �other aspects� had largest effect, but also all the other
processes had a large effect. With respect to the �Qproduct� the processes with largest effect
were identified as the �verification of verification process results (A7)� and �other aspects�.
Quite low effect was observed for the processes: �verification of outputs of sw design proc-
esses (A4)� and the process A10.

4.1.2 The effect of one negative and one “not positive” observations

One particular notice about the applied observations from KDA was that one observa-
tion, with respect to process A4, was given the value 0. This value corresponds to a negative
answer to the question �Is the software partitioning integrity confirmed?� However, whether
this answer was meant to be negative; i.e. that this question is of importance to the reliability
of the product, or if this question was ranked as irrelevant, was not further discussed. In the
latter case it would have been better not to give any value to this observable node at all. This
is equivalent to cutting the edge to this node.

A further walk-through of the observations also identified that 6 questions, which be-
long to two or more of the quality aspect networks, were given different observations in the
different sub-networks. Of these 6 questions, 1 belonged to the process A10, and was given a
very low score for the �Qproduct�. (For the other divergences, the differences were smaller.)

The result of correcting these faults was that the �surprising low effect for A4 and
A10� disappeared. And, the processes with low effect were now observed to be A1 and A8.
These were both also identified as contributors to low effect for the other quality aspects.

On the other hand, if one assumes that the questions should have been non-identical,
and that the observations on these in fact were negative or low as entered, then we have iden-
tified a case where only two negative observations can lead to negative significant changes in
the partial scenarios.

4.1.3 How to select negative observations

The latter result is related to the fact that the observations applied in the project were
in general positive. An open question was therefore: what would be the result if more obser-
vations were negative? In particular, we were interested in the overall results after entering
observations in all phases, and we wanted to search for a set of �negative observations� that
belonged to all or more phases. The reason for the latter is that it is very little realistic to have
good observation within 9 phases, and negative observations within the others. More realistic
is that the negative observations are distributed over all phases.

An attempt to find a such set of observations (out of a total of 71 observations) was to
look into the set of observations (19 observations) that is related to two or three processes.
These 19 observations can be divided into 5 groups as shown in Table 4.1.

Table 4.1: The 5 groups of observations related to more quality aspects
Group Related to quality aspect: Processes:
1 �QProduct�, �Qananlysis� A4, A5, A7, other
2 �QProcess�, �Qananlysis� A1, A2, A6
3 �QProduct�, �QProcess� A5, A6
4 �QProduct�, �QProcess�, �QProducer� A9, A10
5 �QProduct�, �QProcess�, �Qananlysis� A3, A5

4.1.4 The effect of some negative observations

By entering negative observations to the questions related to the three groups we ob-
served the effects as shown in Table 4.2. Remark that all the other observations are held posi-
tive, and the effect of change is observed related to �as observed by KDA�, that is more or
less all positive. As shown in the table, we see that there was only a significant effect on the
�Qproducer�. That means that we by entering negative observations on the two questions re-
lated to processes A9 and A10, we achieve a lower confidence in good quality of the pro-
ducer.

Table 4.2: The effect of negative observations related to the questions from the groups 1-5.
Gr. Observed Effect
1 Minor effect to �QProduct� and �Qananlysis�
2 Minor effect on �QProcess�, no effect on �Qananlysis�
3 Minor effect on �QProcess�, no effect on �QProduct�
4 No effect on �QProduct�, minor effect on �QProcess�, but significant effect on

�QProducer�
5 No effect on �QProduct�, minor effect on �QProcess�, and no effect on �Qananlysis�

4.1.5 The effect of 19 negative observations

Based on the results presented above, the next scenario was to enter a negative obser-
vation on all the questions related to all the groups presented in Table 4.2. This had a signifi-
cant effect on all the quality aspects, and also the node �P(failure state)�as shown in Table 4.3
and Table 4.4. An issue for further investigation is to look the combinations of these 19 to see
how the results turn from positive towards negative.

Table 4.3: The effect of 19 negative observations on the node QProducer.
Scenario good=5 4 3 2 bad=1
KDA original1 0.145 0.782 0.070 8E-6 6E-8
KDA corrected2 0.184 0.804 0.011 1E-6 1E-8
19 negative 0.018 0.359 0.621 0.01 1E-6
(1) as presented in 4.1.1, (2) after corrections as described in 4.1.2

Table 4.4: The effect of 19 negative obs. on the nodes Qprocess, Qproduct and Qanalysis.
Process Product Analysis Scenario

good bad good bad good bad
KDA original1 1.0 4E-7 1.0 3E-9 1.0 1E-9
KDA corrected2 1.0 2E-7 1.0 1E-10 1.0 1E-9
19 negative 0.039 0.961 0.117 0.883 0.993 0.007
(1) as presented in 4.1.1, (2) after corrections as described in 4.1.2

4.1.6 Discussion of the results

One other observation from the results from the incremental scenario was that they
reached stable maxima very fast. This indicates that the activities in the later stages in the de-
velopment and validation process have little effect. Similarly, the partial results were almost
as good as complete results. These results were not as expected.

One possible explanation is that a good score in one table is an indication of high qual-
ity during all phases, so that there also should be high scores in other tables. Another explana-
tion is that 19 questions are repeated in two or three tables. However, these two explanations
are not necessarily different. The latter can be a way to use the BBN topology to express the

first explanation; i.e. that certain types of observations are relevant for several of the devel-
opment phases associated with the tables.

4.2 The difference in partial results for A4 and A5

A third observation from the project was obtained by comparing the partial results
from the lifecycle processes �verification of outputs of software design processes� (A4) and
�verification of outputs of software coding and integration process� (A5). The �good� score
for these were the same for the quality aspects �producer� and �analysis�, but A5 scored bet-
ter on �process� and in particular on �product�. To explain this difference, the differences in
BBN topology, in the cpts, and in the observations are investigated.

The investigation showed related to the partial results for the processes A4 and A5,
that we have the effects of both neutralizing, conformity, enlargement and the effect of the
observations alone, see details in Table 4.5.

Table 4.5: The partial results for the processes A4 and A5.
Quality
aspect

Observed
difference in
A4 and A5

Difference in
topology

Difference in
observations

Effect of observations and
topology (A4 vs. A5)

Producer �A4 = A5� differences in
the cpts

different
observations

neutralize each other

Analyses �A4 = A5� different num-
ber of questions

no large
differences

conformity, i.e. �A4 = A5�

Process �A4 ! A5� differences in
the cpts and to-

pology

different
observations

topology and observations pull in
same direction (enlargement)

Product �A4 !! A5 different num-
ber of questions

different
observations

although a different number of
questions, the observations alone
give the difference

4.3 Consequences of the “A4 vs. A5” evaluation

The comparison of the results for A4 and A5 can also explain the difficulty of finding
a subset of observations that turns the results negative. Accordingly we shall expect problems
with finding a subset of positive observations leading to stable maxims.

These results also indicate the problems of performing a verification of a Bayesian Be-
lief Network. The reason is that two different groups of experts can come up with two differ-
ent BBNs. If one then enters somehow different observations into these networks, there is a
good chance of observing the same results for the target nodes. On the other hand, these re-
sults also point in the direction that two different BBNs should be based up on the same ob-
servations. This again is an argument in favour of the BBN-construction process applied: each
objective in the guideline associated to a list of questions.

5 DISCUSSION

The research conducted addresses some of the observations pinpointed as interesting,
strange or counter-intuitive in the project on combining the Bayesian Belief Nets technology
with the rules of a standard for safety critical software, DO-178B for a real, safety related,
programmable system. One results is the importance of a good quality assurance of the obser-
vations entered into a BBN. One the other hand, it also demonstrates that one negative obser-
vations can have a significant effect on a partial results. The evaluation has also showed that

one negative observation, or a set of a few negative observations is not enough to change the
overall results.

The results also show that there can be a rapid change in the overall results, given a
specific order of turning the observations. This work indicates that this change takes place
somewhere in the �middle� of �negative observations on a few repeated questions� and
�negative observations on all repeated questions�. A further evaluation can give more specific
results. However, the evaluation has also showed that there is an effect of the combination of
topology, cpts and observations. A pinpointed set of observations could therefore change by a
change in the topology or a conditional probability table.

Finally the evaluation points on some of the problems that one will be faced with
wanting to perform a validation or verification of the BBN. One hypothesis is that the use of
questionnaires can be a vital point. This is also a topic for further investigation.

6 ACKNOWLEDGEMENT

I want to acknowledge the rest of the project team that performed the �M-ADS pro-
ject�: Siegfried Eisinger from Det Norske Veritas, Gustav Dahll from the OECD Halden Re-
actor Project, and Eivind J. Lund, Jan Gerhard Norstrøm, Peter Strocka, and Britt J. Ystanes
from Kongsberg Defence & Aerospace AS. In particular acknowledgement to KDA for allow-
ing me to further work applying their observations. Also note that this paper represents by no
mean any official policy of KDA.I also want to acknowledge Hugin Expert A/S for allowing
Bjørn Axel Gran the use of the HUGIN tool for his Ph.D. work.

REFERENCES

[1] Dahll, G. & Gran, B.A.: �The Use of Bayesian Belief Nets in Safety Assessment of Soft-
ware Based Systems�. In Special Issues of International Journal on Intelligent Informa-
tion Systems at FLINS'98, the special issue of Int. J. General Systems v24, no2 (2000).

[2] RTCA/DO-178B: �Software Considerations in Airborne Systems and Equipment
Certifications�, (1992).

[3] Gran, B.A. et al. (Dahll, Eisinger, Lund, Norstrøm, Strocka, Ystanes) �Estimating De-
pendability of Programmable Systems Using BBNs�. Printed in Koornneef, van der
Meulen (Ed.): �Computer Safety, Reliability and Security�, Proceedings from Safecomp
2000, Springer, (Lecture Notes in Computer Science 1943), pp 309-320 (2000).

[4] Casella, G., Berger, R. L.: �Statistical Inference�, Wadsworth & Brooks/Cole Advanced
Books & Software (1990).

[5] Spiegelhalter, D.J., Dawid, A.P., Lauritzen, S.L., and Cowell, R.G.: �Bayesian Analysis
in Expert Systems�, Statistical Science, Vol. 8-3 (1999).

[6] SERENE: �Safety and Risk Evaluation using Bayesian Nets�. ESPRIT Framework IV nr.
22187, (1999). (http://www.hugin.dk/serene/).

[7] HUGIN: Tool made by Hugin Expert a/s, Aalborg, Denmark (http://www.hugin.dk).
[8] IEC publication 61508: �Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems�, version 4.0 (1997).
[9] Fenton, N., Neil, M.: �A Strategy for Improving Safety Related Software Engineering

Standards�. IEEE Transactions on Software Engineering, Vol. 24(11), pp 1002-1013
(1998).

Appendix:

EISTRAM - Experimental Investigation of the PIE-technique
(with Harald Thunem)

In Safety and Reliability. Lydersen, S., Hansen, G., and Sandtorv, H., (Eds), Balkema,
Rotterdam, pp 409-416, 1998.

Appendix paper is not included due to copyright.

