
Michal Kaut

Scenario tree generation for
stochastic programming:

Cases from finance

Michal Kaut
Department of Mathematical Sciences
Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology
N-7491 Trondheim
michal.kaut@iot.ntnu.no
http://www.iot.nt.nu.no/~mkaut/

Dr. ing. thesis
July 2003

Thesis supervisor:
Stein W. Wallace, Molde University College
Co-supervisors:
Harald Krogstad, Norwegian University of Science and Technology
Kjetil Høyland, Gjensidige NOR

Evaluation committee:
Roger J-B Wets, University of California, Davis
Kurt Jörnsten, Norwegian School of Economics and Business Administration
Stein-Erik Fleten, Norwegian University of Science and Technology

Keywords:
stochastic programming, scenario tree, scenario generation

Typeset in LATEX
NTNU Ingeniøravhandling 2003:55
ISBN 82-471-5606-7
ISSN 0809-103X

Preface

This thesis is a result of my Dr. ing. study at Department of Mathematical
Sciences at the Norwegian University of Science and Technology (NTNU) in
Trondheim, Norway. The described work was carried out in the period from
August 1999 to May 2003, with Stein W. Wallace as the main supervisor, and
Harald Krogstad and Kjetil Høyland as co-supervisors. The whole doctoral
program was financed by Gjensidige NOR Asset Management, part of the
Gjensidige NOR group. Out of the four years of the program, three years were
dedicated to the completion of the doctoral degree, and one year to duties for
the sponsor.

During the whole period, I was an employee at Department of Industrial
Economics and Technology Management at NTNU. In addition to NTNU,
the work was partially carried out at these locations: Gjensidige NOR Asset
Management, Oslo, Norway; University of Edinburgh, Edinburgh, Scotland;
University of Cyprus, Nicosia, Cyprus; and Molde University College, Molde,
Norway.

The thesis’ main subject is practical aspects of scenario generation in a
context of stochastic programming. Since the project was financed by an
insurance company, all the described applications are financial ones—mostly
on portfolio management. However, most of the results are general and in no
way restricted to finance.

The thesis consists of four papers, plus an introduction that presents the
papers and describes the background of the project, as well as the practical
achievements. One of the papers has been published.

Acknowledgements

I am deeply grateful to my supervisor, Stein W. Wallace, for his excellent
supervision during the duration of the project. He has always been available
for questions or discussion, and it was these that led to many of the results

iv Preface

presented in this thesis. In addition, his extensive network of contacts has
allowed me to meet, and work with, some of the top researchers in the field.
Further thanks go to my co-supervisors, Kjetil Høyland from Gjensidige NOR
Asset Management, and Harald Krogstad from NTNU, as well as to my other
co-authors, Hercules Vladimirou and Stavros Zenios from the University of
Cyprus.

During the project I visited several institutions, and at all of them received
great help and support from the local hosts. Hence, I would like to thank
to Ken McKinnon from the University of Edinburgh; Kjetil Høyland, Erik
Ranberg, and the whole team at Gjensidige NOR Asset Management; Hercules
Vladimirou and Stavros Zenios from the University of Cyprus; and Ser-Huang
Poon from the University of Strathclyde, Glasgow.

Since studying in a foreign country brings a lot of practical problems,
I would like to thank those who helped me to solve them: Guri Andresen,
department secretary at NTNU; Ragnhild Lundgren, secretary at Gjensidige
NOR; and, most importantly, my supervisor Stein W. Wallace, without whose
help it would have been much more difficult to survive the first year in Norway.

Last, but not least, I am very grateful to Gjensidige NOR Asset Man-
agement for opening and financing the project, and to Miloslav S. Vošvrda,
supervisor for my Master thesis in Prague, and Vlasta Kaňková, both from the
Czech Academy of Science, who pointed out the project for me, and supported
me during the application process.

Contents

Preface iii
Acknowledgements . iii

Introduction 1
Stochastic programming and scenario generation 1
Scientific contribution . 2
Practical contribution . 3
The papers . 7
Bibliography . 9

Paper 1
Evaluation of scenario-generation methods for stochastic pro-
gramming 11

Paper 2
Stability analysis of a portfolio management model based on
the conditional value-at-risk measure 33

Paper 3
A Heuristic for Moment-Matching Scenario Generation 65
Description of data used in the numerical tests 89
Updates to the published version . 95

Paper 4
Multi-period scenario tree generation using moment-matching:
Example from option pricing 101

Introduction

Stochastic programming and scenario generation

In recent years, stochastic programming has gained an increasing popularity
within the mathematical programming community, mainly because the present
computing power allows users to add stochasticity to models that were difficult
to solve in deterministic versions only a few years ago. For general information
about stochastic programming, see for example Dantzig (1955); Birge and
Louveaux (1997), or Kall and Wallace (1994).

As a result, a lot of research has been done on various aspects of stochastic
programming. However, scenario generation has remained out of the main
field of interest. In this thesis, we try to explain the importance of scenario
generation for stochastic programming, as well as provide some methods for
both generating the scenarios and testing their quality.

If we simplify the matters slightly, a stochastic programming model can
be viewed as a mathematical programming model with uncertainty about the
values of some of the parameters. This uncertainty is then described in sta-
tistical terms, so these parameters are described by their distributions (in a
single-period case), or by stochastic processes (in the multi-period case).

Except for some trivial cases, stochastic programming models can not
be solved directly with continuous distributions—in order to solve a typi-
cal stochastic programming model, we need to have a discrete distribution
of limited cardinality. Hence, the “true” distribution has to be discretized,
i.e. approximated by a discrete distribution. While some solution methods do
the discretization (sampling) internally, most methods need a discrete distri-
bution as an input, so the discretization has to be done prior to the solution
of the stochastic programming model. The outcomes of the discretization are
then called scenarios, and the whole distribution a scenario tree. By scenario
generation we understand the process of discretizing the true distribution, and
creating the scenario tree.

2 Introduction

Scientific contribution

It should be rather obvious that scenario generation is an important part of
the modelling process, since a “bad” tree can lead to a “bad” solution. We
believe, however, that this importance is not understood and appreciated—
which is why we wrote Paper 1. In this paper, we discuss the influence of
scenario generation on the solution of the optimization model, and propose
tests of quality/suitability of a given scenario-generation method for a given
stochastic programming model. The paper also includes a short overview of
different scenario-generation methods.

The approach from Paper 1 was later applied for testing the stability of
an optimization model—in our case a portfolio-optimization problem based
on a CVaR risk measure. In the tests, we investigate the model’s sensitivity to
instabilities and errors (mis-specifications) in the scenario tree. The tests are
described in Paper 2.

At the time when I started the project, there was not any efficient scenario-
generation method that would allow the user to control the statistical proper-
ties (moments and correlations) of the marginals, without any distributional
assumptions. At Gjensidige NOR Asset Management (GNAM), who initiated
the project, they used the method from Høyland and Wallace (2001). This
method fulfills the mentioned requirements, but is very slow for large trees—it
could take several hours to generate one scenario tree. Hence, development of a
new, faster, method was pointed out as the reason why GNAM initiated—and
sponsored—the position, and therefore the main practical goal of the project.

This goal was achieved by the algorithm described in Paper 3. Already in
the first implementation, this algorithm was more than hundred times faster
than the original one. After the paper has been published, we have come up
with a new implementation, which is at least another ten times faster—for
more information, see the note “Updates to the published version” after the
Paper 3.

The most obvious shortcoming of Paper 3 is that it does not address the
issue of multi-period trees. For this reason, we came back to this problem in
Paper 4, which shows how to control the final-stage moments and correlations
in a multi-period tree. Even though the aim of this paper is option pricing,
instead of stochastic programming, most of the results related to scenario
generation are general and therefore valid also in the context of stochastic
programming.

Practical contribution 3

Practical contribution

Apart from the scientific contribution, I have contributed to an improvement
of the portfolio-optimization setup at Gjensidige NOR Asset Management.
This section describes the achievements.

About Gjensidige NOR Asset Management

Gjensidige NOR Asset Management (GNAM) is the asset-management com-
pany within the Gjensidige NOR group. The group consists of Union Bank
Norway, Gjensidige NOR Life Insurance, and Gjensidige NOR Non-Life, and
is one of the three largest financial groups in Norway. GNAM manages a
large part of the assets of the Life and Non-life companies, as well as funds
for external clients. At the moment, the value of funds under management is
approximately NOK 100 billion (14 billion USD).

Both the life insurance company and GNAM use stochastic programming
models for their asset-allocation decisions. The original stochastic program-
ming model was developed for the strategic level, and is described in Høyland
(1998). Later, the model was modified also for the tactical level. See Wal-
lace and Høyland (2003) for a comparison of the two models, as well as more
information about GNAM.

As a part of my project, I spent one year working at GNAM. There I
was involved with the stochastic programming model and the corresponding
scenario-generation procedure, which form the backbone of the tactical asset-
allocation system. Working with an optimization system that is being used in a
company has showed me that there are many important “practical aspects” of
an optimization system, something that would be difficult to learn by working
with constructed examples.

Starting point

The main setup was all created by my predecessor Kjetil Høyland. Hence,
when I started the project in August 1999, there was already a system in
place at GNAM. The system consisted of the following parts:

asset-allocation model The portfolio optimization was formulated as a
stochastic programming problem and implemented in AMPL1. It was a

1AMPL� – A Modeling Language for Mathematical Programming, developed at AT&T Bell
Laboratories. See http://www.ampl.com/ for more information.

4 Introduction

single-period model, formulated and solved as a deterministic equiva-
lent. MINOS2 was being used for solving the problem.

scenario generation For generating scenarios, the procedure from Høyland
and Wallace (2001) was used. The problem was formulated as a non-
linear least-squares problem, implemented in AMPL and again solved using
MINOS.

user interface User interface to both the scenario generation and the asset
allocation was implemented as a system of VBA macros in Excel. The
Excel sheet also accessed the required online data using REUTERS links.

The bottleneck of the portfolio-construction procedure was the scenario
generation: Generating a tree for 12 assets and 1000 scenarios could take
several hours, and had to be run overnight. This excluded any chance of an
interactive approach to the optimization. In addition, it was obvious that 12
assets and 1000 scenarios is close to the maximal tree that could be generated
using this method.

In addition to the speed of the scenario generation, there were other minor
problems: The solution time of the optimization model was well over one hour,
which was less than the scenario generation part, yet still quite long. The other
problem was that the Excel user interface was rigid.

Improvements

Scenario generation

During the first year of the project, we developed and implemented the sce-
nario-generation algorithm described in Paper 3. In the first step, the new
algorithm was implemented in AMPL, and MINOS was used to solve subproblems.
In every iteration, we had to solve one non-linear subproblem for every asset in
the scenario tree. For a scenario tree with 12 assets and 1000 scenarios, the new
algorithm was approximately 100 times faster than the original one, bringing
the solution time down from several hours to several minutes. In addition, the
speed-up was increasing with the size of the problem, so it became possible to
create significantly larger trees.

To speed up the algorithm even further, I implemented it in the C pro-
gramming language, using LOQO3 callable libraries to find the coefficients of

2MINOS�– solver for sparse linear, quadratic and nonlinear problems, developed at Stan-
ford University. See http://www.sbsi-sol-optimize.com/ for more information.

3LOQO – an interior-point solver for smooth optimization problem, developed by Robert
J. Vanderbei from Princeton University. See http://www.orfe.princeton.edu/~loqo.

Practical contribution 5

the cubic transformation. The new code was more than ten times faster than
our AMPL implementation, but still had the disadvantage of depending on a
commercial solver.

Finally, in the summer of 2002, Diego Mathieu from INSA Toulouse,
France, who had a summer project at Molde University College, implemented
the cubic transformation in the C programming language. Hence, we could
replace the LOQO libraries and make the code completely self-contained.

With the latest implementation, and with slightly faster machines com-
pared to those we used in 1999, a scenario tree with 20 assets and 2000 scenar-
ios is typically created in few seconds. Hence, the problem with the duration
of the scenario generation was solved.

Optimization model

The most significant increase of the speed of the optimization problem came
from a change of the solver: The optimization problem is quadratic, while
MINOS does not have any algorithms for quadratic programming (QP), and
solves it as a general non-linear problem. At the end we have decided to use
LOQO, which uses a barrier algorithm to solve QPs. LOQO turned out to be
more than ten times faster than MINOS, bringing the solution time of a typical
problem down to less than two minutes.

In addition to the objective and the constraints in the optimization model,
the decision maker wishes to have a control over the tracking error of the port-
folio. This could not be written as a constraint in the model, since none of the
available solvers could not handle quadratic constraints. Instead, the tracking
error is handled ex-post, using the risk-aversion parameter of the model: We
solve the model, and if the tracking error is too high/low, we increase/decrease
the value of the risk-aversion parameter, and run the optimization again.

Originally, this was being done manually. I have written a script that
automatizes the procedure. Typically, we need 2–5 runs, so the total solution
time is 5–10 minutes.

The optimization model was partially rewritten, even if the main structure
was not changed. The most significant change was an introduction of options
to the model. In addition, some minor errors and mis-specifications were
corrected.

User interface

The Excel interface was completely restructured and the macros rewritten.
The main objectives were to increase the flexibility of the Excel sheets, and

6 Introduction

the user comfort. The added/improved features were:

� Possibility to add new regions and asset classes.

� Possibility to control most of the model parameters (including bounds)
from the sheet.

� Visualisation of both scenario distributions and the portfolio positions.

� Addition of options (accompanied by corresponding extension of the de-
cision model).

� Transition from Reuters to Bloomberg as suppliers of data.

The papers 7

The papers

This section presents the papers. Since all the papers are written in collabo-
ration with other authors, I should specify my contribution. In all the papers,
I have done most of the writing, all the programming, and all the testing.
More details are given where needed.

Paper 1 – Evaluation of scenario-generation methods for sto-
chastic programming

This paper was written together with my supervisor Stein W. Wallace. It
summarizes some of our experience with scenario generation gained during the
whole duration of the project, and is thus probably the most important paper
in the collection. Some ideas from the paper were presented at the Nordic
MPS’02 meeting in Bergen, Norway, September 2002. The paper is posted at
SPEPS (Stochastic Programming E-Print Series), http://www.speps.info.

Paper 2 – Stability analysis of a portfolio management model
based on the conditional value-at-risk measure

This paper was written together with my supervisor Stein W. Wallace, and
Hercules Vladimirou and Stavros Zenios from the University of Cyprus. It
contains results of work done during my one-semester visit at the University
of Cyprus, in autumn 2001. Some of the results were presented at the Nordic
MPS’02 meeting in Bergen, Norway, September 2002, and at the 32th meeting
of the EURO Working Group on Financial Modelling, London, UK, in April
2003.

Unlike the other papers, most of the text in the final version is not mine:
Even though I wrote the first version of the paper, it was later revised by
Hercules Vladimirou.

Paper 3 – A heuristic for moment-matching scenario generation

This paper was written together with my supervisor Stein W. Wallace, and
Kjetil Høyland from Gjensidige NOR. The first version of the algorithm was
finished at the beginning of 2000, and the algorithm was first presented at the
26th meeting of the EURO Working Group on Financial Modelling in Trond-
heim, Norway, in May 2000. The first version of the paper was finished in June
2000, and was later presented at 7th ELAVIO (Latin-American OR Summer
School), Viña del Mar, Chile, in January 2001; at IFIP/IIASA/GAMM Work-
shop on Dynamic Stochastic Optimization, IIASA, Laxenburg, Austria, in

8 Introduction

March 2002; and at APMOD 2002, Varenna, Italy, in June 2002. The pa-
per was submitted to Computational Optimization and Applications in May
2001, and accepted after two revisions in August 2002. It was published in
Computational Optimization and Applications, vol. 24(2–3), pages 169–185,
2003.

The first idea of the algorithm was Kjetil Høyland’s, while I made the
idea implementable by introducing the cubic transformation. Also the later
refinements of the algorithm are mine.

In addition to the published version of the paper, we present a detailed de-
scription of data used in the numerical tests in the paper, and a note describing
new development of the algorithm.

Paper 4 – Multi-period scenario tree generation using moment-
matching: Example from option pricing

This paper was written together with my supervisor Stein W. Wallace. The
original impulse for the paper came from Ser-Huang Poon from the University
of Strathclyde, Glasgow, Scotland. Some of the ideas in the paper I learned
during SIRIF/ESRC Postgraduate Training Activities: Derivatives and Com-
putational Methods, University of Strathclyde, Glasgow, Scotland, September
2002. An early version of the paper was presented at the Half-Day Meeting on
Stochastics and Computation in Mathematical Finance, University of Strath-
clyde, Glasgow, Scotland, September 2002.

Bibliography 9

Bibliography

J. R. Birge and F. Louveaux. Introduction to stochastic programming.
Springer-Verlag, New York, 1997. ISBN 0-387-98217-5.

G. Dantzig. Linear programming under uncertainty. Management Science, 1:
197–206, 1955.

K. Høyland. Asset liability management for a life insurance company. A
stochastic programming approach. PhD thesis, Norwegian University of Sci-
ence and Technology, Trondheim, 1998.

K. Høyland and S. W. Wallace. Generating scenario trees for multistage deci-
sion problems. Management Science, 47(2):295–307, 2001.

P. Kall and S. Wallace. Stochastic Programming. Wiley, Chichester etc., 1994.

S. Wallace and K. Høyland. Using stochastic programming models for ALM
and tactical asset allocation – a Norwegian study. In S. A. Zenios and W. T.
Ziemba, editors, Handbook of Asset and Liability Management. Elsevier,
2003. ISBN 0-444-50875-9. Included in the series Handbooks in Finance.

Paper 1

Evaluation of
scenario-generation methods
for stochastic programming

Evaluation of scenario-generation methods

for stochastic programming

Michal Kaut
michal.kaut@iot.ntnu.no∗

Stein W. Wallace
stein.w.wallace@himolde.no†

May 2003

Abstract

In this paper, we discuss the evaluation of quality/suitability of sce-
nario-generation methods for a given stochastic programming model. We
formulate minimal requirements that should be imposed on a scenario-
generation method before it can be used for solving the stochastic pro-
gramming model. We also show how the requirements can be tested.

The procedure of testing a scenario-generation method is illustrated
on a case from portfolio management. In addition, we provide a short
overview of the most common scenario-generation methods.

Keywords: stochastic programming, scenario tree, scenario generation

1 Introduction

In recent years, stochastic programming has gained an increasing popularity
within the mathematical programming community. Present computing power
allows users to add stochasticity to models that had been difficult to solve
as deterministic models only a few years ago. In this context, a stochastic
programming model can be viewed as a mathematical programming model
with uncertainty about the values of some of the parameters. Instead of single
values, these parameters are then described by distributions (in a single-period
case), or by stochastic processes (in a multi-period case). A single-period

∗Norwegian University of Science and Technology, N-7491 Trondheim, Norway
†Molde University College, Postboks 2110, N-6402 Molde, Norway

Posted at SPEPS
(Stochastic Programming E-Print Series)
http://www.speps.info, ref. no. 14-2003

stochastic programming model can thus be formulated ([20]) as:

“min” g0(x, ξ̃)

s.t. gi(x, ξ̃) ≤ 0, i = 1, . . . ,m

x ∈ X ⊂ R
n ,

(1)

where ξ̃ is a random vector, whose distribution must be independent of the
decision vector x. Note that the formulation is far from complete—we still
need to specify the meanings of “min” and the constraints.

Except for some trivial cases, (1) can not be solved with continuous di-
stributions—most solution methods need discrete distributions. In addition,
the cardinality of the support of the discrete distributions is limited by the
available computing power, together with a complexity of the decision model.
Hence, in most practical applications, the distributions of the stochastic pa-
rameters have to be approximated by discrete distributions with a limited
number of outcomes. The discretization is usually called a scenario tree or an
event tree – see Figure 1 for an example.

Hence, we solve only an approximation of (1), with the quality of the
approximation directly linked to a quality of the scenario tree: garbage in,
garbage out holds here as anywhere else. Surprisingly, there has been little
focus on measuring the quality of scenario trees. In this paper, we thus ask the
question of what is a good scenario-generation method for a given stochastic
programming model. The link to the decision model is very important, we
do not believe there is a scenario-generation method that would be best for
all possible models, even if these models were subject to the same random
phenomena.

When comparing scenario-generation methods, we focus on practical per-
formance, not on the theoretical properties: it may be comforting to know
that a certain method approximates the distribution perfectly when the num-
ber of outcomes goes to infinity, yet it does not mean that the method is good
for generating a tree with just a few scenarios. Indeed, some of the methods
mentioned in Section 2 do not guarantee convergence to the true distribu-
tion, but perform very well in real-life problems. For more information on the
theoretical properties, see for example [8].

Because of the variety of both scenario-generation methods and decision
models, we do not provide a guideline of the type “for this model use that
method”. Instead, we formulate two important properties that a scenario-
generation method should satisfied in order to be usable for a given model.
We also show how to test the properties. The user can thus test several
scenario-generation methods, and choose the one that is best suitable for the

14 Paper 1 – Evaluation of scenario-generation methods

2 Short overview of scenario-generation methods

given decision model.

The rest of the paper is organised as follows: Section 2 presents a short
overview of the most important scenario-generation methods. Section 3 then
describes the terminology and notation for the paper. Section 4 provides two
criteria for the quality of a scenario tree, and Section 5 shows how to test them.
Section 6 then demonstrates the tests on a case from portfolio management.
Finally, Section 7 discusses some more aspects of scenario generation, before
we conclude the paper.

2 Short overview of scenario-generation methods

2.1 “Pure” Scenario-generation methods

Conditional sampling.

These are the most common methods for generating scenarios. At every node
of a scenario tree, we sample several values from the stochastic process {ξ̃t}.
This is done either by sampling directly from the distribution of {ξ̃t}, or by
evolving the process according to an explicit formula ξ̃t+1 = z(ξt, ε̃), or even
ξ̃t+1 = z({ξτ , τ < t}, ε̃), sampling from ε̃.

Traditional sampling methods can sample only from a univariate random
variable. When we want to sample a random vector, we need to sample ev-
ery marginal (the univariate component) separately, and combine them after-
wards. Usually, the samples are combined all-against-all, resulting in a vector
of independent random variables. The obvious problem is that the size of
the tree grows exponentially with the dimension of the random vector: if we
sample s scenarios for k marginals, we end-up with sk scenarios.

Another problem is how to get correlated random vectors – a common ap-
proach ([23, 13, 31]) is to find the principal components (which are indepen-
dent by definition) and sample those, instead of the original random variables.
This approach has the additional advantage of reducing the dimension, and
therefore reducing the number of scenarios.

There are several ways to improve a sampling algorithm. Instead of a
“pure” sampling, we may, for example, use integration quadratures or low
discrepancy sequences, if appropriate – see [27]. For symmetric distributions,
[22] uses an antithetic sampling. Another way to improve a sampling method
is to re-scale the obtained tree, to guarantee the correct mean and variance –
see [1].

15

Sampling from specified marginals and correlations.

As mentioned in the previous section, the traditional sampling methods have
problems generating multivariate vectors, especially if they are correlated.
However, there are sampling-based methods that solve this problem, using
various transformations.

In those methods, the user specifies the marginal distributions and the
correlation matrix. In general, there is no restriction on the marginal distri-
butions, they may even be from different families. Examples of such methods
can be found in [2, 24, 6].

Moment matching.

The methods from the previous section may be used only if we know the
distribution functions of the marginals. If we do not know them, we may
describe the marginals by their moments (mean, variance, skewness, kurtosis
etc.) instead. In addition, we specify the correlation matrix and possibly—
if the method allows us—other statistical properties (percentiles, higher co-
moments, etc). Then we construct a discrete distribution satisfying those
properties. Examples of this approach include [32, 30, 24, 15, 22, 25, 12, 16].

Path-based methods.

These methods start by generating complete paths, i.e. the scenarios, by
evolving the stochastic process {ξ̃t}. The result of this step is not a scenario
tree, but a set of paths, also called a “fan”. To transform a fan to a scenario
tree, the scenarios have to be clustered (bound) together, in all-but-the-last
period. This process is called clustering or bucketing. Examples of these
methods can be found in [8, 17].

“Optimal discretization”.

[28] describes a method that tries to find an approximation of a stochastic
process (i.e. scenario tree) that minimizes an error in the objective function of
the optimization model. Unlike the methods from the previous sections, the
whole multi-period scenario tree is constructed at once. On the other hand,
it works only for univariate processes. We use some of the methodology from
[28] in Section 4.

16 Paper 1 – Evaluation of scenario-generation methods

3 Notation and terminology

9 10 11 12 13 14 18 19 20 21 22 23 24 25 26

0

1 2

3 4 5 15 16 17

6 7 8

Figure 1: Example of a three-period tree

2.2 Related methods

Scenario reduction.

This is a method for decreasing the size of a given tree. This method tries
to find a scenario subset of prescribed cardinality, and a probability measure
based on this set, that is closest to the initial distribution in terms of some
probability metrics. The method is described in [9, 29].

Internal sampling methods.

Instead of using a pre-generated scenario tree, some methods for solving sto-
chastic programming problems sample the scenarios during the solution pro-
cedure. The most important methods of this type are: stochastic decompo-
sition [14], importance sampling within Benders’ (L-shaped) decomposition
[5, 19, 18], and stochastic quasigradient methods [10, 11].

In addition, there are methods that proceed iteratively: they solve the
problem with the current scenario tree, add or remove some scenarios and
solve the problem again. Hence, at least in principle, the scenarios are added
exactly where needed. The methods differ in the way they decide where to
add/remove the scenarios: [3] uses dual variables from the current solution,
while [7] measures the “importance of scenarios” by EVPI (expected value of
perfect information).

3 Notation and terminology

Throughout the paper, we use the following conventions: stochastic variables
are denoted by tilde (as in ξ̃), and discrete stochastic variables by breve (ξ̆).

17

Stochastic processes are described as {ξ̃t}t∈T, or only {ξ̃t}. The notation can
combine, so {ξ̆t} denotes a discrete multivariate process.

Let us have a stochastic programming model with uncertainty described
by a stochastic process {ξ̃t}t∈T. To be able to approximate the process by
a scenario tree, the process has to be discrete in time, i.e. T = {0, . . . , T}.
We call the points in time t ∈ T stages.1 Since choosing the stages is often a
natural part of the modelling process, we assume that the time discretization
has already been done, so that we have the set T.

In a scenario tree, the “true” stochastic process {ξ̃t} is approximated by
a discrete process {ξ̆t}. Since there is a unique relation between the scenario
tree and the process {ξ̆t}, we often refer to a “T -period scenario tree {ξ̆t}”.
For example, the three-period tree in Figure 1 represents a stochastic process
with two outcomes in the first period, and three outcomes per node in the last
two periods.

In the rest of the paper, we focus on the objective function of the stochastic
programming model (1). To simplify the formulas, we denote the whole model
by

min
x∈X

F
(
x; ξ̃t

)
, (2)

where ξ̃t is to be understood as {ξ̃t}. When we approximate the process {ξ̃t}
by a scenario tree {ξ̆t}, the objective function becomes F

(
x; ξ̆t

)
.

4 Measure of quality of a scenario tree

We should always remember that our goal is to solve a stochastic program. The
only reason why we need a scenario tree is that we do not know how to solve
the problem directly with the process {ξ̃t}. Hence, we should judge a scenario
tree (and, consequently, a scenario-generation method) by the quality of the
decision it gives us. We are not concerned about how well the distribution is
approximated, as long as the scenario tree leads to a “good” decision. In other
words, we are not necessarily searching for a discretization of a distribution
that is optimal (or even good) in the statistical sense. See [30] for discussion
and examples of this topic.

The error of approximating a stochastic process {ξ̃t} by a discretization
{ξ̆t}, for a given stochastic programming problem (2), is thus defined as the
difference between the value of the true objective function at the optimal
solutions of the true and the approximated problems. The following definition

1There is no general agreement on what should be called stages: in some contexts, stages
are only those points in time where a decision is made.

18 Paper 1 – Evaluation of scenario-generation methods

4 Measure of quality of a scenario tree

of the error is from [28]:

ef (ξ̃t, ξ̆t) = F
(
argmin

x
F

(
x; ξ̆t

)
; ξ̃t

)
− F

(
argmin

x
F

(
x; ξ̃t

)
; ξ̃t

)

= F
(
argmin

x
F

(
x; ξ̆t

)
; ξ̃t

)
− min

x
F

(
x; ξ̃t

) (3)

Note that ef (ξ̃t, ξ̆t) ≥ 0, since the second element is the true minimum, while
the first one is a value of the (true) objective function at an approximate
solution. Note also that we do not compare the optimal solutions x, but their
corresponding values of the objective function. The reason is that the objective
function of a stochastic programming problem is typically flat, so there can be
different solutions giving very similar objective values.2

Definition (3) has one rather obvious problem: the error is, in most prac-
tical problems, impossible to calculate. [28] solves this by proving that, under
certain uniform Lipschitz conditions,

ef (ξ̃t, ξ̆t) ≤ 2 sup
x

∣∣∣F (
x; ξ̆t

) − F
(
x; ξ̃t

)∣∣∣ ≤ 2Ld(ξ̆t, ξ̃t) ,

where L is a Lipschitz constant of F (),3 and d(ξ̆t, ξ̃t) is a Wasserstein (trans-
portation) distance of the distribution functions of the processes {ξ̆t} and {ξ̃t}.
An algorithm is then developed to construct a scenario tree that minimizes
the upper bound, i.e. the Wasserstein distance d(ξ̆t, ξ̃t).

This approach has several shortcomings: The bounds can, in general, be
quite loose, so even if we find a scenario tree that minimizes the upper bound,
there is no guarantee that we will be close to the minimum of ef (). In addi-
tion, minimization of the upper bound does not depend on the optimization
problem, so we have missed the link between the scenario generation and the
problem. (Only the constant L, i.e. the tightness of the bound, depends on
the problem.)

In this paper, we have therefore taken a different approach: instead of
trying to find the optimal scenario-generation method, we focus on evaluation
of a given method. In this context, a scenario-generation method may be seen
as a heuristic for minimizing the error ef (), as opposed to [28], which comes
with an exact method for minimizing an upper bound of ef ().

There are two problematic operations in definition (3) of the error ef (ξ̃t, ξ̆t):

2In addition, we would need to define a meaningful metric on the space of x, which could
itself be a problem.

3Actually, L is a Lipschitz constant of f(), where F (x, ξ̃) = E
ξ̃
[
f(x, ξ̃)

]
. See [28] for

details.

19

1. finding the “true” objective value F
(
x; ξ̆t

)
for a given solution x.

2. finding the “true” optimal solution to (2): argminx F
(
x; ξ̃t

)

While the second is almost always prohibitive, since it needs solving the opti-
mization problem with the continuous process, the first one may be possible,
for example via simulation. In the next section, we discuss different approaches
for testing the discretization error, together with other tests of the quality of
the discretization.

5 Testing a scenario-generation method

There are (at least) two minimal requirements a scenario-generation method
must satisfy. Since most of the methods involve some randomness, the first
requirement is stability: if we generate several trees (with the same input)
and solve the optimization problem with these trees, we should get the same
optimal value of the objective function. The other requirement is that the
scenario tree should not introduce any bias, compared to the true solution.

There is a conceptual difference between the two requirements: while the
first one can, at least to some degree, be tested, a direct testing of the second
is in most cases impossible.

5.1 Stability requirement

This requirement can be stated as follows: If we generate several scenario
trees (discretizations {ξ̆t}) for a given process {ξ̃t}, and solve the stochastic
programming problem with each tree, we should get (approximately) the same
optimal value of the objective function.

Let us say that we generate K scenario trees ξ̆tk, solve the optimization
problem with each one of then, and obtain optimal solutions x∗

k, k = 1 . . . K.
By an in-sample stability we then understand

F
(
x∗

k; ξ̆tk

) ≈ F
(
x∗

l ; ξ̆tl

)
k, l ∈ 1 . . . K ,

while an out-of-sample stability is defined as

F
(
x∗

k; ξ̃t

) ≈ F
(
x∗

l ; ξ̃t

)
k, l ∈ 1 . . . K .

20 Paper 1 – Evaluation of scenario-generation methods

5 Testing a scenario-generation method

Or, equivalently:

in-sample: min
x

F
(
x; ξ̆tk

) ≈ min
x

F
(
x; ξ̆tl

)

out-of-sample: F
(
argmin

x
F

(
x; ξ̆tk

)
; ξ̃t

)
≈ F

(
argmin

x
F

(
x; ξ̆tl

)
; ξ̃t

)

out-of-sample, using (3): ef (ξ̃t, ξ̆tk) ≈ ef (ξ̃t, ξ̆tl)

There is an important difference between the two definitions: while for
the in-sample stability we need only solve the scenario-based optimization
problem, for the out-of-sample stability we have to be able to evaluate the
“true” objective function F

(
x; ξ̃t

)
. To be able to do this, we need to have

a full knowledge of the distribution of {ξ̃t}, and even then it may not be
straightforward to evaluate F

(
x; ξ̃t

)
.

It is important to realize that the two stabilities are different and that
there is no simple relationship between them. This can be demonstrated on
the following one-period, one-dimensional example:

min
x∈R

F
(
x; ξ̃

)
= E

ξ̃
[(

x − ξ̃
)2

]

This problem can be solved explicitly, for any distribution of ξ̃ (we drop the
distribution index):

F
(
x; ξ̃

)
= E

[(
ξ̃ − x

)2
]

= E

[((
ξ̃ − E

[
ξ̃
])

+
(
E

[
ξ̃
] − x

))2
]

= E

[(
ξ̃ − E

[
ξ̃
])2

]
+ E

[
2
(
ξ̃ − E

[
ξ̃
])(

E
[
ξ̃
] − x

)]
+ E

[(
E

[
ξ̃
] − x

)2
]

= Var
[
ξ̃
]
+ 0 +

(
x − E

[
ξ̃
])2

,

so the optimal solution is

x∗ = argmin
x∈R

F
(
x; ξ̃

)
= E

[
ξ̃
]

F
(
x∗; ξ̃

)
= min

x∈R

F
(
x; ξ̃

)
= Var

[
ξ̃
]

Now, assume we generate sample trees ξ̆k, k = 1 . . .K, and get the
solutions x∗

k = E
[
ξ̆k

]
. Let us first assume that the scenario-generation

method is such that all the samples ξ̆k have the correct means (i.e. E
[
ξ̆k

]
=

E
[
ξ̃
]
), but the variances are different in all the samples. Hence F

(
x∗

k; ξ̆k

)
=

Var
[
ξ̆k

]
is different for all the samples, so we do not have in-sample stability.

21

At the same time, x∗
k = x∗, so F

(
x∗

k; ξ̃
)

= F
(
x∗; ξ̃

)
, and the out-of-sample

stability holds.
If we instead assume that we have a scenario-generation method that pro-

duces samples with correct variances (i.e. Var
[
ξ̆k

]
= Var

[
ξ̃
]
), but the means

are different in all the samples,4 we would have F
(
x∗

k; ξ̆k

)
= Var

[
ξ̆k

]
=

Var
[
ξ̃
]
, so we would have the in-sample stability. On the other hand,

F
(
x∗

k; ξ̃
)

= Var
[
ξ̃
]
+

(
E

[
ξ̆k

]−E
[
ξ̃
])2

would be different for all the samples,
so the problem would be out-of-sample unstable.

We may ask what is the practical difference between the in-sample and out-
of-sample stability, and which of them is more important to have. Having out-
of-sample stability means that the real performance of the solution x∗

k is stable,
i.e. it does not depend on which scenario tree {ξ̆t} we choose. However, if we do
not have the in-sample stability as well, we may be getting good solutions, but
without knowing how good they really are (unless we solve several instances
and take an average, or do the out-of-sample evaluation). The opposite (in-
sample without out-of-sample stability) is even more dangerous, since the real
performance of the solutions depends on which scenario tree we pick—without
the possibility of detecting it by solving the problem on several trees.

In the example above, we could see that it is possible to have an in-sample
instability in the objective function, but still have an in-sample stability of
the solutions—in our case, the solutions were the same in all the sample trees.
This obviously guarantees an out-of-sample stability. Therefore, if we detect
an in-sample instability of the objective, we should look at the solutions as
well. However, it does not work the other way around, i.e. we can have the out-
of-sample stability even if the in-sample solutions vary, because the objective
functions of stochastic programming problems are typically flat.

It can be expected that in most practical applications we will have either
both the stabilities or none, so the in-sample tests should be sufficient in
detecting a possible instability. However, if there is a way to perform the
out-of-sample test, we would recommend to do that as well.

There are several possible ways to do the out-of-sample testing, i.e. the
evaluation of the objective function F

(
xk; ξ̃t

)
for a given decision xk. If we

know the true stochastic process {ξ̃t}, the obvious choice is some Monte-Carlo-
like simulation method. If we, on the other hand, use historical data in the
scenario generation, back-testing may be an appropriate option. Or, if we have
another scenario-generation method we believe to be stable, we may use it to
create a reference scenario tree and evaluate the solutions xk on that tree—
notice that the tree can be quite big, since we are not solving a stochastic

4This may not be a very realistic example, but that is not the point here.

22 Paper 1 – Evaluation of scenario-generation methods

5 Testing a scenario-generation method

programming problem on it, we are only evaluating the objective function for
a given decision.

To conclude the section, we would like to repeat that stability is the min-
imal requirement we should put on a scenario-generation method. Hence,
before we start to work with a new optimization model, or a new scenario-
generation method (remember that we test the two together), we should always
run the stability tests: the in-sample test and, if feasible, the out-of-sample
test.

5.2 Testing for a possible bias

In addition to being stable (both in-sample and out-of-sample), the scenario-
generation method should not introduce any bias into the solution. In other
words, the solution of the scenario-based problem,

x̆∗ = argmin
x

F
(
x; ξ̆t

)
,

should be an (almost) optimal solution of the original problem (2). Hence,
the value of the “true” objective function at the scenario solution, F

(
x̆∗; ξ̃t

)
,

should be (approximately) equal to the “true” optimal value minx F
(
x; ξ̃t

)
:

F
(
x̆∗; ξ̃t

)
= F

(
argmin

x
F

(
x; ξ̆t

)
; ξ̃t

)
≈ min

x
F

(
x; ξ̃t

)
.

Or, using the definition (3),

ef (ξ̃t, ξ̆t) ≈ 0 .

The problem is that testing of this property is in most practical problems
impossible, since it needs solving the optimization problem with the (true)
continuous process—and if we could solve that, we would not need scenario
trees in the first place.

In some cases, however, it can be possible to do some approximate tests.
One possibility is to built a reference tree, and use it as a representation
(approximation) of the true stochastic process. Typically, such a tree should
be as big as possible, i.e. the biggest tree for which we can still solve the
optimization problem. To create such a tree, we would need a method that is
guaranteed to be unbiased—we can not use the method we want to test! For
example, if we use a data series as an input for the scenario generation, we
may try using all the history as scenarios.

23

5.3 Improving the performance

When the testing shows that our scenario-generation method is instable or
biased (for the given stochastic programming model), the next question is
what are the possible causes of the problem. The answer depends to a large
degree on the type of the scenario-generation method used:

Sampling methods.

When we use a sampling method, the strongest candidate for the source of
the instability or bias is a lack of scenarios—we know that, with an increasing
number of scenarios, the discrete distribution converges to the true distribu-
tion. Hence, by increasing the number of scenarios, the trees will be closer to
the true distribution, and consequently also closer to each other. As a result,
both the instability and the bias should decrease.

In addition to increasing the number of scenarios (which is usually limited
by the solution time for the optimization model), we can also try to improve
the sampling method. Some of the options are included in the overview in
Section 2.

Moment-matching methods.

With moment-matching methods, the situation is more complicated. Since
these methods generally do not guarantee convergence, increasing the number
of scenarios is not guaranteed to help. We thus need to look at different
issues. In the following discussion we assume that in all the tested scenario
trees ξ̆tk, we have managed to match all the required properties perfectly, i.e.
the instability/bias has to come from some properties we do not control (and
that can, thus, vary between the tested trees).

Even without the convergence guarantee, the first thing to test is still the
number of scenarios: There is an obvious difference between a discrete dis-
tribution with three points, and a discrete distribution with thousand points,
even if their first four (or even five) moments can be equal. The difference is in
the smoothness of the distribution, and our experience shows that this is often
an important factor. In this context, it is important to understand that not
all the moment-matching methods show increasing smoothness with increasing
number of scenarios: while this is typically the case for transformation-based
methods (for example [16]), it is not true for optimization-based methods like
[15].

The important issue of the moment-matching methods is whether we match
the right properties—an issue that is obviously dependent on the optimization

24 Paper 1 – Evaluation of scenario-generation methods

6 Test case: a portfolio optimization

model. While for a mean-variance model it is enough to match the means,
variances, and the correlation matrix, most optimization models will require
more. Our experience shows that the first four moments are often a good
enough description of the marginals, at least for financial models. On the other
hand, a correlation matrix may not be enough to describe the multi-variate
structure. In such a case, we may try to match also higher co-moments, or
use a copula ([26, 4]), if we have the necessary data and a scenario-generation
method that can work with these properties.

What shall we then do, when we discover that a moment-matching method
is either instable or biased? The first thing to try is to increase the number of
scenarios as much as possible (we still have to be able to solve the optimization
model in a reasonable time). If this helps, the problems were probably caused
by the lack of smoothness in the original trees. Otherwise, it means that there
is some property the decision model reacts to, but we do not control it in the
scenario-generation process. We have no general advices on identifying the
missing property—it depends on the decision model, and is typically done by
a trial-and-error approach, based on problem understanding.

6 Test case: a portfolio optimization

As a test case, we use a simple one-period portfolio optimization problem:
we consider one-month investments in three indices (stocks, short-term bonds,
and long-term bonds), in four markets (USA, UK, Germany, Japan), giving
us twelve assets in total. We model the situation of a US investor, so we have
to include the exchange rates of the three foreign currencies to USD. Hence,
we have fifteen random variables in the scenario trees. In the model, we do
not allow short positions. In addition, it is possible to hedge the currency risk
with forward contracts.

As an objective function, we use the expected return and quadratic penal-
ties for shortfalls (returns under a given threshold):

sf(ξ) = max (Tg − ret(x, ξ), 0)

F
(
x; ξ̆
)

= E

[
ret(x, ξ̆) − α

(
sf(ξ̆) + β sf(ξ̆)2

)]
,

where α is a risk-aversion parameter, and β is a weight of the quadratic term.
In the test, we used the following values: Tg = 0, α = 1, and β = 10.

We use the moment-matching scenario-generation method from [16] to gen-
erate the scenarios. This method generates scenario trees with specified first
four moments of the marginal distributions (mean, standard deviation, skew-
ness and kurtosis), and correlation matrix.

25

For the out-of-sample test, and for the test of a bias, we need a represen-
tation of the “real world”. In our case, we take a large scenario set— that we
refer to as the “benchmark scenario set”. It is important that the benchmark
set is provided exogenously, that is, it is not generated by the same method
which we want to test. In our case, the benchmark scenario set (tree) was
generated by a method based on principal component analysis described in
[31]. The benchmark tree has 20, 000 scenarios, and is based on data in the
period from January 1990 to April 2001. See [21] for a detailed description of
properties of the benchmark scenario set. We note that the scenarios of the
benchmark tree are not equiprobable.

Based on the benchmark tree, we compute the moments and correlations
of the differentials of the random variables. The values of these statistical
properties constitute the targets to match with our scenario generation pro-
cedure.

Since we have the benchmark scenario tree as an representation of the true
distribution, we can perform all the tests from Section 5: For a given size of
the tree, we generate 25 scenario trees, solve the optimization model on each of
them, and then evaluate the solutions on the benchmark tree. This is repeated
for several different sizes of the tree.

Results of the test are presented in Table 1. We see that the scenario-
generation method used gives a reasonable stability, both in-sample and out-
of-sample. We see also that the out-of-sample values have a smaller variance
then the in-sample values. The reason is that in in-sample tests we evaluate
(different) solutions on different trees, while in the out-of-sample tests we
evaluate all the solutions on the common benchmark tree. Note also that the
performance (true objective value of the solutions) improves as the number of
scenarios increases.

Another important observation is the fact that, in the case of 50 scenarios,
the in-sample objective values are significantly higher than the out-of-sample
(true) values. In other words, the solution is notably worse than the model
tells us. This is a common observation: when we do not have enough scenarios,
the model overestimates the quality of its own solution. Only out-of-sample
evaluations can tell us how good a solution really is.

In addition to the stability tests, we have solved the optimization model
on the benchmark tree, and obtained the “true” optimal solution: 0.00930.
Hence, we see that the scenario generation method does not introduce any
significant bias, given there are enough scenarios. We also see that there is a
noticeable bias in the case of 50 scenarios.

The conclusion of the tests is that the tested scenario-generation method is
suitable for the given optimization model: it is stable and does not introduce

26 Paper 1 – Evaluation of scenario-generation methods

7 How far can we get?

Table 1: Stability tests for the optimization model. For every size of the
scenario tree, 25 trees were generated, and the model was solved on each of
them. The solutions were then evaluated on the benchmark tree to obtain
the out-of-sample values. The table presents sample means and standard
deviations of the optimal values, for the different sizes.

description of the test # of scenarios

type of test objective f. value 50 250 1000 5000

in-sample F
(
x∗

k; ξ̆tk

) average 0.00948 0.00936 0.00931 0.00929
std. dev. 0.00023 0.00011 0.00005 0.00002

out-of-sample F
(
x∗

k; ξ̃t

) average 0.00902 0.00926 0.00928 0.00930
std. dev. 0.00015 0.00003 0.00001 0.00000

any significant bias, provided we have enough scenarios. The results also
suggest that we should not use trees smaller than 1000 scenarios.

7 How far can we get?

So far, we have implicitly assumed that all distributions are known. In reality
this is very rarely the case. What does this lack of knowledge mean, particu-
larly for the issue we raise here, that of generating good scenario trees? First,
let us distinguish between three cases:

• The distributions are fully known.

• We have theoretical knowledge about the distribution family, plus data.

• We only have data.

Although it is common to assume in theoretical papers that a distribution
is fully known—very often this is done indirectly by basing the paper (or
the tests within the paper) on certain distributions—this is in our view not
the case in many applications. An exception may be planning under well-
known stochasticity, such as the roll of a (fair) die or the flip of a (fair) coin.
But most interesting applications concern real-life phenomena such as price,
demand or quality. So, if the distribution is not known, what can we then
say about scenario trees? The most important, and also obvious, observation
is that certain theoretical properties of scenario generation methods become
less useful. For example, sample-based methods will, if the sample is large
enough, produce scenario trees arbitrarily close to the distribution from which
we sample. But how useful is it to know that we have convergence towards
something that is not the real thing?

27

This becomes even more important if we have do not know a distribution
family. A common approach in this case is to assume some family. If we do
so, we know that sampling will converge to a distribution that contains infor-
mation we have added without foundation in data or theory. An alternative
is using the empirical distribution directly. In this way we avoid adding any
subjective information to the data. On the other hand, this approach will pre-
vent the use of any methodology that requires knowledge of the distribution
itself.

In the (scarce) occasions that we have distributional information, it is nor-
mally advisable to estimate the distribution, since otherwise that information
is lost. But we still face the problem of having convergence to a distribution
that may not be the right one.

But there is more to the problem than this. To use data we have to assume
that the past is a reasonable description of the future. Whether this is the
case cannot be tested, it is a question of belief. We can of course test, at least
in many cases, whether or not the past would have been a good description
of the future, in the past. But it is still a question of belief if this is the case
now.

We have mentioned simulation as a way to evaluate the true value of a
certain decision. The good thing about simulation models is that they can
be allowed to contain details that we are unable to put into the optimization
model. But all the problems discussed above remain. Within the simulation
model we need to sample from distributions, and they are normally not fully
known.

This discussion may seem to be very negative, we seem to be saying that
nothing works. That is not the point. The point is to be aware of the short-
comings of modeling in general, and stochastic programming in particular. We
can get to a certain point, but thereafter empirical testing becomes impossible,
and we have to start believing in what we do. And in our view, this also means
that we should be very sceptical to high accuracy statements from models. We
may know that a given method retains two digits of accuracy, but we cannot
know how many correct digits were in the input.

Hence, the convergence properties are not so important in real-life applica-
tions. Instead, it is more important to have scenario generation tools that give
us reasonable control over the tree with a limited number of scenarios. What
we want is a method that is stable, unbiased and produces small trees. But
there is a limit to what we require in terms of accuracy, given these properties.

28 Paper 1 – Evaluation of scenario-generation methods

References

Conclusions

In this paper, we have discussed how to evaluate the suitability of a given
scenario-generation method for a given stochastic programming problem. We
have identified the main properties the scenario-generation method should
satisfied, and suggested a way to test them. We have also demonstrated the
methodology on an example from portfolio management.

References

[1] D. R. Cariño, T. Kent, D. H. Myers, C. Stacy, M. Sylvanus, A. L. Turner,
K. Watanabe, and W. T. Ziemba. The Russell-Yasuda Kasai model: an
asset liability model for a Japanese insurance company using multistage
stochastic programming. INTERFACES, 24(1):29–49, 1994.

[2] M. C. Cario and B.L. Nelson. Modeling and generating random vectors
with arbitrary marginal distributions and correlation matrix. Technical
report, Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, Illinois, 1997.

[3] Michael Casey and Suvrajeet Sen. The scenario generation algorithm
for multistage stochastic linear programming. Available at http://www.
math.ups.edu/~mcasey/, 2002.

[4] Robert T. Clemen and Terence Reilly. Correlations and copulas for de-
cision and risk analysis. Management Science, 45(2):208–224, February
1999.

[5] George B. Dantzig and Gerd Infanger. Large-scale stochastic linear
programs—importance sampling and Benders decomposition. In Com-
putational and applied mathematics, I (Dublin, 1991), pages 111–120.
North-Holland, Amsterdam, 1992.

[6] B. Deler and B. L. Nelson. Modeling and generating multivariate time se-
ries with arbitrary marginals using an autoregressive technique. Technical
report, Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, Illinois, 2000.

[7] M. A. H. Dempster and R. T. Thompson. EVPI-based importance sam-
pling solution procedures for multistage stochastic linear programmes on
parallel MIMD architectures. Annals of Operations Research, 90:161–184,

29

1999. also in Proceedings of the POC96 Conference, Versailles, March,
1996.

[8] Jitka Dupačová, Giorgio Consigli, and Stein W. Wallace. Scenarios for
multistage stochastic programs. Ann. Oper Res., 100:25–53 (2001), 2000.

[9] Jitka Dupačová, Nicole Gröwe-Kuska, and Werner Römisch. Sce-
nario reduction in stochastic programming. Mathematical Programming,
95(3):493–511, 2003.

[10] Yu. Ermoliev. Methods of Stochastic Programming. Nauka, Moscow, 1976.
In Russian.

[11] Yury M. Ermoliev and Alexei A. Gaivoronski. Stochastic quasigradient
methods for optimization of discrete event systems. Ann. Oper. Res.,
39(1-4):1–39 (1993), 1992.

[12] N. Gülpınar, B. Rustem, and R. Settergren. Optimisation and simulation
approaches to scenario tree generation. Journal of Economics Dynamics
and Control, to appear, 2002.

[13] Roger Halldin. Scenario Trees for Inflow Modelling in Stochastic Optimi-
sation for Energy Planning. PhD thesis, Lund Unversity, Sweden, 2002.

[14] J. L. Higle and S. Sen. Stochastic decomposition: An algorithm for two-
stage linear programs with recourse. Mathematics of Operations Research,
16:650–669, 1991.

[15] K. Høyland and S. W. Wallace. Generating scenario trees for multistage
decision problems. Management Science, 47(2):295–307, 2001.

[16] Kjetil Høyland, Michal Kaut, and Stein W. Wallace. A heuristic for
moment-matching scenario generation. Computational Optimization and
Applications, 24(2-3):169–185, 2003.

[17] IBM Corp. IBM Optimization Library Stochastic Extensions Users Guide,
1998.

[18] G. Infanger. Planning under Uncertainty: Solving Large-Scale Stochastic
Linear Programs. Boyd and Fraser, Danvers, 1994.

[19] Gerd Infanger. Monte Carlo (importance) sampling within a Benders
decomposition algorithm for stochastic linear programs. Ann. Oper. Res.,
39(1-4):69–95 (1993), 1992.

30 Paper 1 – Evaluation of scenario-generation methods

References

[20] P. Kall and S.W. Wallace. Stochastic Programming. Wiley, Chichester,
1994.

[21] Michal Kaut, Stein W. Wallace, Hercules Vladimirou, and Stavros Zenios.
Stability analysis of a portfolio management model based on the condi-
tional value-at-risk measure. Feb 2003.

[22] R. R. P. Kouwenberg. Scenario generation and stochastic programming
models for asset liability management. European Journal of Operational
Research, 134(2):51–64, 2001.

[23] Mico Loretan. Generating market risk scenarios using principal com-
ponents analysis: Methodological and practical considerations. In The
Measurement of Aggregate Market Risk, CGFS Publications No. 7, pages
23–60. Bank for International Settlements, November 1997. Available at
http://www.bis.org/publ/ecsc07.htm.

[24] P. M. Lurie and M. S. Goldberg. An approximate method for sampling
correlated random variables from partially-specified distributions. Man-
agement Science, 44(2):203–218, 1998.

[25] Johan Lyhagen. A method to generate multivariate data with moments
arbitrary close to the desired moments. Working paper 481, Stockholm
School of Economics, December 2001.

[26] Roger B. Nelsen. An Introduction to Copulas. Springer-Verlag, New York,
1998.

[27] T. Pennanen and M. Koivu. Integration quadratures in discretization
of stochastic programs. Stochastic Programming E-Print Series, http:
//www.speps.info, May 2002.

[28] G. C. Pflug. Scenario tree generation for multiperiod financial optimiza-
tion by optimal discretization. Mathematical Programming, 89(2):251–
271, 2001.

[29] W. Römisch and H. Heitsch. Scenario reduction algorithms in stochas-
tic programming. Computational Optimization and Applications, 24(2-
3):187–206, 2003.

[30] James E. Smith. Moment methods for decision analysis. Management
Science, 39(3):340–358, March 1993.

31

[31] N. Topaloglou, Vladimirou H., and S. A. Zenios. CVaR models with
selective hedging for international asset allocation. Journal of Banking
and Finance, 26(7):1535–1561, 2002.

[32] C. David Vale and Vincent A. Maurelli. Simulating multivariate nonnor-
mal distributions. Psychometrika, 48(3):465–471, 1983.

32 Paper 1 – Evaluation of scenario-generation methods

Paper 2

Stability analysis of a
portfolio management model

based on the conditional
value-at-risk measure

Stability analysis of a portfolio management model

based on the conditional value-at-risk measure

Michal Kaut
michal.kaut@iot.ntnu.no∗

Stein W. Wallace
stein.w.wallace@himolde.no†

Hercules Vladimirou
hercules@ucy.ac.cy‡

Stavros A. Zenios
zenioss@ucy.ac.cy‡

February 2003

Abstract

We examine the stability of a portfolio management model based on
the conditional value-at-risk (CVaR) measure. The stochastic program-
ming model controls total risk exposure of an international investment
portfolio. This includes both market risk in multiple countries as well as
currency exchange risk. Uncertainty in asset returns and exchange rates
is modeled in terms of discrete scenarios that are generated by means of
a moment matching method. The procedure generates a set of scenar-
ios with statistical properties of the random variables matching specific
target values that are estimated using historical market data.

First, we establish that the scenario generation procedure does not
bias the results of the optimization program, and we determine the re-
quired number of scenarios to attain stable solutions. We then inves-
tigate the sensitivity of the CVaR model to errors (mis-specifications) in
the statistics of stochastic parameters (i.e., mean, variance, skewness and
kurtosis of the marginal distributions, as well as correlations). We em-
pirically determine the effects on the model’s results due to systematic
changes in the target statistics at the scenario generation phase. The
results are most sensitive to changes in the means of the stochastic pa-
rameters (domestic asset returns and currency exchange rates). As ex-
pected, accurate estimation of the means is a most important concern
in the portfolio management problem. However, errors in the variance,

∗Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
†Molde University College, Postboks 2110, N-6402 Molde, Norway.
‡HERMES Center on Computational Finance and Economics, School of Economics and

Management, University of Cyprus, P.O. Box 20573, CY-1678 Nicosia, Cyprus.

skewness and correlations of the random parameters also have consider-
able — and approximately equal — impact on the solutions. The effect
from errors in the values of kurtosis is about one half of the effects of the
previous statistics, but still is not negligible.

This study demonstrates that optimization programs that use risk
measures concerned with the tail of the portfolio’s return distribution in-
deed exhibit sensitivity to the higher moments of stochastic inputs. Our
results, moreover, quantify the relative impact of errors in the various
statistical properties of these inputs. We conclude that care is needed
when applying stochastic programming models for financial risk man-
agement to (a) reliably estimate the statistical properties of the random
variables, and (b) generate scenario sets that reflect as closely as possible
the target statistics, since mis-specifications of these inputs can influence
the results.

1 Introduction

The mean-variance approach from Markowitz’ seminal work in the 1950’s
formed the basis for portfolio selection in recent decades. The mean-variance
method assumes that the returns of assets follow normal distributions and/or
that the investor has a quadratic utility function. Despite the long and
widespread use of the mean-variance paradigm in portfolio management, its
fundamental assumptions often do not hold in practice. The returns of many
financial securities exhibit skewed and leptokurtic distributions. The inclu-
sion of derivatives, or securities with embedded options, in portfolios further
stresses the problem as derivatives, by construction, have highly skewed re-
turn distributions. Many other investments are exposed to multiple risk factors
whose joint effect on returns often can not be modeled by a normal distribu-
tion.

Substantial research effort has been directed toward the development of
models that properly capture asymmetries and dynamic effects in the observed
behavior of asset returns. At the same time, alternative risk metrics have been
sought. Such measures are concerned with other, or additional, characteris-
tics of the return distribution (e.g., the tails) besides the variance, and are
designed to accommodate a wider range of investor priorities and regulatory
requirements for risk management.

The value-at-risk (VaR) has essentially attained the status of a de-facto
standard in financial practice. VaR is customarily defined as the maximal loss
(or minimal return) of a portfolio over a specific time horizon and a specified
confidence level. Let x denote the composition of a portfolio whose assets have

36 Paper 2 – Stability analysis of CVaR

1 Introduction

random returns r̃.1 The return of the portfolio is a random variable ρ̃(x, r̃)
with a distribution function F (x, u) = P {ρ̃(x, r̃) ≤ u}. VaR, defined in terms
of portfolio return, is the minimal return for a prespecified (critical) confidence
level α × 100%:

VaR(x, α) = min {u : F (x, u) ≥ 1 − α} = min {u : P {ρ̃(x, r̃) ≤ u} ≥ 1 − α} .

Hence, VaR(x, α) corresponds to the (1 − α) × 100% percentile of the portfo-
lio’s return distribution. If we assume normality of returns then VaR is easily
computable. Alternatively, it can be estimated via Monte Carlo simulation
procedures.

The use of VaR as a risk measurement benchmark has been promoted by a
leading provider of risk management tools [14]. It had also been embraced by
academic researchers (see, for example, Jorion [8]). Many financial institutions
compute the VaR value of their portfolios either to comply with regulatory
requirements or for internal risk measurement purposes. The Basle Accord [11,
12] dictates that banks should maintain capital reserves that are determined
as multiples of the VaR characterizing their portfolios (see Lucas [10]).

Although its calculation for a certain portfolio x indicates that the portfo-
lio return will be below VaR(x, α) with likelihood (1−α)×100%, it provides no
information on the extent of the distribution’s tail which may be quite long; in
such cases, the portfolio return may take substantially lower values than VaR
and result in severe losses. Despite its widespread adoption in practice, the use
of VaR for risk management purposes is being increasingly challenged by the
research community both on theoretical, as well as on practical grounds. The-
oretical limitations of VaR are discussed, for example, in Pflug [13], Acerbi and
Tasche [1], Frey and McNeil [5], Rockafellar and Uryasev [16], and Szegö [17].
As pointed out by Pflug [13], VaR is not a coherent risk measure in the sense
defined by Artzner et al. [2]. Specifically, VaR is not sub-additive. Hence, the
VaR of a diversified portfolio can be larger than the sum of the VaRs of its
constituent asset components.

It has been empirically observed that, when determined by means of sim-
ulations, the computed values of VaR can be rather unstable. Berkowitz and
O’Brien [3] provide evidence that VaR models can have poor performance in
practice. Moreover, when the returns of assets are expressed in terms of dis-
crete distributions (i.e., scenarios) VaR is a non-smooth and non-convex func-
tion of the portfolio positions x and exhibits multiple local extrema (see, e.g.,
Rockafellar and Uryasev [16]). Incorporating such functions in mathematical
programs is very difficult, thus making impractical the use of VaR in optimal
portfolio management models.

1In this paper we use boldface type for vectors and tilde (̃) for random variables.

37

In response to the limitations of VaR, alternative risk metrics have been
sought. Artzner et al. [2] discuss several such metrics and specify the required
properties for coherent risk measures. Notable among them is the conditional
value-at-risk (CVaR) — also called “mean excess loss”, “expected shortfall” or
“tail VaR”. This risk measure has been analyzed in a number of recent papers;
see, for example, Rockafellar and Uryasev [16], Acerbi and Tasche [1], Frey
and McNeil [5], Tasche [18], Topaloglou et al. [19].

CVaR is a risk measure related to VaR as it quantifies the conditional expec-
tation of losses exceeding VaR. When expressed in terms of portfolio return,
CVaR is essentially the expected value of the (1−α)100% worst (lowest) returns
of portfolio x. If F (x, u) is a continuous function of u, we have

CVaR(x, α) = E [ρ̃(x, r̃) | ρ̃(x, r̃) ≤ VaR(x, α)] . (1)

As indicated by Pflug [13], unlike VaR, CVaR possesses the required properties
of coherent risk measures, including subadditivity.

Models based on the CVaR risk measure are being increasingly applied to
various portfolio management problems. As CVaR is concerned with the lower
tail of the portfolio’s return distribution, such models should be sensitive to
higher moments of the constituent assets’ random returns. If that were not
the case, then the models’ effectiveness for managing risks of portfolios whose
returns have skewed distributions, or heavy tails, would be questionable. The
purpose of this paper is specifically to study the stability of a such a portfolio
management model with respect to changes in input specifications.

Kallberg and Ziemba [9] and Chopra and Ziemba [4] examined the relative
effects of errors in the mean, variance and covariance of asset returns on mean-
variance efficient portfolios. They found that the results are most sensitive
to mis-specifications in the means of the asset returns. They reported that
the impact of errors in the variance of asset returns was about an order of
magnitude lower than that of errors in the means, while errors in covariance
values had about half the impact of errors in the variance. The sensitivity
of their model’s results to mis-specifications of statistical properties of asset
returns depended on the risk aversion parameter. Nevertheless, the relative
effects of errors in these statistics were approximately as stated above.

Here, we similarly investigate the effects of errors (mis-specifications) in
statistical properties — including higher moments — of asset returns on the
results of a model based on the CVaR measure. As a test case we use a portfolio
management model for international investments. The portfolio is exposed
to market risk in multiple countries and to currency exchange risk. We use
discrete scenarios to model the uncertainty in asset returns and spot exchange
rates. The scenarios are generated by a moment matching method, so that in

38 Paper 2 – Stability analysis of CVaR

2 Risk Management Model Constraining CVaR

the set of generated scenarios the random variables have statistical properties
that match specific target values. These target statistics are determined from
historical market data.

First, we define in-sample and out-of-sample stability and we demonstrate
that the scenario generation procedure does not bias the results of the op-
timization model. That is, for sufficiently large representative scenario sets,
the portfolio model produces stable solutions that are not dependent on the
specific scenario sets (i.e., the results are stable with respect to sample). We
empirically determine the required number of scenarios to attain stable solu-
tions. We then conduct extensive computational experiments to determine the
effects on the model’s results due to controlled changes in the target statistics
(i.e., mean, variance, skewness, kurtosis and correlations) of the random vari-
ables. We demonstrate that the portfolio optimization model that is based
on the CVaR risk measure is indeed sensitive — as it should — to the higher
moments of the stochastic inputs. Moreover, we quantify the relative impact
of errors in the various statistical properties of these inputs on the model’s
results.

The rest of the paper is organized as follows. Section 2 states a linear pro-
gram for a generic asset-allocation model that manages risk by constraining
the CVaR measure of portfolio returns. Section 3 presents the specific interna-
tional portfolio management model that we use as a test case in this study.
Section 4 describes the scenario generation method, the input data, and the
tests to establish the stability of the optimization model with respect to the
scenario generation procedure. In Section 5 we describe the computational
experiments involving the introduction of controlled errors in the statistical
properties of stochastic input parameters (i.e., domestic asset returns and spot
exchange rates) and we present the effects of these errors on the model’s re-
sults. Finally, Section 6 concludes the paper.

2 Risk Management Model Constraining CVaR

Let the random asset returns r̃ be expressed in terms of a finite set of dis-
crete scenarios S = {s : s = 1, 2, . . . , S}, whereby the returns under a par-
ticular scenario s ∈ S take the values rs with associated probability ps >
0,

∑S
s=1 ps = 1. A portfolio x has a return ρ(x, rs) = xT rs under sce-

nario s ∈ S; the expected return of the portfolio is R(x) = E [ρ̃(x, r̃)] =∑S
s=1 psρ(x, rs). We need to formulate a mathematical program in order to

determine the portfolio x that maximizes the expected portfolio return R(x)
while controlling the respective risk measure CVaR(x, α).

The definition of CVaR in equation (1) applies to the case of a continuous

39

distribution F (x, u). When the random asset returns r̃ are modeled in terms
of a discrete distribution (i.e., scenarios) the function F (x, u) is discontinuous
in u and x. A problem particularly arises when F (x, u) exhibits a jump at the
critical percentile u = VaR(x, α). An alternative definition of CVaR for general
distributions (including discrete distributions) is introduced in Rockafellar and
Uryasev [16]:

CVaR(x, α) =

1 − 1

1 − α

∑
{s∈S|ρ(x,rs)≤ z}

ps

 z +

1
1 − α

∑
{s∈S|ρ(x,rs)≤ z}

psρ(x, rs) , (2)

where z = VaR(x, α). As we use scenarios to model the random variables in
this paper, we will adopt this alternative definition of CVaR. This definition
of CVaR for discrete distributions may not be exactly equal to the conditional
expectation of portfolio returns below VaR(x, α) when F (x, u) has a jump at
VaR(x, α). Rockafellar and Uryasev [16] discuss the subtle differences in this
case; they also show that the CVaR function in (2) is a coherent risk measure
in the sense of Artzner et al. [2]. It is also a continuous and convex function
in the portfolio positions x.

Let us define for every scenario s ∈ S an auxiliary variable

ys = max [0, z − ρ(x, rs)] ,

which measures the shortfall of returns with respect to VaR(x, α) under the
respective scenario. These non-smooth functions can be expressed in terms of
the following set of linear inequalities

{ ys : ys ≥ 0 , ys ≥ z − ρ(x, rs) , s ∈ S } .

Using the shortfall variables ys, Rockafellar and Uryasev [16] (see also Topalo-
glou et al. [19]) show that, as defined in (2),

CVaR(x, α) = z − 1
1 − α

S∑
s=1

psys . (3)

A model that maximizes the portfolio’s expected return, while maintaining
the respective CVaR measure of returns within an allowable limit, can thus be
stated as follows:

40 Paper 2 – Stability analysis of CVaR

3 The International Portfolio Management Model

maximize
S∑

s=1

ps ρ(x, rs) (4a)

s.t. x ∈ X, z ∈ R , (4b)

z − 1
1 − α

S∑

s=1

ps ys ≥ ϑ , (4c)

ys ≥ z − ρ(x, rs) , s = 1, . . . , S (4d)
ys ≥ 0 , s = 1, . . . , S (4e)

The set {x ∈ X} denotes generic constraints on the portfolio composition. The
parameter ϑ specifies the minimal allowable CVaR value of portfolio returns at
the (1 − α)100th percentile. If the CVaR constraint (4c) is active (which it
usually is), z = VaR(x, α). Hence, we get the value of VaR as a by-product of
solving the CVaR problem.

Scenario-based LP formulations of models that use CVaR either in the con-
straints or in the objective function can be found in Uryasev [20]; a complete
theoretical derivation is given in Rockafellar and Uryasev [16].

3 The International Portfolio Management Model

We apply a single-period (2-stage2) stochastic program drawn from Topaloglou
et al. [19] to model an international portfolio management problem. The prob-
lem of portfolio (re)structuring is viewed from the perspective of a US investor
who may hold assets denominated in multiple currencies. To reposition his
investments from one market (currency) to another, the investor must first
convert to USD the proceeds of foreign asset sales in the market in which he
reduces his presence and then purchase the foreign currency in which he wishes
to increase his investments. The current spot exchange rates of foreign cur-
rencies to USD apply in the currency exchange transactions. At the end of the
holding period (one month in our case) we compute the scenario-dependent
value of each investment using its projected price under the respective sce-
nario. The USD-equivalent value is determined by applying the corresponding
estimate of the appropriate spot exchange rate to USD at the end of the period
under the same scenario.

2There is no general rule on how to count (or define) periods and stages. We define
a period to be a time at which portfolio (re)structuring decisions are made; it is also a
time interval between two events (stages) at which new information on random variables is
revealed. Hence, we have number of stages = number of periods + 1.

41

The investor’s portfolio is exposed to market risk in the various currencies,
as well as to currency exchange risk. To (partly) hedge the currency risk, the
investor may enter into currency exchange contracts in the futures market. In
our model, the monetary amounts (in USD) of contracts in currency futures
are decided in the first stage, so the decisions are implementable. We do not
constrain these decisions; thus, it is possible to enter into a currency exchange
in futures even if we do not invest in the respective market.

We define the following notation:
User-specified parameters:

α confidence level for VaR and CVaR
ϑ minimal allowable CVaR of portfolio returns

Deterministic input data:

M set of markets (synonymously, countries, currencies)
� ∈ Mindex of investor’s base (reference) currency (in our case USD)
M f set of foreign markets; M f = M \ {�}
Im set of available investments (asset classes) in market m ∈ M
bim number of assets in class i ∈ Im of market m ∈ M in initial portf.
P 0

im current price of asset i ∈ Im, m ∈ M ; in units of domestic curr. m
cm initially available cash in currency m ∈ M
γim transaction cost rate for asset class i ∈ Im, m ∈ M
λm transaction cost rate for currency m ∈ M
e0
m current spot exchange rate of currency m ∈ M

ϕm futures exchange rate of currency m ∈ M (i.e., the deterministic
rate for a currency exchange to be executed at the end of the
planning horizon)

W0 total value of initial portfolio (i.e., initial wealth), in units of
reference currency: W0 =

∑
m∈M

(
cm +

∑
i∈Im

bimP 0
im

)
e0
m

Scenario dependent data:

S number of scenarios
S set of scenarios: S = {1, . . . , S}
ps probability of scenario s ∈ S — in our tests, scenarios are

equiprobable (i.e., ps = 1/S)
P s

im price of asset i ∈ Im, m ∈ M at the end of the holding period
under scenario s ∈ S; in units of domestic currency m

es
m spot exchange rate of currency m ∈ M at the end of the holding

period under scenario s ∈ S

Decision variables:

42 Paper 2 – Stability analysis of CVaR

3 The International Portfolio Management Model

xim number of assets i ∈ Im, m ∈ M to buy
wim number of assets i ∈ Im, m ∈ M to sell
gm base currency used to buy currency m ∈ M f in the spot market
qm base currency collected from sale of currency m ∈ M f in the

spot market
fm base currency collected from sale of currency m ∈ M f in the

futures market (i.e., amount of futures contract, in units of the
base currency). A negative value indicates a sale of the base
currency in the futures market.

Auxiliary variables:

vs
m total value of investments in market m ∈ M under scenario s ∈ S

after settlement of futures currency contracts at the end of the
holding period, expressed in units of the respective curr. m ∈ M

ys return shortfall below VaR under scenario s ∈ S
z variable in definition of CVaR — equals to VaR at the optimal sol.

All exchange rates are expressed as the equivalent amount of the base currency
for one unit of the foreign currency. Obviously, e0

� = es
� = 1, ∀ s ∈ S. Also,

we must have g� = q� = f� = 0.
We formulate the international portfolio management model as follows:

maximize
1

W0

∑
s∈S

ps

∑
m∈M

vs
mes

m − 1 (5a)

s.t. c� +
∑
i∈I�

wi�P
0
i�(1 − γi�) +

∑
m∈Mf

qm(1 − λm)

=
∑
i∈I�

xi�P
0
i�(1 + γi�) +

∑
m∈Mf

gm(1 + λm) (5b)

cm +
∑
i∈Im

wimP 0
im(1 − γim) +

gm

e0
m

(1 − λm)

=
∑
i∈Im

ximP 0
im(1 + γim) +

qm

e0
m

(1 + λm) , ∀m ∈ M f (5c)

ys ≥ z − 1
W0

(∑
m∈M

vs
mes

m − W0

)
, ∀ s ∈ S (5d)

z − 1
1 − α

∑
s∈S

psys ≥ ϑ (5e)

0 ≤ xim , 0 ≤ wim ≤ bim , ∀m ∈ M ,∀ i ∈ Im (5f)

43

gm ≥ 0 , qm ≥ 0 , ∀m ∈ M f (5g)
ys ≥ 0 , ∀ s ∈ S (5h)

where vs
m =

∑
i∈Im

(bim + xim − wim) P s
im +

{ ∑
n∈Mf

fn if m = �

− fm

ϕm
if m ∈ M f

(5i)

This formulation maximizes the expected total return of the international
portfolio. Obviously, this is equivalent to maximizing the expected terminal
value of the portfolio (in units of the base currency) at the end of the holding
period — i.e., by maintaining only the sum in the objective function (5a).

Equations (5b) and (5c) impose the cash balance conditions in every cur-
rency; the former for the base currency � and the latter for the foreign curren-
cies m ∈ M f . These constraints equate the sources and uses of funds in each
currency. Note that no holdings in cash are allowed after portfolio restructur-
ing. Hence, we do not need to model the interest rates in each market. The
constraints in (5f) disallow short positions in the assets.

Constraints (5d), (5e) and (5h) are the definitional constraints for deter-
mining CVaR, as they were introduced in the general formulation (4). Con-
straints (5i) simply define the auxiliary variables vs

m (scenario-dependent val-
ues of holdings in each market at the end of the holding period, after settlement
of currency futures contracts). Obviously, these constraints can be eliminated
by substituting the expressions for vs

m directly to (5a) and (5d).
The model takes into account the initial composition of the portfolio and

determines optimal rebalancing decisions. Proportional transaction costs are
also taken into account. A bid-ask spread of 2γim (proportional to the current
price P 0

im) is imposed for every asset i ∈ Im, m ∈ M , in the cash balance
equations (5b) and (5c). A similar spread is imposed to currency transactions
with the parameters λm. Note that the model jointly determines in an inte-
grated manner both the asset selection (portfolio composition), as well as the
appropriate level of currency hedging for each foreign market m ∈ M f — with
the variables fm for exchanges in currency futures.

4 Scenario generation

We used the method of Høyland et al. [6] to generate scenarios; see also
Høyland and Wallace [7] for the general method of scenario generation by
matching statistical properties to specific targets. The method generates a
set of discrete scenarios so that statistical properties of the random variables
match specified target values. Specifically, we match the following statistics:
the first four moments of the marginal distributions (mean, standard devia-
tion, skewness and kurtosis), as well as the correlation matrix. We estimate

44 Paper 2 – Stability analysis of CVaR

4 Scenario generation

the target values for these statistics on the basis of historical data. However,
this is not a prerequisite for the scenario generation procedure. We could,
as easily, use subjective estimates for the target statistics, as well as targets
determined through alternative estimation means.

We start with data series {Vjt| t = 0, . . . , T} of observed market values for
all random variables in the problem. The index j indicates the data series for
a particular variable (e.g., the market price of an asset i ∈ Im, m ∈ M (in
domestic terms), or the spot exchange rate of a foreign currency m ∈ M f).
The time-step of the data series coincides with the length of the planning
horizon in the optimization model (i.e., one month). Our scenario generation
procedure then proceeds as follows:

i. Transform each of the initial data series {Vjt| t = 0, . . . , T} to a corre-
sponding series of differentials: {Vjt/Vj,t−1 − 1| t = 1, . . . , T}.

ii. Compute the required target statistics — i.e., the first four marginal
moments and the correlation matrix — of the transformed series.

iii. Decide the required number of scenarios S to be generated. The scenario
generation method additionally needs as inputs the scenario probabili-
ties. We have made all scenarios equiprobable by setting ps = 1/S , ∀ s ∈
S.

iv. Call the scenario generation routine with the target statistics and the
scenario probabilities as input. The output is a discrete distribution
(set of scenarios) of the differentials for all the random variables whose
statistical properties match the specified target values.

v. Set the current values of the asset prices P 0
im and the spot exchange

rates e0
m equal to the last values in the respective initial data series.

This simulates the situation of an investor who makes a decision based
on data up to the present day.

vi. Compute the scenario-dependent asset prices P s
im and spot currency ex-

change rates es
m at the end of the planning horizon based on their current

values and the scenario outcomes for the respective differentials.

vii. Set the current values of the futures exchange rates equal to the ex-
pected values of the spot exchange rates at the same term (i.e., ϕm =∑S

s=1 pse
s
m , ∀m ∈ M f). In this way we ensure that there is no arbi-

trage.3

3Moreover, these can be regarded as “fair values” for the futures exchange rates.

45

4.1 Data

Our test problem considers investments in four markets: United States, United
Kingdom, Germany and Japan. The available asset classes in each of these
markets include a stock index, denoted as Stk, and bond indices of short-term
(1–3 years) and long-term (7–10 years) maturity bands, denoted Bnd1 and
Bnd7, respectively. Thus, a total of 12 assets are considered in each portfolio.
The problem is viewed from the perspective of a US investor; hence, data for
the exchange rates of the three foreign currencies to USD are also needed.

The data for the stock indices were obtained from the Morgan Stanley Cap-
ital International, Inc. database (www.mscidata.com). The data for the bond
indices and the currency exchange rates were collected from DataStream. All
time series have a monthly time-step and cover the period from January 1990
to April 2001 (i.e., a total of 136 monthly observations). The statistical prop-
erties of these data series — used as target values in the scenario generation
procedure — are reported in Tables 3 and 4 in the Appendix.

The inputs for the portfolio optimization model were set to:

α = 0.95 confidence level for VaR and CVaR
ϑ = −0.01 lower bound on CVaR of portfolio

return (monthly)
M = {USA, UK, Ger, Jap} set of markets (countries, currencies)
Im = {Stk, Bnd1, Bnd7}, ∀m ∈ M set of asset classes in each market
� = USA base country (reference currency)
bim = 0, ∀m ∈ M , ∀ i ∈ Im no initial holdings in any asset
c� = 100 initial cash amount in the base

currency (USD)
cm = 0, ∀m ∈ M f no initial cash in foreign currencies
γ Stk,m = 0.001, ∀m ∈ M transaction cost rate for stocks
γ Bnd1,m = γ Bnd7,m = 0.0005, ∀m ∈ M transaction cost rate for bonds
λm = 0.0001, ∀m ∈ M f transaction cost rate for currencies

4.2 Assessment of the scenario generation method

In Section 5, we investigate the behavior of model (5) with respect to the
number of scenarios and with respect to mis-specifications in the statistical
properties of stochastic inputs. To validate the results, however, we must first
show that the scenario generation method used in the tests is “neutral”; that
is, it does not unduly influence the results by causing instability. Such tests
should, in general, be conducted for every application of a stochastic program

46 Paper 2 – Stability analysis of CVaR

4 Scenario generation

that relies on a specific scenario generation procedure to depict uncertainty in
model parameters.

Ideally, we would like to determine whether the scenario generation can
effectively represent the “real world”, but that is not an attainable goal. As
a representation of the “real world”, we take a large scenario set — that we
refer to as the “benchmark scenario set”. It is important that the benchmark
set is provided exogenously, that is, it is not generated by the same method
which we want to test. In our case, the benchmark scenario set (tree) was
generated by a method based on principal component analysis described in
Topaloglou et al. [19]. The benchmark tree has 15, 000 scenarios to jointly
depict the co-variation of the 15 random variables in our international portfolio
management problem. We note that the scenarios of the benchmark tree are
not equiprobable.

Based on the benchmark tree, we compute the moments and correlations
of the differentials of the random variables. The values of these statistical
properties constitute the targets to match with our scenario generation pro-
cedure. We then proceed from Step iii. of the scenario generation procedure
described at the beginning of Section 4.

First, we verify that the scenario generation procedure produces scenario
sets in which the statistical properties of the random variables match the target
values. Moreover, we check that the generated scenario sets reproduce other
distributional characteristics of the random variables.

Match of the marginal distribution functions

The easiest to check is a match of the marginal distributions. We generated
several scenario sets ranging in size from 10 to 5, 000 scenarios. For each
set we determined the marginal distributions of the random variables and
compared them to the corresponding distributions from the benchmark tree.
The comparison of the whole distribution function of monthly returns of the
US stock index (StkUSA) is depicted in Figure 1, while Figure 2 shows the
lower tail in detail. The reproduction of the marginal distributions of the
remaining random variables is quite similar.

We observe that even with moderate-size scenario trees (> 250 scenarios)
we can closely reproduce the marginal distributions from the 1st to the 99th
percentile. At the extreme tails the distribution is not as accurately matched
unless a sufficiently large number of scenarios is generated. This is understand-
able, since we should expect to get more samples in the tails as the number
of scenarios increases. In fact, if we generate larger scenario sets than the
benchmark tree (i.e., with > 15, 000 scenarios) then we get more scenarios in

47

small trees big trees

min
0.01
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.95
0.99
max

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
return

data
10 sc.
15 sc.
25 sc.
50 sc.

100 sc.
min

0.01
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.95
0.99
max

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
return

data
250 sc.
500 sc.

1000 sc.
2500 sc.
5000 sc.

Figure 1: Match of the distribution function for the US stock index
Comparison of the distribution function for the monthly returns of the US stock

index
in the benchmark tree and the generated trees with different number of scenarios.
Note that the scale of the vertical axis is not linear, the two outer intervals are

prolonged.

small trees big trees

min

0.01

0.05

0.10

-0.2 -0.15 -0.1 -0.05
return

data
10 sc.
15 sc.
25 sc.
50 sc.

100 sc.

min

0.01

0.05

0.10

-0.2 -0.15 -0.1 -0.05
return

data
250 sc.
500 sc.

1000 sc.
2500 sc.
5000 sc.

Figure 2: Detail from Figure 1 — match of the lower tail

the extreme tails than we have in the benchmark tree.
The desired degree of matching the distributions depends on the decision

model in which the scenarios will be used. For example, if the optimization
model applies the mean-variance paradigm then the accuracy of match at the
tails will not make any difference, as long as the first two marginal moments
and the correlations are matched. A rather close match of the tails becomes
relevant for the CVaR model which is concerned with the lower tail of the
portfolio’s return distribution.

The test on the match of the marginal distributions of the random variables
is indeed illustrative. Yet, it is not sufficient, even though we know that

48 Paper 2 – Stability analysis of CVaR

4 Scenario generation

the generated scenario sets also match the desired correlations as well. We
aim to establish that the portfolio optimization model produces stable results
regardless of the specific scenario set generated in any given run — i.e., that
it is stable with respect to sample. Evidently, representative scenario sets of
sufficiently large size are needed to ensure such stability. Moreover, we need
to test jointly the scenario generation method and the optimization model
in order to assess whether the scenario generation method is effective and
“neutral” for the CVaR model, in the sense that it does not cause instability in
its solutions.

Joint stability test of scenario generation and the CVaR model

Here we examine the stability of the results of the CVaR model. We generate 25
scenario trees with a given number of scenarios S, each matching the moments
and correlations of the benchmark tree. We solve the optimization model with
each tree and save both the expected portfolio return and the value of CVaR
at the respective optimal solution.4 As stochastic programs tend to have
multiple optimal or near-optimal solutions, we study the stability in terms of
the optimal objective function value; we do not compare the optimal decisions
(portfolio compositions). We then simulate all the solutions on the benchmark
tree and record the “true” values of both the expected return and CVaR. The
confidence level in all tests is α = 0.95; thus, CVaR is the expected return for
the 5% worst scenarios.

We investigate two types of stability of the scenario sets:

In-sample stability: The solutions of the model should not depend on the
specific scenario tree used, as long as it is representative. Hence, the
optimal values should ideally be equal for all the 25 scenario trees of a
given size.

Out-of-sample stability: The true expected portfolio returns and the true
values of CVaR should ideally be equal for all the scenario trees. In
addition, they should be equal to the in-sample values.

The two notions of stability are not equivalent. We can have in-sample
stability without out-of-sample stability. Consider, for example, a case in
which all the scenario trees are identical but incorrect in comparison to the
benchmark. On the other hand, we can have alternative scenario trees for
which the CVaR model yields the same optimal portfolio. Then the in-sample

4Since we constrain CVaR and maximize expected return, the CVaR is always at its minimal
value (ϑ = −1%) at the optimal solution.

49

objective values would differ for different scenario trees, but the “true” out-
of-sample objective values would be exactly equal.

In practice we can not test precisely the out-of-sample stability as we do
not have the true distribution of the random variables. We may only employ
a benchmark distribution, as we do in this study. Verifying out-of-sample
stability in terms of a representative benchmark provides an indication that
the model should also be effective in a practical setting. Hence, the purpose
of our tests is to determine whether we can achieve both types of stability,
although the benchmark tree was generated by a different method.

Results of the tests are depicted in Figure 3. We see that as we increase the
number of scenarios we can indeed achieve both in-sample and out-of-sample
stability. Thus, the scenario generation method is effective and “neutral”, in
the sense that it does not cause any instability in the solutions of the CVaR
model.

50 scenarios 1000 scenarios

0.95%

1.00%

1.05%

1.10%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

0.95%

1.00%

1.05%

1.10%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

5000 scenarios 15000 scenarios

0.95%

1.00%

1.05%

1.10%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

0.95%

1.00%

1.05%

1.10%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

Figure 3: Stability of the CVaR model with respect to the exogenous bench-
mark tree

50 Paper 2 – Stability analysis of CVaR

5 Sensitivity tests of the CVaR model

5 Sensitivity tests of the CVaR model

This section studies the sensitivity of the CVaR model with respect to mis-
specifications in the statistical properties of stochastic parameters. Again we
need a benchmark as a reference. Here we calibrate the scenario generation
method using the statistical properties estimated from historical market data,
as reported in Tables 3 and 4. All scenario sets mentioned in the following
tests are generated so as to match these target statistics. First, we generate a
benchmark tree with 20, 000 scenarios.5 This scenario set is sufficiently large
to ensure both in-sample and out-of-sample stability of the solutions, while it is
still practically solvable so as to trace the “reference” efficient frontier depicting
the tradeoff between expected portfolio return and the CVaR risk measure. The
frontier is obtained by repeatedly solving the parametric optimization model
for different allowable limits ϑ on CVaR.

To interpret the results of the tests, we must understand the source of pos-
sible differences between the in-sample and out-of-sample expected portfolio
return of a given portfolio. In the absence of foreign assets, the portfolio return
would depend only on the portfolio composition and the means (expected val-
ues) of the asset returns. The contribution of a foreign asset, however, on the
portfolio’s expected return depends on the product of the mean asset return
(in its domestic currency) and the expected change of the exchange rate to
the reference currency. Since E

[
X̃Ỹ

]
= E

[
X̃

]
E

[
Ỹ

] − Cov(X̃, Ỹ), the expected
portfolio return depends not only on the means of the random variables, but
also on their covariances. Thus, for a given portfolio, the in-sample and the
out-of-sample expected portfolio returns would be equal only if the random
variables have the same means, standard deviations, and correlations in the
respective scenario sets (i.e., the test tree and the benchmark tree). This con-
dition is satisfied by construction in our scenario generation method as the
random variables have matching moments and correlations in the benchmark
and in the test trees. Hence, a portfolio has the same in-sample and out-of-
sample expected return, but its CVaR value is different when it is simulated on
the benchmark scenario set in comparison to its value on a test tree.

5.1 Finding a minimal number of scenarios

Before we test the sensitivity of the CVaR model to mis-specifications in the
statistical properties of its stochastic inputs, we must ensure that we employ

5Having established with the tests in Section 4.2 that our scenario generation method
is indeed “neutral” and “unbiased” (i.e., can effectively reproduce the characteristics of a
desired distribution and lead to stable solutions of the portfolio management model) we can
employ it to establish a representative benchmark.

51

representative and sufficiently large scenario sets in our tests. That is, we must
ensure that any variation in the model’s results stems from induced changes
in the statistical properties of the stochastic inputs and not from insufficiency
of the scenario test sets.

The results of Section 4.2 indicate that at least 5, 000 scenarios are needed
to attain both in-sample and out-of-sample stability. We repeat the same
tests here, with the only difference that the target statistics in the scenario
generation procedure, for both the benchmark as well as the test trees, are
estimated from the historical time series. Again, we use 25 scenario trees
for every tested number of scenarios S, and we test for both in-sample and
out-of-sample stability.

The results of the tests are summarized in Figure 4. Again we observe
that the required number of scenarios to ensure adequate stability of the CVaR
model is rather high (i.e., > 5, 000 scenarios).6 This is not surprising. Since we
have equiprobable scenarios, and work with CVaR at a confidence level of 5%,
with 100 scenarios the CVaR is an average of only 5 values. This can hardly be
expected to be stable. Hence, much larger scenario sets are needed to reliably
depict the tail of the portfolio’s return distribution.
Some comments on the figures:

• The in-sample results always lie on a vertical line, as the CVaR value
is always equal to its minimal allowable limit ϑ = −1% at the optimal
solution. The range of this line indicates the in-sample instability of the
model with respect to scenario sets of a given size.

• Since the in-sample values are not the “true” estimates of the portfolio’s
CVaR, they can cross the “reference” efficient frontier that is generated
using the benchmark scenario tree.

• Because the random variables have the same moments and correlations
in the test trees and in the benchmark tree, the in-sample and the out-
of-sample expected portfolio returns are the same for a given portfolio
— see Section 5 for explanation. Only the CVaR values of a portfolio
change when it is simulated on the benchmark scenario set.

Table 1 presents sample ranges of the expected portfolio returns for tests
using scenario sets of increasing size. The values are annualized for easier

6This is about two orders of magnitude higher than we need to achieve stability in the
results of a comparable mean-variance model for the same problem. However, a mean-
variance model would be inappropriate for this problem as the random variables are not
normally distributed (see, the Appendix). Moreover, in the case of a mean-variance model
we could directly input the variance-covariance matrix, without any need to model the co-
variation of the random variables by means of scenarios.

52 Paper 2 – Stability analysis of CVaR

5 Sensitivity tests of the CVaR model

50 scenarios 1000 scenarios

0.66%

0.68%

0.70%

0.72%

0.74%

0.76%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

0.66%

0.68%

0.70%

0.72%

0.74%

0.76%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

5000 scenarios 10000 scenarios

0.66%

0.68%

0.70%

0.72%

0.74%

0.76%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

0.66%

0.68%

0.70%

0.72%

0.74%

0.76%

-2.5% -2.0% -1.5% -1.0%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

Figure 4: Stability of CVaR model with respect to the number of scenarios

interpretation. Since in-sample and out-of-sample expected portfolio returns
are the same, their range is also the same. Note that this sample range — proxy
of instability measure for the model — monotonicaly decreases with increasing
number of scenarios. This is a helpful consistency check. As a compromise
between accuracy in stability and computational speed, we decided to use trees
with 5, 000 scenarios in the tests of the next section.

Table 1: Sample ranges (max − min) of the expected annualized portfolio
returns

of scenarios 50 100 250 500 1000 2500 5000 10000
variation 1.46% 0.76% 0.41% 0.30% 0.28% 0.11% 0.07% 0.04%

5.2 Effects of mis-specifications in statistical properties

In this section we test the sensitivity of the CVaR model (5) with respect to
mis-specifications in the statistical properties — including higher moments —

53

of the stochastic inputs (domestic asset returns and currency exchange rates).
Controlled errors are systematically introduced to the target statistics (first
four moments and correlations) of the random variables at the scenario gen-
eration phase. Multiple scenario test trees are then generated to match the
perturbed statistical properties. Similar tests for the mean-variance model are
presented in Kallberg and Ziemba [9] and Chopra and Ziemba [4].

We quantify the induced errors by means of the following approach. We
compute the moments and correlations of the random variables based on sub-
sets of our data set, using a moving time window of size 50% of the avail-
able time series. Thus, we obtain a series of plausible estimates for the mo-
ments and correlations of the random variables. For each moment/correlation,
we take the interval from the minimal to the maximal estimated value from
the respective series and call it a feasible interval for the corresponding mo-
ment/correlation. These feasible intervals for moments and correlations are
reported in Tables 5 and 6 in the Appendix. In addition, we define the value of
the respective moment/correlation, calculated on the basis of the entire data
set, the true value.

We define a δ-percent error in a statistical property as

true value + ε δ
100 length(feasible interval), ε ∈ U(−1, 1), (6)

where U(−1, 1) is a random number from the uniform distribution on the
interval [−1, 1]. With this definition, the average absolute error is

1
2

δ
100 length(feasible interval).

Note that this is different from the corresponding definition in Chopra and
Ziemba [4]. There, the δ-percent error was defined as

true value
(
1 + ε δ

100

)
, ε ∈ N (0, 1).

This definition is more natural, but not as suitable for our situation. If we
have a statistical property (e.g., skewness or correlation) with a true value
equal to zero, then this property will never be changed if we introduce errors
using the approach of Chopra and Ziemba.

A potential problem when introducing random errors to statistical proper-
ties is that we may specify a property, or a combination of properties, that is
not feasible. For example, we may end up with specifications that may violate
the condition kurti > 1 + skew2

i , or we may specify a correlation matrix that
is not positive definite. When this happens, we simply discard these particular
specifications and create new ones.

54 Paper 2 – Stability analysis of CVaR

5 Sensitivity tests of the CVaR model

In all tests we use scenario trees with 5, 000 scenarios. As we showed in
the previous section, this size of scenario sets is sufficient to achieve both
in-sample and out-of-sample stability in the results of the CVaR model. On
the other hand, it is still small enough to allow the execution of multiple
tests with a reasonable number of alternative scenario trees within acceptable
computational time. To test the effect of errors in the marginal moments of the
inputs we used 100 trees for every test. To test the impact of mis-specifications
in correlations of the random variables we increased the number of tests to 250.

The procedure for every test is summarized as follows:

i. Decide the size of the relative error δ.

ii. Decide the statistical property to test (i.e, means, standard deviations,
skewness, kurtosis, correlations).

For every test do:

iii. For each random variable, perturb the selected property based on
(6).

iv. Generate a scenario set, matching the perturbed statistical proper-
ties.

v. Solve the portfolio optimization model and store the expected port-
folio return and the value of CVaR at the optimal solution.

vi. Simulate the solution on the benchmark tree — which was gen-
erated with unperturbed statistics, — again storing the expected
portfolio return and the value of CVaR.

Results of the sensitivity tests

We ran the tests for 10% and 25% errors (i.e., for δ = 0.1 and δ = 0.25). In
the case of errors in moments, we never obtained an infeasible specification
of moments. In the case of 10% error in correlations, there were very few
(less than 10) cases where the resulting correlation matrices were not positive
definite. In the case of 25% error in correlations, however, most of the specified
correlation matrices were not positive definite, and had to be discarded. Thus,
the results in this case are somewhat biased; they, in fact, correspond to a
smaller error.7 In this case, we also ended up with a sample size of 100 test
trees, instead of the 250 initially planned.

The results for 10% error in the statistical properties of the random vari-
ables are summarized in Figure 5, while the results for 25% error are shown in

7Most of the rejected cases resulted from the introduction of the larger errors, i.e. ε ≈ ±1.
So, in this case, the actual distribution of ε would not be U(−1, 1), but it would be more
concentrated around zero. Thus, the average absolute error would be smaller.

55

Figure 6. Table 2 reports the sample ranges of expected (annualized) portfolio
returns when errors were introduced to the respective statistics. In this table,
we distinguish between in-sample and out-of-sample results only in the case of
errors in the means of the random variables. For errors in the remaining sta-
tistical properties, the difference between the in-sample and the out-of-sample
results was at most 0.01%, so we report only the latter.

mean standard deviation

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample 0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

skewness kurtosis

0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample 0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

skewness & kurtosis correlations

0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample 0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

Figure 5: Stability of CVaR model — 10% error in inputs
Note that the graph for errors in means has a bigger scale on the y-axis.

56 Paper 2 – Stability analysis of CVaR

5 Sensitivity tests of the CVaR model

mean standard deviation

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample

out-of-sample 0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

skewness kurtosis

0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample 0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

skewness & kurtosis correlations

0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample 0.64%

0.65%

0.66%

0.67%

0.68%

0.69%

-1.4% -1.3% -1.2% -1.1% -1.0% -0.9% -0.8%

m
on

th
ly

 re
tu

rn

CVaR (α = 95%)

eff. frontier
in-sample
out-of-sample

Figure 6: Stability of CVaR model — 25% error in inputs
Note that the graph for errors in means has a bigger scale on the y-axis.

Table 2: Sample ranges (max − min) of the expected annualized portfolio
returns

error
mean

stdev skew kurt corr
in-sample out-of-sample

10% 1.84% 0.75% 0.22% 0.19% 0.13% 0.24%
25% 3.73% 3.03% 0.57% 0.32% 0.16% 0.31%

57

We summarize our observations on the results as follows:

• In all tests, the CVaR model is most sensitive to errors in the means of
the stochastic inputs. As expected, the mean proves to be by far the
most important statistical property to estimate accurately, as errors in
the means of the random variables have the most significant impact on
the results — almost an order of magnitude higher than the effect of
errors in any other statistical property. This finding is consistent with
the results of Chopra and Ziemba [4].

• After errors in the means, the CVaR model exhibits approximately equal
sensitivity — measured by the variation of expected portfolio return — to
mis-specifications in the standard deviation, skewness and correlations of
the random variables. Hence, estimating correctly these statistics seems
to be of approximately equal importance, in terms of their effect on the
results of the CVaR model.

• Errors in the values of kurtosis have a detectable and non-negligible
influence on the results of the CVaR model. The effect of errors in the
values of kurtosis is about one half of the effect of errors in standard
deviations.

• The mean and the correlations are the only properties whose mis-speci-
fications result in portfolios that deviate significantly from the efficient
frontier. Errors — especially when they are relatively small — in the
other properties seem to result in portfolios with different CVaR values,
which are, however, still close to the efficient frontier.

Our results demonstrate that errors in higher-order moments of stochastic
inputs do indeed play a role in portfolio management models that use the CVaR
risk measure. Moreover, they quantify the relative effects of errors in these
statistics on the model’s results. Our results imply that it pays to devote care
and effort so as to accurately estimate the values of higher-order moments when
employing risk measures concerned with the tails of the return distribution in
the context of portfolio management models.

When assessing the potential effects of errors in statistical properties, we
should have a sense of the expected magnitude of such errors in practice.
Admittedly, errors of a specific magnitude in the estimation of the means
or the standard deviations of the random variables may be less likely than
comparable errors in the higher moments. This is because the importance
of the first two moments is well understood. Much more care is exercised in
obtaining reliable estimates of these critical statistics, and more effective tools
are available for their estimation, in comparison to higher-order moments. This

58 Paper 2 – Stability analysis of CVaR

6 Conclusions

is partly because the estimation and verification of higher-order moments is
typically more difficult. Higher-order moments are often neglected in portfolio
management models as their potential impact may not be as well understood
and appreciated. We hope that this study sheds some light in this respect,
by indicating the relative importance of accurate estimates of higher-order
moments for random variables in risk management models that employ risk
measures tailored to control the tails of the portfolio’s return distribution.

6 Conclusions

We tested a risk management model for international portfolios based on the
CVaR risk metric. We employed a scenario generation procedure based on prin-
ciples of moment matching. We showed that this scenario generation method
is effective and “unbiased”, in the sense that it can closely reproduce the
characteristics of a desired distribution and it leads to stable solutions of the
portfolio optimization model.

We determined the required size of a scenario set to achieve stable results
in the CVaR model; the required number of scenarios is rather large — about
5, 000 in our test problem that involves 15 random variables (3 assets in each
of 4 countries plus 3 exchange rates). Evidently, this result depends on the
scenario generation method used. It may be possible to devise a method that
would decrease this requirement, for example, by selectively sampling scenarios
in the extreme tails. However, the identification of relevant extreme scenarios
can be quite difficult in a multi-dimensional space. Moreover, the tail of a
portfolio’s return distribution clearly depends on the portfolio composition
— i.e., on the solution of the portfolio optimization model.

We investigated the sensitivity of the CVaR model with respect to errors
introduced to the statistical properties of stochastic inputs, as represented in
discrete scenario sets. The statistical properties investigated included the first
four marginal moments and the correlations of the random variables (domes-
tic assets returns and spot currency exchange rates). The results of our tests
confirm that the mean value of the random variables is the most important
statistic to accurately estimate; the CVaR model exhibits high sensitivity to
mis-specifications of the means. But, unlike the mean-variance model, the
CVaR model shows sensitivity to errors in the estimates of higher-order mo-
ments as well. Errors in the standard deviation, skewness, and correlations
of the random variables have considerable — and approximately equal — im-
pact on the model’s results. Errors in the values of kurtosis have lesser, yet
non-negligible, effect.

Our overall conclusion is that accurate estimates of higher-order moments

59

of random variables are important in risk management models for investment
portfolios. We also observe that sufficiently large scenario sets are needed to
properly capture the risks associated with the tails of the distribution. We
hope that the results of this study will motivate further development of effec-
tive tools for modeling extreme events in financial risk management models.

References

[1] C. Acerbi and D. Tasche. On the coherence of expected shortfall. Journal
of Banking and Finance, 27(6):1487–1503, 2002.

[2] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of
risk. Mathematical Finance, 9(3):203–228, 1999.

[3] J. Berkowitz and J. O’Brien. How accurate are value-at-risk models at
commercial banks? Journal of Finance, 57(3):1093–1111, 2002.

[4] V. Chopra and W.T. Ziemba. The effects of errors in means, variances,
and covariances on optimal portfolio choice. The Journal of Portfolio
Management, Winter:6–11, 1993.

[5] R. Frey and A. McNeil. VaR and expected shortfall in portfolios of depen-
dent credit risk: Conceptual and practical insights. Journal of Banking
and Finance, 27(6):1317–1334, 2002.

[6] K. Høyland, M. Kaut, and S.W. Wallace. A heuristic for moment match-
ing scenario generation. Computational Optimization and Applications,
to appear.

[7] K. Høyland and S.W. Wallace. Generating scenario trees for multistage
decision problems. Management Science, 47(2):295–307, 2001.

[8] P. Jorion. Value at Risk: The New Benchmark for Managing Financial
Risk. McGraw-Hill, New York, 2001.

[9] J.G. Kallberg and W.T. Ziemba. Mis-specifications in portfolio selection
problems. In G. Bamberg and K. Spremann, editors, Risk and Capital,
pages 74–87. Springer Verlag, New York, 1984.

[10] A. Lucas. Evaluating the Basle guidelines for backtesting of banks’ in-
ternal risk management models. Journal of Money, Credit and Banking,
33(3):826–846, 2001.

60 Paper 2 – Stability analysis of CVaR

References

[11] Basle Committee on Banking Supervision. International convergence of
capital measurements and capital standards. BIS, July 1988.

[12] Basle Committee on Banking Supervision. Supervisory framework for the
use of “Backtesting” in conjunction with the internal models approach to
market risk capital requirements. BIS, Report No. 22, 1996.

[13] G. Ch. Pflug. Some remarks on the value-at-risk and the conditional
value-at-risk. In S. Uryasev, editor, Probabilistic Constrained Optimiza-
tion: Methodology and Applications, pages 272–281. Kluwer Academic
Publishers, 2001.

[14] RiskMetrics. Technical document, 4th edition. J.P. Morgan Inc., Decem-
ber 1996.

[15] R.T. Rockafellar and S. Uryasev. Optimization of conditional value-at-
risk. The Journal of Risk, 2(3):21–41, 2000.

[16] R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general
distributions. Journal of Banking and Finance, 26(7):1443–1471, 2002.

[17] G. Szegö. Measures of risk. Journal of Banking and Finance, 26(7):1253–
1272, 2002.

[18] D. Tasche. Expected shortfall and beyond. Journal of Banking and Fi-
nance, 27(6):1253–1272, 2002.

[19] N. Topaloglou, H. Vladimirou, and S.A. Zenios. CVaR models with se-
lective hedging for international asset allocation. Journal of Banking and
Finance, 26(7):1535–1561, 2002.

[20] S. Uryasev. Conditional value-at-risk: Optimization algorithms and ap-
plications. Financial Engineering News, 14:1–5, February 2000.

61

Appendix: Properties of the data

Tables 3 and 4 present the first four moments and the correlation matrix of the
differentials in the historical market data of the random variables (domestic
returns of the stock and bond indices, as well as of the spot currency exchange
rates). These statistics constitute the targets matched in the scenario sets
used in the empirical tests of Section 5. Note that the random variables have
skewness ranging from −1.00 to 1.36 and kurtosis ranging from 2.78 to 7.39.
Clearly, the historical observations indicate that the random variables in the
international portfolio management problem are not normally distributed —
Jarge-Berra tests reject the normality hypothesis for these data. This was a
primary motivation for our entire study. That is,

1. To apply the CVaR risk measure that is concerned with skewness and the
tails of the portfolio’s return distribution.

2. To investigate the effects of mis-specifications in the higher moments of
the random variables on the model’s results.

3. To employ a scenario generation method based on principles of moment
matching.

Table 3: Moments of the differentials of the historical market data

StkUSA StkUK StkGer StkJap Bnd1USA Bnd7USA Bnd1UK
Mean 0.01296 0.01047 0.01057 -0.00189 0.00553 0.00702 0.00718
StDev 0.04101 0.04150 0.05796 0.06184 0.00467 0.01620 0.00688
Skew -0.47903 -0.19051 -0.47281 0.04768 -0.18341 -0.07482 1.36036
Kurt 3.76519 3.11399 4.11970 3.62119 2.77801 3.23974 7.38764

Bnd7UK Bnd1Ger Bnd7Ger Bnd1Jap Bnd7Jap ExRUK ExRGer ExRJap
0.00894 0.00535 0.00671 0.00318 0.00622 -0.00077 -0.00152 0.00179
0.01884 0.00455 0.01368 0.00506 0.01681 0.02801 0.03021 0.03607
0.12127 0.55214 -0.87820 0.54803 -0.53562 -0.99772 -0.25505 1.09286
3.52858 5.13927 4.42483 4.28775 5.23964 6.51592 3.80887 6.75996

Tables 5 and 6 present the lengths of the feasible intervals for the moments
and correlations. The feasible intervals are defined and used in the model
sensitivity tests in Section 5.2.

62 Paper 2 – Stability analysis of CVaR

References

Table 4: Correlations of the differentials of the historical market data

StkUSA StkUK StkGer StkJap Bnd1USA Bnd7USA Bnd1UK
StkUK 0.6651
StkGer 0.5573 0.5911
StkJap 0.3568 0.3601 0.3429

Bnd1USA 0.1965 0.0844 -0.0578 -0.0105
Bnd7USA 0.2656 0.1150 0.0027 0.0205 0.8768
Bnd1UK 0.0853 0.4014 0.0276 0.0018 0.3600 0.3176
Bnd7UK 0.2258 0.5075 0.1714 0.0392 0.4314 0.4815 0.8175
Bnd1Ger 0.0556 0.2642 0.0536 0.0081 0.3466 0.3574 0.6121
Bnd7Ger 0.1687 0.3066 0.2326 0.0408 0.4385 0.5453 0.4639
Bnd1Jap 0.0557 0.0814 -0.0005 0.0226 0.2513 0.2186 0.3274
Bnd7Jap 0.0463 0.0493 0.0140 -0.0029 0.2831 0.3235 0.1815
ExRUK 0.0247 -0.2177 -0.1062 0.1162 0.2422 0.1911 -0.2811
ExRGer -0.0643 -0.2263 -0.2651 -0.0828 0.2716 0.2129 -0.1429
ExRJap 0.1126 0.0945 -0.1414 0.0475 0.1319 0.0975 0.0927

Bnd7UK Bnd1Ger Bnd7Ger Bnd1Jap Bnd7Jap ExRUK ExRGer
Bnd1Ger 0.5688
Bnd7Ger 0.6627 0.7779
Bnd1Jap 0.2645 0.4008 0.2853
Bnd7Jap 0.2100 0.3025 0.3093 0.7827
ExRUK -0.1588 -0.2227 -0.0948 0.0145 0.0262
ExRGer -0.1332 -0.0638 -0.0598 0.1021 0.1375 0.6949
ExRJap 0.0680 0.0825 -0.0072 0.0334 -0.0122 0.2680 0.4236

Table 5: Lengths of the feasible intervals of moments

StkUSA StkUK StkGer StkJap Bnd1USA Bnd7USA Bnd1UK
Mean 0.00946 0.00764 0.01836 0.01055 0.00166 0.00435 0.00351
StDev 0.02035 0.01217 0.02153 0.02321 0.00171 0.00293 0.00485
Skew 1.62256 0.8916 1.0513 0.54337 0.79795 0.62041 2.32511
Kurt 3.87492 1.82066 2.56178 0.99143 1.2739 0.891 7.2035

Bnd7UK Bnd1Ger Bnd7Ger Bnd1Jap Bnd7Jap ExRUK ExRGer ExRJap
0.00591 0.00366 0.00284 0.00433 0.00487 0.0057 0.0107 0.01108
0.00952 0.00174 0.00262 0.00249 0.00351 0.01533 0.00954 0.0132
0.78578 1.18387 0.55199 1.21049 1.48868 1.62235 1.22593 1.55678
1.04044 3.12805 2.33646 2.18066 5.13353 6.35287 2.086 4.0713

63

Table 6: Lengths of the feasible intervals of correlations

StkUSA StkUK StkGer StkJap Bnd1USA Bnd7USA Bnd1UK
StkUK 0.28245
StkGer 0.41613 0.1814
StkJap 0.33692 0.27907 0.38272

Bnd1USA 0.48044 0.43639 0.3613 0.21907
Bnd7USA 0.43832 0.44669 0.37637 0.28547 0.07029
Bnd1UK 0.25762 0.63827 0.47922 0.29948 0.32842 0.3272
Bnd7UK 0.18449 0.53845 0.3226 0.18788 0.30047 0.29125 0.10638
Bnd1Ger 0.32837 0.53526 0.44861 0.20951 0.23945 0.21754 0.23587
Bnd7Ger 0.28289 0.4632 0.52714 0.18048 0.25918 0.25712 0.1254
Bnd1Jap 0.39658 0.30524 0.38022 0.47467 0.35529 0.34925 0.42718
Bnd7Jap 0.53725 0.42657 0.43082 0.53627 0.1201 0.19085 0.34086
ExRUK 0.32612 0.2294 0.23331 0.34925 0.37893 0.34466 0.48376
ExRGer 0.34274 0.23943 0.30395 0.41129 0.4128 0.42665 0.49304
ExRJap 0.35474 0.3389 0.22861 0.29166 0.23326 0.21832 0.19624

Bnd7UK Bnd1Ger Bnd7Ger Bnd1Jap Bnd7Jap ExRUK ExRGer
Bnd1Ger 0.18615
Bnd7Ger 0.19871 0.08346
Bnd1Jap 0.39379 0.41627 0.31011
Bnd7Jap 0.39649 0.35563 0.26651 0.11535
ExRUK 0.41516 0.57385 0.39195 0.26009 0.36195
ExRGer 0.43402 0.33271 0.3127 0.22496 0.23136 0.34187
ExRJap 0.18262 0.24788 0.25119 0.44653 0.5184 0.32304 0.27371

64 Paper 2 – Stability analysis of CVaR

Paper 3

A Heuristic for
Moment-Matching Scenario

Generation

A Heuristic for Moment-matching Scenario

Generation

Kjetil Høyland
kjetil.hoyland@gjensidige.no∗

Michal Kaut
michal.kaut@iot.ntnu.no†

Stein W. Wallace
stein.w.wallace@himolde.no‡

June 20, 2000; revised May 11, 2001, August 12, 2002

Abstract

In stochastic programming models we always face the problem of how
to represent the random variables. This is particularly difficult with
multidimensional distributions. We present an algorithm that produces a
discrete joint distribution consistent with specified values of the first four
marginal moments and correlations. The joint distribution is constructed
by decomposing the multivariate problem into univariate ones, and using
an iterative procedure that combines simulation, Cholesky decomposition
and various transformations to achieve the correct correlations without
changing the marginal moments.

With the algorithm, we can generate 1000 one-period scenarios for 12
random variables in 16 seconds, and for 20 random variables in 48 sec-
onds, on a Pentium III machine.

Keywords: stochastic programming, scenario tree generation, Cholesky
decomposition, heuristics

1 Introduction

Gjensidige Nor Asset Management (GNAM) has NOK 65 billion (7 billion
US$) under management. During the last few years they have used stochastic-
programming-based asset allocation models in their asset allocation processes.

∗Gjensidige Nor Asset Management, POBox 276, N-1326 Lysaker, Norway
†Norwegian University of Science and Technology, N-7491 Trondheim, Norway
‡Molde University College, Servicebox 8, N-6405 Molde, Norway

Computational Optimization and Applications,
vol. 24, pp. 169–185, 2003.

The most important step in that process is to establish the market expec-
tations, i.e. to establish what are their beliefs for the major asset categories
(bonds, stocks, cash, commodities and currencies) in different major regions of
the world. The decision-makers prefer to express their expectations in terms
of marginal distributions of the return / interest rates for the different asset
classes in addition to correlations. The challenge in converting these expec-
tations into an asset allocation mix is twofold: First we need to convert the
expectations into a format which a stochastic programming model can handle,
second we need an optimization model which gives us the optimal asset mix,
given this input.

Practical experience has told us that the first part, the scenario gener-
ation, can in fact be the most challenging and (computer-) time consuming
one. For the purpose of generating the input data, GNAM has been using the
method described in Høyland and Wallace, 2001, a method developed in 1996.
For larger problems, with many asset classes, the scenario generation became
the bottleneck in the portfolio optimization process. This paper presents an
algorithm that reduces the computing time for the scenario generation sub-
stantially.

The most well-known applications of asset allocation models are the Rus-
sell-Yasuda-Kasai model in Cariño and Ziemba, 1998 and the models imple-
mented by Towers Perrin in Mulvey, 1996. Other applications can be found
in Consigli and Dempster, 1998 and Dert, 1995.

These models are all focused on long term strategic asset liability planning.
Stochastic processes are widely used for scenario generation in such models.
The big challenge with such processes is to calibrate the parameters so that
the generated scenarios are consistent with the decision-maker’s beliefs of the
future development of the asset classes. In many applications, the parame-
ters are calibrated so that the future scenarios are consistent with the past.
This might be acceptable for long term strategic planning. For tactical short
term planning, i.e. for the question of how to construct an asset allocation
mix relative to an asset allocation benchmark, such approaches are, however,
inappropriate. The user wishes to express views on the future which deviate
from the past. It is then important that the decision-maker can express the
market expectations in a way that he or she finds convenient and that these
expectations are converted to model input in a consistent manner.

This is the basic philosophy of the scenario generation method proposed in
Høyland and Wallace, 2001. The user specifies his or her market expectations
in terms of marginal distributions for each asset class, in addition to correla-
tions among the different asset classes, and possibly other distributional prop-
erties. The stochastic, possibly multi-period, asset allocation model requires

68 Paper 3 – A heuristic for scenario generation

1 Introduction

discrete outcomes for the uncertain variables. To generate these outcomes a
least squares model is applied. The idea is to minimize the distance between
some specified properties of the generated outcomes and their target values
(either specified directly or derived from the marginal distributions, which may
themselves be calculated from data or specified explicitly).

In the general form of the algorithm presented by Høyland and Wallace,
outcomes of all the random variables (assets) are generated simultaneously.
Such an approach becomes slow when the number of random variables in-
creases. In this paper we generate one marginal distribution at a time and
create the joint distribution by putting the marginal distributions together
in the following way: All marginal distributions are generated with the same
number of realizations, and the probability of the i’th realization is the same
for each marginal distribution. The i’th scenario, that is, the i’th realization
of the joint distribution, is then created by using the i’th realization from each
marginal distribution, and given the corresponding probability. We then apply
various transformations in an iterative loop to reach the target moments and
correlations.

The presented algorithm is inspired by the work of Fleishman, 1978, Vale,
1983 and Lurie and Goldberg, 1998. Fleishman presents a cubic transfor-
mation that transforms a sample from a univariate normal distribution to a
distribution satisfying some specified values for the first four moments. Vale
and Maurelli address the multivariate case and analyse how the correlations
are changed when the cubic transformation is applied. The algorithm assumes
that we start out with multivariate normals. The initial correlations are ad-
justed so that the correlations after the cubic transformation are the desired
ones. The algorithm is only approximate with no guarantee about the level of
the error.

Lurie and Goldberg outlined an algorithm that is of similar type as ours.
They also generate marginal distributions independently and transform them
in an iterative procedure. There are, however, two major differences between
the two algorithms. One is in the way they handle the (inevitable) change of
distribution during the transition to the multivariate distribution — while they
modify the correlation matrix in order to end up with the right distribution, we
modify the starting moments. The other major difference is that they start
out with parametric marginal distributions whereas we start out with the
marginal moments. We believe that specifying marginal moments is a more
flexible approach and we certainly could also derive the marginal moments
(up to the desired number) from the parametric distribution and apply our
approach.

69

The rest of the paper is organized as follows: In Section 2 we present the
algorithm. Numerical results are presented in Section 3, while possible future
research areas are discussed in Section 4.

2 The algorithm

In Høyland and Wallace’s method, a scenario tree can in principle be con-
structed to fit all distributional properties that can be formulated as functions
of probabilities and outcomes. In this section, we will assume that the proper-
ties are the first four marginal moments and the correlations. This assumption
is consistent with many other studies, as well as our own empirical analysis
in Høyland and Wallace, 2001 of what were the important properties in the
given case study. The presented methodology can, in fact, treat more than
four marginal moments and correlations. We could specify even higher mo-
ments, but the method is more restrictive than our original approach, which
also allowed for such as extreme values.

The general idea of the algorithm is as follows: Generate n discrete univari-
ate random variables, each satisfying a specification for the first four moments.
Transform them so that the resulting random vector is consistent with a given
correlation matrix. The transformation will distort the marginal moments of
higher than second order. Hence, we need to start out with a different set of
higher moments, so that we end up with the right ones.

The procedure would lead to the exact desired values for the correlations
and the marginal moments if the generated univariate random variables were
independent. This is, however, true only when the number of outcomes goes
to infinity and all the scenarios are equally probable.1 With a limited number
of outcomes, and possibly distinct probabilities, the marginal moments and
the correlations will therefore not fully match the specifications. To be able
to secure that the error is within a pre-specified range, we have developed an
iterative algorithm, which is an extension of the core algorithm.

Section 2.1 discusses the assumptions we have on the correlation matrix,
Section 2.2 introduces necessary notation, Section 2.3 explains the key trans-
formations used in the algorithm, Section 2.4 describes the core module of the
algorithm, while Section 2.5 explains the iterative procedure.

1With unequal probabilities, we can expect the extreme cases to accumulate in the sce-
narios with the smallest probabilities, while the most probable scenarios would end up with
outcomes close to their respective means. That would result in dependencies.

70 Paper 3 – A heuristic for scenario generation

2 The algorithm

2.1 Assumption on the correlation matrix

There are two assumptions on the specified correlation matrix R. The first is
a general assumption that R is a possible correlation matrix, i.e. that it is a
symmetric positive semi-definite matrix with 1’s on the main diagonal. While
implementing the algorithm there is no need to check positive semi-definiteness
directly, as we do a Cholesky decomposition of the matrix R at the very start.
If R is not positive semi-definite, the Cholesky decomposition will fail.

Note that having an R that is not positive semi-definite means having
some internal inconsistency in the data, so we should re-run our analysis. As
an alternative, there exist several algorithms that find a possible correlation
matrix that is, in some sense, closest to the specified matrix R. One such
algorithm can be found in Higham, 2000. Another approach is used in Lurie
and Goldberg, 1998, where a QP model is formulated to solve the problem.
The latter approach has an advantage of being very flexible and allowing, for
example, for specifying weights that express how much we believe in every
single correlation. We can also use bounds to restrict the possible values.

The other assumption is that the random variables are not collinear, so
that R is a non-singular — hence positive definite — matrix. For checking this
property we can again use the Cholesky decomposition, because the resulting
lower-triangular matrix L will have zero(s) on its main diagonal in a case of
collinearity.

This is not a serious restriction, since having collinearity means that at least
one of the variables can be computed from the others after the generation. We
can thus decrease the dimension of the problem.

2.2 Notation

To formulate the model we introduce the following notation. Note that vectors
are columns by default.

n number of random variables
s number of scenarios
X̃ general n-dimensional random variable

→ X̃ = (X̃1, X̃2, . . . , X̃n)
→ every moment of X̃ is a vector of size n
→ the correlation matrix of X̃ is a matrix of size n × n

X matrix of s scenario outcomes — X has dimension n × s
Xi row vector of outcomes of the i’th random variable — dim. s
P row vector of scenario probabilities — given by the user
X̃ discrete n-dimensional random variable given by X and P

71

E
[
X̃

]
or E

[X̃]
vector of means of a random var. (general or discrete)

RV(mom; corr) the set of all random variables with moments
mom = mom1 . . .mom4 and a correlation matrix corr,
where every momi is a vector of size n and corr is
a matrix of size n × n

TARMOM matrix of target moments (4 × n)
R target correlation matrix (n × n)

Note the use of calligraphic letters — X̃ — to represent a discrete random
variable given by X and P. Hence, we use X̃ when we refer to a general
distribution (continuous or discrete), while X̃ is always discrete, and always
part of a construction eventually leading to the scenario tree we are about
to make. Since the scenario probabilities P are given, generating the discrete
random variable X̃ is equivalent to generating a matrix of its outcomes X.
The two terms are thus very closely connected, even if X̃ is a random variable,
while X is a matrix.

Our goal is to generate scenarios with outcomes Z, such that the discrete
random variable Z̃ defined by those outcomes and the scenario probabilities
P has moments equal to TARMOM and a correlation matrix equal to R.
In our notation we want to generate a discrete random variable Z̃ such that
Z̃ ∈ RV(TARMOM ;R).

2.3 Key transformations

The core module, which will be presented in the next section, has two key
transformations. One is a cubic transformation used for generating univariate
distributions with specified moments. The other is a matrix transformation
used to transform a multivariate distribution to obtain a given correlation
matrix.

2.3.1 Cubic transformation

This transformation comes from Fleishman, 1978, where a method to generate
a univariate non-normal random variable Ỹi with given first four moments is
introduced.2 It takes a N (0, 1) variable X̃i and uses a cubic transformation

Ỹi = a + bX̃i + cX̃2
i + dX̃3

i

2The index i is obsolete in this section, but we use it for consistence with the rest of the
paper.

72 Paper 3 – A heuristic for scenario generation

2 The algorithm

to obtain Ỹi with the target moments. Parameters a, b, c and d are found by
solving a system of non-linear equations. Those equations utilize normality of
the variable X̃i.

The problem of this approach is that X̃i must have the first 12 moments
equal to those of N (0, 1) in order to get exactly the target moments of Ỹi. Since
this is hard to achieve, either by sampling or discretization, the results with
those formulas are only approximate. We have thus dropped the assumption of
normality and derived formulas that work with an arbitrary random variable
X̃i — see Appendix A. Parameters a, b, c and d are now given by a system of
four implicit equations.

We have used a non-linear mathematical-programming (least-squares) mo-
del to solve the system. In this model we have a, b, c and d as decision
variables, and we express the moments of Ỹi as functions of these variables
and the first 12 moments of X̃ .3 We then minimize the distance between those
moments and their target values. We do not need to assume that the system
has a solution — if the solution does not exist, the model gives us the Ỹi with
the closest possible moments.

Our method for generating a discrete approximation Ỹi of Ỹi is thus as
follows:

• take some discrete r.v. X̃i with the same number of outcomes as Ỹi

• calculate the first 12 moments from X̃i

• compute the parameters a, b, c, d

• compute the outcomes Yi of Ỹi as Yi = a + bXi + cX2
i + dX

3
i

2.3.2 Matrix transformation

Our other main tool in the algorithm is a matrix transformation of a random
variable X̃

Ỹ = L X̃

where L is a lower-triangular matrix. The matrix L always comes from a
Cholesky decomposition of the correlation matrix R, so we have L LT = R.4

From theory we know that if X̃ is an n-dimensional N (0, 1) random vari-
able with correlation matrix I (and therefore with X̃i mutually independent),
then the Ỹ = L X̃ is an n-dimensional N (0, 1) random variable with correla-
tion matrix R = L LT .

3Since we have switched from general random variables to a discrete scenario model, we
have to switch the notation from Ỹ to Ỹ.

4Note that L always exists, since we assume R to be positive semi-definite.

73

Since we do not have normal variables, we need a more general result. To
make the formulas as simple as possible, we restrict ourselves to the case of
zero means and variances equal to 1. In the beginning of Section 2.4 we show
how to deal with this restriction. Note that E[X̃] = 0 leads to momi = E[X̃i].
We will thus use the two interchangeably for the rest of the section.

In Appendix B, we show that, in that case, Ỹ (= L X̃) is an n-dimensional
random variable with zero means, variances equal to 1, and correlation matrix
R = LLT . In addition, the higher moments of Ỹ are as follows:

E

[
Ỹ 3

i

]
=

i∑
j=1

L3
ij E

[
X̃3

j

]

E

[
Ỹ 4

i

]
− 3 =

i∑
j=1

L4
ij

(
E

[
X̃4

j

]
− 3

)

We will need also the opposite direction of the transformation:

X̃ = L−1 Ỹ .

Since L−1 is a triangular matrix, it is easy to invert the formulas:

E

[
X̃3

i

]
=

1
L3

ii

E

[
Ỹ 3

i

]
−

i−1∑
j=1

L3
ij E

[
X̃3

j

]

E

[
X̃4

i

]
− 3 =

1
L4

ii

E

[
Ỹ 4

i

]
− 3 −

i−1∑
j=1

L4
ij

(
E

[
X̃4

j

]
− 3

)

We divide only by the diagonal elements Lii in these formulas. We can do
it since Lii are positive due to regularity (positive definiteness) of R.

2.4 The core algorithm

This section presents the core algorithm. It runs as follows: Find the target
marginal moments from stochastic processes, from statistics or by specifying
them directly. Generate n discrete random variables with these moments.
Create the multivariate random variable by combining the univariate variables,
as explained in the Introduction. Transform this variable so that it has the
desired correlations and marginal moments. If the random variables X̃i were
independent, we would end up with Ỹ having exactly the desired properties.

74 Paper 3 – A heuristic for scenario generation

2 The algorithm

To facilitate the reading, we have divided the algorithm in two parts. In the
input phase we read the target properties specified by the user and transform
them to a form needed by the algorithm. In the output phase we generate the
distributions and transform them to the original properties.

2.4.1 The input phase

In this phase we work only with the target moments and correlations, we
do not yet have any outcomes. This means that all operations are fast and
independent of the number of scenarios s.

Our goal is to generate a discrete approximation Z̃ of an n-dimensional
random variable Z̃ with moments TARMOM and correlation matrix R. Since
the matrix transformation needs zero means and variances equal to 1, we have
to change the targets to match this requirement. Instead of Z̃ we will thus
generate random variables Ỹ with moments MOM (and correlation matrix
R), such that MOM1 = 0, and MOM2 = 1. Z̃ is then computed at the very
end of the algorithm as

Z̃ = αỸ + β.

It is easily shown that the values leading to the correct Z̃ are:

α = TARMOM
1/
2

2 MOM3 =
TARMOM3

α3

β = TARMOM1 MOM4 =
TARMOM4

α4

The final step in the input phase is to derive moments of independent uni-
variate random variables X̃i such that Ỹ = L X̃ will have the target moments
and correlations. To do this we need to find the Cholesky-decomposition ma-
trix L, i.e. a lower-triangular matrix L so that R = LLT .

The input phase then contains the following steps:

1. Specify the target moments TARMOM and target correlation matrix
R of Z̃ (and Z̃)

2. Find the normalized moments MOM for Ỹ
3. Compute L and find the transformed moments TRSFMOM for X̃ —

see Section 2.3.2

75

�
�

�
�user �Step 1 TARMOM, R

(for Z̃)
�Step 2 MOM, R

(for Ỹ)
�Step 3 TRSFMOM, I

(for X̃)

Figure 1: Input Phase

2.4.2 The output phase

In this phase we start by generating the outcomes for the independent random
variables. Next, we transform them to get the intermediate-target moments
and target correlations, and finally obtain the moments specified by the user.
Since the last transformation is a linear one, it will not change the correlations.
All the transformations in this phase are with the outcomes, so the computing
time needed for this phase is longer and increases with the number of scenarios.

We start by generating n discrete univariate random variables X̃i. This is
a well-known problem and there are several possible ways to do it. We have
used a method from Fleishman, 1978, in a way described in Section 2.3.1. The
method starts by sampling from N (0, 1) and afterwards uses the cubic trans-
formation to get the desired moments. For the starting N (0, 1) sample we use
a random-number generator. An alternative would be to use a discretization
of the distribution, or some other method for discretizing N (0, 1), for example
the method described in Høyland and Wallace, 2001.

Once we have generated the outcomes Xi for the random variables X̃i,
we can proceed with the transformations. First Y = L X to get the target
correlations and then Z = αY + β to get the user-specified moments.5

The output phase of the core algorithm consists of the following steps:

4. Generate outcomes Xi of 1-dimensional variables X̃i

(independently for i = 1 . . . n)

5. Transform X̃ to the target correlations: Y = L X → Ỹ ∈ RV(MOM ;R)

6. Transform Z̃ to the original moments:
Z = αY + β → Z̃ ∈ RV(TARMOM ; R)

2.5 The modified algorithm

We know that the core algorithm gives us the exact results only if the random
variables X̃i are independent. Since we generate each set of outcomes Xi

5Note that as we have stopped to speak about distributions and started to speak about
outcomes, we have to change the notation from X̃ to X.

76 Paper 3 – A heuristic for scenario generation

2 The algorithm

�Step 4 X̃
TRSFMOM, R

�Step 5 Ỹ
MOM, R

�Step 6 Z̃
TARMOM, I

�Step 1
�
�

�
�user

Figure 2: Output Phase

separately, and have a limited number of outcomes, the resulting co-moments
will most certainly differ from zero and the results of the core algorithm will
be only approximate.

The modified algorithm is iterative, so all results are still approximate,
but with a pre-specified maximal error. Hence, we can control the quality of
the results. We will again use the matrix transformation Y = L X, this time
both forward and backward, as mentioned in 2.3.2. Recall that this transform
allows us to obtain a desired correlation matrix, but it changes the marginal
moments while doing so.

In Section 2.3.1 we showed that the cubic transformation allows us to trans-
form a general univariate random variable X̃i to a variable with some target
moments. This transformation changes the correlations, but if the starting
X̃i’s have moments close to their targets, the changes in the correlations are
expected to be small.

The idea of the new algorithm is thus to introduce iterative loops in the
core algorithm, namely in Steps 4 and 5, in the following way:

The purpose of Step 4 is to generate the independent random variables X̃i.
Since independence is very hard to achieve, we change our target to generating
uncorrelated r.v. X̃i, i.e. we seek to get X̃ ∈ RV(TRSFMOM ; I). We use an
iterative approach to achieve those properties.

Since we do not control the higher co-moments, they will most likely not
be zero, and the Ỹ obtained in Step 5 will not have the target properties. We
thus need another loop there to end up with the desired Ỹ.

The iterative versions of Steps 4 and 5 are:6

Step 4

4.i. Generate n univariate random variables with moments TRSFMOM

(independently) → we get X̃ with correlation matrix R1 close to I
due to the independent generation

4.ii. let p = 1 and X̃1 = X̃
4.iii. while dist(Rp; I) > εx do

6As we have not found any better notation, in the rest of this section lower index p denotes
an iteration counter, not a matrix column.

77

4.iv. do Cholesky decomposition: Rp = Lp LT
p

4.v. do backward transform X
∗
p = L−1

Xp → X̃ ∗ has zero correlations,
wrong moments

4.vi. do cubic transform of X̃ ∗
p with TRSFMOM as the target moments;

store results as X̃p+1 → right moments, wrong correlations

4.vii. compute correlation matrix Rp+1

4.viii. let p = p + 1

4.ix. let X̃ = X̃p → X̃ ∈ RV(TRSFMOM ;Rp) with correlation error
dist(Rp; I) ≤ εx

A root-mean-squared-error is used as the measure dist() in 4.iii, see Sec-
tion 3 for an exact definition. The same distance is used also in Step 5 below
(in steps 5.iii and 5.ix). Since X̃ is not a final output, the maximum error εx

in Step 4 is typically higher than the corresponding εy in Step 5.
There are two possible outcomes from Step 4: X̃p corresponding to random

variables with right moments and slightly off correlations, and X̃ ∗
p−1 corre-

sponding to random variables with slightly off moments and zero correlations.
We start with the latter in Step 5, and denote it X̃ ∗.

Step 5

5.i. Ỹ1 = L X̃ ∗ → both moments and correlations are incorrect
(due to higher co-moments different from zero)

5.ii. let p = 1 and let R1 be the correlation matrix of Ỹ1

5.iii. while dist(Rp; R) > εy do

5.iv. do Cholesky decomposition: Rp = Lp LT
p

5.v. do backward transform Y
∗
p = L−1

p Yp

→ Ỹp has zero correlations, incorrect moments

5.vi. do forward transform Y
∗∗
p = L Y

∗
p

→ Ỹp has correct correlations (R), incorrect moments

5.vii. do cubic transform of Ỹ∗∗
p with MOM as the target moments;

store results as Ỹp+1 → Ỹp+1 ∈ RV(MOM ;Rp+1)

5.viii. let p = p + 1

5.ix. let Ỹ = Ỹp → Ỹ ∈ (MOM ;Rp) with correlation error
dist(Rp; R) ≤ εy

78 Paper 3 – A heuristic for scenario generation

2 The algorithm

Note that we can again choose two different outcomes from Step 5 (and
thus from the whole algorithm). After Step 5.ix, Ỹ has the right moments and
(slightly) off correlation. If we prefer exact correlations, we can either use the
last Ỹ∗∗

p , or repeat Steps 5.iv – 5.vi just before we go to Step 5.ix.
Note also that Steps 5.v and 5.vi are written as individual steps for the

sake of clarity. Since we have always s > n (usually s � n), it is much more
efficient to join the two steps and calculate Y

∗∗
p =

(
L × L−1

p

)
Yp directly.

2.5.1 Convergence

The issue of convergence to the target moments and correlations is difficult.
First, we know that the method cannot converge in general, since it is possible
to specify combinations of moments that cannot exist. In addition, we need
to have enough scenarios, where the minimal number of scenarios depends
not only on the number of random variables n, but also on the structure
of the problem. For example, random variables with distribution close to
the normal, and with small correlations, typically need fewer scenarios than
random variables with fat tails and high correlations.

We have not succeeded in producing a convergence proof, but more than
two years of active use in Gjensidige NOR has so far never left us with an
unsolvable case. The algorithm is stopped whenever a prespecified number
of iterations has been performed, or the convergence criteria are satisfied.
Whatever the reason, it is straightforward to test if the resulting scenario tree
has the required properties (and also if it is arbitrage-free). Hence, when a
tree is used in an optimization model, it always has the required properties.

Therefore, the concern is not that we risk using a tree with bad properties,
but rather that we are left with no tree at all because the algorithm either
converges to the wrong solution or diverges.

If the algorithm does not converge to the right solution, our first approach
is always to try to rerun the algorithm a few times, in reality, trying to start the
whole process with a different set of independent random variables in Step 4.i.
If that does not work, we try to increase the number of scenarios. Unless we
know for sure that the specified set of properties exist (for example because
they are calculated from a data set or from given distributions) we next try to
find out if we may have defined random variables that do not exist. By these
three means, we have always found a solution.

It is worth noting that when the method is used on a continuous basis, the
user learns how many scenarios are needed for his problem. Also, he will know
whether or not he has specified the properties in such a way that the implied
distribution exists. This will limit the possible actions. Our experience is that

79

it is enough to first check for actual errors (bugs) in the specifications, and
then rerun the algorithm a few times from different starting points.

A numerical test of convergence is in Section 3.1.

3 Numerical results

This section presents the times needed to generate scenario trees with different
numbers of random variables and scenarios.

To see how the generation time depends on the number of random variables
and the number of scenarios, we have generated trees with 4, 8, 12 and 20
random variables and 40, 100, 200 and 1000 scenarios. Except the case of four
random variables, we have used actual data from Gjensidige NOR as input.
In addition, we have used two different data sets in the cases of 12 and 20
random variables to improve the estimates. Since we did not have any distinct
case with only four random variables, we have used the first four variables
from the first 12-variable case. A more detailed description of the input data
can be found in http://home.himolde.no/~wallace/reports.htm.7

The algorithm is implemented in AMPL with MINOS 5.5 as a solver. The
test was done on a Pentium III 500 MHz machine with 256 MB memory,
running Windows NT 4.0. As a distance used for evaluating the quality of the
distributions in Steps 4 and 5 of the algorithm, we have used a root-mean-
squared-error defined as

RMSE =
√

1
Nel

∑
k

(valuek − TARGETk)2

where Nel is the number of elements in the sum. The distance was evaluated
separately for moments (Nel = 4n) and for correlations (Nel = n(n−1)

2).
The stopping-values were εx = 0.1 (εx = 0.2 in the case of 20 r.v.) and

εy = 0.01. Note that the distances are evaluated inside the algorithm, where
all the data are scaled to variance equal to 1, so they are scale-independent.
Using the formulas in Section 2.4.1, one can show that the maximum error of
the i’th moment in the final output is TARMOM i

i · εy.
Results of the tests are in Table 1. As we see, we can find trees with as

much as 1000 scenarios in less than a minute. It is worth observing that as
the number of scenarios increases, the computing time decreases. This strange
behavior is caused by a better convergence for larger trees, i.e. the fact that
the number of iterations decreases with the size of a tree: with 40 scenarios

7In this thesis, the description of the input data follows after the paper.

80 Paper 3 – A heuristic for scenario generation

3 Numerical results

Table 1: Running times for different numbers of random variables and sce-
narios. Times are given in format mm:ss.

Number of scenarios
r.v. 40 100 200 1000

4 00:01 00:01 00:01 00:05
8 00:04 00:04 00:03 00:10

12 00:09 00:07 00:06 00:16
20 01:05 00:44 00:31 00:48

we need typically 1–2 iterations in Step 4 of the algorithm (generation of X̃)
and 2–3 iterations in Step 5 (generation of Ỹ), whereas with 1000 scenarios
we usually need only one iteration in each part. Since we cannot have less
than one iteration, there will be no more improvement in the convergence for
trees with more than 1000 scenarios. We can thus expect approximately linear
time-dependency for very large trees.

It may be of interest to compare these times with what we observe by using
the method in Høyland and Wallace, 2001. Table 2 shows the results for 1000
scenarios. As we see, the savings are substantial.

Table 2: Running times for creating 1000 scenarios. In the first column
are times for the algorithm from Høyland and Wallace, 2001, in the second
column times for the new algorithm. The last column presents the speed-up.
Times are given in format [h:]mm:ss.

r.v. old alg. new alg. speed-up
4 00:35 00:05 7.5×
8 08:39 00:10 53×

12 17:54 00:16 66×
20 1:34:46 00:48 119×

3.1 Convergence test

As mentioned in Section 2.5.1, we do not have a convergence proof for the iter-
ative algorithm presented in Section 2.5. We have thus tested the convergence
numerically. The iterative procedure is used in steps 4 and 5 of the algo-
rithm. Step 4 is, however, used only to obtain a reasonable starting point for

81

Step 5, so the convergence is not as important there. Hence, we only present
convergence tests for Step 5.

For the test, we have chosen the smallest and the biggest cases from the
data used in the main test, namely 40 scenarios for 4 random variables and
1000 scenarios for 20 random variables. For both sets, we have run the algo-
rithm 25 times, each time with a different initial set of scenarios.

We have measured an error in moments after the matrix transformation
and an error in correlations after the cubic transformation. The other two
combinations are not interesting, since both transformations set “their” errors
to zero. Hence, the two errors are equal to the total errors after the given
transformation.8

Results of the test are in Figure 3. Every iteration consists of the matrix
transformation (Steps 5.iv. . . 5.vi) and the cubic transformation (Step 5.vii).
We see that both the errors are monotonously decreasing. Hence, also the total
error at the end of an iteration is monotonously decreasing. This is actually
true not only for the average values depicted in the graphs, but for all the 25
runs, in both test cases.

4 Future work

The most important subject for future research is the convergence of the al-
gorithm. Since we do not have a convergence proof, we should try to obtain a
better understanding of the convergence. In particular, we should try to iden-
tify statistical properties that would guarantee/prevent convergence. Another
interesting problem is the minimum number of scenarios needed to achieve
given precision for a given set of properties.

In many cases we are interested in multi-period scenario trees. It is a future
challenge to see how the presented method can be used as a building block for
a larger tree, particularly how to preserve time series properties.

Even though we have achieved a substantial computational speed, the
tested implementation is still far from optimal. In the current AMPL imple-
mentation, the algorithm spends most of its time with the Cholesky trans-
formation and the communication with the solver before and after the cubic
transform.

Both these critical times can be eliminated or decreased by implementing
the algorithm in a compiled form. A C++ implementation is currently being

8We define the total error as a sum of the errors in moments and correlations. After every
transformation one of the errors is zero, hence the total is equal to the other one.

82 Paper 3 – A heuristic for scenario generation

4 Future work

1e-10

1e-08

1e-06

1e-04

1e-02

0 2 4 6 8 10 12 14 16 18 20

ro
ot

-m
ea

n-
sq

ua
re

d-
er

ro
r

iteration

Convergence test - 4 random variables, 40 scenarios

error after the matrix transf.
error after the cubic transf.

1e-10

1e-08

1e-06

1e-04

1e-02

0 2 4 6 8 10 12

ro
ot

-m
ea

n-
sq

ua
re

d-
er

ro
r

iteration

Convergence test - 20 random variables (set 1), 1000 scenarios

error after the matrix transf.
error after the cubic transf.

Figure 3: Convergence of the iterative algorithm. In both cases, the algo-
rithm was run 25 times. Lines represent average errors after every iteration,
bars represents the best and the worst cases. The dashed lines represents
errors in moments after the matrix transformation, the solid line errors in
correlations after the cubic transformation. The root-mean-squared-error is
defined in Section 3.

83

developed at SINTEF9 research institute, and according to the first tests is
more than 10 times faster than our AMPL code. This implementation is part of
OMEGA-IST-1999-12088, an EU financed project on electricity production i
deregulated markets.

The presented algorithm is well suited for parallel implementation, because
most of its parts can be processed independently for each random variable.
The only step of the algorithm that uses considerable amount of time and
cannot be parallelized in this simple way is the Cholesky decomposition of the
correlation matrix, but parallel codes for the Cholesky decomposition can also
be found.

5 Conclusions

We have presented an algorithm to generate scenarios for multivariate random
variables. The purpose of the algorithm is to speed up an existing scenario
generation algorithm, which constructs multi-dimensional scenario trees with
specified moments and correlations.

The original algorithm constructs the multidimensional scenario tree by
solving a single, potentially very large, least squares problem. The main
idea of the new algorithm is to decompose the least squares problem so that
each marginal distribution is constructed separately. To combine the different
marginal distributions so that the joint distribution satisfies the specified cor-
relations, we apply a Cholesky decomposition and a cubic transformation in
an iterative procedure.

Even if we cannot guarantee convergence of this procedure, our experience
shows that it does converge if the specifications are possible and there are
enough scenarios. In addition, a potential divergence or convergence to the
wrong solution is easy to detect. Hence, we never end up using an incorrect
tree in the optimization procedure.

Testing shows that our algorithm is reasonably fast. We can find trees
with 1000 scenarios representing 20 random variables in less than one minute.

Acknowledgments

We would like to thank Erik Kole from the Maastricht University for pointing
out an error in an earlier version of the paper, and Matthias Nowak from
SINTEF, Trondheim, for suggesting some important changes in notation and

9The Foundation for Scientific and Industrial Research at the Norwegian Institute of
Technology

84 Paper 3 – A heuristic for scenario generation

REFERENCES

structure of the paper. Furthermore, we would like to thank our colleague
Halvard Arntzen for helping us with cleaning up the terminology. We are also
in debt to anonymous referees. Much of this work was done while Stein W.
Wallace visited the Centre for Advanced Study at the Academy of Science and
Letters in Oslo.

References

Cariño, D. R. and Ziemba, W. T. (1998). Formulation of the Russell-Yasuda
Kasai financial planning model. Operations Research, 46(4):443–449.

Consigli, G. and Dempster, M. A. H. (1998). Dynamic stochastic programming
for asset-liability management. Annals of Operations Research, 81:131–
162.

Dert, C. (1995). Asset Liability Management for Pension Funds, A Multi-
stage Chance Constrained Programming Approach. PhD thesis, Erasmus
University, Rotterdam, The Netherlands.

Fleishman, A. I. (1978). A method for simulating nonnormal distributions.
Psychometrika, 43:521–532.

Higham, N. J. (2000). Computing the nearest correlation matrix—A problem
from finance. Numerical Analysis Report No. 369, Manchester Centre for
Computational Mathematics, Manchester, England.

Høyland, K. and Wallace, S. W. (2001). Generating scenario trees for multi-
stage decision problems. Management Science, 47(2):295–307.

Lurie, P. M. and Goldberg, M. S. (1998). An approximate method for sam-
pling correlated random variables from partially-specified distributions.
Management Science, 44(2):203–218.

Mulvey, J. M. (1996). Generating scenarios for the Towers Perrin investment
system. Interfaces, 26:1–13.

Vale, C. David & Maurelli, V. A. (1983). Simulating multivariate nonnormal
distributions. Psychometrika, 48(3):465–471.

85

Appendix

A Cubic transformation Ỹ = a + bX̃ + cX̃2 + dX̃3

The purpose of this transformation is to produce a univariate random variable
Ỹi with specified first four moments E

[
Ỹ k

i

]
, k = 1, . . . , 4, given the random

variable X̃i with known first 12 moments E
[
X̃k

i

]
, k = 1, . . . , 12.

The problem is to find the transform parameters ai, bi, ci and di. For
this we have to express E

[
Ỹ k

i

]
as functions of E

[
X̃k

i

]
. The formulas can be

stated either for univariate random variables Ỹi, or as a vector equations for
the random vector Ỹ . The only difference is the presence/absence of index i
in all elements. To make the formulas easier to read, we use the vector form.

E
[
Ỹ

]
= a + bE

[
X̃

]
+ cE

[
X̃2

]
+ dE

[
X̃3

]

E
[
Ỹ 2

]
= d2

E
[
X̃6

]
+ 2cdE

[
X̃5

]
+ (2bd + c2)E

[
X̃4

]
+ (2ad + 2bc)E

[
X̃3

]

+ (2ac + b2)E
[
X̃2

]
+ 2abE

[
X̃

]
+ a2

E
[
Ỹ 3

]
= d3

E
[
X̃9

]
+ 3cd2

E
[
X̃8

]
+ (3bd2 + 3c2d)E

[
X̃7

]
+ (3ad2 + 6bcd + c3)E

[
X̃6

]

+ (6acd + 3b2d + 3bc2)E
[
X̃5

]
+ (a(6bd + 3c2) + 3b2c)E

[
X̃4

]

+ (3a2d + 6abc + b3)E
[
X̃3

]
+ (3a2c + 3ab2)E

[
X̃2

]
+ 3a2bE

[
X̃

]
+ a3

E
[
Ỹ 4

]
= d4

E
[
X̃12

]
+ 4cd3

E
[
X̃11

]
+ (4bd3 + 6c2d2)E

[
X̃10

]

+ (4ad3 + 12bcd2 + 4c3d)E
[
X̃9

]
+ (12acd2 + 6b2d2 + 12bc2d + c4)E

[
X̃8

]

+ (a(12bd2 + 12c2d) + 12b2cd + 4bc3)E
[
X̃7

]
+ (6a2d2 + a(24bcd + 4c3)

+ 4b3d + 6b2c2)E
[
X̃6

]
+ (12a2cd + a(12b2d + 12bc2) + 4b3c)E

[
X̃5

]

+ (a2(12bd + 6c2) + 12ab2c + b4)E
[
X̃4

]
+ (4a3d + 12a2bc + 4ab3)E

[
X̃3

]

+ (4a3c + 6a2b2)E
[
X̃2

]
+ 4a3bE

[
X̃

]
+ a4

Note that since the matrix transformation Ỹi = L X̃i does not change the
first two moments, we have E[X̃i] = 0 and E[X̃2

i] = 1. We could thus simplify
the above formulas slightly by assuming that the first two moments are exactly
0 and 1. In our implementation we have, however, used the formulas in the
presented form, computing the actual moments.

B Matrix transformation Ỹ = L X̃

We seek an n-dimensional random variable Ỹ with zero means, variances equal
to 1, skewness MOM3, kurtosis MOM4, and a correlation matrix R = L LT ,
where L is a lower-triangular matrix. To obtain Ỹ , we start with an n-
dimensional random vector X̃ with independent components X̃i. Thereafter,

86 Paper 3 – A heuristic for scenario generation

B Matrix transformation Ỹ = L X̃

Ỹ is computed as Ỹ = L X̃. Note that the k’th moment of Ỹ is equal to E
[
Ỹ k

]
because of the zero means.

During the algorithm we use the matrix transformation in two different
cases. First it is used on distributions, which are abstract objects, so we work
only with their distributional properties. In the second part of the algorithm,
we transform the outcomes, which are matrices of numbers. The formulas are
the same in both cases, the only difference is the use of X̃ in the first case and
X in the latter.

We use the distribution-notation in the rest of the appendix. The matrix
transformation in a column-wise form is then:

Ỹi =
(
L X̃

)
i
=

n∑
j=1

Lij X̃j =
i∑

j=1

Lij X̃j

where the last equality comes from the fact that L is a lower-triangular matrix
and therefore Lij = 0 for j > i.

Theorem – properties of Ỹ = L X̃

Assume we have an n-dimensional random variable X̃ with the following prop-
erties:

i. E
[
X̃k

]
exists for k = 1 . . . 4

ii. E
[
X̃

]
= 0 and E

[
X̃2

]
= 1

iii. the univariate random variables X̃i, X̃j are independent for i �= j

Assume further that L is a lower-triangular matrix of size n such that R =
L LT , where R is a correlation matrix, i.e. R is a symmetric positive semi-
definite matrix with 1’s on the main diagonal.

If we then define a random variable Ỹ as Ỹ = L X̃, it has the following
properties:

iv. E
[
Ỹ k

]
exists for k = 1 . . . 4

v. E
[
Ỹ

]
= 0 and E

[
Ỹ 2

]
= 1

vi. Ỹ has a correlation matrix R = L LT

vii. E

[
Ỹ 3

i

]
=

i∑
j=1

L3
ij E

[
X̃3

j

]

87

viii. E

[
Ỹ 4

i

]
− 3 =

i∑
j=1

L4
ij

(
E

[
X̃4

j

]
− 3

)

The proof is straightforward, and is left to the reader.

Consequence

Under the assumptions of the theorem, with an additional assumption that R
is regular (and therefore positive-definite), we can express the moments of X̃
as:

ix. E

[
X̃3

i

]
=

1
L3

ii

E

[
Ỹ 3

i

]
−

i−1∑
j=1

L3
ij E

[
X̃3

j

]

x. E

[
X̃4

i

]
− 3 =

1
L4

ii

E

[
Ỹ 4

i

]
− 3 −

i−1∑
j=1

L4
ij

(
E

[
X̃4

j

]
− 3

)

Note that the set of moments (0, 1, 0, 3) is an invariant of this transforma-
tion. This confirms the known theoretical result that the linear transforma-
tions preserve normality. In the context of our algorithm it means that if we
generate normal variables, we can skip Step 3 of the algorithm.

88 Paper 3 – A heuristic for scenario generation

Description of data used in the numerical tests

Michal Kaut
michal.kaut@iot.ntnu.no∗

Abstract

This note provides a complete description of input data used in the
numerical tests in the paper “A Heuristic for Moment-matching Scenario
Generation”, published in Computational Optimization and Applications,
vol. 24, pp. 169–185, 2003.

In the paper, we test the presented heuristics on trees with 4, 8, 12 and
20 random variables and 40, 100, 200 and 1000 scenarios. All the cases—
except the case of four random variables—are actual data files used in an
asset allocation model at Gjensidige NOR. All the random variables are thus
one-month returns of some assets. The scale of the returns may vary, since
different types of assets are handled differently in the model.

All the assets in the tables have four-letter codes. The first two letters
designate a type of the asset: Cs, C1, and C2 stands for cash; Bs, Bl, and Bn
for short-, long- and unspecified bonds, respectively; and st for stocks. The
second two letters designate country of the asset: in addition to the standard
abbreviations, Jp stands for Japan, Ge for Germany, Eu for the Eurozone,1 and
No for Norway.

For the tests with twelve and twenty random variables, we have used two
different data sets for each case to improve the estimates. The input data
are in Tables 2, 3, 4, and 5, respectively. For the tests with four and eight
random variables, only one data set was used. The data set for eight random
variables is in Table 1. Since we did not have any distinct data set with only
four random variables, we have used the first four variables from the data in
Table 2.

∗Norwegian University of Science and Technology, N-7491 Trondheim, Norway
1Except for the currency, Eurozone means Germany.

Table 1: Statistical properties — 8 random variables

BnUS BnJp BnUK BnGe StUS StJp StUK StGe
mean -0.032 0.14 0.174 0.214 0.0 3.0 2.0 3.0
stdev 0.1 0.25 0.6 0.5 10.8 10.8 10.8 14.8
skew 0.0 0.5 0.4 0.4 -0.4 0.5 0.2 0.2
kurt 3.0 2.5 3.0 2.5 4.0 3.0 4.0 4.0

BnUS BnJp BnUK BnGe StUS StJp StUK
BnJp 0.2

BnUK 0.5 0.2
BnGe 0.5 0.2 0.5
StUS -0.4 -0.1 -0.2 -0.2
StJp -0.1 -0.4 -0.1 -0.1 0.2

StUK -0.2 -0.1 -0.4 -0.2 0.5 0.2
StGe -0.2 -0.1 -0.2 -0.4 0.5 0.2 0.5

90 Paper 3 – A heuristic for scenario generation

Description of data used in the numerical tests

Table 2: Statistical properties — 12 random variables, set 1

CsUS CsJp CsUK CsGe BnUS BnJp BnUK BnGe StUS StJp StUK StGe
mean 0.03 -0.09 0.15 0.04 0.12 0.14 0.187 0.138 -3.0 2.0 3.0 -2.0
stdev 0.6 0.15 0.6 0.35 0.6 0.3 0.6 0.4 10 10.5 10.5 10.7
skew 0.25 0.6 0.0 0.5 0.3 0.5 0.3 0.25 -0.6 0.5 0.0 0.0
kurt 3.0 2.0 3.0 2.5 3.0 2.5 3.0 2.5 4.0 3.0 4.0 4.0

CsUS CsJp CsUK CsGe BnUS BnJp BnUK BnGe StUS StJp StUK
CsJp 0.1

CsUK 0.2 0.1
CsGe 0.2 0.1 0.2
BnUS 0.4 0.0 0.1 0.1
BnJp 0.0 0.4 0.0 0.0 0.2

BnUK 0.1 0.0 0.4 0.1 0.5 0.2
BnGe 0.1 0.0 0.1 0.4 0.5 0.2 0.5
StUS -0.3 0.0 -0.1 -0.1 -0.4 -0.1 -0.2 -0.2
StJp 0.0 -0.3 0.0 0.0 -0.1 -0.4 -0.1 -0.1 0.2

StUK -0.1 0.0 -0.3 -0.1 -0.2 -0.1 -0.4 -0.2 0.5 0.2
StGe -0.1 0.0 -0.1 -0.3 -0.2 -0.1 -0.2 -0.4 0.5 0.2 0.5

Table 3: Statistical properties — 12 random variables, set 2

CsUS CsUK CsEu CsNo BsEu BlUS BlJp BlUK BlEu BlNo StUS StJp
mean 0.641 -0.114 0.303 0.529 -0.207 -0.145 0.36 -0.707 -0.075 0.765 4.0 2.5
stdev 0.35 0.3 0.3 0.3 1.05 2.38 1.62 2.1 2.25 2.475 12.59 16.14
skew 0.2 0.2 0.2 0.3 0 -0.1 -0.2 -0.2 -0.1 -0.1 0.2 0.2
kurt 3.2 3.2 3.2 3.3 2.8 2.8 2.8 2.8 2.8 2.8 3.2 3.2

CsUS CsUK CsEu CsNo BsEu BlUS BlJp BlUK BlEu BlNo StUS
CsUK 0.2
CsEu 0.2 0.3
CsNo 0.2 0.2 0.2
BsEu 0.2 0.1 0.4 0.0
BlUS 0.2 0.0 0.0 0.0 0.0
BlJp 0.0 0.0 0.0 0.0 0.0 0.1

BlUK 0.1 0.3 0.1 0.0 0.3 0.4 0.1
BlEu 0.1 0.1 0.3 0.0 0.6 0.4 0.1 0.4
BlNo 0.0 0.2 0.0 0.2 0.4 0.4 0.1 0.4 0.6
StUS 0.1 0.0 0.0 0.0 0.0 0.25 0.1 0.2 0.2 0.1
StJp 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.1 0.2 0.1 0.3

91

Table 4: Statistical properties — 20 random variables, set 1

C1US C1Jp C1UK C1Eu C1No C2US C2Jp C2UK C2No BsUS
mean 0.217 0.073 -0.13 -0.085 0.0 0.378 0.0226 -0.0237 0.108 -0.235
stdev 0.3 0.08 0.25 0.2 0.5 0.5 0.16 0.4 1 0.525
skew -0.2 -0.4 0.0 0.0 0.0 0.2 -0.4 0.0 0.0 -0.2
kurt 2.5 2.2 2.5 3 3.3 2.5 2.2 2.5 3.3 2.65

BlUS BlJp BlUK BlEu StUS StJp StUK StEu StNo BsEu
mean -0.793 -0.765 -0.721 -0.45 2.0 0.0 2.0 1.0 -1.0 0.042
stdev 1.75 1.35 1.05 1.875 9.496 9.927 8.633 10.359 9.064 0.525
skew -0.2 -0.3 -0.6 -0.2 0.0 0.3 0.2 0.2 0.0 -0.1
kurt 2.8 2.5 2.8 2.8 3.2 3.2 3.2 3.3 3.5 2.9

C1US C1Jp C1UK C1Eu C1No C2US C2Jp C2UK C2No BsUS
C1Jp 0.0

C1UK 0.1 0.0
C1Eu 0.1 0.0 0.3
C1No 0.0 0.0 0.1 0.1
C2US 0.7 0.0 0.0 0.0 0.0
C2Jp 0.0 0.7 0.0 0.0 0.0 0.0

C2UK 0.0 0.0 0.7 0.0 0.0 0.1 0.0
C2No 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.1
BsUS 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0
BsEu 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.2
BlUS 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.5
BlJp 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

BlUK 0.1 0.0 0.3 0.0 0.0 0.1 0.0 0.3 0.0 0.1
BlEu 0.1 0.0 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.1
StUS 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
StJp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

StUK 0.0 0.0 -0.3 -0.1 0.0 0.0 0.0 -0.3 0.0 0.0
StEu 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0
StNo 0.0 0.0 -0.1 -0.1 -0.3 0.0 0.0 -0.1 -0.3 0.0

BsEu BlUS BlJp BlUK BlEu StUS StJp StUK StEu
BlUS 0.1
BlJp 0.0 0.0

BlUK 0.1 0.4 0.1
BlEu 0.5 0.4 0.1 0.5
StUS 0.0 0.3 0.1 -0.1 -0.1
StJp 0.0 0.1 0.25 0.0 0.1 0.4

StUK 0.0 0.1 0.1 -0.2 -0.1 0.5 0.3
StEu 0.0 0.1 0.1 -0.1 0.0 0.4 0.2 0.5
StNo 0.0 0.1 0.0 0.0 0.0 0.3 0.3 0.4 0.5

92 Paper 3 – A heuristic for scenario generation

Description of data used in the numerical tests

Table 5: Statistical properties — 20 random variables, set 2

C1US C1Jp C1UK C1Eu C1No C2US C2Jp C2UK BsEu BnEu
mean 0.602 0.055 0.175 0.531 0.432 0.655 -0.005 0.472 0.291 0.249
stdev 0.35 0.1 0.3 0.3 0.3 0.35 0.15 0.28 0.495 1.05
skew 0.3 0.0 0.2 0.2 0.3 0.2 -0.2 0.3 0.2 0.0
kurt 3.2 3.2 3.2 3.2 3.3 3 3 3 2.8 2.8

BlUS BlJp BlUK BlEu BlNo StUS StJp StUK StEu StNo
mean -0.354 -0.405 0.742 0.165 1.238 3.5 3.5 4 3.5 2.5
stdev 2.38 1.62 2.1 2.25 2.475 10.527 10.075 8.6 10.636 10.948
skew -0.1 -0.2 -0.2 -0.1 -0.1 0.2 0.2 0.2 0.2 -0.3
kurt 2.8 2.8 2.8 2.8 2.8 3.2 3.2 3.2 3.3 3.5

C1US C1Jp C1UK C1Eu C1No C2US C2Jp C2UK BsEu BnEu
C1Jp 0.0

C1UK 0.2 0.0
C1Eu 0.2 0.0 0.3
C1No 0.2 0.0 0.2 0.2
C2US 0.6 0.2 0.2 0.2 0.2
C2Jp 0.0 0.6 0.0 0.0 0.0 0.0

C2UK 0.12 0.0 0.6 0.2 0.2 0.2 0.0
BsEu 0.2 0.0 0.2 0.6 0.2 0.2 0.0 0.2
BnEu 0.2 0.0 0.1 0.4 0.0 0.1 0.0 0.1 0.6
BlUS 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0
BlJp 0.0 0.2 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0

BlUK 0.1 0.0 0.3 0.1 0.0 0.1 0.0 0.3 0.2 0.3
BlEu 0.1 0.0 0.1 0.3 0.0 0.1 0.0 0.1 0.4 0.6
BlNo 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.4
StUS 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
StJp 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0

StUK 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 -0.1
StEu 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 -0.1 -0.1
StNo 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 -0.1

BlUS BlJp BlUK BlEu BlNo StUS StJp StUK StEu
BlJp 0.1

BlUK 0.4 0.1
BlEu 0.4 0.1 0.4
BlNo 0.4 0.1 0.4 0.6
StUS 0.25 0.1 0.2 0.2 0.1
StJp 0.2 0.3 0.1 0.2 0.1 0.3

StUK 0.2 0.0 0.3 0.2 0.1 0.5 0.2
StEu 0.2 0.0 0.2 0.3 0.1 0.4 0.2 0.5
StNo 0.2 0.0 0.2 0.2 0.1 0.3 0.2 0.3 0.3

93

Updates to the published version

Michal Kaut
michal.kaut@iot.ntnu.no∗

May 2003

Abstract

This note describes a new development of the scenario-generation
algorithm from the paper “A Heuristic for Moment-matching Scenario
Generation”, published in Computational Optimization and Applications,
vol. 24, pp. 169–185, 2003. The presented results lead to a better per-
formance of the algorithm, so the note should be of interest to anybody
considering implementing the algorithm.

Throughout the note, we assume that the reader is familiar with the
paper, so we can use the notation and refer to parts of the algorithm.

Redundance of Step 4 of the algorithm

In the core (idealised) algorithm, presented in Section 2.4 of the paper, we
start the generation with an independent random vector X̃ with moments
TRSFMOM . These moments are computed in such a way that Ỹ = L X̃ has
moments MOM (which then lead to the specified moments TARMOM). In
the modified algorithm in Section 2.5, the outcomes X of the random vector
X̃ serve as a starting point for the iterative loop in Step 5 of the algorithm.

Unfortunately, the moments TRSFMOM required for the random vector
X̃ are often quite extreme—they may not even exist. As a result, X̃ may be
both hard to obtain and, even worse, it may lead to “strange” (non-smooth
and/or truncated) distributions.

On the other hand, our testing shows that the iterative procedure in Step 5
converges even if we start with a random vector X̃ with moments different
from TRSFMOM . In particular, the algorithm works well if we start with
marginals X̃i with standard normal distributions. Our recommendation is thus
to skip Step 4 of the algorithm (generation of X̃) altogether, and sample the
marginals X̃i from the standard normal distribution.

∗Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Instead of sampling, it is also possible to use a pre-defined discretization
of the distribution. This variant then leads to an “almost deterministic” al-
gorithm, i.e. it decreases the differences between trees coming from several
runs of the algorithm. (Whether the algorithm becomes truly deterministic
depends on the implementation of the solution method used for finding coeffi-
cients of the cubic transformation. In our case, the solution method contains
some randomness, so the algorithm may give different trees even if we start
with the same discretizations of X̃i.)

The normal distribution is chosen mostly for convenience, since it is easy
to sample from. In addition, the normal distribution is smooth, which seems
to be important for stability of optimization models—see Paper 1 of this thesis
for a discussion of stability. Even if other distributions have not been tested,
we believe that any smooth distribution would work as well.

Problems with low kurtosis

Unfortunately, not all distributions can be obtained by a single cubic transfor-
mation of the standard normal distribution: When the kurtosis is too small,
the difference between the normal distribution and the target distribution be-
comes too big.

In this section, we use notation from Paper 4 of this thesis, and denote1

skewness: γ =
µ3

σ3

kurtosis: δ =
µ4

σ4
,

where µk is the k-th central moment, µk = E
[(

X̃−E
[
X̃
])k], and σ2 = µ2. Note

that both moments are independent of the value of the mean and variance.
For the rest of the section, we thus set mean to zero and variance to one—in
conformity with the paper.

First, we should explain what is meant by “too small kurtosis”. Pearson,
1916 proved that, for a given value of skewness γ, there is a lower bound on
the possible value of the kurtosis,

δ ≥ 1 + γ2 .

In addition, Klaassen et al., 2000 showed that, in the case of unimodal distri-
butions, the bound is

δ ≥ 189
125

+ γ2 = 1.52 + γ2 ,

1The standard notation would be γ1 for skewness and γ2 for normalised kurtosis, so our
notation is γ = γ1 and δ = γ2 + 3. The reason for the choice is that we need to divide by
the kurtosis later, which is not possible with the standard definition, since γ2 can be zero.

96 Paper 3 – A heuristic for scenario generation

Updates to the published version

so all distributions between these two bounds are multi-modal. It is thus not
surprising that they can not be obtained by a single cubic transformation of
the (unimodal) normal distribution.

The easiest remedy of the problem is to repeat the cubic transformation
several times. This, together with trying several starting samples, usually
solves the problem, at least with our implementation of the cubic transfor-
mation. To illustrate the approach, we have tested 50, 000 combinations of
skewness and kurtosis, sampled uniformly from

{(γ, δ), γ ∈ [0, 10], δ ∈ [δγ , 2δγ]} ,

where δγ denotes the minimal kurtosis, δγ = 1 + γ2. For every combination,
we start with a sample of 10, 000 outcomes2 from the standard normal dis-
tribution, and try to transform the sample to a distribution with the given
skewness and kurtosis, using the cubic transformation. When we do not ob-
tain the desired moments after ten transformations, we mark the combination
as inaccessible, otherwise we store the number of transformations.

From the 50, 000 combinations, only 55 were not obtained in 10 transfor-
mations—and all were very close to the lower bound: Table 1 presents the
maximal and average distances from the bound, both in absolute (δ − δγ) and
relative (δ/δγ−1) values. For comparison: from the combinations we were able
to obtain, the one closest to the lower bound had the absolute distance of
0.014, and relative distance of 0.01%.

Table 1: Distance of the combinations (γ, δ) we were not able to generate,
from the theoretical lower bound (γ, δγ).

distance from bound
statistics absolute relative
average 0.015 0.17%

max 0.051 0.93%

We have also created a “map” showing the number of transformations
needed to achieve different combinations of skewness and kurtosis. To obtain
the map, we had to run the test on the whole region, not only along the
bound as in the previous test. The result of the test is presented in Figure 1.
An interesting observation is that there is also an upper bound for kurtosis
that can be achieved by a single cubic transformation of the standard normal
distribution—as far as we know, this has not been reported before. With our

2The relatively high number of scenarios was chosen in order to ensure that the starting
discretization is sufficiently close to the standard normal distribution.

97

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

ku
rto

si
s

skewness

1

2 3

≥4

Infeasible
region

Figure 1: Combinations of skewness and kurtosis accessible by a repeated
cubic transformation of the standard normal distribution. The numbers show
the number of cubic transformations needed to obtain distributions from the
corresponding areas. The lowest region contains infeasible combinations of
skewness and kurtosis.

implementation, the upper bound is approximately 88.5. (There is a corre-
sponding bound for two transformations, but it starts at kurtosis of about 3000
for zero skewness and increases to more than 4000 for skewness of 50. Hence,
the maximal achievable kurtosis can be seen as unlimited for most practical
purposes.)

It is important to realize that the repetition of the cubic transformation
would be impossible with the original formulation from Fleishman, 1978, since
it assumes that the starting distribution is exactly normal. Our implementa-
tion, however, allows starting with arbitrary distribution, as long as we can
compute the first twelve moments.3 This makes the computation of the coeffi-
cients more difficult, but on the other hand practically eliminates the biggest
problem of Fleishman’s method, the inability of generating distributions with
low kurtosis.

An alternative to repeating the cubic transformation is to start with a
different distribution than the standard normal. For example, if the kurtosis

3This is why we can use it in the iterative loop in Step 5 of the algorithm.

98 Paper 3 – A heuristic for scenario generation

Updates to the published version

is below the bound for unimodal distributions, we may try a mixture of two
normal distributions: Kurtosis decreases with the distance of the two compo-
nents of the mixture. In some occasions, uniform distribution may help—this
is, however, not recommended because of the non-smoothness of the distribu-
tion.

As a more sophisticated alternative, we may consider using a different
method than the cubic transformation to obtain the starting value Yi for the
random variable Ỹi in Step 5 of the algorithm. A good source of information is
Tadikamalla, 1980, who presents and compares six different methods, where
three are capable of generating distributions with any feasible combination
of skewness and kurtosis: the Johnson system of distributions from Johnson,
1949, the Tadikamalla-Johnson system from Tadikamalla and Johnson, 1979,
and the Schmeiser-Deutch system from Schmeiser and Deutch, 1997.

Note that the special approach—either repeating the cubic transformation,
or using some of the mentioned alternatives—is needed only in order to get
a starting point for the iterative procedure in Section 5. Inside the loop, we
always use the cubic transformation: Even if the cubic transformation is not
capable of entering the low-kurtosis region, it works inside it.

New implementation

As mentioned in the “Future work” part of the paper, we have implemented
the algorithm in the C programming language. The cubic transformation,
which is the crucial part of the algorithm, was implemented by Diego Mathieu
from INSA Toulouse, France, during his visit at Molde University College
in the summer of 2002. The code has been compiled for Win32 using both
Microsoft Visual C++ and MinGW (GCC for Win32), so it should compile on
other platforms as well.

The new implementation provides two major improvements compare to
the original AMPL implementation: It is more than ten times faster, and it is a
stand-alone code, so it is not dependent on any commercial solver.

The issue of distributions with low kurtosis has been addressed by allow-
ing several repetitions of the cubic transformation. Diego Mathieu has also
implemented the Schmeiser-Deutch system from Schmeiser and Deutch, 1997,
but it has not yet been included in the code—mostly because we have not yet
encountered a real case where we could not generate the scenarios using the
current implementation.

99

References

Fleishman, A. I. (1978). A method for simulating nonnormal distributions.
Psychometrika, 43:521–532.

Høyland, K., Kaut, M., and Wallace, S. W. (2003). A heuristic for moment-
matching scenario generation. Computational Optimization and Applica-
tions, 24(2-3):169–185.

Johnson, N. L. (1949). Systems of frequency curves generated by methods of
translation. Biometrika, 36(1):149–176.

Klaassen, C., Mokveld, P., and Es, B. V. (2000). Squared skewness minus
kurtosis bounded by 186/125 for unimodal distributions. Statistics &
Probability Letters, 50:131–135.

Pearson, K. (1916). Mathematical Contributions to the Theory of Evolution,
XIX: Second Supplement to a Memoir on Skew Variation. Ser. A. Philos.
Trans. Roy. Soc., London.

Schmeiser, B. W. and Deutch, S. J. (1997). A versatile four parameter family
of probability distributions suitable for simulation. AIIE Transactions,
9(2):176–182.

Tadikamalla, P. and Johnson, N. L. (1979). Systems of frequency curves gener-
ated by transformations of logistic variables. Mimeo Series 1226, Depart-
ment of Statistics, University of North Carolina at Chapel Hill, Chapel
Hill.

Tadikamalla, P. R. (1980). On simulating non-normal distributions. Psy-
chometrika, 45(2):273–279.

100 Paper 3 – A heuristic for scenario generation

Paper 4

Multi-period scenario tree
generation using

moment-matching: Example
from option pricing

Multi-period scenario tree generation using

moment-matching: Example from option pricing

Michal Kaut
michal.kaut@iot.ntnu.no∗

Stein W. Wallace
stein.w.wallace@himolde.no†

June 2003

Abstract

This paper presents an algorithm for generating multi-period non-
recombining scenario trees, and shows how it can be used for pricing
multi-variate path-dependent options.

Recently, the moment-matching approach to scenario generation has
gained some popularity in the stochastic programming community. In
most cases, the moment matching is done on one-period trees. Multi-
period trees are then generated by single-period subtrees, so it is possible
to evolve the conditional moments and correlations of the subtrees accord-
ing to specified rules (for example autocorrelation or mean-reversion).
Unfortunately, this approach does not allow the user to control the un-
conditional distribution of the final period of the whole multi-period tree.

Option pricing is an example of an application where the final-period
distribution plays a crucial role, and the above approach is thus not
directly applicable. In this paper, we present formulas for moments and
correlations of the one-period subtrees that result in given moments and
correlations of the distribution of the final period of the multi-period
tree, in the case without inter-period dependencies. With inter-period
dependencies, we provide an ex-post correction procedure.

Non-recombining, multi-period trees typically lead to an explosion in
both storage space and computation time. We show, however, that in
the case of option pricing we can avoid the explosion in the storage space
by simultaneous tree generation and pricing. The presented algorithm
assumes that we know the moments and correlation of the risk-neutral
distribution (equivalent martingale measure).

Keywords: non-recombining trees, scenario generation, option pricing,
multivariate options

∗Norwegian University of Science and Technology, N-7491 Trondheim, Norway
†Molde University College, Postboks 2110, N-6402 Molde, Norway

1 Introduction

Despite some criticism—for example by Pflug and Hochreiter (2003)—the mo-
ment matching approach to scenario generation has been accepted by the
stochastic programming community, mostly because of its reasonable perfor-
mance in practical applications: See, for example, Kouwenberg (2001), or Kaut
and Wallace (2003).

In most cases, the matching of moments (and possibly other properties) is
done on one-period trees. Hence, when we need to generate a multi-period tree,
we generate it by the constituting one-period subtrees. Høyland and Wallace
(2001) show how to use this procedure to evolve the conditional moments
according to specified rules, such as mean-reversion or volatility clumping.
Consequently, there is no direct control over the unconditional distribution of
the final period of the multi-period tree. Whether this is a problem depends
on the use of the scenario tree.

In this paper, we present a method for generating multi-period trees with
control over the moments and correlations of the unconditional distribution. In
the case without inter-period dependencies, we present formulas for moments
and correlations of the one-period subtrees, that result in specified moments
and correlations of the unconditional distribution. With inter-period depen-
dencies, we present an iterative procedure for ex-post correction of the first
two moments.

Tree-based option pricing is an example of an application where the uncon-
ditional (final-period) distribution is crucial for the result (the option price).
In the standard case of binomial trees, we actually specify only the final-period
distribution, and the number of periods (the size of the tree).

To price an option on a tree, we need to know the risk-neutral distribu-
tion (equivalent martingale measure). In the binomial trees, the risk-neutral
probabilities are computed directly from the prices and the risk-free rate. For
non-recombining trees with more than two branches, however, this is no longer
possible, and we need to know the risk-neutral distribution in advance. Typ-
ically, the risk-neutral distribution is estimated from option prices. In this
paper, we assume that we have already made the estimation, and thus know
the risk-neutral distribution—or, more precisely, its moments and correlations.
For information about recovering the risk-neutral distribution from option
prices, see for example Jackwerth and Rubinstein (1996), Fornari and Violi
(1998), or Rosenberg (1999, 2003).

Since we use non-recombining trees, we face the usual “curse of dimen-
sionality”, i.e. the exponential growth of the tree with the number of periods.
Unlike stochastic programming, where the whole tree has to be stored prior

104 Paper 4 – Multi-period scenario generation

2 Description of a multi-period tree

to the solution of the optimisation problem, in option pricing we can generate
the tree and price the option simultaneously. This decreases the storage-space
drastically—in the presented algorithm, the storage place depends linearly on
the number of stages. As a result, we can process a tree with 250 million
terminal nodes in approximately half a minute on a 1GHz PC. This number of
nodes corresponds to a 12-period tree with five branches per node—if there is a
need for a significantly finer time-discretization, the method is not applicable.

In addition to the multi-period algorithm, we show how the moment-based
approach provides an easy way to price multi-variate path-independent Euro-
pean options, using large one-period trees.

The rest of the paper is organised as follows: Section 2 presents the notation
used throughout the paper. In Section 3, we discuss ways of controlling the
unconditional distribution of a multi-period tree, by adjusting the distributions
of the one-period subtrees it consists of. In Section 4, we present selected
information about option pricing, needed to understand the rest of the paper.
We also show how to use the moment-based approach for pricing multi-variate
European options. Finally, Section 5 presents the combined generating/pricing
algorithm, together with a numerical example and a discussion of numerical
stability.

2 Description of a multi-period tree

Throughout the paper, we assume that the reader is familiar with the con-
cept of scenario trees. For information about scenario trees and their role in
stochastic programming, see for example Dupačová et al. (2000).

In the description of a multi-period scenario tree, we use the following
conventions: We call the points in time represented by nodes stages, and the
time intervals between them periods. Hence, a tree with p periods has p + 1
stages. The root of the tree is indexed as stage zero, so period t is an interval
between stages t−1 and t. A distribution of random variables with outcomes at
stage t can thus be referred to as a distribution of period t, or as a distribution
at stage t.

In a multi-period tree, we have to distinguish between conditional and un-
conditional distributions. For example, in Figure 1, nodes {3, 4, 5} represent a
distribution of the second period (or a distribution at stage 2), conditional on
the values at node 1. The conditional probabilities of node {3, 4, 5} sum up to
one. On the other hand, the unconditional distribution of the second period
is represented by nodes {3, 4, 5, 15, 16, 17}. Specifically, the unconditional dis-
tribution of the final period of a tree is hereafter referred to as a final-stage

105

distribution.
In addition, by generating a subtree of node n we understand generating

a one-period tree rooted at node n, i.e. finding the outcomes at the direct
successors (children) of node n, and the probabilities thereof. For example,
generating a subtree of node 1 in Figure 1 means finding the values of the
random variables at nodes 3, 4 and 5, as well as the probabilities of these
nodes.

9 10 11 12 13 14 18 19 20 21 22 23 24 25 26

0

1 2

3 4 5 15 16 17

6 7 8

Figure 1: Example of a multi-period tree

The multi-period tree is constructed by one-period subtrees, starting in
the root. The subtrees are generated using a moment-matching approach
from Høyland and Wallace (2001), so every subtree is constructed to have
specified first four moments (mean, variance, skewness, kurtosis) and corre-
lations. Generating the multi-period tree by subtrees allows us to specify an
inter-period dependency: We generate a subtree, move to one of the nodes,
update the distribution of the consecutive subtree (based on the original dis-
tribution and the outcomes at the node and its predecessors), and generate
the subtree with the updated distribution. See Appendix B for an example of
the update formulas, in the case of first order autocorrelation.

When generating scenario trees for a stochastic process {Ṽ t}, we work with
distributions of its returns X̃t; both the arithmetic returns Xt = Vt/Vt−1 − 1,
and the geometric returns (also called “log-returns”) Xt = ln(Vt) − ln(Vt−1),
are considered throughout the paper. Hence, the scenarios are generated using
the distribution of returns X̃t, and the values of Ṽt are computed afterwards
as Vt = (1 + Xt)Vt−1 and Vt = eXtVt−1, respectively. This is a common
approach. The main reason for using the returns is that their distributions
are independent of the previous values of Vt. We may, for example, have the
same distribution of returns in all the one-period subtrees of a multi-period
tree, something that would be very difficult to describe in terms of Ṽt.

106 Paper 4 – Multi-period scenario generation

3 Controlling the final-stage distribution

3 Controlling the final-stage distribution

There are (at least) two possible approaches to generation of multi-period
scenario trees: We may be concerned with the distributions of the one-period
subtrees and with the inter-period dependencies, or we may focus on the final-
stage distribution. We take the latter approach—for information about the
former, see for example Høyland and Wallace (2001).

As explained in Section 2, we generate the multi-period trees by their
constituting one-period subtrees. Yet, we want to control the unconditional
distribution of the final period of the whole tree. Hence, the problem is to
find the right moments and correlations for the one-period subtrees, given
the moments and correlations of the final-stage distribution, the number of
periods and possibly the inter-period dependency rules and the outcomes of
the predecessors of the subtree.

First, we focus on the case with no inter-period dependency, i.e. the case
where the distribution of a subtree of a given node does not depend on the
outcomes at the predecessors of this node. In this case, we provide formu-
las for moments and correlations of the subtrees that result in a final-stage
distribution with given properties.

In many situations, however, the assumption of independent periods is not
very realistic. In finance, for example, effects like autocorrelation and mean-
reversion are commonplace. In the second part of this section we thus look at
trees with inter-period dependencies. In this case, however, we did not manage
to find corresponding formulas for controlling the subtree distributions. In-
stead, we present a procedure that generates a tree and thereafter corrects the
means and variances to obtain the required unconditional distribution (dis-
tribution over all nodes in the same stage). Used in a loop, the procedure
corrects the means and variances in the whole tree.

3.1 Independent periods

In this section we present formulas for the moments and correlations of the
distribution on the subtrees that will result in a multi-period tree with the
correct moments and correlations at the final stage. The formulas rely on an
assumption that all the subtrees have the same distributions, i.e. that there
is no inter-period dependency. An important property of the formulas is that
they are independent of the number of branches in the scenario tree. A detailed
derivation of the formulas is in Appendix A.

Throughout the section we use the following notation: In a multi-period

107

tree with p periods we denote by µ, σ2, γ, δ the first four moments1 of the
final-stage distribution, and µp, σ

2
p, γp, δp the first four moments of the cor-

responding subtrees.2 For two random variables X̃ and Ỹ , we extend the
notation by ρ for their final-stage correlation, and ρp for the correlation in the
subtrees. In addition, we add superscripts X and Y to the moments defined
above, in order to distinguish between moments of X̃ and Ỹ where needed.

Arithmetic and geometric returns, defined in Section 2, are discussed sep-
arately. Note that, in addition to the differences in formulas, there is also a
computational difference between the two cases: Updating prices with the ge-
ometric returns requires a computation of the exp() function, and is therefore
significantly slower than updating with the arithmetic returns.

Formulas for arithmetic returns

A process {Ṽ t} with arithmetic returns X̃t evolves as

Ṽt = (1 + X̃t)Ṽt−1 ,

so the final-stage return Ṽp/Ṽ0 − 1 is equal to

p∏
k=1

(1 + X̃k) − 1 .

In Appendix A we show that, in order to get a tree with properties µ, σ2, γ,
δ, and ρ, we have to use subtrees with:

µp = (1 + µ)1/p − 1 (1a)

σ2
p =

(
(1 + µ)2 + σ2

)1/p − (1 + µp)
2 (1b)

γp =
1
σ3

p

[(
(1 + µ)3 + 3(1 + µ)σ2 + σ3γ

)1/p − (1 + µp)3 − 3(1 + µp)σ2
p

]
(1c)

δp =
1
σ4

p

[(
(1 + µ)4 + 6(1 + µ)2σ2 + 4(1 + µ)σ3γ + σ4δ

)1/p

−(1 + µp)4 − 6(1 + µp)2σ2
p − 4(1 + µp)σ3

pγp

] (1d)

ρp =
1

σX
p σY

p

[(
(1 + µX)(1 + µY) + σXσY ρ

)1/p − (1 + µX
p)(1 + µY

p)
]

(1e)

1The standard notation is γ1 for skewness and γ2 for normalised kurtosis. Since we need
indices for the moments, we have introduced a new notation γ = γ1 and δ = γ2 + 3.

2The index p thus means that these properties are implied by their respective final-stage
values, and the number of periods p.

108 Paper 4 – Multi-period scenario generation

3 Controlling the final-stage distribution

This, for example, means that in order to get the standard normal distri-
bution at the final stage of a p-periodic tree (µ = 0, σ2 = 1, γ = 0, δ = 3),
the moments of the subtrees have to be

γp =
21/p − 2√
21/p − 1

−−−→
p→∞ −∞

δp =
1
σ4

p

(
101/p − 4 · 41/p + 6 · 21/p − 3

)
−−−→
p→∞ ∞.

(2)

If we use subtrees with the correct mean and variance, but keep them
normal (i.e. γ = 0 and δ = 3), the resulting p-periodic tree would have skewness
and kurtosis:

γ =
(
3 · 21/p − 2

)p − 4 −−−→
p→∞ 4

δ =
(
3 · 41/p − 2

)p − 4
(
3 · 21/p − 2

)p
+ 9 −−−→

p→∞ 41
(3)

Note also that zero correlation in the subtrees leads to a zero correlation
in the final-stage distribution. Generally, the correlation is very stable, i.e. the
difference between ρ and ρp is typically small.

Formulas for geometric returns

A process {Ṽ t} with geometric returns X̃t evolves as

Ṽt = eX̃t Ṽt−1 ,

so the final-stage return ln
(
Ṽp/V0

)
is equal to

ln(Ṽp) − ln(V0) = ln
(
e
∑p

k=1 X̃kV0

)
− ln(V0) =

p∑
k=1

X̃k .

In Appendix A we show that in order to get a tree with properties µ, σ2, γ,
δ, and ρ, we have to use subtrees with:

µp = p−1µ γp =
√

p γ (4a)

σ2
p = p−1σ2 δp = p(δ − 3) + 3 (4b)

ρp = ρ (4c)

Unlike the arithmetic returns, for geometric returns we know that a sum of
independent normal distributions is again normally distributed, so (γp, δp) =
(0, 3) implies (γ, δ)=(0, 3), and vice versa. In addition, for any fixed γp and δp,
we know that the final-stage distribution converges to the normal distribution
as p goes to infinity, hence γ −−−→

p→∞ 0 and δ −−−→
p→∞ 3.

109

Example

As an example, we use a risk-neutral distribution of returns of S&P 500 and
DAX 30 indices. The distribution comes from Rosenberg (2003), and was
estimated using data from December 1999. We will use the same distribution
also later in the paper. Even if the data represent arithmetic returns, we use
them both as arithmetic and geometric returns, to demonstrate the difference
between the two.

Table 1 presents moments and correlations of the one-period subtrees,
which result in the given final-stage distribution. Moments and correlations
of the final period can thus be found in the first column. We see that there
is a substantial difference in behaviour of the arithmetic and geometric re-
turns: In the first case, the subtrees are much more non-normal. As a result,
the minimum number of branches of the subtrees, needed to obtain the de-
sired properties, is usually higher in the case of arithmetic returns, since more
extreme distributions typically need more scenarios.

Table 1: Moments of subtrees to get a given final-stage distribution

periods 1 2 4 6 8 10 12

ar
it

hm
et

ic
re

tu
rn

s

S&
P

50
0 mean 0.0061 0.0030 0.0015 0.0010 0.0008 0.0006 0.0005

std.dev. 0.0645 0.0454 0.0321 0.0262 0.0227 0.0203 0.0185
skew -0.580 -0.952 -1.438 -1.800 -2.100 -2.362 -2.598
kurt 3.800 5.061 7.627 10.203 12.781 15.361 17.940

D
A

X
30

mean 0.0036 0.0018 0.0009 0.0006 0.0004 0.0004 0.0003
std.dev. 0.0861 0.0607 0.0429 0.0350 0.0303 0.0271 0.0247

skew -0.360 -0.685 -1.092 -1.388 -1.632 -1.844 -2.035
kurt 3.380 4.183 5.867 7.568 9.273 10.980 12.688
corr 0.5192 0.5196 0.5198 0.5198 0.5199 0.5199 0.5199

ge
om

et
ri

c
re

tu
rn

s

S&
P

50
0 mean 0.0061 0.0030 0.0015 0.0010 0.0008 0.0006 0.0005

std.dev. 0.0645 0.0456 0.0322 0.0263 0.0228 0.0204 0.0186
skew -0.580 -0.820 -1.160 -1.421 -1.640 -1.834 -2.009
kurt 3.800 4.600 6.200 7.800 9.400 11.000 12.600

D
A

X
30

mean 0.0036 0.0018 0.0009 0.0006 0.0004 0.0004 0.0003
std.dev. 0.0861 0.0609 0.0430 0.0351 0.0304 0.0272 0.0248

skew -0.360 -0.509 -0.720 -0.882 -1.018 -1.138 -1.247
kurt 3.380 3.760 4.520 5.280 6.040 6.800 7.560
corr 0.5192 0.5192 0.5192 0.5192 0.5192 0.5192 0.5192

110 Paper 4 – Multi-period scenario generation

3 Controlling the final-stage distribution

3.2 Dependent periods

In many cases, the assumption of independent periods is too restrictive. In
finance, for example, effects like mean-reversion or autocorrelation are very
common. There are many models of inter-period dependency, see for example
Melamed (1991), Song et al. (1996), or Cario and Nelson (1997b).

Instead on focusing on modelling of a special type of dependency, we discuss
what can be done in the case when we need a scenario tree with dependent pe-
riods, but also with some degree of control over the unconditional distributions
(distributions over all nodes in the same stage). As an example, Appendix B
presents a way to implement first order autocorrelation, in a way that allows,
at the same time, to control the unconditional means and variances.

In the case of a general inter-period dependency, we did not manage to re-
peat the results from the previous section, and produce formulas for controlling
the final-stage distribution. The best we can do is to control the unconditional
means and variances by a procedure that first generates the tree, and then cor-
rects the unconditional distribution. This procedure is independent of the type
of the inter-period dependency used.

The unconditional distributions are corrected one period at a time. Hence,
we need to know the desired means and variances for distributions of all the
periods—if we know only the moments of the final-stage distribution, we have
to approximate the rest, in order to do the correction.

Correcting means and variances for one period

Here we show how to correct the unconditional means and variances for a
given period t, i.e. the period between stages t − 1 and t. We want to change
the means and variances of all the one-period subtrees in period t, so that
the unconditional distribution of period t will get the desired means µt and
variances σ2

t .
We generate a tree with (at least) t periods, and compute the current

values of the unconditional means and variances at period t, µ̄t and σ̄2
t . If

these differ from the desired values µt and σ2
t , we start the update: For every

node n in period t− 1, we compute the means and variances of the one-period
subtree rooted at n, E

[
X̃

n
t

]
and Var

[
X̃

n
t

]
. The values are then updated using

a linear transformation:

E
[
X̃

n
t

]← σt

σ̄t
E
[
X̃

n
t

]
+ µt − σt

σ̄t
µ̄t

Var
[
X̃

n
t

]← σt

σ̄t
Var
[
X̃

n
t

]
.

(5)

111

Controlling unconditional means and variances at every period

To control the means and variances of the whole tree we apply the formulas
from the previous section iteratively:

for t in 2 to p {
generate tree with t periods, using corrections already found for t′ < t
compute the unconditional means and variances in period t
compute the corrections of means and variances in period t

}
generate tree with p periods, using corrections for all t′ ∈ {2 . . . p}.

Note that we have to generate p−1 trees (growing in size from 2 to p peri-
ods), before we can generate the whole p-period tree with the right properties.
Since the size of the trees grows exponentially with the number of periods,
the whole procedure can be expected to take 2 to 3 times longer than the
generation of one p-period tree.

4 Option pricing using a risk-neutral measure

Currently, the two most common approaches for option pricing are the Black-
Scholes continuous-time framework, and Cox, Ross, Rubinstein discrete-time
approach using binomial (recombining) trees. While the former is an exact
formula for plain European options, the latter is an approximate approach used
mainly for path-dependent and/or Bermudan options. Both of the approaches
have, at least in their “classical” versions, the disadvantage of assuming that
the asset returns are normally distributed. Recently, there have appeared
attempts to drop the normality assumption, both in the theoretical B-S-like
context (see for example Jurczenko et al. (2002), Vitiello et al. (2002)), and
in the context of binomial or trinomial recombining trees (Rubinstein (1994),
Derman and Kani (1994), Derman et al. (1996), Rubinstein (1998)).

Yet, most of the methods can price only options depending on one asset.
In recent years, however, several types of multi-variate options (also called
basket options) have appeared. An example is the option to buy the better
of two indices. Methods for pricing such options were also presented, yet
most of them are based on the normality assumption. Beyond normality,
the pricing tools are still scarce: Cherubini and Luciano (2002) provide a
theoretical derivation for pricing of bivariate options, while Rosenberg (1998,
1999, 2003) price bivariate options using binomial trees. All of these methods
are based on copulas as a description of the multi-variate distribution. Since

112 Paper 4 – Multi-period scenario generation

4 Option pricing using a risk-neutral measure

we believe that not all the readers are familiar with copulas, we present some
basic information about copulas in Figure 2. Note, however, that the figure is
not a prerequisite for understanding the rest of the paper.

The presented moment-based approach is simpler than the copula-based
approaches mentioned above. In addition, we do not need any distributional
assumptions (assumptions on the type/family of the distribution). Hence,
the method may be useful in contexts where a description of the risk-neutral
distribution by moments and correlations is more natural than using copulas—
for example because we do not have enough information/data to estimate the
copula, or we want to avoid the various assumptions (on type of copula, or on
the density function of the marginals), needed for the copula estimation.

There is, however, a price for the simplicity: For some of the basket options,
the quality of the multi-variate structure of the return distribution becomes
very important. In such cases, correlation coefficients may not be enough to de-
scribe the dependencies, and the resulting prices become only approximations.
The method is thus best suited for cases where either the copula approach is
not applicable, or only an approximation of the option prices is needed. As an
example of the latter, consider the case of real options, where the risk-neutral
distribution often is not known perfectly, so only an approximation of the price
is obtained regardless of the method used.

4.1 Path-independent European options

Path-independent European options are a special case, since their prices are de-
termined only by the distribution of asset prices at the exercise time, together
with the initial parameters. Hence, when we price a path-independent Euro-
pean option using a tree, only the final-stage distribution affects the price. It
is thus enough to use a single-period tree. The problem thus becomes a multi-
variate integration problem, with the distribution specified by its moments
and correlations, instead of the distribution function.

In Section 3, we saw that it is not trivial to generate a multi-period tree
with a given distribution of the last period. On the other hand, there are sev-
eral methods for generating single-period trees with a specified distribution,
see for example Song et al. (1996), Cario and Nelson (1997a), Kouwenberg
(2001), Lurie and Goldberg (1998), Høyland et al. (2003), Lyhagen (2001),
or Gülpınar et al. (2001). We use a moment-matching method from Høyland
et al. (2003), which gives us control over the first four moments and the cor-
relations of the random variables. Once we have the tree for the risk-neutral
distribution, the price of the option is simply the expected value of the distri-
bution, i.e. weighted sum of the prices in the tree.

113

The name copula was first used in Sklar (1996) to describe “a func-
tion that links a multidimensional distribution to its one-dimensional
margins”. The mathematical formulation comes from Sklar (1959).

For an n-dimensional stochastic vector X̃, an associated copula
is such a function C() : [0, 1]n→ [0, 1] that

F (x1, . . . , xn) = C
(
F1(x1), . . . , Fn(xn)

)
,

where F () is the joint (n-variate) distribution function of X̃, and
Fi() are the marginal distribution functions, i ∈ 1, . . . , n. Sklar’s
theorem states that copula exists for every distribution function
F (). An immediate consequence of the theorem is that, for every
u = (u1, . . . , un) ∈ [0, 1]n,

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F−1
n (un)

)
,

where F−1
i () is the generalized inverse of Fi().

As an example consider two independent random variables X̃
and Ỹ with F (x, y) = FX(x)FY (y). The associated copula is thus
C(u, v) = uv.

Estimating a copula from data is analogous to estimating a dis-
tribution function in the sense that we can either use an empirical
copula, or assume a parametric family for the copula and estimate
the parameters. For the latter approach we may also need to assume
distributional families of the marginals.

In addition to the original papers Sklar (1959, 1996), Nelsen
(1998), and Clemen and Reilly (1999) present an introduction to
copulas. For copula-based option-pricing techniques, see Rosenberg
(1998, 1999, 2003), or Cherubini and Luciano (2002).

Figure 2: Basic information about copulas

Example

The following example comes from Rosenberg (2003), and is based on the
S&P 500 and DAX 30 indices presented in Section 3.1. We consider two dif-
ferent one-month call options: an underperformance option, which gives the
buyer a right to buy the worse of the two indices, and an outperformance
option that gives a right to buy the better of the two indices. In both cases,
the strike price is equal to the spot price, and we buy indices for $100. Hence,
the outcomes of the two options in scenario s are:

underperformance: $100 max
{
min{rs

S&P, rs
DAX}, 0

}

outperformance: $100 max
{
max{rs

S&P, rs
DAX}, 0

}
,

114 Paper 4 – Multi-period scenario generation

5 Generating/pricing algorithm

where rs
S&P and rs

S&P denote the arithmetic returns of the indices in scenario s.
To achieve reasonable stability, we have used trees with 10.000 scenarios—

it still takes less than a second to both generate the tree and price the options.
Using 10 runs, we have estimated the price of the underperformance option as
$1.72 ± $.025, and the outperformance option as $4.74 ± $.025.

In Rosenberg (2003), the prices are estimated as $1.52 and $4.86, respec-
tively, making our prices 13% and 2% different. The difference3 comes proba-
bly from differences in the bi-variate distributions: We control only the correla-
tion coefficient, which is not enough to get the same structure of the bi-variate
distribution as in Rosenberg (2003). This is also confirmed by the fact that
the difference is much bigger for the underperformance option, which is more
sensitive to the bi-variate dependency structure—see Rosenberg (2003) for a
detailed discussion.

The difference between our prices and the prices from Rosenberg (2003)
shows that the correlation alone may not be enough for an accurate descrip-
tion of the bi-variate dependency structure. This may result in a bias in the
estimated price. Hence, when we need a more accurate estimation of the price
of an multi-variate option, we have to either add more co-moments (such as
co-skewness) to our approach, or use another method. Obvious candidates are
copula-based methods, provided we have enough data/information to estimate
the copula.

5 Generating/pricing algorithm

In this section, we describe the algorithm for simultaneous generation of a
multi-period tree, and pricing an option based on this tree. In order to use
the algorithm, we need to know the distributions of all the one-period subtrees
of the multi-period tree—or, more precisely, their moments and correlations.
How to get these was discussed in Section 3, so we take all the distributions
for granted throughout this section.

The important property of option pricing is that the price at every node
depends only on the outcomes at the node and the prices of its direct successors
(children). Hence, once we have computed the price at a given node, we can
discard all its successors. When we use a post-order traversal of the tree, we
need to store at most one path from the root to the leafs.4 The number of trees

3Note that the prices in Rosenberg (2003) are approximate as well, so a difference does
not necessarily mean an error.

4This is an important difference from generating a scenario tree for an optimization model,
where we need to store the whole tree prior to the optimization. The option-pricing trees
can thus be much bigger than the scenario trees used in optimization.

115

stored at any moment is thus at most equal to the number of periods p—an
enormous decrease of the required storage, compared to storing of the whole
tree.

As an example, consider generating/pricing the tree from Figure 1. Ta-
ble 2 describes the procedure step-by-step, showing for every step nodes that
are generated, nodes in which we calculate the price, and nodes that can be
discarded. Figure 3 represents the same procedure graphically.

Table 2: Step-by-step generation and pricing of the tree from Figure 1. For
example, in step 4 of the algorithm, we first generate outcomes at nodes 9–11.
Since these nodes are leafs of the tree, we can compute prices at the nodes.
Then we can compute price at node 4, and drop the nodes 9–11. Hence, after
the step, we have outcomes in nodes 0–5, and prices at nodes 3–4.

new values at nodes dropped nodes nodes stored after the step
step outcomes prices outcomes & prices outcomes prices
1 1–2 0,1–2
2 3–5 0,1–2,3–5
3 6–8 6–8,3 6–8 0,1–2,3–5 3
4 9–11 9–11,4 9–11 0,1–2,3–5 3–4
5 12–14 12–14,5,1 12–14,3–5 0,1–2 1
6 15–17 0,1–2,15–17 1
7 18–20 18–20,15 18–20 0,1–2,15–17 1,15
8 21–23 21–23,16 21–23 0,1–2,15–17 1,15–16
9 24–26 24–26,17,2,0 24–26,15–17,1–2 0 0

A complete generating/pricing algorithm is presented in Figure 4. Note
that the algorithm is written in a recursive form only for the sake of simplicity:
Since recursive algorithms are usually slower than their non-recursive versions,
the actual implementation is not recursive (and therefore significantly more
complicated than the presented version). The formulation also assumes that
all the structures (outcomes and prices) are local to the function value(), and
are disposed of automatically by the system at the moment of the departure
from the function.

5.1 Pre-generation of subtrees

Since the size of a multi-period tree grows exponentially with the number of
periods p, the efficiency of the whole procedure becomes crucial. The most
time-consuming task of the algorithm presented in Figure 4 is the generation
of subtrees, because the rest consists of simple algebraic operations. In some
cases we can, however, avoid generating all the subtrees, speeding up the
procedure substantially.

116 Paper 4 – Multi-period scenario generation

5 Generating/pricing algorithm

Figure 3: Example of step-by-step generation of a multi-period tree. The
bold arcs represent the currently generated subtree, the other subtrees kept in
the memory have solid arcs. Dashed arcs represent parts of the multi-period
tree that are not being processed at the moment.

The easiest case is when all the subtrees have the same number of branches
and the same distributions, i.e. the case with no inter-period dependency.
In this case a single subtree can be used throughout the whole multi-period
tree. This subtree can be generated prior to (or at the start of) the gener-
ating/pricing algorithm, so there would be no scenario generation during the
rest of the algorithm.

If we want the number of branches of the subtrees to differ for every pe-
riod (typically starting with more branches and decrease the number for later
periods), we still only need one subtree for every desired size, as long as the
distributions are kept constant, i.e. as long as we do not have inter-period
dependencies.

When we introduce inter-period dependencies (such as mean-reversion or
autocorrelation), the situation becomes more complicated. However, we may
still avoid “on the fly” generation of subtrees in the case when the dependency
rules change only the means and variances of the distributions, for example
mean-reversion or volatility clumping. In this case we can use a linear trans-
formation to update the distribution: If we have a pre-generated subtree X̃
with zero means and variances of one, then σX̃ +µ gives a subtree with mean
µ and variance σ2, while the higher moments and the correlations remain un-
changed. The linear transformation is much cheaper than generating a new

117

function value(n) {
if n is not a leaf {

generate subtree of n = {x(m), p(m) |m ∈ C(n)};
for all children m ∈ C(n) do

v(m) = value(m);
value = max

{
fe

(
�x(n)

)
,
∑

m∈C v(m)p(m)
}
;

}
else

value = fe

(
�x(n)

)
;

}
Figure 4: The generating/pricing algorithm, using a recursive post-order
traversal. For any node n of the tree, C(n) is a set of all children of n, x(n)
are prices of the assets at n, p(n) is a probability of n, �x(n) is a vector of
prices of the assets on the path from the root to the node n, and fe(�x(n))
is the profit of immediate exercise of the option at node n. The price of the
option is then found as price = value(root).

tree, and the total running time will be of the same magnitude as in the case
without inter-period dependencies.

The most difficult case is when we introduce inter-period rules that update
also the higher moments and/or the correlations of the subtree distribution. If
we want to avoid generating all the subtrees even in this case, we have to use an
approximate approach: We pre-generate a set of subtrees with different combi-
nations of the properties that are updated, and during the generating/pricing
procedure choose the one closest to the desired properties. For example, dis-
cretizing the interval of possible values of the correlation, the skewness, and
the kurtosis to 10 points each, gives 10 × 10 × 10 = 1000 subtrees. These
have to be generated in advance. Since a typical multi-period tree will have
millions of subtrees, the speed-up of the whole generating/pricing process is
still substantial.

It is important to remember that the introduction of inter-period depen-
dency means that we lose control over the unconditional (overall) distributions.
We may, however, control the means and variances of these distributions, using
the procedure described in Section 3.2.5

5It may not be obvious how to compute the current values of the unconditional moments,
since we do not store the whole tree. This is, however, no problem: Instead of the central

moments E
[(

X̃ − E
[
X̃
])k]

, we compute the non-central moments E
[
X̃k
]
—these are easily

accumulated during the execution of the algorithm. After the run, the non-central moments
are transformed to the central moments using the formulas from Appendix A.1.

118 Paper 4 – Multi-period scenario generation

5 Generating/pricing algorithm

5.2 Speed test

The tests were run on an Intel Pentium III machine with 996.76 MHz pro-
cessor and 256 MB RAM, running Windows 2000TM. The algorithm was im-
plemented using the C programming language and compiled with GNU C++
compiler.6

In the tests, we generated 12-period trees and priced the outperformance
option from Section 4.1 on them. The option was priced as an American call.
In these tests, we assume that all the subtrees have the same distributions
and sizes, so we need to generate only one subtree and use it throughout the
whole tree. The time for generation is not included in the reported time, but
it typically is only a fraction of a second. The results are presented in Table 3.

Table 3: Time to generate a 12-period tree, and price two options on it

branches
per subtree

subtrees # terminal nodes time

5 61.035.156 244.110.625 32 sec
6 435.356.467 2.176.782.336 5 min

In these tests, we have used the arithmetic returns. If we use the geometric
returns (“log-returns”) instead, the code runs about three times slower since
evaluation of the exp() function is significantly slower than the addition and
multiplication needed for the arithmetic returns.

The option in the example was dependent only on the current price and
the expected future option values. The algorithm from Figure 4, however,
allows pricing of “strongly path-dependent” options, i.e. options that depend
also on past prices.

As an example, consider a “hedging” option that gives the buyer the
right to receive, at any time t, the biggest difference between the two in-
dices, S&P 500 and DAX30, measured so far. Again, we buy indices for $100.
In other words, if the option is exercised at time t, the buyer receives

$100 max
τ≤t

(
S&Pτ − DAXτ

)
.

Since we need to check the whole paths, the pricing of such an option takes
more time: With a 12-period tree with 5 branches per node, it took 86 seconds.

6The code was also compiled with Visual C++, in which case it runs about 5% slower.

119

5.3 Stability issues

In Section 5.1 we explained that, in the case of independent periods with
equal distributions, it is possible to generate only one subtree and reuse it
throughout the whole multi-period tree.

While this resembles the “classical” binomial trees, there is an important
difference: In a binomial tree the subtree is unique, while in our trees there
are infinitely many trees with the given properties (assuming that the subtrees
have enough branches). Since we randomly pick only one, we have to test how
much it influences the resulting option prices.

We tested prices of the two options defined in Section 4.1, both priced as
American-style7 options. To be able to test also the influence of the size of
the subtrees, the test was done for 6-period trees. The size of the subtrees
varied from 5 to 40. For every size, we generated 25 trees, priced the options
on them, and computed the means and variances of the prices. Results are
reported in Table 4.

Table 4: Stability of option prices with respect to the size of the subtrees

branches 5 10 15 18 20 40

underperf.
mean 1.76 1.84 1.89 1.93 1.83 1.77

std. dev. 0.41 0.23 0.20 0.18 0.16 0.16

outperf.
mean 4.63 4.60 4.56 4.54 4.65 4.70

std. dev. 0.45 0.22 0.21 0.19 0.16 0.17

We see that the prices are not stable, i.e. they depend on the choice of the
constituting subtree. The question is, where does this instability come from?
Since all the subtrees are constructed in such a way that the unconditional
final-stage distributions have the right first four moments and correlations, the
variance must come from some other properties.

One possible source is the variance of the higher moments of the marginals,
which we do not control. However, our previous experience shows that the first
four moments give so much stability that the variance from higher moments
can not explain the observed variance of prices. To test it, we have used the
same trees to price common one-asset options, and in this case the prices were
stable.

7Both options are call options. For the common one-asset call options, the price of an
American call is equal to the price of an European call. In our case it turns out that the
outperformance call is also never exercised before the final stage. For the underperformance
call, the American call has higher price than the European, yet the difference in prices is
only about 3%.

120 Paper 4 – Multi-period scenario generation

5 Generating/pricing algorithm

Since we price American options, another possible source of the observed
variance is an instability of the paths. However, when we price the options as
European, the variance of the prices does not decrease – one of the reasons
is the fact that the difference between the prices of American and European
options is very small.7

Hence, the variance of the prices must come from differences in the struc-
ture of the multi-variate dependency. As we did in Section 4.1, we again see
that the correlation matrix is not enough to describe the dependency. We may
also document this graphically: Figure 5 shows density maps of two distribu-
tions with the same four moments and correlations – they correspond to trees
with 40 branches per subtree, taking the cases with the highest and the lowest
price for the underperformance option.

The highest price The lowest price

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

-0.4

-0.2

 0

 0.2

 0.4

Figure 5: Two distributions with equal first four moments and correlation

This means that if we know only the moments and correlations of the return
distribution, the prices of multi-variate options are not uniquely determined.
Hence, the interval of prices from multiple runs can be interpreted as an in-
terval of possible option prices, given this limited information. If we, on the
other hand, know more about the multi-variate distribution, we may try to add
more properties to our approach (a good candidate seems to be co-skewness).
If this does not help, we would probably have to leave the moment-matching
approach and try some alternatives. This is left for future research.

There is, however, an easy way to reduce the variance of the option prices:
Instead of re-using the same one-period subtree throughout the whole multi-
period tree, we may pre-generate many subtrees with the same properties,
and sample from them during the generating/pricing algorithm (Fig. 4). The
problem with this procedure is that we do not know anything about the dis-
tribution of the subtrees, so there is no guarantee that the sampling will be
unbiased.

121

Conclusions

In this paper, we have presented a method for multi-period moment-matching
scenario generation. When the distributions do not have any inter-period
dependencies, the method gives the user an exact control over the first four
moments and correlations of the final-stage (unconditional) distribution. With
inter-period dependencies (such as autocorrelation), we provide an iterative
procedure for ex-post correction of the last two moments.

In addition, we have described a method for pricing multi-variate path-
dependent options, based on the (non-recombining) multi-period trees. This
is done by a simultaneous tree-generation and pricing, an approach that leads
to significant savings in storage place: Even with the exponential growth of
the size of the trees, it is possible to price options on 12-period trees in ap-
proximately half a minute. We have also shown how to price path-independent
European options using one-period trees.

Our numerical tests suggest that the moment-based approach, with cor-
relations as the only description of the multi-variate dependency, has its li-
mits in the option pricing context: For several distribution of prices with
the same moments and correlations, the price of some multi-variate options
may vary significantly—multi-variate options can be very sensitive to the de-
pendence structure of the distribution of prices. Hence, better methods for
description of the multi-variate structure should be used, if we have enough
data/information. This is left for a future research.

Acknowledgments

We would like to thank Ser-Huang Poon from the University of Strathclyde,
Glasgow, Scotland, for suggesting the topic of option pricing and an initial
help with the finance part of the problem. We are also in debt to Stein-Erik
Fleten from the Norwegian University of Science and Technology, Trondheim,
Norway, as well as several anonymous referees, for pointing out problems in
the earlier version of the manuscript.

References

M. C. Cario and B.L. Nelson. Modeling and generating random vectors with
arbitrary marginal distributions and correlation matrix. Technical report,
Department of Industrial Engineering and Management Sciences, North-
western University, Evanston, Illinois, 1997a.

122 Paper 4 – Multi-period scenario generation

References

Marne C. Cario and Barry L. Nelson. Numerical methods for fitting and si-
mulating autoregressive-to-anything processes. INFORMS Journal on Com-
puting, 10:72–81, 1997b.

Umberto Cherubini and Elisa Luciano. Multivariate option pricing with copu-
las. Working paper 05, International Centre For Economic Research, 2002.
URL http://www.icer.it.

Robert T. Clemen and Terence Reilly. Correlations and copulas for decision
and risk analysis. Management Science, 45(2):208–224, February 1999.

Emanuel Derman and Iraj Kani. Riding with a smile. Risk, 7(2):32–39, 1994.
Previously appeared as “The Volatility Smile and Its Implied Tree”.

Emanuel Derman, Iraj Kani, and Neil Chriss. Implied trinomial trees of the
volatility smile. Journal of Derivatives, 3(4):7–22, 1996.

Jitka Dupačová, Giorgio Consigli, and Stein W. Wallace. Scenarios for multi-
stage stochastic programs. Ann. Oper Res., 100:25–53 (2001), 2000. ISSN
0254-5330.

F. Fornari and R. Violi. The probability density function of interest rates
implied in the price of options. Banca d’Italia, Temi di Discussione del
Servizio Studi 339, Banca d’Italia, October 1998.

N. Gülpınar, B. Rustem, and R. Settergren. Multistage stochastic program-
ming in computational finance. Available at http://www.doc.ic.ac.uk/
~reuben/jobs/, 2001.

K. Høyland and S. W. Wallace. Generating scenario trees for multistage deci-
sion problems. Management Science, 47(2):295–307, 2001.

Kjetil Høyland, Michal Kaut, and Stein W. Wallace. A heuristic for moment-
matching scenario generation. Computational Optimization and Applica-
tions, 24(2-3):169–185, 2003. ISSN 0926-6003.

J. C. Jackwerth and M. Rubinstein. Recovering probability distributions from
option prices. Journal of Finance, 51(5):1611–1631, 1996.

Emmanuel Jurczenko, Bertrand Maillet, and Bogdan Negrea. Multi-moment
approximate option pricing models: A general comparison (part 1). In
JMA 2002: 19èmes Journées de Micro-économie Appliquée, Rennes and
Saint-Malo, June 2002.

123

Michal Kaut and Stein W. Wallace. Evaluation of scenario-generation methods
for stochastic programming. Stochastic Programming E-Print Series, http:
//www.speps.info, May 2003.

R. R. P. Kouwenberg. Scenario generation and stochastic programming models
for asset liability management. European Journal of Operational Research,
134(2):51–64, 2001.

P. M. Lurie and M. S. Goldberg. An approximate method for sampling corre-
lated random variables from partially-specified distributions. Management
Science, 44(2):203–218, 1998.

Johan Lyhagen. A method to generate multivariate data with moments arbi-
trary close to the desired moments. Working paper 481, Stockholm School
of Economics, December 2001.

Benjamin Melamed. TES: A class of methods for generating autocorrelated
uniform variables. ORSA Journal on Computing, 3(4):317–329, 1991.

Roger B. Nelsen. An Introduction to Copulas. Springer-Verlag, New York,
1998.

Georg Pflug and Ronald Hochreiter. Scenario generation for stochastic multi-
stage decision processes as facility location problems. Technical Report 2003-
01, Department of Statistics and Decision Support Systems, University of
Vienna, 2003.

Joshua V. Rosenberg. Pricing multivariate contingent claims using estimated
risk-neutral density functions. Journal of International Money and Finance,
17(2):229–247, April 1998.

Joshua V. Rosenberg. Semiparametric pricing of multivariate contingent
claims. Available at http://pages.stern.nyu.edu/~jrosenb0/, August
1999.

Joshua V. Rosenberg. Non-parametric pricing of multivariate contingent
claims. The Journal of Derivatives, 10(3):9–26, 2003.

Mark Rubinstein. Implied binomial trees. Journal of Finance, 49(3):771–818,
July 1994.

Mark Rubinstein. Edgeworth binomial trees. Journal of Derivatives, 5(3):
20–27, 1998.

124 Paper 4 – Multi-period scenario generation

References

A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications
de l’Institut de Statistique de l’Université de Paris, 8:229–231, 1959.

A. Sklar. Random variables, distribution functions, and copulas – a personal
look backward and forward. In L. Rüschendorff, B. Schweizer, and M. Tay-
lor, editors, Distributions with Fixed Marginals and Related Topics, pages
1–14. Institute of Mathematical Statistics, Hayward, CA, 1996.

Wheyming Tina Song, Li-Ching Hsiao, and Yun-Ju Chen. Generating pseudo-
random time series with specified marginal distributions. European Journal
of Operational Research, 94:194–202, 1996.

Luiz Vitiello, Antonio Camara, and Ser-Huang Poon. Pricing options with high
moment distributions. Working paper at Strathclyde University, Glasgow,
Scotland, November 2002.

125

A Moments of trees with independent stages

In this section we develop the formulas for the moments of the final-stage
distribution as functions of the moments of the one-period subtrees, as well
as the inverse formulas. In the formulas we assume that all the one-period
subtrees have the same distributions and that the periods are independent.
(A typical example is repeating the same subtree over the whole multi-period
tree.)

In a multi-period tree with p periods we denote µ, σ2, γ, δ the first four mo-
ments of the final-stage distribution, and µp, σ

2
p, γp, δp the first four moments

of the corresponding subtrees.

A.1 General equalities

µ = E

[
X̃

]

σ2 = Var
[
X̃

]
= E

[
(X̃ − E

[
X̃

]
)2

]
= E

[
X̃2

]
− E

[
X̃

]2

σ3γ = σ3 skew
[
X̃

]
= E

[
(X̃ − E

[
X̃

]
)3

]
= E

[
X̃3

]
− 3 E

[
X̃

]
E

[
X̃2

]
+ 2 E

[
X̃

]3

σ4δ = σ4 kurt
[
X̃

]
= E

[
(X̃ − E

[
X̃

]
)4

]

= E

[
X̃4

]
− 4 E

[
X̃

]
E

[
X̃3

]
+ 6 E

[
X̃

]2

E

[
X̃2

]
− 3 E

[
X̃

]4

and the inverse relations:

E

[
X̃2

]
= Var

[
X̃

]
+ E

[
X̃

]2

= σ2 + µ2

E

[
X̃3

]
= σ3skew

[
X̃

]
+ 3 E

[
X̃

]
E

[
X̃2

]
− 2 E

[
X̃

]3

= σ3γ + 3µ(σ2 + µ2) − 2µ3

= σ3γ + 3µσ2 + µ3

E

[
X̃4

]
= σ4kurt

[
X̃

]
+ 4 E

[
X̃

]
E

[
X̃3

]
− 6 E

[
X̃

]2

E

[
X̃2

]
+ 3 E

[
X̃

]4

= σ4δ + 4µ
(
σ3γ + 3µσ2 + µ3

) − 6µ2
(
σ2 + µ2

)
+ 3µ4

= σ4δ + 4µσ3γ + 6µ2σ2 + µ4

A.2 Formulas for arithmetic returns

In this section we present formulas for processes {Ṽ t} with arithmetic returns
X̃t, i.e. processes that evolve as

Ṽt = (1 + X̃t)Ṽt−1 .

126 Paper 4 – Multi-period scenario generation

A Moments of trees with independent stages

The final-stage return is then given as

p∏
k=1

(1 + X̃k) − 1 .

For computing the moments of the distribution of final-stage returns, the
following equalities are useful. Note that we use the independence assumption
here.

E

[
p∏

k=1

(1 + X̃k)

]
=

p∏
k=1

E

[
1 + X̃k

]
=

p∏
k=1

(
1 + E

[
X̃k

])
=

p∏
k=1

(1 + µp)

= (1 + µp)
p

E

[
p∏

k=1

(1 + X̃k)2
]

=
p∏

k=1

E

[
(1 + X̃k)2

]
=

p∏
k=1

E

[
1 + 2X̃k + X̃2

k

]

=
p∏

k=1

(
1 + 2µp + σ2

p + µ2
p

)
=

(
1 + 2µp + σ2

p + µ2
p

)p

=
(
(1 + µp)2 + σ2

p

)p

E

[
p∏

k=1

(1 + X̃k)3
]

=
p∏

k=1

E

[
(1 + X̃k)3

]
=

p∏
k=1

E

[
1 + 3X̃k + 3X̃2

k + X̃3
k

]

=
p∏

k=1

(
1 + 3µp + 3(σ2

p + µ2
p) + (σ3

pγp + 3µpσ
2
p + µ3

p)
)

=
(
1 + 3µp + 3µ2

p + µ3
p + 3σ2

p + 3µpσ
2
p + σ3

pγp

)p

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p

E

[
p∏

k=1

(1 + X̃k)4
]

=
p∏

k=1

E

[
(1 + X̃k)4

]
=

p∏
k=1

E

[
1 + 4X̃k + 6X̃2

k + 4X̃3
k + X̃4

k

]

=
p∏

k=1

(
1 + 4µp + 6(σ2

p + µ2
p) + 4(σ3

pγp + 3µpσ
2
p + µ3

p)

+ (σ4
pδp + 4µpσ

3
pγp + 6µ2

pσ
2
p + µ4

p)
)

=
(
1 + 4µp + 6µ2

p + 4µ3
p + µ4

p + 6σ2
p(1 + 2µp + µ2

p)

+ 4σ3
pγp(1 + µp) + σ4

pδp

)p

=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p

The formulas for moments

µ = E

[
p∏

k=1

(1 + X̃k) − 1

]
=

p∏
k=1

E

[
(1 + X̃k)

]
− 1 = (1 + µp)p − 1

127

µp = (1 + µ)1/p − 1 (6)

σ2 = Var

[
p∏

k=1

(1 + X̃k) − 1

]
= Var

[
p∏

k=1

(1 + X̃k)

]

= E

(
p∏

k=1

(1 + X̃k)

)2

 −

(
E

[
p∏

k=1

(1 + X̃k)

])2

=
(
(1 + µp)2 + σ2

p

)p − (
(1 + µp)p

)2 =
(
(1 + µp)2 + σ2

p

)p − (1 + µ)2

σ2
p =

(
(1 + µ)2 + σ2

)1/p − (1 + µp)
2 (7)

σ3γ = skew

[
p∏

k=1

(1 + X̃k) − 1

]
= skew

[
p∏

k=1

(1 + X̃k)

]

= E

(
p∏

k=1

(1 + X̃k)

)3

 − 3 E

[
p∏

k=1

(1 + X̃k)

]
E

(
p∏

k=1

(1 + X̃k)

)2

+ 2

(
E

[
p∏

k=1

(1 + X̃k)

])3

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p − 3(1 + µ)
(
(1 + µp)2 + σ2

p

)p
+ 2(1 + µ)3

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p − (1 + µ)
[
3

(
(1 + µp)2 + σ2

p

)p − 2(1 + µ)2
]

=
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ2
pγp

)p − (1 + µ)
(
3σ2 + (1 + µ)2

)
=

(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p − (1 + µ)3 − 3(1 + µ)σ2

γp =
1
σ3

p

[(
(1 + µ)3 + 3(1 + µ)σ2 + σ3γ

)1/p − (1 + µp)3 − 3(1 + µp)σ2
p

]
(8)

σ4δ = kurt

[
p∏

k=1

(1 + X̃k) − 1

]
= kurt

[
p∏

k=1

(1 + X̃k)

]

= E

(
p∏

k=1

(1 + X̃k)

)4

 − 4 E

[
p∏

k=1

(1 + X̃k)

]
E

(
p∏

k=1

(1 + X̃k)

)3

+ 6

(
E

[
p∏

k=1

(1 + X̃k)

])2

E

(
p∏

k=1

(1 + X̃k)

)2

 − 3

(
E

[
p∏

k=1

(1 + X̃k)

])4

128 Paper 4 – Multi-period scenario generation

A Moments of trees with independent stages

σ4δ =
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p

− 4(1 + µ)
(
(1 + µp)3 + 3(1 + µp)σ2

p + σ3
pγp

)p

+ 6(1 + µ)2
(
(1 + µp)2 + σ2

p

)p − 3(1 + µ)4

=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p

+ (1 + µ)
[
−4

(
σ3γ + 3(1 + µ)σ2 + (1 + µ)3

)
+ 6(1 + µ)

(
σ2 + (1 + µ)2

) − 3(1 + µ)3
]

=
(
(1 + µp)4 + 6(1 + µp)2σ2

p + 4(1 + µp)σ3
pγp + σ4

pδp

)p

− (1 + µ)4 − 6(1 + µ)2σ2 − 4(1 + µ)σ3γ

δp =
1
σ4

p

[(
(1 + µ)4 + 6(1 + µ)2σ2 + 4(1 + µ)σ3γ + σ4δ

)1/p

−(1 + µp)4 − 6(1 + µp)2σ2
p − 4(1 + µp)σ3

pγp

] (9)

The formulas for correlations

Finally, for two random variables X̃ and Ỹ , we can also measure the correlation
ρ. For this formulas, we add upper indices X and Y to the notation for mean
and variance.

σXσY ρ = Cov

[
p∏

k=1

(
1 + X̃k

)
− 1,

p∏
k=1

(
1 + Ỹk

)
− 1

]

= Cov

[
p∏

k=1

(
1 + X̃k

)
,

p∏
k=1

(
1 + Ỹk

)]

= E

[
p∏

k=1

(
1 + X̃k

) p∏
k=1

(
1 + Ỹk

)]
− E

[
p∏

k=1

(
1 + X̃k

)]
E

[
p∏

k=1

(
1 + Ỹk

)]

= E

[
p∏

k=1

(
1 + X̃k

) (
1 + Ỹk

)]
− (1 + µX)(1 + µY)

=
p∏

k=1

E
[(

1 + X̃k

) (
1 + Ỹk

)] − (1 + µX)(1 + µY)

=
p∏

k=1

(
E

[(
1 + X̃k

)]
E

[(
1 + Ỹk

)]
+ Cov(X̃, Ỹ)

)
− (1 + µX)(1 + µY)

=
(
(1 + µX

p)(1 + µY
p) + σX

p σY
p ρp

)p − (1 + µX)(1 + µY)

ρp =
1

σX
p σY

p

[(
σXσY ρ + (1 + µX)(1 + µY)

)1/p − (1 + µX
p)(1 + µY

p)
]

(10)

129

A.3 Formulas for geometric returns

In this section we present formulas for processes {Ṽ t} with geometric returns
(also called “log-returns”) X̃t, i.e. processes that evolve as

Vt = eX̃tVt−1 .

The final-stage return is then defined as

X̃ = ln
(

Vp

V0

)
= ln(Vp) − ln(V0) = ln

(
e
∑p

k=1 X̃kV0

)
− ln(V0) =

p∑
k=1

X̃k .

Using the formulas from Section A.1, we get the following relations between
the subtree properties and the final-stage properties:

µ = E

[
p∑

k=1

(X̃k)

]
=

p∑
k=1

E

[
X̃k)
]

= p µp

µp = p−1µ (11)

E

[
X̃2
]

= E

[(p∑
k=1

X̃k

)2
]

= E

[
p∑

k=1

p∑
l=1

X̃kX̃l

]
=

p∑
k=1

p∑
l=1

E

[
X̃kX̃l

]

=
p∑

k=1

E

[
X̃k

]∑
l �=k

E

[
X̃l

]
+ E

[
X̃2

k

]

=
p∑

k=1

(
E

[
X̃k

](p∑
l=1

E

[
X̃l

]
− E

[
X̃k

])
+ E

[
X̃2

k

])

=
p∑

k=1

(
µE

[
X̃k

]
+ E

[
X̃2

k

]
−
(
E

[
X̃k

])2
)

= µ2 +
p∑

k=1

σ2
k = µ2 + p σ2

p

σ2 = Var

[
p∑

k=1

(X̃k)

]
= E

[
X̃2
]
− E

[
X̃
]2

= µ2 + p σ2
p − µ2 = p σ2

p

σ2
p = p−1σ2

p (12)

130 Paper 4 – Multi-period scenario generation

A Moments of trees with independent stages

E

[
X̃3
]

= E

[(p∑
k=1

X̃k

)3
]

= E

 p∑

k,l,m=1

X̃kX̃lX̃m

 =

p∑
k,l,m=1

E

[
X̃kX̃lX̃m

]

=
p∑

k=1

 ∑

l,m �=k

E

[
X̃k

]
E

[
X̃lX̃m

]
+ 2
∑
l �=k

E

[
X̃2

kX̃l

]
+ E

[
X̃3

k

]

=
p∑

k=1

E

[
X̃k

] ∑
l,m �=k

E

[
X̃lX̃m

]
+ 2

p∑
k=1

E

[
X̃2

k

]∑
l �=k

E

[
X̃l

]
+

p∑
k=1

E

[
X̃3

k

]
∑

l,m �=k

E

[
X̃lX̃m

]
=
∑
l �=k

(
p∑

m=1

E

[
X̃lX̃m

]
− E

[
X̃lX̃k

])

=
p∑

l=1

(
p∑

m=1

E

[
X̃lX̃m

]
− E

[
X̃lX̃k

])
−

p∑
m=1

E

[
X̃kX̃m

]
+ E

[
X̃2

k

]

= µ + σ2 − 2
p∑

l=1

E

[
X̃lX̃k

]
+ E

[
X̃2

k

]

= µ + σ2 − 2
(

µE

[
X̃k

]
+ E

[
X̃2

k

]
−
(
E

[
X̃k

])2
)

+ E

[
X̃2

k

]

= µ + σ2 − 2µE

[
X̃k

]
− E

[
X̃2

k

]
+ 2
(
E

[
X̃k

])2

E

[
X̃3
]

=
p∑

k=1

E

[
X̃k

](
µ + σ2 − 2µE

[
X̃k

]
− E

[
X̃2

k

]
+ 2
(
E

[
X̃k

])2
)

+ 2
p∑

k=1

E

[
X̃2

k

] (
µ − E

[
X̃k

])
+

p∑
k=1

E

[
X̃3

k

]
= µ

(
µ + σ2

)
+ 2µσ2

+
p∑

k=1

(
−E

[
X̃k

]
E

[
X̃2

k

]
+ 2
(
E

[
X̃k

])3

− 2E

[
X̃2

k

]
E

[
X̃k

]
+ E

[
X̃3

k

])

= µ3 + 3µσ2 +
p∑

k=1

(
E

[
X̃3

k

]
− 3E

[
X̃k

]
E

[
X̃2

k

]
+ 2
(
E

[
X̃k

])3
)

σ3γ = E

[
X̃3
]
− µ3 − 3µσ2 =

p∑
k=1

σ3
kγk = p σ3

pγp

σp =
σ3

p σ3
p

γ =
p3/2σ3

p

p σ3
p

γ =
√

p γ (13)

131

Similar, but more complicated, calculations show that for kurtosis we have

δ − 3 = p−1 (δp − 3)

δp = p (δ − 3) + 3 (14)

Finally, for correlations we get:

E

[
X̃Ỹ
]

= E

[(p∑
k=1

X̃k

)(p∑
l=1

Ỹl

)]
=

p∑
k,l=1

E

[
X̃kỸl

]

=
p∑

k=1

∑

l �=k

E

[
X̃k

]
E

[
Ỹl

]
+ E

[
X̃kỸk

]

=
p∑

k=1

(
E

[
X̃k

](p∑
l=1

E

[
Ỹl

]
− E

[
Ỹk

])
+ E

[
X̃kỸk

])

=
p∑

k=1

E

[
X̃k

] p∑
l=1

E

[
Ỹl

]
+

p∑
k=1

(
E

[
X̃kỸk

]
− E

[
X̃k

]
E

[
Ỹk

])

= E

[
X̃
]

E

[
Ỹ
]

+
p∑

k=1

Cov
[
X̃k, Ỹk

]

σXσY ρ = Cov
[
X̃, Ỹ

]
= E

[
X̃Ỹ
]
− E

[
X̃
]

E

[
Ỹ
]

=
p∑

k=1

Cov
[
X̃k, Ỹk

]

=
p∑

k=1

σX
k σY

k ρk = p σX
p σY

p ρp

ρp =
σXσY

p σX
p σY

p

ρ =
√

p σX
p
√

p σY
p

p σX
p σY

p

ρ = ρ (15)

B Example of dependency: first order autocorrela-
tion

In this section we show how to add a first order autocorrelation to the scenario-
tree generating procedure, in such a way that we do not change the means and
variances of the unconditional distributions. We describe only the simplest
case when the distribution of a marginal X̃t,i of the random vector X̃t depends
explicitly8 only on the previous value xt−1,i. For more general information
about modelling the autocorrelation, see for example Melamed (1991), Song

8We do not say that X̃ t,i does not depend on {xτ,i, τ < t − 1}, we just do not control
these dependencies.

132 Paper 4 – Multi-period scenario generation

B Example of dependency: first order autocorrelation

et al. (1996), or Cario and Nelson (1997b). For the rest of the section, we drop
the index i to simplify the formulas.

In the context of scenario trees, the first order correlation can be added
during the generation of the tree, using the algorithm described in Section 5.
Hence, we need formulas for adding the autocorrelation to a subtree of a given
node n at stage t of the tree. Since the tree generation proceeds from the root
to the leaves, we already know the outcome xt of the random vector X̃t at
node n. We also know the unconditional distribution of the successive subtree,
X̃t+1. We want to update the distribution in such a way that

corr
(
X̃t+1, X̃t

)
= ρ1.

To distinguish between the (unconditional) moments of X̃t and X̃t+1, we add
a time index to the symbols for moments µ and σ2.

To introduce the correlation, we use the Cholesky decomposition of the
correlation matrix

R =
[

1 ρ1

ρ1 1

]
=
[

1 0
ρ1

√
1 − ρ2

1

]
.

[
1 ρ1

0
√

1 − ρ2
1

]
= LLT .

Since X̃t+1 is independent of X̃t, we know that, with the random vector Ỹ =

L
[
X̃t, X̃t+1

]T
, we have

Ỹ1 = X̃t

Ỹ2 = ρ1X̃t +
√

1 − ρ2
1X̃t+1

corr
(
Ỹ t+1, Ỹ t

)
= ρ1

(16)

We want Ỹ2 to become the updated (autocorrelated) version of the random
variable X̃t+1, so their unconditional distributions should be equal. We do
not know how to guarantee equal distributions, yet we can at least control the
means and variances: The transformation Ỹ = LX̃ does not change the means
and variances, if X̃ has zero means and variances of one. We can therefore
first normalise X̃, then do the transformation Ỹ = LX̃, and finally transform
Ỹ to the moments µt+1, σ2

t+1. Since all of these are linear transformations,
they will not change the correlation ρ1. The formula then becomes

Ỹ2 =

(
ρ1

xt − µt

σt
+
√

1 − ρ2
1

X̃t+1 − µt+1

σt+1

)
σt+1 + µt+1

= µt+1 + σt+1ρ1
xt − µt

σt
+
√

1 − ρ2
1

(
X̃t+1 − µt+1

)
.

(17)

133

From this formula, we get the following properties:

conditional:

E

[
Ỹ2|X̃t = xt

]
= µt+1 + σt+1ρ1

xt − µt

σt

Var
[
Ỹ2|X̃t = xt

]
=
(
1 − ρ2

1

)
σ2

t+1

(18)

unconditional:

E

[
Ỹ2

]
= µt+1

Var
[
Ỹ2

]
= σ2

t+1

(19)

We see that the unconditional distribution of Ỹ2 has the same unconditional
mean and variance as the distribution of X̃t+1. Unfortunately, this is not case
with the higher moments. For example, even in the simple case of constant
skewness, skew

[
X̃t+1

]
= skew

[
X̃t

]
, we get

skew
[
Ỹ2

]
=
(

ρ3
1 +
(
1 − ρ2

1

)3/2) skew [Xt] .

Note also that there are two equivalent ways of implementing the transfor-
mation: We may either transform the vector of outcomes

{
xm

t+1 | m ∈ C(n)
}
,

or we may transform its mean and variance before we generate the outcomes.

134 Paper 4 – Multi-period scenario generation

