
Discovering children’s competences in coding
through the analysis of Scratch projects

Paper published In Global Engineering Education Conference (EDUCON), 2018 IEEE (pp. 1127-1133)

Sofia Papavlasopoulou
Norwegian University of Science

and Technology
(NTNU)

Trondheim, Norway
spapav@ntnu.no

 Michail N. Giannakos
Norwegian University of Science

and Technology
(NTNU)

Trondheim, Norway
michailg@ntnu.no

Letizia Jaccheri
Norwegian University of Science

and Technology
(NTNU)

Trondheim, Norway
letizia.jaccheri@ntnu.no

Abstract— Computational thinking and coding has received
considerable attention over the past several years. Considerable
efforts worldwide suggest the need for more empirical studies
providing evidence-based practices to introduce and engage
children with coding activities. The main goal of this study is to
examine which programming concepts students use when they
want to develop a game, and what is the interrelation among these
concepts. To achieve our goal, a field study was designed and data
were collected from coding activities. In detail, during a two-week
period, one-day workshops were organized almost every day on
which 44 children participating in, with ages between 8-17. The
workshops follow a constructionist approach and comprise of two
parts. First the children interact with robots, and then develop a
game using Scratch. The findings provide a deeper understanding
on how children code by showing the use of specific programming
concepts to develop their projects and their correlations. Hence,
we improve our knowledge about children’s competences in
coding.

Keywords—Computer Science Education; maker movement;
coding; computantional thinking; constructionism

I. INTRODUCTION
Currently, more and more worldwide efforts point out the

importance of all children, from early age, to acquire digital
competences and computational thinking skills. The rise in
importance of computational thinking skills with respect to
STEM (science, technology, engineering, and mathematics)
fields has been recognized both by those within the STEM
education communities and CS education organizations [1]. It
is indeed critical to increase children’s engagement with
computational thinking, as this may lead to increased
enrolments into computer science education studies, as a
shortage of computer science professionals exists [2] [3].
During the last decade, organizations like Computer Science
Teachers Association (CSTA), National Math and Science
Initiative, ACM and code.org share the goal of fostering
computer science education and the need of promoting
educational settings around problem solving, computational
thinking and coding [4]. In addition, countries like United
Kingdom, Finland, and Israel have integrated coding into their
school curriculum.

Due to a wide range of digital tools, such as Scratch, Alice,
Kodu, App inventor among others, children can experience an
enjoyable and engaging experience in coding. These kinds of
tools are built on block-based programming and have been used
in different contexts both in formal and informal education [5].
Various studies combine coding and making activities,
grounded on constructionist learning, to introduce coding [6].
Also, one of the most common activities when using a block-
based programming environment like Scratch, is the creation of
a game [7]. Children of different ages (8-18 years old)
understand concepts like loops and variables [8] at a clubhouse
activity. There is a growing interest and a variety of ways to
assess coding knowledge and learning gains [9]. However, it is
still challenging to assess computational thinking [10].

We designed a one-day coding workshop and conducted
multiple sessions of it, with various groups of children from the
age of 8 to 17 years old. In this study, the aim is to investigate
the extent to which children used specific programming
concepts in their final projects. This allows us to gain insights
into children’s competences in coding, after our very short
timescale coding workshop. In addition, our purpose through
the analysis of the projects, is to use the results of this study as
future reference in the collection of children’s artifacts in a
systematic way, not only at the end but also during the
workshop. Also, it will help us define the prominent measures
of programming concepts children can use in our coding
workshop. We address the following two research questions:

• Which programming concepts are mostly used in
children’s games?

• How are the programming concepts in children’s
games related?

The rest of the paper is structured as follows: first, we
present the related work and then we describe our methodology
which includes the description of the coding workshop, data
collection and analysis. In the fourth section, we present the
findings. Finally, we discuss the results providing limitations
and future work.

II. RELATED WORK
 Papert’s [11] constructionist approach demonstrates that

children can learn by building their own projects and actively
get involved in discovering their knowledge. Educational
activities based on constructionist learning can be described as
learning by doing, project-based learning, inquiry-based
learning among others. Coding and especially game creation
using technology tools is considered as another type of
constructionist learning which enhances computational
thinking, critical thinking and under specific contexts,
collaboration and innovation.

 Various studies use visual programming languages in
coding activities to engage children and increase their ability to
code [6] [12] [13]. Moreover, other studies have shown the
value of combining physical fabrication to engage students with
complex programming concepts (e.g., loops, conditionals,
events) and practices (e.g., remixing, testing, debugging).

 After nine years of coding summer camps, Adams and
Webster [14], analyzed Scratch programs created from the
students, in order to examine the relation between the choice of
specific blocks with the project-types. Denner et al. 2012 [15],
analyzed 108 games created from girls after a design and coding
activity, showing evidence that the understanding of computer
science concepts can be supported. In another study, in a one
year period of using Scratch, students’ projects show an
increased number of programming concepts (loops, variable,
Boolean logic and random numbers) [8]. Using Scratch but in
the context of a classroom writing workshop, Bruke and Kafai
2012 analyzed the projects in regard to their programming
blocks and the frequency of programming concepts used. Their
results show that middle school children learned fundamental
concepts. Also, in e-textiles projects with Lilypad Arduino,
Kafai 2013 [16] examined the final artifacts and discovered the
use of a variety of concepts and practices.

 Many studies, which examined Scratch artifacts, used
the framework developed by Brennan and Resnick 2012 to
analyze the complexity of the programming concepts [17] [18]
[13] [19]. In general, as someone designs interactive media with
Scratch, computational concepts (mapping to Scratch blocks)
refer to elements like sequences, loops, parallelism, events,
conditionals, operators, and variables structures that also exist
in many programming languages.

III. METHODOLOGY

A. Description of the Coding Activity
For the purpose of this study, coding workshops have been

organized at the Norwegian University of Science and
Technology, in Trondheim, Norway. The workshops have been
designed following the constructionist approach and its main
principle, learning-by-doing as done by previous efforts.
Coding workshops are out-school activities, in which students
from K12 education participate. Our participants are children
from 8 to 17 years, and during the workshop they interact with
digital robots, using Scratch for Arduino (S4A), and then, they
code their own game using Scratch programming language.
This activity lasts about four hours and the children are
organized in pairs or in teams of three. Also, five assistants
participate in the study. The assistants have previous experience
with similar workshops and their main duty is to instruct the
children and facilitate the process. The same process is

followed on every workshop. The workshop comprises of two
parts, that is; Interaction with the robots and Creating games
with Scratch.

Interaction with the robots: During that part, children
interact with digital robots, which are built by an artist using
recycle materials mainly from computer parts. Interaction with
digital robots provides a smooth start to the workshop and
familiarizes children with coding. By showing a connection to
the physical world helps children to handle STEM subjects and
manage difficult problems [20].

First, the children are welcomed into the room by the
assistants, and are divided in teams, sitting next to one robot.
The assistants provide a brief explanation of the workshop’s
activities and point the children to a worksheet placed on their
desks. The goal is for the children to become familiar with the
robots by answering simple questions about the exact place and
number of the sensors and lights on the robots. Then, the
children should follow a paper tutorial with detailed
instructions, on how to make the robots respond to the physical
environment. This is done by visual effects using simple loops
of Scratch for Arduino (e.g. to make the tail of the turtle robot
move when there is more light at a sensor). The teams work
collaboratively and independently to complete this task. The
first part lasts, approximately, from forty-five minutes to one
and a half hour. When everyone has completed their task, the
teams take a short break. Then, the second part begins. During
this part of the workshop, the children receive an introduction
to coding activities including tangible objects. The interaction
with digital robots offers a better understanding of STEM
subjects by showing the connection with the real world, as it
can help children to handle difficult problems [20]. Children
are introduced to coding by playfully interacting with the robots
while getting motivation and inspiration (Fig. 1).

Fig. 1. Some of the robots used created from an artist

Creating games with Scratch: This section is the main
activity of the workshop and its duration is about three hours,
without robots being present. The goal during the second part is
for the children to develop a simple game, coding in Scratch.
First, the children have to think and decide the story of their
game, and then create a draft storyboard. Then, they start
creating their game by coding using Scratch. To achieve this
goal, another paper tutorial is given to the children, which
contains examples about all the basic CS concepts and possible
loops they may need to use to develop their own game. The
activity is based on children’s self-exploration with the constant
help of the assistants when asked. The assistants facilitate this
process and give advice to the children on how to manage the
game development while collaborating with each other. That
was one of the challenges the assistants had to face; their try to

explain the programming concepts as being asked from the
children and also find the simplest way for them to understand
and code. Help provided, varies depending on each team’s
needs. For example, the first level of help is to give
confirmation; then, going levels up, assistants could give the
name of the concept needed to complete a task or show in detail
the concept and its execution. Sometimes, more complex CS
concepts are introduced only if needed. Finally, after the games
have been developed, children reflect and play each other’s
games (Fig. 2).

Fig. 2. Children working collaboratively to complete the activities of the
coding workshop

B. Procedure and Data Collection
The study of our coding workshop lasted for two weeks

during Autumn 2016 with forty-four children in total. The
participants ranged in age from 8 to 17 years old and were
recruited from the local coding clubs and schools. We
conducted workshop sessions almost every day with different
groups of participants who had approximately the same age.
The structure of the activity was the same for each session, with
slightly different adjustments specially in terms of time, when
the participants were at the young age of eight to twelve years
old.

Our upper goal is to examine how children learn to code.
We employed a variety of instruments to collect data from the
learning process of the coding workshop. In this paper, we
focus only on the children’s final projects which were collected
at the end of the activity. Each team of children, after the four
hours of the workshop, had to deliver a functional game and
demonstrate competence in coding. Fig. 3 presents two
different scenes of games created by the teams.

Fig. 3. Example of two scenes from the games created.

C. Data Analysis
The final projects collected, are the games created from the

participants, using Scratch. Finally, we collected nine games in
total from the participants, which links approximately to
twenty-seven participants.

The analysis of the projects started with checking that the
code was present and operational in all the games. For each
game, a researcher manually searched on the code of the
projects seeking for the blocks that indicate the concepts used
in the game. After an initial testing, the games were analyzed
by the researcher, based on the programming concepts inspired
from Brennan and Resnick [21]. We identified six basic
concepts mapping to Scratch programming blocks which are
also common to other programming languages [22] [21]. These
concepts are useful in a wide range of Scratch projects and
agree with our previous experience with the workshop’s games.
Thus, to complete our artifact analysis, we based on the
following measures: event handling, iteration/looping,
conditional statements, threads (parallel execution),
synchronization, operators, variables (see Table 1). All the
previous measures fit together conceptually.

In detail, event handling refers to a key concept of coding
and describes the series of individual instructions to produce
actions. To create a program using Scratch, you need to think
systematically about the order of the steps responding to events
triggered by the user or another part of the program.
Iteration/looping is the repeating action of a series of instruction
Loop is a mechanism of running the same sequence multiple
times. Conditional statements indicate the check for a condition
(e.g. if, if-else). Threads (parallel execution) show the
launching of two stacks at the same time that creates two
independent threads executing in parallel. Synchronization
happens when the multiple the actions of multiple sprites can
coordinate. Operators provide support for mathematical,
logical, and string expressions, enabling the programmer to
perform numeric and string manipulations. Variables, involve
storing, retrieving, and updating values. In general, Scratch
currently offers two containers for data: variables (which can
maintain a single number or string and is what we looked for in
children’s projects) and lists (which can maintain a collection
of numbers or strings).

TABLE I. PROGRAMMING CONCEPTS AND THEIR EXPLANATIONS

Programming
concept

Explanation

Event handling Responding to events triggered showing when
actions should occur

Iteration (looping) Repeating series of instructions
Conditional
statements

Checking for a condition

Threads (parallel
execution)

Two independent threads that execute in parallel

Synchronization

Coordinate actions of multiple sprites

Operators

Support for mathematical, logical and string
expressions enabling numeric and string

manipulations
Variables Storing, retrieving and updating values

For example, Fig. 4 shows a script form a game in which a
character moves using the keyboard trying not to touch specific
parts of the designed Scratch scene for the game.

Fig. 4. Scratch script from a game.

This script uses event handling, conditional statements and
iteration (looping). In each game, we counted the frequency of
the blocks used regarding the concepts we have chosen as
measures. Then, we performed descriptive statistics and used
Pearson’s correlation coefficient which determines the
relationship between the variables.

IV. FINDINGS
All the projects we analyzed were operational and

completed successfully. Table 2 shows the results of the
statistical analysis using IBM SPSS statistics for the minimum,
maximum, mean and standard deviation of the measures we
used. As we can see from the results, the mostly used concepts
on children’s games is the sequence/event handling and
conditionals, followed by threads and operators.
Synchronization was present only two times in the sum of
games and only two games were using it once each.

TABLE II. STATISTICS FOR CHILDREN’S GAMES

Programming
Concept

Min Max Mean Sum Std.
Deviation

Event handling 3 14 7.33 66 3.808

Iteration
(looping)

0 8 3.33 30 2.739

Conditional
statements

1 18 6.44 58 6.729

Threads (parallel
execution)

0 15 5.78 52 4.790

Synchronization 0 1 0.22 2 0.441
Operators 0 12 6.56 49 6.069
Variables 0 14 3.33 30 4.796

 The results from the Pearson’s correlation (see Table 3)
showed significant correlation at the 0.01 level between threads
(parallel execution) and iteration (looping), variables and event
handling, variables and iteration (looping) and finally variables
and threads. All the significant correlations scored more than
0.7 showing a strong relation among the variables.

V. DISCUSSION
The findings show that variables and event handling are

strongly correlated. Event handling is the basic programming
concept and is present in all projects. It can be considered as a
prerequisite to have operational projects. On the other hand,
variables are a complicated concept. Variables are present in
four of the nine games in total and we saw that it is the only
concept correlated with three out of the six other concepts. We

notice that these games have also many blocks that indicate
sequences. That can be explained from the fact that in order to
use variables in the “correct” place of the code, needs a good
understanding of the systematic order of steps and action you
create. As such, only the games with more complex interactions
with stories, characters and backgrounds had more complicated
sequences and use of variables. In their study with youth 8-18
years old, Maloney et al. [8] show that all analyzed projects had
sequential execution and most of them had threads; while the
rest of programming concepts like loops conditional,
synchronization, are not needed in every project, that was
reflected also in our analysis. An interesting result is that event
handling is not correlated with other concepts that variables.
This is possibly related to the fact that the need of using event
handling and sequences in the projects does not give any
prominent correlation with the other concepts. Similarly,
strongly correlated are variables and iteration as well as
variables and threads. When children use the “forever” and
“repeat” loops (iteration) add complexity to their games,
therefore using variables inside the forever loops shows
knowledge of how these loops can be used. Threads (parallel
execution) is a concept that can be found from simple “when
flag is pressed” to more complicated actions. In the games who
had variables we find the use of multiple sprites, when
something is repeatedly used. This action indicates the need for
more variables, if possible. Threads and iteration are the higher
correlated programming concepts. Indeed, when you initiate
two stacks at the same time that execute in parallel requires the
use of more scenes and characters. That is exactly the case in
the games we analyzed. A surprising result is the fact that
threads are not correlated with synchronization. In Scratch,
synchronization helps to control timing between the sprites
which run as parallel threads, therefore the use of
broadcast/receive blocks (synchronization) are essential to
create communication between them. Although, in the analyzed
projects synchronization was very rarely used.

Finally, the descriptive statistical analysis of the projects
and the Pearson correlation results provide useful insight about
the prominent measures of the programming concepts. In detail,
the programming concepts with the highest frequency (i.e., used
often by the children), are not correlated with each other. On
the other hand, the concepts that are correlated have low
frequency. This finding suggests that further work is needed in
the area, in order to define the prominent measures of the
programming concepts. Identifying such concepts will help
teachers in improving their learning materials and in developing
better tools which are more appropriate for use by children.

VI. LIMITATIONS AND FUTURE WORK
As with all empirical studies, our study has some

limitations. First, this study was conducted in a specific context
under certain circumstances, thus generalization should be done
with caution. More specifically, the circumstances refer to that
fact that the games were collected from a wide range of
children’s age and also the limited number of games analyzed
at the end.

Furthermore, the workshop was performed as a
structured activity, thus it would be interesting to conduct
similar workshops as regular activities at school. Finally, the
present study is missing some qualitative insights which would
offer significant details on how the children decided to use their
coding competences. Future studies should take also a
qualitative approach in order to complement and extend our
findings.

 It should be pointed out that this project is still at a
preliminary stage, as are the findings that have been presented.
Nevertheless, the results strongly indicate the need to further
investigate children’s learning trajectories. Monitoring how
students use and combine constructs, patterns, and mechanics
in their games we can gain insights on children’s computational
thinking and learning. That will result in better designed coding
activities for children.

 Regarding the next steps in our project, we plan to
perform mixed methods analysis. By combining qualitative and
quantitative analyses we will be able to improve children’s
experience with such workshops. Finally, to better understand
the children and the way the code, complexity theory should be
combined with fuzzy-set qualitative comparative analysis
(fsQCA) as it offers deeper insight into the data and can identify
asymmetric relations within a sample [2, 23].

REFERENCES
[1] A.J.T. Force, Computer science curricula 2013: Curriculum guidelines for

undergraduate degree programs in computer science, in, Technical report,
Association for Computing Machinery (ACM) IEEE Computer Society,
2013.

[2] I.O. Pappas, M.N. Giannakos, L. Jaccheri, D.G. Sampson, Assessing
Student Behavior in Computer Science Education with an fsQCA
Approach: The Role of Gains and Barriers, ACM Transactions on
Computing Education (TOCE), 17 (2017) Article No. 10.

[3] S. Zweben, Computing Degrees and Enrollment Trends from the 2012-
2013 in, Computing Research Association Taulbee Survey, Washington,
DC, 2014.

[4] S. Grover, R. Pea, Computational Thinking in K–12 A Review of the State
of the Field, Educational Researcher, 42 (2013) 38-43.

[5] S. Papavlasopoulou, M.N. Giannakos, L. Jaccheri, Empirical studies on
the Maker Movement, a promising approach to learning: A literature
review, Entertainment Computing, 18 (2017) 57-78.

[6] J.-M. Sáez-López, M. Román-González, E. Vázquez-Cano, Visual
programming languages integrated across the curriculum in elementary
school: A two year case study using “Scratch” in five schools, Computers
& Education, 97 (2016) 129-141.

[7] O. Meerbaum-Salant, M. Armoni, M. Ben-Ari, Learning computer
science concepts with scratch, Computer Science Education, 23 (2013)
239-264.

[8] J.H. Maloney, K. Peppler, Y. Kafai, M. Resnick, N. Rusk, Programming
by choice: urban youth learning programming with scratch, ACM,
Proceedings of the 39th SIGCSE technical symposium on Computer
science education 2008.

[9] S. Papavlasopoulou, K. Sharma, M. Giannakos, L. Jaccheri, Using Eye-
Tracking to Unveil Differences Between Kids and Teens in Coding
Activities, in: Proceedings of the 2017 Conference on Interaction Design
and Children, ACM, 2017, pp. 171-181.

[10] S. Grover, Assessing Algorithmic and Computational Thinking in K-12:
Lessons from a Middle School Classroom, in: Emerging Research,
Practice, and Policy on Computational Thinking, Springer, 2017, pp. 269-
288.

[11] S. Papert, Mindstorms: Children, computers, and powerful ideas, Basic
Books, Inc., 1980.

[12] E.-S. Katterfeldt, N. Dittert, H. Schelhowe, Designing digital fabrication
learning environments for Bildung: Implications from ten years of
physical computing workshops, International Journal of Child-Computer
Interaction, 5 (2015) 3-10.

[13] Y.B. Kafai, E. Lee, K. Searle, D. Fields, E. Kaplan, D. Lui, A crafts-
oriented approach to computing in high school: Introducing
computational concepts, practices, and perspectives with electronic
textiles, ACM Transactions on Computing Education (TOCE), 14 (2014)
1.

[14] L. Johnson, S. Adams Becker, V. Estrada, A. Freeman, The NMC Horizon
Report: 2015 Museum Edition, ERIC, 2015.

[15] J. Denner, L. Werner, E. Ortiz, Computer games created by middle school
girls: Can they be used to measure understanding of computer science
concepts?, Computers & Education, 58 (2012) 240-249.

[16] Y.B. Kafai, K. Searle, E. Kaplan, D. Fields, E. Lee, D. Lui, Cupcake
cushions, scooby doo shirts, and soft boomboxes: e-textiles in high school
to promote computational concepts, practices, and perceptions, in:
Proceeding of the 44th ACM technical symposium on Computer science
education, ACM, 2013, pp. 311-316.

[17] Y.B. Kafai, K.A. Peppler, R.N. Chapman, The Computer Clubhouse:
Constructionism and Creativity in Youth Communities. Technology,
Education--Connections, ERIC, 2009.

[18] Y.B. Kafai, V. Vasudevan, Constructionist gaming beyond the screen:
Middle school students' crafting and computing of touchpads, board
games, and controllers, in: Proceedings of the Workshop in Primary and
Secondary Computing Education, ACM, 2015, pp. 49-54.

[19] E. Lee, Y.B. Kafai, V. Vasudevan, R.L. Davis, Playing in the arcade:
Designing tangible interfaces with MaKey MaKey for Scratch games, in:
Playful User Interfaces, Springer, 2014, pp. 277-292.

[20] S. Bakker, E. van den Hoven, A.N. Antle, MoSo tangibles: evaluating
embodied learning, in: Proceedings of the fifth international conference
on Tangible, embedded, and embodied interaction, ACM, 2011, pp. 85-
92.

TABLE III. CORRELATIONS AMONG PROGRAMMING CONCEPTS

 Event handling Iteration
(looping)

Conditional
statements

Threads Synchronization Operators Variables

Event handling 1

Iteration (looping) 0.647 1

Conditional statements 0.374 0.608 1

Threads (parallel execution) 0.573 0.921** 0.356 1

Synchronization 0.174 0.242 0.257 0.204 1

Operators 0.556 0.674* 0.564 0.568 0.316 1

Variables 0.821** 0.876** 0.514 0.798** -0.39 0.709* 1

** p < 0.01, * p < 0.05

[21] M.R. Karen Brennan, New frameworks for studying society computer
science exemplification project, Paper presented at AERA, (2012).

[22] C. Kelleher, R. Pausch, Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers, ACM Computing Surveys (CSUR), 37 (2005) 83-137.

[23] I.O. Pappas, S. Papavlasopoulou, M.N. Giannakos, D.G. Sampson, An
Exploratory Study on the Influence of Cognitive and Affective
Characteristics in Programming-Based Making Activities, in: 17th
International Conference on Advanced Learning Technologies (ICALT),
IEEE, Timisoara, Romania, 2017.

