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Abstract. We prove that all locally exposable points in a Stein compact in a

complex space can be exposed along a given curve to a given real hypersurface.
Moreover, the exposing map for a boundary point can be sufficiently close to

the identity map outside any fixed neighborhood of the point. We also prove a

parametric version of this result for bounded strongly pseudoconvex domains in
Cn. For a bounded strongly pseudoconvex domain in Cn and a given boundary

point of it, we prove that there is a global coordinate change on the closure of

the domain which is arbitrarily close to the identity map with respect to the
C1-norm and maps the boundary point to a strongly convex boundary point.

1. Introduction

Let X be a complex space. We assume throughout this paper that all complex
spaces are reduced, irreducible, and paracompact. Let Xsing be the set of singular
points of X and let Xreg = X\Xsing be the set of smooth points of X.

Definition 1.1. Let X be a complex space, let K ⊂ X be a compact set, and let
ζ ∈ K be a point in Xreg. We will say that ζ is locally exposable if there exists an
open set U ⊂ X containing ζ and ρ a C2-smooth strictly plurisubharmonic function
on U such that

(i) ρ(ζ) = 0 and dρ(ζ) 6= 0, and
(ii) ρ < 0 on (K ∩ U) \ {ζ}.

Our main concern in this paper is to show that locally exposable points are
globally exposable (see Definition 1.2).

The first result of the present paper is the following.

Theorem 1.1. Let X be a complex space, let K ⊂ X be a Stein compact, and
let ζ ∈ K ∩ Xreg be locally exposable. Let H ⊂ X\(K ∪ Xsing) be a locally closed
C2-smooth subset of a real hypersurface in X. Let γ : [0, 1] → Xreg be a smoothly
embedded curve in X with γ(0) = ζ, γ(1) ∈ H, and γ(t) ∈ X\(K∪H) for t ∈ (0, 1).

Then for any (small) neighborhood V of γ, and any ε > 0, there exist an open
neighborhood U of K, an arbitrarily small neighborhood V ′ ⊂ V of ζ, and a biholo-
morphic map f : U → f(U) ⊂ X such that the following holds:

(a) f(V ′) ⊂ V and f(ζ) = γ(1),
(b) dist(f(z), z) < ε for z ∈ K\V ′, and
(c) f(K) ∩H = {γ(1)}.

where dist(·, ·) is a fixed distance on X. In the case X = Cn and K ⊂ Cn is
polynomially convex, f can be taken to be a holomorphic automorphism of Cn.

By saying that K is a Stein compact we mean that K has a Stein neighbourhood
basis in which K is holomorphically convex.
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Definition 1.2. The map f will be said to expose the point ζ with respect to H,
and f(ζ) is said to be exposed. If K ⊂ BR(0) ⊂ Cn and H = {z ∈ Cn : ‖z‖ = R},
for any R > 0, we will say that f(ζ) is globally exposed.

From the proof, we will see that Theorem 1.1 can be generalized in various
directions as follows:

• one can easily expose finitely many points simultaneously,
• the last statement can be generalized as: if X is a Stein manifold and has

density property (for definition see [12]) and K is O(X)-convex, then f can
be taken in AutholX,
• if X is a 1-convex space, the same statement still holds if we assume that ζ is

outside the exceptional set. This can be proved by Remmert’s reduction and
interpolation for the exposing maps constructed in Theorem 1.1. (Exposing
boundary points in this setting was proposed by Franc Forstnerič in [6].)

The importance of Theorem 1.1 in the case that K is the closure of a domain
with a strictly pseudoconvex boundary point ζ, is that it tells us that K◦ resembles
a strictly convex domain in a concrete geometric sense. Convex domains are ex-
ceptionally well behaved from a complex analysis point of view. As a comparison,
the Levi problem was to show that such a domain K◦ resembles a strictly convex
domain in a much weaker function theoretic sense.

Our next result concerns in which ways a locally exposable point can be locally
exposed with global maps. It is quite simple using Andersén-Lempert theory to
show that a locally defined exposing map in Cn can be approximated by holomor-
phic automorphisms, but as a consequence one looses completely control of the
behaviour on most of K.

Theorem 1.2. Let D be a bounded strongly pseudoconvex domain in Cn with C2-
smooth boundary. Then for any ζ ∈ ∂D and any ε > 0, there is an injective
holomorphic map F : D → Cn such that F (ζ) = ζ is a strictly convex boundary
point of F (D), ∂F (D) and ∂D are tangent at ζ, and ||F − id||C1(D) < ε.

In §2 we will construct a strongly pseudoconvex domain such that the map F in
Theorem 1.2 can not be taken in Authol(Cn) for some boundary points.

Furthermore we are interested in parametric version of the previous two theo-
rems.

Theorem 1.3. Let D ⊂⊂ Cn be a strongly pseudoconvex domain with smooth
boundary. Let H ⊂ Cn be a smooth closed real hypersurface with D ∩H = ∅. Let
γ : ∂D × [0, 1] → ∂D × Cn be a fiber-preserving continuous map such that for all
ζ ∈ ∂D:

1) γζ = γ(ζ, ·) : I → Cn is a smooth embedding;

2) γζ(0) = ζ, γζ(1) ∈ H and γζ |(0,1) ⊂ Cn\(D ∪H).

(We implicitly make the identification of {ζ} × Cn with Cn.) Then for any neigh-
borhood V of γ(∂D × [0, 1]) and any ε > 0, for any sufficiently small neighborhood
V ′ ⊂ V of {(ζ, ζ); ζ ∈ ∂D} in ∂D × Cn there exists a smooth fiber-preserving map
f : ∂D ×D → ∂D × Cn such that the following holds for each ζ ∈ ∂D:

(a) fζ := f(ζ, ·) : D → Cn is injective and holomorphic,
(b) fζ(V

′
ζ ) ⊂ Vζ and fζ(ζ) = γζ(1),

(c) ||fζ(z)− z|| < ε for z ∈ D\V ′ζ ,
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(d) fζ(D) ∩H = {γζ(1)},
where Vζ := V ∩ ({ζ} × Cn). If in addition D is polynomially convex, we can take
f a smooth map from ∂D × Cn to itself such that f |Cnζ ∈ Aut(C

n) for all ζ ∈ ∂D.

Theorem 1.4. Let D ⊂⊂ Cn be a strongly pseudoconvex domain with C2-smooth
boundary. For any ε > 0, there is a continuous map f : ∂D ×D → Cn such that
for all ζ ∈ ∂D the following hold:

1) fζ = f(ζ, ·) : D → Cn is a holomorphic injective map,
2) fζ(ζ) = ζ is a strictly convex boundary point of fζ(D),
3) ∂fζ(D) and ∂D are tangential at ζ, and
4) ||fζ − id||C1(D) < ε.

For a further discussion of parametric exposing of points, see Section 5.

2. Transforming a boundary point to a strongly convex one

In this section, we consider transforming a boundary point of a strongly pseudo-
convex domain to a strictly convex one, with certain control of the behavior of the
involved transformation. The aim is to prove Theorem 1.2 and Theorem 1.4. We
also construct a strongly pseudoconvex domain in C2 for which the transformation
furnished by Theorem 1.2 can not be taken in Aut(C2).

We need the following lemmas. The first lemma is to prove the existence of
peak functions with certain estimates. The key tool is the existence of embed-
ding of strongly pseudoconvex domains into strongly convex domains with certain
boundary conditions, established by the second author in [4].

Lemma 2.1. Let D be a bounded strictly pseudoconvex domain in Cn with C2-
smooth boundary. Then for any ζ ∈ ∂D, there is a holomorphic function f defined
on some neighborhood of D which satisfies the following two conditions:
1) f(ζ) = 1, and |f(z)| < 1 for z ∈ D\{ζ};
2) the estimate

|f(z)| ≤ e−c||z−ζ||
2

holds on D for some constant c > 0.

Proof. For the case that D is the ball B := {z ∈ Cn; |z1+r|2+|z2|2+· · ·+|zn|2 < r2}
and ζ = 0, a simple calculation shows that f(z) := ez1 satisfies the conditions. By
the result in [4] mentioned above, the general case can be reduced to the case that
D = B. �

For the proof of Theorem 1.4, we need a parametric version of Lemma 2.1.

Lemma 2.2. Let D ⊂ Cn be a bounded strongly pseudoconvex domain with smooth
boundary. Then there is a smooth map p : ∂D ×D → C such that:
1) For each ζ ∈ ∂D, pζ(·) := p(ζ, ·) is a holomorphic function on D;

2) pζ(ζ) = 1 and |pζ(z)| < 1 for z ∈ D\{ζ} for all ζ ∈ ∂D;

3) there exists a constant c such that |pζ(z)| ≤ e−c||z−ζ||
2

for (ζ, z) ∈ ∂D ×D.

Proof. By a result in [4], there is a proper holomorphic embedding σ from some
neighborhood of D into some neighborhood of a bounded strongly convex do-
main W ⊂ CN for some N such that σ(∂D) ⊂ ∂W and σ(D) and ∂W inter-
sect transversely. Let ρ be a defining function for W , for each ξ ∈ ∂W set
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Λξ(w) :=
∑N
j=1 ∂ρ/∂wj(ξ) · (wj − ξj), and set gξ(w) = eΛξ(w). Then g satisfies

1-3 for D replaced by W . So we may set p(ζ, z) = gσ(ζ)(σ(z)). �

The last lemma we need is the following

Lemma 2.3. Let D be a bounded domain in Cn with C2-smooth boundary. Let F
be a diffeomorphism from some neighborhood of D to its image in Cn. Assume that
{Fj}(j ≥ 1) is a sequence of smooth maps defined on some neighborhood of D such

that ||Fj −F || converges uniformly on D to 0 in C1-norm. Then Fj is injective on

D for j large enough.

Proof. We prove by contradiction. If it were not the case, then, without loss of
generality, we can assume that for each j there exist aj and bj in D with aj 6= bj
such that Fj(aj) = Fj(bj). We may assume aj → a and bj → b as j →∞. Then it
is necessary that a = b since F is injective. We have a ∈ D or a ∈ ∂D. Since ∂D
is C2, taking a C2-smooth coordinate change near a if necessary, we may assume
that there is a neighborhood U of a such that U ∩D is convex. Let γj be the line

segment in Cn given by t → (1 − t)aj + tbj , t ∈ [0, 1], then γj ⊂ D for j large
enough. We have

Fj(bj)− Fj(aj) =

∫ 1

0

dFj(γj(t))

dt
dt

= (

∫ 1

0

dFj(γj(t))dt)(bj − aj),
(1)

which can not be 0 for j large enough since
∫ 1

0
dFj(γj(t))dt→ dF (a) and dF (a) is

nonsingular. Contradiction. �

Proof of Theorem 1.2: We can assume that ζ = 0 and the local defining function
ρ(z) of D near 0 can be expanded as

ρ(z) = Re(zn +Q(z)) +
∑
i,j

aijziz̄j + · · · ,

where Q(z) =
∑
i,j qijzizj is a symmetric quadratic form. Let f be a holomorphic

function defined in some neighborhood of D that is furnished by Lemma 2.1. We
will show that there are positive integers M and Nj , j = 1, · · · ,M such that the
transformation F (z) = (z̃1, · · · , z̃n) given by

(2)

{
z̃k = zk, for k = 1, · · · , n− 1,

z̃n = zn +
∑M
j=1

1
MQfNj

is that expected by this theorem.
First note that

||Q′fN || . ||z||e−Nc||z||
2

,

and hence goes to zero uniformly on D as N →∞. Note also that

(3) ||QNf ′fN−1|| . N ||z||2e−Nc||z||
2

.

Let σ be the function on (0,+∞) given by x 7→ xe−cx. It is clear that σ(0) = 0
and limx→+∞ σ(x) = 0, and σ attains its maximum 1

ce at x = 1/c. So the right

hand side of (3) attains its maximum 1
ce at ||z||2 = 1

Nc . For any ε > 0 and a

sufficiently large integer M with 1
Mec < ε/2, by the above discussion, we can find

r1 > r2 > · · · > rM > 0 and positive numbers N1, · · · , NM such that ||(QfNj )′|| <
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ε
2M on {z ∈ D; ||z|| ≥ rj or ||z|| ≤ rj+1}. Define ϕM =

∑M
j=1

1
MQfNj , then ϕM is

a holomorphic function defined on some neighborhood of D, and ||ϕ′M || < ε on D.

By taking Nj large enough, we can also require that |ϕM (z)| < ε for z ∈ D. Let

FM be the map defined as in (2). By Lemma 2.3, FM is injective on D for M and
Nj large enough. It is clear that ||FM − id||C1 converges to 0 uniformly on D, and
FM (ζ) is a strongly convex boundary point of FM (D).

�
Proof of Theorem 1.4: For ζ ∈ ∂D, denote by nζ the unit outward-pointing

normal vector of ∂D at ζ. Let Lζ = {xnζ + iynζ ;x, y ∈ R} and let πζ : Cn → Lζ be
the orthogonal projection. For z ∈ Cn, let tζ(z) = x+ iy if πζ(z − ζ) = xnζ + iynζ
and let z′ζ = (z − ζ)− πζ(z − ζ). Note that z 7→ (z′ζ , tζ(z)) is a linear isomorphism

form Cn to (TC
ζ ∂D)×C which maps ζ to the origin, where TC

ζ ∂D = Tζ∂D∩ iTζ∂D
is the complex tangent space of ∂D at ζ. Let ρ be a defining function of D which
is strictly plurisubharmonic on some neighborhood of D. After normalization, near
each ζ ∈ ∂D, ρ can be expanded as follows:

(4) ρ(z) = Re(tζ(z)) +Qζ(z − ζ) + Lζ(z − ζ) + o(||z − ζ||2),

where Lζ is the Levi form of ρ at ζ and Q is the complex Hessian of ρ at ζ.
By some basic results from calculus, the right hand side of (4) can be viewed

as a smooth function defined on some neighborhood of ∂D ×D in ∂D × Cn. Let
p : ∂D ×D → C be the smooth map furnished by Lemma 2.2. Then, by the same
estimate as in the proof of Theorem 1.2, we can show that there are positive integer
M and Nj , j = 1, · · · ,M such that the map F (ζ, z) : ∂D ×D → Cn given by{

F (ζ, z)′ζ = z′ζ
tζ(F (ζ, z)) = tζ(z) +

∑M
j=1

1
MQζ(z − ζ)p

Nj
ζ (z)

satisfies the required conditions. �
We now construct a strongly pseudoconvex domain D ⊂ C2 such that the map

F in Theorem 1.2 can not be taken in Authol(Cn) for some p ∈ ∂D.

Example 2.1. Let D := {(z, w) ∈ C2 : |z|2 + | 1z |
2 + |w|2 < 3}. Then D is a bounded

strongly pseudoconvex domain with smooth boundary. The intersection A of D
and the z-axis is an annulus. Let p be an inner boundary point of A. It is clear
that there exists a compact set V ⊂ D such that the polynomial hull of V contains
an open neighborhood of p. So if Fj ∈ Authol(C2) is a sequence that converges to

id uniformly on D, then Fj converges to id uniformly on a neighborhood of p. So
Fj(p) can not be a strictly convex boundary point of Fj(D) for j large enough.

3. The ball model case in Cn

The main technical problem in proving Theorem 1.1 which differs from the results
in [3] is to prove an exposing result for balls, which can later be used to pass from
local to global exposing by approximately gluing. For r ∈ R, we denote the point
(0, · · · , 0, r) in Cn by pr. For r > 0 and a ∈ Cn, Br(a) denotes the ball in Cn
centered at a with radius r, and we denote by Bn the unit ball in Cn as usual. For
r, s ∈ R, r < s, we let lr,s denote the closed line segment between pr and ps. The
main aim of this section is to prove the following theorem which is a key step in
the proof of Theorem 1.1.



6 F. DENG, J. E. FORNÆSS, E. F. WOLD

Theorem 3.1. Let r, s be positive numbers with s > r + 1. Then for any open
neighborhood V of l1,s−r, any open neighborhood U of l1,s−r ∪ Br(ps), and any

sufficiently small ε > 0, there exits a sequence of maps φν,t : Bn → Cn, (t ∈ [0, 1]),
of injective holomorphic maps such that the following hold:

(i) φν,t are smooth in t and φν,0 = Id,

(ii) φν,t → Id uniformly on Bn\Bε(p1) for t ∈ [0, 1], as ν →∞,
(iii) φν(p1) = ps+r for all ν ∈ N, where φν := φν,1,

(iv) φν(Bε(p1) ∩ Bn) ⊂ V ∪Br(ps) ∪ {ps+r},
(v) φν,t(Bn ∩Bε(p1)) ⊂ U for all ν and t,

(vi) the images φν,t(Bn) are polynomially convex for all ν and t.

Lemma 3.2. Let a < b be points on the real line with b − a > 2, and let l be
the closed line segment between a + 1 and b − 1. Let δν → 0 and let Ων be the
δν neighborhood of D1(a) ∪ l ∪ D1(b), where Ds(a) is the disk in C centered at a
with radius s. There exist injective holomorphic maps fν , gν : D→ C such that the
following holds:

(i) fν(D ∩ R) ⊂ R, gν(D ∩ R) ⊂ R, and fν(D) = gν(D) ⊂ Ων for all ν,
(ii) fν(−1) = gν(−1) = a − 1, fν(1) = gν(1) = b + 1 and fν(0) = a, gν(0) = b,

for all ν,
(iii) fν(z) → z + a uniformly on some fixed neighborhood of D\Dε(1) for any

small ε > 0;
(iv) gν(z) → z + b uniformly on some fixed neighborhood of D\Dε(−1) for any

small ε > 0;
(v) fν(z) = gν(mν(z)) for all ν, where

mν(z) =
z − rν
1− rνz

with rν → 1 as ν →∞.

Proof. For simplicity we assume a = −2, b = 2. We will construct maps fν that
satisfy (i)-(iii) and fν(D) is invariant under the transformation z 7→ −z. By sym-
metry, if we put gν(z) = −fν(−z), then all conditions about fν and gν in the lemma
hold. The convergence of rν to 1 in (v) will be guaranteed by the convergence of
fν as presented in (iv).

We now construct such fν . By Mergelyan’s Theorem there exists a sequence of
embeddings φν : D1(−2) ∪ l ∪ D1(2) → C such that φν → id on D1(−2), φν(l)
shrinks to the point −1, as ν →∞, and such that φν is are as close as we like to a
translation and a scaling on D1(2), such that the diameter of φν(D1(2)) shrinks to
zero. We may also interpolate to get φν(−2) = −2, φ′ν(−2) = 1). Replacing φν by

the map given by z 7→ φν(z)+φν(z̄)
2 if necessarily, we can assume that φν(z) = φν(z̄),

and hence φν maps real numbers to real numbers Let Wν = D1(−2)∪ l(δ′ν)∪D1(2),
where l(δ′ν) is the δ′ν-neighborhood of l and 0 < δ′ν < δν . If the δ′ν are chosen small
enough, then φν(Wν) converges to the ball D1(−2) in the sense of Goluzin.

Let ψν : D → φν(Wν) be the Riemann map with ψν(0) = −2, ψ′ν(0) > 0, we
have that ψν(z) → z − 2 uniformly on D (see [7], Theorem 2, p. 59.). Morover,

ψν(z) = ψν(z). Then it is clear that f̃ν := φ−1
ν ◦ ψν satisfy (i), (ii), and (iii).

�

Lemma 3.3. Let 0 < r < 1 and define ϕr(z) = z−r
1−rz . Then either |ϕr(z)| < |z| or

Re(ϕr(z)) < 0 for all z ∈ D.
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Proof. Note first that any circle Γa = {|z| = a} with a > 0 is mapped by ϕr to a
circle symmetric with respect to the real line, and ϕr(a) < a. A straightforward

computation shows that |ϕr(a)− ϕr(−a)| = 2a 1−r2
1−a2r2 and so the radius of ϕr(Γa)

is less than a. Since also ϕr(a) < a this implies that ϕr(Γa) ∩ Γa is either empty
or is contained in {Re(z) < 0}. �

Lemma 3.4. Let rj , sj be real numbers for j = 1, 2 with sj > rj + 1. Then there
exists a sequence

(5) φν : Bn ∪ l1,s1 ∪Br1(ps1)→ Cn

of injective holomorphic maps such that the following hold:

(i) φν → Id uniformly on Bn,

(ii) φν(z)→ ψ(z) = ps2 + r2
r1

(z − ps1) uniformly on Br1(ps1),

(iii) φν converges uniformly on l1,s1 to a smooth embedding of l1,s1 onto l1,s2 .

Moreover, the maps φν are of the form φν(z) = (hν(zn) · z′, fν(zn)), where hν , fν
are holomorphic functions in one variable. Finally, the maps φν can be chosen to
match ψ to any given order at the point ps1+r1 .

Proof. By Mergelyan’s theorem there exists one variable functions fν(zn) satisfying
(i)-(iii) on the intersection with the zn-axis. Again by Mergelyan’s theorem there
exist a sequence hν(zn) converging to the constant function r2/r1 on the disk of
radius r1 centred at s1, to 1 on the closed unit disk, and some fixed real function
increasing/decreasing from r2/r1 to 1 on the line segment connecting the two disks.

�

We now give the proof of Theorem 3.1.

Proof. We prove it first without the parameter t, i.e., we prove the existence of the
sequence φν,1. By Lemma 3.4, it is enough to prove this for some special case of
r, s. We take the special case that r = 1.5, s = 3. Let fν be maps furnished by
Lemma 3.2 with a = 0, b = 3.5. We define φν(z) := (z1, · · · , zn−1, fν(zn)). Then
the properties (ii), (iii), (v) and (vi) hold (we have that (vi) holds because f−1

ν is
approximable by entire maps).

We now prove (iv). Since ε can be chosen arbitrarily small, the only place where
the inclusion in (iv) can fail is near the point p4.5. Consider first the sequence

φ̃ν(z) = (z1, · · · , zn−1, gν(zn)).

Then φ̃ν(z)→ z + pb uniformly on Bn \ Bε(p−1), and since g′ν(1) is real (and goes

to 1) we have that φ̃(Bn \ Bε(p−1)) is eventually contained in B1.5(p3). Now let
z = (z1, ..., zn) be a point in Bn ∩Bε(p1). If Re(mν(zn)) ≤ 0 then φν(z) is far away
from the point p4.5 since φν(z) = (z1, ..., zn−1, gν(mν(zn))). If Re(mν(zn)) > 0 it
follows from Lemma 3.3 that (z1, ...zn−1,mν(zn)) ∈ B \ Bε(p−1), and so φν(z) ∈
B1.5(p3).

To construct isotopies we simply define

φν,t(z) =
1

t
φν(tz).

Note first that we can choose ε > 0 arbitrarily small, and that by the construction,
Bn ∩ Bε(p1) gets mapped by φν into a relatively compact subset Ũ of U which is
independent of ε. Write

φν(z) = Aν(z) +Gν(z),
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where Aν → Id and ‖Gν(z)‖ ≤ δν‖z‖2 for ‖z‖ < 1 − ε where δν → 0. Consider a
point z ∈ Bε(p1)∩Bn. If t < 1− ε then φν,t(z) = Aνz+ 1

tGν(tz), with ‖Gν(tz)‖ ≤
δνt

2‖z‖2, so if ν is large we are in U . If t ≥ 1 − ε we consider two cases. If
tz /∈ Bε(p1) we may assume that φν is as close to the identity as we like, and so we

are still in U . If tz ∈ Bε(p1) then φν maps tz into Ũ , and 1
t Ũ ⊂ U provided ε was

chosen small enough. �

4. Exposing a single boundary point

The aim of this section is to prove Theorem 1.1. Recall that a pair (A,B) of
compact sets in a complex space X is called a Cartan pair if A,B,A∩B,A∪B all
admit Stein neighborhood bases in X and A\B ∩ B\A = ∅. The following lemma
due to Forstnerič will be used to (approximately) glue locally defined exposing maps
to define global ones.

Lemma 4.1 ([5][6]). Assume that X is a complex space and X ′ is a closed complex
subvariety of X containing the singular locus Xsing. Let (A,B) be a Cartan pair

in X such that C := A ∩ B ⊂ X\X ′. For any open set C̃ ⊂ X containing C

there exist open sets A′ ⊃ A,B′ ⊃ B,C ′ ⊃ C in X, with C ′ ⊂ A′ ∩ B′ ⊂ C̃,
satisfying the following property. For every number η > 0 there exists a number
εη > 0 such that for each holomorphic map γ : C̃ → X with distC̃(γ, Id) < εη there
exist biholomorphic maps α = αγ : A′ → α(A′) ⊂ X and β = βγ : B′ → β(B′) ⊂ X
satisfying the following properties:

(i) γ ◦ α = β on C ′,
(ii) distA′(α, Id) < η and distB′(β, Id) < η, and
(iii) α and β are tangent to the identity map to any given finite order along the

subvariety X ′ intersected with their respective domain.

Moreover, the maps αγ and βγ can be chosen to depend continuously on γ such that
αId = Id and βId = Id.

We start by embedding a neighbourhood of the curve γ suitably into Cn, where
we will define local exposing maps.

Lemma 4.2. There exists an open Stein neighbourhood W of γ, an open neigh-
bourhood Uζ ⊂ W of ζ,and a holomorphic embedding φ : W → Cn (n = dim(X))
such that the following holds:

(i) φ(ζ) = 0,
(ii) φ((Uζ ∩K) \ {ζ}) ⊂ {z ∈ Cn : 2Re(zn) + ‖z‖2 < 0}

Proof. First let M ⊂ X be a totally real manifold (with boundary) of dimension
n that contains the curve γ, and choose a smooth embedding g : M → Rn ⊂ Cn.
Then M admits a Stein neighbourhood W0 such that g may be approximated in
C1-norm on M by holomorphic maps φ0 : W0 → Cn. So φ0 may be taken to be an
embedding of an open Stein neighbourhood W of γ into Cn. By assumption there
is a (local) strictly pseudoconvex hypersurface Σ ⊂ Cn and an open set Uζ such
that Σ touches φ0(Uζ ∩K) only at the point φ0(ζ). Let F ∈ AutholCn such that
F (Σ) is strictly convex near F (φ0(ζ)). After a translation and scaling, the map
φ = F ◦ φ0 will ensure the conclusions of the lemma. �

We may now modify γ such that near the origin, the curve γ̃ := φ(γ) coincides
with the line segment l0,r for some r > 0, and such that γ̃ is perpendicular to the
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(local) hypersurface H̃ := φ(W ∩H) where they intersect. We keep the notation γ
for the modified curve. Let γζ denote the piece φ−1(l0,r) of γ.

Lemma 4.3. There exists a a compact set K ′ ⊂ X with K ⊂ int(K ′) such that
for any ε > 0 there exists an open neighbourhood Ω of K ′ ∪ γζ and a holomorphic
embedding ψ : Ω→ X such that the following holds:

(i) dist(z, ψ(z)) < ε for all z ∈ K ′,
(ii) ψ(γζ) ⊂ V ∩W ,
(iii) ψ(γζ) ∩H = ψ(φ−1(pr)) and the intersection is perpendicular to H in the

coordinates furnished by φ.

Proof. We will first define a map h̃ accomplishing (i)-(iii) in the local coordinates

furnished by φ, and then we will (approximately) glue the map φ−1 ◦ h̃ ◦ φ to the
identity map on K ′.

We start by defining a suitable Cartan pair. Writing φ = (φ1, ..., φn) note that
the pluriharmonic function ρ := Re(φn) extends to a plurisubharmonic function on
an open neighbourhood of K which agrees with ρ on an open neighbourhood of ζ,
and which is negative and uniformly bounded away from zero away from where they
agree. We keep the notation ρ for the extended function. Then for a sufficiently
small smoothly bounded strictly pseudoconvex open neighbourhood Ω′ of K ∪ γζ
and sufficiently small τ > 0, the sets

Aτ = Ω
′ ∩ {ρ ≥ −2τ} and Bτ = Ω

′ ∩ {ρ ≤ −τ}

define a Cartan pair (Aτ , Bτ ). Let Ãτ = φ(Aτ ) and B̃τ = φ(Bτ ∩W ). If Ω′ and τ

are chosen sufficiently small we have that Aτ ∩ Bτ ⊂ W and Ãτ ∩ B̃τ ⊂ Br/2(0).

Set C̃τ = Br/2(0). Fix K ′ a Stein compact such that K ′ contains a neighbourhood

of K and K ′ ⊂ Bτ ∪ φ−1(Br/2).

Now let D be an open neighbourhood of Br/2(0)∪l0,r with g̃ : D → Cn a smooth

embedding such that g̃ = id near Br/2(0), g̃ stretches l0,r to cover γ̃, g̃−1(H̃) is

perpendicular to l0,r, and such that g̃ is ∂-flat to order one along l0,r. Then g̃ is

uniformly approximable on Br/2(0) ∪ l0,r in C1-norm with jet interpolation at the

point pr. So there exists a holomorphic embedding h̃ : B0,r/2(0) ∪ l0,r → Cn, as

close to the identity as we like on Br/2(0), with the image h̃(l0,r) as close as we like

to γ̃ and with h̃−1(H̃) perpendicular to l0,r. Set h := φ−1 ◦ h̃ ◦ φ. Now if h̃ is close
enough to the identity on Br/2 we have that Lemma 4.1 furnishes maps α and β
such that the map ψ defined as ψ := h ◦ α on Aτ and ψ = β on Bτ will satisfy the
claims of the lemma.

�

Proof of Theorem 1.1: We use the extended function ρ from the proof of the
previous lemma to define a Cartan pair:

Aτ = K ∩ {ρ ≥ −2τ} and Bτ = K ∩ {ρ ≤ −τ}

Then for τ small we have that φ maps Aτ into B1(p−1)∪{0}, and Cτ = Aτ∩Bτ gets
mapped into the ball B1(p−1). Choose a small δ > 0 such that the ball Bδ(pr−δ)

touches h̃−1(H) only at the point pr. Now Theorem 3.1 applied to the dumbbell

B1(p−1)∪ l0,r−2δ∪Bδ(pr−δ) furnishes local exposing maps φ̃ν : B1(p−1)→ Cn such

that the maps φν := φ−1 ◦ φ̃ν ◦ φ may be approximately glued to the identity map
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over a neighbourhood of Cτ to conclude the proof of the first part of Theorem 1.1
by setting f = ψ ◦ φν .

For the last part we now assume that K ⊂ Cn is polynomially convex. Let ρ be a
non-singular strictly plurisubharmonic function on an open neighbourhood Uζ of ζ
such that ρ(ζ) = 0 and ρ < 0 on (K∩Uζ)\{ζ}. Then for any sufficiently small Runge
and Stein neighbourhood Ω of K the function ρ extends to a plurisubharmonic
function on Ω which is strictly negative on Ω \ Uζ , and so Ω′ = Ω ∩ {ρ < 0}
is a Runge and Stein domain with ζ ∈ bΩ′. Moreover, choosing Ω to have a

Runge and Stein neighbourhood basis, we have that Ω
′

will have a Runge and
Stein neighbourhood basis, and so by Theorem 1.3 in [3] there exists F ∈ AutholCn
such that F (K \ {ζ}) ⊂ Bn and F (ζ) = p1. Since we can conjugate by F we may
as well assume that K \ {ζ} ⊂ Bn and that ζ = p1.

My slightly modifying γ we may assume that γ agrees with l1,1+r near p1 and that
it is perpendicular to H where they intersect. First let D be an open neighbourhood
of Bn∪l1,1+r and g : [0, 1]×D → Cn be an isotopy of embeddings such that g0 = id,

g stretches l1,1+r along γ, gt = id near Bn for all t, g−1(H) is perpendicular to l1,1+r,

and gt is ∂-flat on l1,1+r to order one. Then the whole parameter family gt may
be approximated by a parameter family h : [0, 1] × Cn of holomorphic maps in
C1-norm on Bn ∪ l1,1+r with jet interpolation at the end point of l1,1+r. So ht is

a family of holomorphic embeddings on some open neighbourhood of Bn ∪ l1,1+r,
and by the Andersén-Lempert theory h1 may be approximated by a holomorphic
automorphism G with interpolation at the end point of l1,1+r.

Let H̃ = G−1(H) which is now perpendicular to l1,1+r. Choose s > 0 such

that Bs(p1+r−s) touches H̃ only at a single point. Now Theorem 3.1 applied to
the dumbbell Bn ∪ l1,1+r ∪ Bs(p1+r−s) furnishes a one-parameter family of maps
φt such that G ◦ φ1 is the exposing map we are after, except that φ1 is not an
automorphism. However, by (vi), φt(Bn) is polynomially convex for each t, and so
φ1 is approximable by holomorphic automorphisms. The proof is complete.

�

5. Regularity of exposing maps with parameters

In this section we will prove Theorem 1.3. Before we proceed with the proof, we
give a further discussion on parametric exposing. The terminology of being exposed
will refer to being globally exposed in the sense of Definition 1.2, and R may vary
with the parameter.

Definition 5.1. Let D be a bounded domain in Cn with smooth boundary. Then
we say that D satisfies:
1) Property (E), if there exists a continuous map F : ∂D × D̄ → Cn such that for
each fixed p ∈ ∂D the map Fζ := F (ζ, ·) : D̄ → Cn is an exposing of D at ζ; or
2) Property (AE), if there exists a continuous map F : ∂D × Cn → Cn such that
for each fixed ζ ∈ ∂D we have that Fζ ∈ AutholCn is an exposing of D at ζ; or
3) Property (ASE), if there exists a continuous map F : ∂D × Cn → Cn such that
for each fixed ζ ∈ ∂D we have that Fζ ∈ AutdiffCn and Fζ(D) is exposed at Fζ(ζ).

In the case 2) we say that Fζ is ambient exposing, and in case 3) we say that Fζ
is ambient smoothly exposing. Note that Property (ASE) has nothing to do with
the complex structure of D and Cn. In [2], the following question was proposed:
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Question 1. Let D be a bounded strongly pseudoconvex domain in Cn with smooth
boundary. Does D satisfies Property (E)?

The following theorem, which can be viewed as a parametric version of Theorem
1.1, partially answers the above question.

Theorem 5.1. Let D ⊂ Cn(n > 1) be a bounded strongly pseudoconvex domain
with smooth boundary. If D satisfies Property (ASE), then for any positive numbers
ε, δ, there exists a continuous map f : ∂D ×D → Cn such that for each ζ ∈ ∂D:

1) fζ(·) = f(ζ, ·) : D → Cn is holomorphic and injective;
2) fζ(D) is exposed at fζ(ζ); and

3) ||fζ(z)− z|| < ε for z ∈ D\Bδ(ζ), where Bδ(ζ) = {z ∈ Cn; ||z − ζ|| < δ}.
In particular, D satisfies Property (E). If in addition D is polynomially convex,
then f can be taken to be a smooth map f : ∂D×Cn → Cn such that fζ ∈ Aut(Cn)
for all ζ ∈ ∂D. In particular, D satisfies Property (AE).

When trying to apply Theorem 1.3 to Question 1, we meet a topological obstruc-
tion. Even we originally just interested in exposing but not ambient exposing, it
turns out that Property (ASE) is needed in our argument. It is clear that Property
(ASE) is a necessary condition for Property (AE), but we don’t know if it is also
necessary for Property (E).

For the special case when D is diffeomorphic to the closed unit ball, we can prove
the following

Theorem 5.2. Let D be a bounded strongly pseudoconvex domain in Cn with
smooth boundary. Assume that either D is diffeomorphic to the unit ball Bn and
n ≥ 3, or the closure D of D is diffeomorphic to the closed unit ball and n = 2.
Then D satisfies Property (E). If in addition D̄ is polynomially convex, then D
satisfies Property (AE).

Remark 5.1. It is known that any smoothly embedded Sn−1 in Rn bounds a domain
that is diffeomorphic to the unit ball except n 6= 4 (see [10]). The case for n = 4 is
still open. So for n 6= 2, the condition in Theorem 5.2 that D is diffeomorphic to
Bn can be replaced by that ∂D is diffeomorphic to S2n−1.

5.1. A parametric version of Forstnerič’s splitting lemma. We first intro-
duce some notations. Let D be a bounded strictly pseudoconvex domain in Cn with
C2-smooth boundary and δ be a sufficiently small positive number. For ζ ∈ ∂D we
define:

Aζ = {z ∈ D : ||z − ζ|| ≤ δ},
Bζ = {z ∈ D : ||z − ζ|| ≥ δ/2},
Cζ = Aζ ∩Bζ .

For a closed subset X in Cn and a > 0, we set X(a) := {z ∈ Cn : ||z − w|| ≤
a for some w ∈ X} the a-neighborhood of X.

The following result is the main result in the thesis of Lars Simon ([11])

Lemma 5.3. Let D and δ as above. If τ > 0 is small enough (this depends on δ),
then for any η > 0 there exists ε > 0 such that the following holds. If µ > 5τ and
if γζ is a family of injective holomorphic maps γζ : Cζ(µ)→ Cn satisfying

• γ : {(z, ζ) : z ∈ Cζ(µ), ζ ∈ ∂D} → Cn, (z, ζ) 7→ γζ(z) is continuous,
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• distCζ(µ)(γζ , Id) < ε for all ζ ∈ ∂D,

then there exist families {αζ}ζ∈∂D and {βζ}ζ∈∂D of injective holomorphic maps
αζ : Aζ(2τ)→ Cn and βζ : Bζ(2τ)→ Cn with the following properties:

(1) for all ζ ∈ ∂D we have γζ = βζ ◦ α−1
ζ on Cζ(τ),

(2) distAζ(2τ)(αζ , Id) < η and distBζ(2τ)(βζ , Id) < η,
(3) the maps α and β are continuous, where

α : {(z, ζ) ∈ Cn × ∂D : z ∈ Aζ(2τ)} → Cn, (z, ζ) 7→ αζ(z),

β : {(z, ζ) ∈ Cn × ∂D : z ∈ Bζ(2τ)} → Cn, (z, ζ) 7→ βζ(z).

Moreover, the maps αζ may be constructed to match the identity to any given order
at ζ, and if we are given a parameter family γζ,t with t ∈ [0, 1] we may obtain αζ,t
and βζ,t also jointly continuous in (ζ, t).

We note that the two last points were not a part of the statement in [11], but
they follow from the proof.

5.2. Exposing along normal directions. Let Ω ⊂ Cn be a domain with a strictly
plurisubharmonic defining function ρ, and fix p ∈ ∂Ω. By choosing a smooth family
orthogonal frames in Tζ∂Ω for ζ near p we may construct a smooth family of locally
injective holomorphic maps gζ(z) such that gζ(Ω) has a defining function

(6) ρζ(z) = 2Re(z1 +Qζ(z)) + Lζ(z) + h.o.t

near the origin. Define Gζ(z) = (z1 − Qζ(z), z2, ..., zn), so that Hζ = Gζ ◦ gζ
maps ∂Ω to a strictly convex surface near the origin. We may cover ∂Ω by finitely
many open sets Uj such that we have such families of maps Hj

ζ defined on each

Uj , and they all coincide modulo a unitary change of coordinates in {z1 = 0},
sending one frame to another. More precisely, for maps giζ and gjζ we have that

giζ(z) = V gjζ(z), where V z = (z1, Uz
′). For the corresponding defining functions

we get that ρiζ(z1, z
′) = ρjζ(z1, U

−1z′). Furthermore we have

(7) Gjζ(z) = (z1 −Qζ(z), z2, ..., zn),

and

(8) Giζ(z) = (z1 −Qζ((z1, U
−1(z′))), z2, ...zn).

For a point w near ζ, writing z = gjζ(w), we see that

(9) Giζ(g
i
ζ(w)) = Giζ(z1, Uz

′) = (z1 −Qζ(z), Uz′),

and in particular we see that the map g−1
ζ Gζgζ is independent of the choice of

orthonormal fram on the tangent space.
Choose a small a > 0, let la denote the line segment between 0 and a in the

z1-axis, and let ηζ = (Hj
ζ )−1(la). For small b, c > 0 we let B(b, ζ) denote the

ball (Hj
ζ )−1(Bb(a)), and Vζ = (Hj

ζ )−1(la(c)), the inverse image of the open c-tube
around la.

Theorem 5.4. Let Ω ⊂ Cn be a domain with a strictly plurisubarmonic defining
function ρ and with objects defined above. Then for ε1, δ1 > 0 and a, b, c > 0 small
enough there exists a continuous map F : ∂Ω × Ω ⊂ Cn such that the following
holds.
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(i) For each ζ ∈ ∂Ω the map Fζ = F (ζ, ·) : Ω → Cn is a holomorphic embed-
ding,

(ii) Fζ(ζ) = (Hj
ζ )−1(a, 0, ·, 0) =: qζ ,

(iii) Fζ(Ω ∩Bδ1(ζ)) ⊂ Vζ ∪B(b, ζ) ∪ {qζ}, and
(iv) ‖F (ζ, ·)− id‖Ω\Bδ1 (ζ) < ε1.

Moreover, if Ω is polynomially convex we may achieve that Fζ ∈ AutholCn for each
ζ.

Proof. We first define local maps achieving (i)-(iii), and then these will be approx-
imately glued to the identity map using Lemma 5.3 above.

By scaling we may assume that all (local) images Hj
ζ (Ω) are contained in the

ball B = {z : 2Rez1 + ‖z‖2 < 0} of radius one centered at the point (−1, 0, ..., 0).
Let φν,t be the maps from Theorem 3.1 defined for the ball B, the line segment
la, the ball of radius b centred at the point a, and the set V = la(c). Similarly
to the above discussion, since φν,t are one variable maps, the maps defined by

F̃ζ(z) := (Hj
ζ )−1 ◦ φν ◦ Hj

ζ do not depend on the choice of orthonormal frame on

the tangent space, and so are well defined independently of j, and F̃ζ is a locally
defined map (near each ζ) achieving (i)-(iii) for ν large enough.

Now choose δ > 0 small enough, set γζ = F̃ζ |Cζ(µ), and let αζ , βζ be the maps

from Lemma 5.3. Then the maps Fζ defined by F̃ζ ◦αζ on Aζ(2τ) and βζ on Bζ(2τ)
are globally defined on Ω and will satisfy (i)-(iv) as long as all constants involved
are small enough.

For the last part, assuming polynomial convexity, note that Fζ is isotopic to the

identity map through holomorphic embeddings by setting F̃ζ,t := (Hj
ζ )−1◦φt,ν ◦Hj

ζ ,
including the t-parameter from Theorem 3.1, and invoking the last statement in
Lemma 5.3. Following the arguments in Section 5 in [3] each image Fζ,t(Ω) will be
polynomially convex, and so by the Andersén-Lempert theorem with parameters
and jet-interpolation, the map Fζ,1 may be approximated by a family of holomor-
phic automorphisms. Note that in the usual statements of the Andersén-Lempert
theorems, isotopies are required to by of class C2, but it is quite simple to work
with C0-isotopies instead, see [1] for details. �

5.3. Proof of Theorem 1.3. Let ηζ denote the arcs from the previous section
with a << 1. We leave it to the reader to convince himself/herself that the arcs
γζ may be modified so that each of them parametrises ηζ over an interval [0, s],

and so that γζ is perpendicular to H. Let ψt : ∂Ω× Ω ∪ (
⋃
ζ{ζ} × ηζ)→ ∂Ω× Cn

be a fiberpreserving smooth map, t ∈ [0, 1], that is the identity near ∂Ω × Ω, and
stretches each ηζ to cover γζ . According to [9] Section 5 we have that ψt may be
approximated by an isotopy of injective holomorphic maps such that ψ1(ηζ) is still
perpendicular to H, keeping the notation ψt for the approximation. Let Wζ denote

ψ−1
ζ,1(H). Then each Wζ is transverse to ηζ , and there is a b > 0 such that the ball

of radius b centred at a − b is tangent to (Hj
ζ )−1(Wζ) for all ζ, where Hj

ζ is as in
the previous section. Letting Fζ be maps as in Theorem 5.4, the maps ψζ,1 ◦Fζ will

satisfy the claims of the theorem. Finally, as before if Ω is polynomially convex,
the maps ψζ,1 may be taken to be holomorphic automorphisms.

5.4. Proof of Theorem 5.1 and Theorem 5.2. In this subsection, we give the
proofs of Theorem 5.1 and Theorem 5.2, which are based on Theorem 1.3.
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Proof. (of Theorem 5.1) For R > 0, let BR be the ball in Cn centered at the origin
with radius R, and let SR = ∂BR be the boundary of BR. We want to prove that
there is a smooth family of curves γ : ∂D × [0, 1] → ∂D × Cn which satisfies the
conditions 1)-4) in Theorem 1.3, with H replaced by SR for R >> 1.

By assumption, there is a smooth map F : ∂D × Cn → Cn such that for each
ζ ∈ ∂D, Fζ(·) := F (ζ, ·) : Cn → Cn is a diffeomorphism and Fζ(D) is exposed at
Fζ(ζ).

We assume that all Fζ are orientation preserving. For any ζ ∈ ∂D there is a
natural isotopy Hζ : [0, 1] × Cn → Cn from Fζ to the identity, given by Fζ,t =
Fζ(t, z) := 1

tFζ(tz) for t 6= 0, and smoothly extended to 0 by setting Fζ,0(z) = z.
This isotopy gives us a smooth family of vector fields Xζ(t, z) on Cn. In other

words, Fζ,t is generated by Xζ . It is clear that Xζ(t, z) is even smooth jointly with
respect to ζ, t, and z.

Let r > 0 such that Fζ,t(D) ⊂ Br(0) := {z ∈ Cn : ||z|| < r} for all ζ ∈ ∂D and
t ∈ [0, 1]. Let R >> r be a positive number. Let ψ be a positive smooth function
on Cn such that ψ ≡ 1 on Br and ψ ≡ 0 on Cn\BR. Let X ′ζ(t, z) = ψXζ(t, z), then

X ′ has compact support.
Let Gζ : Cn → Cn be the diffeomorphism of Cn generated by X ′ζ(t, z), t ∈ [0, 1].

Then Gζ = Fζ on D and Gζ = Id on Cn\BR.
For ζ ∈ ∂D, let nζ be the unit out-pointing normal vector of ∂Gζ(D) at

Gζ(ζ). Then there is a unique rζ ∈ (0,+∞) such that Gζ(ζ) + rζnζ ∈ SR.
We define a smooth family of curves γ : ∂D × [0, 1] → ∂D × Cn by setting
γ(ζ, t) = (ζ,G−1

ζ (Gζ(ζ) + rζtnζ)).
Then the theorem follows by applying Theorem 1.3 with γ and H = SR. �

Proof. (of Theorem 5.2) For n = 2, we already assume that D is diffeomorphic to
the closed unit ball. For n > 2, we want to show that D is diffeomorphic to the
closed unit ball too. By the Collar Theorem (see Theorem 6.1 in [8]), ∂D is simply
connected. Let z0 ∈ D and let B be an open ball centered at z0 with boundary
S ⊂ D. Let W = D\B, then the triad (W ;S, ∂D) is an h-cobordism. Note that
the relative homology H∗(W,S) = 0. By the h-Cobordism Theorem (see Theorem
9.1 in [10]), W is diffeomorphic to S × [0, 1] and hence D is contractible. So D
is diffeomorphic the the unit ball (See Proposition A in §9 in [10]). By a result
in differential topology (see Theorem 3.1 in [8]), there is a diffeomorphism σ of
Cn such that σ(D) is the closed unit ball. So the Theorem follows from Theorem
5.1. �
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