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Abstract

The well-posedness of classical solutions with finite energy to the compressible

Navier-Stokes equations (CNS) subject to arbitrarily large and smooth initial data

is a challenging problem. In the case when the fluid density is away from vacuum

(strictly positive), this problem was first solved for the CNS in either one-dimension

for general smooth initial data or multi-dimension for smooth initial data near some

equilibrium state (i.e., small perturbation) [1,24,25,30–32]. In the case that the flow

density may contain vacuum (the density can be zero at some space-time point),

it seems to be a rather subtle problem to deal with the well-posedness problem for

CNS. The local well-posedness of classical solutions containing vacuum was shown

in homogeneous Sobolev space (without the information of velocity in L2-norm)

for general regular initial data with some compatibility conditions being satisfied

initially [2, 4–6], and the global existence of classical solution in the same space

is established under additional assumption of small total initial energy but possi-

ble large oscillations [19]. However, it was shown that any classical solutions to

the compressible Navier-Stokes equations in finite energy (inhomogeneous Sobolev)

space can not exist globally in time since it may blow up in finite time provided

that the density was compactly supported [38]. In this paper, we investigate the

well-posedess of classical solutions to the Cauchy problem of Navier-Stokes equa-

tions, and prove that the classical solution with finite energy does not exist in the

inhomogeneous Sobolev space for any short time under some natural assumptions

on initial data near the vacuum. This implies in particular that the homogeneous

Sobolev space is crucial as studying the well-posedness for the Cauchy problem of

compressible Navier-Stokes equations in the presence of vacuum at far fields even

locally in time.
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1 Introduction and Main Results

The motion of a n-dimensional compressible viscous, heat-conductive, Newtonian poly-

tropic fluid is governed by the following full compressible Navier-Stokes system:
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = µ∆u+ (µ+ λ)∇divu,

∂t(ρe) + div(ρeu) + pdivu =
µ

2
|∇u+ (∇u)∗|2 + λ(divu)2 +

κ(γ − 1)

R
∆e,

(1.1)

where (x, t) ∈ Rn × R+, ρ, u, p and e denote the density, velocity, pressure and internal

energy, respectively. µ and λ are the coefficient of viscosity and the second coefficient of

viscosity respectively and κ denotes the coefficient of heat conduction, which satisfy

µ > 0, 2µ+ nλ ≥ 0, κ ≥ 0.

The equation of state for polytropic gases satisfies

p = (γ − 1)ρe, p = A exp
((γ − 1)S

R

)
ργ, (1.2)

where A > 0 and R > 0 are positive constants, γ > 1 is the specific heat ratio, S is the

entropy, and we set A = 1 in this paper for simplicity. The initial data is given by

(ρ, u, e)(x, 0) = (ρ0, u0, e0)(x), x ∈ Rn (1.3)

and is assumed to be continuous. In particular, the initial density is compactly supported

on an open bounded set Ω ⊂ Rn with smooth boundary, i.e.,

suppx ρ0 = Ω̄, ρ0(x) > 0, x ∈ Ω (1.4)

and the initial internal energy e0 is assumed to be nonnegative but not identical to zero

in Ω to avoid the trivial case.

When the heat conduction can be neglected and the compressible viscous fluids are

isentropic, the compressible Navier-Stokes equations (1.1) can be reduced to the following

system {
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = µ∆u+ (µ+ λ)∇divu,
(1.5)
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for (x, t) ∈ Rn × R+, where the equation of state satisfies

p = Aργ (1.6)

and the initial data are given by

(ρ, u)(x, 0) = (ρ0, u0)(x), x ∈ Rn (1.7)

with the initial density being compactly supported, i.e., the assumption (1.4) holds.

It is an important issue to study the global existence (well-posedness) of classical/strong

solution to CNS (1.1) and (1.5), and many significant progress have been made recently

on this and related topics, such as the global existence and asymptotic behaviors of solu-

tions to (1.1) and (1.5). For instance, in the case when the flow density is strictly away

from the vacuum (infΩ ρ > 0), the short time existence of classical solution was shown for

general regular initial data [23], the global existence of solutions problems were proved in

spatial one-dimension by Kazhikhov et al. [1, 24, 25] for sufficiently smooth data and by

Serre [35, 36] and Hoff [14] for discontinuous initial data. The key point here behind the

strategies to establish the global existence of strong solutions lies in the fact that if the

flow density is strictly positive at the initial time, so does for any later-on time. This is

also proved to be true for weak solutions to the compressible Navier-Stokes equations (1.1)

in one space dimension, namely, weak solution does not exhibit vacuum states in any finite

time provided that no vacuum is present initially [17]. The corresponding multidimen-

sional problems were also investigated as the flow density is away from the vacuum, for

instance, the short time well-posedness of classical solution was shown by Nash and Serrin

for general smooth initial data [33,37], and the global existence of unique strong solution

was first proved by Matsumura and Nishida [30–32] in the energy space (inhomogeneous

Sobolev space)  ρ− ρ̄ ∈ C
(
0, T ;H3(R3)

)⋂
C1
(
0, T ;H2(R3)

)
,

u, e− ē ∈ C
(
0, T ;H3(R3)

)⋂
C1
(
0, T ;H1(R3)

)
,

(1.8)

with ρ̄ > 0 and ē > 0 for any T ∈ (0,∞], where the additional assumption of small os-

cillation is required on the perturbation of initial data near the non-vacuum equilibrium

state (ρ̄, 0, ē). The global existence of non-vacuum solution was also solved by Hoff for

discontinuous initial data [15], and by Danchin [9] who set up the framework based on

the Besov type space (a functional space invariant by the natural scaling of the associated

equations) to obtain existence and uniqueness of global solutions, where the small oscilla-

tions on the perturbation of initial data near some non-vacuum equilibrium state is also
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required. It should be mentioned here that above smallness of the initial oscillation on

the perturbation of initial data near the non-vacuum equilibrium state and the uniformly

a-priori estimates established on the classical solutions to CNS (1.1) or (1.5) are sufficient

to establish the strict positivity and uniform bounds of flow density, which is essential

to prove the global existence of solutions with the flow density away from vacuum in the

inhomogeneous Sobolev space (1.8) or other function spaces [9, 15]. However, recently,

this assumption on the small oscillations on the initial perturbation of a non-vacuum

state can be removed at least for the isentropic case by Huang-Li-Xin in [19] provided

that the initial total mechanical energy is suitable small which is equivalent to that the

mean square norm of the initial difference from the non-vacuum state is small so that the

perturbation may contain large oscillations and vacuum state (see also [10]).

In the case when the flow density may contain vacuum (the flow density is non-

negative), it is rather difficult and challenging to investigate the global existence (well-

posedness) of classical/strong solutions to CNS (1.1) and CNS (1.5), corresponding to

the well-posedness theory of classical solutions [30–32], and the possible appearance of

vacuum in the flow density (i.e., the flow density is zero) is one of the essential difficul-

ties in the analysis of the well-posedness and related problems [2,4–6,10,14,16,17,34,35,

38–40]. Indeed, as it is well-known that (1.1) and (1.5) are strongly coupled systems of

hyperbolic-parabolic type, the density ρ(x, t) can be determined by its initial value ρ0(x0)

by Eq. (1.5)1 along the particle path x(t) satisfying x = x(t) and x(0) = x0 provided

that the flow velocity u(x, t) is a-priorily regular enough. Yet, the flow velocity can only

be solved by Eq. (1.5)2 which is uniformly parabolic so long as the density is a-priorily

strictly positive and uniformly bounded function. However, the appearance of vacuum

leads to the strong degeneracy of the hyperbolic-parabolic system and the behaviors of

the solution may become singular, such as the ill-posedness and finite blow-up of classical

solutions [3,16,35,38,39]. Recently, the global existence of weak solutions with finite en-

ergy to the isentropic system (1.5) subject to general initial data with finite initial energy

(initial data may include vacuum states) by Lions [26–28], Jiang-Zhang [22] and Feireisl

et al. [11], where the exponent γ may be required to be large and the flow density is

allowed to vanish. Despite the important progress, the regularity, uniqueness and behav-

ior of these weak solutions remain largely open. As emphasized before [3, 16, 35, 38, 39],

the possible appearance of vacuum is one of the major difficulties when trying to prove

global existence and strong regularity results. Indeed, Xin [38] first shows that it is im-

possible to obtain the global existence of finite energy classical solution to the Cauchy

problem for (1.1) in the inhomogeneous Sobolev space (1.8) for any smooth initial data

with initial flow density compactly supported and similar phenomena happens for the
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isentropic system (1.5) for a large class of smooth initial data with compactly supported

density. To be more precise, if there exists any solution (ρ, u, e) ∈ C1(0, T ;H2(R3)) for

some time T > 0, then it must hold T < +∞, which also implies the finite time blow-up

of solution (ρ, u, e) ∈ C1(0, T ;H2(R3)) if existing in the presence of the vacuum. Yet, Cho

et al. [2,4–6] proved the local well-posedness of classical solutions to the Cauchy problem

for isentropic compressible Navier-Stokes equations (1.5) and full Navier-Stokes equa-

tions (1.1) with the initial density containing vacuum for some T > 0 in the homogeneous

energy space  ρ ∈ C
(
0, T ;H3(R3)

)⋂
C1
(
0, T ;H2(R3)

)
,

u, e ∈ C
(
0, T ;D3(R3)

)⋂
L2
(
0, T ;D4(R3)

)
,

(1.9)

where Dk(R3) = {f ∈ L1
loc(R3) : ∇f ∈ Hk−1(R3) }, under some additional compatibil-

ity conditions as (1.14) on u and similar compatibility condition on e. Moreover, under

additional smallness assumption on initial energy, the global existence and uniqueness of

classical solutions to the isentropic system (1.5) established by Huang-Li-Xin in homo-

geneous Sobolev space [19]. Interestingly, such a theory of global in time existence of

classical solutions to the full CNS (1.1) fails to be true due to the blow-up results Xin-

Yan [39] where they show that any classical solutions to (1.1) will blow-up in finite time

as long as the initial density has an isolated mass group. Note that the blow-up results

in [39] is independent of the spaces the solutions may be and whether they have small

or large data. It should be noted that the main difference of the homogeneous Sobolev

space (1.9) from the inhomogeneous Sobolev space (1.8) lies that there is no any estimates

on the term ‖u‖L2 for the velocity. Thus, it is natural and important to show whether or

not the classical solution to the Cauchy problem for the CNS (1.1) and CNS (1.5) exits

in the inhomogeneous Sobolev space (1.8) for some small time.

We study the well-posedess of classical solutions to the Cauchy problem for the

full compressible Navier-Stokes equations (1.1) and the isentropic Navier-Stokes equa-

tions (1.5) in the inhomogeneous Sobolev space (1.8) in the present paper, and we prove

that there does not exist any classical solution in the inhomogeneous Sobolev space (1.8)

for any small time (refer to Theorems 1.1–1.3 for details). These imply that the homoge-

neous Sobolev spaces such as (1.8), are crucial in the study of the well-posedness theory

of classical solutions to the Cauchy problem of compressible Navier-Stokes equations in

the presence of vacuum at far fields.

The main results in this paper can be stated as follows:

Theorem 1.1 The one-dimensional isentropic Navier-Stokes equations (1.5)-(1.7) with

the initial density satisfying (1.4) with Ω , I = (0, 1) has no solution (ρ, u) in the
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inhomogeneous Sobolev space C1
(
[0, T ];Hm(R)

)
, m > 2 for any positive time T , if the

initial data (ρ0, u0) satisfy one of the following two conditions in the interval I: there exist

positive numbers λi, i = 1, 2, 3, 4 with 0 < λ3, λ4 < 1 such that
(ρ0)x
ρ0

≥ λ1, in (0, λ3),

u0(λ3) < 0, u0 ≤ 0, in (0, λ3),

(1.10)

or 
(ρ0)x
ρ0

≤ −λ2, in (λ4, 1),

u0(λ4) > 0, u0 ≥ 0, in (λ4, 1).

(1.11)

The following remark is helpful for understanding the conditions (1.10)-(1.11) and Theo-

rem 1.1.

Remark 1.1 The set of initial data (ρ0, u0) satisfying the condition (1.10) or (1.11) is

non-empty. For example, for any given positive integers k and l. Set

ρ0(x) =

{
xk(1− x)k, for x ∈ [0, 1],

0, for x ∈ R \ [0, 1]
(1.12)

and

u0(x) =



− xl, for x ∈ [0,
1

4
],

smooth connection, for x ∈ (
1

4
,
3

4
),

(1− x)l, for x ∈ [
3

4
, 1],

0, for x ∈ R \ [0, 1],

(1.13)

then (ρ0, u0) satisfies both (1.10) and (1.11).

It is known that the system (1.5)-(1.7) is well-posed in the homogeneous Sobolev space

in classical sense if and only if ρ0 and u0 satisfy the following compatibility condition

(see [5]) {
− µ∆u0 − (µ+ λ)∇divu0 +∇p0 = ρ0g,

g ∈ D1,
√
ρ0g ∈ L2.

(1.14)
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In one-dimensional case, for (ρ0, u0) given by (1.12) and (1.13), we have

g =



O(xl−k−2) +O(xl−k−1) +O(xk(γ−1)−1), for x ∈ [0,
1

4
],

smooth connection, for x ∈ (
1

4
,
3

4
),

O
(
(1− x)l−k−2

)
+O

(
(1− x)l−k−1

)
+O

(
(1− x)k(γ−1)−1

)
, for x ∈ [

3

4
, 1],

0, for x ∈ R \ [0, 1].

Direct calculations show (ρ0, u0) satisfy (1.14) if and only if
k >

3

2(γ − 1)
,

l > k +
5

2
.

(1.15)

For the initial data (ρ0, u0) given by (1.12) and (1.13) with (1.15), the system (1.5)-

(1.7) is well-posed in homogeneous Sobolev space but has no solution in C1
(
[0, T ];Hm(R)

)
,

m > 2 for any positive time T . Therefore, the solution constructed in [5] doesn’t have

finite energy in C1
(
[0, T ];Hm(R)

)
, m > 2 for any positive time T even if the initial data

has finite energy in Hm(R). Precisely, even if∫
R
u2

0(x) dx <∞,

but it holds that ∫
R
u2(x, t) dx =∞, for any t > 0.

Theorem 1.2 The one-dimensional full Navier-Stokes equations (1.1)-(1.3) with zero

heat conduction and the initial density satisfying (1.4) with Ω , I = (0, 1) has no solution

(ρ, u, e) in the inhomogeneous Sobolev space C1
(
[0, T ];Hm(R)

)
, m > 2 for any positive

time T , if the initial data (ρ0, u0, e0) satisfy one of the following two conditions in the

interval I: there exist positive numbers λi, i = 5, 6, 7, 8 with 0 < λ7, λ8 < 1 such that
(ρ0)x
ρ0

+
(e0)x
ρ0

≥ λ5, in (0, λ7),

u0(λ7) < 0, u0 ≤ 0, in (0, λ7),

(1.16)

or 
(ρ0)x
ρ0

+
(e0)x
ρ0

≤ −λ6, in (λ8, 1),

u0(λ8) > 0, u0 ≥ 0, in (λ8, 1).

(1.17)
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Huang and Li [18] proved the well-posedness to the Cauchy problem of the n-dimensional

full compressible Navier-Stokes equations (1.1)-(1.3) with positive heat conduction in

Sobolev space, but the entropy function S(t, x) is infinite in vacuum domain (see Remark

4.2 in [39]). If the entropy function S(t, x) is required to be finite in vacuum domains,

then we have the following non-existence result:

Theorem 1.3 The n-dimensional full compressible Navier-Stokes equations (1.1)-(1.3)

with positive heat conduction and the initial density satisfying (1.4) has no solution (ρ, u, e)

in the inhomogeneous Sobolev space C1
(
[0, T ];Hm(Rn)

)
, m > [n

2
] + 2 with finite entropy

S(t, x) for any positive time T .

To prove Theorem 1.1-Theorem 1.3, we will carry out the following steps. First we

reduce the original Cauchy problem to an initial-boundary value problem, which then

can be reduced further to an integro-differential system with degeneracy for t-derivative

by the Lagrangian coordinates transformation, and one can then define a linear parabolic

operator from the integro-differential system and establish the Hopf’s lemma and a strong

maximum principle for the resulting operator, and finally we prove that the resulting

system is over-determined by contradiction. Because the linear parabolic operator here

degenerates for t-derivative due to that the initial density vanishes on boundary, one needs

careful analysis to deduce a localized version strong maximum principle on some rectangle

away from boundaries.

We should stress that our method is based on maximum principle for parabolic op-

erator, therefore we shall deal with one-dimensional isentropic case in Section 2, one-

dimensional zero heat conduction case in Section 3 and n-dimensional positive heat con-

duction case in Section 4 separately, we define parabolic operators from momentum equa-

tion near the degenerate boundary in the Lagrangian coordinates by adding some condi-

tions on initial data for the first two cases and the energy equation in the whole domain

for the last case, respectively.

2 Proof of Theorem 1.1

2.1 Reformulation of Theorem 1.1

Suppose that n = 1. Let (ρ, u) ∈ C1
(
[0, T ];Hm(R)

)
, m > 2 be a solution to the system

(1.5)-(1.7) with the initial density satisfying (1.4). Let a(t) and b(t) be the particle paths
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stating from 0 and 1, respectively. The following argument is due to Xin [38]. Following

from the first equation of (1.5), we see suppx ρ = [a(t), b(t)]. It follows from the second

equation of (1.5) that

uxx(x, t) = 0, ∀ x ∈ R \ [a(t), b(t)],

which gives

u(x, t) =

{
u(b(t), t) + (x− b(t))ux(b(t), t), if x > b(t),

u(a(t), t) + (x− a(t))ux(a(t), t), if x < a(t).

Since u(·, t) ∈ Hm(R), m > 2, then one has

u(x, t) = ux(x, t) = 0, ∀ x ∈ R \ [a(t), b(t)], (2.1)

which implies [a(t), b(t)] = [0, 1], i.e., suppx ρ(x, t) = [0, 1]. We should remark that the

above argument doesn’t apply to homogeneous Sobolev spaces since we have no control

on L2-norm of the velocity.

Therefore, by the above argument, to study the well-posedness of the system (1.5)-

(1.7) with the initial density satisfying (1.4), we need only to study the well-posedness of

the following initial-boundary value problem
ρt + (ρu)x = 0, in I × (0, T ],

(ρu)t + (ρu2 + p)x = νuxx, in I × (0, T ],

(ρ, u) = (ρ0, u0), on I × {t = 0},
ρ = u = ux = 0, on ∂I × (0, T ],

(2.2)

where ν = 2µ+ λ.

To prove the non-existence of Cauchy problem (1.5)-(1.7) in C1
(
[0, T ];Hm(R)

)
, m >

2, it suffices to show the non-existence of the initial-boundary value problem (2.2) in

C2,1(Ī × [0, T ]), which denotes the set of functions that are C2 in space and C1 in time

in the space-time domain Ī × [0, T ] hereafter. Thus, in order to prove Theorem 1.1, one

needs only to show the following:

Theorem 2.1 The initial-boundary value problem (2.2) has no solution (ρ, u) in C2,1(Ī×
[0, T ]) for any positive time T , if the initial data (ρ0, u0) satisfy the condition (1.10) or

(1.11).
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Let η(x, t) denote the position of the gas particle starting from x at time t = 0

satisfying {
ηt(x, t) = u(η(x, t), t),

η(x, 0) = x.
(2.3)

% and v are the Lagrangian density and velocity given by{
%(x, t) = ρ(η(x, t), t),

v(x, t) = u(η(x, t), t).

Then the system (2.2) can be rewritten in the Lagrangian coordinates as

%t +
%vx
ηx

= 0, in I × (0, T ],

ηx%vt + (%γ)x = ν(
vx
ηx

)x, in I × (0, T ],

ηt(x, t) = v(x, t),

(%, v, η) = (ρ0, u0, x), on I × {t = 0},
% = v = vx = 0, on ∂I × (0, T ].

(2.4)

The first equation of (2.4) implies that

%(x, t) =
ρ0(x)

ηx(x, t)
.

Regarding ρ0 as a parameter, then one can reduce the system (2.4) further to

ρ0vt + (
ργ0
ηγx

)x = ν(
vx
ηx

)x, in I × (0, T ],

ηt(x, t) = v(x, t),

(v, η) = (u0, x), on I × {t = 0},
v = vx = 0, on ∂I × (0, T ].

(2.5)

The condition (1.10) or (1.11) on the initial data (ρ0, u0) takes the following form in

the Lagrangian coordinates
(ρ0)x
ρ0

≥ λ1, in (0, λ3),

v0(λ3) < 0, v0 ≤ 0, in (0, λ3),

(2.6)

or 
(ρ0)x
ρ0

≤ −λ2, in (λ4, 1),

v0(λ4) > 0, v0 ≥ 0, in (λ4, 1).

(2.7)
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The non-existence of the initial-boundary value problem (2.2) follows from the non-

existence of the initial-boundary value problem (2.5) in C2,1(Ī × [0, T ]). Thus, Theorem

2.1 is a consequence of the following:

Theorem 2.2 The problem (2.5) has no solution (v, η) in C2,1(Ī× [0, T ]) for any positive

time T , if the initial data (ρ0, u0) satisfy the condition (2.6) or (2.7).

2.2 Proof of Theorem 2.2

Given a sufficiently small positive time T ∗, we let (v, η) ∈ C2,1(Ī×[0, T ∗]) be a solution

of the system (2.5) with (2.6) or (2.7). Define the linear parabolic operator ρ0∂t + L by

ρ0∂t + L := ρ0∂t −
ν

ηx
∂xx +

νηxx
η2
x

∂x,

where

ηx = 1 +

∫ t

0

vx ds and ηxx =

∫ t

0

vxx ds.

Then, it follows from the first equation of (2.5) that

ρ0vt + Lv = −
(ργ0
ηγx

)
x
. (2.8)

Let M be a positive constant such that

ρ0 + |v0|+ |(v0)x|+ |(v0)xx| < M.

It follows from the continuity on time that for short time, it holds that

|v|+ |vx|+ |vxx| ≤M, in I × (0, T ∗].

Taking a positive time T < T ∗ sufficiently small such that T ≤ 1
2M

, then one has∣∣∣∣∫ t

0

vx ds

∣∣∣∣ ≤MT ≤ 1

2
, in I × (0, T ].

This implies

1

2
≤ ηx ≤

3

2
and , in I × (0, T ]. (2.9)

Thus, (2.5) is a well-defined integro-differential system with degeneracy for t-derivative

due to that the initial density ρ0 vanishes on the boundary ∂I.
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Restrict T further such that T ≤ λ1
4M

. Then, (2.9) together with (2.6) implies

−
(ργ0
ηγx

)
x

= −γρ
γ
0

ηγx

[(ρ0)x
ρ0

− ηxx
ηx

]
≤ −γρ

γ
0

ηγx

(
λ1 −

λ1

2

)
< 0, in (0, λ3)× (0, T ]. (2.10)

Thus, under the assumption (2.6), it follows from (2.8) and (2.10) that v satisfies the

following differential inequality

ρ0vt + Lv ≤ 0, in (0, λ3)× (0, T ]. (2.11)

Similarly, under the condition (2.7), v instead satisfies

ρ0vt + Lv ≥ 0, in (λ4, 1)× (0, T ]. (2.12)

In the rest of this section, we will establish the Hopf’s lemma and strong maximum

principle for a general function w satisfying the differential inequality (2.11) or (2.12).

First recall the definition of the parabolic boundary (see [13]) of a bounded domain D of

Rn × R+. The parabolic boundary ∂pD of D consists of points (x0, t0) ∈ ∂D such that

Br(x0)× (t0−r2, t0] contains points not in D, for any r > 0. Suppose that Q is a bounded

domain of Rn, we use the notation QT := Q×(0, T ] to denote a cylinder in (0, λ3)×(0, T ].

We first state the weak maximum principle in QT .

Lemma 2.1 Suppose that w ∈ C2,1(QT )
⋂
C(Q̄T ) satisfies (2.11) in QT . Then w attains

its maximum on the parabolic boundary of QT .

Proof. We first prove the statement under a stronger hypothesis instead of (2.11) that

ρ0wt + Lw < 0, in QT . (2.13)

Assume w attains its maximum at an interior point (x0, t0) of the domain QT . Therefore

wt(x0, t0) ≥ 0, wx(x0, t0) = 0, wxx(x0, t0) ≤ 0,

which implies ρ0wt + Lw ≥ 0, this contradicts (2.13). Next, define the auxiliary function

ϕε = w − εt,

for a positive number ε. Then

ρ0ϕ
ε
t + Lϕε = ρ0wt + Lw − ερ0 < 0, in QT .

Thus ϕε attains its maximum on the parabolic boundary of QT , which proves the assertion

of Lemma 2.1 by letting ε go to zero. 2

The result in Lemma 2.1 can be extended to a general domain D contained in (0, λ3)×
(0, T ] (see [12]).
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Lemma 2.2 Suppose that w ∈ C2,1(D)
⋂
C(D̄) satisfies (2.11) in D. Then w attains its

maximum on the parabolic boundary of D.

We next present the Hopf’s lemma that is crucial to prove Theorem 2.2.

Proposition 2.1 Suppose that w ∈ C2,1
(
(0, λ3) × (0, T ]

)⋂
C([0, λ3] × [0, T ]) satisfies

(2.11) and there exits a point (0, t0) ∈ {0} × (0, T ] such that w(x, t) < w(0, t0) for any

point (x, t) in a neighborhood D of the point (0, t0), where

D =:
{

(x, t) : (x− r)2 + (t0 − t) < r2, 0 < x < r
2
, 0 < t ≤ t0

}
,

0 < r < λ3, t0 − 3r2

4
> 0.

Then it holds that

∂w(0, t0)

∂~n
> 0,

where ~n := (−1, 0) is the outer unit normal vector at the point (0, t0).

Proof. For positive constants α and ε to be determined, set

q(α, x, t) = e−α[(x−r)2+(t0−t)] − e−αr2

and

ϕ(ε, α, x, t) = w(x, t)− w(0, t0) + εq(α, x, t).

First, we determine ε. The parabolic boundary ∂pD consists of two parts Σ1 and Σ2

given by

Σ1 =
{

(x, t) : (x− r)2 + (t0 − t) < r2, x =
r

2
, 0 < t ≤ t0

}
and

Σ2 =
{

(x, t) : (x− r)2 + (t0 − t) = r2, 0 ≤ x ≤ r

2
, 0 < t ≤ t0

}
.

On Σ̄1, w(x, t) − w(0, t0) < 0, and hence w(x, t) − w(0, t0) < −ε0 for some ε0 > 0. Note

that q ≤ 1 on Σ1. Then for such an ε0, ϕ(ε0, α, x, t) < 0 on Σ1. For (x, t) ∈ Σ2, q = 0

and w(x, t) ≤ w(0, t0). Thus, ϕ(ε0, α, x, t) ≤ 0 for any (x, t) ∈ Σ2 and ϕ(ε0, α, 0, t0) = 0.

One concludes that {
ϕ(ε0, α, x, t) ≤ 0, on ∂pD,

ϕ(ε0, α, 0, t0) = 0.
(2.14)
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Next, we choose α. Since w satisfies (2.11), it follows that

ρ0ϕt(ε0, α, x, t) + Lϕ(ε0, α, x, t)

= ρ0wt(x, t) + Lw(x, t) + ε0

[
ρ0qt(α, x, t) + Lq(α, x, t)

]
≤ ε0

[
ρ0qt(α, x, t) + Lq(α, x, t)

]
.

(2.15)

A direct calculation yields

eα[(x−r)2+(t0−t)]
[
ρ0qt(α, x, t) + Lq(α, x, t)

]
= −4ν(x− r)2

ηx
α2 +

[
ρ0 +

2ν

ηx
+

2νηxx(r − x)

η2
x

]
α

≤ −2νr2

3
α2 + (M + 4ν + 8νMr)α.

Therefore, there exists a positive number α0 = α0(ν, r,M) such that

ρ0qt(α0, x, t) + Lq(α0, x, t) ≤ 0, in D. (2.16)

Thus, it follows from (2.15) and (2.16) that

ρ0ϕt(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≤ 0, in D. (2.17)

In conclusion, in view of (2.14) and (2.17), one has
ρ0ϕt(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≤ 0, in D,

ϕ(ε0, α0, x, t) ≤ 0, on ∂pD,

ϕ(ε0, α0, 0, t0) = 0.

This, together with Lemma 2.2 yields

ϕ(ε0, α0, x, t) ≤ 0, in D.

Therefore, the function ϕ(ε0, α0, ·, ·) attains its maximum at the point (0, t0) in D. In

particular, it holds that

ϕ(ε0, α0, x, t0) ≤ ϕ(ε0, α0, 0, t0), for all x ∈ (0,
r

2
).

This implies

∂ϕ(ε0, α0, 0, t0)

∂~n
≥ 0.
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Finally, we get

∂w(0, t0)

∂~n
≥ −ε0

∂q(α0, 0, t0)

∂~n
= 2ε0α0re

−α0r2 > 0.

2

In order to establish the strong maximum principle, we need to study the t-derivative

of interior maximum point. The main ideas in the following lemmas come from [12].

Lemma 2.3 Let w ∈ C2,1
(
(0, λ3)× (0, T ]

)⋂
C([0, λ3]× [0, T ]) satisfy (2.11) and have a

maximum M0 in the domain (0, λ3)×(0, T ]. Suppose that (0, λ3)×(0, T ] contains a closed

solid ellipsoid

Ωσ :=
{

(x, t) : (x− x∗)2 + σ(t− t∗)2 ≤ r2
}
, σ > 0

and w(x, t) < M0 for any interior point (x, t) of Ωσ and w(x̄, t̄) = M0 at some point (x̄, t̄)

on the boundary of Ωσ. Then x̄ = x∗.

Proof. It is easy to see that one may choose a smaller closed ellipsoid Ω̃δ with the center

of the form (x∗, t̃∗) such that it lies in the domain Ωσ and has only two isolated boundary

points in common. By the assumption of the Lemma 2.3, in Ω̃δ, w attains the maximum

M0 at no more than two isolated boundary points on ∂Ω̃δ. Therefore, without loss of

generality, we may replace Ωσ by Ω̃δ, namely assuming that w attains the maximum M0

in Ωσ at no more than two isolated points (x̄, t̄) and (x̃, t̃) on ∂Ωσ. We prove the desired

result by contradiction. Suppose that x̄ 6= x∗. Applying Lemma 2.2 on the domain

[0, λ3]× [0, T ], one shows that t̄ < T . Choose a closed ball D with center (x̄, t̄) and radius

r̃ < min{|x̄− x∗|, |x̄− x̃|} contained in (0, λ3)× (0, T ]. Then |x− x∗| ≥ |x̄− x∗| − r̃ =: r̂

for any point (x, t) ∈ D. The parabolic boundary of D is composed of a part Σ1 lying in

Ωσ and a part Σ2 lying outside Ωσ.

For positive constants α and ε to be determined, set

q(α, x, t) = e−α[(x−x∗)2+σ(t−t∗)2] − e−αr2

and

ϕ(ε, α, x, t) = w(x, t)−M0 + εq(α, x, t).

We first determine the value of ε. Note that q(α, x, t) > 0 in the interior of Ωσ, q(α, x, t) =

0 on ∂Ωσ and q(α, x, t) < 0 outside Ωσ. So, it holds that ϕ(ε, α, x̄, t̄) = 0. On Σ1,

w(x, t)−M0 < 0, and hence w(x, t)−M0 < −ε0 for some ε0 > 0. Note that q(α, x, t) ≤ 1
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on Σ1. Then for such an ε0, ϕ(ε0, α, x, t) < 0 on Σ1. For (x, t) ∈ Σ2, q(α, x, t) < 0 and

w(x, t)−M0 ≤ 0. Thus, ϕ(ε0, α, x, t) < 0 for any (x, t) ∈ Σ2. One concludes that{
ϕ(ε0, α, x, t) < 0, on ∂pD,

ϕ(ε0, α, x̄, t̄) = 0.
(2.18)

Next, we estimate ρ0qt(α, x, t)+Lq(α, x, t). One calculates that for the point (x, t) ∈ D,

eα[(x−x∗)2+σ(t−t∗)2]
[
ρ0qt(α, x, t) + Lq(α, x, t)

]
= −4ν(x− x∗)2

ηx
α2 +

[
2σρ0(t∗ − t) +

2ν

ηx
+

2νηxx(x∗ − x)

η2
x

]
α

≤ −8νr̂2

3
α2 + (2σM + 4ν + 8νMr)α.

Therefore, there exists a positive number α0 = α0(ν, r, r̂, σ,M) such that

ρ0qt(α0, x, t) + Lq(α0, x, t) ≤ 0, in D. (2.19)

Thus, it follows from (2.15) and (2.19) that

ρ0ϕt(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≤ 0, in D. (2.20)

In conclusion, it follows from (2.18) and (2.20) that
ρ0ϕt(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≤ 0, in D,

ϕ(ε0, α0, x, t) < 0, on ∂pD,

ϕ(ε0, α0, x̄, t̄) = 0.

However, Lemma 2.2 implies that

ϕ(ε0, α0, x, t) < 0, in D,

which contradicts ϕ(ε0, α0, x̄, t̄) = 0 due to (x̄, t̄) ∈ D. 2

Based on Lemma 2.3, it is standard to prove the following lemma. For details, please

refer to Lemma 3 of Chapter 2 in [12].

Lemma 2.4 Suppose that w ∈ C2,1
(
(0, λ3)×(0, T ]

)⋂
C([0, λ3]×[0, T ]) satisfies (2.11). If

w has a maximum in an interior point P0 = (x0, t0) of (0, λ3)× (0, T ], then w(P ) = w(P0)

for any point of the form P = (x, t0) in (0, λ3)× (0, T ].

We first prove a localized version strong maximum principle in a rectangle R of the

domain (0, λ3)× (0, T ].
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Lemma 2.5 Suppose that w ∈ C2,1
(
(0, λ3)× (0, T ]

)⋂
C([0, λ3]× [0, T ]) satisfies (2.11).

If w has a maximum in the interior point P0 = (x0, t0) of (0, λ3)× (0, T ], then there exists

a rectangle

R(P0) :=
{

(x, t) : x0 − a1 ≤ x ≤ x0 + a1, t0 − a0 ≤ t ≤ t0
}

in (0, λ3)× (0, T ] such that w(P ) = w(P0) for any point P of R(P0).

Proof. We prove the desired result by contradiction. Suppose that there exists an interior

point P1 = (x1, t1) of (0, λ3) × (0, T ] with t1 < t0 such that w(P1) < w(P0). Connect P1

to P0 by a simple smooth curve γ. Then there exists a point P∗ = (x∗, t∗) on γ such

that w(P∗) = w(P0) and w(P̄ ) < w(P∗) for all any point P̄ of γ between P1 and P∗. We

may assume that P∗ = P0 and P1 is very near to P0. There exist a rectangle R(P0) in

(0, λ3) × (0, T ] with small positive numbers a0 and a1 (will be determined) such that P1

lies on t = t0−a0. Since R(P0)\{t = t0}
⋂
{t = t̄} contains some point P̄ = (x̄, t̄) of γ and

w(P̄ ) < w(P0), we deduce w(P ) < w(P0) for each point P in R(P0) \ {t = t0}
⋂
{t = t̄}

due to Lemma 2.4. Therefore, w(P ) < w(P0) for each point P in R(P0) \ {t = t0}.
For positive constants α and ε to be determined, set

q(α, x, t) = t0 − t− α(x− x0)2

and

ϕ(ε, α, x, t) = w(x, t)− w(P0) + εq(α, x, t).

Assume further that P = (x0 − a1, t0 − a0) is on the parabola q(α, x, t) = 0, then one has

α =
a0

a2
1

. (2.21)

To choose α, one calculates that

ρ0qt(α, x, t) + Lq(α, x, t) = −ρ0 +
[2ν
ηx
− 2νηxx(x− x0)

η2
x

]
α

≤ −ρ0 + (4ν + 8νMa1)α.

(2.22)

Since ρ0 has a positive lower bound depending on x0 − a1 in R(P0), one may choose α0

such that

α0 <
ρ0

4ν + 8νMa1

. (2.23)
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Thus (2.22) and (2.23) yield

ρ0ϕt(α0, x, t) + Lϕ(α0, x, t) ≤ 0, in R(P0). (2.24)

One next fixes a1 such that

a1 < min{x0, λ3 − x0},

and then chooses a0 by (2.21) and (2.23) as

a0 < min

{
t0,

a2
1ρ0

2(4ν + 8νMa1)

}
.

Denote S = {(x, t) ∈ R(P0) : q(α0, x, t) ≥ 0}. The parabolic boundary ∂pS of S is

composed of a part Σ1 lying in R(P0) and a part Σ2 lying on R(P0)
⋂
{t = t0 − a0}.

We now determine ε. Note that on Σ2, w(x, t) −M0 < 0, and q(α0, x, t) is bounded,

one can choose sufficiently small number ε0 such that ϕ(ε0, α0, x, t) < 0 on Σ2. On

Σ1 \ {P0}, q(α0, x, t) = 0 and w(x, t)−M0 < 0. Thus, ϕ(ε0, α0, x, t) < 0 on Σ1 \ {P0} and

ϕ(ε0, α0, x0, t0) = 0. One concludes that{
ϕ(ε0, α0, x, t) < 0, on ∂pS \ {P0},
ϕ(ε0, α0, x0, t0) = 0.

(2.25)

In conclusion, it follows from (2.24) and (2.25) that there exist ε0, a0 and a1 such that
ρ0ϕt(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≤ 0, in S,
ϕ(ε0, α0, x, t) < 0, on ∂pS \ {P0},
ϕ(ε0, α0, x0, t0) = 0.

(2.26)

In view of Lemma 2.2 and (2.26), the function ϕ(ε0, α0, ·, ·) only attains its maximum

at P0 in S̄, thus

∂ϕ(ε0, α0, x0, t0)

∂t
≥ 0.

Note that q satisfies at P0

∂q(α0, x0, t0)

∂t
= −1.

Therefore

∂w(x0, t0)

∂t
≥ ε0. (2.27)
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But, by the assumption, w attains its maximum at P0, it follows that

ρ0
∂w(x0, t0)

∂t
≤ −Lw(x0, t0) ≤ 0,

which contradicts (2.27). 2

Now we can prove the following strong maximum principle.

Proposition 2.2 Suppose that w ∈ C2,1
(
(0, λ3) × (0, T ]

)⋂
C([0, λ3] × [0, T ]) satisfies

(2.11). If w attains its maximum at some interior point P0 = (x0, t0) of (0, λ3) × (0, T ],

then w(P ) = w(P0) for any point P ∈ (0, λ3)× (0, t0].

Proof. We prove the desired result by contradiction. Suppose that w 6≡ w(P0). Then

there exists a point P1 = (x1, t1) of (0, λ3)× (0, t0] such that w(P1) < w(P0). By Lemma

2.4, there must be t1 < t0.

Connect P1 to P0 by a straight line γ. There exists a point P∗ on γ such that w(P∗) =

w(P0) and w(P̄ ) < w(P∗) for any point P̄ on γ lying between P∗ and P1. Denote by

γ0 the closed sub straight line of γ lying P∗ and P1. Construct a series of rectangles

Rn, n = 1, 2, · · · , N with small an and bn such that γ0 ⊂
⋃N
n=1Rn, P∗ ∈ R1 and P1 ∈

RN . Applying Lemma 2.5 on R1,R2, · · · ,RN step by step it follows that w = w(P1)

in
⋃N
n=1Rn. Hence, one deduces w(P∗) ≡ w(P1) due to P∗ lying on γ0, which is a

contradiction. 2

Let D be a domain contained in (λ4, 1)×(0, T ]. Similar to Lemma 2.2, Proposition 2.1

and Proposition 2.2, we have the corresponding weak maximum principle, Hopf’s lemma

and strong minimum principle for w satisfying the differential inequality (2.12).

Lemma 2.6 Suppose that w ∈ C2,1(D)
⋂
C(D̄) satisfies (2.12) in D. Then w attains its

minimum on the parabolic boundary of D.

Proposition 2.3 Suppose that w ∈ C2,1
(
(λ4, 1) × (0, T ]

)⋂
C([λ4, 1] × [0, T ]) satisfies

(2.12) and there exits a point (1, t0) ∈ {1} × (0, T ] such that w(x, t) > w(1, t0) for any

point (x, t) in a neighborhood D of the point (0, t0), where

D =:
{

(x, y) :
(
x− (1− r)

)2
+ (t0 − t) < r2, 1− r

2
< x < 1, 0 < t ≤ t0

}
,

1− r > λ4, t0 − 3r2

4
> 0.

Then it holds that

∂w(1, t0)

∂~n
< 0,

where ~n := (1, 0) is the outer unit normal vector at the point (1, t0).
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Proposition 2.4 Suppose that w ∈ C2,1
(
(λ4, 1) × (0, T ]

)⋂
C([λ4, 1] × [0, T ]) satisfies

(2.12). If w attains its minimum at some interior point P0 = (x0, t0) of (λ4, 1) × (0, T ],

then w(P ) = w(P0) for any point P of (λ4, 1)× (0, t0].

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We first consider the case of the domain (0, λ3)×(0, T ]. We

establish the weak maximum principle, Hopf lemma and strong maximum principle for

the general function w satisfying the differential inequality (2.11), which also apply to the

solution v to (2.5) since v also enjoys (2.11). Since v0(λ3) < 0, by continuity of v on time,

then there exists a time t0 > 0 such that v(λ3, ·) < 0 in (0, t0). By Lemma 2.1, v attains its

maximum on the parabolic boundary {x = 0}×(0, t0]
⋃
{x = λ3}×(0, t0]

⋃
[0, λ3]×{t = 0}.

Since v = 0 on the parabolic boundary {x = 0}×(0, t0] and v0 ≤ 0 in [0, λ3], by Proposition

2.2, v only attains its maximum on the set {x = 0} × (0, t0]
⋃

[0, λ3] × {t = 0}. Thus,

v(x, t) < v(0, t0)(= 0) for any point (x, t) ∈ (0, λ3) × (0, t0]. Applying Proposition 2.1

shows that ∂v(0,t0)
∂~n

> 0, which contradicts vx(x, t) = 0 on ∂I × (0, T ] of the system (2.5).

The other case is similar. 2

3 Proof of Theorem 1.2

3.1 Reformulation of Theorem 1.2

Suppose that κ = 0 and n = 1. Let (ρ, u, e) ∈ C1
(
[0, T ];Hm(R)

)
, m > 2 be a solution

to the system (1.1)-(1.3) with the initial density satisfying (1.4). Let a(t) and b(t) be the

particle paths stating from 0 and 1, respectively. Similar to (2.1), one can show that{
[a(t), b(t)] = [0, 1],

u(x, t) = ux(x, t) = 0,

where t ∈ (0, T ∗) and x ∈ [a(t), b(t)]c.

Therefore, to study the ill-posedness of the system (1.1)-(1.3) with the initial density
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satisfying (1.4), we need only to study that of the following initial-boundary value problem

ρt + (ρu)x = 0, in I × (0, T ],

(ρu)t + (ρu2 + p)x = µuxx, in I × (0, T ],

(ρe)t + (ρeu)x + pux = µu2
x, in I × (0, T ],

(ρ, u, e) = (ρ0, u0, e0), on I × {t = 0},
ρ = u = ux = 0, on ∂I × (0, T ].

(3.1)

To prove the non-existence of (1.1)-(1.3) in C1
(
[0, T ];Hm(R)

)
, m > 2, it suffices to

show the non-existence of (3.1) in C2,1(Ī × [0, T ]). Thus, in order to prove Theorem 1.2,

we need only to show the following:

Theorem 3.1 The initial-boundary value problem (3.1) has no solution (ρ, u, e) in C2,1(Ī×
[0, T ]) for any positive time T , if the initial data (ρ0, u0, e0) satisfy the condition (1.16)

or (1.17).

Let η(x, t) be the position of the gas particle starting from x at time t = 0 defined by

(2.3). Let %, v and e be the Lagrangian density, velocity and internal energy respectively,

which are defined by 
%(x, t) = ρ(η(x, t), t),

v(x, t) = u(η(x, t), t),

e(x, t) = e(η(x, t), t).

(3.2)

Then the system (3.1) may be rewritten in the Lagrangian coordinates as

ρ0vt + (
ρ0e

ηx
)x = µ(

vx
ηx

)x, in I × (0, T ],

ρ0et + (γ − 1)
ρ0evx
ηx

= µ
v2
x

ηx
, in I × (0, T ],

ηt(x, t) = v(x, t),

(v, e, η) = (u0, e0, x), on I × {t = 0},
v = vx = 0, on ∂I × (0, T ].

(3.3)

In the Lagrangian coordinates, the condition (1.16) or (1.17) on the initial data

(ρ0, u0, e0) becomes 
(ρ0)x
ρ0

+
(e0)x
ρ0

≥ λ5, in (0, λ7),

v0(λ7) < 0, v0 ≤ 0, in (0, λ7),

(3.4)
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or 
(ρ0)x
ρ0

+
(e0)x
ρ0

≤ −λ6, in (λ8, 1),

v0(λ8) > 0, v0 ≥ 0, in (λ8, 1),

(3.5)

respectively.

The non-existence of (3.3) in C2,1(Ī × [0, T ]) implies the non-existence of (3.1) in

C2,1(Ī× [0, T ]). Thus, in order to prove Theorem 3.1, we need only to show the following:

Theorem 3.2 The initial-boundary value problem (3.3) has no solution (v, e, η) in C2,1(Ī×
[0, T ]) for any positive time T , if the initial data (ρ0, u0) satisfy the condition (3.4) or

(3.5).

3.2 Proof of Theorem 3.2

Given sufficiently small positive time T ∗. Let (v, e, η) ∈ C2,1(Ī × [0, T ∗]) be a solution

of the system (3.3) with (3.4) or (3.5). Define the linear parabolic operator ρ0∂t + L

similar to Subsection 3.1 by

ρ0∂t + L := ρ0∂t −
µ

ηx
∂xx +

µηxx
η2
x

∂x.

Then, it follows from the first equation of (3.3) that

ρ0vt + Lv = −
(ρ0e

ηx

)
x
. (3.6)

Let M be a positive constant such that

ρ0 + |v0|+ |(v0)x|+ |(v0)xx|+ |e0|+ |(e0)x| < M.

It follows from continuity on time that for suitably small T ∗ that

|v|+ |vx|+ |vxx|+ |e|+ |ex| ≤M, in I × (0, T ∗]

and

(ρ0)x
ρ0

+
ex
ρ0

≥ λ5

2
, in (0, λ7)× (0, T ∗]. (3.7)

Taking a positive time T < T ∗ sufficiently small such that T ≤ 1
2M

, then one gets∣∣∣∣∫ t

0

vx ds

∣∣∣∣ ≤MT ≤ 1

2
, in I × (0, T ].
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This implies

1

2
≤ ηx ≤

3

2
, in I × (0, T ]. (3.8)

Thus, (3.3) is a well-defined integro-differential system with degeneracy for t-derivative

due to that the initial density ρ0 vanishes on the boundary ∂I.

Take T small further such that T ≤ λ5
8M

. Therefore, (3.4), (3.7) and (3.8) imply

−
(ρ0e

ηx

)
x

= −ρ0e

ηx

[(ρ0)x
ρ0

+
ex
ρ0

− ηxx
ηx

]
≤ −ρ0e

ηx

(λ5

2
− λ5

4

)
< 0, in (0, λ7)× (0, T ].

(3.9)

Thus, under the assumption (3.4), it follows from (3.6) and (3.9) that v satisfies the

following differential inequality

ρ0vt + Lv ≤ 0, in (0, λ7)× (0, T ].

Similarly, under the condition (3.5), v instead satisfies

ρ0vt + Lv ≥ 0, in (λ8, 1)× (0, T ].

The rest is the same as the proof of Theorem 2.2 in Subsection 2.2 and thus omitted.

4 Proof of Theorem 1.3

4.1 Reformulation of Theorem 1.3

Suppose that κ > 0. Let (ρ, u, e) ∈ C1
(
[0, T ];Hm(Rn)

)
, m > [n

2
] + 2 be a solution

to the system (1.1)-(1.3) with the initial density satisfying (1.4). Denote by X(x0, t) the

particle trajectory starting at x0 when t = 0, that is,{
∂tX(x0, t) = u(X(x0, t), t),

X(x0, 0) = x0.

Set

Ω = Ω(0) and Ω(t) = {x = X(x0, t) : x0 ∈ Ω(0)}.
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It follows from the first equation of (1.1) that suppx ρ = Ω(t). Under the assumption

that the entropy S(t, x) is finite in the vacuum domain Ω(t)c, then one deduces from the

equation of state (1.2) that

e(x, t) = 0, for x ∈ Ω(t)c.

Due to e(·, t) ∈ Hm(Rn), m > [n
2
] + 2, one gets

exi(x, t) = exixj(x, t) = 0, for x ∈ Ω(t)c, i, j = 1, 2, · · · , n.

It follows from the third equation of (1.1) that

µ

2
|∇u+∇uT |2 + λ(divu)2 = 0, for x ∈ Ω(t)c. (4.1)

Following the arguments in [38], one can calculate that

µ

2
|∇u+∇uT |2 + λ(divu)2 ≥


(2µ+ nλ)

n∑
i=1

(uxi)
2 + µ

n∑
i>j

(uxi + uxj)
2, if λ ≤ 0,

2µ
n∑
i=1

(uxi)
2 + µ

n∑
i>j

(uxi + uxj)
2, if λ > 0,

(4.2)

this, together with (4.1) implies

∂iuj + ∂jui = 0, for x ∈ Ω(t)c, i, j = 1, 2, · · · , n.

Because of u(·, t) ∈ Hm(Rn), m > [n
2
] + 2, it holds that

u(x, t) = uxi(x, t) = uxixj(x, t) = 0, for x ∈ Ω(t)c, i, j = 1, 2, · · · , n.

Furthermore, one has Ω(t) = Ω(0).

One concludes that {
Ω(t) = Ω(0),

e(x, t) = exi(x, t) = 0,

where t ∈ (0, T ∗) and x ∈ Ω(t)c, i = 1, 2, · · · , n.

Therefore, to study the ill-posedness of the system (1.1)-(1.3) with the initial density

satisfying (1.4), one needs only to study the ill-posedness of the following initial-boundary
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value problem

∂tρ+ div(ρu) = 0, in Ω× (0, T ],

∂t(ρu) + div(ρu⊗ u) +∇p = µ∆u+ (µ+ λ)∇divu, in Ω× (0, T ],

∂t(ρe) + div(ρeu) + pdivu =
µ

2
|∇u+ (∇u)∗|2

+ λ(divu)2 +
κ(γ − 1)

R
∆e, in Ω× (0, T ],

(ρ, u, e) = (ρ0, u0, e0), on Ω× {t = 0},
e(x, t) = exi(x, t) = 0, on ∂Ω× (0, T ].

(4.3)

The non-existence of Cauchy problem (1.1)-(1.3) in C1
(
[0, T ];Hm(Rn)

)
, m > [n

2
] + 2

will follow from the non-existence of the initial-boundary value problem (4.3) in C2,1(Ω̄×
[0, T ]). Thus, in order to prove Theorem 1.3, we need only to show the following theorem:

Theorem 4.1 The initial-boundary value problem (4.3) in the case of κ > 0 has no

solution (ρ, u, e) in C2,1(Ω̄× [0, T ]) for any positive time T .

Let η(x, t) denote the position of the gas particle starting from x at time t = 0

defined by (2.3). Let %, v and e be the Lagrangian density, velocity and internal energy,

respectively, which are defined by (3.2). We will also use the following notations (see

also [7, 8, 20,21]) 
J = detDη, (Jacobian determinant),

B = [Dη]−1, (inverse of deformation tensor),

b = JB, (transpose of cofactor matrix).

We will always use the convention in this section that repeated Latin indices i, j, k,

etc., are summed from 1 to n. Then the system (4.3) can be rewritten in the Lagrangian

coordinates as

∂t%+ %Bj
i ∂jv

i = 0, in Ω× (0, T ],

%∂tv
i + (γ − 1)Bj

i ∂j(%e) = µBk
l ∂k(B

j
l ∂jv

i)

+ (µ+ λ)Bk
i ∂k(B

j
l ∂jv

l), in Ω× (0, T ],

%∂te + (γ − 1)%eBj
i ∂jv

i =
µ

2
|Bj

l ∂jv
i + (Bj

l ∂jv
i)∗|2

+ λ(Bj
i ∂jv

i)2 +
κ(γ − 1)

R
Bk
l ∂k(B

j
l ∂je), in Ω× (0, T ],

ηt(x, t) = v(x, t),

(%, v, e, η) = (ρ0, u0, e0, x), on Ω× {t = 0},
e(x, t) = exi(x, t) = 0, on ∂Ω× (0, T ].

(4.4)
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It follows from the first equation of (4.4) that

%(x, t) =
ρ0(x)

J(x, t)
.

Regarding the initial density ρ0 as a parameter, one may rewrite (4.4) as

ρ0∂tv
i + (γ − 1)bji∂j(J

−1ρ0e) = µbkl ∂k(J
−1bjl ∂jv

i)

+ (µ+ λ)bki ∂k(J
−1bjl ∂jv

l), in Ω× (0, T ],

ρ0∂te + (γ − 1)J−1ρ0eb
j
i∂jv

i =
µ

2
J−1|bjl ∂jv

i + (bjl ∂jv
i)∗|2

+ λJ−1(bji∂jv
i)2 +

κ(γ − 1)

R
bkl ∂k(J

−1bjl ∂je), in Ω× (0, T ],

ηt(x, t) = v(x, t),

(v, e, η) = (u0, e0, x), on Ω× {t = 0},
e(x, t) = exi(x, t) = 0, on ∂Ω× (0, T ].

(4.5)

The non-existence of the initial-boundary value problem (4.3) will be a consequence

of the non-existence of the initial-boundary value problem (4.5) in C2,1(Ω̄× [0, T ]). Thus,

in order to prove Theorem 4.1, we need only to show the following:

Theorem 4.2 The problem (4.5) in the case of κ > 0 has no solution (v, e, η) in C2,1(Ω̄×
[0, T ]) for any positive time T .

4.2 Proof of Theorem 4.2

Let T ∗ be a given suitably small positive time. Let (v, e, η) ∈ C2,1(Ω̄ × [0, T ∗]) be a

solution of the system (4.5). Let M be a positive constant such that

ρ0 +
∑
|α|≤2

|Dαv0|+
∑
|α|≤2

|Dαe0| < M.

It follows from continuity on time that for short time T ∗∑
|α|≤2

|Dαv|+
∑
|α|≤2

|Dαe| ≤M, in Ω× (0, T ∗].

Due to (2.3), it holds that

∂jη
i(x, t) = δij +

∫ t

0

∂jv
i(x, s) ds.
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Thus, Dη can be regarded as a small perturbation of the identity matrix, which implies

both Dη and A are positive definite matrices. Thereby, there exist two positive numbers

Λ1 ≤ Λ2 such that

Λ1|ξ|2 ≤ bikb
j
kξjξi ≤ Λ2|ξ|2, for all ξ ∈ Rn and (x, t) ∈ Ω× (0, T ∗]. (4.6)

It follows from the definition of cofactor matrices that

|Bj
i | ≤ (1 +MT )n−1.

Note that (see [29])

Jt = Jdivu.

The chain rule gives

Jt = JBj
i ∂jv

i = bji∂jv
i.

Taking a positive time T < T ∗ sufficiently small such that T ≤ 1
2n+1M

, then one has

|J(x, t)− 1| =
∣∣∣∣∫ t

0

bji (x, s)∂jv
i(x, s) ds

∣∣∣∣ ≤ JT |Bj
i ||∂jvi|

≤ JMT (1 +MT )n−1 ≤ J

4
, in Ω× (0, T ].

This implies

1

2
< J(x, t) <

3

2
, in Ω× (0, T ]. (4.7)

Direct calculations show (see also [7])

∂iJ = bjk∂ijη
k

and

∂jb
k
i = J−1∂sjη

r(bsrb
k
i − bsi bkr).

Therefore, one gets that

|∂iJ | ≤
3

2
(1 +MT )n−1MT (4.8)

and

|∂jbki | ≤ 9(1 +MT )2n−2MT. (4.9)
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Thus, (4.5) is a well-defined integro-differential system with a degeneracy for t-derivative

since the initial density ρ0 vanishes on the boundary ∂Ω.

Define the linear parabolic operator ρ0∂t + L by

ρ0∂tw + Lw : = ρ0∂tw −
κ(γ − 1)

R
J−1bikb

j
k∂ijw

− κ(γ − 1)

R
bik∂i(J

−1bjk)∂jw + (γ − 1)J−1ρ0b
j
i∂jv

iw.

Then, it follows from the second equation of (4.5) that

ρ0∂te + Le =
µ

2
J−1|bjl ∂jv

i + (bjl ∂jv
i)∗|2 + λJ−1(bji∂jv

i)2. (4.10)

In the rest of this section, we will establish the Hopf’s lemma and strong maximum

principle for solutions of the following differential inequality

ρ0∂tw + Lw ≥ 0, in Ω× (0, T ]. (4.11)

It follows from (4.10) and (4.2) that e also satisfies (4.11).

We first give the weak maximum principle.

Lemma 4.1 Suppose that w ∈ C2,1(QT )
⋂
C(Q̄T ) satisfies (4.11). If w ≥ 0 (> 0) on

∂pQT , then w ≥ 0 (> 0) in QT .

Proof. Set

d = (γ − 1) max
Ω̄×[0,T ]

∣∣∣∣JtJ
∣∣∣∣

and

ϕ = exp(dt)w.

Define a new linear parabolic operator by

ρ0∂tϕ+ L̃ϕ := ρ0∂tϕ+ L̃ϕ− dρ0ϕ.

Direct calculation shows that

ρ0∂tϕ+ L̃ϕ = exp(dt)(ρ0∂tw + Lw) ≥ 0, in QT .

We first prove the statement under a stronger hypothesis than (4.11) that

ρ0∂tϕ+ L̃ϕ > 0, in QT . (4.12)
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Assume that ϕ attains its non-negative minimum at an interior point (x0, t0) of the domain

QT . Therefore

∂tϕ(x0, t0) ≤ 0, ∂jϕ(x0, t0) = 0, aika
j
k∂ijϕ(x0, t0) ≥ 0,

which implies ρ0∂tϕ + Lϕ ≤ 0, and this contradicts (4.12). Next, choose the auxiliary

function

ψε = ϕ+ εt,

for a positive number ε. One calculates

ρ0∂tψ
ε + Lψε = ρ0ϕt + Lϕ+ ερ0 > 0, in QT .

Thus ψε attains its non-negative minimum on ∂pQT , which implies that ϕ also attains its

non-negative minimum on ∂pQT by letting ε go to zero.

Since w ≥ 0 (> 0) on ∂pQT , so ϕ ≥ 0 (> 0) on ∂pQT by the definition of ϕ, furthermore,

ϕ ≥ 0 (> 0) on QT . Therefore, w ≥ 0 (> 0) on QT . 2

The result in Lemma 4.1 may be extended to a general domain D contained in Ω ×
(0, T ].

Lemma 4.2 Suppose that w ∈ C2,1(D)
⋂
C(D̄) satisfies (4.11). If w ≥ 0 (> 0) on ∂pD,

then w ≥ 0 (> 0) in D.

We next show the Hopf’s lemma which is crucial to prove Theorem 4.2.

Proposition 4.1 Suppose that w ∈ C2,1(Ω × (0, T ])
⋂
C(Ω̄ × [0, T ]) satisfies (4.11) and

there exits a point (x0, t0) ∈ ∂Ω× (0, T ] such that w(x, t) > w(x0, t0) for any point (x, t)

in D, where

D =:
{

(x, t) : |x− x̃|2 + (t0 − t) < r2, 0 < |x− x0| < r
2
, 0 < t ≤ t0

}
,

t0 − 3r2

4
> 0,

with |x0 − x̃| = r and (x0 − x̃) ⊥ ∂Ω at x0. Then it holds that

∂w(x0, t0)

∂~n
< 0,

where ~n = x0−x̃
|x0−x̃| .
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Proof. For positive constants α and ε to be determined, set

q(α, x, t) = −e−α[|x−x̃|2+(t0−t)] + e−αr
2

and

ϕ(ε, α, x, t) = w(x, t)− w(x0, t0) + εq(α, x, t).

First, we determine ε. The parabolic boundary ∂pD consists of two parts Σ1 and Σ2

given by

Σ1 =
{

(x, t) : |x− x̃|2 + (t0 − t) < r2, |x− x0| =
r

2
, 0 < t ≤ t0

}
and

Σ2 =
{

(x, t) : |x− x̃|2 + (t0 − t) = r2, 0 ≤ |x− x0| ≤
r

2
, 0 < t ≤ t0

}
.

On Σ̄1, w(x, t)− w(x0, t0) > 0, and hence w(x, t)− w(x0, t0) > ε0 for some ε0 > 0. Note

that q ≥ −1 on Σ1. Then for such an ε0, ϕ(ε0, α, x, t) > 0 on Σ1. For (x, t) ∈ Σ2, q = 0 and

w(x, t)−w(x0, t0) ≥ 0. Thus, ϕ(ε0, α, x, t) ≥ 0 for any (x, t) ∈ Σ2 and ϕ(ε0, α, x0, t0) = 0.

One concludes that {
ϕ(ε0, α, x, t) ≥ 0, on ∂pD,

ϕ(ε0, α, x0, t0) = 0.
(4.13)

Next, we choose α. In view of (4.11), one has

ρ0∂tϕ(ε0, α, x, t) + Lϕ(ε0, α, x, t)

= ρ0∂tw(x, t) + Lw(x, t) + ε0

[
ρ0∂tq(α, x, t) + Lq(α, x, t)

]
≥ ε0

[
ρ0∂tq(α, x, t) + Lq(α, x, t)

]
.

(4.14)

A direct calculation yields

eα[|x−x̃|2+(t0−t)]
[
ρ0∂tq(α, x, t) + Lq(α, x, t)

]
=

4κ(γ − 1)

R
J−1bikb

j
k(xi − x̃i)(xj − x̃j)α

2 −
[
ρ0 +

2κ(γ − 1)

R
J−1bikb

j
kδij

+
2κ(γ − 1)

R
bik∂i(J

−1bjk)(xj − x̃j)
]
α− (γ − 1)J−1ρ0b

j
i∂jv

i

×
(
1− eα[|x−x̃|2+(t0−t)−r2]

)
.

(4.15)

It follows from (4.6) and (4.7) that

4κ(γ − 1)

R
J−1bikb

j
k(xi − x̃i)(xj − x̃j)

≥ 8κ(γ − 1)Λ1

R

(
|x0 − x̃| − |x− x0|

)2 ≥ 2κ(γ − 1)r2Λ1

R
.

30



The other terms on the right hand side of (4.15) may be estimated as

∣∣∣∣2κ(γ − 1)

R
J−1bikb

j
kδij

∣∣∣∣ ≤ 4κ(γ − 1)Λ2

R
, (4.16)∣∣∣∣2κ(γ − 1)

R
bik∂i(J

−1bjk)(xj − x̃j)
∣∣∣∣ ≤ 81κ(γ − 1)r

R
(1 +MT )3n−3MT

≤ 81 · 22n−4κ(γ − 1)r

R
,

(4.17)

∣∣∣(γ − 1)J−1ρ0b
j
i∂jv

i
(
1− eα[|x−x̃|2+(t0−t)−r2]

)∣∣∣ ≤ 3(γ − 1)M2(1 +MT )n−1

≤ 3 · 2n−1(γ − 1)M2,
(4.18)

where we have used (4.6)-(4.9). Finally, one obtains

eα[|x−x̃|2+(t0−t)]
[
ρ0∂tq(α, x, t) + Lq(α, x, t)

]
≥ 2κ(γ − 1)r2Λ1

R
α2 −

(
M +

4κ(γ − 1)Λ2

R
+

81 · 22n−4κ(γ − 1)r

R

)
α

− 3 · 2n−1(γ − 1)M2.

Thereby, there exists a positive number α0 = α0(κ, γ, r, R,M,Λ1,Λ2) such that

ρ0∂tq(α0, x, t) + Lq(α0, x, t) ≥ 0, in D. (4.19)

In conclusion, in view of (4.13), (4.14) and (4.19), one has
ρ0∂tϕ(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≥ 0, in D,

ϕ(ε0, α0, x, t) ≥ 0, on ∂pD,

ϕ(ε0, α0, x0, t0) = 0.

(4.20)

Lemma 4.2, together with (4.20), shows that

ϕ(ε0, α0, x, t) ≥ 0, in D.

Therefore, the function ϕ(ε0, α0, ·, ·) attains its minimum at the point (x0, t0) in D. In

particular, it holds that

ϕ(ε0, α0, x, t0) ≥ ϕ(ε0, α0, x0, t0), for all x ∈
{
x : |x− x0| ≤

r

2

}
.

This implies

∂ϕ(ε0, α0, x0, t0)

∂~n
≤ 0.
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Finally, one obtains

∂w(x0, t0)

∂~n
≤ −ε0

∂q(α0, x0, t0)

∂~n
= −2ε0α0re

−α0r2 < 0.

2

In order to establish the strong maximum principle, we first study the t-derivative at

an interior minimum point.

Lemma 4.3 Let w ∈ C2,1(Ω× (0, T ])
⋂
C(Ω̄× [0, T ]) satisfy (4.11) and have a minimum

M0 in the domain Ω× (0, T ]. Suppose that Ω× (0, T ] contains a closed solid ellipsoid

Ωσ :=
{

(x, t) : |x− x∗|2 + σ(t− t∗)2 ≤ r2
}
, σ > 0

and w(x, t) > M0 for any interior point (x, t) of Ωσ and w(x̄, t̄) = M0 at some point (x̄, t̄)

on the boundary of Ωσ. Then x̄ = x∗.

Proof. It is easy to see that one may choose a smaller closed ellipsoid Ω̃δ with the center

of the form (x∗, t̃∗) such that it lies in the domain Ωσ and has only two isolated boundary

points in common. By the assumption of the Lemma 4.3, in Ω̃δ, w attains the maximum

M0 at no more than two isolated boundary points on ∂Ω̃δ. Therefore, without loss of

generality, we may replace Ωσ by Ω̃δ, namely assuming that w attains the maximum M0

in Ωσ at no more than two isolated points (x̄, t̄) and (x̃, t̃) on ∂Ωσ. We prove the desired

result by contradiction. Suppose that x̄ 6= x∗. Choose a closed ball D with center (x̄, t̄)

and radius r̃ < min{|x̄− x∗|, |x̄− x̃|} contained in Ω× (0, T ]. Then, one has

|x− x∗| ≥ |x̄− x∗| − r̃ =: r̂, for (x, t) ∈ D.

The parabolic boundary ∂pD = ∂D of D consists of a part Σ1 lying in Ωσ and a part Σ2

lying outside Ωσ.

For positive constants α and ε to be determined, set

q(α, x, t) = −e−α[|x−x∗|2+σ(t−t∗)2] + e−αr
2

and

ϕ(ε, α, x, t) = w(x, t)−M0 + εq(α, x, t).

We first determine the value of ε. Note that q(α, x, t) < 0 in the interior of Ωσ, q(α, x, t) =

0 on ∂Ωσ and q(α, x, t) > 0 outside Ωσ. So, it holds that ϕ(ε, α, x̄, t̄) = 0. On Σ1,

w(x, t)−M0 > 0, and hence w(x, t)−M0 > ε0 for some ε0 > 0. Note that q(α, x, t) ≥ −1
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on Σ1. Then for such an ε0, ϕ(ε0, α, x, t) > 0 on Σ1. For (x, t) ∈ Σ2, we have q(α, x, t) > 0

and w(x, t) −M0 ≥ 0. Thus, ϕ(ε0, α, x, t) > 0 for any (x, t) ∈ Σ2. One concludes that

One concludes that {
ϕ(ε0, α, x, t) > 0, on ∂pD,

ϕ(ε0, α, x̄, t̄) = 0.
(4.21)

Next, we choose α. We need only to estimate ρ0qt(α, x, t) + Lq(α, x, t) due to (4.14).

One calculates that

eα[|x−x∗|2+σ(t−t∗)2]
[
ρ0∂tq(α, x, t) + Lq(α, x, t)

]
=

4κ(γ − 1)

R
J−1bikb

j
k(xi − (x∗)i)(xj − (x∗)j)α

2 −
[
2σρ0(t− t∗)

+
2κ(γ − 1)

R
J−1bikb

j
kδij +

2κ(γ − 1)

R
bik∂i(J

−1bjk)(xj − x∗j)
]
α

− (γ − 1)J−1ρ0b
j
i∂jv

i
(
1− eα[|x−x∗|2+σ(t−t∗)2−r2]

)
.

Similar to (4.19), there exists α0 = α0(κ, γ, σ, r, r̂, R,M,Λ1,Λ2) > 0 such that

ρ0∂tq(α0, x, t) + Lq(α0, x, t) ≥ 0, in D. (4.22)

In conclusion, it follows from (4.14), (4.21) and (4.22) that
ρ0∂tϕ(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≥ 0, in D,

ϕ(ε0, α0, x, t) > 0, on ∂pD,

ϕ(ε0, α0, x̄, t̄) = 0.

(4.23)

Then Lemma 4.2 and (4.23) imply that

ϕ(ε0, α0, x, t) > 0, in D.

which contradicts ϕ(ε0, α0, x̄, t̄) = 0 due to (x̄, t̄) ∈ D. 2

Based on Lemma 4.3, it is standard to prove the following lemma. For details, one

may refer to Lemma 3 of Chapter 2 in [12].

Lemma 4.4 Suppose that w ∈ C2,1(Ω× (0, T ])
⋂
C(Ω̄× [0, T ]) satisfies (4.11). If w has

a minimum in an interior point P0 = (x0, t0) of Ω × (0, T ], then w(P ) = w(P0) for any

point of the form P = (x, t0) in Ω× (0, T ].

Next, we prove a local strong minimum principle in a rectangle R of the domain

Ω× (0, T ].
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Lemma 4.5 Suppose that w ∈ C2,1(Ω× (0, T ])
⋂
C(Ω̄× [0, T ]) satisfies (4.11). If w has

a minimum in the interior point P0 = (x0, t0) of Ω× (0, T ], then there exists a rectangle

R(P0) :=
{

(x, t) : (x0)i − ci ≤ xi ≤ (x0)i + ci, t0 − c0 ≤ t ≤ t0, 1 ≤ i ≤ n
}

in Ω× (0, T ] such that w(P ) = w(P0) for any point P of R(P0).

Proof. We prove the desired result by contradiction. Suppose that there exists an interior

point P1 = (x1, t1) of Ω × (0, T ] with t1 < t0 such that w(P1) > w(P0). Connect P1 to

P0 by a simple smooth curve γ. Then there exists a point P∗ = (x∗, t∗) on γ such that

w(P∗) = w(P0) and w(P̄ ) < w(P∗) for all any point P̄ of γ between P1 and P∗. We

may assume that P∗ = P0 and P1 is very near to P0. There exists a rectangle R(P0) in

Ω× (0, T ] with small positive numbers c0 and ci (to be determined) such that P1 lies on

t = t0 − c0. Since R(P0) \ {t = t0}
⋂
{t = t̄} contains some point P̄ = (x̄, t̄) of γ and

w(P̄ ) > w(P0), we deduce w(P ) > w(P0) for each point P in R(P0) \ {t = t0}
⋂
{t = t̄}

due to Lemma 2.4. Therefore, w(P ) > w(P0) for each point P in R(P0) \ {t = t0}.
For positive constants α and ε to be determined, set

q(α, x, t) = −t0 + t+ α|x− x0|2

and

ϕ(ε, α, x, t) = w(x, t)− w(P0) + εq(α, x, t).

Assume further that P = (x0− c, t0− c0) is on the parabola q(α, x, t) = 0, then one solves

α =
c0

|c|2
, (4.24)

where |c| = (
∑n

i=1 |ci|2)
1
2 .

A direct calculation shows that

ρ0∂tq(α, x, t) + Lq(α, x, t)

= −α
[2κ(γ − 1)

R
J−1bikb

j
kδij +

2κ(γ − 1)

R
bik∂i

(
J−1bjk)(xj − (x0)j

)
− (γ − 1)J−1ρ0b

j
i∂jv

i|x− x0|2
]

+ ρ0

[
1 + (γ − 1)J−1bji∂jv

i(−t0 + t)
]
.

(4.25)

The first three terms on the right hand side of (4.25) may be estimated in the same fashion

as (4.16)-(4.18). For the last term, one has

|(γ − 1)J−1bji∂jv
i(−t0 + t)| ≤ 6(γ − 1)(1 +MT )n−1MT ≤ 3

2
(γ − 1).
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Consequently, one gets

ρ0∂tq(α, x, t) + Lq(α, x, t)

≥ −α
[κ(γ − 1)

R
(4Λ2 + 81 · 22n−4|c|) + 3 · 2n−1(γ − 1)M2|c|2

]
+

3γ − 1

2
ρ0.

(4.26)

Since ρ0 has a positive lower bound depending on x0± c in R(P0), one can choose α0 such

that

α0 <
(3γ − 1)Rρ0

κ(γ − 1)(8Λ2 + 81 · 22n−3|c|) + 3 · 2n(γ − 1)RM2|c|2
, (4.27)

then it follows from (4.25)-(4.27) that

ρ0∂tϕ(α0, x, t) + Lϕ(α0, x, t) ≥ 0, in R(P0). (4.28)

Next, one first choses c such that{
x ∈ Rn : (x0)i − ci ≤ xi ≤ (x0)i + ci, 1 ≤ i ≤ n

}
⊂ Ω,

and then further determines c0 by (4.24) and (4.27) as

c0 < min

{
t0,

(3γ − 1)|c|2Rρ0

κ(γ − 1)(16Λ2 + 81 · 22n−2|c|) + 3 · 2n+1(γ − 1)RM2|c|2

}
.

Denote S = {(x, t) ∈ R(P0) : q(x, t) ≥ 0}. The parabolic boundary ∂pS of S consists

of a part Σ1 lying in R(P0) and a part Σ2 lying on R(P0)
⋂
{t = t0 − c0}.

Finally, one can choose ε. On Σ2, w(x, t) − M0 > 0. Note q(α, x, t) is bounded

on Σ2, one can choose ε0 suitably small such that ϕ(ε0, α0, x, t) > 0 on Σ2. On Σ1 \
{P0}, q(α, x, t) = 0 and w(x, t) −M0 > 0. Thus, ϕ(ε0, α0, x, t) > 0 on Σ1 \ {P0} and

ϕ(ε0, α0, x0, t0) = 0. One concludes that{
ϕ(ε0, α0, x, t) > 0, on ∂pS \ {P0},
ϕ(ε0, α0, x0, t0) = 0.

(4.29)

In conclusion, it follows from (4.28) and (4.29) that
ρ0∂tϕ(ε0, α0, x, t) + Lϕ(ε0, α0, x, t) ≥ 0, in S,
ϕ(ε0, α0, x, t) > 0, on ∂pS \ {P0},
ϕ(ε0, α0, x0, t0) = 0.

(4.30)
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In view of Lemma 4.2 and (4.30), the function ϕ(ε0, α0, ·, ·) attains its minimum at P0 in

S̄, thus

∂ϕ(ε0, α0, x0, t0)

∂t
≤ 0.

Note that q satisfies at P0

∂q(α0, x0, t0)

∂t
= 1.

Therefore

∂w(x0, t0)

∂t
≤ −ε0. (4.31)

But, by the assumption, w attains its minimum at P0, it follows that

ρ0
∂w(x0, t0)

∂t
≥ −Lw(x0, t0) ≥ 0,

which contradicts (4.31). 2

Now we come to the following global strong maximum principle which may be proved

in a similar fashion as Proposition 2.2.

Proposition 4.2 Suppose that w ∈ C2,1(Ω× (0, T ])
⋂
C(Ω̄× [0, T ]) satisfies (4.11). If w

attains its minimum at some interior point P0 = (x0, t0) of Ω×(0, T ], then w(P ) = w(P0)

for any point P of Ω× (0, t0].

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We establish the weak maximum principle, Hopf lemma and

strong maximum principle for the general function w satisfying the differential inequality

(4.11), which also apply to the solution e to (4.5) since e also enjoys (4.11). Since e0 ≥ 0

and e0 6≡ 0 in Ω, and e = 0 on ∂Ω× (0, t0] due to (4.5), by Proposition 4.2, it holds that

e > 0 in Ω× (0, T ]. Taking any point (x0, t0) of ∂Ω× (0, T ], applying Proposition 4.1, we

obtain ∂e(x0,t0)
∂~n

< 0, which contradicts exi(x0, t0) = 0 on ∂Ω× (0, T ] due to (4.5). 2
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