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Abstract

This paper considers the upstream oil and gas domain, or more precisely the daily pro-
duction optimization problem in which production engineers aim to utilize the production
systems as efficiently as possible by for instance maximizing the revenue stream. This is done
by adjusting control inputs like choke valves, artificial lift parameters and routing of well
streams. It is well known that the daily production optimization problem is well suited for
mathematical optimization. The contribution of this paper is a discussion on appropriate
formulations, in particular the use of static models vs. dynamic models. We argue that
many important problems can indeed be solved by repetitive use of static models while some
problems, in particular related to shale gas systems, require dynamic models to capture key
process characteristics. The reason for this is how reservoir dynamics interacts with the
dynamics of the production system.
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1. Introduction

Petroleum assets are sizable amounts of hydrocarbons which are trapped in appropriate
underground geological structures. After discovering and deciding on developing an asset
wells are drilled and production starts. Typically the production lifetime of an asset contains
three stages; the ramp-up, plateau and decline phases. During the ramp-up phase new
wells are drilled and completed while the production rate steadily increases. During the
plateau phase production stays fairly constant. New wells may, however, still be drilled
while others are abandoned. Dry shale-gas fields require a higher drilling frequency than
conventional petroleum assets to maintain the plateau phase due to the early decline in
productivity of these wells. Typically reservoir fluid composition changes with more and
more less valuable products like water entering the production stream. Further, fluids may
be injected to maintain reservoir pressure. During the decline phase production can no longer
be maintained, thus production rates drop.
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Asset production planning is performed on different horizons from a life-cycle perspective
to daily production planning, thus decisions may be described by a control hierarchy as
shown in Fig. 1. The uppermost level includes life-cycle related decisions such as selecting
an investment strategy, appropriate technologies and an operations model.

The second highest level, level 2 in Fig. 1, typically refers to decision horizons of one
to five years, even though this may vary significantly, and includes choices on production
strategies. This includes drilling schedules, the location and completion design of new wells,
injection rates and fluids, and target production rates to mention a few. Additionally for
shale-gas fields is the decision of which wells to refracture to stimulate existing wells (Cafaro
et al., 2016). Level 2 decisions are usually supported by simulator studies using high fidelity
reservoir models.
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Figure 1: A multilevel control hierarchy

Level 3 takes us to the operations domain since the planning horizon ranges from a few
hours to a week, thus from a process systems perspective this is equivalent to real-time
optimization (RTO). We denote this by Daily Production Optimization (DPO). There are
two important contrasts between level 2 and level 3 formulations. First, the shorter time
horizon most often allows for the use simple reservoir models on level 3, and, second it is
critical to include the production network in DPO formulations. The reason is that DPO
production bottlenecks are normally found both in the reservoir as well as in the network.

The lowest level in Fig. 1 includes an automatic control systems, which normally is
implemented in proprietary control systems. This includes control loops for flow, pressure
and level control functions to mention some of its functionality. Due to lower profit margins
and land-based operations with easier access, the control and automation system is often
simpler for shale-gas wells compared to offshore oil and gas installations. It may also be



noted that there will always exist a separate safety system, which is automatically activated
in emergency situations.

There is a clear business case for mathematical optimization in DPO in the sense that
decision support systems based on this methodology report production increases in the range
of 1-4% (Stenhouse et al., 2010; Teixeira et al., 2013). These improvements are more pro-
nounced for fields in the late plateau and decline phases than earlier since the DPO bottleneck
structure tends to become more complicated with time, e.g. due to increased water and gas
production, and reduced reservoir pressure.

This paper contributes to DPO formulations by discussing static and dynamic formu-
lations. We define DPO formulations with static models as static DPOs, and DPO formu-
lations with one or more dynamic models and a control horizon as dynamic DPOs. The
paper continues with relevant references before an efficient formulation of the DPO problem,
which is new and captures a broad class of static and dynamic DPO problems, is presented.
Subsequently two case studies, one based on a dynamic formulation and the other on a
static formulation, are presented as a prelude to a discussion section. Towards the end some
conclusions are presented.

1.1. Mathematical programming in daily production optimization

There is a broad class of technologies for DPO to increase production or reduce down-
time. This includes virtual flow metering systems, flow assurance systems, and more recently
condition and performance monitoring systems. These are real-time monitoring systems that
have in common that they attempt to increase the operational awareness of the operator.
In the subsequent survey we focus on methods for daily production optimization using the
framework of mathematical programming.

The dynamics of conventional reservoirs are usually slow. Thus, in the DPO context
reservoir conditions around wells change slowly meaning that pressures and fluids change only
marginally from one day to another. There are numerous references on the use of a strategy
in which a static formulation is re-optimized according to changing conditions, for instance
a couple of times a day. To the authors’ knowledge Kosmidis et al. (2004) and Kosmidis
et al. (2005) were the first to formulate the static DPO problem as a mixed integer nonlinear
programming (MINLP) problem in which discrete variables alludes to routing decisions in a
flow network. Further, this paper applies a piecewise linearization approach to approximate
the original MINLP model with a mixed integer linear programming (MILP) model to take
advantage of the high efficiency of state-of-the-art MILP-solvers. Some other contributions
along these lines are Misener et al. (2009) and Codas and Camponogara (2012). Piecewise
linear approximation scales badly for nonseparable functions, thus different multidimensional
piecewise models for DPO were compared in Silva and Camponogara (2014) indicating that
SOS2 models and MILP models with a logarithmic number of binary variables were preferable
choices. Other surrogate models have also been successfully applied, one example being B-
spline models (Grimstad et al., 2016). In this case an MINLP formulation was retained,
however, with cubic B-spline nonlinearities only. This property can be exploited to improve
MINLP solver efficiency. The latter reference also includes energy balances to account for
temperature sensitive flow velocity constraints in gas dominated flow.



DPO may include many wells and a large flow network. In these cases it is particularly
important to exploit structure to reduce runtime since it may be exceedingly long. Flow
networks can often be partitioned into smaller parts with only a few linking constraints.
Gunnerud and Foss (2010) analyse a large problem based on a Statoil field where Lagrange
relaxation and Dantzig-Wolfe decomposition is applied with significant reduction in runtime
compared to a formulation without decomposition. In addition SOS2 models were used as
proxy models to reduce runtime compared to more comprehensive models.

Uncertainty is a severe DPO challenge, in particular model errors in the well models.
This was first handled explicitly in Bieker et al. (2007). In a later paper (Elgsater et al.,
2010) uncertainty is accounted for by iteratively changing the setpoints until the capacity
constraints, which should be active, are utilized to their limits. This approach assumes that
there exists measurements to monitor capacities. It may be noted there are very few papers
on uncertainty in DPO. This is quite different from the reservoir management domain where
there exists numerous such publications.

There is limited work on dynamic DPO, i.e. using dynamic models. A recent paper
(Codas et al., 2016) explores integration of low level control with nonlinear model predictive
control for DPO. An even more ambitious approach is taken in Krishnamoorthy et al. (2016)
where dynamic DPO is combined with uncertainty by using a scenario-based optimization
strategy. These papers include dynamics in pipelines. However, reservoir dynamics are
not included. Specific applications that require dynamic DPO will be discussed later, one
example is the case study on shale-gas. Corresponding references will then also be included.

2. A general DPO formulation

Consider the petroleum production system illustrated in Fig. 2, in which the produced
fluid flows through well bores, manifolds, and flowlines, to finally enter the separators. At the
separators the fluid phases, typically including oil, gas and water, are separated. It may be
noted that the process diagram for the processing section in practice is far more complicated
than shown in Fig. 2. Oil and/or gas are exported separately through transmission pipelines.
One important feature of the production system is that each well flow can be routed to one
of the flowlines by configuring the on/off valves in the manifold.

Upstream of the wells lies the reservoir. Thus, the reservoir defines the inflow boundary
conditions on the production system. The downstream boundary conditions are given by
the (nearly) constant pressure in the separators, which is maintained by regulatory control.
In this paper we will mainly be concerned with production systems where the upstream and
downstream boundaries are placed in the reservoir and the inlet separator, respectively.

We can now formulate a fairly general network optimization problem. The topology of
the network is represented by a directed graph G = (N, E), with nodes N and edges E
(Ahuja et al., 1993). In the sequel we adopt the notation in Grimstad et al. (2016). There
are three mutually exclusive sets of nodes, N, which all represent a junction: source nodes
(N®r), sink nodes (N*%) and intermediate nodes (N™)  the latter representing junctions in
the graph. An edge E connects two nodes and represents a pipe segment such as a well bore
or a flowline, a valve, or an active element like a pump. A subset of edges, E4, represents
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Figure 2: A petroleum production system

chokes and on/off valves. These edges have two states: either open or closed. Thus, discrete
edges are used to route the flow through the network by restricting the flow through the
valve. It is advantageous to define certain utility sets, and certain requirements need to be
placed on the graph structure, cf. Grimstad et al. (2016). Some utility sets are defined in
Table 1 in order to compactify notation.

Alternative formulations like compositional models instead of three phases is sometimes
necessary, especially for condensate reservoirs. The variables of the problem formulation
are listed in Table 2. Note that the flow rates {g,.x} are given as mass flow rates or as
volumetric flow rates at standard conditions. For brevity, the phase flow rates on an edge
e € E at time £ € K are collectively denoted q.i, that is, with an oil, gas, and water phase,
ek = [QOil,elm Qgas,ek > QWat,ek]T-

To efficiently represent edges E of the directed graph approach for modeling petroleum
production networks, we introduce Boolean variables Y., and formulated the DPO problem
using generalized disjunctive programming (GDP) (Raman and Grossmann, 1994; Gross-
mann and Trespalacios, 2013). GDP modeling enables flexibility in formulation of opti-
mization problems with logical structures and conditions. Moreover, starting with a GDP
model rather than a weak, ad-hoc mixed-integer formulation enables the possibility of posing
and evaluating various mixed integer reformulations of the GDP, or solving the GDP with
specialized logic-based methods (Lee and Grossmann, 2000). Consequently, to capture the
connections between the logical part and the constraints of the DPO problem, we formulate
the following GDP model P:



Table 1: Utility sets

Set  Description

N Set of nodes 7 € N.

E Set of edges e = (i,j) € E, with 4, j € N.
LNL K- =K\ N.
{e:e=(j,i) € E}.

K Timesteps K = {0, 1, ..

E" Edges entering node 7, i.e. E* =
E¢"  Edges leaving node i, i.e. E" = {e:e = (i,j) € E}.

E*%  Edges entering a sink node, i.e. B = {e: e = (i,5), E9" = 0}.
E?  Set of discrete edges, i.e. E¢ C E.
N¢  Nodes with discrete leaving edges, i.e. N9 = {i:i € N, E{* c E¢} C N.
R Set of phases - oil, gas and water {oil, gas, wat}.

Table 2: Variables

Variable Description

Dik Pressure in node 7 € N at time k € K.
Qrek Flow rate of phase r € R on edge e € E at time k € K.
Yor Boolean variable associated with edge e € EY at time £ € K. The edge may be

open (Y, = True) or closed (Y. = False).
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The objective function (1) is a sum of univariate, possibly nonlinear functions of flow
rate. This general form allows for the inclusion of various cost and penalty terms. A
particularly common objective in operational settings is the total oil production, which may
be represented by ¢,k (Grex) = Grek, for r = oil.

The constraints in (2) are the mass balances for each phase, for all the internal nodes in
the system. The upstream boundary conditions are covered by constraints (3), with initial
conditions in (4), while the downstream boundary conditions are given by the (piecewise)
constant separator pressure in (5). Downstream conditions may vary. However, a constant
separator pressure is quite common and is adopted here.

Equations (6) and (7) define the momentum balance, or pressure drop, across pipe seg-
ments. These are modelled as a function of inlet flow rates and inlet pressure. For a discrete
edge, the momentum balance is only enforced when the edge is open; otherwise, when the
edge is closed, the flow rate is required to be zero according to (7).

A node with discrete leaving edges may route the flow to one or zero of these edges.
This logic is captured by the routing constraints in (8). Notice that these constraints do not
allow for flow splitting, which is an uncommon configuration in production systems.! The
final constraints in (10) are processing capacity constraints, typically included for the gas
and water phase. Note that (9) defines the Boolean variable Y.

2.1. Discussion

Upstream conditions are of particular interest to this study and will thus be elaborated
upon. Problem P defines a dynamic optimization problem on a prediction horizon K where
the dynamics enter through the reservoir model (3), where a natural approach is to embed
this into a receding horizon optimization strategy. This implies that P is solved repetitively
at each timestep, and that only the first control move is actually implemented. In situations
where the reservoir dynamics can be neglected a quasi dynamic approach may be used in
which P is simplified by limiting the prediction horizon to one time step and substituting
(3) with a static model, i.e.,

Crik(qekapik> - 07 V’l“ S Rave € E?Utvi S Nsrc7 k =0 (11)

Further, (4) needs to be omitted in this case. Note that the static version of P is well known.
Kosmidis et al. (2004) was the first to formulate a MINLP for the well oil rate allocation
problem.

The static upstream inflow condition, which describes the mass flowrate from the reser-
voir into the well, may be linear or nonlinear depending on the actual well and reservoir
characteristics near the well. Common models are linear productivity index models and
nonlinear Vogel curves. We do not put any requirements on the properties of (,.;x. We note,
however, that it is common to assume continuity, but not necessarily differentiability. For

IThe extension of the formulation to allow flow splitting is not considered here as it raises the complexity
of the formulation without contributing to our discussion.



cases where (. is non-differentiable it may be advantageous to approximate it by a piecewise
defined surrogate model to obtain a formulation better suited for optimization.

There is a vast literature on dynamic reservoir models, also related to optimization, see
e.g. Jansen et al. (2008) and references therein. Reservoir model (3) describes the well
known class of black oil models, which include oil, water and gas phases. Such models are
typically based on a spatial discretization of a PDE model (Aziz and Settari, 1979), and
may for instance be solved using a Newton iteration scheme. It may be noted that there
exisits more complex models, like compositional models as well as simpler, surrogate models.
Streamline models is an example of the latter.

The GDP formulation P generalizes many of the DPO problems cited in the references
in Section 1.1, capturing a variety of DPO problems both with or without dynamics and
with simple and complex network topologies. The problem formulation also enables several
alternative solution approaches. Pertaining to a GDP model, the most common solution ap-
proach is to reformulate P as a (nonconvex) mixed-integer nonlinear programming (MINLP),
while specialized logic-based algorithms may also be considered (e.g. Lee and Grossmann
(2000)). Yet, since equations (3), (6) and (7) often are embedded in one simulator or sev-
eral independent simulators for each well and pipeline, it is usually necessary to apply a
derivative-free method since gradient information is seldom available. On the other hand,
by acknowledging the fact that each nonlinear model, (3), (6) and (7), only has a few (local)
inputs and that all integer variables appear linearly, it makes sense to replace each well and
pipeline simulator with a piecewise linear surrogate model. This transforms the MINLP
problem into a MILP problem with all the benefits that come from such a formulation as
alluded to in Section 1.1.

3. Case studies

We now present two quite different DPO problems. The first one is based on a shale-gas
scenario while the second one refers to an offshore oil field.

3.1. Scheduling shale-gas wells with demand-side response

This case study, adopted from Knudsen et al. (2014), considers a small field with dry,
mature shale-gas wells. Such wells have an unique ability to quickly recover from loss of
production due to a well shut-in, thereby enabling operators to accommodate varying de-
mands during periods of low demands, without incurring revenue losses due to depreciation
(Knudsen et al., 2014). Together with their land-based nature, this property provides a
potential to use such fields as a proxy or substitute for underground gas storage (Knudsen
and Foss, 2017). As illustrated in Fig. 3, this enables bypassing of conventional, third-party
underground gas storage, thereby increasing gas energy efficiency from source to end-user,
in addition to reducing supply-related greenhouse gas emissions (Knudsen, 2016; Knudsen
and Foss, 2017). In terms of DPO for shale-gas wells, this production strategy couples the
gas demand side tightly to the upstream production, as well as integrating electric power
generation into shale-gas well-scheduling.
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In the case study, we consider 20 wells, all mature, mid-life wells producing at low rates,
assumed to be located in proximity to a natural gas power plant (NGPP). An electric utility
company (EUC) operates the NGPP, using the power plant as a ramp-up source together
with generation from intermittent renewables. We assume that wells produce gas onto a
transmission pipeline with sufficient capacity, and also that the demand predictions from
the NGPP is given sufficiently early to compensate for a short pipeline transmission time.
Hence, we omit the delay caused by pipeline transmission in the optimization model.

The shut-in ability of dry, mature shale-gas wells is enabled by the characteristic shale-
fracture system. This system, generated through hydraulic fracturing stimulation, ensures
fast formation pressure build-up during well shut-ins, and a subsequent peak in production
recovering the loss of production during shut-in. The dynamics of the pressure build-up,
however, ranges from the time-scale of hours in and close to the fracture network, and on
the time-scale of years further into the low-permeable shale matrix blocks. This composite
dynamics, with fast near-well dynamics and steady-state like dynamics elsewhere in the
reservoir, necessitates the use of a dynamic upstream model. To this end, we apply a linear
dynamic shale-well proxy model (Knudsen et al., 2014) for (.(-) in (3), which we tune
using prediction-error filtering to fit the proxy model in the frequency range necessary to
capture the dominating dynamics during recurrent shut-in operations. The validity of this
model is hence constrained to hourly shut-in operations, yet the model may also be fitted to
transients on other time scales by altering the filter cut-off frequencies, see Knudsen and Foss
(2015); Ljung (1999). For other proxy-modeling techniques for shale-gas wells, see Wilson
and Durlofsky (2013); Cafaro et al. (2016); Ghassemzadeh and Charkhi (2016).

The resulting scheduling model includes an embedded disjunction in place of (8), allow-
ing for on/off and pipeline routing decisions for each well. To solve P, we apply a combined
big-M and convex hull reformulation of the embedded disjunction, see e.g. Grossmann and
Trespalacios (2013), and approximate the nonlinearities with SOS2 approximations. The re-
sulting MILP consists 429 binary variables, 9786 continuous variables and 12469 constraints.
As the problem has a block structure with the wells coupled only by the compressor capac-
ity and demand constraints, we implement a Lagrangian relaxation scheme to decrease the
computation time. The scheme includes a proximal bundle method to solve the Lagrangian
dual and a combined projection-fixing heuristic to recover primal feasibility. For details on
the GDP model and computational scheme, we refer the reader to Knudsen et al. (2014).

We assume that the EUC operates a set of intermittent renewable generation sources
with hourly varying generation. The EUC uses the NGPP as ramping source in order
to compensate for the variability in renewable generation and meet the power demand.
Furthermore, we assume that the EUC uses weather forecasts to predict some hours ahead
its gas demand necessary to balance its electric-power generation. Upon receiving this gas
demand, the optimization-based DPO needs to to meet (or track) the varying gas demands
by scheduling well shut-ins. Every third hour, the shale-gas operator receives an updated
gas demand d®VC for the next 24 hours from the EUC.

In order to meet the varying gas demands, the shale-gas operator must re-optimize its
well schedule each time he receives an updated demand curve. To this end, we implement P
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Figure 4: Open-loop gas rates given initial demand from electric utility company.
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on a receding horizon, re-optimizing the well schedule and operating pressures each time a
new demand curve is received. We implement the receding horizon scheme using a prediction
horizon of three days and re-optimization of the well schedule each three hours. Beyond the
first 24 hours of the prediction horizon, we impose the predicted demand to be tracked as
the average d®VC of the current EUC demand, as a simple means of taking into account
the uncertainty of the future demand. The shale-gas operator commits to supplying the
demanded rate, incurring high penalties if the operator fails to do so. Compared to Knudsen
et al. (2014), we assume that the shale-gas operator supplies all its gas produced to the EUC,
i.e. no surplus gas is sold on the spot market.

In Fig. 4, we show the gas rates from the open-loop response computed at the first
sampling instant. The total well-supply meets the initially provided gas demand exactly.
At the next sampling time, three hours later, the gas demand from the EUC changes due
to variability in renewable generation. To prevent penalties, the operator updates the well
schedule by incorporating the updated demand curve. As shown in Fig. 5, by optimizing
over a receding horizon, the operator is able to exactly meet the varying gas demand by
properly shutting in its wells and adjusting wellhead pressures. The resulting well-schedule
is highly dynamic, as shown by the shut-in pattern in Fig. 6. Some wells are frequently
shut in and re-opened in order to build up pressure and thereby store gas for the predicted
future demand. Meanwhile, three of the wells produce continuously as a result of higher
formation pressure support, seen by the solid lines in Fig. 6. Solving the DPO P in the
receding horizon scheme requires on average 5 minutes for each iteration.
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3.2. DPO in conventional wells

In this case we consider a production system with 13 wells and 7 flowlines, two risers
included. All of the wells produce a mix of oil, gas, and water. A part of the daily production
optimization problem facing the operator, is to decide which of the wells to produce from
and which to shut in. Furthermore, four of the wells may be routed to one of the two
risers, labeled Riser A and B. The two risers produce to a platform on which the fluids are
processed for export. The platform also gathers the production from another oil field. Thus,
the capacity of the processing facility must be shared between the two oil fields, and during
periods of maintenance and test campaigns the sharing ratio may vary.

A problem formulation for the production system described above is derived from P. The
resulting formulation has 310 constraints and 220 variables, 17 binary variables included.
The formulation has a total of 217 = 131,072 possible network configurations. The routing
constraints cut the number of valid network configurations to 22 - 3* = 41,472: the routing
constraints enforce wells with routing capabilities to produce to zero or one flowline, giving
three possible well configurations per well.
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Figure 7: Oil and gas production with changing gas processing capacity.

The inflow performance relationship of the wells are modeled as cubic B-splines C.ix (Qek, pix)
fitted to well test data. The pressure drop over the network flowlines are modeled as cubic
B-splines f.(qek, pix) fitted to data generated by a multiphase flow simulator. Cubic B-
splines ensures C? continuity (continuous second-order derivatives); this a desired property
in continuous optimization that may accelerate the solution process. With the nonlinearities
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represented with B-splines, the case in question can be solved to global optimality within 1-3
minutes on a laptop computer. These surrogate models were also used by Grimstad et al.
(2016) to model a similar production network.
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Figure 8: Optimal routing of wells as the gas processing capacity changes. A dotted line means that the well
is shut-in; a dashed or solid line indicates that the well is routed to Riser A or B, respectively. A red circle
(O symbolizes a start-up or re-routing of a well, while a red A symbolizes a shut-in.

An operational window of three days is considered, in which the gas processing capacity
on the platform available for the production system is lowered by 20%, approximately from
8.48 t0 6.78 M Sm?/day, to accommodate increased production from the other oil field. The
production system must produce with a limited gas processing capacity for one day, before
production may return to a normal level. The available capacity changes in step-wise manner
and the control must be adjusted accordingly. Optimal control is achieved by performing re-
optimizations every time the gas processing capacity changes; assuming that the production
system operates in a steady state between the steps.

The result of the sequential optimization is shown in Figure 7. The optimal well routings,
yielding the highest oil rate, are illustrated in Figure 8. When the gas processing capacity is
reduced by 20%, Well 7 is shut-in and Wells 4-7 flips routing combination. Notice that, with
these changes in control, the reduction in oil production is kept below 10%, even though the
gas production is reduced by 20%. Throughout this scenario, the production of gas lies on
the active gas capacity constraint. When the gas processing capacity is increased back to
8.48 M Sm?/day, the controls return to their initial state.
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4. Discussion

The cases above support both static and dynamic formulations. As alluded to earlier a
large class of DPO problems can treated by a static formulation by acknowledging the time
scale separation between reservoir dynamics and the prediction horizon for DPO, thus the
use of repetitive optimization on a static model suffices. This is supported by Figure 9, which
shows the power spectrum for the total oil rate, i.e. the export oil rate, from an offshore oil
platform on the Norwegian continental shelf. Frequencies corresponding to dynamics in the
2-12 hour range are shaded with a grey background. Noting that this is a log-log plot there
are significantly less variations in this frequency range than below and above, except for
frequencies above 2 - 1072 Hz. Thus, arguably including dynamic models to improve control
in this frequency range is unnecessary since disturbances are limited. For completeness, the
frequency range above 2-1073 Hz corresponds to dynamics faster than 10 minutes. The power
spectrum shown in Figure 9 is quite typical for offshore operations. However, there are cases
where reservoir dynamics are important on a daily production horizon such as in shale-gas
cases. Referring back to the power spectrum this implies that dynamics in the shaded area
will be more pronounced in the shale-gas case than in Figure 9. This is supported by the
on/off well pattern in Fig. 6 where 50% of the wells switch on and off a couple of times a
day.
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Figure 9: Power spectrum of oil rate measured at topside separator.

The clear majority of cases uses a static DPO formulation for reasons discussed already.
However, there is another reason for choosing the simpler option, static models, namely
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model accuracy. Model accuracy poses a particular challenge for the well models. Flow rate
estimates from individual wells are inaccurate since multiphase flow meters are few and far
between. Further, model calibration is performed quite infrequently since they rely on data
from well tests.

A dynamic formulation may be necessary because of demand side dynamics, a situation
which is encountered in the shale-gas example discussed earlier. This case includes dynamics
both in the upstream reservoir and downstream demand side. Another situation is if fast
dynamics appear only on the demand side. This latter situation, with only demand side
dynamics, is covered by P by optimizing on a suitable horizon K with a static reservoir
model (3) while discarding (4). As alluded to in Fig. 3 one may expect more pronounced
NGPP demand side dynamics in future electric grids with renewable electricity production.
This is supported by Lee et al. (2012) who study the complementaries between NGPP and
renewable power production feeding into a common electric grid. They stress the need for
NGPP to provide the flexibility required due to variable renewable generation.

Oil rims are reservoirs where a thin oil rim, typically 10 — 25 metres, is sandwiched
between a large gas cap above and water beneath. One well known case is the Troll oil
field operated by Statoil. Oil rims can only be exploited economically through horizontal
wells which are placed just above the water-oil-contact. The reservoir dynamics are fast. In
particular the gas-oil-contact may move downwards towards the well, in a matter of hours, in
the event of increased choke opening. This can expose the well to free gas, a situation which
limits oil production severely due to gas processing limitations, as modelled in (10). Nennie
et al. (2009) compares alternative dynamic control strategies for production optimization of
a thin oil rim and concludes that dynamic strategies enables increased production. Similar
results are obtained in Sagatun (2010) and Hasan et al. (2013). To conclude, DPO in oil
rims may call for a dynamic reservoir model.

The focus up until now has been on the need for dynamics related to reservoir behavior
and the demand side, while the wells and network uses static models since P does not allow
dynamic models for these parts. This is a valid assumption except for certain extended
networks that are closely integrated with downstream processing, LNG plants being one ex-
ample. In Foss and Halvorsen (2009), where the Statoil Snghvit subsea field was considered,
the pipeline between 9 wells and the LNG plant is 140 km. The network dynamics are then
in the range of 8 — 10 hours and thus in this case the use of a dynamic formulation was
considered and actually applied in a DPO study. To limit complexity a dynamic surrogate
model for the pipeline was used.

DPO applications, which are normally treated by a static formulation, may in some
cases benefit from a dynamic formulation. For short DPO horizons, less than a few hours,
a dynamic formulation may be in order, in particular in situations where the link to lower
level control is particularly important. This link is reinforced in situations with severe slug
flow since the slug cycling time typically lies in the range from 20 minutes to 1 hour. As
mentioned earlier, Codas et al. (2016) explores the integration between low level control
and dynamic DPO. Improved results are reported, however, at the expense of a significant
complexity increase. Another situation where a dynamic description is needed is production
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optimization that includes well startup. This, however, adds significant complexity because
of the need for more complex well models than the ones for instance used in the dynamic
DPO study in Codas et al. (2016). The reason is that the well models need to be accurate
in a wide range of operating conditions, not only during normal operation.

5. Conclusions

A static optimization formulation suffices in most relevant DPO cases. Important excep-
tions are shale gas wells and thin oil rims.
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