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Assessment protocols and comparison of
ordering relations for spectral image processing

Hilda Deborah, Noël Richard, Jon Yngve Hardeberg, and Christine Fernandez-Maloigne

Abstract—Recent developments in hyperspectral sensors allow
to obtain high spectral and spatial resolutions that are close
to the optical and physical structures of acquired surfaces.
Consequently, hyperspectral imaging is used for its potential gain
of accuracy. To preserve this metrological potential, generated
bias, errors, and uncertainties must be managed at all subsequent
processing levels. Based on the argument that a spectral image
processing should avoid the linear approach, this study proposes
several protocols for assessing the quality of spectral ordering
relations. The protocols include considerations of theoretical
properties to ensure result stability, in physical aspects of spectral
processing to ensure the link to physical properties of materials,
and experimental results using spectral images with physical
ground truth to assess bias and errors. Full-band ordering
relations are compared in order to find which satisfies all of the
expected properties of a metrological spectral image processing.

Index Terms—Multidimensional signal processing, image pro-
cessing, imaging spectroscopy, metrology

I. INTRODUCTION

In digital image processing, linear approaches have been
extensively used in variety of applications, mainly for their
simple mathematical expressions and technical implementa-
tions. However, it has to be noted that linear processing
techniques require valid addition and multiplication with a
scalar. And if the prerequisites are not satisfied, it is erroneous
to employ the linear approach. When it comes to the spectral
domain, no valid addition and multiplication with a scalar are
defined for it. This means that the linear approach should be
avoided. Additionally, its use is not recommended since it
demonstrates inability to deal with nonlinearities, e.g., impulse
noise, non-linear image degradations, etc.

Limitations of the linear approach to image processing
can be overcome by the nonlinear ones, e.g., mathematical
morphology (MM), rank order filters (ROF), nonlinear image
restoration, etc. Many of these techniques, e.g., MM and
ROF, are built on the notion of ordering relation. But the
use of nonlinear techniques are not without challenge. For
the ordering-based ones, it is only the scalar domain that is
naturally equipped with an ordering relation [1], [2]. And when
it comes to the spectral domain, the challenge becomes two
folds. The first is in obtaining a theoretically valid multivariate
ordering relation, and the second is in obtaining one that is
suitable for the spectral domain, considering all characteristics
and specificities of the data. A spectral image is not a mere
three-dimensional mathematical object, but a measurement
obtained from a physical light sensor [3]. A recent theoretical
advance concluded that a spectral pixel should be considered
as a digitized continuous function of the wavelength [4]. Then,

among the existing multivariate ordering relations, which one
is the most correct and suitable for use in the spectral domain?

Ordering relation in the scalar domain naturally presents a
physical sense. E.g., a grayscale image can be considered as
an intensity image and, thus, its pixel values correspond to
the amount of energy captured by an image sensor. A spectral
image can be considered as multiple intensity images, each
corresponds to a specific wavelength. Therefore, a multivariate
ordering relation which is partially coherent with regards to
physical senses of the image can be obtained. However, there
is no evident way to produce such ordering relation. Even
though it is still possible, there are two constraints to be met.
This ordering relation must stay close to the physical aspects
of data, such that the produced results are understandable.
Then, it has to respect the theoretical properties of an ordering
relation, such that results are predictable regardless of the
spectral content.

In order to select the most suitable ordering relation for
applications in computer vision, we focus on establishing
a standard protocol for the comparison of spectral ordering
relations. Then, since a spectral image is a measurement, it
is imperative that the protocols take also into account the
metrological aspects of this data. But before going into the
protocols, Section II provides the state of the art of multivariate
ordering relations that have been applied or are applicable to
the spectral domain. This section will also give a discussion
of their suitability for use in the domain. Two protocols
assessing accuracy and efficiency can be read in Section III
and IV, respectively. Both protocols are built around the
computation of median, which is directly attainable after
defining an ordering relation. MM is a more advanced image
processing framework that is based on ordering relation. But
in order to obtain it for the spectral domain, there are several
theoretical properties to be satisfied, and they are provided
in Section V. This section provides a discussion on which
ordering relation has the desired properties, which does not
and what causes it. In section VI, the usefulness of an ordering
relation is measured through measuring the performance of
spectral Beucher’s gradient. Gradient is an important operator
allowing to carry out segmentation algorithm using watershed.
Therefore, quality of the segmentation result highly depends
on quality of the employed gradient operator. In Section VII,
we provide how to combine the different assessment results to
define the most suitable ordering relation for spectral image
processing, embedding metrological constraints. Finally, the
article is concluded in Section VIII. Mathematical notations
frequently used throughout the article can be found in Table I.
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II. SPECTRAL ORDERING RELATIONS

An early study of multivariate ordering relation classi-
fied the existing approaches into four non-mutually exclusive
groups, i.e., marginal, partial, conditional, and reduced ap-
proaches [5]. Since then, multitudes of multivariate ordering
relations have been developed. A more recent state of the
art study is available, providing a discussion based on the
theoretical properties of an ordering relation, i.e., pre-, partial,
and total-orders [6]. In the following, the state of the art is nar-
rowed down to the spectral ones, including color and general
multivariate ordering relations that are directly extensible to
the spectral domain. Note that, unless specified, the ordering
relation between two arbitrary spectral functions S1 and S2
using any arbitrary ordering function g provided in this section
is defined as in (1).

S1 �g S2⇔ g(S1)≤ g(S2) (1)

A. Marginal and energy-based ordering relations

Marginal ordering relation orders spectral data channel-
wise, followed by strategies to combine the channel-wise
results [7]. Its mathematical expression in (2) shows that the
binary relation ≤ has to be satisfied in all spectral ranges.

S1 �marg S2⇔ s1(λ )≤ s2(λ ), ∀λ ∈ [λmin,λmax] (2)

However, a spectral function or, simply, a spectrum is not
always larger than another in all wavelengths, making ex-
pression (2) fail to give a decision. A commonly employed
strategy to address this problem is illustrated by the minimum
extraction in (3). Given a set of spectra to order S , its
minimum spectrum is one whose value is minimum in all
wavelengths, thus creating a new spectrum that does not exist
in the initial spectral set. This introduction of a new data
is called false spectra problem, see Section V-B. Another
drawback of the marginal approach is its inability to exploit
inter-channel correlations in a hyperspectral image. Further on,
this ordering relation will be referred to as Marg.

g−marg(S ) =
∧

λmin≤λ≤λmax

{si(λ )}, ∀Si ∈S (3)

Images in the grayscale domain can be considered as
intensity images. Considering a spectrum as energy, one is
larger than another when it has a bigger sum of energy (4).
Thus, as in the grayscale domain, a ’white’ spectrum is always
larger than a ’black’ one [8]. This ordering relation will be
referred to as Esum.

gesum(S) =
∫

s(λ )dλ (4)

B. Ordering relations with a prioritization function

Given a certain condition, a lexicographic approach sequen-
tially orders spectra by means of their marginal components. If
its original mathematical expression in (5) is to be considered
as is [6], a spectrum would be expressed as a set of values
obtained from n discrete spectral bands, i.e., S1 = {s1(λi)}, for
λmin = λ1 ≤ ·· · ≤ λi ≤ ·· · ≤ λn = λmax. This ordering relation
can be a good choice when priorities among image channels

TABLE I
MATHEMATICAL NOTATIONS FREQUENTLY USED IN THE ARTICLE, GIVEN

IN ORDER OF APPEARANCE.

S A spectral function or spectrum expressed as a continuous
function of wavelength, S = {s(λ )}

I(x) Image or pixel value associated with spatial coordinate x;
the pixel of a spectral image is defined as I(x) = S

λ Wavelength or spectral band/ channel, λ ∈ [λmin,λmax]
g(S) Ordering function applied on spectrum S
a⇔ b Logical ordering relation a is equal by definition to logical

ordering relation b
S1 �g S2 Logical ordering relation ”less than or equal to” between

arbitrary spectra S1 and S2, with respect to any arbitrary
ordering relation g

≺g,�g,=g Logical ordering relations ”less than”, ”greater than”, and
”equal to” relative to any arbitrary g, respectively

S1 = S2 Any arbitrary spectra S1 and S2 have equal values in all
wavelengths, {s1(λ ) = s2(λ ), ∀λ ∈ [λmin,λmax]}

d(S1,S2) Distance between two arbitrary spectra S1 and S2, also
used in the context of line profile using distance function

Sref Spectral reference in distance-based ordering relations
S−∞,S+∞ Spectral references associated to minimum and maximum

rank extraction in an ordering relation, respectively
S A set of spectral functions
W Filter window defining a neighborhood over the spatial

dimension of an image. Also used to denote structuring
element in the context of mathematical morphology

L A line segment over the spatial dimension of an image
SW (x), Spectral set S within filter window W or line segment L
SL(x) as a function of spatial coordinate x
r Rank or order
FW,r,g(x) Spectral filter replacing the spectral function at x with

one having rank r relative to ordering function g in the
neighborhood W

#S Cardinality of the set S
` Line profile
Swh Theoretical equi-energetic white spectrum
δ ,ε,ϕ Morphological dilation, erosion, and gradient, respectively
µ, σ Mean and standard deviation, respectively∧
,
∨

Point-wise minimum and maximum, respectively, in dis-
crete intervals or, in the continuous case, infimum and
supremum, respectively

are known. Otherwise, only the first few channels will be
considered while the rest rendered almost negligible. To the
best of our knowledge, this construction has mostly been used
in the color domain [9]. In the spectral domain, lexicographical
cascade is used to resolve classification ties in supervised
ordering [10] or to allow reaching the total ordering property
[8], [11]. Throughout this article, this ordering relation will be
referred to as Lex.

S1 �lex S2⇔ ∃λi ∈ [λ1,λn],

(∀λ j < λi,s1(λ j) = s2(λ j)) AND (s1(λi)≤ s2(λi))
(5)

Nevertheless, adapting (5) to a continuous form, it can be gen-
eralized into a prioritization function of the image channels as
in (6). In this expression, any arbitrary prioritization function
f (λ ) can be used.

gP(S) =
∫

λmax

λmin

f (λ ) · s(λ ) dλ (6)

In [12], two kinds of prioritization are used to give priority
to the shorter or longer wavelengths according to the color
content, i.e., more bluish or reddish. Using a center wavelength
is possible using a modulo[λminλmax] representation but the
physical sense of the data will be lost since wavelengths closer
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to the center wavelength at the left will have a very different
priority than those at the right.

Bit mixing approach [13] can also be rewritten as prioritiza-
tion function-based ordering relation. However, its prioritiza-
tion function is applied not only on the spectral channels but
also at the data bits. It considers each spectral value s(λ ) as a
binary word consisting of B bits, within a sequence of words,
one per channel, i.e. s(l){b}, b∈ [0,B−1], l ∈ [0,N−1] with N
the channel count. The complete sequence constructs a word
of B×N bits, see (7). A priority can then be defined for the
shorter or longer wavelengths through the function k(l).

gBM(S) =
B−1

∑
b=0

(
2B·b

N−1

∑
l=0

k(l) · s(l)b

)
, where

k(l) =
{

2N−l Priority for the shorter wavelengths
2l Priority for the longer wavelengths

(7)

C. Distance-based ordering relations

By defining a distance function and a spectral reference,
ordering relation in (8) is obtained. It has been employed in
[14]. If the selected reference is a theoretical equi-energetic
white spectrum, gd1 will behave similarly to gEsum [8].

gd1(S) = d(S,Sref) (8)

Aiming to fully control the convergence of image value set
in a morphological context, Convergent Color Mathematical
Morphology (CCMM) [15] employs two spectral references
separately for minimum and maximum extraction, g−CCMM and
g+CCMM respectively. CCMM, as expressed in (9), is directly
extensible to the hyperspectral domain. However, it is not
idempotent and, thus, not a suitable choice for constructing
an MM framework for spectral data.

g−CCMM(S) = d(S,S−∞) and g+CCMM(S) = d(S,S+∞) (9)

Cumulative distance based ordering relation in (10) has been
employed in a median filtering [16] and for an extension of
MM to the hyperspectral domain [17]. In later sections, when
this ordering relation is used, it will be referred to as Cumdist.
Throughout this article, Cumdist embeds KLPD function [4]
as its spectral difference function d.

gdn(S) = ∑d(S,Si), ∀Si ∈SW (10)

D. Supervised ordering approaches

Assuming background-foreground representations in an im-
age, kriging interpolation and SVM were employed to learn
an ordering relation [11]. When both representation sets are
unitary, the ordering relation is as in (11), where Sb and S f
correspond to background and foreground pixels, respectively,
and K is points’ pairwise covariances in kriging interpolation.

g{Sb,S f }(S) =
K(S f ,S)−K(Sb,S)
K(S,S)−K(S f ,Sb)

(11)

The two-class construction in (11) was further developed into
a multiclass one [18] in (12). g∗ is a normalized two-class
function, e.g., one-vs-all SVM evaluation function, Si is a set

of spectral functions belonging to class i, and S−i is a set of
spectral functions belonging to classes other than i.

g{S }(S) = max
i

g∗(S;S−i,Si) (12)

Other supervised ordering relations for hyperspectral images
can be found in [19], [10], [20]. Generally, the main draw-
back of this approach lies in its assumption of background-
foreground or multiclass representations. Indeed, the assump-
tion can be highly relevant under the context of remote sensing
images or for classification purposes, but it still renders a
limited use of the approach. As an example, hyperspectral
images of paintings cannot always be modeled as background-
foreground representations or the multiclass one due to the
mixing nature of pigments and other chemical materials. And
since such approaches reduce the acquired spectral accuracy to
several classes or levels, they are not suitable for metrological
purposes of, typically, texture analysis.

E. Ordering relations with prior data reduction

Computational cost is often an important consideration for
hyperspectral image processing. The large channel count of a
hyperspectral image poses challenges in memory size and also
computational time and complexity. To deal with the issue,
dimensionality reduction [21], [22] or band selection [23] are
often employed as a preprocessing step. It is then followed
by any ordering relations mentioned previously. Despite the
high interest of such approaches, this study will not consider
them. This is because with the reduction steps, it is difficult
to distinguish the impact of only the ordering relation. And,
eventually, the final processing results should be considered as
the product of both reduction process and ordering relation.

F. A full-band and metrological spectral ordering relation

In [12], an ordering relation based on the ratio of distance
relative to two spectral references was proposed, referred
to as CRA. It is a conditional ordering relation where the
first and second conditions are ratio of distance proportional
to magnitude and shape differences between two spectra,
respectively. Its mathematical construction can be seen in (13).
CRA employs two different equations for its maximum and
minimum extractions, which are dual since R0 = (R1)

−1. It is
further illustrated in Fig. 1 as a geometric distance between
S1 and S2 in a two-dimensional coordinate system with S−∞

and S+∞ as the origins. The selection of S−∞ and S+∞ can
be arbitrarily or according to specific application goals. A
guidance in selecting the optimum pair of references can be
found in [12]. This ordering relation was developed to extend
MM framework to the spectral domain, aiming to respect both
of its theoretical and metrological constraints.

S1 �CRA S2⇔
{

R0(S1)> R0(S2) or
R0(S1) = R0(S2) and R2(S1)< R2(S2)

S1 �CRA S2⇔
{

R1(S1)> R1(S2) or
R1(S1) = R1(S2) and R2(S1)> R2(S2)

R0 =
d(Si,S+∞)

d(Si,S−∞)
,R1 =

d(Si,S−∞)

d(Si,S+∞)
,R2 =

2.d(Si,S−∞)

d(S−∞,S+∞)

(13)
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Fig. 1. Illustration of conditional ratio and angular (CRA) ordering relation
in a two-dimensional space with S−∞ and S+∞ as the origins.

III. ACCURACY1 OF SPECTRAL MEDIAN FILTERS

Maragos [25], [26] and Pitas [27] have laid down all
theoretical foundations for median filters and their relationship
to morphological filters and the linear filtering approaches.
Demonstrations of their properties, i.e., edge detection and
noise suppression, were developed for the grayscale domain
without any questions regarding the ordering relation. How-
ever, to keep these properties in the multivariate case of
median filters, the ordering relation must be total. Thus
the relationship between the ordering relation and filtering
properties is injective. In this paper, we impose an additional
constraint since having a total ordering property is insufficient
for the filters to be valid. The additional constraint requires
the ordering to also respect the physical sense of spectral
measures. But since the satisfaction of this last constraint is
difficult to establish, experimental tests are required. And as a
hypothesis, the ordering relation can be valid if all properties
of the median filters are obtained. Thus, the assumption is
based on the possible bijectivity of relationship linking the
validity of ordering relation and the filtering properties. To
assess the validity of the ordering relation, satisfaction of the
filtering properties will be measured in the experimental tests.
Edge preservation test is chosen in the following as it is based
on the one developed by Pitas [27], thus ensuring a direct
translation from Pitas’ foundation.

This first protocol of ordering relation assesses ordering
errors and biases. It proposes to compare the median extracted
through a statistical approach, i.e., Vector Median Filters
(VMF) [16], to a direct median extraction using a rank order
filter (ROF). Ordering relations to be used to build the ROFs
are Esum, Lex, Marg, and CRA. These ordering relations are
selected since they consider a spectral image as a whole or,
in other words, in a full-band way. And they are also the ones
to be considered in Section IV, V, and VI.

A. Brief overview

Median filters belong to ROF family, thus requiring the use
of an ordering relation. Mathematically, ROF can be expressed
as in (14), where the notion of rank r is linked to cardinality cv
or the number of spectra that are ’smaller’ than itself [12]. An
ROF F of a defined filter window W , rank r, and ordering
relation g takes a spectrum at the origin Sx as input and
replaces it with a spectrum Sv that originates from W and

1Here, accuracy is used to be more easily understandable. Although in the
metrological sense, it is measurement error that we are measuring, i.e., ”the
measured quantity value minus a reference quantity value” [24].

input values
A B A C A B E D F
ordered values
A A A B B C D E F
cardinality cv
0 0 0 3 3 5 6 7 8

Fig. 2. A set of nW = 9 letters as input values, to be ordered alphabetically.
The mathematical expression in (14) allows to select a letter B (as marked in
red) as the median of the set by means of its cardinality cv = 3≤ nW−1

2 .

(a) (b)

Fig. 3. Illustration of a pigment patch where (a) an arbitrary line segment
shown in red line is chosen and (b) its spectra are plotted. Spectra belonging
to the homogeneous green regions are grouped as group 1 and 2. Spectra of
the edge pixels are shown in edge loc.. The pigment patch is of real pigment
patch that was acquired by a hyperspectrally scanner.

whose cardinality is maximum among those with cv ≤ r− 1.
Then, two possibilities of input values may arise, i.e., all
input values are unique or when identical values are present.
When all values are unique, cv = r−1. To illustrate the latter,
see Fig. 2. The occurrence of identical values obligates the
constraint of cv ≤ r− 1 to cater for the case when cv = r− 1
does not exist.

FW,r,g(x) =
∨
{Sv | cv ≤ r−1, Sv ∈SW (x)} ,

cv = #{Si | g(Si)≤ g(Sv), ∀Si ∈SW (x)}
(14)

In an alternative approach, Astola [16] developed VMF under
the definition of median as ”the point of minimum aggregate
distance or travel” [28], [5]. VMF obtains a median spectrum
by extracting rank r = 0 using Cumdist in (10).

B. Assessment protocol of accuracy

Grayscale median filters are known for its edge preser-
vation capability. To assess whether the spectral ones also
has this property, accuracy assessment between the reference
and filtered or obtained edges can be carried out. In this
case, the reference edge will be obtained from the original
image. Then, error assessment can be measured based on
two criteria, i.e., sharpness and location of an edge. Pigment
patches as in Fig. 3a will be employed for the experiment,
where approximate locations of their edges are known. Then,
instead of carrying out evaluation on an entire image, line
segments SL will be randomly selected from the image target
as illustrated in Fig. 3a, where each is required to include two
homogeneous regions. Spectra of pixels in the SL are shown
in Fig. 3b, where those belonging to the homogeneous regions
(group 1 and 2) are highly similar in magnitude. As for spectra
originating from the edge pixels (edge loc. group), magnitudes
of their spectra are between the homogeneous groups.
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Fig. 4. An illustration of line profiles of an original image and its filtered
image. Their edge slopes are approximated by polynomial functions of degree
1. A less steep slope indicates a blurrier image.

The determining element of a spectral median filter perfor-
mance is a line profile `. It is obtained by computing difference
values of pixels in a line segment to a theoretical equi-
energetic white spectrum Swh = {s(λ ) = 1,∀λ ∈ [λmin,λmax]},
see (15). In this protocol, KLPD function [4] is chosen as the
spectral difference function. From line profile `, two objective
criteria can be calculated, i.e., edge sharpness and location.

`= {d(Swh,Si), ∀Si ∈SL} (15)

Let yo = aox+bo and y f = a f x+b f be the linear approxima-
tions of edge slopes from an original and its filtered images,
respectively, see illustration in Fig. 4. To quantify changes
in edge sharpness after processing, (16) is used. Esharp ≥ 1
is considered to be good result, where the processed edge is
either identical or sharper than the original. Blurred processed
edge will yield value 0 < Esharp < 1. Zero and negative Esharp
correspond to when no edge is detected and when processed
edge has different direction, respectively.

Esharp = a f /ao (16)

A well-performing median filter not only maintains the
sharpness of an edge but also its location. Edge location shift
will be quantified by (17), where score approaching 0 indicates
better performance. To have statistical measures of mean µ and
standard deviation σ , edge sharpness and location tests will
be carried out m = 500 times, each time using a randomized
pigment patch and line segment.

Eshi f t =| (−bo/ao)− (−b f /a f ) | (17)

Each pigment patch has different spectral distribution, caus-
ing the obtained line profiles to have varying dynamic ranges.
To deal with this, normalization process in (18) will be applied
to the line profiles (denoted `i for both original and filtered
ones) obtained from the same line segment, relative to the
VMF-generated one `V MF .

`i = 100% · `i−
∧
`V MF − ε∨

`V MF −
∧
`V MF +2ε

,

where ε = k · (
∨

`V MF −
∧

`V MF), k = 0.1
(18)

TABLE II
AVERAGES µ AND STANDARD DEVIATIONS σ OF EDGE SHARPNESS Esharp

AND LOCATION SHIFT Eshi f t OBTAINED FROM 500 TESTS. BEST AND
WORST RESULTS ARE COLORED GREEN AND RED, RESPECTIVELY.

Criteria VMF
(Cumdist)

Esum-
MF Lex-MF Marg-

MF
CRA-
MF

Esharp
µ 0.449 0.938 0.690 0.911 0.905
σ 0.398 0.568 0.968 1.233 0.873

Eshi f t
µ 2.800 0.530 6.492×1014 0.481 0.513
σ 4.106 3.243 8.511×1015 2.949 3.031

(a) (b)

Fig. 5. Two examples of edge preservation cases given for (a) VMF and
(b) Lex-MF. VMF and Lex-MF blurs and destroys the original input edges,
respectively.

C. Performance assessment results

Results of edge sharpness and location shift tests are pro-
vided in Table II. There, it can be observed that the employed
filters generally blur edges. The robust statistical approach of
VMF is well reflected by the σ of Esharp. However, looking
at its µ , it becomes evident that VMF is the most blurring
one. See also an example in Fig. 5a. And this is due to its
assumption of symmetric exponential distribution [16] which
is not satisfied by the employed dataset. Esum-MF is found
to be the best performing median filter when it comes to
maintaining edge sharpness Esharp, providing µ that is closest
to 1 compared to others. Its performance in maintaining the
edge location is also relatively close to 0, especially when
compared to VMF and Lex-MF.

Despite having a higher µ of Esharp than the statistical VMF
approach, Lex-MF demonstrates performance instability. And
this behavior is especially reflected by its µ and σ of Eshi f t
scores. An example problem encountered by Lex-MF is shown
in Fig. 5b, where it essentially destroys the original input edge,
yielding a f = 0. In such a case, sharpness score Esharp = 0
and Eshi f t → ∞ will be obtained. In the sharpness test, this
removal of edge indeed goes undetected due to formulation
of the criteria and also the use of average measure. However,
it will become evident in the edge location shift test. a f = 0
can be interpreted as there being no edge or slope. But in
order to avoid division by zero problem, in our implementation
we chose to represent 0 by a very small number instead.
Consequently, yielding a very big Eshi f t , that will be further
propagated to the computation of µ and σ of Eshi f t values as
observed in Table II. Note that these scores do not state that
Lex-MF always perform bad, but rather of its unpredictability.
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In terms of edge location preservation, in Table II, Marg-
MF demonstrates the best performance among the rest. And
this is as expected due to its independent processing for each
spectral band, which can also be considered as a statistical
one like VMF. At the same time, however, this independent
band processing presents a drawback as captured by the σ of
Esharp. Shortly, it is because the mixing of information from
independent spectral bands modifies spectral distribution in the
line segment under consideration, hence a larger σ of Esharp.

The last filter to assess is CRA-MF, which presents itself
to be an alternative solution for spectral median filter. Con-
sidering both scores in edge sharpness test, its performance
is only slightly below the best performing one, i.e., Esum-
MF. Its µ of Esharp is indeed lower than Marg-MF, but when
its corresponding σ is also taken into account, CRA-MF can
be concluded as more stable than Marg-MF. In edge location
preservation test, CRA-MF places second after Marg-MF.

To summarize, performances of several spectral median
filters have been assessed relative to a reference measure using
two criteria, i.e., edge sharpness and location. 500 randomized
tests were carried out and, from results in Table II, candidate
solutions to spectral median filters are Esum-MF, CRA-MF,
and Marg-MF. VMF is found to blur edges more than other
filters, while Lex-MF demonstrates unstable performance.

IV. EFFICIENCY OF MEDIAN SPECTRUM EXTRACTION

In the context of image classification, the mean of all pixels
is typically chosen as the representative pixel of a class.
This can be found in, e.g., k-means clustering and machine
learning methods such as self-organizing maps. Hyperspectral
images are not vectors in the Euclidean space but should
rather be considered as series or functions of wavelengths [4],
[12]. Furthermore, the use of average computation erroneously
assumes that there are valid addition and multiplication with a
scalar in the spectral domain. As a consequence, representative
pixels in the context of hyperspectral image classification
should rather use an alternative way such as the median. In the
following, efficiency of various ordering relations in extracting
the median spectrum for each class in a hyperspectral image
will be discussed and assessed. Performance in this test is
correlated to the computational efficiency of ordering relations.

A. Computational complexity of spectral ordering relations

Due to the size of a hyperspectral image, computational
complexity often becomes the main consideration when deter-
mining how they should be processed. In extracting a median
spectrum from a set of spectra, the main task lies in sorting
them. And here comes the role of an ordering relation. In ad-
dition to Esum, Lex, Marg, and CRA, the cumulative distance
approach (Cumdist) will also be assessed. Their computational
complexity are provided in Table III, where a median spectrum
extraction task is broken down into three main tasks.
Pixel loading Due to the sheer size of a hyperspectral image,

the simple task of reading and loading the pixels into
memory has to be accounted for. And the cost for this
task is linear following pixel and spectral band counts n
and Λ, respectively.

Pre-sorting Depending on the ordering relation, certain pro-
cessing will be required at this step. Cumdist requires to
compute the distance between each pixel to every other
pixels within the same class. This induces a quadratic
complexity n2Λ2. This step is then followed by computing
the cumulative distance for each pixel, costing nΛ. As
for CRA, its distance map computation only requires
linear time nΛ since it only compute the distance of each
pixel to two references. This step is then followed by
the computation of ratio and angular maps of distance,
which also takes a linear time. Esum requires to compute
the sum of energy map, which takes a linear time nΛ.

Quicksort Assuming the use of quicksort, different ordering
relations might need a different implementation. Cumdist
and Esum can use the standard quicksort as they provide
scalar values to the sorting algorithm, hence the quadratic
n2 cost. For Lex, quicksort is carried out sequentially
across the spectral bands, inducing the standard cost
multiplied by the number of spectral bands n2Λ. CRA
is also a conditional ordering relation like Lex. But since
its condition is only 2, this multiplication factor can be
considered negligible, yielding a complexity of n2. Lastly,
sorting complexity of Marg is n2Λ since quicksort is
carried out independently for each spectral band.

Finally, from Table III, it can be concluded that the least
efficient one is Cumdist. Then, the most efficient ones are
Esum and CRA. In the following, these theoretical efficiencies
will be assessed in a real experiment allowing to have a more
complete knowledge.

B. Assessment protocol of efficiency

Efficiency assessment of an ordering relation will be carried
out by simply calculating the time it requires to obtain median
spectra of all classes in a given image. To conduct the
experiment, three publicly available images will be employed,
each comes with a ground truth information. Specifications
of these images are provided in Table IV, where the total
numbers of classes and pixels are excluding background
information. Note that this experiment was developed using
Python 2.7 and numpy 1.11.1 and was executed on a platform
of Intel® Xeon® E3 processor, 8GB of RAM, and 64-bit
Windows 7 operating system.

TABLE III
COMPUTATIONAL COMPLEXITY OF MEDIAN SPECTRUM EXTRACTION

USING 5 SPECTRAL ORDERING RELATIONS. n AND Λ ARE NUMBERS OF
PIXELS IN ANY ARBITRARY CLASS AND SPECTRAL BANDS IN THE IMAGE,

RESPECTIVELY. GENERALLY, Λ < n.

Operations Computation for each class in an image
Cumdist Esum Lex Marg CRA

Pixel loading nΛ nΛ nΛ nΛ nΛ

Pre-sorting
Distance map and (nΛ)2 - - - nΛ

cumulative dist. nΛ - - - -
CRA dist. - - - - n

Sum of energy - nΛ - - -
Quicksort* n2 n2 n2Λ n2Λ n2

Time complexity O(n2Λ2) O(n2) O(n2Λ) O(n2Λ) O(n2)
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TABLE IV
SPECIFICATION OF REMOTE SENSING IMAGES [29], [30] EMPLOYED IN

THE EFFICIENCY ASSESSMENT OF SPECTRAL ORDERING RELATIONS.
BACKGROUND CLASS INFORMATION IS EXCLUDED FROM THE TABLE.

Images Image size Wavelength
(in nm unit)

Numbers of
Classes Pixels

Indian Pines 145×145×220 400 - 2500 16 10249
Pavia Univ. 610×340×103 400 - 2500 9 42776
Salinas 512×217×224 430 - 837 16 54129

TABLE V
TIME REQUIRED TO COMPUTE MEDIAN SPECTRA OF ALL CLASS IN AN

IMAGE, IN UNIT OF SECONDS. THE LEAST AND MOST EFFICIENT
ORDERING RELATIONS ARE CUMDIST AND ESUM, RESPECTIVELY.

Image Cumdist Esum Lex Marg CRA
Indian Pines 527.381 0.148 0.333 0.277 1.582
Pavia Univ. 9035.105 0.517 2.743 0.733 8.666
Salinas 13287.247 0.816 2.825 1.372 10.610

C. Performance assessment results

Efficiency of the 5 spectral ordering relations in a real
case of median spectra extraction are provided in Table V.
Esum is found to be the most efficient one, closely followed
by Marg and Lex, which is unlike the theoretical efficiency
drawn in Table III. This, however, is unsurprising. Even
though theoretically Marg requires n2Λ, its independent chan-
nel processing allows the implementation to be carried out
as a matrix processing, making the factor Λ into a negligible
constant. As for Lex, due its excessive prioritization of few
first channels, the subsequent sorting process most likely does
not have to visit all image channels. This can be seen by
comparing the time it requires to process Indian Pines and
Pavia Univ., compared to Marg ordering relation. In processing
Indian Pines, the processing time is not significantly different
from Marg, suggesting that perhaps only one or two channels
were required to provide a decision. On the other hand, the
difference of processing time between Marg and Lex for Pavia
Univ. is larger, suggesting more image channels could be
used by Lex to produce the median spectrum. CRA ordering
relation, with identical theoretical efficiency to the Esum, is
showing a lower performance than Esum by factors of 10 to
16. Finally, agreeing to results in Table III, the least efficient
ordering relation is Cumdist. For Salinas image, Esum and
CRA only requires 0.8 and 10.6 seconds, respectively. While
for Cumdist, a total of approximately 3.7 hours are required
to process the same image.

V. ON THE THEORETICAL PROPERTIES OF
MORPHOLOGICAL TOOLS

Mathematical morphology (MM) provides the main frame-
work for nonlinear image processing. It was originally de-
veloped for binary and grayscale images under metrological
purposes, particularly for uses in granulometric measurements.
There are several works extending this framework to the hy-
perspectral domain [20], [21]. However, they do not satisfy all
theoretical requirements of the framework (Fig. 6). Due to this,
stability of the results cannot be guaranteed. In other words,
uncertainty of the results will not be stationary regardless of
the spatio-chromatic complexity of the image content.

Fig. 6. Requirements or properties to be met in order to extend mathematical
morphology framework to the multivariate domain.

(a) (b)

Fig. 7. Examples of cases causing (a) marginal and (b) sum of energy ordering
relations to violate anti-symmetry property. In (a), marginal ordering relation is
not able to determine which are the minimum and maximum. In (b), the three
different spectra have the same amount of total energy, causing minimum/
maximum spectrum indeterminable by sum of energy ordering relation.

A. Total ordering property

Metrology allows accessing the physical and optical prop-
erties of an analysed surface, since it treats images as physical
measurements obtained from a light sensor, instead of mere
mathematical objects. And to assess metrological properties,
e.g., uncertainty and bias, only full-band MM approaches will
be considered. At the core of MM, an ordering relation g is
required to be ”total” by respecting all properties below.
• Reflexivity, S1 �g S1.
• Transitivity, if S1 �g S2 and S2 �g S3 then S1 �g S3.
• Anti-symmetry, if S1 �g S2 and S2 �g S1 then S1 = S2.
• Trichotomy is where exactly one of the following holds:

S1 ≺g S2, S1 �g S2, or S1 =g S2 [31].
The most challenging property to satisfy is the anti-

symmetry. It demands the uniqueness of the maximum or
minimum of a set. When it is not satisfied, the expected metro-
logical level of an MM cannot be reached because the results
of MM becomes dependent on the uncertainty of minimum/
maximum extraction. When this is the case, the MM operators
are defined as pseudo-morphological operators [32], [33].

Lexicographic and other prioritization function-based order-
ing relations naturally reach anti-symmetry property because
they code a multivariate data into a unique word. Marginal
ordering relation do not satisfy this property since it cannot
always order two multivariate data (Fig. 7a). For ordering
based on sum of energy, different spectra can present the same
energy level (Fig. 7b). And this problem is also suffered by
ordering based on simple distance function. To address this
limitation, Ledoux, et al. [15] proposed to combine 5 distances
and also developed a theoretical study proving the validity of
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its anti-symmetry property, ensuring total-order property for
the color domain. Cumulative distance function cannot be used
as ordering relation since it can only determine the median.

A direct extension of [15] to the spectral domain with n
numbers of channels would require n + 2 distances. But a
mathematical conjecture was proposed [12], arguing that the
probability of obtaining two spectra with identical distances
to a 3rd reference is decreased together with the increase
of spectral channel count. Thanks to this conjecture, CRA
ordering relation which merges 2 ratios of 2 distances can
reach anti-symmetry and, thus, defined as a total-order.

Considering the total-order property, prioritization function-
based ordering relations can be deemed as better choices.
However, if the physical sense of an ordering is taken into
account, such orders are only mathematical constructions
with inability to consider chromatic information. Moreover,
convergences of the value space are implicitly defined towards
equi-energetic black and white spectra. On the other hand,
CRA allows selecting arbitrary spectra as the convergences,
constraining them to be outside the convex-hull of the spectral
set under evaluation [12].

B. On the notion of false spectra

False spectra are spectra generated after a processing, which
do not exist in the initial spectral set. Among the 5 ordering
relations that have been evaluated so far, the marginal one
is creating this problem, unlike the rest which always pick a
solution from within the initial set. Five spectra in Fig. 8a are
given to marginal ordering in (2), their corresponding colors
are also shown. Due to the channel-by-channel processing, the
reflectance intensities are ordered independently of their initial
spectra, causing the generation of 5 new ordered spectra in
Fig. 8b. This problem is generally not perceptible due to inte-
grations required in displaying in RGB spaces. Nevertheless,
it induces a lack of accuracy in spectral processing.

C. Morphological properties

Having a valid ordering relation is not sufficient to ensure
the validity of the morphological results. The validity of
morphological results depends on the validity of erosion/
dilation operators, and then of the opening/ closing ones.

1) Duality and complementariness: Dilation and erosion
are dual transformations with regards to complementation [31].
To achieve this, the complementary of relation g is defined by
the difference to a maximum value M or by using an arithmetic
inversion −g. Considering a spectrum as a set of measures and
are therefore of positive values, the aforementioned duality
approaches do not have any physical meaning, because there
is no valid spectral addition and multiplication with a scalar.

In the context of prioritization function-based ordering
relations, since no physical meaning is associated to them,
the complementary operator can be defined by difference to
maximum value M. For the marginal approach, complemen-
tariness is defined in the same manner, but independently for
each channel. The CRA approach was carefully defined to
account for physical senses of an ordering, using two spectral
references and a spectral distance function. The references play

(a) (b)

Fig. 8. Illustration of false spectra produced by marginal ordering relation.
Given (a) an initial spectral set, marginal ordering relation orders the spectra
independently in each spectral band, resulting in (b) a new set of spectra.

a role as in the natural extrema of scalar values−∞ and +∞. At
the same time, these references provide a neutral coordinate
in the middle on the segment they define. Consequently, a
complementary spectrum is defined by means of symmetry
to this neutral coordinate, allowing to develop the theoretical
proof of CRA’s duality.

2) Idempotency: Opening and closing transforms are re-
quired in order to construct more advanced morphological
tools, e.g., granulometry and fractal signatures. As morpholog-
ical filters, the following properties are required to ensure their
validity: translation-invariance, increasingness, and idempo-
tency [31]. While the first is related to the morphological
construction, the last two are more about the ordering relation.
Increasingness ensures that opening and closing preserve the
ordering relations between images [31]. Idempotency ensures
that multiple processing of opening Ψ (or closing Φ) will not
modify results obtained after the first opening (or, respectively,
closing), see (19).

Ψ is idempotent⇔ΨΨ = Ψ (19)

In the context of marginal and prioritization ordering rela-
tions, idempotency and increasingness are naturally obtained.
In the distance-based construction, an additional constraint
must be enforced, linking dual operators for minimum and
maximum extractions [34]. Typically, the minimum and max-
imum operators defined in [15] respect all expected properties
of the first levels of morphological tools. However, they are
not idempotent, i.e., the minimum expression is not exactly
symmetrical to the maximum. Consequently, this approach
introduces bias to opening and closing transforms, which will
further impact the results. On the other hand, CRA ordering
relation satisfies idempotency [12]. Its increasing property is
easy to proof but is beyond the scope of this article.

VI. ACCURACY OF SPECTRAL BEUCHER’S GRADIENTS

The median filtering assessments in the previous sections
address the question of spectral statistics close to the center of
spectral distribution. On the other hand, morphological filters
based on erosion and dilation allows assessing the maximum
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Fig. 9. Workflow of assessment protocol of gradient accuracy. Since the gradient operator produces a distance map, a thresholding process is required to
produce a binary edge image. The best threshold for each distance map is obtained by maximizing evaluation criteria in (22).

and minimum. This further allows assessing the stability of or-
dering relation, especially since they are sensitive outliers [27],
[35]. Thus, the next experiment will be based on the ability to
extract gradient by means of the Beucher’s gradient operator.
Our hypothesis is that the gradient detection performance will
decrease when the inner complexity of the proposed images
increases. In parallel, performance differences between the
ordering relations to test will be based on their robustness
to the increasing inner complexity of the proposed images.

A. Brief overview
Image gradient captures directional changes of pixel values

in the spatial coordinates of an input image. In this regard, it
can be considered as an edge detector. And in the context of
morphological image processing, image gradient is used as an
intermediate processing tool. Its results are the prerequisite of
image segmentation using watershed transformation.

In the grayscale domain, a Beucher’s gradient operator is
expressed as the dilation of a given image δ (I) subtracted
by the eroded one ε(I), see (20). Then, its extension to
the spectral domain in (21) requires to replace pixel value
difference by a valid spectral difference function, in which
case is KLPD function [4].

ϕ(I) = δ (I)− ε(I) (20)
= d(δ (I),ε(I)) (21)

B. Assessment protocol of accuracy
Assessment protocol of accuracy is developed under the

consideration of image gradient as an edge detector, employing
pseudo-artificial images with known edge locations, see Fig. 9.
To find the best threshold for each pair of input image and the
employed gradient operator, threshold optimization is carried
out by maximizing an evaluation criteria.

1) Dataset: Three datasets are employed where each comes
with 112 images, i.e., KKA, KKB, and KFR datasets. Each im-
age in the datasets is composed of background and foreground
objects coming from hyperspectral acquisitions of pigment
patches and a painting. Differences between the datasets lie
in the complexity of chosen foreground objects. Background
contents of KKA and KKB comes from pigment patches.
Then, their foregrounds are showing a single and two homo-
geneous regions obtained from the patches, respectively. KFR
is composed of background and foreground contents from
pigment patches and a painting, respectively. See examples
and their ground truth edge images in Fig. 10.

(a) (b) (c)

Fig. 10. Examples of image targets and their ground truth information from
each dataset employed in the assessment of spectral Beucher’s gradients, i.e.,
(a) KKA, (b) KKB, and (c) KFR. KKA and KKB have foreground objects
which are of one and two homogeneous color regions, respectively. As for
KFR, its foreground objects are extracted from a subset of a painting. All
images are given in reflectance unit, from approximately 450 to 956 nm range.

2) Evaluation criteria: Each input image comes with a
ground truth image showing the boundaries between back-
ground region and foreground object. Even though edges
might also be present within background and foreground
objects, in this assessment they will not be taken into account.
With this, the evaluation criteria in (22) is employed; it was
originally developed for edge map quality measure [36]. In
this expression, n f , nO, nFP, and nFN are image target size,
number of edge pixels in the ground truth edge image, number
of false positive, and of false negative pixels in the edge image
under evaluation, respectively. dFPi is distance between i-th
false positive edge pixel and the nearest ideal edge pixel, dFNi

is the distance between i-th false negative edge pixel and the
nearest correctly detected edge pixel, and finally α is a penalty
score set to 1/9 as suggested by [37].

E = 1− EFP +EFN

2
, where

EFP =
1

n f −nO

nFP

∑
i=1

(
1− 1

1+αd2
FPi

)
and

EFN =
1

nO

nFN

∑
i=1

(
1− 1

1+αd2
FNi

) (22)

Values returned by (22) ranges from 0 to 1, where 1 sig-
nifies the highest accuracy score. To summarize the result for
each dataset and employed ordering-based spectral Beucher’s
gradients, measures of average µ and standard deviation σ

will be computed. With these measures, better performance is
indicated by higher µ and at the same time lower σ .
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(a) (b) (c)

(d) (e) (f)

Fig. 11. (a) A 400×400 pixels subset of AVIRIS data as the original image and 4 of its gradient images as obtained by spectral morphological gradients
based on the following ordering relations: (b) Esum, (c) Lex, (d) Marg, and (e) CRA. The gradient images are presented using a color map. (f) 5 radiance
spectra randomly selected from the original image.

C. Performance assessment results

Assessment results of gradient accuracy using 3 pseudo-
artificial datasets are summarized in Table VI. First of all, these
measures are able to reflect the increasing content complexity
from KKA, KKB, to KFR. µ and σ decreases and increases,
respectively, almost in all of the employed ordering relations.

Results shown in Table VI suggest the superiority of
marginal ordering relation. However, such results can be
explained through the reduced spatio-chromatic complexity of
the employed datasets. Background and foreground contents
originating from pigment patches are relatively uniform and
dominated by intensity variations. And this is why ordering
relations such as the marginal, lexicographic, and Esum are
able to solve the given tasks. However, using a real case such
as a subset of AVIRIS data in Fig. 11, the limitations of
Marg and Lex for morphological processing become evident.
Marg ordering relation fails completely, while Lex returns
broken or grainy gradients. In this figure, Esum and CRA show
almost identical results. This is because more than 80% of
spectra are located in the short-wave infrared range, where the
spectral variations are reduced to mostly intensity variations,
see Fig. 11f. To better highlight the limitation of Esum, an
image with sufficient shape variations should be used.

TABLE VI
GRADIENT ACCURACY ASSESSMENT RESULTS OBTAINED FOR 3 DATASETS
AND 4 SPECTRAL MORPHOLOGICAL GRADIENTS. PERFORMANCE SCORES

RANGE FROM 0 TO 1 (SHOWN AS MULTIPLIED BY 10). HIGHER µ AND
LOWER σ VALUES INDICATE BETTER PERFORMANCE.

Dataset Esum Lex Marg CRA
µ σ µ σ µ σ µ σ

KKA 9.97 0.08 9.97 0.07 9.99 0.05 9.97 0.07
KKB 9.96 0.11 9.97 0.11 9.98 0.09 9.96 0.11
KFR 9.87 0.12 9.89 0.10 9.90 0.11 9.87 0.12

VII. DISCUSSION

In the previous sections, the behavior of spectral ordering
relations have been analysed under several point of views, i.e.,
accuracy in the median filtering, computational efficiency of
median value extraction, theoretical properties and physical
sense of ordering relations, accuracy and usefulness in a
low level image processing task using the Beucher’s gradient
expression. All of the obtained results are summarized in Table
VII, providing readers with several elements of decision useful
to select a suitable ordering relation for nonlinear hyperspec-
tral image processing based on rank-order or MM approaches.
In the quantitative tests, evaluated ordering relations are ranked
from 1 (best) to 5 (worst). Regarding the qualitative properties
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TABLE VII
SUMMARY OF COMPARISON BETWEEN ORDERING RELATIONS IN THE CONTEXT OF THEIR USES IN NON-LINEAR PROCESSING AND MATHEMATICAL

MORPHOLOGY (MM) FOR HYPERSPECTRAL IMAGES.

Criteria Cumulative
distance (Cumdist)

Sum of energy
(Esum) Lexicographic Marginal CRA

Accuracy (median filtering, section III) 5 1 4 2 3
Computational efficiency (median extraction, section IV) 5 1 3 2 4
Physical sense of the ordering (section V) N.A. N.A. N.A. N.A. OK
Total order (MM, section V) N.A. N.A. OK N.A. OK
Gradient detection (MM, section VI) N.A. 3 3 1 2
Suitability for metrological use N.A. N.A. N.A. N.A. OK

such as physical sense of ordering and total-order property,
these ordering relations are given OK or N.A. if they satisfy
or not the asked properties, respectively.

Cumdist is not a suitable approach for rank order or
MM approaches. It only allows to extract median sample or
spectrum using a statistical hypothesis based on distances. It
does not include an ordering relation and, therefore, is not
able to extract rank, minimum, or maximum that are required
by the rank-order and MM processing. Furthermore, its use in
the extraction of median spectrum becomes prohibitive since
the computational cost is significant and there is no gain of
accuracy when used in filtering [12].

Esum establishes rank based on the total energy of spectra
under evaluation. This causes it to have no ability to account
for chromatic information, since different spectra can have the
same total energy. Due to this, it becomes difficult to analyse
or understand the ranks it proposes, prohibiting to obtain total-
order property. As shown in previous experiments, its results
can be interesting for processing tasks such as median and
gradient extractions using several datasets. It has to be kept
in mind that, however, these results cannot be generalized to
other datasets. Inability to satisfy total-order property means
that robustness and stability of the process cannot be ensured.

Lex approach, and the similar bit-mixing one, are able
to respect the total-order property. Constructed under math-
ematical coding point of view, they omit physical sense of
data in their ordering processes. Due to this, small variations
located in wavelengths that are given higher priority will
significantly change the rank of the corresponding spectrum,
causing incoherence between spectra with highly similar shape
and/ or intensity. This lack of physical meaning in the ordering
will have an impact in the management of local neighborhood
in real images where spatio-chromatic complexity is high. In
such cases, the small variations will induce processing bias,
especially for use in texture assessment such as granulometry.

The Marg approach cannot produce total order and this
problem becomes more critical as channel count increases.
Due to inner construction of the data, few variations in spectral
intensity at each wavelength can completely change the rank
a spectrum is associated with. Finally, just as Esum, the
seemingly relevant results of this approach is highly dependent
on the nature of the used dataset. Its inability to comply
to total-order constraint means that processing stability and
quality cannot be guaranteed for all kinds of data.

The last ordering relation CRA did not obtain superior
ranks in median filtering and gradient detection. It is, how-
ever, the only ordering relation that respects all of the other

constraints. Indeed, the range of its physical understanding
or interpretation are related to the spectral reference choice.
However, for a more complete image processing analysis, it is
possible to combine several references as shown in [4], [12].
Its compliance to total-order property is obtained due to a
mathematical conjecture, which could be easily demonstrated
in a future work. Finally, its ability to preserve the physical
sense of data and order properties allows guaranteeing the
result stability and robustness, regardless of the used datasets.

VIII. CONCLUSION

The increasing use of hyperspectral imaging for environ-
mental, industrial, and cultural heritage purposes poses a
high demand on the metrological processing of hyperspectral
images. In this work, we have set the focus to the performance
assessments of ordering-based nonlinear image processing
approaches. Two groups of criteria have been defined. The first
group includes quantitative evaluation of measurement errors
and bias in the ordering process in, e.g., median filtering and
gradient detection. The second group of criteria is based on
compliance to expected theoretical properties and adherence
to physical sense of data in the processing. Adherence to
physical criteria of data ensures the metrological link between
processing results and the optical or physical properties of
materials or surfaces captured by the hyperspectral sensor.

Several evaluation results in this work have shown the
necessity of identifying other spectral datasets for such perfor-
mance evaluations. The lack of spatio-chromatic complexity of
the dataset were unable to show the limitation of approaches
that were deemed inappropriate by the theoretical requirements
of an ordering relation. The simple datasets that were used
have allowed these approaches to obtain good performance
scores with respect to the proposed criteria. Nevertheless, from
this work, it can be said that the CRA ordering approach
is the first one to respect all expected constraints. It also
presents good scores in the quantitative tests. Thus, CRA
ordering relation can be used in metrological hyperspectral
image processing and analysis.

In a future work, since performance scores of CRA in the
quantitative tests were not the best ones among others, there
is a place for identifying or defining better ordering relations.
But it has to be remembered that the ordering relation must
be defined in a ”full-band” approach in order to preserve the
physical nature of spectra, whether in radiance or reflectance.
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