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SUMMARY

The aim of this thesis was to develop an advanced two-layer control structure for
the semi-batch polymerization of expandable polystyrene (EPS) that minimizes the
batch time while still producing a set polymer quality and obeying other constraints.

While the use of advanced control structures in the chemical industry has become
more common, their use is seen to a lesser extent in the polymer industry. This
method of control requires an accurate process model, which can be an arduous task
due to the nonlinearities and complex reactions that occur during polymerization.
However, research has indicated that the use of such control structures can result in
a reduced batch time and improved product purity; therefore, the effort to develop
these control structures for polymerization should be considered.

Before diving into the development of the control structure for the production of EPS,
some background information on polymerization and semi-batch reactor modeling is
provided. Introductory concepts from optimization and control are then presented to
highlight ideas that are necessary to understand before an advance control structure
can be designed. Together, these two chapters provided the required background
information to develop a two-level control structure for the production of EPS.

EPS was selected as the case study since it is one of the largest commodity polymers
by production volume. The model equations are outlined along with the assumptions
that were made in the model derivation. These equations were implemented in
the programming language C using a template provided by Cybernetica AS; this
allowed for the use of their software in the implementation and simulation of the
advanced control structure. Offline optimization of the process was performed to
identify a starting point for the optimal operating conditions. The two control layers
were then constructed and validated. Attention is paid to how the two layers work
together to calculate and realize the optimal operating conditions.

This work demonstrated that the objective can be achieved using a two-layer control
structure where the DRTO level determines the optimal reactor temperature profile
and the NMPC level follows the trajectory by minimizing the cooling water flow rate.
To further motivate the development and use of advanced control structure, the
potential economic advantages of this method over the current fixed recipe approach
are discussed.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The favorable properties of polymer products has resulted in a soaring increase in
their demand. In particular, one of the biggest commodity polymer products in the
world is expandable polystyrene (EPS) [25]. The polymerization of styrene was dis-
covered in 1839 but little commercial use was found until 1937 when an American
chemist named Robert Dreisbach and others at Dow Chemical Company managed to
obtain a purified styrene monomer and designed a pilot polymerization process [33].
Since then, it has become the fourth largest thermoplastic by production volume
with applications in numerous markets such as packaging, consumer/institutional
goods, electrical/electronic goods, building/construction, furniture, industrial/ma-
chinery and transportation [34]. The global market for EPS is forecasted to be
worth more than US$18 billion by 2022 [26].

As the polymer industry becomes more competitive, manufacturers are facing mount-
ing pressure to reduce production costs while simultaneously having to comply with
increasingly stringent production constraints such as quality requirements and
environmental regulations [16]. To deal with these constraints, a considerable effort
has been put forth into improving the manufacturing process. One solution is to
lower the production time and optimally distribute the available resources to ensure
the desired polymer specifications are met [21]. These goals can be achieved through
the application of advanced control structures to the process; the controller forces
the system to stay near the optimal conditions that will result in the desired product
quality in the shortest amount of time. However, given that polymer processes have
highly nonlinear dynamics and involve complex reaction mechanisms, this is easier
said than done [11].

The performance of a model-based controller is highly dependent on the quality of
the model; therefore, it is essential that the model accurately capture the process’s
behavior [11]. These models are constructed using systems of differential algebraic
equation (DAE)s, which consist of differential equations that describe the dynamic
behavior of the system such as mass and energy balances, and algebraic equations
that ensure physical and thermodynamic relations hold. Specifically for polymeriza-
tion processes, models that are able to predict the polymer quality in terms of the
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reactor operating conditions are the key to the efficient production of high quality,
tailored polymers in addition to the improvement of plant operability and economics
[16]. The development and validation of such dynamic models is time consuming
and expensive; this is the main reason for the limited availability of such models for
industrial applications [24].

Despite the work involved in constructing a valid model, it has been demonstrated
that the use of advanced control techniques can result in a reduction in the batch
time [21]. It is common for nonlinear systems to use an advanced process control
algorithm known as nonlinear model predictive control (NMPC). This algorithm
works to determine the optimal values for a selected objective function that is
subject to the process model and constraints. The solution of this problem becomes
the inputs to the process.

An upper control level can be added on top of this to further optimize the system to
additional criteria; for dynamic systems, a dynamic real-time optimization (DRTO)
algorithm is applied in this layer. Online measurements are used to calculate
optimal control trajectories for the length of the batch; these trajectories are then
passed to the NMPC layer below to be used as inputs. It has been shown in other
works that a two-level strategy results in improved performance for a free-radical
solution polymerization of styrene in a jacketed reactor [12]. Therefore, this work
will consider the implementation of an two-level advanced control structure for the
production of EPS.

1.2 Scope of Work

The aim of this work is to investigate the possibility of reducing the batch time of
the production of EPS while still producing the desired polymer properties. Previous
work was done by Marlene Lund in the development of the process model, which is
utilized in the control structure developed in this thesis [21]. She also constructed
the control structure that is used in the offline optimization performed in Chapter
4.

The specific goals for this thesis are the following:

a) Alter the process model to reflect the new objectives.

b) Determine the optimal monomer to initiator ratio, initial reactor temperature,
and reactor temperature profile using offline optimization.

c) Implement a two-level control structure, consisting of a NMPC lower level and
a DRTO upper level, in Cybernetica’s software.

d) Determine what each level will control; define the manipulated variables,
controlled variables, constraints and setpoints for each layer.
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e) Demonstrate that the two-layers communicate and work together as desired.

f ) Examine the effect that disturbances in the cooling water temperature and
the system’s cooling capacity at different points have on the batch time and
produced polymer quality.

g) Perform a cost-benefit analysis to demonstrate the potential benefits of using
an advanced control structure over the current fix recipe method.

1.3 Outline

Given the importance of the model in the construction of a good model-based
controller, a short introduction to polymerization is given in Chapter 2 outlining the
ideas that are utilized in the construction of the process model for EPS production.
Polymers can be synthesized through a variety of reaction mechanisms such as
addition and step growth reactions; in this work, emphasis is placed on a type
of addition reaction known as free radical polymerization. The polymer quality
is determined using an approach known as the method of moments. This is a
statistical approach that tracks the moment balances of the living and dead chains
throughout the batch. Free radical polymerization reactions experience a decrease
in the reaction volume throughout the batch, which results in diffusion limiting
the reaction rates; this can be modeled using free volume theory to calculate the
reaction rates. Polymer production is typically carried out in semi-batch reactors so
a brief introduction to semi-batch modeling is given.

Using the process model, the control structure can be designed utilizing the concepts
covered in Chapter 3. Polymerization processes typically cannot be represented with
linear models, so it is necessary to use a nonlinear formulation for the optimization
problem. While there are many ways to solve such problems, the most common
method is discussed in this chapter. Advanced process control combines optimization
of dynamic systems with feedback where a process model is used to predict the
process behavior; the general structure of such controllers is outlined here. The
NMPC algorithm is emphasized because it works to optimize nonlinear process
models. On top of this advanced control layer, another level known as supervisory
control can be added to further optimize the process subject to additional goals. For
dynamic models, a DRTO algorithm should be used in this level. This layer works
to optimize the process in real time and provides new setpoints to the lower layer.
Within these control structures, parameter estimation and state estimation can be
included. The parameters initially selected may not fit the process exactly so online
parameter updating can be added to the control structure that uses the online
measurements to update the parameters used in the model. Often it is difficult
to directly measure the states online so these values are estimated; there are two
methods commonly used to estimate these values. The accuracy of these estimations
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methods can impact the fit of the model so it is important to select them carefully.

Next the case study of the semi-batch polymerization of expandable polystyrene is
introduced in Chapter 4. A first principles based model of this process is constructed
and implemented in the programming language C where a numerical solution
method is used to solve the differential equations. Offline optimization is performed
on the model to determine the optimal monomer to initiator ratio, starting reactor
temperature, and reactor temperature profile that results in the shortest batch time
while still producing the desired product; these values are used in the development
of the two-level control structure.

Chapter 5 explains how the NMPC lower layer is constructed and covers the problem
formulation, what constraints are included, and the controller tunings. The aim of
this level is to optimize the cooling water flow rate to keep the reactor temperature
near an optimal profile that is determined by the upper supervisory layer. The
development of this lower level is carried out in two main stages: 1) the controller
is designed to follow a constant setpoint and 2) the controller is altered to track
a fixed reference trajectory for the reactor temperature. For a constant setpoint,
the selected controller tunings and input blocking are tested using different cooling
water temperatures and changing the reactor temperature setpoint. The layer is
edited to follow the optimal reactor temperature profile identified in the offline
optimization. Assorted cooling water inlet temperatures are used to validate that
the controller can handle possible seasonal changes.

The supervisory DRTO layer development is explained in Chapter 6. First a short
introduction to the use of supervisory layers for semi-batch processes is given to
motivate the use of an additional layer for this case study. The selected DRTO
problem formulation, constraints, and tunings are then stated. The simulation
results are presented, illustrating that the two-layers work together to achieve
the desired outcome. The controller is then tested to examine the consequences of
disturbances in the cooling capacity and the cooling water temperature at various
points in the batch.

Chapter 7 provides a comparison of each of the stages of development plus a cost
benefit analysis. Comparing the results of the different stages of development
illustrates how similar the offline results are to the two-level control structure
results under ideal conditions. A cost-benefit analysis is conducted to motivate the
use of a two-layer control structure over the use of a fixed recipe, which is currently
the common approach used for batch and semi-batch production.

Finally, Chapter 8 summarizes the findings of this work and briefly considers further
work. This includes potential ways of improving the model and control structure,
along with the next steps that should be done to implement this control structure
in a real plant.
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CHAPTER 2
POLYMERIZATION

Polymers are utilized extensively in applications from food packaging, clothing,
home furnishing, transportation, medical devices, to information technology. Fibers
like silk, wool, and cotton are examples of naturally occurring polymers that have
been used for thousands of years [20]. Inspired by these natural polymers, scientists
have designed synthetic polymers that can be manufactured to have specific proper-
ties. These favorable properties plus the relative ease of production has resulted
in a rapid increase in the demand for polymers. These processes involve complex
reaction mechanisms and highly nonlinear dynamics; consequently, from a control
and optimization perspective, these systems are demanding [11].

In order to manufacture polymers in a safe and optimal manner, the controller
requires a a model that accurately captures the process dynamics. Understanding
the reaction mechanisms is a big part of this model development. Section 2.1
introduces basic polymer concepts and briefly discusses the formation process; free
radical polymerization is the focus of the formation discussion. In this type of
polymerization, diffusion-limitations arise as a result of the increased viscosity;
these can have a large impact on the rate of reaction, as well as affecting the final
product composition, so it is necessary to consider them when developing a model.

Most polymerization production is carried out in batch or semi-batch reactor; there-
fore, the model will include the mass and energy balance equations on a reactor,
which are outlined in Section 2.2. The polymerization is modeled using a statistical
approach known as the method of moments, which is discussed in Section 2.3. Here
the living and dead chain moments are related to the average molecular weights
which describe the molecular weight distribution of the product. Also considered in
this section are the diffusional limitations, which are modeled using free volume
theory.

2.1 Polymers and Polymerization

Polymers are defined as materials of very high molecular weight and consist of sev-
eral structural units bound together by covalent bonds. They are created through
the chemical reaction of smaller molecular compounds known as monomers. Poly-
mers can be made up of hundreds, thousands, or even tens of thousands of monomers
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[16]. In order to form polymers, monomers need to have reactive functional groups
or bonds higher than single bonds [20]. For example, the polymer polystyrene is
made up of repeating units of styrene, [ –C8H8 –C8H8 – ]n, as illustrated below in
Figure 2.1. Here the subscript n denotes the number of monomer units in the
polymer and is referred to as the chain length.

Figure 2.1: Styrene monomer [20]

Polymers are classified using different criteria but four possible options are: chem-
ical nature, molecular structure, polymer chain growth mechanism, or the type
of polymerization. Polymers can have straight chains, branched chains, or chain
networks [21].

Polymerization refers to the process where monomers react to form polymers. There
are two main types of kinetic mechanisms: step-growth polymerization or chain
polymerization. Step-growth polymerization proceeds by reactions between two
different functional groups. In chain polymerization, the polymer chains grow by
the repeated rapid addition of monomer molecules to an active chain. This type of
polymerization can proceed via free-radical, ionic, group-transfer or coordination
mechanisms; free-radical polymerization is covered in more detail in Section 2.1.1.
In this case, a chain initiator is required for the formation of primary active centers
before polymerization can begin [16].

Polymerization processes can be classified into homogeneous and heterogeneous
systems. In heterogeneous systems, the polymer is either insoluble in the monomer
phase or the polymerization involves the presence of different phases [16]. This
type of polymerization can be identified by the following process characteristics:
suspension, emulsion, precipitation, or interfacial and solution polycondensations.
In suspension polymerization, the process occurs in small beads in the continuous
phase; emulsion polymerization has the reaction take place in micelles in a wa-
ter phase. Homogenous polymerization processes are where all the reactants are
mutually soluble and compatible with the produced polymer. Bulk and solution
polymerization are the two main categories of homogenous systems. In bulk poly-
merization, the feed to the reactor consists of pure monomer with small amounts
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of dissolved catalyst and molecular weight modifiers; this type of polymerization
is typically exothermic. The production of polystrene is an example of this type of
polymerization since styrene is miscible with its polymer [16]. Typical features of
homogeneous bulk polymerization are the high viscosity of the reaction mixture
and poor heat transfer characteristics; this is particularly true with homogeneous
free-radical bulk polymerization where the viscosity increases dramatically [16].
This increase in viscosity can lead to diffusional factors playing a role in limiting
the reaction rates, altering the product properties; these diffusional limitations are
discussed in Section 2.1.2. To avoid associated problems with the high viscosity, a
solvent can be added resulting in a solution polymerization process [16]. Both of
these processes contain a single phase since the polymer is insoluble in its monomer.

2.1.1 Free-Radical Polymerization

Free-radical polymerization is driven by the addition of a monomer molecule to
a radical active center. A free radical is an unpaired electron that gives rise to
highly reactive chemical compounds [21]. In this type of polymerization, there
are three basic reaction types that occur simultaneously: initiation, propagation,
and termination. Initiation reactions continuously generate radicals. Propagation
reactions are responsible for the growth of polymer chains by monomer addition to a
radical center. Termination reactions occur between two radical centers and result
in a net consumption of radicals. Another reaction type known as chain transfer
may also occur where a free radical is transferred from one molecule to another [16].
This reaction type is not necessary for polymerization to occur.

Initiation is caused by a chemical compound that has the ability to form radical
molecules. Commonly peroxides are utilized because they have a covalent oxygen
bond separating two organic groups; the decomposition of this bond creates two
radical molecules as shown in Reaction 2.1.

I
kd−−−→ 2 f I• (2.1)

Here I represents the chemical initiator, kd is the reaction rate constant of the
decomposition reaction, f is the initiator efficiency (a number between 0 and 1), and
I• is the primary radical. A mono-functional initiator has one peroxide group and
is the simplest form of peroxide initiators [21]. The primary radicals I• that are
generated in the decomposition reaction combine with a monomer M producing a
radical polymer chain of length one R1 according to the following reaction [21]:

I•+M
kI−−−→R1 (2.2)

The rate constant kI determines the rate of monomer addition to the initiator radical.
The active chains produced in this initiation step will then undergo propagation.
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Propagation occurs simultaneously to radical chains of all sizes and occurs at a rate
kp. This reaction is given by [21]:

Rn +M
kp−−−→Rn+1 (2.3)

This results in a radical chain with a length increased by one monomer.

A radical chain R can be deactivated in several different ways to produce an inactive
polymer chain P. Termination by combination occurs when two radical chains meet
and form a covalent carbon-carbon bond from their radicals. This results in a dead
chain where the chain length is the sum of the lengths of the two chains. This type
of termination is shown in Reaction 2.4 [21].

Rn +Rm
ktc−−−→Pn+m (2.4)

Termination by disproportionation occurs when two radical chains meet and one
of the chains transfers its radical to the other chain. This yields two dead polymer
chains as given by [21]:

Rn +Rm
ktd−−−→Pn +Pm (2.5)

Chain transfer is another way of ending a growing polymer chain. This type of
reaction occurs between active radical chains and a chain transfer agent (CTA),
represented by T. Many of the different components in the reaction mixture can
serve as the CTA. Any impurities present in the reaction mixture may act as an
unintended transfer agent. This effect can be exploited to control the chain length
of the produced polymer through the use of a CTA [21]. Reaction 2.6 occurs at a
rate of ktrT :

Rn +T
ktrT−−−→Pn +T• (2.6)

This results in a dead chain polymer and a radical transfer agent.

2.1.2 Diffusion-Controlled Reactions

In bulk polymerization, the viscosity increases as the polymer chains grow, which
can lead to a reduction in the reaction volume throughout the batch time. As a
consequence, the polymerization reactions shown in Reactions 2.1-2.6 can become
diffusion-controlled. There are three main side-effects of diffusion-controlled poly-
merization: gel effect, cage effect, and glass effect. Each of these effects is caused by
the diffusion influencing a component of the polymerization process.

Diffusion-limitations have the largest impact on the termination reactions, resulting
in what is known as the gel effect. The polymer chain mobility is reduced due to the
increased density, causing a decrease in the termination rate constant. The drop
in the reaction rate results in a broader molecular weight distribution; therefore,
the final product has altered properties [8]. Sever gel effect can pose a safety risk
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since it can lead to a dominant propagation reaction, which generates the majority
of the heat in this reaction system. This generated heat could exceed the capacity of
the cooling system and, consequently, cause the temperature inside the reactor to
increase. This will in turn result in faster reaction rates and eventually, thermal
runaway. Therefore it is critical that this effect is controlled to prevent unsafe
conditions from resulting.

The cage effect is caused by the diffusional limitations affecting the chemical ini-
tiator’s ability to polymerize monomers. After sufficient energy is supplied to the
initiator molecules, the covalent bond is cleaved. The two fragments are surrounded
by the reaction mass, forming a cage around them. This means that not all of the
radicals can approach the monomer molecules to initiate reaction. Because of the
close proximity of the generated radicals, only some of them can escape the cage
and react with the monomer molecules. Inside this cage, an active initiator is likely
to either self-terminate or react with other neighboring molecules as opposed to
initiating new chains [8]. This leads to a decrease in the monomer addition to initia-
tor radical rate constant; this limitation results in the introduction of an initiator’s
efficiency term to the reaction equations. The efficiency has to be considered when
deciding how much initiator to add to the reactor because if insufficient initiator is
added, the desired conversion and polymer properties cannot be achieved.

The final effect of the diffusion-limitation is on the glass effect, which alters the
propagation rate constant. It is caused by the decrease in the mobility of monomer
molecules. This only occurs at temperatures below the glass transition temperature
of the polymer, which is the lower temperature limit that induces a structural
change in the polymer [8]. If the temperature is close to the glass transition
temperature, the probability of the collisions between active polymer chains and
free monomer molecules can drastically decrease due to the reduction in monomer
mobility. This causes the propagation rate to decrease and along with it, alter the
polymer properties [21]. Consequently, this effect should be mitigated to achieve
the desired polymer properties can be produced.

2.2 Semi-Batch Reactor Modeling

Batch and semi-batch reactors are typically used in the production of fine or spe-
cialty chemicals, polymers, and other high value products in industry [24]. The
only difference between these two reactor types is that in a semi-batch reactor,
components can be added throughout the batch whereas in a batch reactor all the
components are added at the start of the batch. For the type of polymerization con-
sidered in this work, semi-batch reactors are more commonly used. The reactor is
initially charged with some reactants at time zero and others are added throughout
the reaction. No product is withdrawn until the entire reagent has been added and
the reaction has proceeded to the required-extent. In many applications, semi-batch
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reactors involve a substantial increase in the reaction mixture volume during a
production cycle [18].

Semi-batch reactors have the advantage of good temperature control in addition to
the ability of minimizing unwanted side reactions by maintaining a low concentra-
tion of one of the reactants. Another advantage is the concentration of a reactant
can be kept relatively low or high to the advantage of suppressing side reactions,
which improves the product yield. It is typical to use the mass and energy balances,
along with the rate of conversion, to model these reactors.

2.2.1 Species and Energy Balances

For reactive processes where components are removed and generated by reactions
within the mixture, it is convenient to write the mass balances in the species form
shown here [21]. For a semi-batch reactor, the species balance for an arbitrary
component i in the system and the energy balance are given by:

Species balance:
dni

dt
= RiV + n̂i (2.7)

Reactor energy balance:
dE
dt

= m̂iĒ in +Q+Ws (2.8)

In the species balance, ni is the amount of component i present, Ri is the reaction
rate, n̂i is the molar feed flow, and V is the reaction mixture volume. In the energy
balance, E is the total energy, Ē in is the energy per mass from the inlet, m̂i is the
mass flow rate of the inlet, Q is the added heat, and Ws is the shaft work.

The reaction rate Ri represents the frequency of formation and removal of a compo-

nent in the reaction mixture. For a simple first order reaction A
ke−−−→B, the reaction

rates for each of the components using the law of mass action would be expressed
as:

RA =−ke[A] (2.9)

RB = ke[B] (2.10)

Here ke is the reaction rate constant and [i] represents the concentration of com-
ponent i. The overall reaction rate term includes all generated and consumed
components in the reactor.

The energy balance can be transformed into a function of temperature by utilizing
thermodynamic relations. This is commonly done because temperature is easier
to measure and understand than enthalpy. The energy balance for the reactor in
temperature form becomes:

dTR

dt
= m̂iĒ in +QJ +Qamb +Ws −∆HRRiV

mV cp,V +mR cp,R
(2.11)
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Here mV and cp,V are the mass and heat capacity of the reactor vessel; mR and
cp,R are the corresponding mass and heat capacity of the reactor contents. The
energy introduced to the reactor through the feed stream is represented by m̂iĒ in.
The added heat Q has been broken into the ambient contributions Qamb and the
cooling or heating system contribution QJ [21]. The heat of reaction is represented
by ∆HRRiV ; here ∆HR is the change in the reaction enthalpy, Ri is the reaction
rate, and V is the reaction volume. A full derivation of the reactor energy balance
can be found in Appendix B Section B.3.

If a reactor should be controlled to a setpoint or trajectory, the temperature equation
can be reformulated to calculate the heating or cooling demand QJ,d.

QJ,d = cp,tot
d
dt

TR,re f +∆HRRiV − m̂iĒ in −Qamb −Ws (2.12)

where d
dt TR,re f is the desired rate change of the reactor content’s temperature and

cp,tot is the total heat capacity. Note that in the case of isothermal operation, the
temperature derivative will be zero.

2.2.2 Conversion

The conversion is defined as the ratio between the reacted amount and the fed
amount of component i; in other words, it represents the amount of reactant that
has been converted to product [6]. For semi-batch processes, two conversion types
are calculated: the overall conversion and the instantaneous conversion. The two
conversion types are formulated for a semi-batch reactor operated between time
t = 0 and t = t f [9]:

Overall conversion: X = ni
0 +∫ t

0 n̂in(τ)dτ−ni(t)

ni0 +∫ t f
0 n̂in(τ)dτ

(2.13)

Instantaneous conversion: X inst =
ni

0 +∫ t
0 n̂in(τ)dτ−ni(t)∫ t
0 n̂in(τ)dτ

(2.14)

Here, ni
0 is the amount of reactant present at time zero, ni(t) is the amount of

reactant present in the system at time t, and n̂in is the flow of the reactant into the
system. The conversion is often used to determine when to terminate a batch and
remove the product(s).

2.3 Polymerization Modeling

It is difficult to formulate deterministic models of polymerization because of the
many reactions and stochastic features of growing polymer chains [21]. Polymer-
ization models are typically simplified by using moment balances and average
molecular weights; this approach is outlined in the sections below. How to include
the diffusion-limitations in the reaction equations is also presented.
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2.3.1 Method of Moments

The final product will consist of polymer chains of varying lengths. The most
accurate method of describing the product quality is to use either the molecular
weight distribution (MWD) or the chain length distribution (CLD). Controlling
either of these distributions is an effective way of regulating the end product since
the final properties of the polymer are highly dependent on the distributions.

Using a population balance approach would result in a complicated model so it is
common practice to capture the important characteristics of the MWD or CLD by
using the method of moments, which is a statistical approach [21]. For simplicity,
only the MWD is used here to illustrate the concept of moment balances. A generic
kth order moment is given by:

µk =
∞∑

n=1
nk ·nP,n (2.15)

where nP,n is the number of moles of polymer chains with length n.

Each of the three first moments has a physical representation associated with it. The
zeroth order moment is the mean, which gives the concentration of polymer chains
in the reactor. The first order moment is the standard deviation and represents
the concentration of monomeric units that have been incorporated into the polymer
chains. The zeroth and first moments can be related to the number-fraction and
weight-fraction molecular weight distribution of the polymer chains as well [22]. The
second order moment is the skewness, which indicates the width of the distribution,
meaning that a high value of the second order moment is related to a heterogeneous
mixture of chain lengths [21].

In free-radical polymerization, the different moment balances are applied to both
living radical chains and terminated dead chains. A live chain can continue further
chain growth (i.e. the chain still has a radical), whereas a dead chain is a polymer
chain that will no longer grow (i.e. the chain has been terminated). Note that µk is
used as the notation for dead chains and λk as the notation for living chains. Both
of these moments are tracked throughout the process using moment balances.

2.3.2 Average Molecular Weights

Due to the kinetics of polymerization, all synthetic polymers and most natural
polymers have a distribution of molecular weights [32]. Given that the molecular
weight plays a key role in the physical and mechanical properties of the polymers, it
is important to characterize these distributions using a variety of average quantities.
The most commonly used averages are the number average molecular weight and
the weight average molecular weight. These averages are utilized since they can be
measured directly. Because these values give insight into the polymer’s properties,
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one or both the values are often used as a controlled variable in a polymerization
process; therefore, it is important to understand what these two values represent.

Moment balances can be used to calculate both the number average molecular
weight and the weight average molecular weight. The number average molecular
weight is the ordinary arithmetic mean where the total polymer mass is divided by
the number of chains. Using moments, it is calculated as:

Mn = λ1 +µ1

λ0 +µ0
Mw,M (2.16)

where Mn is the number average molecular weight, λk is the kth order moment of
the living chains, µk is the kth order moment of the dead chains, and Mw,M is the
molecular weight of the monomer. The fraction gives the number average chain
length [21].

The weight average molecular weight calculation accounts for the fact that long
chains contain a larger portion of the total polymer mass. The weight average
molecular weight is calculated as the fraction between the sum of second order
moments and the sum of first order moments multiplied by the monomer’s molar
mass. If a random chained monomer molecule is selected, the weight will on average
be equal to the weight average molecular weight. This is calculated using:

Mw = λ2 +µ2

λ1 +µ1
Mw,M (2.17)

The ratio between the weight average molecular weight and the number average
molecular weight is used to classify the polymer quality. This ratio is known as the
polydispersity index (PI) and is defined as [20]:

PI= Mw

Mn
= λ2 +µ2

λ0 +µ0
(2.18)

This ratio gives a direct relationship to the standard deviation of the average
weights and therefore can be used as a measure of the MWD [32]. A larger PI
implies that the polymer product consists of chains of unequal lengths, whereas a
PI equal to one means that all the polymer chains are equally long.

2.3.3 Free-Volume Theory

The diffusional-limitations on the initiation, propagation, and termination reactions
can be modeled in many different ways but the most comprehensive methods are
based on free-volume theory. Free volume theory relates the diffusion-limitations
of polymer chains, initiator radicals and monomer molecules to the free volume
surrounding these components [21].

The volume of a liquid has two parts: the volume occupied by the molecules and the
empty space between the molecules. The empty space is known as the free volume
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where only the portion that is continuously redistributed by thermal fluctuations
is available for molecular transport. This part of the free volume is known as the
hole free volume and the remaining space is known as the interstitial free volume.
Diffusion and, consequently, all transport processes are controlled by the hole free
volume [40]. As the polymer chains grow, they start to overlap and the polymer
phase volume decreases; thus, the molecules have less space and the polymerization
reactions become diffusion-controlled. The free volume available for diffusion can
be increased through the addition of low viscosity additives.
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OPTIMIZATION AND CONTROL

Automatic control systems have existed in a simple form as far back as two thousand
years ago but the form commonly utilized in industry today was not seen until the
1950’s and 1960’s [35]. Control theory is the foundation on which these controllers
are constructed and involves the control of continuously or semi-continuously oper-
ating dynamic systems in engineering processes [36]. Section 3.1 presents a brief
introduction to these ideas by giving the definitions of key terms. Controllers work
to regulate a system to produce the desired behavior. These ideas can be extended to
determine the inputs for a given system to ensure that certain optimality conditions
are met utilizing concepts from the field known as optimization.

Section 3.2 introduces the foundation of optimization. These ideas are used in
industrial applications to determine the “least-worst” operating conditions that give
the desired minimum. Physical and economical constraints are easily included in
the optimization problem. First the components of an optimization problem are
outlined with some properties of the solution. The general method of locating a
solution is then discussed. The exact approach is dependent on the problem type;
there are three main classifications of problem types which are introduced in this
section. Solution methods for nonlinear programming problems specifically are
covered since polymerization processes are typically nonlinear.

The two fields of optimization and control can be combined to create a control
structure for a process as outlined in Section 3.3. This control structure can be
divided into different layers based on the time scale in which they operate; together
these layers make up the control hierarchy. This work focuses on the two top levels
of this control hierarchy, which are known as the advanced process control layer and
the optimization or supervisory layer. The advanced process layer uses a NMPC
algorithm for processes whose nonlinearities cannot be neglected. The supervisory
layer is an upper layer that has a different objective than the lower layers. For
processes with large nonlinearities, it is common to utilize a DRTO formulation in
the supervisory layer, which uses a dynamic model. These two levels work together
to realize the desired outcome of the process. The solution from the supervisory
layer becomes the input to the advance control layer below it.
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3.1 Control

The use of control has become increasingly important in industrial applications
due to increased competition, rapidly changing economic conditions, and stricter
environmental and safety regulations. Together with process modeling, the use of a
control structure is critical in operating manufacturing processes near the optimal
conditions [31].

All control problems have three variable types: controlled variable (CV), manipu-
lated variable (MV), and disturbance variable (DV). Controlled variables are the
process variables that are being controlled (temperature, pressure, concentration,
etc.); the desired value of a controlled variable is called a setpoint. Manipulated
variables are process variables that can be adjusted to keep the controlled variables
at or near their setpoints; commonly used manipulated variables are valve positions.
They are often variables that can be easily measured and are paired based on how
much effect they have on the CVs. Disturbance variables are process variables that
affect the controlled variables but cannot be manipulated; typically, disturbances
are things such as feed composition or the ambient temperature, which can be mea-
sured but not controlled. Selecting all of these variables correctly is a crucial step
in the construction of a good control system. These variables are chosen from the
process model variables and are selected based on process knowledge, experience,
and the control objectives [31].

It is common to format the control structure in state space form, which is composed
of four main variable types: states, inputs, outputs, and measurements. States x
are the variables that describe the current physical state of the system. The states
are typically the variables in the balance equations of the model. Inputs u describe
the control inputs, which influence the controlled variables. The outputs z describe
the calculated/estimated process output and often include the controlled variables.
Measurements y are the actual measured process outputs, which are system param-
eters that can be physically measured such as concentration, temperature, pressure,
etc.

3.2 Optimization

Problems that have constraints are known as constrained optimization problems and
arise when models contain constraints. These constraints typically include physical
limitations such as valve positions or safety limits. Constrained optimization
problems have three main components: an objective function, decision variable(s)
and constraint(s). The objective function f is a scalar function that describes a
property to be minimized or maximized. The decision variables r can be real
numbers, integers or even belong to other spaces such as function spaces; typically
decision variables are limited to the Euclidean space, i.e, vectors of real variables.
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The constraints c j are a vector of scalar functions of the decision variables that
define certain equations that the unknown variables must satisfy [23]. Constraints
are broken up into two different categories: equality E and inequality I constraints
[7].

For constrained problems, the search region is more limited than for unconstrained
problems; the constraints mean that the solution is selected from a subset of Rnr .
This subset is called the feasible region, which is the set of points satisfying all the
constraints c j [23]. The feasible region is formally defined as:

Definition 3.1 (Feasible Region)
F = {r ∈Rnr | (c j(r)= 0, j ∈ E )∧ (c j(r)≥ 0, j ∈ I)} (3.1)

Figure 3.1 illustrates the concept of a feasible region for a given objective function
and constraints. The contours of the objective function are shown in the dashed
lines (i.e., the set of points for which f (r) has a constant value) along with the
solution point r∗; the two constraints are drawn with solid lines. The gray shaded
area is the “infeasible side” of the inequality constraints so a solution will never be
found here.

Figure 3.1: Geometrical representation of an example optimization problem [23].

When a potential solution value is inserted into the constraint, they are divided
into active or inactive constraints. An active constraint is where c j(r)= 0; therefore,
all equality constraints by definition are active constraints. In comparison, an
inequality constraint can be either active or inactive at a feasible point. When a
constraint is active, the region where a solution may exist is smaller than when
constraints are inactive.
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For a multivariable control problem it is not always possible for all constraints to
be fulfilled at all times. Therefore, the algorithm must know how to handle the
constraints so that the problem does not become infeasible [28]. Constraints can be
further categorized into hard, soft, or setpoint approximation. A hard constraint
means that the constraint should never be violated in the future; constraints of
this type are ranked in order of priority. Soft constraints, on the other hand, may
be violated in the future but this violation is penalized in the objective function.
Setpoint approximation of a constraint means that deviations above and below the
constraint are penalized. Figure 3.2 shows these three constraint types where the
shaded areas represent violations penalized in the dynamic optimization.

Figure 3.2: The three basic types of constraints [28].

3.2.1 Local versus Global Minimizers

The solution to an optimization problem is known as a minimizer; this is the
point that gives the objective function the smallest value while also satisfying any
constraints. It is ideal if a global minimizer is identified; this is a point where the
function attains its absolute least value [23]. A global minimizer is defined as:
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Definition 3.2 (Global Minimizer) r∗ ∈F is the solution to an optimization prob-
lem if f (r∗)≤ f (r), for all r ∈F , where F is the feasible region.

If there is only one global minimizer, then the global minimizer is a strict global
minimizer. However, it is often difficult to find a global minimizer because the
overall objective function shape is typically not well known; therefore, it is hard
to determine that the algorithm used to solve the problem has not missed some
region that may contain a minimizer. Therefore it is more common to say that the
identified solution is a local minimizer, which is a point r∗ that provides a minimum
value in a neighborhood instead of the minimum in the whole feasible region. The
formal definition is given by:

Definition 3.3 (Local Minimizer) f (r∗) ≤ f (r), for all r ∈ ‖r − r∗‖ < ε where r
can take values in a feasible open set about r∗.

A local minimizer may not even be the absolute least value in a neighborhood. but
one that is the absolute least value in a given neighborhood is known as a strict
local minimizer; this is true if f (r∗) < f (r), for all r ∈ ‖r− r∗‖ < ε. Examples of
local and global minimizers are illustrated in Figure 3.3.

Figure 3.3: Global versus local extrema1

1http://commons.wikimedia.org/wiki/File:Extrema_example.svg

For functions that have numerous peaks and valleys, it can be challenging for
algorithms to find the global minimums because the algorithm can get “stuck” in
a valley at a local minimum. Most solution methods therefore do not find global
minimizers but rather local ones. In the case that additional global information
about the objective function is available, the global minima are more likely to be
identified; one special case is when the objective function is convex [23].
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3.2.2 Convex and Nonconvex Problems

Convex and nonconvex problems are two important subclasses of optimization
problems. Illustrations of a convex and a nonconvex set are shown in Figure 3.4.

Figure 3.4: Comparison of a convex and a nonconvex set.

In a convex set it is possible to draw a line between any two points in the set and
all points on that line will also be included in the set; this is not the case for a
nonconvex set.

Convex problems have the following useful property that is exploited by many
solvers making them easier to solve:

A local minimizer of a convex optimization problem is also a global
minimizer.

An optimization problem is convex if it satisfies the following two conditions:

Ï The objective function is a convex function (Definition A.4)
Ï The feasible set F is a convex set (Definition A.3)

If a problem is strictly convex, there will exist only one global solution. Nonconvex
problems may have multiple feasible regions and locally optimal points within each
region; consequently, it is much more difficult to identify if a feasible solution exists.

3.2.3 Identifying Minimizers

For a smooth objective function there are efficient ways of identifying local minima;
in particular, if a function is twice continuously differentiable, it can be determined
if a point is a local minimizer by examining the gradient ∇ f (r∗) and the Hessian
∇2 f (r∗) [23]. This exploits the well known Taylor’s Theorem, which is defined in
Definition A.6. From this theorem, necessary conditions and sufficient conditions
can be derived by assuming that r is a local minimizer and proving facts about the
gradient and the Hessian [23]. Necessary conditions must be met for the point to
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potentially be a local minimizer but does not guarantee that the point is a local
minimizer. For a constrained optimization problem, the necessary conditions are
referred to as the first-order necessary conditions or Karush-Kuhn-Tucker condi-
tions (KKT) conditions. To guarantee that a point is a local minimizer, the sufficient
conditions must be met; these are known as second-order sufficient conditions.

3.2.3.1 First-Order Conditions

The first-order conditions explain how the first derivatives of the objective function
and the active constraints are related to each other at a solution; if these conditions
are satisfied, then a move in any direction along the function will result in either an
increase in the first-order approximation of the objective function or will stay the
same [23]. Minimizers may only be found within a certain region that is known as
the active set; the full definition is given in Definition A.8. This helps to limit the
number of potential solutions.

An important property used in the definition of the first-order conditions is linear
independence constraint qualification (LICQ), which states that the gradients are
linearly independent at the examined point; the formal definition for LICQ can
be found in Definition A.9. This property must be true in order for the first order
necessary conditions defined below to hold. When these KKT conditions are satisfied,
the optimal Lagrange multiplier λ∗

j is unique for the solution point r∗.

Theorem 3.1 (First order necessary conditions) Assume that r∗ is a local so-
lution of Problem 3.9. Assume as well that f (r) and all c j are differentiable and
their derivatives are continuous. Further, assume that all the active constraint gra-
dients are linearly independent at r∗ (meaning that LICQ holds). Then there exists
Lagrange multipliers λ∗ for j ∈ E ∪I such that the following conditions (known as
the KKT conditions) hold at (r∗,λ∗) [7]:

∇rL(r∗,λ∗)= 0 (3.2)

c j(r∗)= 0, j ∈ E (3.3)

c j(r∗)≥ 0, j ∈ I (3.4)

λ∗
j ≥ 0, j ∈ I (3.5)

λ∗
j c j(r∗)= 0, j ∈ I (3.6)

The KKT conditions are only necessary conditions for a local solution; therefore,
any minimizer that satisfies these conditions may be a local minimum but it is not
guaranteed. To prove that the point is a local minimizer, sufficient conditions must
be used; these are derived through second order optimality conditions [7].
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3.2.3.2 Second-Order Conditions

The second derivatives also play a role in the optimality conditions and serve
in a “tiebreaking” capacity. Second-order conditions help to determine if a move
results in an increase or decrease in the objective function. Note that since second
derivatives are being used, a stronger smoothness assumption is required here
than previously; therefore, it is assumed that the objective function and constraints
are all twice continuously differentiable [23]. The second derivatives are used to
develop sufficient conditions, which are conditions on the objective function and the
constraints, that ensure that a point is a local solution of the problem [23].

The solutions that satisfy the second order conditions are limited by the critical
cone, which contains all the directions that result in an adherence to the active
inequality constraints [23]; the formal definition is presented in Definition A.2. This
helps to narrow down the number of possible moves that can be made in the search
for the optimal point.

Theorem 3.2 (Second order sufficient conditions) Suppose that for some fea-
sible point r∗ ∈R there exists Lagrange multipliers λ∗ such that the KKT conditions
(Equations 3.2-3.6) are satisfied, and that f (r) and all c j are twice differentiable
and their derivatives are continuous. Assume also that:

∇rrL(r∗,λ∗)> 0 (3.7)

Then r∗ is a strict local solution of Problem 3.9.

Note that ∇rrL(r∗,λ∗) needs to only be positive in the directions defined by the
critical cone.

3.2.4 Problem Types

Constrained optimization problems are typically divided into three categories based
on the form of the objective function and the constraints; they are either linear
programming (LP), quadratic programming (QP), or nonlinear programming (NLP)
problems. The definition of a LP is provided in Definition A.10, with the other
two defined in the sections below. QP and NLP problems are emphasized in this
work because these problem types are utilized later in this work. Polymerization
processes are nonlinear so a NLP problem is the appropriate optimization problem
type for these systems. Some algorithms convert NLP problems into QP problems
to make them easier to solve so it is necessary to also be familiar with this problem
format.
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3.2.4.1 Quadratic Program (QP)

A QP problem has a quadratic objective function f (r) and linear constraints c j.
This can be generically written in the form:

min
r ∈Rnr

1
2

rT Pr+qT r

s.t. c j(r)= a j
T r−b j = 0, j ∈ E ,

c j(r)= a j
T r−b j ≥ 0, j ∈ I

(3.8)

Since all the constraints are linear, the feasible set is convex; however, this does
not imply that the problem itself is convex. QP problems may or may not be convex
depending on the quadratic component of the objective function (rT Pr) and the
constraints. The quadratic weight matrix P is an nr-dimensional symmetric matrix
and is known as the Hessian matrix. If P is positive semidefinite (P ≥ 0), then
Problem 3.8 is a convex problem. For a convex QP problem, the KKT conditions
serve as necessary and sufficient conditions, meaning that in this case, the KKT
conditions give a global solution.

3.2.4.2 Nonlinear program (NLP)

A NLP problem has a linear or quadratic objective function and nonlinear con-
straints. A general NLP can be written as:

min
r ∈Rnr

f (r)

s.t. c j(r)= 0, j ∈ E ,

c j(r)≥ 0, j ∈ I
(3.9)

where f (r) is an n-dimensional vector and the decision variables r are defined in
the Euclidean space; E and I are disjunct index sets such that E ∩I =; for the
constraints.

3.2.5 Solution Methods

Optimization algorithms are iterative and typically begin with an initial guess of the
solution. The algorithm then generates a sequence of improved solution estimates
(known as iterates) until the algorithm terminates. The method that is used to move
from one iterate to another is what distinguishes the algorithms from one another;
many strategies use the objective function values, the constraint functions, and the
first and second derivatives of the functions [23].

NLPs problems can be solved using a variety of methods and which one is selected
depends on the properties of the problem. The main algorithms for solving a
constrained NLP problem are: interior-point, sequential quadratic programming
(SQP), active-set, and trust-region methods. Here attention is only given to the
most commonly utilized method known as SQP.
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3.2.5.1 Sequential Quadratic Programming (SQP)

One of the most effective method families for solving nonlinear, constrained optimiza-
tion problems is through the generation of steps by solving quadratic sub-problems,
resulting in the method known as SQP [23]. Note that this approach only works
for problems that have a twice continuously differentiable objective function and
constraints.

These methods solve general nonlinear problems while honoring the bounds at all
iterations. Their strength lies in solving problems with significant nonlinearities
in the constraints, which is the case for many polymerization processes. Many
optimization algorithms require a feasible starting point to initiate the algorithm,
the SQP method does not; instead it penalizes constraint violations as a part of the
objective function. This is an advantage of this method because selecting an initial
guess can often be difficult.

The essence of this method is that a sequence of optimization sub-problems is solved
where a quadratic model of the objective function is used subject to a linearization
of the constraints [37]. Each sub-problem is solved with the use of either an active
set method or an interior-point method [21]. The sub-problems are formulated in a
manner that ensures convergence to a local minimum of the NLP as the number of
iterates reaches infinity [23].

For a nonlinear programming problem of the form shown in Equation 3.9, the
Lagrangian will be given by:

L(r,λ1,λ2)= f (r)−λT
1 cE (r)−λT

2 cI (r) (3.10)

where λ1 is a vector of the Lagrange multipliers for the equality constraints and λ2

is a vector of the Lagrange multipliers for the inequality constraints. At an iterate
rk, the algorithm defines an appropriate search direction pk as the solution to the
QP sub-problem given by:

minp f (r)+∇ f (r)T p+ 1
2

pT∇2L(rk,λ1,k,λ2,k)p (3.11a)

s.t. cE (r)+∇cE (r)T p = 0, (3.11b)

cI (r)+∇cI (r)T p ≥ 0 (3.11c)

This subproblem is then solved multiple times until a solution is identified. A full
explanation and derivation of the SQP method as well as more information on other
solution methods can be found in Nocedal and Wright [23].

3.3 Combining Optimization and Control

Advanced control layers that combine optimization and control are becoming more
common in industrial applications as costs and regulations increase, resulting in
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the need to operate the plants at more optimum conditions. Figure 3.5 shows
an example of how optimization and control can be utilized together in a control
structure to operate a process in an optimal manner.

Figure 3.5: Illustration of how optimization and control are combined in a process.

Here the DRTO layer calculates the optimal reactor temperature trajectory. This
is sent to the NMPC layer, which then determines the optimal cooling water flow
rate needed to track the trajectory from the upper level. The cooling water flow
rate is passed to the simple controller, which is typically some version of a P, PI, or
PID controller. This controller then realizes this flow rate by adjusting the valve
position. All of these layers receive the reactor temperature measurement from the
process since they operate on different time scales; therefore, it is important that
they each know the latest state of the reactor. Each layer makes control decisions
at its own frequency with the simple controller operating on the shortest time scale;
note that the inputs from the above layer always trump what the layer itself decides.
These ideas are further explained in Section 3.3.1.

Attention is given to the two top layers of the control hierarchy, since that is the
focus of this thesis. The advanced process control (APC) level is outlined in Section
3.3.2 emphasizing the algorithm for nonlinear models known as NMPC. The upper
level known as supervisory control is then discussed in Section 3.3.3 with emphasis
on the DRTO method. Finally how to estimate to incorporate parameter and state
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estimation into the control structure is discussed.

3.3.1 Control Hierarchy

In industry, a plant’s control structure is typically composed of several different
layers that together make up a control hierarchy such as the one illustrated in
Figure 3.6. The layers are separated based on the time scale in which it operates.
The top layer typically operates on a time scale of days to months, whereas the
bottom layer operates on a time scale of milliseconds to seconds. Each layer has
a specific goal it wishes to accomplish such as following safety requirements or
maximizing the process’s profitability.

Figure 3.6: Common control hierarchy [7]

The bottom three layers are necessary for all process plants and the top two levels
are optional but whose addition helps to increase the profitability. The decision
to implement the top two levels is based on the particular company’s financial
priorities [2]. The lower layers are executed at a higher frequency than the upper
layers; this is because the computational demand increases substantially from the
bottom layer to top layer.

At the bottom are the physical components of the process itself such as pipes,
reactors, heaters, distillation columns, etc. The process values (e.g. temperature,
concentration, pressure) are measured through the use of sensors, transmitters,
and analyzers; the data is passed in real-time to controllers in the regulatory
control layer using communication networks. The regulatory layer consists of
traditional controllers such as proportional, proportional-integral, or proportional-
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integral-derivative controllers, which are used to control things on a fast time scale
(millisecond-second); these controllers are embedded in a distributed control system
(DCS). Typically variables that should be tightly controlled, meaning the deviation
from the desired value should be very small, are controlled in this layer. The
setpoints for the controlled variables in this level are typically supplied by the level
above. The APC layer controls the process through the regulatory layer and typically
communicates with the DCS through the use of open platform communication (OPC).
However, this alone is not sufficient to meet industry requirements for reliability
and availability so safety critical controllers are also placed in regulatory layer; this
is particularly required for unstable processes such as an exothermic reactor [7].

APC is an umbrella term that covers a broad range of techniques and control
methodologies [2]. The basic purpose of this layer is manage the interactions within
the process such that process variability is reduced and the plant can run as close to
the operating constraints as possible. The APC works to help reduce the variation
in process variables in the industrial application; in turn, this leads to an increased
throughput and higher profit. A dynamic model of the process is utilized along with
a history of past control actions, and an optimization cost function over the receding
prediction horizon to calculate the optimum control need [2].

The top layer contains the scheduling and optimization, which includes production
plans of different products or as an output for an optimization application [7].
While the optimum operating conditions for a plant are determined as part of the
initial process design, changes in equipment availability, economic conditions and
process disturbances can mean that the optimum operating conditions need to be
recalculated. The solution to this optimiziation problem then becomes the input
or the new setpoints to the APC layer below. On top of this, further plantwide
optimization could be performed that optimially distributes resources between
different systems in the plant.

3.3.2 Advanced Control Layer

Advanced control layers typically utilize model predictive control (MPC), which for
a nonlinear process is known as NMPC. This is a form of control where the current
control action is obtained by solving at each sampling instant a finite horizon open
loop optimal control problem using the current state of the plant as the initial state;
the optimization produces the optimal control sequence from which the first value
in this sequence is taken and applied to the plant [7]. This type of control predicts
what the process behavior will be and updates this prediction using the feedback
from the process.

NMPC couples open loop optimization with feedback control since at each time step
a new solution of the dynamic optimization problem is required; in other words,
NMPC essentially solves a similar optimization problem over and over at each
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time step. Hence, a moving horizon approach is used where the prediction horizon
changes from k, . . . ,k+ N to k+1,. . . ,k+ N +1 from one time step to the next as
illustrated in Figure 3.7 [23].

Figure 3.7: Simple illustration of the MPC concept. 1

1By Martin Behrendt [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)

NMPC brings a structure approach to solutions where the main aim is to minimize
a performance criterion in the future, which is subject to constraints on the manipu-
lated inputs and outputs; the future behavior is computed according to a model of
the plant [2].

The first generation of controllers that used MPC algorithms were developed in the
1970’s [17]. MPC has been successful in industry due to its increased performance
and easy to understand concept. Modern processing plants incorporate these model
predictive control algorithms as a part of a multi-level control hierarchy. The usage
of these algorithms has increased rapidly with over 4,500 applications reported
worldwide in a multitude of areas such as chemicals, food processing, automotive
and aerospace applications [28]. However, application is not seen as often in the
polymer industry where only 17 applications report using it [28]. NMPC is seen
somewhat more frequently in the polymer industry with 21 applications being
reported [28]. The success of these algorithms are highly dependent on the accuracy
of the process model in predicting the dynamic behavior of the process. The use of
MPC and NMPC can have the following advantages [17]:

a) The process model captures the dynamic and static interactions between the
variables.
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b) The constraints are considered systematically.

c) The optimal setpoints are calculated together with the control calculations.

d) The predictions can provide early warnings of potential problems.

3.3.2.1 NMPC Problem Formulation

A NMPC problem following a reference trajectory can be formulated as:

min
r ∈Rnr

f (r)= 1
2

(xk+1 − xre f
k+1)Qk+1(xk+1 − xre f

k+1)+dxk+1 (xk+1 − xre f
k+1)+ 1

2
uk

T Rkuk

+duk uk +
1
2
∆uk

T Sk∆uk +d∆uk∆uk + r1
Tε+ 1

2
εTdiag(r2)ε

s.t. xk+1 = f (xk,uk) k = 0, . . . , N −1,

zk = h(xk,uk) k = 0, . . . , N −1,

x0,u−1 = given,

xlow −ε≤ xk ≤ xhigh +ε k = 1, . . . , N,

ulow ≤ uk ≤ uhigh k = 0, . . . , N −1,

∆ulow ≤∆uk ≤∆uhigh k = 0, . . . , N −1,

Qk ≥ 0 k = 1, . . . , N,

Rk ≥ 0 k = 0, . . . , N −1,

Sk ≥ 0 k = 0, . . . , N −1

(3.12)

Since a feasible point may not always exist, and therefore a control input would be
unavailable, a solution is found through the use of slack variables. This softens the
state constraints and alters the objective function.

The objective function penalizes state deviations from the desired reference xre f
k+1,

the usage of inputs, the input change rate ∆uk and the slack variables ε, which
represent deviation from hard state constraints. It also contains quadratic and
linear weights for each of the penalized variables. The value of the linear weighted
term increases instantly when the variable moves away from the reference value.
The quadratic weights give a low value gradient in the interval around the reference
value and therefore, provide a smaller penalty for a small deviation from the
reference. If there is a large deviation from the optimality, the quadratic weights
penalize this more than the linear weights [21].

The quadratic state weighting matrix Qk+1 and the linear state weighting vector
dxk+1 allows individual states to be given different importance in the solution. For
example, it may be more important that some states converge more quickly to the
reference value than others. The state weighting also provides the ability to weight
the importance of state convergence against the importance of other variables in
the objective function. For easy to measure and access inputs, the input weights
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would be small compared to the state weights for instance. The quadratic state
weights Rk and linear weights duk for inputs could also be used for tuning of the
input priority.

The rate of change in the input is penalized to minimize the wear and tear on
equipment. Larger weights on these variables contributes to less aggressive control
moves. The slack variables are added to the state constraints to ensure that the
solution of the optimization problem is feasible at all times [23]. Larger weights ρ
and S on the slack variables means a larger penalization of state bound violations.

The constraints on the states, inputs, and input rate change serve as lower and upper
limits. The state constraints are often things such as temperature, concentration,
or pressure limits while input constraints are typically physical constraints such
as valve openings. The input rate change constraints work to limit how quickly
a physical change can occur; these constraints help to limit the wear and tear on
the physical process equipment. The last constraints simply require that all the
weights be positive values.

3.3.2.2 NMPC Algorithm

It is common to use feedback on the outputs of the systems since state feedback is
often not realistic; this is because an exact measure of the state at each time step
is required for state feedback and this is typically not possible. Instead, a state
estimate based on available measurements (i.e., available output data) is typically
used instead. This is referred to as output feedback NMPC. A generalized output
feedback NMPC algorithm is outlined in Algorithm 3.1.

Algorithm 3.1: NMPC with output feedback [7].

1 for k = 0,1,2, . . . do
2 Compute an estimate of the current state xk based on the measured data up

until time k.
3 Solve the NLP problem 3.12 on the prediction horizon from k to k+N with xk

as the initial condition.
4 Apply the first control move uk from the solution above.
5 end

The optimization problem requires an initial value and this initial value is typically
found by computing a state estimate x̂k+1 which relies on the latest available
measurements [23]. State estimation is discussed further in Section 3.3.5. This
form of NMPC which uses available measurements, i.e., available output data, is
called output feedback NMPC.
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3.3.2.3 Output and Input Trajectories

Industrial NMPC controllers use four different options to specify future CV behavior:
a setpoint, zone, reference trajectory or funnel [28]. Here attention is given to the
reference trajectory approach where a desired future path for each CV is specified.
A curve is drawn from the current CV value to the setpoint, creating a reference
trajectory. Any deviations from this trajectory are penalized as illustrated in
Figure 3.8 where the gray area demonstrates the penalization. One drawback
of this method is that it penalizes the output when it drifts too quickly towards
the setpoint. However, in the case of model mismatch, the reference trajectory is
beneficial in that it will slow down the CV and minimize the overshoot [28].

Figure 3.8: Illustration of how a reference trajectory is used for a controlled
variable [28].

3.3.3 Supervisory Control Layer

The supervisory control layer involves recalculating the optimal trajectories in real
time using updated values from the process; here emphasis is placed on the use
of a DRTO algorithm in this level. DRTO is a closed-loop economic optimizer that
computes setpoint targets for the lower level; this is done by solving a dynamic
model at each step. Previously only steady-state models could be used for real-time
optimization, which required the process to reach steady state before the updated
trajectories could be calculated. Using a dynamic model means that the calculations
can be performed more frequently since it is not necessary for the process to reach
a steady before a new calculation is performed [12]. A problem of this type can be
solved by following these six steps [2]:

1.) Identify the Process Variables

2.) Select the Objective Function

3.) Develop the Process Model and Constraints

4.) Simplify the Model and Objective Function

5.) Compute the Optimum
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6.) Perform sensitivity studies

The process variables identified in this step are used in the process model and
the objective function. An objective function is selected based on operating profit,
product qualities and quantities, as well as the plant configuration. Process models
are formulated and any operating limits are identified for the process variables.
The model is constructed to be as simple as possible so that it can be solved rapidly
enough to be used in an online, real-time application. Optimal setpoints are then
determined using a selected optimization technique. Finally, the most sensitive
parameters are identified by varying the model and cost parameters [2].

3.3.3.1 DRTO Problem Formulation

There are many different ways of formulating a DRTO problem. One option is
to structure the DRTO problem in the form of a multilevel dynamic optimization
problem with embedded NMPC optimization sub-problems. The two-level closed-
loop DRTO problem formulation consists of a primary DRTO optimization problem
using a nonlinear dynamic system (Problem 3.13) that predicts the closed-loop
response dynamics, and an inner NMPC optimization sub-problem based on the
dynamic system that calculates the optimal control input trajectories (Problem 3.14).
Here the controller set-point trajectories ŷSP are the decision variables for the outer
problem and the control input trajectories ûNMPC

k are the decision variables for the
inner problem [12].

min
ŷSP

ΦDRTO

s.t. 0= f̃ DRTO(x̂DRTO
k , ẑDRTO

k , ûDRTO
k ), for k = 0, . . . , N −1,

0= hDRTO(x̂DRTO
k , ẑDRTO

k , ûDRTO
k ),

0≤ gDRTO(x̂DRTO
k , ẑDRTO

k , ûDRTO
k ),

0= hSP ( ŷSP ),

0≤ gSP ( ŷSP )

(3.13)

(ûDRTO −∆uss)= min
ûNMPC

φNMPC( ŷNMPC , ŷSP ,∆ûNMPC)

s.t. x̂NMPC
k+1 = f NMPC(x̂NMPC

k , ûNMPC
k ), for k = 0, . . . , N −1,

0= hNMPC(x̂NMPC
k , ŷNMPC

k , ûNMPC
k , ûNMPC

k−1 ,∆ûNMPC
k ),

0≤ gNMPC(ûNMPC
k )

(3.14)

Where ûNMPC, x̂DRTO, ŷNMPC,∆ûNMPC, ŷSP , and ûDRTO are defined using the fol-
lowing notation:

ûDRTO =
[
(ûDRTO

0)T (ûDRTO
1)T . . . (ûDRTO

N−1)T
]T

∆uss is a composite vector of the steady-state inputs repeated for each step of the
DRTO prediction horizon for compatibility with ûDRTO.
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ΦDRTO is an objective function where f̃ DRTO
is the dynamic model used for DRTO

prediction at step k ∈ [0, . . . , N −1]. The equality constraints hDRTO contain the
algebraic equations of the prediction model. The inequality constraints gDRTO

contain the output constraints, which could comprise a subset of the states. The
equality hSP enforces the NMPC setpoint trajectories so that they are constant over
each DRTO interval within each optimization horizon, which is an integer multiple
of the NMPC sampling interval; the inequality constraints gSP gives an upper
and lower bound of these setpoint trajectories. Note that input constraints are not
imposed here but are instead taken care of by the NMPC optimization subproblem
[12].

The NMPC sub-problem utilizes the state-space formulation of a standard input-
constrained NMPC controller with a quadratic objective function. Here only a
single NMPC optimization problem is required within the DRTO calculation; the
prediction and control horizons are extended to match that of the DRTO optimization
horizon. φNMPC is a quadratic cost function and f NMPC is the NMPC prediction
model at time step k ∈ [0, . . . , N −1]. The equality constraints hNMPC contain the
relations between the states and the inputs as well as between the inputs and
input changes. The equality constraints gNMPC consist of the input constraints.
x̂NMPC

k ∈Rnx is a vector of the NMPC model states, ŷNMPC
k ∈Rny is a vector of the

corresponding NMPC model outputs, and ûNMPC
k ∈Rnu is a vector of NMPC inputs

at each prediction step. ŷSP ∈ RN.ny is a composite vector of the NMPC setpoint
trajectories for the controlled outputs over the DRTO optimization horizon N.

The inputs to the plant model correspond to the optimal input trajectory of the
NMPC sub-problem plus the nominal steady state inputs. The closed-loop DRTO
strategy optimizes the setpoint trajectories directly and passes them to the NMPC
controller at the level below. These setpoint trajectories are then shifted in time to
account for the moving horizon of the NMPC controller [12].

This supervisory control structure can be used to further optimize a single process
or a whole plant. Here, this control structure will be used to optimize a single
process. Therefore, the construction of the DRTO objective function is not based
in economics; further discussion of the application of such control structures is
outlined in Chapter 6.

3.3.4 Problem Size Reduction

The computational effort required to solve a dynamic optimization problem is
dependent on the number of decision variables, which is equal to the sum of the
states and inputs. This can be mathematical expressed as:

n = N(nx +nu) (3.15)
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Here N is the prediction horizon, nx is the number of state variables, and nu is the
number of input variables.

For large systems, it is often desirable to reduce the size of the problem to decrease
this computational effort; this can be done using control input blocking. The idea is
illustrated below in Figure 3.9. Here, the manipulated variables are forced to take
constant values over intervals spanning one or more time steps [7]. Typically, input
variables are allowed to move frequently at the beginning of the prediction horizon
while towards the end, the block lengths increase since the states typically have
settled to a steady value by this point. It has been shown that input blocking is able
to reduce computational effort with little consequences in control quality [7].

Figure 3.9: Illustration of how the use of input blocking alters the predicted inputs
[21].

3.3.5 Parameter and State Estimation

Parameter and state estimation accuracy is critical for the development of good
process models and control algorithms, respectively. Here, attention is given to one
offline parameter estimation method and one method of state estimation. Parameter
estimation is done to help improve the parameters used in the model based on
process data; this can be done online or offline. State estimation is done for states
that cannot be directly measured and is only done online.

Typically, estimator blocks are included in close connection with the process model
block. The estimator works by continuously reinforcing the process model based on
the outputs from the real process [9]. Figure 3.10 shows how the process model is
updated using online state and parameter estimations that are calculated using the
model deviation from the plant measurements. The input is injected to the process,
the model, and the estimator; the process and the model also receive any distur-
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bances. The model calculates the states and predicts the measurements. For the
current time step, the model predicted measurements and the actual measurements
from the process are sent to the estimator. The estimator uses the input value and
the difference between the measurements to calculate the states and parameters
for the next time step. These states and parameters are feed back to the model to
improve its accuracy.

Figure 3.10: Block diagram of online state and parameter estimation.

3.3.5.1 Parameter Estimation

When a model is first developed, the parameter values are selected from literature
data, experiments, and/or calculations; however, there is often uncertainty in these
parameters that can result in model mismatch, causing poor performance in model
based controllers. The goal is to estimate the parameters such that they describe
the real process behavior as precisely as possible relative to the plant measurements
[27].

Parameter estimation can be done either online or offline. Offline parameter esti-
mation can be used to adjust time-invariant parameters that have uncertainty. A
common method of offline parameter estimation is done by solving a least squares
optimization problem, where the squared difference between the plant measure-
ments and model predicted measurements is minimized. Such a formulation is
shown in Equation 3.16 [21].
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min
η

N∑
k=1

( ŷk − yk)2

s.t. xk+1 = f (xk,uk,θ),

ŷk = g(xk,uk,θ),

η⊆ θ

(3.16)

This is a simple regression method where the solution is selected such that the
estimated parameters η minimize the squared difference between the predicted
measurements ŷk and the plant measurements yk, where k refers to a point in
time. The decision variables η are selected from a subset of the entire parameter
set θ to decrease the problem size; parameters with the largest uncertainty are
typically chosen as decision variables. Since the problem is nonlinear due to the
nonlinearities in the model constraints, it must therefore be solved using a nonlinear
method. It is common to utilize the SQP algorithm that was briefly discussed in
Section 3.2.5.1 to solve these problems.

Online parameter estimation is used in the event the parameters are uncertain and
time varying. In this case, the model parameters are continually adjusted according
to real-time measurements from the plant. This results in an improved fit between
the model and the plant; hence, improving the performance of the model based
control optimization [29]. Online parameter estimation is often combined with state
estimation. In this work parameter estimation is not considered further but it is
important to understand the concept nonetheless.

3.3.5.2 State Estimation

State estimators give information about the process that cannot be measured
directly or if the measurements are too expensive to obtain or too noisy. For polymer
processes, credible measurements are rarely available, which causes issues in online
parameter estimation; in this case, state estimators are essential in providing
insight into how to apply optimal control [21].

Online estimation methods that can be considered for the problem type of interest
are Kalman filter (KF) based estimators and moving horizon estimator (MHE) [29].
The KF is the more common approach to state estimation and is the type utilized
in this work. This state estimator produces an optimal estimate in the sense that
the mean value of the sum of the estimation errors gets a minimal value [10]. This
algorithm requires that the states that are to be estimated must be observable. A
state is observable if the state can be determined from the system model, along with
its inputs and outputs for a finite number of steps [7]. The algorithm assumes that
the system in which the states are estimated is excited by random disturbances (or
process noise) and that the measurements contain random measurement noise [10].
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The KF works in two steps: 1) predicting the state and the estimates’ covariance
and 2) updating the measurement and covariance of measurement residuals. The
Kalman gain is used to update the state estimate and the covariance of the state
estimate [27]. This is referred to as a recursive estimation method, which can be
formulated generically as:

x̂k = x̄k +Kk(yk − ȳk) (3.17)

Here x̄k is the vector of estimated states at step k, and Kk is the KF gain matrix,
which determines how much the deviation from the plant measurements affects
the updated parameters. Recursive estimation methods are ideal since they are
efficient in terms of memory, and the new parameter estimates are based on both
the measurement history and the previous parameter estimates [21].

The KF is derived for linear systems but can be extended to nonlinear systems,
which is known as the extended Kalman filter (EKF). This state estimator is then
written as:

Prediction part: x̄k = f (x̂k−1,θ,uk−1, v̄k−1) (3.18)

ȳk = g(x̄k,θ,uk−1)+ w̄k (3.19)

z̄k = h(x̄k,θ,uk−1) (3.20)

Measurement correction: x̂k = x̄k +Kk(yk − ȳk) (3.21)

ẑk = h(x̂k,θ,uk−1) (3.22)

where x̄k = x̂(tk|k−1) is the a priori state estimate, ȳk is the predicted measurement,
z̄k is the predicted output, x̂k−1 = x̂(tk−1|k−1) is the state estimate at tk−1, v̄k−1 is
the mean process noise and w̄k is the mean measurement noise.

The KF gain matrix Kk can either be a constant or, more commonly, it is calculated
from the process noise covariance V k−1, the measurement noise covariance Wk,
a priori state covariance X k−1 and the partial derivatives of the state prediction
function f and the measurement prediction function g. The process noise covariance
is calculated using the standard deviation of the process noise, which is treated
as an estimator parameter. The measurement noise covariance is calculated in
a similar manner. The a priori state covariance’s initial value is an estimator
parameter defined by the initial state standard deviations.

3.3.5.3 Parameter and State Estimation Combined

In many applications, the KF can be used to estimate parameters and/or distur-
bances in addition to the state variables [10]. To include parameter estimation in
these algorithms, the state vector is replaced by an augmented state vector that
contains both the states and parameters. This is known as the augmented Kalman
filter (AKF) and is given by [21]:
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Prediction part: x̄k = f (x̂k−1, θ̂k−1,uk−1, v̄k−1) (3.23)

θ̄k = θ̂k−1 + ω̂k−1 (3.24)

ȳk = g(, θ̄k,uk−1)+ v̄k−1 (3.25)

Measurement correction:

[
x̂k
θ̂k

]
=

[
x̄k
θ̄k

]
+Kk(yk − ȳk) (3.26)
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CHAPTER 4
SEMI-BATCH STYRENE

POLYMERIZATION CASE STUDY

The concepts outlined in the previous chapters are now applied to the semi-batch
polymerization of EPS. A description of the process outlining how EPS is typically
manufactured is given in Section 4.1. The equations that make up the process model
are given in Section 4.2; this includes first principle equations (mass and energy
balances) along with the reaction equations (moment balances and reaction rates).
Section 4.3 explains how the model is implemented and introduces the software
that is utilized throughout this work. The numerical method that is used to solve
the DAEs is briefly covered along with how parameter and state estimation is done.

Using the constructed model, offline optimization is performed in Section 4.4 to find
some base line optimal operating values that will be used to develop the advanced
control structure. The offline optimization variable selection is given along with
the resulting offline optimization problem formulation. Details of how the offline
optimization problem is solved is discussed in Section 4.5. The offline optimization
results are then presented.

4.1 Process Description

EPS is typically produced by suspension, free radical polymerization of styrene in
a semi-batch reactor. The reactor is initially charged with liquid styrene that is
distributed finely in water. When sufficient amounts of initiator and heat are added,
the styrene polymerizes to form harder polystyrene beads.

A generic process schematic is shown in Figure 4.1. There is one inlet point where
the monomer, initiator, and additives are added. The reactor is preloaded with
monomer and water with the addition of the initiator indicating the start of the
batch; the additives are added at some point during the batch. Since it is a semi-
batch reactor, the outlet is only utilized at the end of the batch to extract the product.
A blade is used to stir the reactor contents, thereby limiting the concentration and
temperature gradients. A jacket surrounds the reactor and is used to regulate the
temperature by using cooling water to remove any excess heat generated by the
reactions. This helps maintain the reactor temperature between the necessary
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range of 100−140◦C to produce the desired polymer properties [21].

Figure 4.1: A generalized semi-batch reactor for suspension polymerization of
expandable polystyrene.

Additives are occasionally needed in polymerization reactions to help produce the
desired product; two types of additives known as bead stabilizers and blowing agents
are commonly used in the production of EPS. Bead stabilizers are added to avoid
aggregation of the dispersed phase; aggregates that sink to the reactor bottom can
cause poor heat transfer conditions, which may eventually lead to thermal runaway
[21]. Blowing agents are oil soluble chemicals that swell into beads whose addition
as the reaction occurs helps in the reduction of the reaction volume density; for EPS
production, pentane is commonly used. The addition of the blowing agent causes
the particles to swell, resulting in the expandability property of the polystyrene
beads; as a consequence, the droplet viscosity of the liquid decreases. Therefore, the
amount of pentane added, and the time at which it is added, has a large effect on
the final products properties [21].

The chemical reactions begin when initiator and enough heat is supplied. A radical
chemical initiator dissociates and reacts with monomer droplets at temperatures
above 100◦C. The initiator radical fragments take up styrene units creating growing
radical chains before eventually becoming dead polystyrene molecules. Initiators
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are typically expensive chemicals and therefore, the amount of initiator used should
be the correct amount for the fixed monomer mass so that little is wasted.

Once polymerization is complete, the added blowing agent needs to be removed so it
is not present in the final product. When the process has reached a high monomer
conversion, the EPS beads are heated with steam causing the blowing agent to boil
off. This softens the polymer and causes the beads to expand to eight times their
initial volume. The final average bead diameter is approximately 0.5 to 1 mm [15].

Once the reaction has reached a set conversion, the product is removed from the
reactor. The point at which this conversion is reached is known as the batch time.
The shorter this is, the more product that can be manufactured annually and
consequently, the larger the profits of the plant. Therefore, the batch length is of
critical importance when trying to improve such processes.

4.1.1 Reaction Kinetics

Polystyrene is made by free-radical polymerization of styrene monomers; this type of
polymerization has three main reaction types that occur simultaneously: initiation,
propagation, and termination. In this section, these reactions and corresponding
reaction rates for the production of EPS specifically are covered.

Both chemical and thermal initiation occur during the polymerization of polystyrene.
Chemical initiation was previously defined in Chapter 2 Section 2.1.1 so is not
discussed again here. Thermal initiation only becomes substantial once the tem-
perature is sufficiently high (> 100◦C); styrene molecules form radical components
independent of the additives. This process is illustrated below in Reactions 4.1-4.4
[21]. During thermal initiation, two styrene molecules undergo a Diels-Alder re-
action to form Diels-Alder adduct 1-phenyltetralin (AH) [21]. When this molecule
reacts with a styrene molecule M, two radical molecules M•,A• are formed that can
further initiate a polymer chain.

2M
k1←−→
k−1

AH (4.1)

M+AH
kdm−−−→M•+A• (4.2)

M+M• kp−−−→R1 (4.3)

M+A• kp−−−→R1 (4.4)

Activation of a styrene chain by a radical component and the propagation reaction
of a growing chain are shown in Figure 4.2. The free radical of the molecule forms a
single bond with one of the electrons from the double bond of styrene; this results in
the addition of a styrene molecule to either the initiator radical or growing chain.
The phenyl group’s position depends on the direction which the styrene molecule
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approaches the radical; normal polystyrene is atactic meaning that the phenyl
group direction is random [21].

Figure 4.2: Activation of a new growing chain polystyrene and the propagation
process [21].

Radical polystyrene chains are primarily terminated through combination; therefore,
termination by disproportion is negligible in the polymerization of styrene [1].
Another termination possibility is chain transfer, which is where activated polymer
chains react with CTA or monomers. In chain transfer to a monomer, a monomer
unit terminates the growing chain and the monomer unit then carries the radical.
Chain transfer to CTA proceeds in the same way but instead of a monomer unit,
the CTA is responsible [9]. In some cases, CTA is added to the reactor to control the
chain length of the polymer product [21].

4.2 Model

While the development of the mathematical model was conducted by Lund, a brief
summary is given here since the model is crucial to the development of a good control
structure [21]. The assumptions listed below were made to create a simplified model
that could be used in optimization and control.

Ï The chemical initiator is mono-functional.
Ï The reactor is charged with monomer and water such that the monomer is

dispersed into tiny organic phase droplets in the continuous water phase.
Ï The reaction is initiated by adding all the chemical initiator at time t = 0.
Ï Pentane is added at some unknown point during the reaction and is fed to the

reactor over a short period of time.
Ï The delay between the addition of initiator and the onset of the initiation

reaction, as well as for the swelling of pentane into the particles, are all
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neglected.
Ï The solubilities of styrene, initiator, polystyrene, and pentane in water, and

vice versa, are assumed to be negligible. In reality, styrene and pentane are
slightly soluble in water, as shown in Table 4.1. This solubility could result in
a small amount of the monomer not being available for reaction. In addition,
some pentane will be lost to the water phase so less pentane will contribute
to reduction of the diffusional limitation and the expansion properties of the
polymer beads. On the other hand, water can also dissolve in the polymer
phase and increase its total and free volumes.

Table 4.1: Solubility of compounds in water and vice versa at 20 ◦C [21].

Compound Solubility [kgm−3] Water solubility [kgm−3]

Styrene 0.29 0.54
Polystyrene 0.00 0.00
Pentane 0.40 0.09
Initiator 0.00-0.01 0.00

Ï All reactions are treated as elementary and irreversible.
Ï The pseudo-steady state assumption (PSSA) can be applied to the moment

balances of living chains; this eliminates the stiff condition of the differential
equations originating from the radical dynamics. This assumption is valid to
apply since radical chains are extremely reactive intermediate species so they
have short lives.

Ï Mass transfer limitations between the polymer phase and the water phase are
neglected; thus, the process is modeled without temperature gradients in the
reactor content. This is also known as a perfect mixing assumption.

Ï The pressure is assumed constant.

4.2.1 Dynamic Model Equations

A dynamic model was constructed consisting of component balances for the reac-
tor contents plus energy balances on the reactor vessel and cooling jacket. The
parameter values and other constants used in the model are provided in Appendix
B.

4.2.1.1 Species Balances, Moment Balances, and Reaction Rates

The species and moment balances for the polymerization of polystyrene are outlined
below. Also included in this section are the equations for the reaction rates and
reaction rate constants.

43



CHAPTER 4. SEMI-BATCH STYRENE POLYMERIZATION CASE STUDY

Species Balances:

The monomer is pre-loaded along with water and the initiator is added at the
beginning of the batch (t = 0); more reactants can be fed throughout the batch
reaction (t > 0) if required. Before the initiator is added, the reactor is heated to an
optimal initial temperature.

Both styrene monomer and initiator are consumed in the reaction process. The
dynamic species balances for monomer and initiator are:

dnM

dt
= RMV + n̂M (4.5)

dnI

dt
= RIV + n̂I (4.6)

where ni is the amount of reactant i present in the system and n̂i is the correspond-
ing molar flow of the reactants. RM and RI are the reaction rates of the monomer
and initiator, respectively. The reaction rates are calculated using:

RM = (−kp −ktrM)[M][λ0]−2 f kd[I]−2kdm[M]3 (4.7)

RI =−2 f kd[I] (4.8)

Here kp, ktrM , kd and kdm are the rate constants for propagation, chain transfer to
monomer, chemical initiation, and thermal initiation, respectively. The efficiency of
the chemical initiator is expressed by f and is a number between zero and one. The
concentrations of initiator and monomer are represented by [I] and [M]. Finally, λ0

is the zeroth order moment of active polymer chains on a concentration basis.

Pentane is fed to the reactor at some point but does not contribute to any of the
reactions itself. The balance equation for pentane is given by:

dnC5

dt
= n̂C5 (4.9)

where the amount n̂C5 added to the system has a direct effect on the volume and
viscosity of the reactive phase.

Moment Balances of Living and Dead Chains:

The moment balances are based on work by Wu et al. and were extended to include
chemical initiation terms [38]. The zeroth order moment is given by Equation 4.10
and represents the rate of change of the living chains. Active chains are produced
by two initiation processes and are consumed by termination; these reactions are
illustrated by the three terms in Equation 4.10. The first order moment of living
chains is given in Equation 4.11 and is related to the total chain length of the living
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chains. This equation shows that initiation and propagation increase the chain
length and termination stops the growth. The transfer to monomer ends the growth
of one chain and initiates the growth of another. The second order moment is shown
in Equation 4.12 and is almost equivalent to the balance for the first order moments.
The PSSA means that all three equations can be solved directly for each of the
moments for the living chains [21].

dλ0

dt
= (2 f kd[I]+2kdm[M]3 −ktc[λ0]2)V = 0 (4.10)

dλ1

dt
= (2 f kd[I]+2kdm[M]3 +ktrM[M][λ0]+kp[M][λ0]

−ktrM[M][λ1]−ktc[λ0][λ1])V = 0
(4.11)

dλ2

dt
= (2 f kp[I]+2kdm[M]3 +ktrM[M][λ1]+kp[M]([λ0]+2[λ2])

−ktrM[M][λ2]−ktc[λ0][λ2])V = 0
(4.12)

The moment balances for the dead chains are given below in Equations 4.13-4.15.
The zeroth order moment increases as the active chains are terminated either
by radical transfer to a monomer or termination by combination. The first order
moment, related to the number of monomers tied in died chains, increases by the
same termination processes. The second order moment is similar to the first order
moment balance with an additional termination term [21].

dµ0

dt
=

(
ktrM[M][λ0]+ktc

[λ0]2

2

)
V (4.13)

dµ1

dt
=

(
ktrM[M][λ1]+ktc[λ1][λ0]

)
V (4.14)

dµ2

dt
=

(
ktrM[M][λ2]+ktc

(
[λ2][λ0]+ [λ1]2))

V (4.15)

Free Volumes:

The free volumes of styrene, polystyrene and pentane are calculated using:

Vf ,M =
(
0.025+αM

(
TR −Tg,M

))nMVm,M

V
(4.16)

Vf ,P =
(
0.025+αP

(
TR −Tg,P

))µ0Vm,P

V
(4.17)

Vf ,C5 =
(
0.025+αC5

(
TR −Tg,C5

))nC5Vm,C5

V
(4.18)

where αi is the fractional free volume, Tg,i is the glass transition temperature, ni

is the molar mass, and Vm,i is the molar volume. The index i represents either the
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monomer, polymer or pentane. The total free volume is the sum of the contributions
of each of the components.

Vf =Vf ,M +Vf ,P +Vf ,C5 (4.19)

The free volume is used in the calculation of some of the reaction rates.

Rate Constants:

The reaction rate constants are calculated using the Arrhenius expression:

ki = ki,0 exp
(
− E i

RTR

)
, i = {d,dm, p, tc, trM} (4.20)

where ki,0 is the frequency factor, E i is the activation energy, R is the gas constant,
and TR is the reactor temperature.

Reaction Rates:

During the polymerization process, different reactions control the termination
rate; therefore, there are several different reaction rates that make up the overall
termination rate. The reaction rate equations for each of the termination reaction
types are stated below, along with the cage and glass effect contributions to the
overall reaction rate.

At low monomer conversion and low viscosity, segmental diffusion controls the diffu-
sional limitations. The segmental diffusion-controlled termination rate constant is
given by:

ktc,seg =
[
1+ δcµ0Mw,M

V

]
ktc (4.21)

Here the segmental diffusion parameter for styrene δc is close to zero; therefore,
this effect is very small and could safely be neglected with little impact on the
model’s accuracy.

At higher conversions, the translational diffusion begins to control the termination
rate. The rate constant is given by:

ktc,trans =
(

Mw

Mw,cr

)a

exp
[
− A

(
1

Vf
− 1

Vf ,cr

)]
ktc (4.22)

Here, Mw,cr and Vf ,cr denote the weight average molecular weight and free volume
of the mixture at the onset of the translational diffusion effect, respectively; A and
a are both tuning parameters. The onset of this regime is indicated by a critical
point, where a test variable K becomes equal to a critical variable Kcr. The test
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variable can be tuned by changing two parameters: l and Al . The critical variable
can be tuned by changing Acr.

K = Mw
l exp

(
Al

Vf

)
(4.23)

Kcr = Acr exp
(

Ecr

RTR

)
(4.24)

The reaction or residual diffusion contribution always acts on the system regardless
of the conversion. The size of this effect is determined by the following linear
conversion function between an upper and lower bound:

ktc,rd = ktc,rd,minX +ktc,rd,max(1− X ) (4.25)

The diffusional effects are gathered together into one expression for the overall
termination rate:

ktc,app =
(

1
ktc,seg

+ 1
ktc,trans

)−1

+ktc,rd (4.26)

For the cage and glass effects, the following expressions are used:

fapp = exp
[
−B

(
1

Vf
− 1

Vf ,cr,d

)]
f (4.27)

kp,app = exp
[
−C

(
1

Vf
− 1

Vf ,cr,p

)]
kp (4.28)

where fapp is the apparent initiator efficiency and kp,app is the apparent propaga-
tion rate constant. These reaction rate equations should be inserted into the model
equations discussed Chapter 2.

4.2.1.2 Energy Balances

The energy balances for the reactor and the jacket are constructed in the form of
temperature equations. This is done because temperature is an easily measured
quantity compared to enthalpy. The full derivation of the energy balances can be
found in Appendix B.

The temperature equation for the reactor is given by:

dTR
dt

=
∑

i cp,i n̂i(T f eed −TR )−∆HRRPV − (U A)J (TR −TJ )− (U A)amb(TR −Tamb)+Wag∑
i ni cp,i +mV cp,V

(4.29)

The first term represents the enthalpy from the inlet where T f eed is the feed temper-
ature. For free-radical polymerization, the bulk of the reaction heat generated comes
from the propagation reaction; thus the propagation rate RP is used in the heat of
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reaction term. The propagation rate depends on the concentrations of monomer and
living polymer chains and is calculated using:

RP = kp[M][λ0] (4.30)

The terms (U A)J and (U A)amb are the overall heat transfer coefficients for heat
transfer to the cooling water and surroundings. TJ and Tamb are the cooling and
ambient temperatures. In this case, the shaft work done on the system is from the
agitation Wag. Currently, the model code does not consider the agitation work or
the heat loss to the surrounding environment since these contributions are deemed
minor in comparison with the other energy contributions. However, the code can be
easily altered to include nonzero values for these terms.

The temperature equation for the cooling jacket is given by:

dTJ

dt
= (U A)J(TR −TJ)+ m̂ccp,c(TJ,i −TJ,o)

mccp,c
(4.31)

where m̂c is the mass flow rate of the cooling fluid, cp,c is the heat capacity of the
cooling fluid, TJ,i and TJ,o are the inlet and outlet temperatures of the jacket, and
mc is the mass of cooling fluid contained in the jacket [21].

4.3 Model Implementation

The model is formulated in the programming language C using a model template
provided by Cybernetica AS that facilitates integration into Cybernetica’s software.
The following model structure is used in this template:

ẋ(t)= f (t, x(t),u(t),θ) (4.32)

x0 = given (4.33)

ŷ(t)= g(t, x(t),u(t),θ) (4.34)

z(t)= h(t, x(t),u(t),θ) (4.35)

where x(t) is the state vector, u(t) is the input vector, θ is the parameter vector,
ŷ(t) is the (predicted) measurement vector, and z(t) is the output vector. The model
equations are constructed as functions in the template and the numerical method
to solve the model is selected here.

To help with the implementation of the control structure, the states, inputs, mea-
surements, outputs, parameters and constants are declared explicitly in the tem-
plate. Interfaces to other useful applications such as Cybernetica ModelFit and
Cybernetica CENIT are also supplied.

4.3.1 Software

Cybernetica AS is a company that focuses on developing custom advanced model-
based control structures for nonlinear processes. They have developed their own
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suite of software designed for this purpose, which consists of ModelFit, CENIT, and
RealSim. ModelFit is designed for parameter estimation and model verification;
this tool is not utilized in this work so it is not discussed further. RealSim is used
to simulate an instance of the model to behave as if it were the plant and CENIT
is the nonlinear optimization tool; RealSim and CENIT communicate through the
use of an OPC server. All three pieces of software are designed to work with a
process model implemented in C using Cybernetica’s template structure. This
model typically extends beyond the balance and reaction equations mentioned in
the previous sections of this chapter to include the information necessary for the
control structure; this is covered in more detail in the relevant chapters and sections.
The work in this thesis is conducted using CENIT and RealSim to implement the
two control levels and perform simulations, respectively.

Cybernetica CENIT is designed as an NMPC controller software using nonlinear
first principles based models; it can be implemented to control continuous or batch
processes in an optimal manner. This software utilizes the custom developed model.
CENIT can compensate for any model mismatch by using one of its two integrated
estimators: the KF or the MHE. This software employs a SQP algorithm using a
line-search method to solve dynamic optimization problems; small perturbations are
introduced to the control inputs producing a sensitivity matrix from which the best
solution is identified [17]. CENIT has a GUI known as CENIT MMI, which allows
users to easily change settings in CENIT such as turn on/off constraints, change
variable types, set new setpoints, or alter the controller weights. In the CENIT MMI
different variables can be plotted allowing users to see both the current and the
predicted states. While CENIT is typically utilized to perform online optimization,
it can also be used for offline optimization where the model is used to simulate the
real plant.

Cybernetica RealSim serves as a simulation tool and a test-bench for online control
applications [17]. The controller can be tested offline and tuned prior to installation
in addition to allowing for open-loop testing and debugging of the controller. Users
can even simulate real operation where they can change parameters as a real
operator would. Together with CENIT, RealSim can serve as a real-time simulator
for testing various controller settings on the plant. A separate instance of the same
model that is used by CENIT is run in RealSim where the values are synchronized
through an OPC server; this allows the simulation to be executed more rapidly
than a real-time process [17]. The main motivation to use an OPC server for offline
simulations is that it ensures that the simulated conditions are as similar as possible
to online conditions; this also negates the need to alter anything in the model if it is
to used online or offline. RealSim determines the “measurements” which are then
passed to CENIT to be used in the control layer(s). CENIT calculates and executes
the appropriate control action based on these measured values. The simulation can
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be run infinitely, paused, or simulated for just one sample. RealSim displays the
current data values in the main window. In this GUI, the user can modify inputs
and parameters when the simulation is paused.

4.3.1.1 Numerical Solving Method

The framework provides several different numerical solution methods with the
simplest method being Euler integration. Since this model is a non-stiff system
due to the PSSA assumption on the living chain moments, the Euler method is an
adequate solver. Euler’s method works to solve initial value first-order ordinary
differential equation (ODE) systems by calculating approximate solution values at
equidistant points using the initial value [19]. Specifically, explicit Euler integration
is used, which is the simplest Runge-Kutta method.

Applying Euler’s method results in the following system:

ẋ(t)= f (t, x(t),u(t),θ) (4.36)

x0 = given (4.37)

xk+1 = xk +∆tint f (k, xk,uk,θ) (4.38)

The sampling time ∆t is selected to be 15 seconds and the integration time step
∆tint is equal to the sampling time. Lund found that shorter step lengths and
the use of more complex solvers did not improve the accuracy and increased the
computation time [21].

4.3.1.2 Parameter and State Estimation

While parameter estimation is important in the accuracy of the model, offline
parameter estimation requires the use of real plant data and online parameter
estimation requires a real plant. Since neither of these two were available, param-
eter estimation could not be performed. This work uses a hypothetical lab-scale
reactor so there is little benefit in performing online parameter estimation because
these parameters will have to be changed if the control structure developed in
this thesis were to be implemented on a real process. Previously, Lund performed
offline parameter estimation using data from a manufacturer of EPS but there was
insufficient data to conclude that the identified parameters improved the model
accuracy [21]. Therefore, the original parameters selected by Lund are used here
and parameter estimation is left for future work.

State estimation is not considered in this thesis. Instead, the estimated states were
set equal to the calculated states by setting the Kalman gain to a constant matrix
of zeros. This was not done because the measured states in this process are all
values that could be directly measured. In addition, measurement and process noise
were neglected so there was no need to apply a correction to the predicted states
since there was likely to be little mismatch between the predicted states and the
measured states.
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4.4 Offline Optimization Problem Development

Offline optimization is performed to identify the optimal monomer to initiator ratio,
starting reactor temperature, and the reactor temperature profile throughout the
batch. This stage is the first step in the development of the advanced control struc-
ture since the results from the offline optimization will be used in the construction
of the two-layers.

4.4.1 Variable Selection

The states are the balanced variables in the equations: the monomer, initiator,
and pentane quantities, the moments for dead chains, and the reactor and jacket
temperatures. For the purpose of optimization, the batch time t f is included as a
state variable as well.

The input variables are the molar flow rates of the monomer, initiator, and pentane
into the reactor; the cooling water mass flow rate and cooling water inlet tempera-
tures are also inputs. An extra input variable of the temperature derivative dTR

is added to ensure the possibility of perfect temperature control. Additionally the
initial temperature T0 is included as an input to find the optimal starting reactor
temperature. This is a decision variable in the first sample of the prediction horizon.
After the first sample, it is replaced by the reactor temperature derivative dTR for
the remaining samples in the prediction horizon. To optimize the initiator amount
a different approach is used where an additional input variable nI,0 is added along
with a state variable that keeps track of the amount of initiator fed to the reactor.
The change rate is calculated using the following equation [21]:

dnI

dt
= RIV + (nI,0 −nI , f ed)

τI
(4.39)

If τI is selected small enough, the system will behave as if the initiator was initially
loaded into the reactor; here the time constant was set to 60 seconds.

Since the reactor system in this work is a hypothetical semi-batch polystyrene
reactor, the selected measurements are the essential ones. Here, the reactor and
jacket temperatures, plus the weight and number average molecular weights are
assumed to be measurable quantities. The outputs include the moments of living
chains, the average molecular weights, number average chain length, the conversion,
and the polydispersity index. These variables are selected since they are calculated
from the states or inputs; in addition they provide useful information about the
reaction progress or the product.

The reactor temperature derivative was chosen for the manipulated variable so
perfect temperature control could be achieved; this allows for a smoother tempera-
ture trajectory in comparison to direct manipulation of the temperature since a new
temperature is only determined at each sampling point.
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The choice of state, input, measurement and output variables for offline optimization
are summarized in their vector form below.
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(4.40)

where Mn,p is the measured number average molecular weight of the polymer
and that Mn is the model predicted value; the same holds for the weight average
molecular weights.

4.4.2 Problem Formulation

The offline optimization is performed with the aim of minimizing the batch time
while producing the desired product quality subject to other process constraints. The
decision variables are selected to be the initial ratio between the loaded monomer
and initiator plus the dynamic temperature trajectory. The problem formulation is
given by:

min
TR,0,dTR ,nI,0,ε

q(Mn, f −Mn,d)2 + r1ε+ sdTR∆dTR
2 (4.41a)

s.t. ẋ(t)= f (t, x(t),u(t),θ), (4.41b)

y(t)= g(t, x(t),u(t),θ), (4.41c)

z(t)= h(t, x(t),u(t),θ), (4.41d)

t f ,min −ε≤ t f ≤ t f ,max +ε , (4.41e)

X ≥ Xd , (4.41f)

m̂c,min ≤ m̂c ≤ m̂c,max , (4.41g)

TJ,i,min ≤ TJ,i ≤ TJ,i,max , (4.41h)

TR,min ≤ TR ≤ TR,max , (4.41i)

dTR,min ≤ dTR ≤ dTR,max , (4.41j)

nI,0,min ≤ nI,0 ≤ nI,0,max , (4.41k)

Mn,min ≤ Mn ≤ Mn,max (4.41l)

The objective function consists of a quadratic weighting on the deviation between
the final number average molecular weight Mn, f and the desired value Mn,d, the
linearly weighted slack variable on the batch time constraint, and a quadratic term
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penalizing the change rate of the temperature derivative. A quadratic weighting is
chosen for the average molecular weight deviation so that a small deviation from
the desired value is acceptable but a large deviation is highly penalized. A special
solution is required for the batch time term as explained by Lund [21]. Because
of the format of the framework used in this thesis, it is easiest to constrain the
batch time to a small region close to 0 and add a slack variable to avoid infeasibility
arising from increasing the batch time. The slack variable is linearly weighted
meaning that large time usages are strongly penalized. The final objective function
term is added to ensure a smooth temperature profile. The weights are selected by
trial and error with the selected weights displayed in Table 4.2; these values used
in the offline optimization were originally selected by Lund [21]. These weights are
scaled by the specified span of the input move or output; the span is the range of
values that can be had by the input move or output. This is done to normalize the
output and input move optimization weights since the spans for different variables
can be substantially different. The span is selected based on physical or safety
limitations present in the system; for example, the span on the reactor temperature
derivative is 0.001.

Table 4.2: Normalized weights in the offline optimization of the monomer to initia-
tor ratio and reactor temperature profile [21].

Weight Value

q 450.0
r1,TR 0.01
sdTR 1.0

Weights s are placed on TR,0 and nI,0 but they are negligible so as to not penalize
the calculation; in addition, both variables are parameterized so that they only
appear in the objective function for the first calculation. Therefore, these terms are
not included in the overall problem formulation.

Constraints 4.41b-4.41d represent the process model [21]. The constraint on the
batch time is a soft constraint plus a slack variable, as shown in Constraint
4.41e. Constraint 4.41f on the conversion guarantees that the desired conversion is
achieved. Constraints 4.41g-4.41i are safety constraints. The rate of change of the
temperature is bounded in Constraint 4.41j to ensure that physical limitations on
temperature change are taken into account [21]. The amount of initiator is limited
to a fixed range to decrease the feasible region, making the problem easier to solve;
this is done in Constraint 4.41k. Finally, a constraint is placed on the number
average molecular weight in Constraint 4.41l to constrict the potential final number
average molecular weight of the produced polymer. The input and output constraint
values are shown in Table 4.3.
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Table 4.3: Offline optimization input and output constraints.

Description Symbol Value Unit

Desired number average molecular weight Mn,d 100.0 kgmol−1

Minimum number average molecular weight Mn,min 60.0 kgmol−1

Maximum number average molecular weight Mn,max 150.0 kgmol−1

Lower bound on batch time t f ,min 0 min
Upper bound on batch time t f ,max 0.1 min
Desired conversion Xd 80 %
Lower bound on reactor temperature TR,min 50 ◦C
Upper bound on reactor temperature TR,max 140 ◦C
Lower bound on cooling water temperature TJ,i,min 10 ◦C
Upper bound on cooling water temperature TJ,i,max 50 ◦C
Lower bound on temperature derivative dTR,min -0.5 Ks−1

Upper bound on temperature derivative dTR,max 0.5 Ks−1

Lower bound on total initiator loaded nI,0,min 0 mol
Upper bound on total initiator loaded nI,0,max 1000 mol

4.4.2.1 Prediction Horizon and Input Blocking

The prediction horizon is chosen to be 240 minutes so it is long enough to capture
the end of the batch. The sampling interval is set to 15 seconds since it is expected
one simulation step should solve within this time and so that it solves sufficiently
fast for use online; this translates into having 960 samples for a full simulation. The
prediction horizon is divided into 185 blocks for the temperature derivative input
variable. This results in 186 decision variables to calculate for the temperature
profile since the calculations start at time zero, which is a considerable decrease
compared to the 961 variables without input blocking. The blocking structure
is constructed so that it is finer at the beginning and decreases throughout the
prediction horizon. This means that the temperature can change more frequently
at the beginning of the horizon. A new temperature derivative is calculated every
sample for the first 50 samples, every fifth sample up to sample 725, and then a
single block is used for the rest of the prediction horizon. At this point, the batch
is expected to be finished so the temperature derivative should no longer need to
change.
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4.5 Solving the Offline Optimization Problem

For offline optimization, one sample step is simulated using CENIT and RealSim
to determine the predicted states and inputs for the entire batch. This is why the
prediction horizon is selected to be long enough to ensure that the batch finishes
within the simulated time. Since it is desired for the optimal solution to be deter-
mined for one step of the SQP algorithm, complete convergence is needed; therefore,
the number of SQP iterations is set to 20. Because the two goals of the optimization
problem pose a trade-off problem, an acceptable deviation from the product quality
at the end of the batch is defined to be ±1.0 of the desired final number average
molecular weight of 100 kgmol−1.

To replicate real operation where the product is removed once a set conversion is
reached, the model is set to stop calculating all time derivatives once 80% conversion
is reached [21]. The average molecular weight deviation and the batch time should
be weighted at the exact point the batch is finished; however, this point is unknown
a priori. The batch can reach 80% conversion at any point, even between two
samples, so the derivatives are set to zero from the next sample regardless of where
the exact 80% conversion is reached. This logic is coded into the model, taking into
account that CENIT makes perturbations in the input variables to determine the
sensitivity in the output variables. If the perturbations are too small to move the
80% mark before the current sample or after the next sample, the sensitivity of the
batch time variable will be zero for all or some of the input variables [21]. Linear
interpolation can be used to avoid this issue by setting the derivatives to zero at
the exact point where 80% conversion is reached. Figure 4.3 illustrates how the
interpolated results compare to the results without interpolation.

Figure 4.3: Conversion as a function of time with interpolation (dashed) and
without (solid) [21].
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This is implemented using relational and logical operators to determine if the
conversion will reach 80% between the current sample and the next [21]. If this
occurs, the derivatives are scaled by a factor ∆τ

∆tint
. ∆τ is the time from the current

sample to the time where 80% conversion is reached and is calculated using [21]:

∆τ= (0.8− X k)∆tint

X k+1 − X k
(4.42)

where X k and X k+1 represent the conversion at the current and the next sample,
respectively. This is done for numerical reasons because when the initiator is added
all at once the system becomes very stiff.

Perfect temperature control is assumed here. The reactor temperature derivative
is therefore equal to the calculated optimal reactor temperature derivative. The
required cooling demand QJ,d is then calculated using Equation 2.12.

The desired final number average molecular weight Mn is 100.0 kgmol−1 and the
batch is terminated once the conversion reaches 80%. An initial monomer amount
of 108290 mol or 11344 kg is assumed; this value is determined based on the reactor
parameters, which are described in further detail in Appendix B.

4.5.1 Results

The optimal monomer to initiator ratio is found to be 667.25, which corresponds
to 163.2 mol or 44.14 kg of initiator. Figure 4.4 shows the initiator consumption
throughout the batch, which has a profile similar to that in Lund’s work.
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Figure 4.4: Initiator consumption rate for the optimization of the monomer to
initiator ratio and temperature profile.
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The optimal ratio is larger than the one identified by Lund, meaning that less
initiator is now needed; the decrease in required initiator mass is likely due to
the model changes, particularly the removal of the constraint on the heat demand.
The initiator amount in the reactor settles to 11.81 mol so 93.3% of the initiator is
consumed. Given that initiator is expensive, it is important that little remains by
the end of the batch to limit the waste. It should be stated that this model does not
account for any initiator lost to the continuous phase, which would not be the case
for a real process [21].

The optimal initial reactor temperature TR,0 is calculated to be 120 ◦C, which is
approximately the same as the starting temperature found by Lund. Figure 4.5
shows the optimal temperature profile, which increases throughout the batch until
the upper bound is reached at 91.25 minutes. Therefore, the reactor temperature
constraint is active for the last 11 min of the process. The optimized temperature
trajectory suggests that it is best to start the reactor at a lower temperature and
increase the reactor temperature to the maximum until the batch is terminated.
This temperature profile is similar to the one found by Lund [21]. In addition,
a similar reactor temperature response for a batch reactor of polymer grafting
reactions has been found in another work, where the reactor temperature increases
regularly to achieve the desired monomer conversion rate and grafting efficiency
[4].
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Figure 4.5: Reactor temperature profiles for the optimization of the monomer to
initiator ratio and temperature profile.

The jacket temperature is initialized at 60 ◦C and from there it increases until it
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matches the reactor temperature, as illustrated in Figure 4.6. The jacket tempera-
ture stabilizes out to 140 ◦C towards the end of the batch. Lund’s model code did
not include an energy balance on the jacket temperature so one is added in this
work. Here, perfect temperature control is assumed so the cooling fluid flow rate
is not calculated. Consequently, when the initial reactor temperature and the rate
of change of the reactor temperature are optimized, the jacket temperature tracks
the reactor temperature since the cooling water mass flow rate is zero. Since the
jacket temperature is initially lower than the reactor temperature, the temperature
gradient is in the direction of the jacket; therefore, heat is transferred to the jacket
increasing the temperature. This would not be the case for a real reactor where the
cooling water flow rate is used to regulate the reactor temperature; therefore, the
jacket temperature will likely no longer match this profile when the cooling water is
introduced later in this thesis. But for the case where the cooling water flow rate is
zero, the jacket behaves as anticipated.
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Figure 4.6: Jacket temperature profiles for the optimization of the monomer to
initiator ratio and temperature profile.

Figure 4.7 illustrates how the number average molecular weight changes throughout
the batch. The final number average molecular weight is 99.71 kgmol−1, which is
0.29% away from the desired value and within the allowed range. The corresponding
weight average molecular weight is 180.40 kgmol−1. This gives a polydispersity
index of 1.81, which is within 0.02 units of the value found by Lund; these deviations
are within the numerical accuracy of the optimization algorithm so the PI can be
considered identical.
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Figure 4.7: Number molecular weight for the optimization of the monomer to
initiator ratio and temperature profile.

Figure 4.8 shows the conversion of the monomer to the polymer throughout the
batch.
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Figure 4.8: Conversion rate for optimization of the monomer to initiator ratio and
temperature profile.
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The desired conversion of 80% is reached in 102.3 min; this value is 1.6 minutes
shorter than the batch time identified using the old model, which is likely due to
the removal of the constraint on the cooling demand. The cooling demand places
another constraint that must be satisfied and its removal means that the system
can use whatever cooling capacity it needs to realize the optimal reactor trajectory.
Therefore, the desired conversion can be reached a little bit faster. The conversion
rate is the most rapid at the beginning of the batch when the initiator concentration
is the highest. It then slows down toward the end of the batch as the amount
of available initiator and monomer for reactions decreases. When there is less
initiator available to form radicals, the probability of a new radical chains forming
is decreased. This slow down can also be explained by the diffusional limitations;
these factors are most likely to play a role in limiting the monomer conversion
towards the end of the batch since the density of the reactor mass has increased
meaning that transport is diffusion controlled.

The optimized monomer to initiator ratio and the optimal temperature profile found
here are utilized later in this thesis to construct the NMPC and DRTO layers. While
the initiator amount is used in both layers, the temperature profile is only used
in the construction of the NMPC layer. The offline optimized reactor temperature
trajectory is needed because the NMPC, which must be designed first, requires a
reference profile. Once the DRTO layer is completed, this temperature trajectory
will be continually re-optimized using measurements from the process; this updated
trajectory will then be passed to the NMPC layer as setpoints. The development of
these two layers is covered in the next two chapters.
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CHAPTER 5
NMPC LEVEL FOR EXPANDABLE

POLYSTYRENE PRODUCTION

The challenges encountered in the polymer industry are due to the complexities
in the kinetics and reaction mechanisms, physical changes, transport effects, non-
ideal mixing and conveying, and inherent process nonlinearities. In addition, the
variables that affect the product quality are difficult to measure online, making the
quality monitoring, and therefore the control, complex [39].

For batch and semi-batch polymerization processes, the design of the control struc-
ture consists of two stages. The first stage is the offline design of a control trajectory
and the second stage is the implementation and execution of this control trajectory
[39]. Once the control trajectory is designed, it needs to be executed as closely as
possible; this is can be done utilizing a NMPC algorithm since it has been shown
that it performs reasonably for polymerization production [39]. In this chapter, the
implementation and execution of the control trajectory found in the offline opti-
mization is realized using a NMPC algorithm. Section 5.1 introduces the variable
selection for the NMPC layer. The resulting problem formulation, along with the
selected weights, is stated here; the prediction horizon and input blocking are then
chosen.

The NMPC level is developed using two main steps: first the reactor temperature
is controlled to a constant setpoint, and then the reactor temperature is controlled
to an optimized reference temperature profile. The constant reactor temperature
setpoint results are used to exam the effect the cooling water temperature has
on the cooling water demands. A setpoint change in the reactor temperature is
also conducted to test the selected controller tunings. The layer is then altered to
follow a reference trajectory for the reactor temperature; this trajectory is the one
found in the offline optimization stage. The results for both development stages are
presented in Section 5.2.

5.1 NMPC Problem Development

The aim of the NMPC layer is to take the optimal reactor temperature trajectory
determined by the DRTO layer and follow the optimal path as closely as possible.
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The NMPC level will manipulate the cooling water flow rate to realize this trajectory.
The selection of the states, inputs, output and measurement variables should be
done with this goal in mind. The problem formulation also considers the aim of this
level when choosing the objective function and the constraints. The weights are
picked carefully such that certain states and inputs are prioritized over others.

5.1.1 Variable Selection

The states are the balanced variables in the model equations: the monomer, initiator,
and pentane amounts, the moments of the dead chains, plus the reactor and jacket
temperatures. The mass flow rate of the cooling fluid m̂c is selected as the decision
variable; this also serves as the manipulated variable to the desired controlled
variable in this level, the reactor temperature. The reactor temperature needs to be
controlled in the NMPC level because fast response times are required so that the
reactor is kept at the desired temperature; this cannot be achieved in the DRTO
level, which typically operates on a longer time scale.

The measurement variables are the same four selected in the offline optimization
stage. The cooling water flow rate should also be included as a measurement
variable when this control structure is implemented in a real process but for now
during the development stage it is excluded. The choice of output variables are
the living chain moments, average molecular weights, and other variables that
are calculated from the state and input values that provide information about the
semi-batch progress.

The choice of state, input, measurement and output variables are summarized in
the vectors below.
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(5.1)

5.1.2 Problem Formulation

The chosen formulation aims to optimize the cooling water flow rate to maintain
the desired temperature derivative and minimizing the amount of wear and tear
on the cooling water flow rate valve. Here, m̂c is the mass flow rate of the cooling
water and is the only decision variable in this level. The problem formulation is
chosen with the knowledge that the upper level will be responsible for minimizing
the batch time and ensuring that the desired quality is achieved.
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min
m̂c,ε

q(TR −TR,d)2 + r1ε+ sm̂c∆m̂c
2 (5.2a)

s.t. ẋ(t)= f (t, x(t),u(t),θ), (5.2b)

y(t)= g(t, x(t),u(t),θ), (5.2c)

z(t)= h(t, x(t),u(t),θ), (5.2d)

TR,min −ε≤ TR ≤ TR,max +ε, (5.2e)

m̂c,min ≤ m̂c ≤ m̂c,max , (5.2f)

TJ,i,min ≤ TJ,i ≤ TJ,i,max (5.2g)

The objective function is composed of the quadratic deviation between the actual
reactor temperature TR and the desired reactor temperature TR,d, the linearly
weighted slack variable on the reactor temperature, and a quadratic term penalizing
changes in the cooling water mass flow rate. Quadratic weighting is selected for
the deviation in the reactor temperature because small deviations from the desired
value are acceptable but large deviations should be highly penalized. The reactor
temperature should follow a set trajectory but it is possible that under certain
circumstances, there may be large deviations from this trajectory so slack variable ε
is added to avoid infeasibility arising due to constraint violations. This slack variable
is weighted with a linear weight r1, which heavily penalizes large violations. The
final term in the objective function is the penalty on the change in the cooling water
mass flow rate between two samples; it heavily penalizes large changes in the mass
flow rate so there are smooth changes in the mass flow rate. This limits the amount
of wear and tear on the valve that is used to control the cooling water flow rate. In
addition, weighting the change of the cooling water flow rate makes the controller
less aggressive, thereby preventing oscillations in the process. The weights are
found using trial and error; the values are summarized in Table 5.1. As is the case
for the offline optimization, these weights are normalized by the corresponding
spans.

Table 5.1: Normalized weights in the optimization of the mass flow rate of cooling
fluid.

Weight Value

q 30
r1,TR 0.5
sm̂c 10

Once again, the first three constraints given by Constraints 5.2b-5.2d represent the
process model. Constraint 5.2e states that the reactor temperature must remain
within a specified range for both safety reasons and to achieve the required product
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quality. In addition, the cooling water inlet temperature is limited to a certain
temperature range since a minimum amount of cooling capacity is required in order
to achieve the desired results; this is shown in Constraint 5.2g. The cooling fluid
flow rate should also be within a maximum and a minimum value as stated in
Constraint 5.2f; this decreases the feasible set and provides for the possibility that
a plantwide control layer may limit the cooling capacity. The upper and lower limits
are summarized in Table 5.2.

Table 5.2: Input and output constraints

Description Symbol Value Unit

Lower bound on reactor temperature TR,min 50 ◦C
Upper bound on reactor temperature TR,max 140 ◦C
Lower bound on mass flow rate of cooling water m̂c,min 0 kgs−1

Upper bound on mass flow rate of cooling water m̂c,max 100 kgs−1

Lower bound on cooling water inlet temperature TJ,i,min 10 ◦C
Upper bound on cooling water inlet temperature TJ,i,max 50 ◦C

Note that the upper bound on the mass flow rate of the cooling water is large; this
is because the cooling capacity is unknown for a hypothetical system. For a real
reactor, the cooling capacity is based on the available water mass and flow rates,
which are based on the jacket volume and the size of the pipes used to carry the
cooling water to the system. However, for a hypothetical system, these pieces of
information are arbitrary or unknown; therefore, it is reasonable to determine the
systems required cooling capacity by calculating the optimal flow rate under the
assumption of an “infinite” cooling capacity. A more realistic cooling constraint will
be introduced later on in the development of the control structure after simulations
reveal what the required cooling water flow rate is for this system; from these
results, a reasonable cooling capacity constraints for this process will be selected.
The lower bound is set to zero for now but a safety margin should be implemented
on both ends when an appropriate range is identified.

5.1.2.1 Prediction Horizon and Input Blocking

The prediction horizon is selected to be 15 minutes with sample intervals of 15
s, giving a total of 60 sample points for a full simulation. For open loop unstable
systems like this process, the prediction horizon has to be relatively short. This
is because if a long prediction horizon is used, the reactor will “explode” in the
simulation; this explosion cannot be linearized and therefore causes numerical
issues in the controller. Consequently, it is important to select short prediction
horizons for open loop unstable processes to avoid these numerical issues.

To reduce the number of decision variables, input blocking is used. The prediction
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horizon is divided into 5 blocks for the mass flow rate of the cooling fluid. This
means that there are only 6 decision variables to calculate for the optimal mass flow
rate of cooling fluid, compared to 61 variables without blocking. At the beginning of
the prediction horizon the blocking structure is finer, meaning that the mass flow
rate can vary frequently in this region; the resolution then decreases such that the
mass flow rate is not allowed to change as much. A new mass flow rate is calculated
on samples 0, 2, 8, 12, 20, and 28; a single block is then used for the remainder of
the prediction horizon. This input blocking was found by trial and error by running
a simulation with different blockings until the quality of the results were found to
be similar to the results without input blocking.

5.2 Solving the NMPC Problem

Unlike the offline optimization where CENIT and RealSim are only run for one
sample step, the NMPC application requires the optimization algorithm to be run
for the full length of the batch. Since the prediction horizon is only 15 minutes long,
the predicted results will only be for a fraction of the batch. For the application of
NMPC to a system, complete convergence to the optimal solution is not necessary
since it is only required that the system moves toward the desired state from sample
to sample [21]. Therefore, the SQP algorithm can be limited further than for the
offline optimization; a limit of 5 iterations is selected to ensure that the problem
solves rapidly enough for real time application.

As was done for the offline optimization, to replicate real operation where the
product is removed once the a set conversion is reached, the model is set to stop
calculating all time derivatives once 80% conversion is reached. Perfect temperature
control is no longer assumed so the reactor temperature is calculated using Equation
B.40. This differs from how the calculation is performed in the offline optimization;
this change had to be implemented in this level so that the optimal cooling water
mass flow rate would be determined. The optimal monomer to initiator ratio and
the initial reactor temperature identified in the offline optimization stage are used
in the construction of this level.

5.2.1 Results

As previously state, the NMPC layer is first constructed to track a constant setpoint
to validate the selected controller tunings; it is then changed to track the reference
trajectory. The isothermal operation shows the ability of this layer to maintain a
constant reactor temperature. Setpoint changes and different jacket temperatures
are simulated to validate the selected weights. Once the weights are approved, the
level is then altered to track the optimal reactor temperature profile identified in
the offline optimization. Different cooling water temperatures are tested to see the
effect this has on the controller’s ability to follow the fixed trajectory.
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5.2.1.1 Isothermal Operation

A setpoint of 120 ◦C is used for the reactor temperature. Three different inlet cooling
water temperatures between 10-20 ◦C are simulated to test that the controller can
handle seasonal fluctuations that may occur in the cooling water source.

The reactor temperatures for the three different temperatures are nearly indistin-
guishable, as illustrated in Figure 5.1. All of them have a tiny undershoot, with
a cooling water temperature of 10 ◦C also having a tiny overshoot. The controller
is able to quickly achieve the desired setpoint for any cooling water temperature
within this range. The simulation is run for longer than the expected batch time
(based on the offline optimization results) to show how the controller behaves over
this time period. This results show that the controller is able to perfectly maintain
the desired setpoint for a significant period of time.
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Figure 5.1: Reactor temperature for different cooling water temperatures during
isothermal operation.

Figure 5.2 shows that the jacket temperature is unaffected by the different cooling
water temperatures, which is explained by the corresponding cooling water flow
rates. This profile illustrates how the jacket behaves when a non-zero cooling water
flow rate is used The temperature rapidly increases from the starting temperature,
producing a peak at the beginning; this peak is caused by the cooling water flow
rate increasing slowly. The jacket temperature then increases for the remainder of
the batch and ends just under 120 ◦C.
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Figure 5.2: Jacket temperature for different cooling water temperatures during
isothermal operation.

The cooling water flow rate increased with the cooling water temperature as shown
in Figure 5.3.
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Figure 5.3: Cooling water flow rate for different cooling water temperature during
isothermal operation.
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Given that more mass is required to remove the same amount of heat from the
reactor since the temperature gradient decreases as the cooling water temperature
increases, this is expected. More cooling fluid must go through the system in order
to maintain a constant reactor temperature. It is interesting to see that initially
the coldest cooling water has the highest flow rate; this can be explained by the
determined reactor temperature for this temperature. This may illustrate that the
optimization algorithm struggles to locate a solution for these operating conditions;
this may be indicative of a flat objective function.

Table 5.3 summarizes the results of the isothermal simulations.

Table 5.3: Comparison of different cooling water temperatures affect on polymer
properties and batch time for isothermal operation.

TJ,i [◦C] Mn [kgmol−1] Mw [kgmol−1] PI [-] t f [min]

10 149.61 246.94 1.65 240.3
15 149.64 247.06 1.65 240.4
20 149.64 247.03 1.65 240.4

The final number average molecular weight is far from the desired value in all
instances, which is unsurprising because the monomer to initiator ratio used here is
for non-isothermal operation so it is not possible to achieve the desired value under
these conditions. These simulations are not meant to show that the controller can
achieve the desired product but rather the desired setpoint.

Setpoint Changes in the Reactor Temperature:

A step change in the reactor setpoint is done to test the controller tunings. The
reactor setpoint is increased from 120 to 140 ◦C; once a new steady state temperature
is reached, the setpoint is then decreased from 140 to 130 ◦C.

The resulting reactor temperatures are illustrated in Figures 5.4 where the setpoint
changes are all made at the same sample number. The temperature profiles show
that the higher the cooling water temperature, the slower the response time. For
the lowest cooling water temperature, the controller is able to bring the reactor
to the new setpoint of 140 ◦C in 15.75 min; when the cooling water temperature
is 20 ◦C, it takes the controller 17.75 min to reach the new setpoint. In contrast,
when the setpoint decreases from 140 ◦C to 130 ◦C, the controller is quicker to
bring the reactor to its new setpoint, taking 7.25 min and 8 min, respectively.
These simulations show that the controller is able to handle setpoint changes both
directions for various cooling water temperature.
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Figure 5.4: Reactor temperature response to reactor temperature setpoint changes
during isothermal operation.
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Figure 5.5: Jacket temperature response to reactor temperature setpoint changes
during isothermal operation.
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Figure 5.5 shows the jacket temperature response to the setpoint changes. When
the reactor temperature setpoint is changed to 140 ◦C, the jacket temperature
increases rapidly until it reached 116.2 ◦C; it then decreases to 50.6 ◦C as the
reactor temperature reaches the new setpoint. The decrease in jacket temperature
is caused by the rapid increase in the cooling water flow rate from 0 to around 18
kgs−1. When the setpoint is changed to 130 ◦C, the jacket temperature increased to
108.3 ◦C; again, this is due to the cooling water flow rate decreasing.

The cooling water flow rate has a similar profile for all of the different cooling water
temperatures as shown in Figure 5.6; the key difference being in the average and
maximum cooling fluid flow rate. For a cooling water temperature of 10 ◦C, the
maximum cooling fluid flow rate is 18.9 kgs−1 and the average flow rate is 7.4 kgs−1.
In comparison, a cooling water temperature of 20 ◦C gives a maximum flow rate of
21.9 kgs−1 and an average flow rate of 8.5 kgs−1. This shows that when the cooling
water temperature increases by 10 ◦C, the cooling fluid flow rate increases by a
maximum of 4.2 kgs−1. Unsurprisingly, the higher the cooling water temperature,
the more cooling fluid required.
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Figure 5.6: Cooling water flow rate response to reactor temperature setpoint
changes during isothermal operation.

These results validate the selected tunings by demonstrating that the controller is
able to handle disturbances in the cooling water temperature as well as setpoint
changes. In addition, the controller’s performance is smooth and rapid, which are
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both desirable properties.

5.2.1.2 Reactor Temperature Trajectory Simulations

The next step in the construction of the NMPC layer is to track the optimal temper-
ature trajectory found in the offline optimization stage; this is done by feeding the
profile to the model as a moving setpoint for the reactor temperature.

Figure 5.7 shows the calculated reactor temperature in solid blue and the optimal
trajectory in dashed red. At the beginning of batch, there is a minor deviation
between the temperature and the setpoint; otherwise, the controller is able to
tightly control the temperature to the setpoint. The reactor begins at 120 ◦C and
dips slightly as the cooling water flow rate increases. The smooth temperature
profile demonstrates how well the controller is able to track the setpoint.
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Figure 5.7: Reactor temperature for the optimization of the cooling water flow rate
following a fixed reactor temperature trajectory.

The jacket temperature is shown in Figure 5.8 and provides insight into what the ac-
tual jacket temperature would look like when this control structure is implemented
on a real process. At the beginning of the batch, the peak reflects the slow increase
of the cooling water flow rate. Once the cooling water flow rate is sufficient enough
to remove heat from the system, the jacket temperature increases at a more gradual
rate. The jacket temperature then steadily rises until it reaches 130 ◦C by the end
of the batch.
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Figure 5.8: Jacket temperature for the optimization of the cooling water flow rate
following a fixed reactor temperature trajectory.

The optimized cooling water flow rate is shown in Figure 5.9.
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Figure 5.9: Cooling water flow rate for the optimization of the cooling water flow
rate following a fixed reactor temperature trajectory.
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The controller struggles to find the optimum value at the start of the batch resulting
in a spike; however, after this point, the cooling water flow rate has a smooth
profile which indicates that the selected controller weights are sufficient. This also
means that the valve will not experience excessive wear and tear due to frequent
changes in the position. The cooling water flow rate is maximum during the middle
of the batch, this implies that this is when the reactions generate the most heat.
The highest cooling water flow rate is slightly above 4 kgs−1 suggesting that a
reasonable upper bound for this system should be somewhere near this number.
However, as simulated the upper limit is never active, which suggests that the
cooling capacity is essentially infinite.

The number average molecular weight profile throughout the batch is shown in
Figure 5.10. The final number average molecular weight is 99.67 kg/mol; the
corresponding weight average molecular weight is 179.05. The number and weight
average molecular weights give a polydispersity index of 1.80. All of these values
are extremely close to the offline optimization results and the deviations can be
justified by the deviation of the reactor temperature at the start of the batch.
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Figure 5.10: Number average molecular weight for the optimization of the cooling
water flow rate following a fixed reactor temperature trajectory.

A conversion of 80% is reached at 102.3 min as shown in Figure 5.11, which means
that the batch time is identical to the predicted offline optimized batch time. This
is expected since the controller is able to track the reactor temperature profile
identified in the offline optimization; therefore, they should have identical batch
times. This demonstrates that the NMPC controller designed in this chapter works
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as desired.
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Figure 5.11: Conversion rate for the optimization of the cooling water flow rate
following a fixed reactor temperature trajectory.

The initiator consumption is shown in Figure 5.12.
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Figure 5.12: Initiator consumption for the optimization of the cooling water flow
rate following a fixed reactor temperature trajectory.
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At the end of the batch only 15.6 moles of initiator remaining, meaning that 91.1%
of the initiator has been used. Ideally, the consumption rate would be higher since
initiator is often expensive and any excess initiator is essentially wasted. This is
less than what is predicted by the offline optimization suggesting that the deviation
from the temperature reference trajectory at the beginning of the batch may be the
cause.

These results show that this controller can successfully follow a reference trajectory
for the reactor temperature through the optimization of the cooling water flow rate.
Tracking the optimized reactor temperature profile gives a polystyrene product
quality near the desired value with a shortened batch time. The results imply
that the reactor temperature trajectory determined by the offline optimization is
either the optimal trajectory for the selected operating conditions or very close to
it. However, using a fixed profile can potentially prove problematic if any of the
operating conditions are not near the conditions used to produce the profile; this is
why online updates of this profile can be beneficial. In the next stage of development,
the DRTO level will determine the reactor temperature trajectory for this layer
in real time using process measurements to update the trajectory. But before this
layer is developed, the NMPC controller is tested for different operating conditions.

Disturbance in Cooling Water Temperature:

To test the controller’s response to a disturbance when trying to follow a reference
trajectory, the cooling water inlet temperature is varied; temperatures ranging
between 10-20 ◦C are simulated.

Figure 5.13 shows that the three different cooling water temperatures produce
reactor temperature profiles that are virtually indistinguishable from one another.
The setpoint is again presented as a dashed red line, with the simulated temperature
profiles being presented with solid lines. The black line is the maximum allowed
reactor temperature. All three cooling water temperatures give a small deviation
from the optimal trajectory but quickly recover to match the desired setpoint.
These results illustrate that the controller is able to handle different cooling water
temperatures and suggest that when the cooling capacity is unlimited, the system
can track this profile for any cooling water temperature.
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Figure 5.13: Reactor temperature at various cooling water temperatures for the
optimization of the cooling water flow rate.

The jacket temperature is shown in Figure 5.14 and shows that the cooling water
temperature does not affect the jacket temperature.
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Figure 5.14: Jacket temperature at various cooling water temperatures for the
optimization of the cooling water flow rate.
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The jacket temperature is the same for all the different cooling water tempera-
tures because the cooling water flow rate is able to increase to compensate for
the increased temperature. For non-isothermal operation, the jacket temperature
reaches a maximum just under 130 ◦C; this is about 15 ◦C degrees higher than for
isothermal operation. Given that the reactor temperature is 20 ◦C higher by the
end of the batch for non-isothermal operation, it is unsurprising that the jacket
temperature increases to a higher value in comparison to isothermal operation.

Figure 5.15 shows that the cooling water flow rate increases as the cooling water
temperature increases. The differences in the cooling water flow rate between the
coldest water and the warmest are small so unless the process is operating in a
location where cooling water is extremely expensive or limited, this increase is likely
insignificant to the overall cost of operation. The ability of the cooling water flow
rate to increase explains why the reactor and jacket temperature can remain the
same even for different cooling water temperatures. Again in all cases the controller
produces a smooth profile for the cooling water flow rate.
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Figure 5.15: Cooling water flow rate at various cooling water temperatures for the
optimization of the cooling water flow rate.

Table 5.4 summarizes the results of the three different cooling water temperatures.
The batch time, final number and weight average molecular weights were unaffected
by the cooling water temperature because the controller is able to maintain the
desired reactor temperature profile for all of the tested cooling water temperatures;
since the reactor temperature affects the product properties the most, obviously
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the final product will be about the same if the reactor profile is the same. This
demonstrates that the selected weights and input blocking are sufficient for the
simulated disturbances.

Table 5.4: Comparison of different cooling water inlet temperatures effect on
polymer properties and batch time for non-isothermal operation.

TJ,i [◦C] Mn [kgmol−1] Mw [kgmol−1] PI [-] t f [min]

10 99.67 179.05 1.80 102.3
15 99.67 179.06 1.80 102.3
20 99.67 179.05 1.80 102.3
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CHAPTER 6
DRTO LEVEL FOR EXPANDABLE

POLYSTYRENE PRODUCTION

DRTO levels are commonly used in batch and semi-batch processes to determine
the optimal reference trajectories for the states and inputs in real time using plant
measurements to update predictions. The objective function is solved at each point
subject to the dynamic process model. This method makes use of online measure-
ments to maximize process performance, while still satisfying environmental and
operating constraints [4]. In this chapter the development of a DRTO layer for the
production of EPS is examined.

A brief introduction to the use of DRTO layers in semi-batch processes in general
is covered in Section 6.1 before proceeding to discuss the specific application of
DRTO to the production of EPS. The problem construction is outlined Section 6.2,
where the variable selection for this layer is stated along with the resulting problem
formulation. Finally the chosen prediction horizon and input blocking for the DRTO
layer are stated.

Section 6.3 covers how the DRTO optimization problem is solved. Since this layer
has to work with the NMPC developed in the previous chapter, the two layers
must communicate properly for the desired objectives to be achieved; how this
communication is done is explained in this section.

Simulation results using the full control structure are then presented. Finally, the
controller is tested by studying the effects that changes in the cooling capacity of
the system and the cooling water inlet temperature have on the batch time and the
polymer properties.

6.1 Dynamic Real Time Optimization in Semi-Batch
Processes

The DRTO layer reoptimizes the reference trajectories throughout the batch at set
intervals by using the measured states. The aim of this layer is to optimize such
things as feed rates of raw materials, temperature profiles and other operating
conditions for the process in real time based on feedback from the process. This
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ultimately is for the purpose of [5]:

Ï Controlling the quality of the final product by predicting throughout the whole
batch and complying with constraints on the product quality.

Ï Maximizing productivity by minimizing batch cycle times.
Ï Maintaining safe margins in the limits in the cooling capacity, temperature,

pressure, etc.

This layer is often based on economic criterion where the batch time is weighted
with the cost of materials. Product quality, specifications, safety considerations, and
other limitations can be implemented as constraints at this level [5].

On top of the DRTO layer can be another optimization algorithm which performs
plantwide optimization. The output of this optimization problem becomes the
inputs to each individual control structure to help distribute the available resources
between the reactors. As an example, Figure 6.1 shows a possible hierarchical
structure for the EPS plant considered in this work.

Figure 6.1: Plantwide optimization of an EPS polymerization plant.

On the top level, plantwide optimization occurs where decisions based on market
demands and resource availability are made. This layer distributes the resources
optimally throughout the plant and is passed to the DRTO layer as constraints.
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The DRTO level solves an optimization problem based on these constraints and
measurements from the process; the output from this calculation is a set of oper-
ating reference trajectories [13]. The use of a dynamic model over a steady state
model benefits processes that experience frequent transitions such as those seen in
polymerization industries [13]. The setpoints for the NMPC come from the DRTO
trajectories; the NMPC layer then aims to control the process close to the optimal
paths. In this work, the offline optimization served as a pre-stage of the NMPC and
DRTO applications.

6.2 Problem Development

The DRTO layer for the production of EPS is constructed with the goal of reduc-
ing the batch time required to reach the desired product quality and conversion.
Specifically, this is done by optimizing the reactor temperature derivative under the
constraint of the desired product properties and minimizing the batch time. The
output from this level will be the input to the NMPC level, thereby providing a new
desired reactor temperature each time the DRTO layer is run. To achieve these
objectives, the variables and the objective function must be carefully determined.
The variable selection is discussed first, followed by the full problem formulation for
the DRTO layer.

6.2.1 Variable Selection

Given that the aim of this level is nearly identical to the offline optimization, the
selected variables will be similar. The states are the balanced variables: monomer,
initiator, and pentane mass, along with the three dead chain moments, and the
reactor and jacket temperatures. Additionally, she batch time t f is included as a
state variable. The decision variable in this layer is the derivative of the reactor
temperature dTR .

The molar flow rates of the monomer, initiator, and pentane, plus the cooling fluid
mass flow rate and the derivative of the reactor temperature are selected as the
input variables. The cooling water inlet temperature is also included. The derivative
of the reactor temperature is selected as the manipulated variable for perfect tem-
perature control and optimization. This allows for a smooth temperature trajectory
since manipulating the temperature derivative means that a new temperature can
only be calculated at each sampling point. The process measurements are the same
as before: the reactor and jacket temperatures plus the measured average molecular
weights.

The output vector is comprised of variables that are calculated from the states and
inputs; this includes the living chain moments, plus both average molecular weights,
the conversion, the average number chain length, and the polydispersity index. An
additional output variable is added to determine the required cooling water flow
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rate based on the reactor energy balance m̂c,r; this allows for the optimal cooling
water flow rate determined in the NMPC layer to be compared with the flow rate
that the DRTO calculates is required to follow the optimal reactor temperature
profile. While both values are subject to the same constraint, having the cooling
water flow rate as a state means that it softly constrained as opposed to the outputs,
which have hard constraints.

The choice of variables is summarized in the vectors below.

x=


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
(6.1)

6.2.2 DRTO Problem

To fulfill the aim of this supervisory layer, the objective function must be carefully
constructed. At the same time, certain constraints must not be violated. As previ-
ously stated, the decision variable is the dynamic temperature trajectory during the
batch. The following formulation is selected to prioritize between the different goals
and penalize unwanted deviations that are likely to occur.

min
dTR ,ε

q(Mn, f −Mn,d)2 + r1ε+ sdTR∆dTR
2 (6.2a)

s.t. ẋ(t)= f (t, x(t),u(t),θ), (6.2b)

y(t)= g(t, x(t),u(t),θ), (6.2c)

z(t)= h(t, x(t),u(t),θ), (6.2d)

t f ,min −ε≤ t f ≤ t f ,max +ε , (6.2e)

TR,min ≤ TR ≤ TR,max , (6.2f)

X ≥ Xd , (6.2g)

dTR,min ≤dTR ≤ dTR,max , (6.2h)

m̂c,min −ε≤m̂c,r ≤ m̂c,max +ε , (6.2i)

TJ,i,min ≤TJ,i ≤ TJ,i,max , (6.2j)

Mn,min ≤ Mn ≤ Mn,max (6.2k)

The objective function consists of the quadratic deviation between the final product
number average molecular weight Mn, f and the desired value Mn,d, the linearly
weighted slack variable of the batch time constraint, the linearly weighted slack
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variable of the mass flow rate, and a quadratic term providing penalization of the
change rate of the temperature derivative. Quadratic weighting is chosen for the
average molecular weight deviation since a small deviation is acceptable but a large
deviation should be highly penalized. The batch time term is the treated the same
way it is in the offline optimization; it is constrained to a region near zero and a
slack variable is introduced to avoid infeasibilities arising. A slack variable is also
introduced on the required cooling water flow rate to avoid infeasibilities arising
from constraint violations. The final term is the penalty of the change in dTR

between two samples and is added to ensure a smooth temperature profile. The
weights are summarized in Table 6.1. Note that the weight on the slack variable
for the required cooling water flow rate is extremely large. This weighting proved
necessary to enforce the upper limit on the output; even still in some simulations
this is violated.

Table 6.1: Normalized weights used in the optimization of the reactor temperature
profile.

Weight Values

q 450.0
r1,t f 0.01

r1,m̂c,r 2×107

sdTR 0.01

Constraints 6.2b-6.2d represent the process model. The batch time is penalized
using a soft constraint and a slack variable as shown in Constraint 6.2e. Constraint
6.2f guarantees that the desired conversion is reached. To ensure that the operation
conditions are safe, the reactor temperature is bounded by minimum and maximum
values, and the reactor temperature derivative is limited to ensure that physical
limits on the temperature change are considered as given by Constraints 6.2g and
6.2h, respectively. A constraint on the required cooling water flow rate is also
introduced in Constraint 6.2i to reflect the cooling capacity limits. The cooling water
inlet temperature is also constrained in Constraint 6.2j. Constraint 6.2k places
a constraint on the number average molecular weight throughout the batch. The
values of the bounds and other parameters used in the formulation are given in
Table 6.2.
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Table 6.2: Upper and lower bound values in the DRTO optimization problem.

Description Symbol Value Unit

Desired number average molecular weight Mn,d 100.0 kgmol−1

Minimum number average molecular weight Mn,min 60.0 kgmol−1

Maximum number average molecular weight Mn,max 150.0 kgmol−1

Lower bound on batch time t f ,min 0 min
Upper bound on batch time t f ,max 0.1 min
Desired conversion Xd 80 %
Lower bound on temperature TR,min 50 ◦C
Upper bound on temperature TR,max 140 ◦C
Lower bound on temperature derivative dTR,min -0.5 Ks−1

Upper bound on temperature derivative dTR,max 0.5 Ks−1

Lower bound on mass flow rate of cooling fluid m̂c,min 0 kgs−1

Upper bound on mass flow rate of cooling fluid m̂c,max 4.0 kgs−1

Lower bound on cooling water temperature TJ,i,min 10 ◦C
Lower bound on cooling water temperature TJ,i,max 60 ◦C

Note that the upper bound of the cooling water flow rate has been changed in this
layer compared to the NMPC layer. This is because it is desired to have a cooling
constraint that would be active for at least part of the batch so a value of 4 kgs−1

is selected. For a real process, this bound would be based on the pipe diameter
and the velocity of the cooling water; however, since this is a hypothetical reactor,
a reasonable estimate is used. Different cooling fluid flow rate upper bounds and
their effect on the process are examined in Section 6.3.3.1.

6.2.2.1 Prediction Horizon and Input Blocking

It is important that the prediction horizon for the DRTO layer be longer than the
NMPC layer prediction horizon; this separation is important to meet real time
requirements. In addition, the prediction horizon should be slightly longer than
the expected batch time. Therefore the prediction horizon is set to be 4 hours
(240 minutes) to be sufficiently long to ensure that the batch can reach the desired
conversion; the sample time is set to 15 seconds, meaning that there are 960 samples
for the full horizon. It is important that the DRTO prediction horizon be sufficiently
long to capture process dynamics that effect the process long term [13].

To reduce the number of decision variables, input blocking is implemented for the
temperature derivative. The prediction horizon is divided into 185 blocks; this
means that there are only 186 decision variables to calculate for the temperature
profile in comparison to the 961 variables without input blocking. The input blocking
is constructed such that it is finer at the beginning so that the temperature can
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vary in this region and the resolution decreases throughout the prediction horizon.
A new temperature derivative is calculated every sample for the first 50 samples
and then every fifth sample until sample 725 (181.25 minutes); for the remainder of
the prediction horizon, a single block is used. This is because the batch is expected
to be close to finishing at this point and therefore the temperature in this region
does not affect the polymer product [21].

6.3 Solving the DRTO Problem

Cybernetica CENIT and RealSim are used again to solve and simulate the opti-
mization problem. Similar to the NMPC layer, the DRTO application requires the
optimization algorithm to be run at every time step. While often it is common to
run the DRTO level less frequently than the NMPC level, here the DRTO level is
run at each sample; this is done simply for ease when performing the simulations.
Having the same sampling time in both the layers makes it easier to setup the simu-
lations in RealSim. The simulator does not care if the time it takes to run a sample
matches the set sample time in each layer; therefore, setting the sample time to a
time shorter than what it actually takes for each layer to solve the optimization
problem, does not affect the results. Some tests should be run to determine what
the actual sampling time for the DRTO layer should be before this control structure
is implemented on a real process; this value should be selected based on how long it
takes the DRTO layer to solve the problem.

Since this is online optimization, complete convergence to the optimal solution in
one step is not required. Therefore to reduce the computational effort, the number
of SQP iterations is limited to 5 to guarantee that the problem solves rapidly enough
for real time application.

As is done in the NMPC layer, the model is set to stop calculating all time derivatives
once 80% conversion is reached. The model used in this level optimizes the reactor
temperature derivative so it no longer calculates it the same way as is done in the
NMPC layer. Perfect temperature control in CENIT is assumed in this level so
the reactor temperature derivative is set equal to the calculated optimal reactor
temperature derivative and not calculated using the energy balance; this is the
same approach that is used in offline optimization.

6.3.1 Communication Between the Layers

The two levels need to be connected to create the full control structure, which
is the goal of this thesis. These two layers have been constructed to operate on
different time scales; these time scales are specified by the prediction horizon and
the sampling time. The upper DRTO layer has a prediction horizon that is long
enough to predict past the end of the batch. This layer is constructed to calculate
the optimal reactor temperature profile. The lower layer has a shorter prediction
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horizon so it does not see the end of the batch until the end of the simulation.
Because the top layer has a longer prediction horizon, there are more variables
to calculate and thus the computational effort for the top layer is greater than for
the bottom layer. While it is common to alter the sample time for the top layer
to decrease the computational effort, it is not done in this instance for ease of
simulation as previously explained. The NMPC layer functions as the advanced
control level for the process by operating on a shorter time scale and responding
quickly to reject any key disturbances in the process to maintain safe operation.
The DRTO works on top of this on a longer time scale to respond to slow-varying
disturbances.

This communication requires two different instances of CENIT to operate simul-
taneously; both layers also communicate with RealSim. RealSim provides the
measurements to both the DRTO layer and the NMPC layer. The DRTO level calcu-
lates the optimal reactor temperature trajectory and then passes this to the NMPC
level. In CENIT, this is done through a text file (Tref.txt); the DRTO layer writes
out the reactor temperature profile data for the length of the NMPC prediction
horizon. The NMPC layer then optimizes the cooling water flow rate so that it can
follow the trajectory. The calculated states from the NMPC level are then sent back
to the DRTO level so it can recalculate the optimal reactor temperature trajectory
based on the new measurements; this is done via a text file (States.txt). In this
instance, OPC is used to pass the cooling water inlet temperature and the initial
reactor temperature to both layers; however, in a real application, the two layers
would not communicate through the OPC but instead these values would be written
to a file as was done for the reactor temperature profile and the states. Figure 6.2
illustrates the communication flow used in this work.

Figure 6.2: Illustration of the communication flow between the layers.
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6.3.2 Alterations

When the two layers are connected, the advanced control layer may require some
further tuning in order for the layers to work together as desired. Sometimes the
two layers may compete since they have different goals so together they have to
be tuned to work together. The upper bound on the cooling water flow rate in the
NMPC is changed to match the constraint on the required cooling water flow rate
in the DRTO layer. Even though the DRTO layer does not send the cooling water
flow rate values to the NMPC layer, the value of the required cooling water flow
rate calculated in the supervisory layer affects the calculated reactor temperature
derivative. This affects the reactor temperature, which is sent to the NMPC layer
and can have an impact on the calculated optimal cooling flow rate.

6.3.3 Results

Simulations are run to confirm that the two-level control structure operates as
desired. A cooling water inlet temperature of 10 ◦C is used with all the other values
the same as previous simulations. All the plots included the initially predicted
trajectories at t = 0 from the DRTO versus the actual simulated trajectories from
both layers; the trajectories from the NMPC layer are not included because the
prediction horizon for this layer is so short compared to the full batch.

The reactor temperature begins at 120 ◦C and increases throughout the batch before
settling just under the maximum allowable temperature as seen Figure 6.3.
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Figure 6.3: Reactor temperature using a two-level advanced control structure.
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The initially predicted temperature profile by the DRTO layer differs marginally
from the simulated result; the predicted temperature profile reaches the maximum
value just before the simulated profile. For the simulated results, the reactor
temperature decreases as the cooling water flow rate increases rapidly and carries
away the heat produced by the reactions; the reactor temperature increases to
match the shape of the predicted profile after just a few minutes. The simulated
results illustrate that the two layers are able work together to further optimize the
reactor temperature throughout the batch. It is a positive that the simulated profile
is similar to the predicted profile since the same model and operating conditions are
used and no process or measurement noise is considered.

As seen in Figure 6.4, the predicted and simulated jacket temperatures differ
considerablely. The DRTO predicted jacket temperature is similar to the one seen in
the offline optimization stage because the predicted cooling flow rate at this point is
zero/extremely low. The simulated results show how the jacket temperature profile
looks when there is a cooling water flow rate. The jacket temperature spikes at the
beginning as the cooling water flow rate slowly increases to work on removing the
generated heat. As the reactions proceeded, the jacket temperature increases as
it works to remove the heat generated in the reactor. By the end of the batch, the
jacket temperature reaches 130 ◦C.
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Figure 6.4: Jacket temperature using a two-level advanced control structure.

The cooling water flow rates determined by the DRTO and NMPC layers are shown
by Figure 6.5. The DRTO calculates the required flow rate to follow the optimal
reactor temperature derivative; the constraint on this calculation is a soft constraint
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and therefore, it is possible to violate this constraint. The NMPC layer determines
the optimal flow rate based on the hard constraint and is the actual flow rate that
is implemented in the process. The predicted cooling water flow rate is lower than
the realized flow rate. This is because it takes a few samples before the controller
realizes the true amount of cooling water required to realize the reactor temperature
trajectory; consequently the DRTO level is poor at predicting the cooling water flow
rate for the whole prediction horizon at the start of the batch. The NMPC level is
better at predicting the cooling water flow rate but only predicts for 15 minutes.
The two simulated profiles are nearly identical for a cooling constraint of 4 kgs−1.
The constraint is active for a brief period of time between minute 20 and 40 into
the batch; for the remaining parts of the batch, the flow rate is always under the
maximum allowed value. These results suggest that a cooling constraint of 4.0
kgs−1 provides sufficient cooling capacity for a cooling water temperature of 10 ◦C
as expected. However, this constraint may prove too constricting for other cooling
water temperatures.
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Figure 6.5: Cooling water flow rate using a two-level advanced control structure.

The initiator consumption throughout the batch time is shown in Figure 6.6. By
the end of the batch only 11.99 mol of initiator remain, meaning that 92.7% of the
initiator has been consumed. In reality since some initiator will likely be lost to
the continuous phase, little initiator will be wasted. The simulated consumption
profiles are nearly identical to the predicted value, which is good.
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Figure 6.6: Initiator consumption rate using a two-level advanced control structure.

Figure 6.7 illustrates the number average molecular weight throughout the batch.
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Figure 6.7: Number average molecular weights using a two-level advanced control
structure.

The final number average molecular weight is 99.95 kg/mol, which is within 0.05%
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of the desired value. This is a slightly better value than is found for the NMPC
following a fixed reactor trajectory. This illustrates how the use of a DRTO layer
can help further improve the process. While the improvement is minor, it should be
recalled that there is no cooling constraint considered in the offline optimization,
which has an impact on the reactor behavior and product. The corresponding weight
average molecular weight is 179.07 kg/mol, resulting in a PI of 1.79.

The conversion throughout the batch is shown in Figure 6.8. The batch time is 102.7
min, which is only 24 s longer than the offline optimization predicted time and the
NMPC level following a reference trajectory. The simulated batch time is identical
to the predicted batch time. This suggests that the addition of a cooling constraint
of 4 kgs−1 has little impact on the overall batch time in these circumstances.
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Figure 6.8: Conversion rate of monomer to polymer using a two-level advanced
control structure.

6.3.3.1 Controller Testing

The control structure is now tested to determine where the system is most sensitive
to disturbances and to identify the operating limits of the controller. The cooling
capacity of the system and the cooling water inlet temperature are changed to test
the controller. First, the upper bound on the cooling water flow rate is varied to
examine how the cooling capacity of the system affects the batch time and the
product quality. A constant upper bound on the cooling water flow rate is simulated
first; subsequently, the constraint is varied at different points throughout the
simulation to discover where the process is most sensitive to the cooling water flow
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rate. The results of these simulations are presented in Section 6.3.3.1.

The cooling water inlet temperature is then varied to capture any seasonal changes
that may cause the cooling water source to change. The first simulations use a
constant cooling water temperature, with the following ones having a disturbance
of ±5 ◦C at some point during the batch time. These simulations will reveal how
sensitive the process is to this disturbance at different times in the production
process. Section 6.3.3.1 examines the outcome of these simulations.

Disturbance One: Cooling Capacity

A system’s cooling capacity is determined by several physical constraints but in this
hypothetical system, the upper bound is selected somewhat arbitrarily; therefore,
to examine the controller’s ability to handle a different cooling capacity, several
different cooling water flow rate upper bounds are examined. As seen previously, a
cooling constraint of 4 kgs−1 provides sufficient heat removal for this process when
the cooling water temperature is 10 ◦C. It is desired to discover at what mass flow
rate the system can no longer achieve the desired results. Simulations are run
with a constant maximum constraint throughout the whole batch ranging between
3.75-4.5 kgs−1. Simulations of this nature illustrate the effects of having a smaller
or larger cooling capacity and reveal how sensitive the system is to the cooling
capacity.

What happens when the constraint decreases at some point during the batch is
then examined; the exact point where the decrease occurs is changed to determine
where the system is most vulnerable to disturbances in this constraint. This study
is done to mimic the possibly real scenario where a plantwide optimizer decides
that the optimal cooling water allocation should be different. These simulations
demonstrate the effect this would have on this process.

Constant Constraint:

The following five different maximum cooling water flow rates are simulated: 3.75,
4.0, 4.25, 4.3, and 4.5 kgs−1. In the figures below, the dashed lines represent the
values determined by the NMPC layer and the solid lines represent the values
determined by the DRTO layer; the values determined by the NMPC layer are the
ones that would actually be implemented in the plant.

Figure 6.9 shows that the cooling constraint has a large impact on the reactor tem-
perature profile. A cooling capacity of 3.75 kgs−1 results in a reactor temperature
profile that substantially violates the upper bound; this suggests that the cooling
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constraint is too tight for this cooling water inlet temperature. This temperature
profile is similar to the others until thirty minutes into the batch where it begins to
deviate. The other four cooling limits have similar reactor temperature profiles be-
ginning at 120 ◦C and ending just below the upper limit. These four profiles become
indistinguishable after about fifty minutes into the batch. The differences in the
reactor temperature trajectories can be explained by examining the corresponding
cooling water mass flow rates.
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Figure 6.9: Reactor temperatures for different cooling constraints using a two-level
advanced control structure.

Figure 6.10 reveals that the cooling water upper limit has the most noticeable
influence at the beginning of the batch. This is the point in the production where
the cooling water flow rates are increasing so the jacket temperatures quickly rise,
producing a spike; once the cooling water flow rates become high enough to cool the
jacket, the jacket temperature profiles are smooth. By the end of the batch, all of
the jacket temperatures have settled to 130 ◦C, with the exception of the lowest
constraint; this is aligned with the similar cooling water flow rates for this period
of the batch. A cooling constraint of 3.75 kgs−1 has a similar jacket temperature
profile until around 45 minutes into the batch; here it forms a peak, followed by
a dip before increasing to 128 ◦C. The end jacket temperature is lower for this
constraint since the final reactor temperature is significantly lower compared to
the alternative constraints. The jacket temperature is higher than the reactor
temperature because the cooling water flow rate towards the end of the batch is
nearly zero, which is much lower than for the other cooling constraints so heat is
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still being transferred to the jacket.
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Figure 6.10: Jacket temperatures for different cooling constraints using a two-level
advanced control structure.

Figure 6.11 illustrates the cooling water flow rate for each of the tested constraints.
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Figure 6.11: Cooling water flow rates for different cooling flow rate constraints
using a two-level advanced control structure.
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The dashed lines represent the required cooling flow rate based on the energy
balances of the jacket and the reactor calculated in the DRTO layer. The solid lines
represent the optimal cooling flow rate calculated in the NMPC layer; this is the
actual cooling water flow rate that would be implemented in the process. When the
upper limit is 3.75 kgs−1, the cooling water flow rate in both layers violates the
upper constraint; this suggests that this cooling capacity is insufficient to provide
the heat removal the process needs. The cooling water flow rate determined by the
DRTO and NMPC layers are nearly identical for the other cooling constraints; a
4.25 kgs−1 cooling constraint has a somewhat different initial cooling profile but
matches the others after approximately ten minutes. When the cooling capacity
is under 4.3 kgs−1 the constraint is active for a portion of the batch; the smaller
the flow rate, the longer the constraint is active for. The constraint is inactive for a
limit at or above 4.3 kgs−1.

The final number average molecular weight is only noticeable altered for the lowest
simulated cooling capacity as seen in Figure 6.12. The deviation from the setpoint
in this instance is 33.51 %. All the other cooling water flow rate upper bounds are
able to produce a final number average molecular weight within the allowed range.
The final number average molecular weights for the other constraints are nearly
identical.
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Figure 6.12: Number average molecular weight for different cooling flow rate
constraints using a two-level advanced control structure.

The batch time for each of the different constraints is shown in Figure 6.13. The
lowest cooling constraint of 3.75 kgs−1 has a batch time four times the other limits.
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All of the other cooling constraints give approximately the same batch time of
102-103 minutes. A constraint of 4.25 kgs−1 gives the shortest time but also has
the polymer with the “worst” final number average molecular weight of the four
that can achieve the desired value. These results suggest that for a constraint
at or above 4 kgs−1, the batch time is not substantially altered. However, if the
constraint is below 4 kgs−1, the system can achieve the desired conversion but not
the required polymer quality; in addition, it takes four times longer to reach the
80% conversion.
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Figure 6.13: Batch times for different cooling flow rate constraints using a two-level
advanced control structure.

Figure 6.14 shows the initiator consumption for the different cooling water flow
rate constraints. The four highest constraints result in approximately the same
amount of initiator being consumed during the batch. Since they all have the same
consumption, this suggests that even though the operating conditions are slightly
different the amount of initiator used is near the optimal value. However, it would
be beneficial to include the amount on initiator as a decision variable similar to
what was done in the offline optimization so that if the operating conditions are
further changed, the amount of initiator will update accordingly. For a upper bound
of 3.75 kgs−1, all of the initiator is consumed within about fifty minutes into the
batch; this is due to the high reactor temperature.
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Figure 6.14: Rate of initiator consumption for different cooling flow rate constraints
using a two-level advanced control structure.

The results for each of the simulated cooling flow rate constraints are summarized
in Table 6.3.

Table 6.3: Simulation results for different cooling flow rate constraints.

m̂c,max [kgs−1] Mn [kg/mol] Mw [kg/mol] PI [-] t f [min]

3.75 77.49 240.20 3.10 416.7
4.0 99.95 179.07 1.79 102.7

4.25 99.89 176.04 1.76 101.8
4.3 99.95 179.60 1.80 102.8
4.5 99.94 177.33 1.77 101.9

The results indicate that for a cooling constraint between 4-4.5 kgs−1, the affect
on the polymer properties and the batch time is small. While the range of cooling
flow rates tested here is relatively small, the purpose of these simulations is to
determine the minimum maximum constraint that will still result in a shortened
batch time and the required polymer quality. Cooling water flow rates below 4.0
kgs−1 plus a cooling water inlet temperature of 10 ◦C are unable to produce the
desired results. This suggests that a cooling capacity below 4.0 kgs−1 is inadequate
to provide the necessary cooling for the system to maintain the reactor temperature
that is required to obtain the desired polymeric properties at this cooling water
temperature.
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Changing Constraint:

The system has an initial cooling water flow rate of 4.3 kgs−1 and at some point
during the production, the cooling capacity is decreased to 4 kgs−1. An initial
cooling flow rate of 4.3 kgs−1 is selected because a decrease from 4 kgs−1 would not
guarantee that the needed product quality is achieved.

The reactor temperature profiles for each of the different constraint changes are
shown in Figure 6.15. The largest impact on the reactor temperature profile is
seen when the change occurs at sample 100; in this case, the temperature exceeds
the upper bound by almost ten degrees. The controller is able to bring the reactor
temperature below the limit after about twenty minutes with the temperature being
around 138 ◦C before dropping to 130 ◦C at 100 minutes into the batch. This large
of a deviation from the optimal profile means that the desired product quality will
not be possible and that it will take longer for 80% conversion to be reached. It is
interesting to see that the beginning of the trajectories are the same for sample 100
and 150 and similarly for sample 20 and 250; this can be explained by examining
the corresponding cooling water flow rates which show similar behavior. After 30
minutes though, sample 150 and 250 trajectories become identical. These results
suggest that the system is most sensitive to a decrease in the cooling water capacity
near sample 100 when the cooling water flow rate is maximum.
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Figure 6.15: Reactor temperatures for a varying cooling capacity using a two-level
advanced control structure.
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The optimal cooling water flow rates shown in Figure 6.16 explain the reactor
temperature profiles. If the constraint is not changed before sample 150, the cooling
constraint is inactive. When the change is implemented at sample 20, the cooling
constraint becomes active shortly after; a similar response is seen when the change
is made at sample 100. Sample 100 produces a unique cooling water flow rate since
around 65 minutes, the cooling water flow rate rapidly decreases and then remains
at a low value for a period of time before increasing again around minute 100,
corresponding to where the reactor temperature drops. This odd behavior is a result
of the controller in the NMPC layer struggling to track the reactor temperature
profile; the cooling water flow rate drops when the reactor temperature is below the
upper bound. The NMPC controller then decides that the cooling water flow rate
should be higher, which results in the reactor temperature dropping.
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Figure 6.16: Cooling water flow rates for varying cooling capacity using a two-level
advanced control structure.

The jacket temperature for each of the cooling constraints is illustrated in Figure
6.17. The largest differences are seen when the change is made at sample 100.
Sample 100 has an odd increase in the jacket temperature around the 60 minute
mark, reflecting the decrease in the cooling water flow rate. The jacket temperature
decreases when the cooling water flow rate increases toward the end of the batch.
As is the case for the reactor temperature profiles, sample 20 and 250 have similar
jacket temperatures as do sample 100 and 150. Three of the simulations end with
the jacket temperatures near 130 ◦C, whereas the jacket temperature for sample
100 ends around 90 ◦C.
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Figure 6.17: Jacket temperature profiles for varying cooling capacity using a
two-level advanced control structure.

The number average molecular weights during the batch time are shown in Figure
6.18.
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Figure 6.18: Number average molecular weights for varying cooling capacity using
a two-level advanced control structure.
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When the cooling capacity is changed at sample 100, the needed final number
average molecular weight is not achieved; the value is 7.73% away from the desired
final number average molecular weight. In all other circumstances, the required
product purity is achieved.

Table 6.4 summarizes the outcome of all the simulations to illustrate the conse-
quence that decreasing the cooling capacity at various points in the batch has on
the final product and the batch time. The results indicate that the system is most
sensitive to a decrease in the cooling capacity towards the beginning of the batch,
particularly if the change is implemented at or near sample 100. While the batch
time is not significantly extended, the final number average molecular is outside
the desired range. These four different simulations reveal that the batch is most
sensitive to a change in the cooling water flow rate upper limit where the cooling
water flow rate is at its highest. Therefore, it is recommended to either introduce a
safety margin to the cooling water flow rate upper bound or to place a restriction on
when in the batch the constraint can be altered.

Table 6.4: Affect of cooling capacity changes at various points in the batch.

m̂c,max [kgs−1] Sample Mn [kgmol−1] Mw [kgmol−1] PI [-] t f [min]

4.3 to 4.0 20 99.47 175.99 1.77 103.3
4.3 to 4.0 100 91.27 174.86 1.92 104.9
4.3 to 4.0 150 99.95 179.62 1.80 103.1
4.3 to 4.0 250 99.94 177.75 1.78 102.1

Disturbance Two: Cooling Water Inlet Temperature

Two different simulation types are run in this section: 1) constant cooling water
inlet temperature, and 2) changing cooling water inlet temperature. For the con-
stant cooling water inlet temperature simulations, three different cooling water
temperatures are tested for a cooling capacity of 4.3 kgs−1. The original cooling
capacity of 4 kgs−1 is not used because that system cannot handle higher cooling
water temperatures due to the insufficient cooling capacity; therefore, it is deemed
prudent to run the simulations with a cooling capacity that could handle higher
cooling water temperatures which would provide some further insight into the
system.

Constant Cooling Water Inlet Temperature:

The cooling water inlet temperature has a large impact on the reactor temperature
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profiles as seen in Figure 6.19, where a cooling water temperature of 20 ◦C has the
greatest influence. The reactor temperature violates the upper bound by almost 35
◦C for this cooling water temperature. This points out a limitation in the system
itself rather than indicating a construction flaw in the controller. These results
show that the system cannot handle a cooling water inlet temperature much above
15 ◦C for this cooling constraint; a larger cooling capacity is therefore necessary to
realize the optimal reactor temperature profile at this temperature. The reactor
temperature profiles for the other two cooling water temperatures have the largest
deviations from one another at the beginning of the batch; these differences are
unsurprising based on the corresponding cooling water profiles. Despite the discrep-
ancies at the start of the batch, after about minute forty, the profiles are the same
with the final reactor temperature ending at just under the limit.
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Figure 6.19: Reactor temperature profiles for various cooling water temperatures
using a two-level advanced control structure.

Figure 6.20 shows the corresponding cooling water flow rates for each cooling water
inlet temperature. The cooling constraint is not active for the lowest cooling water
temperature; it is active for the middle cooling water temperature for a short period
of time. In comparison, for the highest simulated temperature, the constraint is
severely violated by the DRTO layer. The controller brings the cooling water flow
rate under the upper limit again, where it remains quite low for the remainder of
the batch. This might seem counter-intuitive but the reactor temperature decreases
so rapidly that the cooling water must be turned off so that the reactor temperature
can try to reach the desired value.
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Figure 6.20: Cooling water flow rates for various cooling water temperatures using
a two-level advanced control structure.

To handle the cooling water constraint violation in the DRTO layer for tempera-
ture of 20 ◦C, the controller compensates by decreasing the reactor temperature
derivative as shown in Figure 6.21.
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Figure 6.21: Reactor temperature derivatives for various cooling water tempera-
tures using a two-level advanced control structure.
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The derivative decreases considerably more for the highest cooling water temper-
ature compared to the other temperatures. The calculated reactor temperature
derivatives track with the changes in the reactor temperature and the cooling water
flow rate as expected. The derivative for the other two cooling water tempera-
tures are identical and illustrate how small the changes are if the optimal reactor
temperature trajectory is achieved. The change is much smoother for the lower
temperatures, which is unsurprising since the related reactor temperature profiles
are smooth.

The jacket temperature profiles for each of the feed temperatures are plotted in
Figure 6.22. For higher cooling water temperatures, the jacket temperature is in-
creased. However, for the two lowest temperatures, the profiles are nearly identical;
this is expected given that the reactor temperature profiles are nearly indistinguish-
able for these feed temperatures. In the case of a 20 ◦C cooling water temperature,
the jacket temperature does not have as smooth of a profile as the others, which is a
product of the reactor temperature at these points.
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Figure 6.22: Jacket temperatures for various cooling water temperatures using a
two-level advanced control structure.

The number average molecular weights for the various cooling water temperatures
are presented in Figure 6.23. For the highest cooling water temperature, the
controller is unable to produce the desired final number average molecular weight;
in this instance the final number average molecular weight is 22.75% away from
the desired value. This is unsurprising considering how far away the reactor
temperature profile is from the offline optimized results in both instances. A cooling
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water temperature of 10 and 15 ◦C can result in the necessary final number average
molecular weight. This suggests that temperatures below 10 ◦C and between 10
and 15 ◦C will also lead to the production of the desired polymeric properties.
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Figure 6.23: Number average molecular weights for various cooling water temper-
atures using a two-level advanced control structure.

The results of different cooling water temperature simulations are summarized in
Table 6.5.

Table 6.5: Effect of cooling water temperature on the process outcome when the
cooling constraint is 4.3 kgs−1.

TJ,i [◦C] Mn [kgmol−1] Mw [kgmol−1] PI [-] t f [min]

10 99.95 179.60 1.80 102.8
15 99.96 178.95 1.79 102.6
20 77.25 236.28 2.96 388.2

The results indicate that the cooling water temperature has a meaningful impact on
the system when the cooling water flow rate is near the system’s limit. If the cooling
capacity were unconstrained, the flow rate could compensate for this increase in
temperature; however, when it is constrained too much, the system cannot track the
optimal reactor temperature because the cooling capacity is insufficient. Since the
optimal reactor temperature cannot be tracked, the necessary final number average
molecular weight cannot be realized. The results show that the higher the cooling
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water temperature for this cooling water flow rate constraint, the longer the batch
time and the larger the deviation from the desired final number average molecular
weight. Somewhere between 15 and 20 ◦C exists a limit where the system can no
longer achieve optimal results for this cooling capacity.

Varying Cooling Water Inlet Temperature:

The cooling water temperature is varied at four different times throughout the
process to determine where in the batch the process is most sensitive to a feed
temperature change. The changes are implemented at sample 20, 100, 150, and
250; these correspond to minute 5, 37.5, 62.5, and 87.5 in the batch, respectively.

Both a step up and a step down in the cooling water temperature are tried. The plots
shown here are for a maximum of 4 kgs−1; the plots for a cooling constraint of 4.3
kgs−1 can be found in Appendix C. These results show how the controller handles
an increase or a decrease in the cooling water temperature for a system with a
cooling constraint that is strongly active for most of the batch. First presented are
the plots for a decrease in the cooling water temperature followed by the plots for
an increase of the same magnitude.

Decrease in Cooling Water Temperature:

Figure 6.24 shows that the reactor temperature profiles are insignificantly affected
by a −5◦C step change in the cooling water temperature. This is anticipated because
this system is highly exothermic so a decrease in the cooling water temperature is
actually beneficial since it means less cooling fluid is needed to remove the same
amount of heat due to the increased temperature gradient between the reactor and
the jacket. The only noticeable deviations in the temperature profiles are seen in
the middle of the batch which matches where the cooling water flow rate is at its
highest and pushes against the upper limit; therefore, a decrease in the cooling
water temperature translates into a decrease in the cooling water flow rate and
consequently a small change in the reactor temperature. All four simulations end
with the reactor temperature just under the maximum temperature limit. These
results demonstrate that decreasing the cooling water temperature has a minor
impact on the ability of the controller to follow the optimal reactor temperature
trajectory.
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Figure 6.24: Reactor temperature profiles for a decreasing cooling water tempera-
ture using a two-level advanced control structure.

The corresponding cooling water flow rates are plotted in Figure 6.25.
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Figure 6.25: Cooling water flow rates for a decreasing cooling water temperature
using a two-level advanced control structure.

The decrease in the cooling water temperature is marked by an immediate step

107



CHAPTER 6. DRTO LEVEL FOR EPS PRODUCTION

down in the cooling water flow rate in all cases demonstrating that the controller is
quick to respond to changes in the cooling water temperature. When the change
happens early in the batch, the cooling constraint is never active; for changes later
in the batch, the cooling constraint is active for ten to fifteen minutes during the
first half of the batch. All four profiles are identical after approximately sixty five
minutes. As expected, a decrease in the cooling water temperature means that less
cooling fluid is required.

Figure 6.26 shows the jacket temperature for each of the simulations. It is not im-
pacted by the change in cooling water temperature because the controller decreases
the flow rate through the jacket; consequently, the jacket temperature is essentially
identical in all instances. This is unsurprising since the reactor temperature profile
is hardly impacted by the change in the feed temperature. As a consequence the
amount of heat transferred to the jacket will be the same; therefore, the jacket
temperature should also be roughly the same.
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Figure 6.26: Jacket temperatures for a decreasing cooling water temperature using
a two-level advanced control structure.

Figure 6.27 indicates that the number average molecular weights are unaffected by
the cooling water temperature throughout the batch. All the simulations result in
the essentially the same final number average molecular weight. This final number
average value is nearly identical to when a constant cooling water temperature of 10
◦C is used. This suggests that as long as the cooling constraint is not too restrictive,
the controller can handle a decrease in the cooling water inlet temperature without
impacting the polymer quality.
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Figure 6.27: Number average molecular weights for a decreasing cooling water
temperature using a two-level advanced control structure.

Similarly the batch time is unaltered by the disturbance in the cooling water
temperature as illustrated in Figure 6.28. All four simulations reach the desired
80% conversion at about 103 minutes.
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Figure 6.28: Batch times for a decreasing cooling water temperature using a
two-level advanced control structure.
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These simulations demonstrate that a five degree decrease in the cooling water
temperature does not have a large influence on the product quality or the batch
length. This suggests that the system is not very sensitive to a decrease in the
cooling water temperature. It is predictable that a lower feed temperature would not
have a noticeable impact on the batch outcome since a lower feed temperature helps
to increase the system’s cooling capacity. This does not indicate that the cooling
water temperature is not a key component in determining the optimal operating
conditions if the system’s cooling capacity is adequate. Rather it shows that if the
cooling capacity is sufficient, the system is insensitive to changes in the cooling
water temperature.

Increase in Cooling Water Temperature:

The reactor temperature profiles for a +5◦C step change are shown in Figure 6.29.
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Figure 6.29: Reactor temperatures for an increasing cooling water temperature
using a two-level advanced control structure.

The controller struggles to achieve the optimal reactor temperature when the cooling
water temperature is increased before sample 150; the upper bound is violated by
over forty degrees when the change is made at sample 20 and 100. If the cooling
water temperature is increased after this, the affect is minimal. For sample 20
and 100, the profiles are comparable. When the change is made at sample 20, the
cooling flow rate can increase so it isn’t until the cooling capacity proves inadequate,
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the reactor temperature increases; this occurs at the same point in the batch for
sample 100 and causes the reactor temperature to increase swiftly. The constrained
cooling capacity cannot increase to the necessary flow rates to remove the heat as
needed to track the optimal reactor temperature profile. So these results do not
show a failure of the controller but rather a limit of the system.

The increase in the cooling water temperature means that the required cooling
water flow rates are notably higher for the first two simulated samples as illustrated
in Figure 6.30. The DRTO controller calculates that the flow rate would have to be
above the upper limit when the cooling water temperature changes at sample 20 or
100. When the change is made later in the batch, the effect is insignificant since
the constraint is inactive and the cooling water flow rate can therefore increase to
compensate.
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Figure 6.30: Cooling water flow rates for an increasing cooling water temperature
using a two-level advanced control structure.

The jacket temperatures reflect the increased feed temperature as demonstrated in
Figure 6.31. Despite the reactor temperature reaching almost 180 ◦C, the jacket
temperature remains around 130 ◦C, which shows that the additional heat in the
reactor is removed. The pikes in the jacket temperature for sample 20 and 100 are
a result of the reactor temperature changes.
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Figure 6.31: Jacket temperatures for an increasing cooling water temperature
using a two-level advanced control structure.

Figure 6.32 illustrates that the number average molecular weights are affected
when the disturbance occurs early in the batch.
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Figure 6.32: Number average for an increasing cooling water temperature at
various points in the batch.
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When the cooling water temperature increases early in the batch, the controller is
unable to achieve the desired product quality. In fact, the final number average is
almost at the minimal allowed value of 60 kg/mol in these two cases. If the increase
occurs at sample 150 or 250, the desired final number average molecular weight is
within the allowed range.

The batch times are shown in Figure 6.33 and illustrate that when the reactor
temperature profile is extremely different from the optimal one, the batch time is
extended considerably. For an increase in the cooling water temperature early in
the batch, the batch time three times longer than the predicted time. When the
increase occurs later in the batch, there is enough cooling capacity for the system
to handle the disturbance so the batch time is unaffected and is around the 103
minutes.
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Figure 6.33: Batch times for an increasing cooling water temperature using a
two-level advanced control structure.

The results suggest that an increase in cooling water temperature by 5 ◦C, has a
large impact on the system if this change occurs early in the batch. If the disturbance
occurs at sample 20 or 100 the desired results cannot be achieved, illustrating that
the system is most sensitive to a temperature increase early in the production; this
is where the most cooling water is required to track the optimal reactor temperature
and the system cannot compensate for the increased cooling water temperature
because of the constraint. Therefore, before implementing this control structure on
a real system, the cooling constraint upper limit should be increased to include a
safety margin so that the controller can handle disturbances such as this at any
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point in the process.

Comparison of Results:

The results for the simulations are summarized in Table 6.6 and includes the values
for a cooling constraint of 4.3 kgs−1. The plots for a cooling constraint of 4.3 kgs−1

can be found in Appendix C Section C.2.1.1.

For a cooling constraint of 4.0 kgs−1, the system is extremely sensitive to tempera-
ture increases at the beginning of the batch as seen by the increased batch times
and the large deviation from the desired final number average molecular weight.
In comparison, when the constraint is 4.3 kgs−1, the system is able to handle the
temperature increase at any point without a notable impact on the batch time
and without sacrificing the product quality. When the cooling water temperature
decreases, there is little effect on the batch outcome for either simulated cooling
constraint, which is unsurprising.

Table 6.6: Step change in the cooling water temperature at various points in the
batch.

m̂c

[kgs−1]
TJ,i [◦C] Sample

Mn

[kgmol−1]
Mw

[kgmol−1]
PI [-]

t f
[min]

4.0 10→ 5 20 99.94 179.98 1.80 102.9
4.0 10→ 5 100 99.94 179.94 1.80 103.0
4.0 10→ 5 150 99.97 179.90 1.80 103.1
4.0 10→ 5 250 99.96 179.76 1.80 103.1
4.0 10→ 15 20 74.59 230.05 3.08 350.2
4.0 10→ 15 100 73.93 231.02 3.12 355.5
4.0 10→ 15 150 99.89 179.11 1.79 102.7
4.0 10→ 15 250 99.94 179.44 1.80 102.9
4.3 10→ 5 20 99.94 179.24 1.79 102.6
4.3 10→ 5 100 99.95 179.60 1.80 102.8
4.3 10→ 5 150 99.95 179.60 1.80 102.8
4.3 10→ 5 250 99.94 179.60 1.80 102.8
4.3 10→ 15 20 99.94 179.44 1.80 102.9
4.3 10→ 15 100 99.86 177.33 1.78 102.1
4.3 10→ 15 150 99.91 179.54 1.80 103.0
4.3 10→ 15 250 99.95 178.46 1.79 102.3
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CHAPTER 7
RESULTS AND DISCUSSION

The goal of this work was to develop a two-level advanced control structure consist-
ing of a NMPC level and a DRTO level for the semi-batch production of EPS. The
control structure was constructed in the previous two chapters and tested for two
types of disturbances. In this chapter, the three different stages of development
are compared in Section 7.1 to illustrate how the reactor temperature profile, batch
times and final number average molecular weights are similar for each stage.

The construction of a process model and a two-level advanced control structure is a
time consuming and costly process, which is why many companies in the polymer
industry have not bothered to change from the current approach. In industry the
common approach for batch or semi-batch reactors is to perform offline optimization
for a worst case scenario to develop a fixed recipe that is used in the production of
every single batch. This fixed recipe approach means that the reactor conditions
are not altered even if operating conditions are changed. Consequently, this method
has its limitations in its ability to handle disturbances in the operating conditions.
This is where the two-level online control structure has an advantage. To motivate
the development and use of an advanced control structure over the use of a fixed
recipe, a cost benefit analysis is performed in Section 7.2.

7.1 Result Comparison

The offline optimization, the NMPC layer following a fixed reference reactor tem-
perature, and the two-level control structure are compared. Recall that the three
different stages of development have some differences. For instance, the offline
optimization assumes perfect temperature control so the cooling water flow rate
is not calculated and consequently, the cooling capacity is assumed infinite. While
perfect temperature is not assumed in the NMPC layer, the cooling capacity is still
essentially infinite since the constraint is set to a large number such that it is never
active. A restrictive limit on the cooling capacity is added when the NMPC and
DRTO layers are combined.

Figure 7.1 shows that the offline optimization and the NMPC favor a more rapid
increase in the reactor temperature than the full controller. The offline and NMPC
only stage having practically identical profiles is expected since the NMPC only
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layer tracks the optimal reactor temperature trajectory determined by the offline
stage. The two layer controller produces a reactor temperature profile with some
small deviation from the NMPC only layer. This demonstrates that for comparable
operating settings the three stages produce nearly identical reactor temperature
profiles. It is interesting that the two layer controller has a tighter cooling constraint
than the other layers, but is still able to follow the optimal trajectory. This shows
that if the cooling water flow rate is not constricted to the point where the cooling
capacity is insufficient, the controller can realize the optimal reactor temperature
profile.
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Figure 7.1: Comparison of the reactor temperature profiles for the three different
design stages.

The jacket temperature is substantially different for the offline optimization com-
pared to the other two stages as Figure 7.2 illustrates; this is because there is no
cooling fluid present in the offline optimization. Therefore, the jacket follows the
reactor temperature since no heat is removed from the system. For the other two
stages, the cooling water flow rate is an optimized variable so the jacket temperature
is cooled as heat is removed. The NMPC only and the two level control structure
have analogous jacket temperature profiles, which is unsurprising considering the
similarities between the reactor temperature and cooling water flow rate profiles.
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Figure 7.2: Comparison of the jacket temperature profiles for the three different
design stages.

Figure 7.3 shows the cooling water flow rates for two of the stages.
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Figure 7.3: Comparison of the cooling water flow rates for the two of the design
stages.
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Recall that the offline optimization does not calculate the optimal cooling water
flow rate so there is nothing to plot for this stage. This plot shows the cooling water
flow rates calculated and executed by the NMPC layer. The NMPC only layer has
a higher flow rate than the combination stage because the constraint on the two-
level cooling water flow rate is more restrictive. It is interesting to notice that the
system dynamics change slightly when a tighter cooling constraint is implemented
as demonstrated by the differences in the initial cooling water flow rates. There is a
larger spike for the combination stage at the beginning of the batch in comparison
to the NMPC only layer.

The number average molecular weights throughout the batch are shown in Fig-
ure 7.4. Despite the differences in the controller in each of the three stages, the
final number average molecular weights are within the desired range of 100±1.0
kgmol−1.
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Figure 7.4: Comparison of the number average molecular weight distributions for
the three different design stages.

Figure 7.5 illustrates the consumption rates of the initiator throughout the batch.
The rates of consumption are similar for all three stages, consequently the amount
of initiator consumed in each instance is almost indistinguishable. This means
that little initiator is wasted and since initiator can be one of the most expensive
components in polymer production, this translates into savings.
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Figure 7.5: Comparison of the initiator consumption rate for the three different
design stages.

Table 7.1 presents the values for a cooling water inlet temperature of 10 ◦C from all
the different stages of development for comparison. The results illustrate that the
offline optimization stage predicts an outcome not far from the optimal operating
conditions. The full control structure demonstrates the effect of adding a tight
constraint on the cooling water flow rate; when the optimal reactor temperature
trajectory is calculated online, the batch time is a little over two minutes longer
than the offline results predict. It is positive that the results are similar because the
same model is used in each case and therefore, the outcome should be comparable.

Table 7.1: Comparison of results for each stage of development.

Simulation t f [min] Mn [kgmol−1] Mw [kgmol−1] PI [-]

Offline Optimization 102.3 99.71 180.40 1.81
NMPC 102.3 99.67 179.05 1.80
DRTO + NMPC 102.7 99.95 179.07 1.79

Comparing the three stages of development shows that for similar operating condi-
tions the offline results do not measurably differ from the trajectories realized using
online optimization. However, this does not suggest that that there is no additional
benefit to using online optimization, it simply means that for ideal cases where
the offline and actual operating conditions are identical, the benefit is small. It is
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uncommon for operating conditions to be constant and there are often disturbances
that have to be accounted for in a real process such as cooling water temperature
or the cooling capacity of the system. This scenario is explored in the next section
where a cost benefit analysis is performed to show how online optimization is benefi-
cial when the operating conditions differ from those used in the offline optimization.
What the values in the table illustrate is that the addition of the cooling constraint
in this case has a minor impact on the batch outcome since the offline results are
unconstrained but the full structure has an active constraint. This suggests that as
long as the cooling capacity is sufficient, a constraint on the cooling capacity does
not have a large impact on the batch time or product properties. On the other hand,
if the constraint is severe enough that the system can no longer cool the reactor fast
enough to track the optimal reactor temperature trajectory, the constraint has a
huge effect on the outcome.

7.2 Cost-Benefit Analysis

In industry it is common practice to use a fixed recipe for batch and semi-batch
production; this recipe is determined by performing offline optimization for worst
case scenarios so that the process is always operated with a safety margin. However,
this fixed recipe does not account for changes in the operating conditions. This
translates into the batch being run with non-ideal operating conditions. Therefore,
using a fixed recipe approach can lead to a loss in profit. This is where an advanced
control structure like the one developed in this work can prove beneficial.

The offline recipe is now compared to the use of a full control structure for different
operating conditions. The simulation results are intended to demonstrate how the
two-levels work together to handle any disturbances to the system; these values
can then be compared to the fixed recipe. Based on previous simulation results, a
cooling flow rate upper bound for the offline optimization is selected to be 4.5 kgs−1;
this value is chosen so that the system can handle the maximum allowed cooling
water inlet temperature of 20 ◦C. A heat transfer coefficient of 800 Wm−1 K−2 is
used for a dirty reactor, the average reactor represents the more common operation
condition with a heat transfer coefficient of 900 Wm−1 K−2, and a clean reactor uses
a value of 1000 Wm−1 K−2. Three different cooling capacities are tested for the full
control structure: 4.0 kgs−1 (Low), 4.5 kgs−1 (Medium), and 5.0 kgs−1 (High). Two
different cooling water temperatures are simulated as well: 10 ◦C (Cold) and 20
◦C (Hot). A figure illustrating the full list of different simulations that are run is
shown in Appendix C Section C.3.

The DRTO level used here is altered to determine the optimal initial starting
reactor temperature and the optimal monomer to initiator ratio in addition to the
optimal reactor temperature profile. The calculation of the optimal initial starting
reactor temperature and monomer to initiator ratio is only performed at the first
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sample point; this means that TR,0 and nI are only decision variables in the first
optimization step. This is similar to what was done in the online optimization
problem formulation.

7.2.1 Offline vs Online Optimization Results

Here all of cold cooling water inlet temperature simulations are compared to the
offline recipe; the other results are shown in Appendix C. These simulations are
selected because the results best illustrate the benefit of using an advanced control
structure over a fixed recipe.

7.2.1.1 High Cooling Capacity and Cold Cooling Water Temperature

The three different reactor conditions (clean, average, and dirty) are now tested
using a high cooling capacity, meaning that the upper limit of the cooling water
flow rate is 5.0 kgs−1, and a cold cooling water temperature of 10 ◦C. The results
are juxtaposed to the offline recipe, which is determined for a dirty reactor with a
cooling flow rate of 4.5 kgs−1 and a cooling water temperature of 20 ◦C.

Figure 7.6 shows the initiator consumption for each of the simulations.
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Figure 7.6: Initiator profiles for a high cooling capacity and cold cooling water
temperature.

The optimal initiator to monomer ratios for a clean, average, and dirty reactor are
700.7, 678.5, and 679.7, respectively. All three online simulations have larger ratios
than the offline recipe which has a ratio of 600.82. For a clean reactor the ratio is
116% larger, meaning that a great deal of initiator would be wasted; a dirty and
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average reactor have an optimal ratio about 113% larger than the offline recipe.
Using the online optimal monomer to initiator ratios for this scenario could result
in a considerable annual savings in initiator cost.

For these operating conditions, the three online simulations generate reactor tem-
perature profiles that are distinct from the offline recipe as illustrated in Figure 7.7.
The optimal initial reactor temperatures are: 132.4 (clean), 128.7 (average), and
132.5 ◦C (dirty); these are all higher than the offline recipe which has an optimal
starting temperature of 125.6 ◦C. From these initial optimal temperatures, the
reactor cools down to be more similar to the offline results. This suggests that
the current controller settings for calculating the optimal initial temperature may
require further tuning. However, this value does not affect the reactor temperature
profile overall or the batch outcome. All three profiles increase at a more rapid rate
than the predicted offline results. In this scenario, the dirty and average reactor
have comparable profiles; the clean reactor has a similar trend but increases at a
more rapid rate. By the end of the batch, all three profiles have reached the same
temperature just below the upper limit. In contrast, the offline recipe ends at a
lower reactor temperature.
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Figure 7.7: Reactor temperature profiles for a high cooling capacity and cold cooling
water temperature.

Figure 7.8 reveals that a clean reactor does not always have the smallest flow rate.
Between minutes 20 and 40, the flow rate for the clean reactor increases above the
flow rate for the average reactor; this is due to the quicker increase in the reactor
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temperature for the clean reactor. Overall the three online profiles have a similar
shape but differ from the offline recipe, which again under predict the cooling water
flow rate.
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Figure 7.8: Cooling water flow rates for a high cooling capacity and cold cooling
water temperature.

The final number average molecular weight for the three online cases are indistin-
guishable and improved compared to the offline recipe as shown in Figure 7.9. The
offline recipe predicts a final number average molecular weight of 99.53 kgmol−1

whereas the clean, average, and dirty online simulations give a final number av-
erage molecular weight of 99.97, 99.96, and 99.96 kgmol−1, respectively. All four
cases produce a polymer within the accepted range for the final number average
molecular weight.
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Figure 7.9: Number average molecular weights for a high cooling capacity and cold
cooling water temperature.

Figure 7.10 shows the batch times for each scenario with the longest batch being
the offline recipe at 106 minutes.
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Figure 7.10: Batch times for a high cooling capacity and cold cooling water temper-
ature.
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The shortest batch is actually for the dirty reactor with the average reactor being
second and the clean reactor being third; the differences between the batch times
are all less than one minute. Compared to the offline recipe, the online optimization
would result in up to an additional 120 batches per year per reactor. If there are
several batch reactors being run in series, this could result in a noticeable increase
in profit.

For the considered case of a high cooling capacity and a cold cooling water temper-
ature, the full control structure produces an improved polymer quality and gives
shorter batch times. Therefore, using the fixed offline recipe in this instance would
cause a loss in product purity and give an increased batch time which would result
in a loss in profit.

7.2.1.2 Medium Cooling Capacity and Cold Cooling Water Temperature

The three different reactor conditions (clean, average, and dirty) are now tested for
a medium cooling capacity, meaning that the upper limit of the cooling water flow
rate is 4.5 kgs−1, and a cold cooling water temperature of 10 ◦C. The results are
juxtaposed to the offline recipe which is determined for a dirty reactor with a larger
cooling flow rate of 4.5 kgs−1 and a cooling water temperature of 20 ◦C.

Figure 7.11 illustrates how the initiator consumption and optimal amounts differ
for the four different scenarios.
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Figure 7.11: Initiator consumption for a medium cooling capacity and cold cooling
water temperature.
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The optimal monomer to initiator ratios are calculated to be: 651.30 (clean), 527.81
(average), and 605.76 (dirty). The clean and dirty reactors have larger monomer to
initiator ratios compared to the offline recipe; therefore, in these two circumstances,
following the offline recipe would result in an excess of initiator and ergo, money
being wasted. On the other hand, the average reactor has a lower monomer to
initiator ratio so insufficient initiator would be used in this instance if the offline
recipe is followed; for this reason, the desired conversion will not be achieved and
the batch would have to be thrown out.

The reactor temperature profiles for these operating conditions are surprising since
the average reactor temperature profile is not in between the clean and dirty reactor
temperature profiles as shown in Figure 7.12.
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Figure 7.12: Reactor temperatures for a medium cooling capacity and cold cooling
water temperature.

The optimal starting reactor temperatures for the online simulations are 124.5
(clean), 124.7 (average), and 124.9 ◦C (dirty). The offline recipe has an optimal
starting temperature of 125.6 ◦C so all of the online optimal starting temperatures
are lower. The average reactor has a lower temperature profile than the other
reactor states; it is possible that these operating conditions result in an optimization
problem has a flat area where the algorithm struggles to locate the true local
minimum. This could explain why the profile is not in between the clean and dirty
reactor as expected. The dirty reactor has an almost indistinguishable profile from
the offline optimization profile after thirty minutes, which suggests that it would be
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fine to use the offline recipe but would not be optimal for a clean or average reactor
A clean reactor has a faster increasing reactor temperature and reaches the upper
constraint around 90 minutes into the batch.

The reactor temperature profiles’ relationship is reflected in the cooling water flow
rates, as shown in Figure 7.13. A clean reactor has the lowest cooling water flow
rate, which is unsurprising because the heat transfer coefficient is the highest for
a clean reactor so less cooling water is required to remove the same amount of
heat. A dirty reactor has a higher cooling water flow rate than a clean reactor
because the heat transfer coefficient is lower. It is surprising to see that the cooling
water flow rate profiles for a clean and dirty reactor are identical after about forty
five minutes since the reactor temperature profiles are different. For the average
reactor the initial flow rate is noticeably higher than the dirty and clean reactor flow
rates, which explains why the reactor temperature is lower. These results further
demonstrate how the operating conditions for an average reactor are unexpected.
As is the case in when the cooling capacity is high, the offline recipe predicts a low
required cooling water flow rate; this is due to the fact that the DRTO layer is not
constructed to optimize the flow rate so its prediction for the flow rate is rather poor.
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Figure 7.13: Cooling water flow rates for a medium cooling capacity and cold
cooling water temperature.

Figure 7.14 illustrates that the best final number average molecular weight is
achieved for the clean reactor with a final number average molecular weight of
99.94 kgmol−1. The offline recipe results in the “worst” final number average
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molecular weight at 99.53 kgmol−1 but even this would be an acceptable result.
However, all four conditions produce a final number average molecular weight
within the allowed range. This results show that all of these operating conditions
are able to produce the required polymer quality.

0 20 40 60 80 100

100

150

200

250

300

350

400

450

Figure 7.14: Number average molecular weights for a medium cooling capacity
and cold cooling water temperature.

The shortest batch time is for the clean reactor at 104.5 minutes, followed by the
offline recipe at 106 minutes, the dirty reactor at 106.6 minutes, and finally the
average reactor at 113.9 minutes, as shown in Figure 7.15. The average reactor
has the longest batch time because the calculated optimal reactor temperature is
so different from the others. Because it is colder than the other reactors, it takes
longer to reach the desired conversion. If the offline recipe is used for the average
scenario, the batch would be terminated about eight minutes prematurely before
the desired conversion of 80% is reached. The product would therefore not be at the
required number average molecular weight and the batch would have to thrown out.
Using the offline recipe for the dirty reactor would be okay since the batch times
are nearly identical but for the clean reactor, the batch time is extended by almost
two minutes; this would result in a loss of up to 71 batches per year per reactor.
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Figure 7.15: Batch times for a medium cooling capacity and cold cooling water
temperature.

For a medium cooling capacity and a low cooling water temperature, the full con-
trol structure is an improvement in all cases except a dirty reactor. Because the
controller struggles with the average reactor conditions, it may seem beneficial to
use the offline recipe in this instance; however, if any disturbances were to occur,
without the use of an online controller, the system could not respond. Therefore, in
this scenario, the full control structure proves superior in its ability to adapt to the
different operating conditions.

7.2.1.3 Low Cooling Capacity and Cold Cooling Water Temperature

Using a low cooling capacity, meaning that the upper limit of the cooling water flow
rate is 4.0 kgs−1, and a cold cooling water temperature of 10 ◦C, the three different
reactor conditions are now simulated. The results are then juxtaposed to the offline
recipe.

Figure 7.16 shows the optimal monomer to initiator ratios for this operating condi-
tions: 646.72 (clean), 648.72 (average), and 458.54 (dirty). Compared to the offline
recipe ratio of 600.82, the clean and average reactors have a higher ratio; therefore,
initiator would be wasted if the offline recipe is followed. For a dirty reactor, the
ratio is lower so insufficient initiator would be added if the offline recipe is used. As
a by product, the desired conversion could not be reached for a dirty reactor and
the final number average molecular weight would not be within the allowed range.
Therefore, this batch would have to be thrown out and money would be lost.
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Figure 7.16: Initiator for a low cooling capacity and cold cooling water temperature.

Figure 7.17 shows the reactor temperature profile for each reactor condition.
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Figure 7.17: Reactor temperature for a low cooling capacity and cold cooling water
temperature.

The clean and average reactors have indistinguishable temperature profiles, while
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the dirty reactor temperature profile is similar in shape to the offline recipe. The
dirty reactor should have a profile similar to the offline recipe with the differences
resulting from the upper bound of the cooling constraint and the cooling water
temperatures. The fact that the clean and average reactor give analogous reactor
temperature profiles demonstrates that for these particular operating conditions,
the reactor temperature profile is unaffected by a 10% decrease in the heat transfer
coefficient.

Figure 7.18 shows that the cooling water flow rates behave as expected with the
dirty reactor having the highest flow rate and the clean reactor has the lowest flow
rate. It is expected that the clean reactor would have the lowest cooling flow rate
and the dirty reactor would have the largest due to the value of the coefficient of
heat transfer; consequently, the clean reactor needs less cooling water to remove
the same amount of heat than is required for a dirty reactor. The average reactor
has a cooling water flow rate approximately between the dirty and clean reactors.
It is interesting to observe that the average reactor has a higher flow rate than
the clean reactor even though the reactor temperatures are nearly identical; this
demonstrates how the coefficient of heat transfer can impacts the required cooling
water flow rate but not the corresponding reactor temperature.
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Figure 7.18: Cooling water flow rates for a low cooling capacity and cold cooling
water temperature.

A clean reactor produces a polymer with a final number average molecular weight
of 99.95 kgmol−1, which is the closest to the desired value as seen in Figure 7.19.
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The average and dirty reactors produces a polymer with a final number average
molecular weight of 99.93 and 99.67 kgmol−1, respectively. In all three cases an
acceptable polymer is produced that is within ±1 of the required value. The offline
recipe predicts a final number average molecular weight of 99.53 kgmol−1, which is
worse than the online values but still within the allowed range.
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Figure 7.19: Number average molecular weights for a low cooling capacity and
cold cooling water temperature.

Figure 7.20 shows that the shortest batch time is for the average reactor at 104.4
minutes; this is only 0.2 minutes shorter than the batch time for the clean reactor,
which may be within the accuracy of the optimization algorithm. The dirty reactor
gives a longer batch time at 108.9 minutes, which is expected since the reactor has a
worse heat transfer coefficient which means that it is more difficult to regulate the
reactor temperature and therefore, it takes longer to reached the desired conversion.
The offline recipe predicts a batch time of 106.0 minutes, which is longer than
for the clean or average reactors. These results show that under these conditions,
using an online optimization approach will result in a shorter batch time in most
instances. For a clean or average reactor, the batch time is shortened by a minute,
which could result in up to 76 more batches per year per reactor; if there are several
batch reactors being run in parallel in the plant, this could result in a consequential
increase in production if online optimization is used.
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Figure 7.20: Batch times for a low cooling capacity and cold cooling water temper-
ature.

These simulations indicate that even for a lower cooling capacity, the full control
structure is able to produce a better quality product and in most cases, a shorter
batch time in comparison to the offline recipe. When the reactor is dirty, the full
control structure has a longer batch time but the product purity is better than for
the offline recipe; the longer batch time suggests that if the offline recipe is used in
this case, the batch would be terminated prematurely before a conversion of 80%
were reached.

7.2.2 Summary of Results

The simulation results are summarized in Table 7.2 for ease of comparison, were
M/I represents the monomer to initiator ratio. These results indicate that there is a
benefit of using online optimization versus following a fixed recipe in the majority of
the cases. For scenarios where the operating conditions are similar to those used in
the offline recipe, the advantage is limited. In the event on disturbances that occur
during a batch, the offline recipe would not adjust where as the online approach
could alter its operating conditions to account for this disturbance. Therefore, it is
recommended that a two-level online optimization control structure be implemented
for use in production of EPS despite the time and cost it may take to develop such a
control structure. There is a high probability that this could lead to an increase in
profit due to a reduction in batch time and a savings in initiator since the amount
of initiator would be customized to each batch.

133



CHAPTER 7. RESULTS AND DISCUSSION

Table 7.2: Cost Benefit Analysis

Reactor
Condition

m̂c,max

[kgs−1]
TJ,i

[◦C]
M/I
[-]

TR,0

[◦C]
t f

[min]
Mn, f

[kgmol−1]

Offline 4.5 20 600.8 125.6 106.0 99.53
Clean 5.0 10 700.7 132.4 104.4 99.97
Clean 4.5 10 651.3 140.3 104.5 99.94
Clean 4.0 10 646.7 125.6 104.6 99.95
Average 5.0 10 678.5 128.7 103.6 99.96
Average 4.5 10 527.8 124.8 113.9 99.67
Average 4.0 10 648.7 125.4 104.4 99.92
Dirty 5.0 10 679.7 132.5 103.5 99.97
Dirty 4.5 10 605.8 125.1 106.6 99.75
Dirty 4.0 10 458.5 120.3 108.9 99.67
Clean 5.0 20 644.5 119.2 104.7 99.92
Clean 4.5 20 643.6 125.3 104.8 99.91
Clean 4.0 20 714.9 130.0 394.2 82.83
Average 5.0 20 555.4 126.1 111.3 99.66
Average 4.5 20 639.8 125.4 104.8 99.88
Average 4.0 20 651.6 120.9 395.5 77.29
Dirty 5.0 20 600.8 125.5 106.9 99.72
Dirty 4.5 20 615.9 129.4 105.9 99.77
Dirty 4.0 20 681.8 127.1 349.6 64.16

Using an estimated cost for the initiator of 2.11 US$/kg, economic calculations are
performed to illustrate the potential savings on initiator for the offline recipe versus
the online optimization [30]. The amount of initiator required per batch is calculated
along with the number of batches that can be run per reactor per year assuming
24/7 and 365 days a year operation. Then the total annual cost of initiator at each
operating condition is determined. These calculations are summarized in Appendix
C. These values are for production in one reactor while in reality, plants are likely
to have multiple reactors running in parallel; therefore, the total plantwide initiator
expenses would be greater so any savings would also be larger. Figures 7.21-7.23
show the annual cost of initiator versus the batch time for the offline recipe and
the three reactor conditions at the different cooling capacities and cooling water
inlet temperatures. Bear in mind that the initiator masses are based on a lab-scale
reactor so the annual cost of initiator for a full size production will be remarkably
higher.

Figure 7.21 shows the annual amount cost of initiator for the offline recipe and for a
dirty reactor. While it appears that a dirty reactor has the smallest annual initiator
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cost for a low cooling capacity and a hot cooling water temperature, these conditions
result in the fewest number of batches per year and the polymer quality is not near
the required final number average molecular weight; therefore, it is recommended
to not operate under these conditions. The annual initiator cost for a dirty reactor
with a low cooling capacity and cold cooling water is the largest of all the scenarios
for a dirty reactor. This is because the optimized amount of initiator in this instance
is considerably more in comparison to the others; this may be that the simulation
conditions result in a flat optimization problem making it challenging to locate the
minimum, which is why the value differs from that of an average or clean reactor.
The other four online simulations have a lower annual cost of initiator than the
offline recipe, with the greatest savings being for the combination of a high cooling
capacity and cold cooling water. Therefore, for all the operating conditions that
produce in the required final number average molecular, the use of an online control
structure results in a reduction in the annual initiator expense for a dirty reactor.

Figure 7.21: Comparison of annual cost of initiator versus batch time for different
reactor conditions in a dirty reactor.

An average reactor shows somewhat contrasting results since two of the online
simulations have larger annual expenses, as seen in Figure 7.22. However, as was
explained previously, this are a caused by these operating conditions causing the
optimization problem to have a flat spot, so the identified optimum is not the true
local optimum. Therefore, this particular results should be treated as outliers. For
two of the other scenarios, the savings on initiator is hefty.
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Figure 7.22: Comparison of annual cost of initiator versus batch time for different
reactor conditions in an average reactor.

A clean reactor gives the clearest picture of the potential annual savings, as illus-
trated in Figure 7.23.

Figure 7.23: Comparison of annual cost of initiator versus batch time for different
reactor conditions in a clean reactor.

On average a clean reactor requires less initiator so the annual expense will be lower
than for an average reactor or dirty reactor. This could be used as motivation for
increasing the amount of reactor cleanings done. Since all of the simulations using
an online control structure require less initiator, the annual savings on average
would be US$74,665 per reactor in comparison to using a fixed recipe.
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For all the different scenarios, the online optimization will prove advantageous
over the fixed recipe in both the controller’s ability to handle disturbances and
the economic savings. If the offline recipe is followed the annual initiator cost
is US$393,553. In comparison, the online optimization control structure has a
range of annual costs between US$88,935-501,963, depending on the simulated
operating conditions. The true operating cost when using the online approach would
be somewhere in between these two values since the reactor conditions will change
between cleanings and seasonally. Taking the average annual operating cost for
the online simulations suggests that the annual savings for one reactor could be
upwards of US$98,000. If the plant has several reactors, this savings would be
substantial.
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CHAPTER 8
CONCLUSION

8.1 Conclusion

This report summarized theoretical concepts of modeling polymerization processes
and semi-batch reactors, which served as the foundation for the first principles
model developed for the production of EPS. Several key assumptions were made so
that the resulting model is simple and numerically robust, which means that the
computational effort to solve the model is low. This property is important since the
model was to be used in the construction of an advanced control structure.

Background information on advanced control structures was provided to establish
a foundation from which a two-layer control structure could be built for the case
study used in this work. First offline optimization of the EPS model was performed
before beginning constructing the control structure. This was done to determine
the optimal monomer to initiator ratio, initial reactor temperature, and the optimal
reactor temperature profile throughout the batch. These values were required
before the development of the full control structure could start.

A NMPC lower level was chosen because the polymerization process is highly
nonlinear and the nonlinearities could not be neglected. This layer is constructed
to follow the reactor temperature trajectory found in the offline optimization stage.
The cooling water flow rate is optimized to track this profile. The prediction horizon
for this layer was selected to be short since the process is open loop unstable so a
long prediction horizon would result in poor control. In addition, it is important
that this level have a shorter prediction horizon than the top level so that there is
sufficient time scale separation between the two layers.

Once the bottom layer could track the optimal reactor temperature profile, the
upper layer was developed. The top level uses a DRTO approach to recalculate the
optimal reactor temperature trajectory based on process measurements. The new
optimal trajectories are sent to the NMPC below using an OPC server. The DRTO
layer was constructed to calculate the optimal reactor temperature derivative rather
than the reactor temperature itself; this allows for smoother control of the reactor
temperature. This level has a prediction horizon that exceeds the anticipated batch
time; it is important that this level has a prediction horizon that is at least the
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length of the batch time. Together the two-layers work to calculate and realize the
optimal operating conditions for the production of EPS to minimize the batch time
while still producing the required final number average molecular weight.

The two layers were tested using various cooling water temperatures and cooling
capacity constraints. The upper bound on the cooling water flow rate plays a large
role in the resulting batch time; it was also found that below 4.0 kg/s and with
a cooling water temperature of 10 ◦C, the system could not produce the desired
product. This suggested that for the simulated system, a cooling capacity below this
provided insufficient cooling to realize the optimal reactor temperature profile. The
cooling water temperatures that the system could handle were dependent upon the
selected upper bound for the cooling water flow rate. If the limit was sufficient, then
a higher cooling water temperature had a small impact on the batch time and the
resulting polymer product; however, if the cooling flow rate was too small, then the
higher cooling water temperatures would lead to a batch time that was up to three
times longer than before and a polymer with a final number average molecular
weight notable far from the desired value. These results show the importance of
selecting either a moving cooling upper limit or choosing a fixed upper bound that
includes a sufficient safety margin.

While the two layers were often able to work together to achieve the desired results,
even with a perfect model there were instances when the NMPC level had problems
following the reference trajectory. These differences are due to the variations in the
models that are solved in the two different layers. The different prediction horizons,
objective functions and manipulated variables, along with the different temperature
equations contribute to the mismatch between the two layers. While extensive
tuning was done for both layers, there were still some operating conditions that the
system could not handle. Rather than revealing problems with the controller or the
model, it is thought that this shows system limitations, which should be considered
when selecting the bounds on the cooling water temperature and the cooling water
flow rates.

Each stage of development was then compared to show how the full control structure
trajectories differ from the offline optimization. These results were positive since the
trajectories were fairly similar despite the addition of a cooling constraint to the full
control structure. This suggests that in an ideal case, the offline optimization and
the advanced control structure perform comparably; however, if any of the conditions
change, the advanced control structure is able to handle these disturbances whereas
the offline optimization is fixed so it cannot. A cost-benefit analysis was performed
to illustrate the advantages of using a two-level advanced control structure versus
using a fixed offline recipe for the production of EPS. In industry, it is common to
use a fixed recipe approach for batch production because it is easier and cheaper to
determine this recipe than it is to develop an online optimization control structure.

140



8.2. FURTHER WORK

However, this work showed that the use of a two-level advanced control structure
can result in shortened batch times and improved product quality. Therefore, it
is recommended that advanced control structures be considered for use in the
production of EPS.

8.2 Further Work

The next step would be to alter the model to fit a real pilot reactor or a production
plant. The first task in this would be change the sample times of the two layers. It
was roughly timed to take the DRTO layer about twenty seconds and the NMPC
two seconds to solve their respective optimization problem for one sample step. This
suggests that the selected sample time of fifteen seconds for the DRTO level is too
short by approximately five seconds; the NMPC level had the same sample time so
it could be shortened if desired. The total solve time for one sample step is approxi-
mately twenty-two seconds. This is sufficiently quick for an online application but
should be confirmed.

Some constants in the model representing the reactor size and properties should be
altered to match the process. The initiator type should also be adjusted as required
to match the one used in the actual process. The cooling constraint limits and
jacket feed temperature limits need to match the physical limitations of the process.
Further tuning of the controller weights may also prove necessary when working
with a different reactor.

When a real process is identified, further economic evaluation can be added to the
cost benefit analysis. The current annual cost of the initiator and the current annual
profit for a fixed recipe approach can be compared to what the cost would be using
the two-level control structure. It was attempted to do so in this work but the costs
of chemicals and other operating costs are difficult to find in public information.
Therefore, the only option was to use an estimate based on a value found online for
the import value of the initiator to India so it is a rough estimate.

This work did not consider the addition of the blowing agent pentane so future
work could be done to investigate the effect that this component would have on the
batch time and the product properties. Lund implied in her work that the amount
of pentane added affects the viscosity of the reaction mixture and the final number
average molecular weight [21]. She also showed that the conversion is not very
sensitive to the addition of pentane, which suggests that the batch time might not
be affected by the amount of pentane added. Including the pentane in the model
would improve the model accuracy so it is worth investigating.

Considering that the polymer industry is predicted to continue its growth, contin-
uation of this work could have a large pay off. The model is constructed in such
a way as to make it easy to quickly change the reactor parameters to fit any new
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process; therefore, it would be possible to utilize the same foundation to construct
an advanced control structure for many different EPS production facilities.
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APPENDIX A
THEORETICAL SUPPLEMENTS

A.1 Optimization Definitions

Definition A.1 (Feasible directions) Given a feasible point r and the active con-
straint set A(r) from Definition A.8, the set of linearized feasible directions F (r)
is

F (r)=
{

d
∣∣∣ dT∇c j(r)= 0, for all j ∈ E ,

dT∇c j(r)≥ 0, for all j ∈A(r)∩I

}

where F (r) is a cone and is dependent on the definition of the constraint functions
c j, j ∈ E ∪I [23].

Definition A.2 (Critical Cone) The critical cone C(r∗,λ∗) is defined as follows
[23]:

C(r∗,λ∗)= {w ∈F (r∗) |∇c j(r∗)T w= 0, all j ∈A(r∗)∩I with λ∗
j > 0}

which can equivalently be written:

w ∈ C(r∗,λ∗)⇔


∇c j(r∗)T w= 0, for all j ∈ E
∇c j(r∗)T w= 0, for all j ∈A(r∗)∩I with λ∗

j > 0

∇c j(r∗)≥ 0, for all j ∈A(r∗) with λ∗
j = 0

(A.1)

where w ∈F (r∗) such that wT∇ f (r∗)= 0.

Definition A.3 (Convex Set) A set S ∈ Rn is a convex set if the straight line seg-
ment connecting any two points in S lies entirely inside S [23].

Definition A.4 (Convex Function) The function f is a convex function if its do-
main S is a convex set and if for any two points x and y in S , the following property
is satisfied [23]:

f (αx+ (1−α)y)≤α f (x)+ (1−α) f (y), for allα ∈ [0,1] (A.2)

143



APPENDIX A. THEORETICAL SUPPLEMENTS

Definition A.5 (Convex Programming) The term convex programming is used
to describe a special case of the general constrained optimization shown in Problem
3.9 in which [23]:

Ï the objective function is convex,
Ï the equality constraint functions c j, j ∈ E are linear, and
Ï the inequality constraint functions c j, j ∈ I , are concave.

Definition A.6 (Taylor’s Theorem) Suppose that f : Rn → R is continuously dif-
ferentiable and that p ∈Rn. Then we have that

f (r+ p)= f (r)+∇ f (r+ tp)T p (A.3)

for some t ∈ (0,1). Moreover, if f is twice continuously differentiable, we have that

∇ f (r+ p)=∇ f (r)+
∫ 1

0
∇2 f (r+ tp)pdt (A.4)

and that

f (r+ p)= f (r)+∇ f (r)T p+ 1
2

pT∇2 f (r+ tp)p (A.5)

for some t ∈ (0,1).

Definition A.7 (Lagrange Function) For a generic constrained optimization prob-
lem, the Lagrange function can be written as:

L(r,λ)= f (r)− ∑
j∈E∪I

λ j c j(r) (A.6)

where λ j are the Lagrange multipliers for the corresponding constraint c j(r).

The Lagrange multiplier reveals how sensitive the optimal objective value function
is to the presence of the constraint. In other words, it indicates how hard the
objective function pushes or pulls the solution against the particular constraint [23].

Definition A.8 (Active Set) The active set A(r) at any feasible r consists of the
equality constraint indices from E together with the indices of the inequality con-
straints j for which c j(r)= 0; that is,

A(r)= E ∪ { j ∈ I | c j(r)= 0}
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Definition A.9 (LICQ) Given the point r and the active set A(r) defined in Def-
inition A.8, we say that the LICQ holds if the set of active constraint gradients
{∇c j(r), j ∈A(r)} is linearly independent [23].

Definition A.10 (Linear Programming) If the objective function f is linear at
all constraints c j are linear, then the problem will be a linear program (LP) which is
of the form [7]:

min
r ∈Rnr

dT r (A.7a)

s.t. c j(r)= a j
T r−b j = 0, j ∈ E , (A.7b)

c j(r)= a j
T r−b j ≥ 0, j ∈ I (A.7c)

A.2 Collocation

Collocation is one method utilized in dynamic optimization to discretize a continuous
system. This method belongs to the more general method of weighted residuals,
which were used to find approximate solutions to differential equations before
finite element method was developed [14]. The collocation method takes the weight
functions from the family of the Dirac functions in a set domain. The integration
of this weighted residual results in the residuals being forced to zero at set points
in the domain [14]. As the number of collocation points increases, the better the
approximation of the differential equation is and the approximate solution begins
to approach the true solution. Since this method was originally created, a variety
of sub-methods of collocation have been developed as well; the difference between
these methods is how the collocation points are selected. One such method is known
as orthogonal collocation, which works by selecting the collocation points as the
roots of orthogonal polynomials [14].

A.2.1 Orthogonal collocation

Orthogonal collocation is applied to the system of differential equations and converts
them into algebraic ones. Orthogonal polynomials are selected because they have
a variety of useful properties such as: recurrence relation, existence of real roots,
and interlacing roots [14]. These properties provide a way to solve, expand and
understand many different common differential equations. This discretization
method can then be paired with an optimization method such that the problem will
simultaneously converge to an optimum and solve the differential equations [3].
A polynomial approximation is applied to the differential equation and requires
satisfaction of the equation at the zeros of the orthogonal polynomials, which are
the discrete collocation points.

While any orthogonal polynomial can be used, it has been shown that the use
of Lagrange polynomials pairs well with the optimization method of sequential
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quadratic programming [3]. The Lagrange interpolation polynomials are given by:

yi(x)=
N+1∑
k=1

ckLk(x) (A.8)

where N is the order of the polynomial and Lk(x) is the Lagrange polynomial
function that is defined by:

Lk(x j)=
N+1∏

j=1, j 6=k

x− x j

xk − x j
(A.9)

where {x j | j = 1,2, . . . , N +1} are the interpolation nodes. The Lagrange polynomial
has the property that:

Lk(x j)=
{

1, j = k

0, j 6= k

Legendre polynomials are another common choice. However, when orthogonal
collocation is used in optimization, it is best to use Lagrange polynomials. The
reason for this is expanded upon in Section A.2.1.1.

A.2.1.1 Orthogonal Collocation in Optimization

Legendre polynomials require bounds and starting points to find the coefficients;
however, given that they have no physical significance and thus no a priori estimated
ranges, this is difficult to do [3]. Using Lagrange polynomials remedies this since
t0 = 0 and ti, i = 1,. . . ,n are zeros of an nth order Legendre polynomial defined
from 0 to t f . It is then easy to apply meaningful bounds and starting points from
physical insight if yi = yn(ti) is selected as the decision variables. Other decision
variables include the constant parameters and the coefficients of the polynomial
approximation to the control profiles [3].

The ODE can then be written as algebraic equalities at the collocation points. This
can be generically written as:

minx F(x)

s.t. r(x)= 0,

h(x)= 0,

g(x)≤ 0,

xl ≤ x ≤ xu

(A.10)

The SQP method can then be trivially applied to Problem A.10. Together, this gives
an implicit orthogonal collocation solution to the ODE and is easy to apply and
converges to the optimum superlinearly [3].
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FURTHER MODEL INFORMATION

B.1 Reactor Calculations

The following calculations show how certain values for the model were determined.
All the calculations performed here resulted in changes to the original model taken
from Lund [21]. These changes were deemed necessary to refine the model to better
represent a real reactor. It should be noted, however, that the way the model was
previously formulated and utilized, changing these values would have little impact
on the results; therefore, the results presented in [21] are still relevant.

The model was designed to handle both a lab scale reactor and a real process scale
reactor. All of the results presented in this work used the lab scale reactor, which has
a volume of 24 m3. Other parameters were determined based on this assumption.
In addition, a more realistic mass of monomer was selected using the reactor size;
previously, only 1 mol of monomer was used for convenience and does not represent
a realistic amount.

Reactor diameter:

It was assumed that the reactor is a cylindrical shape with half spheres at either
end and that the height of the cylindrical portion is equal to the diameter of the
spherical ends. A simple sketch illustrates this assumption in Figure B.1. Using
the reactor volume, these values were then determined to be:

VR =Vsphere +Vcylinder (B.1)

=πr2 + 4
3
πr3 (B.2)

=π(
d
2

)2 + 4
3
π(

d
2

)3 (B.3)

⇒ d = 2.64 m (B.4)
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Figure B.1: Simple illustration of reactor geometry

Heat Exchange Surface Area:

The reactor was assumed to be 90% covered by the jacket; therefore, the heat
exchange surface area is given by:

Atotal = 0.9∗ (Acylinder + Asphere) (B.5)

= 0.9∗ (2πrh+�
��2πr2 +4πr2) (B.6)

= 0.9∗ (2π
d
2

d+4π
d
2

2
) (B.7)

= 0.9∗ (2πd2) (B.8)

= 39.32 m2 (B.9)

Mass of Liquid in Cooling Circuit:

It was assumed that the jacket holds a width of 2 cm of cooling fluid; the thickness
of the jacket walls are neglected.

Vjacket =Vl iquid −Vreactor (B.10)

=πr2
0d0 + 4

3
πr3

0 −24 (B.11)

=π
d0

2

2
d0 + 4

3
π

d0

2

3
−24 (B.12)

=π
d+0.02

2

2
(d+0.02)+ 4

3
π

d+0.02
2

3
−24 (B.13)

= 0.64m3 × 1000 L
1 m3 × 1 kg

1 L
(B.14)

= 637 kg (B.15)
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Initial Monomer and Water Mass:

The monomer and water mass were calculated assuming that the reactor is 80%
full at the beginning of the batch and that 35% of this volume is water.

Vwater = 0.8∗0.35∗Vtotal (B.16)

= 6.72 m3 × 1000 kg
1 m3 × 1000 g

1 kg
× 1 mol

18.015 g
(B.17)

= 3.7302×105 mol (B.18)

Vmonomer = 24−6.72 m3 (B.19)

= 12.48 m3 × 909 kg
1 m3 × 1000 g

1 kg
× 1 mol

104.15 g
(B.20)

= 1.0892×105 mol (B.21)

B.2 Model Parameters

This table provides a summary of the parameters used in the model. Several sources
were used to find these values but this not discussed here; the details and sources
can be found in [21].

Parameter Description Value Unit

a Gel effect tuning parameter 1.75 -
A Gel effect tuning parameter 0.465 -

Acr
Gel effect critical point param-
eter

9.44 (kgmol−1)0.5

Al Gel effect testing parameter 0.348 -
B Glass effect tuning parameter 1.00 -
C Cage effect tuning parameter 1.00 -

Ecr
Gel effect critical point expo-
nent parameter

1.60×104 Jmol−1

Edm
Thermal initiation activation
energy

1.16×105 Jmol−1

Ep Propagation activation energy 3.25×104 Jmol−1

E tc Termination activation energy 1.40×104 Jmol−1

E trM
Transfer to monomer activa-
tion energy

1.27×105 Jmol−1

f Initiator efficiency 0.85 -

kd0
Decomposition of initiator
rate constant

9.24×1015 s−1

kdm0
Thermal initiation rate con-
stant

0.219 m6 mol−2 s−1

kp0 Propagation rate constant 4.27×104 m3 mol−1 s−1
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ktc0
Termination by combination
rate constant

1.47×107 m3 mol−1 s−1

ktc,rd,max

Maximum value of residual
diffusion termination rate con-
stant

1.74×10−27 -

ktc,rd,min

Minimum value of residual dif-
fusion termination rate con-
stant

2.34×10−26 -

ktrM
Transfer to monomer rate con-
stant

6.05×1012 m3 mol−1 s−1

R Gas constant 8.314 Jmol−1 K−1

Tg,C5
Glass transition temperature
of pentane

123 K

Tg,M
Glass transition temperature
of styrene

185 K

Tg,P
Glass transition temperature
of polystyrene

370 K

Vf ,cr,d
Critical free volume for cage
effect onset

0.069 -

Vf ,cr,p
Critical free volume for glass
effect onset

0.0465 -

αC5
Fractional free volume of pen-
tane

0.00079 -

αM
Fractional free volume of
monomer

0.001 -

αP
Fractional free volume of poly-
mer

0.00028 -

δc
Segmental diffusion parame-
ter for styrene

0.001 -

∆HR Reaction enthalpy −7.11×104 Jmol−1

ρC5 Density of pentane 649−1.15(TR −T0) kgm−3

ρI Density of initiator 1560.00 kgm−3

ρM Density of monomer, styrene 924.0−0.918(TR −T0) kgm−3

ρP
Density of polymer,
polystyrene

1084.8−0.605(TR−T0) kgm−3

ρW Density of water 1000.0 kgm−3

150



B.3. DERIVATION OF ENERGY BALANCES

B.3 Derivation of Energy Balances

B.3.1 Reactor

The general law of energy conservation is expressed as [31]:{
rate of energy
accumulation

}
=

{
rate of energy in

by convection

}
−

{
rate of energy out

by convection

}

+


net rate of heat addition
to the system from
the surroundings

+


net rate of work
performed on the system

by the surroundings


The equation can be written explicitly as:

dE
dt

= m̂inĒ in − m̂outĒout +Q+W (B.22)

where the hats indicate mass per unit time and the bar indicates energy per unit
mass [17]; the units for the energy balance are J/s. Since it is a semi-batch reactor
there is no outflow so the second flow term is zero and the equation becomes:

dE
dt

= m̂inĒ in +Q+W (B.23)

The work term can be split into three different contributing factors: the flow work
at the inlet Wf , the agitation work Wag, and the work done by volume change Wv.
There is no flow work at the outlet since this is a semi-batch reactor and therefore,
there is no outflow during production.

W =Wf +Wag +Wv (B.24)

= m̂in
Pin

ρ in
+Wag −P

dV
dt

(B.25)

The energy term is composed of the internal UI , kinetic UKE, and potential energy
UPE and can be written as:

E =UI +UKE +UPE (B.26)

The energy balance can then be written as:

d
dt

(UI +UKE +UPE)= m̂in(Uint +UKE +UPE)+Q+Wag (B.27)

Since the potential and kinetic energy are typically small compared to the internal
energy, these terms can be neglected.
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It is common to write the energy balance in terms of enthalpy using the definition
of enthalpy: H =U +PV . Inserting this definition along with the individual work
components gives:

dH
dt

−P
dV
dt

−V
dP
dt

= m̂inHin +Q+ m̂in
Pin

ρ in
+Wag −P

dV
dt

(B.28)

Assuming constant pressure and simplifing results in the following expression:

dH
dt

= m̂inHin +Q+Wag (B.29)

The agitation work is assumed small and can therefore be neglected, giving:

dH
dt

= m̂inHin +Q (B.30)

In control it is common to convert the enthalpy balance to a function of temperature
since this is easier to measure and therefore control. This conversion can be
accomplished using the following thermodynamic relation that relates enthalpy to
temperature, pressure, and number of moles:

dH =
(
∂H
∂T

)
P,ni

dT +
(
∂H
∂P

)
T,ni

dP +
(
∂H
∂ni

)
P,T,nk

dni (B.31)

Note that the first partial derivative is the definition of the heat capacity Cp = mcp

and since the pressure is assumed constant, the second partial derivative is zero.
The third partial derivative represents the partial molar enthalpies H i. Inserting
this into the energy balances gives:

dmcpTR

dt
+∑

i
H i

dni

dt
= m̂inHin +Q (B.32)

If constant mass and heat capacity is assumed, which is a valid assumption for
liquid systems, the equation becomes:

mcp
TR

dt
+∑

i
H i

dni

dt
= m̂inHin +Q (B.33)

The heat Q can be broken down into its individual components: the ambient
contribution Qamb and the heating/cooling system contribution QJ . In this work the
ambient contribution is neglected. The contribution from the jacket can be written
as:

QJ =−(U A)J(TR −TJ) (B.34)

where (U A) j is the jacket’s coefficient of heat transfer, TR is the reactor temperature,
and TJ is the jacket temperature. The temperature equation then becomes:

mcp
TR

dt
+∑

j
H i

dni

dt
= m̂inHin + (U A)J(TR −TJ) (B.35)
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Rearranging then gives:

dTR

dt
= m̂inHin − (U A)J(TR −TJ)−∑

i H i
dni
dt

mcp
(B.36)

Since mcp is the total mass and total heat capacity, it can be broken down into its
components (reactor contents + vessel) as:

mcp =∑
i

ni cp,i︸ ︷︷ ︸
reactor contents

+mV cp,V︸ ︷︷ ︸
vessel

(B.37)

Since the propagation reaction generates the most heat of the three polymerization
reaction types, the heat contribution from the components can be written as:

∑
i

H i
dni

dt
=∆HRRPV (B.38)

The heat from the feed can be broken down into the individual component contribu-
tions and written as:

m̂inHin =∑
i

cp,i n̂i(T f eed −TR) (B.39)

Inserting this into the temperature equation gives the equation seen in Chapter 4.

dTR
dt

=
∑

i cp,i n̂i(T f eed −TR )−∆HRRPV − (U A)J (TR −TJ ))∑
i ni cp,i +mV cp,V

(B.40)

B.3.2 Jacket

The jacket energy balance can be derived in a similar manner.{
rate of energy
accumulation

}
=

{
rate of energy in

by flow

}
+

{
rate of energy out
by heat transfer

}
−

{
rate of energy out

by flow

}
Some of the derivation is now skipped since it was shown in the reactor temperature
equation derivation. If constant density, volume and heat capacity are assumed for
the jacket, the temperature equation then becomes:

ρV cp,c
d(TJ −Tre f )

dt
= Fρcp,c[(TJ,i −Tre f )− (TJ −Tre f )]−Q (B.41)

Since Tre f is a constant:
d(TJ −Tre f )

dt
= dTJ

dt
(B.42)

Combing this with the fact that mc =Vρ and m̂c = Fρ, the equation then becomes:

dTJ

dt
= m̂ccp,c(TJ,i −TJ)−Q

mccp,c
(B.43)
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The heat transfer from the reactor can be written as

Q =−(U A)J(TR −TJ) (B.44)

where (U A)J is the jacket’s coefficient of heat transfer.

The equation is then easily transformed into the form seen in Chapter 4:

dTJ

dt
= (U A)J(TR −TJ)+ m̂ccp,c(TJ,i −TJ,o)

mccp,c
(B.45)
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APPENDIX C
ADDITIONAL SIMULATION

RESULTS

C.1 Offline Optimization Results

The results of the offline optimization to calculate the optimal monomer to initiator
ratio, starting reactor temperature, and the dynamic temperature trajectory to pro-
duce the shortest batch time are now examined for a cooling water inlet temperature
of 20 ◦C.

The consumption rate of the initiator is shown in Figure C.1 where the optimal
monomer to initiator ratio is found to be 667.25, which corresponds to 163.2 mol
of initiator. This ratio is the same as for a cooling water temperature of 10 ◦C,
suggesting that the cooling water temperature does not impact the optimal ratio
under these conditions.

0 50 100 150 200

20

40

60

80

100

120

140

160

Figure C.1: Initiator consumption for the optimization of the monomer to initiator
ratio and temperature profile.
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Figure 4.5 shows the optimal temperature profile. The optimal initial reactor
temperature TR,0 was calculated to be 120 ◦C. From here, the temperature increased
throughout the batch time until the upper bound was reached at 91.25 min. This
means that the reactor temperature constraint was active for the last 11 min of the
process, as was the case for a lower cooling water inlet temperature. This is the
same reactor temperature profile that was identified for a cooling water temperature
of 10 ◦C.
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Figure C.2: Reactor temperature profiles for the optimization of the monomer to
initiator ratio and temperature profile.

The jacket temperature is initialized at 60 ◦C and then increases until it ends at 140
◦C to match the reactor temperature, as illustrated in Figure C.3. Since no cooling
water flow rate is calculated, no heat is removed from the system so the jacket heats
up as the reactor transfer heats to it. This profile is identical to the one found for
the lower cooling water temperature.
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Figure C.3: Jacket temperature profiles for monomer to initiator ratio and temper-
ature profile optimization

Figure C.4 illustrates how the number average molecular weight changes through-
out the batch time.
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Figure C.4: Number molecular weight for monomer to initiator ratio and tempera-
ture profile optimization.
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The final number average molecular weight is 99.71 kg/mol, which is within 0.29%
of the required value; this is identical to the results for a lower cooling water inlet
temperature. The corresponding weight average molecular weight is 180.4 kg/mol.
The resulting polydispersity index is 1.81, which is the same as before.

The optimal batch time is 102.3 min, suggesting that the cooling water inlet tem-
perature does not have a large impact on the batch time when perfect temperature
control is assumed. Figure C.5 shows the conversion of the monomer to the polymer
throughout the batch.
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Figure C.5: Conversion rate for monomer to initiator ratio and temperature profile
optimization.

These results suggest that for the problem formulation used in the offline optimiza-
tion the cooling water inlet temperature has little effect on the batch time or the
product quality. This is unsurprising because of the assumptions made here, namely
perfect temperature control, which means that the cooling water flow rate is not
calculated; consequently, what temperature the cooling water is will have no impact
on the outcome. Perfect temperature control aslo implies that regardless of what
occurs in the process, the reactor temperature will be maintained at the desired
value. This means that the system is essential insensitive to disturbances in the
temperature (either in the cooling water inlet or the reactor feed). Therefore, it
makes sense that a higher cooling water inlet temperature does not impact the
results.
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C.2 DRTO and NMPC Layers Results

The following sections present the plots of the results of other simulations conducted
using the DRTO and NMPC layers. The results for varying cooling water tempera-
tures at different points in the batch for a cooling water flow rate upper limit of 4.3
kgs−1are given.

C.2.1 Disturbance 2: Cooling Water Temperature

C.2.1.1 Varying Cooling Water Temperature

First a decrease of -5 ◦C in the cooling water inlet temperature is simulated followed
by a +5 ◦C increase in the cooling water inlet temperature. These changes are
implemented at various points throughout the batch to find where the process is
most sensitive to a disturbance in the cooling water inlet temperature. Here a
cooling flow rate upper bound of 4.3 kgs−1 is used. The exact values from these
simulations are reported in Chapter 6.

Decrease in Temperature:

For this cooling constraint, a decrease in the cooling water inlet temperature has
minimal impact on the reactor temperature profile as shown in Figure C.6.
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Figure C.6: Affect of decreasing the cooling water temperature at different times
on the reactor temperature.
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It is difficult to differentiate the four profiles from one another, other than during
the first twenty minutes of the batch. This demonstrates that when the cooling
water flow rate is sufficient, the impact of a decrease in the cooling water inlet
temperature is negligible. When the disturbance occurs at sample 20, the reactor
temperature increases a tiny bit faster than the the other temperature profiles. This
is caused by the cooling water flow rate being lower in this simulation in comparison
to the other simulations. The other cases experience a change in the cooling water
flow rate later in the batch, which does not affect the reactor temperature profile.

Figure C.7 shows that the jacket temperature is virtually the same throughout
the batch. As is the case for the reactor temperature profiles, the only noticeable
deviation is between the sample 20 simulation and the others. In this instance,
the jacket temperature for sample 20 is higher at the start of the batch than for
the other simulations. This is due to the decreased cooling water flow rate, which
causes the jacket temperature to heat up to a higher temperature.
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Figure C.7: Affect of decreasing the cooling water temperature at different times
on the jacket temperature.

The cooling water flow rate is shown for each of the simulations in Figure C.8. The
cooling water flow rate decreases immediately after the cooling water temperature
decreases; this demonstrates that the controller is quick to respond to a change in
the cooling water inlet temperature. For all of these simulations, the actual and the
required cooling water flow rates are nearly identical; this is because the cooling
constraint is sufficiently large so the constraint is never active for the tested cooling
water inlet temperature. After 64 minutes into the batch, the cooling water flow
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rates for all simulations are identical.
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Figure C.8: Affect of decreasing the cooling water temperature at different times
on the cooling water flow rate.

The batch time is the same in all cases as Figure C.9 demonstrates.
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Figure C.9: Affect of decreasing the cooling water temperature at different times
on the batch time.

161



APPENDIX C. ADDITIONAL SIMULATION RESULTS

The reactor temperature profiles are essentially unaltered by the decrease in the
cooling water inlet temperature, so it is logical that the batch times are also unaf-
fected. Compared to a constant cooling water inlet temperature, the batch time is
about the same. This shows that a 5 ◦C cooler stream of cooling water does not help
to shorten the batch time. The process instead decreases the cooling water flow rate
in response to the colder cooling water inlet temperature.

Since the reactor temperature profiles and batch times are unchanged, the final
number average molecular weights are indistinguishable as shown in Figure C.10.
In all four simulations, the final number average molecular weight is within the
desired range.
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Figure C.10: Affect of decreasing the cooling water temperature at different times
on the number average molecular weight.

These simulations illustrate that a decrease in the cooling water inlet temperature
has less impact on the system when the cooling constraint is not active in comparison
to when the cooling constraint is 4.0 kgs−1. It is expected that a decrease in the
cooling water inlet temperature for this cooling constraint would not have a large
impact. However, if the initial cooling water inlet temperature were higher, say
20 ◦C, a decrease of 5 ◦C would be the difference between the batch producing the
desired product and finishing in a reasonable time versus the batch producing a
bad product and taking three times longer.
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Increase in Temperature:

Figure C.11 shows that an increase of 5 ◦C in the cooling water inlet temperature
has a larger impact on the temperature profile than does a decrease. The reactor
temperature profiles differ the most from one another at the beginning of the batch.
By approximately minute 60 in the batch, all the profiles are interchangeable with
the final temperature ending just below the upper limit. When the disturbance
occurs at sample 20 or 100 the effect on the temperature profile is the largest,
suggesting that an increase in the cooling water inlet temperature early in the
batch has a larger effect.
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Figure C.11: Affect of increasing the cooling water temperature at different times
on the reactor temperature.

Figure C.12 illustrates that the jacket temperature responds similarly to the reactor
temperature profile. The final jacket temperature ends at about 130 ◦C in all cases,
which is the same final temperature for a cooling water inlet temperature of 10 ◦C;
this suggests that the system is able to compensate for the increased cooling water
inlet temperature by increasing the cooling water flow rate.
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Figure C.12: Affect of increasing the cooling water temperature at different times
on the jacket temperature.

The cooling capacity of the system is able to handle the increased cooling water inlet
temperature as shown in Figure C.13.
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Figure C.13: Affect of increasing the cooling constraint at different times in the
batch on the cooling water flow rate.
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This is unsurprising considering that previous simulations showed that this con-
straint could handle a cooling water inlet temperature of 15 ◦C. When the cooling
water inlet temperature increases at sample 20 or 100, the constraint is active for
part of the batch. This is because the cooling flow rate is already near the upper
limit at these points in the batch so when the cooling water temperature increases,
the cooling flow rate has to increase to track the optimal reactor temperature. When
the increase occurs later in the batch the cooling water flow rate is far enough below
the limit that the constraint is never active.

Despite the impact on the reactor and the jacket temperature profile, the batch
time is approximately the same as when the cooling water inlet temperature is a
constant, as demonstrated in Figure C.14.
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Figure C.14: Affect of increasing the cooling constraint at different times in the
batch on the batch time.

The final number average molecular weight is unaffected as shown in Figure C.15.
All four simulations produce a final number average molecular within the allowable
range.
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Figure C.15: Affect of increasing the cooling constraint at different times in the
batch on the number average molecular weight.

The results suggest that if the cooling capacity is sufficient, the system can handle
a increase in the cooling water inlet temperature at any point throughout the batch.
In addition, the batch time and produced polymer will not be greatly affected.

C.3 Cost Benefit Analysis

A cost benefit analysis is performed to motivate the construction and implementation
of a two-level advanced control structure over the current approach of using a fixed
recipe. A recipe is developed using offline optimization for a worst case scenario
so that the process will always operate within safe margins; this recipe is then
followed for every batch produced. While this approach may work for most of the
batches, it has a huge disadvantage in that the operating conditions do not change
to respond to any disturbances.

An offline recipe is constructed for a worst case scenario for the case study used
in this work; these operating conditions are then compared to a series of online
simulations to illustrate the potential benefits of using a two-level advanced control
structure. An illustration of the different simulations run for the cost benefit
analysis is shown in Figure C.16.
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Figure C.16: Representation of all the simulations run using the full control
structure.
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C.3.1 Offline vs Online Results

C.3.1.1 High Cooling Capacity and Hot Cooling Water Temperature

The offline recipe is now compared to simulation results for a high cooling capacity
of 5.0 kgs−1 and a hot cooling water temperature of 20 ◦C. This is a higher cooling
capacity but the same cooling water temperature that is used to calculate the offline
recipe.

The optimal monomer to initiator ratios for a clean, average, and dirty reactor are
644.4, 555.4, and 600.8, respectively. Figure C.17 shows the initiator consumption
for each of the simulations. A clean reactor has a larger monomer to initiator ratio
compared to the offline recipe which has a ratio of 600.8; therefore, initiator would
be wasted in this instance. An average reactor has a lower monomer to initiator
ratio suggesting that insufficient initiator would be used if the offline recipe is
followed. A dirty reactor has the same ratio as the offline recipe, so in this instance
there would be little benefit to online optimization unless a disturbance occurs.
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Figure C.17: Comparison of the initiator consumption for a high cooling capacity
and hot cooling water inlet temperature.

The optimal initial reactor temperatures are 119.2, 126.1, 125.5 ◦C as seen in Figure
C.18. For this scenario, the dirty reactor has a similar reactor temperature profile
to the offline recipe after approximately thirty minutes; therefore, the offline reactor
temperature profile could be used and still have good results. However, for a clean
reactor or an average reactor, the reactor temperature profiles differ considerably
from the offline recipe. The average reactor has a surprising profile compared to a
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dirty or clean reactor; this is likely caused by the operating conditions producing
an optimization problem that has a flat objective function making it challenging
for the algorithm to locate a minimum. Therefore, the located minimum may not
be the actual minimum, resulting in this odd reactor temperature profile for the
average reactor.

0 20 40 60 80 100

120

125

130

135

140

Figure C.18: Comparison of the reactor temperature for a high cooling capacity
and hot cooling water inlet temperature.

The cooling water flow rates are shown in Figure C.19 and help explain the reactor
temperature profiles. The clean reactor has the lowest cooling water flow rate,
which is expected since the heat transfer coefficient is higher so less cooling water is
required to track the reactor temperature profile. Despite the reactor temperature
profile not falling between the clean and dirty profiles, the average reactor cooling
water flow rate falls roughly between the clean and dirty cooling water flow rates.
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Figure C.19: Comparison of the cooling water flow rate for a high cooling capacity
and high cooling water inlet temperature.

All four simulations are able to produce the required final number average molecular
weight as demonstrated in Figure C.20.
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Figure C.20: Comparison of the number average molecular weight for a high
cooling capacity and high cooling water inlet temperature.
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This is the only cooling water constraint tested that was able to produce a polymer
product within the allowable range for this cooling water inlet temperature. The
final number average molecular weight closest to the desired value comes from a
clean reactor in this instance.

The batch times for the four simulations are shown in Figure C.21 and reveal that
the shortest batch time is for a clean reactor. The longest batch time is for the
average reactor, this is unexpected but given the calculated reactor temperature
profile deviates from the others not surprising. This is likely a product of the
operating conditions resulting in a flat objective function making it difficult for the
algorithm to locate the optimum. The dirty reactor has an identical batch time to
the offline predicted batch time, further illustrating that the use of the offline recipe
for this scenario would be okay. The clean reactor gives a batch time 1.3 minutes
shorter than the offline recipe, which would translate into a loss of 62 batches per
year per reactor if the offline recipe is used.
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Figure C.21: Comparison of the offline recipe to the full control structure batch
time for a high cooling capacity and high cooling water inlet temperature for three
different reactor conditions.

These results indicate that in some circumstances the use of online optimization
would be beneficial but in others it would make little difference. However, these
simulations do not account for any disturbances occurring during the batch.
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C.3.1.2 Medium Cooling Capacity and Hot Cooling Water Inlet Temperature

The offline recipe is now compared to simulation results for a medium cooling
capacity of 4.5 kgs−1 and a hot cooling water temperature of 20 ◦C. This is the
same cooling capacity and cooling water temperature that was used to calculate the
offline recipe.

Figure C.22 shows the initiator consumption rate for each scenario. The optimal
monomer to initiator ratios are found to be 643.6, 639.8, and 615.9 for a clean,
average and dirty reactor, respectively. This ratios are all larger than the offline
recipe of 600.8 so initiator would be wasted if the offline recipe is used for any
of these conditions. However, for a dirty reactor, the initiator consumption is
indistinguishable from the offline recipe.
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Figure C.22: Comparison of the initiator consumption for a medium cooling capac-
ity and hot cooling water inlet temperature.

The reactor temperature profiles are plotted in Figure C.23. A clean and average
reactor have nearly identical reactor temperature profiles. The dirty reactor tem-
perature profile is similar to the offline recipe after about thirty minutes with some
minor differences. This is not surprising considering the simulation conditions are
nearly identical.
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Figure C.23: Comparison of the reactor temperature for a medium cooling capacity
and hot cooling water inlet temperature.

Figure C.24 illustrates the cooling water flow rates.
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Figure C.24: Comparison of the cooling water flow rate for a medium cooling
capacity and high cooling water inlet temperature.
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In this instance, the cooling water flow rates behave as expected with the dirty
reactor having the highest flow rate and the average reactor falling in between
the dirty and clean reactor flow rates. The dirty reactor has the lowest coefficient
of heat transfer meaning that more cooling water is required to remove the same
amount of heat than for a clean reactor.

The number average molecular weights throughout the batch are shown in Figure
C.25. All four simulations result in a final number average molecular weight within
the desired range. A clean reactor results in the best product quality.
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Figure C.25: Comparison of the number average molecular weight for a medium
cooling capacity and high cooling water inlet temperature.

For this scenario the batch times are as expected, with the shortest being for a clean
reactor and the longest being for a dirty reactor, as shown in Figure C.26. The clean
reactor has a batch time 1.2 minutes shorter than the offline recipe, which means
that 61 more batches could be run annually for each reactor. For a dirty reactor,
the batch would be terminated prematurely before an 80% conversion is reached,
resulting in a wasted batch since the product would be out of specification.
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Figure C.26: Comparison of the batch time for a medium cooling capacity and high
cooling water inlet temperature.

C.3.2 Low Cooling Capacity and High cooling water inlet Temper-
ature

The offline recipe is now compared to simulation results for a low cooling capacity
of 4.0 kgs−1 and a hot cooling water temperature of 20 ◦C. This is a lower cooling
capacity than used in the offline recipe but the same cooling water temperature.

Figure C.27 shows the initiator consumption rate for the different conditions. The
optimal monomer to initiator ratios for a clean, average, and dirty reactor are found
to be 714.9, 651.6, and 681.8, respectively. This ratios are all significantly higher
than the offline ratio and would result in a lot of wasted initiator if the offline recipe
were followed. As can be seen in the plots, the online simulations result in all the
initiator being consumed whereas the online recipe predicts leftover initiator.
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Figure C.27: Comparison of the initiator consumption for a low cooling capacity
and high cooling water inlet temperature.

The reactor temperature profiles are plotted in Figure C.28 and show that the online
simulations all result in a violation in the upper bound.
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Figure C.28: Comparison of the reactor temperature for a low cooling capacity and
high cooling water inlet temperature.
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In comparison, the offline recipe does not predict this. This suggests that the offline
recipe is not able to fully account for the limit on the system’s cooling capacity. This
is not surprising because the full predictions are done by the DRTO layer, which
is not constructed to determine the optimal cooling water flow rate. Therefore, the
DRTOs predictions for the required cooling water flow rate are not the best. This is
why the offline recipe does not predict a reactor temperature profile anywhere near
the online simulations.

The corresponding cooling water flow rates are shown in Figure C.29. All of the
online cooling water flow rates calculated in the NMPC level are actively constrained
at the beginning of the batch. The required cooling water flow rates calculated by
the DRTO all violate the upper limit; this suggests that for this cooling constraint
upper limit, the system has inadequate cooling to track the reactor temperature
profiles. This explains why the reactor temperature profiles for the simulated
results are so far from the optimal trajectory. The offline recipe again under predicts
the required cooling water flow rate.
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Figure C.29: Comparison of the cooling water flow rate for a low cooling capacity
and high cooling water inlet temperature.

Because the reactor temperature profiles deviate from the trajectory, the polymer
quality is outside the necessary range as shown in Figure C.30. The clean reactor
gives a polymer product 17.2% away from the desired value, with the average and
dirty reactors being even further away.
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Figure C.30: Comparison of the number average molecular weight for a low cooling
capacity and high cooling water inlet temperature.

In this case, the simulated batch times are nearly three to four times longer than
the offline recipe, as seen in Figure C.31.
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Figure C.31: Comparison of the offline recipe to the full control structure batch for
a low cooling capacity and high cooling water inlet temperature for three different
reactor conditions.
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This is caused by the reactor temperature deviation from the optimal trajectory.

These results show that these operating conditions are infeasible for this system. A
cooling limit of 4.0 kgs−1 is too tight to allow the system the required cooling water
for a cooling water inlet temperature of 20 ◦C. So regardless of the method of control
used here, the system will not produce the product. These simulations show the
system’s limitations and serve as a reminder of the importance of including safety
constraints in a controller.

C.3.2.1 Results Summary

The annual cost of initiator for the different scenarios is calculated here. First the
required mass of initiator from each simulation is found; this was an optimized
input value calculated by the DRTO layer when each simulation was run. This
values are summarized in Table C.1. The cost of initiator per batch is then calculated
assuming an initiator cost of 2.11$/kg. These values are summarized in Table C.2.
Next the number of batches that can be run per year are calculated based on the
batch time and the assumption that the plant operates 24/7 and 365 days a year.
These batch times are summarized in Table C.3 and the number of batches per year
are presented in Table C.4. Finally, the annual cost is calculated using these values,
which are shown in Table C.5.
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trajectories, 33
DRTO algebraic equations of the

prediction model, 33
Time dependent output model, 48
Kalman filter decision prediction

function, 37
Kalman filter decision prediction

function, 37
NMPC equality relations, 33
Hessian with respect to r, 22
Hessian, 20, 24, 144
Reaction enthalpy, 10, 11, 47,

150, 153

I
Initiator radical, 7
Chemical initiator, 7
Index of chemical components,

10, 11, 44–47, 153
Concentration of i, 10
Initiator concentration, 44, 45
Inequality constraints, 17, 21, 23,

143–145

J
Index, 17, 21, 143–145

K
Kalman gain matrix, 37, 38
Apparent propagation rate

constant, 47
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Termination by combination rate
constant, 45, 46, 150

Critical test variable, 46, 47
Decomposition of initiator rate

constant, 7, 44, 45, 149
Apparent termination rate

constant, 47
Rate constant frequency factor,

46
Monomer addition to initiator

radical rate constant, 7
Propagation rate constant, 8, 44,

45, 47, 48, 149
Maximum value of residual

diffusion termination rate
constant, 47, 150

Minimum value of residual
diffusion termination rate
constant, 47, 150

Residual diffusion termination
rate constant, 47

Second order reaction rate
constant, 10

Second order rate constant for
component i, 46

Segmental diffusion-controlled
termination rate constant,
46, 47

Moment order/discrete time step,
12, 13, 28, 30, 33, 36, 37

Test variable, 46, 47
Thermal initiation rate constant,

44, 45, 149
Transfer to chain transfer agent

rate constant, 8
Transfer to monomer rate

constant, 44, 45, 150
Translational diffusion-controlled

termination rate constant,
46, 47

L

Lagrangian, 21, 22, 24, 144
Gel effect tuning parameter, 47
Kth order moment of living chain,

12, 13
First order moment, living

chains, 13, 45, 52, 62, 82
Second order moment, living

chains, 13, 45, 52, 62, 82
Zeroth order moment, living

chains, 13, 44, 45, 48, 52, 62,
82

Optimal Lagrange multiplier of
constraint j, 21, 143

Lagrange multiplier for
constraint j, 144

Vector of optimal Lagrange
multiplier, 21, 22

Vector of Lagrange multipliers,
24, 144

M
Monomer radical, 41
Monomer molecule, 7, 41
Maximum mass flow rate of

cooling fluid, 64, 84, 97, 101,
134

Minimum mass flow rate of
cooling fluid, 52, 63, 64, 82,
84

Required mass flow rate of
cooling fluid, 82, 83

Mass flow rate of cooling fluid, 48,
52, 62, 63, 114, 154

Mass flow rate into reactor, 10, 11
Mass of cooling fluid, 48, 154
Content mass, 10, 11
Vessel mass, 10, 11, 47, 153
Molecular weight of monomer, 13,

46
First order moment, dead chains,

13, 45, 52, 62, 82
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Second order moment, dead
chains, 13, 45, 52, 62, 82

Zeroth order moment, dead
chains, 13, 45, 46, 52, 62, 82

Kth order moment, dead chains,
12, 13

Monomer concentration, 44, 45,
48

Desired number average
molecular weight, 52, 54, 82,
84

Final number average molecular
weight, 52, 82, 134

Measured number average
molecular weight, 52, 62, 82

Maximum number average
molecular weight, 54, 84

Minimum number average
molecular weight, 52, 54, 82,
84

Number average molecular
weight, 13, 52, 56, 62, 68, 78,
82, 97, 101, 105, 114, 119

Measured weight average
molecular weight, 52, 62, 82

Weight average molecular weight
at the onset of the
translational diffusion effect,
46

Weight average molecular weight,
13, 46, 47, 52, 62, 68, 78, 82,
97, 101, 105, 114, 119

N
Polymer chain length, 6, 12
Rate of change of initiator molar

mass, 44
Rate of change of monomer molar

mass, 44
Rate of change of pentane molar

mass, 44

Rate of change of molar mass of
component i, 10

Number of inputs, 33, 34
Number of outputs, 33
Number of output variables, 17,

23, 29, 145
Number of states, 33, 34
Number of variables, 23, 33, 143,

144
Prediction horizon, 28, 30, 32–34,

36
Molar flow rate of initiator, 44,

52, 82
Molar flow rate of monomer, 44,

52, 82
Molar flow of pentane, 44, 52, 82
Molar flow rate into reactor, 11
Molar flow rate of component i,

10, 44, 47, 153
Maximum molar mass of initiator

initial loaded, 54
Minimum molar mass of initiator

initial loaded, 52, 54
Molar mass of initiator initial

loaded, 51–53
Molar mass of initiator, 51, 52,

62, 82, 121
Molar mass of component i, 10,

11, 44, 45, 47, 153
Monomer molar mass, 45, 52, 62,

82
Pentane molar mass, 45, 52, 62,

82
Mass of polymer chains with

length , 12

P
Inactive polymer chain, 8
DRTO objective function, 32, 33
NMPC quadratic cost function,

32, 33
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N ×n-dimensional real
symmetric matrix, 23

Search direction at k, 24
Search direction, 24

Q
Time-variant quadratic state

weighting matrix at k+1, 29
Time-variant quadratic state

weighting matrix at k, 29
Heat transferred to surroundings,

10, 11
Cooling demand on jacket, 11, 56
Heat transferred to cooling

jacket, 10, 11
Added/removed heat, 10, 11
Penalty on deviation from

reference, 52, 53, 63, 82, 83
Real valued n-dimensional vector,

23

R
Radical polymer chain length 1, 7
Radical polymer chain, 8
Time-variant input weight

matrix, 29, 30
Decision variable, 16, 144
Density of initiator, 150
Density of monomer, styrene, 150
Density of polymer, polystyrene,

150
Density of pentane, 150
Density of water, 150
Gas constant, 46, 47, 150
Linear weights on output

constraint violations, 52, 53,
63, 83

Reaction rate of A, 10
Reaction rate of B, 10
Reaction rate of initiator, 44, 51
Reaction rate of monomer, 44
Reaction rate of propagation, 47,

48, 153

Reaction rate of component i, 10,
11

Vector of decision variables at
iterate k, 24

Vector of decision variables, xxiii,
17, 19–21, 23, 24, 29,
143–145

MPC tuning parameter, 30
Real numbers, 17, 22, 23, 29, 33,

143–145
Vector of linear weights on output

constraint violations, 29, 82
Optimal decision variables, 17,

19, 21, 22, 143
Vector of quadratic weights on

output constraint violations,
29

S
Slack variable weight, 52, 53, 63,

82, 83
Matrix of slack variable weights

at k, 29
Matrix of slack variable weights,

30
Domain, 143

T
Transfer agent molecule, 8
Maximum derivative of reactor

contents’ temperature, 54, 84
Minimum derivative of reactor

contents’ temperature, 52,
54, 82, 84

Derivative of reactor contents’
temperature, 51–53, 62,
81–83

Integration time step, 50
Sampling time, 50
Derivative of reactor temperature

with respect to time, 10
Derivative of generic integrator,

11
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Derivative of Reference reactor
temperature, 11

Glass transition temperature of
pentane, 45, 150

Glass transition temperature of i,
45

Glass transition temperature of
styrene, 45, 150

Glass transition temperature of
polystyrene, 45, 150

Generic integrator, 11
Ambient temperature, 47, 48
Desired reactor temperature, 63
Feed temperature, 47, 153
Initial reactor temperature, 52,

53, 57, 121, 134, 156
Maximum temperature of cooling

fluid at the inlet, 54, 64, 84
Minimum temperature of cooling

fluid at the inlet, 52, 54, 63,
64, 82, 84

Temperature of cooling fluid at
the inlet, 48, 52, 68, 78, 82,
105, 114, 134, 154

Measured jacket temperature, 52,
62, 82

Temperature of cooling fluid at
the outlet, 48, 154

Jacket temperature, 47, 48, 52,
62, 82, 153, 154

Maximum reactor temperature,
54, 64, 84

Minimum reactor temperature,
52, 54, 63, 64, 82, 84

Measured reactor temperature,
52, 62, 82

Reference temperature, 51, 150
Reactor temperature, 45–48, 52,

53, 62, 63, 82, 150, 153, 154
Maximum batch time, 54, 84
Minimum batch time, 52, 54, 82,

84

Batch time, 11, 51, 52, 68, 78, 81,
83, 97, 101, 105, 114, 119,
134

Time, 11, 42, 44, 144
Estimated parameters at k−1, 38
Predicted parameters at k, 38
Time invariant parameters, 36,

48
Updated parameter estimations,

38

U
Overall heat transfer coefficient,

cooling jacket, 47, 48, 153,
154

Overall heat transfer coefficient,
heat loss, 47, 48

Vector of NMPC input changes,
32

Input change rate at k, 29
Vector of time dependent inputs,

48
Vector of DRTO inputs, 32
Vector of NMPC inputs at k, 32,

33
Composite vector of steady state

inputs for each step of the
DRTO, 32

Vector of NMPC inputs, 32
Vector of initial inputs, 29
Vector of inputs at k, 29, 30
Vector of inputs, 16, 52, 62, 82

V
Critical free volume for cage

effect onset, 47, 150
Critical free volume for glass

effect onset, 47, 150
Free volume of mixture for

translational diffusion onset,
46

Free volume of pentane, 45, 46
Free volume of styrene, 45, 46
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Free volume of polystyrene, 45,
46

Total free volume, 46, 47
Molar volume of pentane, 45
Molar volume of component i, 45
Molar volume of styrene, 45
Molar volume of polystyrene, 45
Polymer phase volume, 10, 11,

44–47, 51, 153
Process noise covariance at k-1,

37
Mean process noise, 37, 38

W
Agitation work, 47, 48
Shaft work, 10, 11
Directions inside the linearized

feasible set, 143
Measurement noise covariance at

k, 37
Mean measurement noise at k,

37
Mean parameter noise at k-1, 38

X
Desired overall conversion, 54, 84
Overall conversion, 11, 47, 52, 56,

62, 82
Instantaneous conversion, 11
A priori state covariance, 37
Vector of predicted states at k−1,

37
A priori state estimate at k, 37,

38
Time dependent process model,

48, 50, 52, 63, 82
Vector of time dependent states,

48
Vector of DRTO states, 32
Vector of NMPC states at k+1,

32

Vector of NMPC states at k, 33
Vector of estimated states at

k+1, 30
Vector of estimated states at k,

37, 38
Vector of initial states, 29, 48, 50
Vector of reference states at k+1,

29
Vector of states at k+1, 29, 36, 50
Vector of states at k, 30, 50
Vector of states, 16, 52, 62, 82,

143

Y
A priori measurements, 37, 38
Vector of estimated

measurements, 36
Vector of plant measurements at

k, 36–38
Vector of plant measurements, 16
Vector of NMPC outputs at k, 33
Vector of NMPC outputs, 32
Composite vector of NMPC set

point trajectories, 32, 33
Vector of time-dependent

measurements, 52, 63, 82
Vector of measurements, 52, 62,

82, 143
Vector of time-dependent

estimated measurements, 48

Z
Vector of time-dependent outputs,

48, 52, 63, 82
Vector of outputs at k, 29
Vector of outputs, 16, 52, 62, 82
Vector of updated outputs at k,

37
Vector of predicted outputs at k,

37

195


	List of Figures
	List of Tables
	Latin Symbols
	Greek Symbols
	Functions
	Acronyms
	Introduction
	Motivation
	Scope of Work
	Outline

	Polymerization
	Polymers and Polymerization
	Semi-Batch Reactor Modeling
	Polymerization Modeling

	Optimization and Control
	Control
	Optimization
	Combining Optimization and Control

	Semi-Batch Styrene Polymerization Case Study
	Process Description
	Model
	Model Implementation
	Offline Optimization Problem Development
	Solving the Offline Optimization Problem

	NMPC Level for Expandable Polystyrene Production
	NMPC Problem Development
	Solving the NMPC Problem

	DRTO Level for Expandable Polystyrene Production
	Dynamic Real Time Optimization in Semi-Batch Processes
	Problem Development
	Solving the DRTO Problem

	Results and Discussion
	Result Comparison
	Cost-Benefit Analysis

	Conclusion
	Conclusion
	Further Work

	Theoretical Supplements
	Optimization Definitions
	Collocation

	Further Model Information
	Reactor Calculations
	Model Parameters
	Derivation of Energy Balances

	Additional Simulation Results
	Offline Optimization Results
	DRTO and NMPC Layers Results
	Cost Benefit Analysis

	Bibliography
	Index

