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i .  Summary 
 
With the introduction of an increasing number of regulation markets, 
hydropower producers face multiple opportunities regarding how to 
utilize their water optimally. Such regulation markets can increase 
profits drastically compared to a single day-ahead spot market, thus the 
use and comprehension of multi-market optimization tools are valuable 
for all hydropower producers with storage. 
 
This report contains the development of a stochastic multi-stage 
optimization model where the effects of committing upon different levels 
of regulation obligations in electricity markets are investigated seen from 
a hydropower producer’s perspective. A mathematical formulation was 
written, and a corresponding optimization code implemented. An 
analysis was further conducted through a case study where a stochastic 
spot price was constructed and optimized upon by an implemented 
watercourse with authentic properties. 
 
Comparison between different levels of regulation obligations, the effect 
concerning the introduction of new information during the stochastic 
optimization period and the benefits of multiple executions (Monte 
Carlo-simulations) are among the essential output data analyzed. 
 
The results indicate such comparisons of regulation obligations to be 
useful when deciding whether or not to provide regulation capacity, and 
if so, at which level. Also, the value of good information should not be 
underestimated when participating in markets with uncertainty 
regarding the future. 
 
The market designs are affecting the choice and design of the 
optimization strategy used – in markets with more complex properties, 
analyzing multiple regulation obligations may prove hard to present and 
time consuming to process. Thus, using a forecasted price of regulation 
markets is often preferred, but unfortunately such forecasts are hard to 
obtain. Nevertheless, decision-making tools regarding optimal levels of 
regulation obligations can be utilized by considering factors such as the 
needed regulation price to break even from a potential loss in the spot 
market, as well as the marginal cost of increasing a regulation obligation.  
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i i .  Sammendrag 
 
Med et økende antall reguleringsmarkeder å ta hensyn til, har 
vannkraftprodusenter mange muligheter i forhold til hvordan man skal 
disponere vannet sitt optimalt. Slike reguleringsmarkeder kan øke 
fortjenesten kraftig i forhold til et enkelt spotmarked, så bruken og 
forståelsen av multimarkedsoptimeringsverktøy er verdifull for alle 
vannkraftprodusenter med muligheten til å lagre energi. 
 
Denne rapporten inneholder utviklingen av en stokastisk flerstegs 
optimeringsmodell hvor effekten ved å forholde seg til forskjellige nivå av 
reguleringsforpliktelser i kraftmarkeder er undersøkt, sett fra en 
vannkraftprodusents ståsted. En matematisk formulering ble utformet, 
og en korresponderende optimeringskode ble implementert. Videre ble en 
analyse utført gjennom et casestudie hvor en stokastisk spotpris ble 
konstruert og optimert mot med et vassdrag som innehar autentiske 
egenskaper. 
 
Sammenligninger mellom forskjellige nivå av reguleringsforpliktelser, 
effekten vedrørende introduksjonen av ny informasjon under den 
stokastiske optimeringsperioden og fordelene av flere modellkjøringer 
(Monte Carlo-simuleringer) er blant de essensielle utdataene som ble 
analysert. 
 
Resultatene indikerer at slike sammenligninger av reguleringsforpliktelser 
er nyttige når valget om å levere eller ikke levere reguleringskapasitet 
skal tas, og i så fall, på hvilket nivå. I tillegg bør ikke verdien av god 
informasjon bli undervurdert når man deltar i markeder med en 
usikkerhet angående fremtiden. 
 
Utformingen av markedet påvirker hvilken optimeringsstrategi som bør 
bli brukt – i markeder med mer komplekse egenskaper kan analyseringen 
av multiple reguleringsforpliktelser være vanskelig å presentere fornuftig, 
samt være tidskrevende å prosessere. Derfor vil en prognose på prisen i 
et reguleringsmarked være å foretrekke, men dessverre er gode slike 
prognoser vanskelige å fremskaffe. Likevel, beslutningsverktøy som tar 
hensyn til optimale nivå av reguleringsforpliktelser kan bli benyttet ved 
å vurdere faktorer som den nødvendige reguleringsprisen for å gå i 
balanse fra et potensielt tap i spotmarked, i tillegg til marginalkostnaden 
ved å øke en reguleringsforpliktelse. 
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iv.  Nomenclature 
 
Table 1: Indices 

e   Scenario e 
 Hour h 

 Index i 
o   Regulation obligation o 

 Reservoir r 
 Station s 

t   Step t 
 Unit u 

 
Table 2: Sets 

E   Number of scenarios 

 !E   Number of scenarios that can occur given the node in the scenario tree that the 
model is currently standing on 

 Number of hours 
 Number of indices 

O   Number of regulation obligations 
 Number of reservoirs 
 Number of stations 

T   Number of steps 
 Number of units at station s 

 
Table 3: Variables 

,o, ,t r hb  Bypass from reservoir r in hour h for regulation obligation o 
optimized at step t 

m3/s 

,o, ,t r hf  Flood from reservoir r in hour h for regulation obligation o 
optimized at step t 

m3/s 

  q
t ,o,s,u,h   Discharge through unit u at station s in hour h for regulation 

obligation o optimized at step t 
m3/s 

,o, , ,t s u hx  Production on unit u at station s in hour h for regulation obligation 
o optimized at step t 

MW 

,o,t h
totx  Total production in hour h for regulation obligation o optimized at 

step t 
MW 

,o,t rα  Energy equivalent of final reservoir level at reservoir r for regulation 
obligation o optimized at step t 

MWh 

,o, , ,t s u hβ  Start indicator for regulation obligation o optimized at step t, 1 if 
unit u at station s starts in hour h, 0 otherwise 

{0,1} 

,o, ,t r hγ  Reservoir level at reservoir r in hour h for regulation obligation o 
optimized at step t 

m3 

,o, , ,t s u hζ  Run indicator for regulation obligation o optimized at step t, 1 if 
unit u at station s runs in hour h, 0 otherwise 

{0,1} 

,o,t rθ  Final reservoir level at reservoir r for regulation obligation o 
optimized at step t 

m3 

h
i

r
s

u

H
I

R
S

U
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Table 4: Parameters 

 Maximum reservoir regulation per hour at reservoir r m3 

 Maximum bypass from reservoir r m3/s 

 Minimum bypass from reservoir r m3/s 

 Startup cost for unit u at station s NOK 

 Maximum ramping per hour on unit u at station s MW 

 Gravity constant m/s2 

 Head for unit u at station s m 

 Total system head for unit u at station s m 

 Maximum reservoir volume in reservoir r m3 

 Minimum reservoir volume in reservoir r m3 

 Inflow to reservoir r in hour h m3/s 

,e h
spotP  Spot price for scenario e in hour h NOK/MWh 

 Maximum discharge through unit u at station s m3/s 

 Minimum discharge through unit u at station s m3/s 

 Water value for reservoir r NOK/MWh 

 Maximum production on unit u at station s MW 

 Minimum production on unit u at station s MW 

,o h
symY  Regulation obligation o in hour h MW 

  
Turbine efficiency at best-point on unit u at station s % 

 Πe

 
Probability of scenario e % 

 Water density kg/m3 

 Slope of cut i in the piecewise linearized P-Q-curve - 

 Intercept of cut i in the piecewise linearized P-Q-curve - 

  

max
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max
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min
rB
,s uC
,
max
s uG
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,s u
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Lmax
r

min
rL
,r hN

,
max
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,
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rW
,
max
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,
min
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ρ
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1  Introduction 
!
Hydropower producers have an increased amount of opportunities and 
ways to utilize their water in order to gain as much profit as possible. 
With the introduction of additional ancillary services - like newly 
designed regulation markets - the process of spending the energy stored 
in reservoirs optimally prove to become more difficult than ever before. 
 
During the recent years the proportion of renewable energy sources, such 
as solar and wind power, has increased in the European region [3]. These 
energy sources are non-controllable and unpredictable yielding an 
increased value of the energy sources suited for regulation. Hence, these 
newly designed regulation markets are especially profitable for 
participants with the ability to change the production on a short notice, 
such as hydropower producers with reservoir capacities. 
 
This thesis develops a stochastic multi-stage optimization model for 
pricing such services. No specific market is investigated - the goal is to 
develop and investigate a model that puts a price on the reduced 
flexibility a hydropower producer faces in the day-ahead spot market 
when taking on a regulation obligation.  
 
Many regulation markets have longer time horizons than the day-ahead 
horizon in the spot market. This challenges the decision of going into 
such markets, since the hydropower producer reduces the flexibility in 
the day-head spot market for an equally long horizon when taking on an 
obligation in a regulation market. 
 
The model developed in this thesis investigates such a case; it optimizes 
the production to the day-ahead spot market given different levels of 
regulation obligations for a period of 9 days while utilizing a stochastic 
spot price. The physical scheduling of the watercourse under such 
conditions is analyzed, and the costs related to committing to the 
different regulation obligations under investigation are then calculated. 
This facilitates the possibility to calculate the break-even price1 and the 
marginal cost 2  a hydropower producer faces when committing to 
regulation obligations. 

!  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 See chapter 3.7.3 for a definition of the break-even price 

2!See chapter 3.7.4 for a definition of the marginal regulation cost!
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2  Theory 
 
For more extensive theory describing the subjects mentioned in chapter 
2.1, 2.2 and 2.3, see appendix B, which is a copy of chapter 2 from [2]. 

2.1  The state of electric power systems 
 
The state of the electrical power system can be assessed through 
investigation of the frequency quality, the voltage quality and the time 
of operation with reduced reliability (time outside the N-1 criteria). 
There are different measures that can be taken to influence these factors 
[4]. This report will focus on the frequency quality and the actions that 
can be taken to improve this. 
 
In an electrical power system it has to be a perfect balance between 
production and consumption at all times. Any deviation from this 
requirement would lead to a frequency deviation from the nominal 
frequency in the system. If there is a production surplus compared with 
the consumption the frequency will increase, and if the consumption 
exceeds the production the frequency will decrease [5]. 
 

2.2  Increased frequency deviations 
 
In the recent years the reliability of the grid in the Nordic region has 
decreased due to an increased proportion of time with frequency 
deviations. 
 
 

 
Figure 1: Development in frequency quality given in minutes outside 49.90-50.10 

HZ per month [4], also used in [2] 
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There are several reasons behind this development [4]: 
 

• Deviations around hour shifts will occur since the consumption 
changes continuously while the production in the spot market is 
specified for each hour and only changes around hour shifts.  

• More HVDC-connections to the continent are installed, and this 
changes the power flow.  

• Some participants are excluded from contributing with regulation 
capacity due to congestions in the grid. This leads to less 
available regulation capacity. With an increased load of the grid 
the recent years this problem increases. 

• The grid is operated without the large hydropower units suited 
for regulation in an increased proportion of the time due to more 
and more HVDC-connections to the continent, more solar power 
and more wind power.   

• 60-seconds oscillations occurs, probably caused by different 
responses on corresponding units in the Nordic region. 

2.3  Regulation markets 
 
To avoid variations in frequency caused by differences between 
production and consumption the TSO (Transmission System Operator) 
controls several regulation markets. Since it is almost impossible to 
control consumption on short notice, the regulation must lie on the 
production side. The regulation markets can be divided into different 
levels [6]: 

• Primary regulation 
• Secondary regulation 
• Tertiary regulation 

The actually name of the markets may vary from region to region but all 
regulation markets can be placed in one of these categories. The markets 
can be ranked after activation time and energy volume. Primary 
regulation has the shortest activation time and lowest volume, while 
tertiary regulation has the longest activation time and largest volume.  
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Figure 2: Regulation markets (adapted from [4]), also used in [2] 

!
One of the main purposes of having several levels of regulation is to have 
the opportunity to free the regulation capacity with shortest activation 
time after it is activated to make the system ready for another change in 
consumption. Hence, all the markets are equally important for the 
frequency stability in the system. 
 
 
The most important market for most power producers is the day-ahead 
spot market. However, producers who have the possibility to regulate 
their production on a short notice can increase the profit by 
participating in regulation markets in addition to the main day-ahead 
spot market [1]. This opportunity is especially well suited for hydropower 
producers with reservoir capacity. Run-of-rivers hydropower producers 
are not too well suited, especially not for delivering regulation with large 
energy volumes (i.e. tertiary regulation), since this requires the 
opportunity to store energy - in this case water - for later use. Generally 
there are two factors that must be met to make a power producer suited 
for participating in the regulation markets and deliver regulation 
capacity: 

• The opportunity the change the production quickly. 
• The opportunity to store energy (water) for later use. 
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2.4  Market structures 
 
Different power markets have different structures regarding time 
horizons, time blocks and other properties describing the market. This 
influences how a hydropower producer can utilize these markets and how 
they should be included in the optimization process. 
 

2.4.1  Time horizons in different markets 
 
The day-ahead spot market, where the delivery of power for the 
following day is traded between buyers and sellers in a power exchange 
market, is the main market for most hydropower producers. As indicated 
this is a day-ahead market meaning that both buyers and sellers specify 
their bids for the following day based on the information available today. 
However, the regulation markets often have either a long or short time 
horizon meaning that hydropower producers must specify the bids in 
these markets based on different available information than in the day-
ahead spot market. The time horizons span from weeks in markets with 
long horizons to hours in intraday markets where the bids are given to 
the TSO just before the delivery hour [6]. 
 

2.4.2  Time blocks in different markets 
 
Some regulation markets also have time blocks meaning that the bid can 
be changeable within certain segments during the day, and for some 
markets the bid into one time block one day must be equal the bid into 
the same time block the next day for the entire time horizon of the 
market [7]. 
 
Another factor that complicates this process is the differences regarding 
the length of the time blocks defining each market. In the day-ahead 
spot market the time blocks last for one hour meaning that the biddable 
volume must be constant within each hour. In the regulation market the 
time blocks are often longer meaning that the bid must be constant for a 
longer period of time. Most regulation markets have time blocks lasting 
from one hour up to one week. For instance, the Swiss primary 
regulation market has a one-week continuous time block, while the 
Norwegian secondary regulation market has a structure consisting of 
three daily time blocks. These blocks may have different volumes, 
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however the same block must be equal between each day of the one-week 
period [7], [8]. 
 

2.4.3  Symmetrical and unsymmetrical regulation markets  
 
Symmetrical and unsymmetrical properties also complicate the issue of 
bidding into regulation markets. In a symmetrical regulation market the 
same biddable volume must be available as regulation capacity both 
upward and downward for the entire time block. In an unsymmetrical 
market it is possible to specify different upward and downward 
regulation capacity bids for each time block. Symmetrical properties can 
for instance be found in the Swiss primary regulation market, while the 
Norwegian secondary regulation market is an example of a regulation 
market with unsymmetrical properties [7], [8]. 
 

2.4.4  Challenges regarding different market structures 
 
The main challenge with these issues is that the bids into the different 
markets must be specified based on different information about the 
future. Also, the bid into one market influences the bids into other 
markets where bids can be decided with more available information. If a 
hydropower producer bids into a regulation market with a one-week time 
horizon this restricts the flexibility in the day-ahead spot market for the 
upcoming week.  
 
Due to the uncertainty regarding the future, especially when it comes to 
the price in the different markets as well as the inflow, a combination of 
all these properties discussed above complicates the process of how to 
distribute and bid the limited capacity into the different markets. 
 

2.5  Stochastic vs. deterministic optimization of 
hydropower scheduling 

 
When a hydropower producer optimizes the production for the upcoming 
period there are basically two different approaches that can be utilized; a 
deterministic or a stochastic approach. If a deterministic optimization 
approach is applied, all relevant input parameters must be specified. A 
stochastic approach on the other hand takes the uncertainty about the 
future into account and attempts to find a robust solution given all the 



  7 

possible outcomes of the uncertain input parameters. Since it almost 
always will be some uncertainty regarding the future - for hydropower 
producers this especially concerns future price and inflow - a stochastic 
approach will in most cases be desirable from a theoretical point of view.  
However, deterministic models are often used since these are easier to 
utilize in the real life. Stochastic models need good input data with 
realistic probability distributions of the uncertain parameters to be useful 
in real life, and they are often more difficult to solve. Results from such 
models may also be harder to structure and utilize in practice. The 
combination of these factors can often be challenging and deterministic 
models are therefore often used instead [9]. 
 

2.5.1  The scenario tree 
 
Scenario trees are often used to describe all possible outcomes and the 
corresponding uncertainties in stochastic models. 
Generally, a scenario tree can be built up by basic elements such as 
nodes, branches, full paths, and step.   
 
 

 
Figure 3: Description of a scenario tree and its main properties 

 
A node is a point in the scenario tree, which contains information about 
the uncertain parameter. Branches connect the nodes. The number of 
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branches going out from a node describes how many possible outcomes 
the uncertain parameter can get given the value of the parameter 
specified in the given node. All branches are described by a probability 
stating the likelihood of the value lying at the end node of the given 
branch being the next realized value of the uncertain parameter.   
 
Steps, also known as stages, can be interpreted as the fundamental time 
unit describing the scenario tree. Generally, new information will be 
revealed between each step in the scenario tree. A full path is a unique 
way through the scenario tree going over all the steps defining the tree. 
In a stochastic model the total number of possible unique scenarios will 
be equal the total number of unique full paths in the scenario tree. Thus, 
a full path is equal to an individual scenario [10].  
 
When a scenario tree is used as input to a linear stochastic optimization 
model describing the uncertain input parameters, the model should do 
the optimization based on the current available information in the 
scenario tree.  
 
Some stochastic models receive new information when the model moves 
to the next step in the scenario tree, revealing previous uncertain 
parameters so that the optimal result may change. A challenge with such 
models is how to choose which branch to follow next when the model has 
optimized one step based on the current available information and 
should move to the next step. One way to solve this is through a random 
function in combination with the probability describing each output 
branch from the given node, also referred to as a probability function. 
Due to this randomness the optimal result from this kind of stochastic 
optimization model will change to some degree between each execution 
of the model.  
 

2.5.2  The Monte Carlo method 
 
A more advanced approach to analyze the results from a stochastic 
model is by utilizing the Monte Carlo method. This method is a useful 
approach to establish a distribution of results concerning a function or a 
model that contain probabilistic, stochastic factors. Hence, the method is 
well suited for analyzing stochastic optimization of hydropower 
scheduling [11]. 
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Generally the method implies pulling a random number from an 
unknown probability distribution a large number of times. This sample 
can them be used to find a statistical estimate of the random variable. 
In stochastic optimization the main purpose of a Monte Carlo-simulation 
is to create statistical estimates of the stochastic variables that can be 
used to calculate confidence intervals [12]. 
 
This can be done by executing the model a large number of times, saving 
the output data for each execution and analyzing the overall results. 
 

2.5.2.1 Key figures from a Monte Carlo-simulation  
 
One of the main challenges when considering a stochastic model that 
iterates through a scenario tree, utilizing a probability function deciding 
the further path through the tree, is that the results from the model will 
change to some degree between each execution of the model.  
 
The results from the model consist of a large number of decision 
variables. If a stochastic model is utilized these can be interpreted as 
stochastic variables due to the probability function within the stochastic 
model. The simplest way to solve this issue is to execute the model a 
large number of times and calculate the mean and the variance of the 
sampled data. These are some of the key figures that are useful to 
analyze from a Monte Carlo-simulation. To be able to calculate these, a 
set of sampled data is needed, and is gained through this simulation 
strategy. 
 
In statistics a sample is a subset of a population [13]. In the case of a 
stochastic hydropower optimization the population should be interpreted 
as the solution space for the results from the stochastic model and the 
sample should be interpreted as the results from a large number of 
executions of the model, i.e. a Monte Carlo-simulation. This is applicable 
both for the decision variables from the model and the resulting 
economic parameters.   
 
From a theoretical point of view it is assumed that the population - the 
solution space from the stochastic model - has an expected value and a 
variance. If the sample is of a sufficient size, it can be assume that the 
expected value of the random variable equals the mean of the sample 
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and that the variance of the random variable equals the sample variance  
[13]. 
 
Another key figure that is interesting when analyzing the results from a 
Monte Carlo-simulation is the mode. This is the value in a sampled data 
that appears most often, i.e. in stochastic optimization this is the 
solution with the highest probability. 
 

2.5.2.2 Sampling distributions 
 
If it is assumed that a result from the stochastic model is a stochastic 
variable with a given probability distribution, it is possible to estimate 
this distribution. This is called a sampling distribution [13]. 
If the model is executed a large number of times, i.e. by utilizing a 
Monte Carlo-simulation, it will be possible to find the probability 
distribution of the results. From a hydropower producer’s point of view 
it is useful to know how sensitive the optimal solution is to changes in 
the outcome of the stochastic input parameters. This can be described 
through this distribution. 
 
In a real life case like stochastic hydropower optimization it is unlikely 
that the results from a Monte Carlo simulation will fit a theoretical 
probability distribution perfectly. Nevertheless, in some cases it can be 
useful and interesting to approximate the results to a mathematically 
defined probability distribution since this will facilitate further analysis 
of the results.  
 

2.5.2.3 Confidence intervals 
 
If the probability distributions of the solutions is known it is possible to 
establish a confidence interval. This interval is calculated from a set of 
sampled data taken from a population and gives an estimate range of 
values that will include a stochastic variable drawn from this population 
with a probability equal to the confidence level. The confidence level is a 
distinctive number describing the confidence interval. This value gives 
the probability of drawing a random variable from the probability 
distribution within the estimated range of value describing the 
confidence interval [14]. 
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3  Case study 
 
This study investigates how a hydropower producer in charge of a 
watercourse could optimally bid into a spot market with uncertainty, 
when also attending regulation markets considering different amounts of 
reserved regulation capacity obligations. 
 
Foreseeing the future prices in spot markets is a difficult task, dependent 
on many variables. Thus, the price relies very much on uncertainty. A 
way to describe this uncertainty is by introducing a stochastic price. The 
outcome of such a price is based on probabilities, and uncertainty of the 
possible outcomes increases further into the optimization period. 
 
When introducing yet another variable in the form of an additional 
biddable regulation market, defining a regulation obligation that must be 
fulfilled, the problem becomes even more complex and a optimization 
model is therefore developed with the goal of providing decision support 
for hydropower producers in these situations. 
 
In this study, a stochastic spot price time series was reduced into a 
scenario tree of spot prices with corresponding probabilities. A stochastic 
multi-stage optimization model was then developed to take such scenario 
tree prices into account when considering optimal production patterns in 
a day-ahead spot market. This model was then implemented in the 
programming language Mosel, and then solved by IVE-Xpress3.  
 
The model takes the fulfillment of obligations for a symmetric regulation 
market into account, making sure the production plan has sufficient 
capacity at all times throughout the period to provide the obligated 
regulation. The symmetric regulation market has a continuous time-
block lasting throughout the entire period – yielding the regulation 
obligation to be constant at all times – while the spot market accepts 
different bids for each hour of the period. 
 
 
!  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 http://www.fico.com/en/products/fico-xpress-optimization-suite/ 
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3.1  The price reduction process and the scenario 
tree creation 

 
3000 possible spot market prices were created using the approach 
described in [15]. They describe 9 days of the Norwegian spot price 
starting at week 35 of 2010, and were reduced into a scenario tree with 
characteristics mentioned in Table 5, using the SCENRED 2-tool4 [16]. 
 
The original amount of spot price time series was reduced into a 
selection of 512 spot price time series – also defined as full paths in the 
scenario tree - each with a corresponding probability describing the 
likelihood of the price scenario to occur.  
It was chosen to double the amount of branches for each incremental 
step of the scenario tree, starting with two branches in the first step, 
ending with 512 possible branches in the last step. This is illustrated in 
Figure 4.  

!
Figure 4: The reduced scenario tree with corresponding step lengths 

!
Table 5: The amount of possible branches in the reduced scenario tree for each 

step 

Step  1 2 3 4 5 6 7 8 9 
Branches 2 4 8 16 32 64 128 256 512 

 
Of course, the number of branches that is possible for each step is given 
the actual outcome of the previous step. The model excludes the 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 http://www.gams.com/dd/docs/solvers/scenred2.pdf 
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branches that get unavailable when new information arrives, stating 
which way the price actually went. Each step consists of 24 hours, 
making a step equal to a full day.  
 
It is noteworthy that all the discussed properties of the scenario tree are 
alterable within the model itself, so it could easily have another way of 
dividing branches and describing step lengths. However, for a short-term 
stochastic multi-stage optimization model, these characteristics prove 
plausible and easily understandable. 
 
For an extensive explanation of the process of reducing spot price time 
series from SCENRED and making the new scenario spot price series 
with corresponding probabilities compatible with the optimization model, 
valuable information and an example is found in appendix 11. This 
appendix is important for the further comprehension of the developed 
model, and should be read. 
 

3.2  The possible price outcomes 
 
Figure 5 illustrates the development of the stochastic price, given the 
scenario reduction mentioned in chapter 0. The shaded area shows the 
maximum and minimum possible outcome of the stochastic spot price 
during each hour. The scope of opportunities increases with each step, as 
more branches are realized along with the uncertainty of the price itself, 
which increases further away from the present time. 
 

 
Figure 5: The possible price outcomes for the reduced stochastic scenario spot 
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3.3  The watercourse 
 
The same watercourse as in the preliminary specialization project [2], 
made possible because of the cooperation with Powel AS, is still used as 
the basis for all technical aspects related to the case study.  
 
It is an anonymous watercourse with authentic characteristics, and 
consists of two reservoirs with two corresponding stations. The upper 
reservoir, Reservoir 1, is over twelve times as large as the lower reservoir, 
Reservoir 2, and the installed discharge capacity on Station 1 below 
Reservoir 1 is over twice as large as the installed discharge capacity on 
Station 2 below Reservoir 2. This unbalance between reservoirs and 
stations yields some difficult situations for certain outcomes, but on the 
other hand it can give more interesting results compared to a 
watercourse where the topology do not vary as much. 

 

 
Figure 6: An overview of the watercourse, left: from Powel Sim, right: basic 

sketch 

Table 6: Reservoir properties 

! Reservoir 1 ! Reservoir 2 !
Volume [m3]! 33625000! 2700000!
HRV/LRV [masl]! 1335/1250! 865.2/852!

 
Table 7: Station properties 

 Station 1 Station 2 
Number of units [no.] 3 2 
Unit capacity [MW] 110 44,1 
Station capacity [MW] 330 88,2 
Head [m] 435-470 360 
Turbine type Francis Francis 
Maximum discharge [m3/s] 26 12 
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Due to some simplifications in the model, the same relative efficiency 
curve is used for all units at all stations.  
This is a plausible approximation since all Francis turbines have the 
same characteristic efficiency curve, and each unit’s maximum discharge 
determines where on the efficiency curve it lies. A constant head factor is 
used at both stations.  
 

3.4  Other general input data 
!
Other general input data to the model that is important for 
understanding and investigating the results is presented below. To 
achieve a consistent analysis these were held constant throughout the 
analysis. 
 

- Water value: The water value is assumed known from a long 
term and seasonal model. In practice it was set to the average of 
all spot price series in the presented scenario tree. 
 

- Minimum unit production: The minimum production was set 
to 50 % of the maximum production on each unit. 
!

- Initial reservoir volume: The initial reservoir volumes of both 
reservoirs were set to 50 % of maximum reservoir volume. 
!

- Maximum bypass: This was set to a large value making the 
restriction none binding. 
!

- Maximum reservoir regulation per hour: This was set to a 
large value making the restriction none binding. 
!

- Maximum ramping: This was set to a large value making the 
restriction none binding. 
!

- Startup costs: The startup cost of each unit was set to 5000 
NOK. 
!

- Inflow: Historical inflow data was used for this specific 
watercourse. 

 
The values of the startup cost and the inflow are real values describing 
the watercourse gained access to through the cooperation with Powel AS. 
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3.5  Regulation obligations 
 
Forecasted prices for regulation markets are difficult to predict. [17] 
indicates that pricing ancillary services such as balancing markets are 
challenging. In the preliminary specialization project [2], historic price 
data was used as input to the model regarding the regulation markets. 
However, this is not a satisfactory approximation when optimizing 
against future market prices. Therefore, using regulation capacity 
obligations as input is preferred. When using such an approach, it is 
possible to find the expected cost – due to less flexibility in the spot 
market – related to different regulation obligations. 
 
It must be noted that this study only estimates the cost of reserving the 
regulation capacity. Thus it is assumed that the regulation markets 
investigated upon only provides income from reserving capacity, and not 
for the energy possibly used if the regulation obligation is activated. 
Some markets do have this additional way of providing income, i.e. the 
Norwegian secondary regulation market [7], and if that is the case it 
should be taken into consideration when evaluating the results. 
 
Different combinations of regulation obligations were carried out when 
testing the watercourse’s ability to deliver obligated regulation capacity. 
A trade-off between reasonable values of obligations regarding the 
biddable volume in different regulation markets compared to the physical 
limitations of the watercourse, gave reasonable values for further 
investigation [7], [8]. 
 
Regarding this specific watercourse, there was an incentive to challenge 
the behavior of the watercourse as much as possible within reasonable 
limits. Units on Station 1 can provide a maximum of 27.5 MW of 
symmetric regulation capacity, while units on Station 2 can provide 11 
MW, hence the watercourse can theoretically deliver a total symmetric 
regulation capacity of 104.5 MW. This value however, is probably 
unrealistic. A range of obligations taking this into account was being 
investigated, making sure the highest regulation obligation succeeded the 
maximum capacity of both units on Station 2. Table 8 shows the 
combinations of regulation obligations mainly investigated upon. 
 

Table 8: The combination of regulation obligations mainly investigated 

Obligation [MW] 0 (Spot only) 6 12 18 24 
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In addition to this, all integer values between 1 MW and 25 MW were 
investigated in order to calculate marginal costs. Only monetary results 
were taken into account in these incremental model executions.  
 

3.6  Approaches when creating output 
 
The goal behind this study was to observe the optimal production 
pattern with and without regulation obligations present, considering an 
uncertain stochastic spot price. The developed model also creates 
detailed results in terms of the behavior of the entire watercourse, i.e. 
unit production, reservoir levels, total profits, the needed break-even 
price in the regulation market to cover the loss in optimal production 
only considering the spot market, and the marginal cost of increasing the 
regulation obligation. Many of these results are investigated thoroughly, 
however some of the most detailed results are only used as guidance for 
the overall analysis.  
 

3.6.1  Comparison between regulation obligations 
 
One of the main decisions a hydropower producer needs to take is the 
amount of regulation obligations to provide into a regulation market. A 
comparison between different levels of regulation obligations is therefore 
vital in order to study the different effects such obligations have on the 
watercourse and on the expected monetary values. 
 

3.6.2  Stepwise decision variables 
 
Given the right output data, decision variables from each individual step 
can be examined, providing the chance to observe how the model 
corrects itself after each step when new information is revealed. This 
information is useful for understanding how the model works, and to 
observe how the behavior upon the uncertain market is conducted. These 
results also indicate the value of proper information about the future. 
 
!  
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3.6.3  Monte Carlo-simulations 
 
In order to obtain a good distribution of the possible outcomes of the 
stochastic model, a large amount of optimizations have to be made. 
These results are needed when calculating the expected value and the 
confidence interval of the needed regulation price in regulation markets 
to make a regulation obligation profitable – i.e. the break-even price - 
when reserving the obligated capacity. Such multiple optimizations were 
made with the different combinations of regulation obligations mentioned 
above. 
 

3.7  Wanted output for further analysis 
 
Below is a more detailed list of the output wanted in order to conduct a 
more in depth analysis of the model executions considering stochastic 
variables. When processing such vast amounts of data, it is necessary to 
structure it properly in order to achieve useful results. 
 

3.7.1  Optimal production patterns and reservoir 
behavior 

 
One of the main and most important results for a hydropower producer 
is the optimal production pattern. The reservoir behavior is also 
essential. In addition, physical variables such as discharge, bypass and 
flood are retrieved to support the analysis.  
 
All these factors will be calculated for all given levels of regulation 
obligation. 
 

3.7.2  Change in spot market profit 
 
When a hydropower producer commits to deliver a certain regulation 
obligation for a given period, the income from the day-ahead spot market 
will decrease since this restricts the producer’s flexibility in this market.  
 
To decide if it is profitable to participate in a regulation market or not it 
is interesting to know how much the income from the spot market is 
reduced if a given regulation obligation is committed upon. 
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3.7.3  Break-even regulation price 
 
When the change in spot market profit for different levels of regulation 
obligation is known, it is possible to calculate the break-even price for 
these levels of obligations. This should be interpreted as the necessary 
price to make a given regulation obligation profitable for the hydropower 
producer. It is calculated by comparing the objective value where no 
regulation obligation is included with the objective value considering the 
given regulation obligation 
 

Pbreak−even =
Z (Y0 )−Z (Ysym )

Ysym H
 

(1) 

 
 where Pbreak−even  is the needed price in the regulation market to break 
even considering the loss of spot market profit, Z (Y0 )  is the objective 
value of the model only considering a spot market, Z (Ysym )  is the 
objective value of the model also considering the current regulation 
obligation Ysym , and H  is the number of hours in the optimization 
period. 
 
If the hydropower producer has some kind of forecast for the prices in 
the regulation market this provides a good decision tool for deciding if a 
given regulation obligation is profitable to commit upon or not. 
 

3.7.4  Marginal regulation cost 
 
If the difference between the various levels of regulation obligation is set 
to one basic unit (1 MW) it is possible to calculate the marginal cost of 
delivering regulation obligation as a function of the regulation obligation. 
This is an approximation of the derivative of the cost function and 
should be interpreted as the cost of increasing the regulation obligation 
with one unit.  
 
From basic microeconomic theory it is known that it is profitable for the 
producer to increase the delivered volume as long as the price is above 
the marginal cost [18]. Hence, this factor is suited for the hydropower 
producer when deciding the optimal level of regulation obligation that 
should be bid into the regulation market if some kind of forecast for the 
given regulation market is available.  
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4  Model description 
 
This chapter discusses and describes the developed model for bidding 
into a day-ahead spot market considering regulation markets. In addition 
to this, appendix D and E includes both a compact mathematical model 
description as well as the implemented code used to execute the model 
and obtain results. 

4.1  Implementation techniques and pre-assumptions 
 
The technical aspects of the model presented in chapter 3.3 - regarding 
the design of the watercourse - are based on the model developed during 
the specialization project [2]. The efficiency curves of the turbines are 
implemented using a P-Q-curve (power-discharge-curve), doing a 
piecewise linearization due to the optimization solving algorithm’s 
limitations of having a linearized problem. 
Some simplifications regarding the model have been made as well; 

• Constant head factor of reservoirs during production 
• The same relative efficiency curve for all units 
• No change in use of water when regulation is activated 
• Cascade-connected reservoirs 
• Best-point strategy when calculating the end reservoir volume 
• Water values are assumed known and independent 
• All markets are assumed perfect 

For a more extensive description of the implementation techniques and 
pre-assumptions, see appendix C, which is a copy of chapter 4.1 and 4.2 
of [2]. 
 

4.2  The approach to a stochastic multi-stage 
optimization formulation 

 
When considering stochastic multi-stage optimization models, the actual 
realized result from multiple optimizations must be taken into account 
and realized step by step, as new information is stepwise revealed. 
 
This model iterates through multiple steps by doing an individual 
optimization for each current step length. A step length spans from the 
start of the current step until the end of the entire optimization period.  
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For the first step length, the entire optimization period is considered, but 
only the optimal decision variables from the first step are specified for 
the final result. For the subsequent step, the model does not take the 
previous step into account when optimizing, but sees only a period 
lasting from the start of the second step until the end of the last step. 
The decision variables are then specified only for the first step that the 
model see - that is from the start until the end of the second step. The 
final optimization sees only the step length of the last step, spanning 
from the start of the last step until the end of it.  
The decision variables from the last step length are then specified, and 
all the determined decision variables are then combined forming the 
complete actual realized decision variables. 
 
If each step consists of 24 hours, the first optimization being done when 
standing in the first step will optimize from hour 1 of day 1 until hour 24 
of the last day within the period. However, only the decision variables 
from hours 1-24 would be specified. When standing in the last step, hour 
1 until hour 24 of the last day is optimized upon, and the corresponding 
decision variables are specified. Variables not dependent of hours but 
only steps (e.g. the end reservoir volumes) are specified only in the last 
step - they are purely guidance variables for the previous steps needed to 
optimize correctly. 
 
To be able to compare solutions with a range of different regulation 
obligations, it is important that the same stochastic outcome is 
considered for each obligation if the comparison should have any 
consistency. For each individual step, the model therefore iterates over 
all regulation obligations, making the total amount of individual 
optimizations equal to the number of steps times the number of 
regulation obligations considered. 
 
!  
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4.3  The mathematical formulation of the stochastic 
day-ahead market model considering regulation 
markets 

 

   

max
ΠePspot

e,hxtot
t ,o,h

h=24t−23

H

∑
e∈ !E
∑

Πe

e∈ !E
∑

+ W r

r∈R
∑ α t ,o,r − Cs,uβ t ,o,s,u,h

h=24t−23

H

∑
u∈U
∑

s∈S
∑

 

 
  ∀t ∈T ,∀o∈O  

 
(2) 

The objective function (2) maximizes profit from all price forecast 
scenarios that can occur given the node in the scenario tree that the 
model is currently standing on. 
In addition, the value of the remaining water in the reservoir is taken 
into consideration, along with the costs of starting up units that are not 
currently active. 
 

  γ
t ,o,r ,24t = γ t−1,o,r ,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀r ∈R  (3) 

  f
t ,o,r ,24t = f t−1,o,r ,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀r ∈R  (4) 

  bt ,o,r ,24t = bt−1,o,r ,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀r ∈R  (5) 

  q
t ,o,s,u,24t = q t−1,o,s,u,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀s ∈S ,∀u ∈U  (6) 

  xt ,o,s,u,24t = xt−1,o,s,u,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀s ∈S ,∀u ∈U  (7) 

  β
t ,o,s,u,24t = β t−1,o,s,u,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀s ∈S ,∀u ∈U  (8) 

  ζ
t ,o,s,u,24t = ζ t−1,o,s,u,24t    ∀t ∈T ≠ t = 1,∀o∈O,∀s ∈S ,∀u ∈U  (9) 

 
Equation (3)-(9) couples the solutions from previous steps, setting the 
decision variables of the actual reservoir volume, flood, bypass, 
discharge, unit production, running indicator and start indicator from 
the last hour of the previous step equal to the decision variables in the 
hour before the first hour of the new step optimized upon. This is done 
in order to make the constraints work flawlessly between each step 
optimization and to obtain a continuous solution. 
 

  
xtot

t ,o,h +Ysym
o,h − Xmax

s,u ζ t ,o,s,u,h

u∈U
∑

s∈S
∑ ≤ 0    ∀t ∈T ,∀o∈O,h = 24t − 23..H  (10) 

  
xtot

t ,o,h −Ysym
o,h − Xmin

s,uζ t ,o,s,u,h

u∈U
∑

s∈S
∑ ≥ 0    ∀t ∈T ,∀o∈O,h = 24t − 23..H  (11) 

   
In order to obtain the given obligations to the symmetrical regulation 
market, equation (10) and (11) makes sure that there is sufficient 
regulation capacity both upward and downward to meet the committed 
obligation at any time. 
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γ t ,o,r ,h + N r ,h − qt ,o,s,u,h

u∈U
∑

s∈S
∑ − f t ,o,r ,h − bt ,o,r ,h −γ t ,o,r ,(h+1) = 0  (12) 

  t = 1,∀o∈O,r = 1, s = 1,∀u ∈U ,h = 24t − 23..H −1   
  

  
γ t ,o,r ,h + N r ,h − qt ,o,s,u,h

u∈U
∑

s∈S
∑ − f t ,o,r ,h − bt ,o,r ,h −γ t ,o,r ,(h+1) = 0

 
(13) 

  ∀t ∈T ≠ t = 1,∀o∈O,r = 1, s = 1,∀u ∈U ,h = 24(t −1)..H −1
 

 
  

  
γ t ,o,r ,h + N r ,h + qt ,o,(s−1),u,h

u∈U
∑

s∈S
∑ − qt ,o,s,u,h

u∈U
∑

s∈S
∑ − f t ,o,r ,h − bt ,o,r ,h + bt ,o,(r−1),h −γ t ,o,r ,(h+1) = 0

 
(14) 

  t = 1,∀o∈O,∀r ∈R ≠ r = 1,∀s ∈S ≠ s = 1,∀u ∈U ,h = 24t − 23..H −1
 

 
  

  
γ t ,o,r ,h + N r ,h + qt ,o,(s−1),u,h

u∈U
∑

s∈S
∑ − qt ,o,s,u,h

u∈U
∑

s∈S
∑ − f t ,o,r ,h − bt ,o,r ,h + bt ,o,(r−1),h −γ t ,o,r ,(h+1) = 0

 
(15) 

  ∀t ∈T ≠ t = 1,∀o∈O,∀r ∈R ≠ r = 1,∀s ∈S ≠ s = 1,∀u ∈U ,h = 24(t −1)..H −1
 

 
  

  
γ t ,o,r ,h + N r ,h − qt ,o,s,u,h

u∈U
∑

s∈S
∑ − f t ,o,r ,h − bt ,o,r ,h −θ t ,o,r = 0

 
(16) 

  ∀t ∈T ,∀o∈O,r = 1, s = 1,∀u ∈U ,h = H
 

 
  

  
γ t ,o,r ,h + N r ,h + qt ,o,(s−1),u,h

u∈U
∑

s∈S
∑ − qt ,o,s,u,h

u∈U
∑

s∈S
∑ − f t ,o,r ,h − bt ,o,r ,h + bt ,o,(r−1),h −θ t ,o,r = 0

 
(17) 

  ∀t ∈T ,∀o∈O,∀r ∈R ≠ r = 1,∀s ∈S ≠ s = 1,∀u ∈U ,h = H
 

 
 
Equation (12)-(17) describes the water balance of each reservoir in terms 
of initial water volume, inflow, discharge, flooding and bypass to other 
lower reservoirs. These equations assume a cascade-connected 
watercourse. The last hour of the previous step is included for the second 
step and its successors, making sure the optimal decision variables from 
the previous step is taken into account correctly, ensuring the same 
amount of water is in the reservoir when changing steps. 
 

  
α t ,o,r =

θ t ,o,r Htot
s,uρgηmax

s,u

3.6 ⋅109  
  ∀t ∈T ,∀o∈O,∀r ∈R,∀s ∈S ,∀u ∈U  (18) 

 
The conversion from reservoir volume (m3) to energy (MWh) is done by 
equation (18). Since it is unknown how the plant will operate with its 
future amounts of water, a best point strategy is used. This strategy says 
that the plant most likely will run at optimal efficiency levels, ensuring 
the corresponding amount of power being produced from the water it 
uses. 
 

  
xt ,o,s,u,h ≤ Γ i qt ,o,s,u,h

Qmax
s,u +Ω i⎛

⎝⎜
⎞

⎠⎟
Qmax

s,u H s,u   ∀t ∈T ,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23..H ,∀i ∈I
 

(19) 
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When calculating the power output, data from an efficiency curve has 
been converted into a P-Q-curve. A piecewise linearization of that curve, 
the linear cuts described by the matrices in equation (19), determines the 
power output a unit will get from the amount of discharged water. 
 

  Bmin
r ≤ bt ,o,r ,h ≤ Bmax

r    ∀t ∈T ,∀o∈O,∀r ∈R,h = 24t − 23..H  (20) 

  Lmin
r ≤ γ t ,o,r ,h ≤ Lmax

r    ∀t ∈T ,∀o∈O,∀r ∈R,h = 24t − 23..H  (21) 

  Lmin
r ≤θ t ,o,r , ≤ Lmax

r    ∀t ∈T ,∀o∈O,∀r ∈R  (22) 

  Qmin
s,u ≤ qt ,o,s,u,h ≤ Qmax

s,u    ∀t ∈T ,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23..H  (23) 
 
Equation (20)-(23) simply describes the minimum and maximum allowed 
levels of the respective bypass from reservoirs, reservoir volumes, end 
reservoir volumes and discharge from units,  
 
  
xt ,o,s,u,h − xt ,o,s,u,(h−1) −Gmax

s,u ≤ 0    t = 1,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 22..H  (24) 

  
xt ,o,s,u,h − xt ,o,s,u,(h−1) −Gmax

s,u ≤ 0    ∀t ∈T ≠ t = 1,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23..H  (25) 

  
γ t ,o,r ,h −γ t ,o,r ,(h+1) − Amax

r ≤ 0    t = 1,∀o∈O,∀r ∈R,h = 24t − 23..H −1  (26) 

  
γ t ,o,r ,h −γ t ,o,r ,(h+1) − Amax

r ≤ 0    ∀t ∈T ≠ t = 1,∀o∈O,∀r ∈R,h = 24(t −1)..H −1 (27) 
 
whereas (24)-(27) limits the maximum change in reservoir volume 
(regulation) and production (ramping). These constraints also take the 
optimal decision variables from the previous step’s last hour into account 
making the coupling between steps flawless. 
 
  x

t ,o,s,u,h − Xmax
t ,o,s,uζ t ,o,s,u,h ≤ 0    ∀t ∈T ,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23..H  (28) 

  x
t ,o,s,u,h − Xmin

s,uζ t ,o,s,u,h ≥ 0    ∀t ∈T ,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23..H  (29) 
 
(28) and (29) limits the maximum and minimum production on each 
unit - as well as initializing a binary running indicator.  
 
  
β t ,o,s,u,h − ζ t ,o,s,u,h −ζ t ,o,s,u,(h−1)( ) ≥ 0    t = 1,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 22..H  (30) 

  
β t ,o,s,u,h − ζ t ,o,s,u,h −ζ t ,o,s,u,(h−1)( ) ≥ 0    ∀t ∈T ≠ t = 1,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23..H  (31) 

  
β t ,o,s,u,h − ζ t ,o,s,u,(h+1) −ζ t ,o,s,u,h( ) ≥ 0    t = 1,∀o∈O,∀s ∈S ,∀u ∈U ,h = 24t − 23 (32) 

 
This binary indicator is again used in equation (30)-(32) to tell whether 
or not a unit is starting up at hour h. Due to the binary properties of the 
running indicator, the startup indicator remains continuous, as it will 
either be 0 or 1 anyway because of its presence in the objective function. 
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Avoiding a binary property for this variable reduces the calculation time 
of the model. If the unit is running in the last hour of the previous step, 
this is taken into account avoiding possible startup costs that should not 
occur. 
 

  
xt ,o,s,u,h

u∈U
∑

s∈S
∑ − xtot

t ,o,h = 0    ∀t ∈T ,∀o∈O,h = 24t − 23..H  (33) 

 
For simplicity, the spot productions from all units are summed up in 
equation (33), enhancing the readability of the objective function.  
 

  ζ
t ,o,s,u,h ∈ 0,1{ }   (34) 

  ∀t ∈T ,∀o∈O,∀s ∈S ,∀u ∈U ,∀h∈H    
   

  x
t ,o,s,u,h ,xtot

t ,o,h ,α t ,r ,β t ,o,s,u,h ,γ t ,o,r ,h ,qt ,o,s,u,h , f t ,o,r ,h ,bt ,o,r ,h ≥ 0
 

 (35) 

  ∀t ∈T ,∀o∈O,∀r ∈R,∀s ∈S ,∀u ∈U ,∀h∈H    
 
Equation (34) and (35) states the binary and non-negativity conditions 
of the variables. 
 

4.4  A more thorough explanation of the model’s 
behavior 

 
This chapter gives an explanation of how the mathematical formulation 
was implemented into the programming language used. A short overview 
of the process is presented in the subchapters below. The complete 
implemented Mosel code with explanatory comments can be found in 
appendix E. 
 

4.4.1  Defined terms used by the model 
 
Scenarios: In this model a scenario is defined as one unique full path 
through the entire scenario tree describing the spot price. Hence, the 
total number of scenarios will be equal to the number of end-nodes in the 
scenario tree. 
 
Steps: A step is in this model defined as a point where new information 
is revealed, thus giving a chance of changing decision variables for the 
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remainder of the period. This model optimizes against a day-ahead spot 
market, and a step will therefore consist of 24 hours. 
 
Obligation index: A counter used to iterate over the different levels of 
regulation obligations. Each obligation index represents one given level of 
regulation obligation. The regulation obligation associated with 
obligation index 1 should always be zero. This means it is a pure spot 
market optimization not taking any regulation market into account, 
needed for utilizing equation (1). 
 
Model index: A counter that is utilized only when a Monte Carlo-
simulation is carried out. The purpose is to create a loop forcing the 
model to run many times in order to carry out as many simulations as 
desired in the Monte Carlo-simulation. 
 
Model price: The price that the model sees for each step, and which it 
optimizes upon. It is a probability-weighted price where all scenario 
paths that are still possible to obtain are included. 
 
Actual price: The simulated price that occurred for each step. After 
the model has optimized taking the model price into consideration, a 
probability function based on the probability distribution of the 
remaining scenario paths are utilized, deciding which way the price goes. 
A new model price is then calculated for the next step, based on the 
scenario paths that now are available given the outcome of the actual 
price for the previous step. 
 
Realized results: The optimal decision variables for the first 24 hours 
of the current step length is stored into parameters used for consecutive 
steps and for the final result. These results represent the actual 
scheduled behavior of the watercourse.  
 
Stepwise results: Results from each stepwise optimization. Only the 
first 24 hours is actually utilized for the final result, however the rest of 
the variables are useful for analytical purposes. 
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4.4.2  A flow chart of the execution of the model 
!
!

 
Figure 7: An il lustrative flow chart of how the model works 

!  
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4.4.3  The pseudo code of the model 
!
 
 
 
Declare all sets, variables, parameters and restrictions 
Read input data from file  
Create needed matrixes from SCENRED output data (appendix 0) 
for each m�M 

for each t�T  
          for each o�O 
              maximize objective function (equation (2))  

subject to all constraints (equation (3)-(35)) 
                  if t>1 
                       for h=24(t-1) 

 Fix all variables to the solution from previous step  
in the first hour of the current optimization period 

end do     
                  end if 
   for each h=[24(t-1),24t] 
                      save all variables to Realized<variablename> 
                  end do 
                  for each h�H 
                      save all variables to Stepwise<variablename> 
                 end do 
                  for each h=[24(t-1),24t] 
                      save  ModelPrice 
                  end do 
                          for each h=[24(t-1),24t] 
                      save ActualPrice 
                  end do 
          end do 
  Run the probability function to find out which branch to  

follow in the scenario tree to the next step. 
end do 
Calculate Objective values and break-even price based on both ModelPrice and ActualPrice 

end do 
Write output data to file 
end model 
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4.4.4  An in depth explanation of the model’s workflow 
process 

 
This chapter gives an in depth explanation of the logic used when 
developing the stochastic model and describes how the model works in a 
thoroughly manner. It can be skipped, however it may prove to be useful 
reading in order to get a wider understanding of the later presented 
results. 
 
I n i t i a l  d e c l a r a t i o n  o f  p a r ame t e r s  and  i npu t  d a t a  

First all sets, parameters, variables and restrictions that are going to be 
used in the model are declared, the input data is read from Excel files 
and matrices describing the scenario tree is created. The output from 
SCENRED cannot be utilized directly by the stochastic model. Hence, a 
subscript to manipulate these data into a format that can be utilized by 
the stochastic model is necessary. A further explanation of this method 
can be found in appendix 0. 
 
Th e  l o op  h i e r a r c hy  o f  t h e  mode l  

The model index-loop is first established. This loop is only utilized when 
Monte Carlo simulations are carried out. Since the results from the 
model will vary to some degree due to the probability function within 
the stochastic model, the entire calculation process is carried out 
multiple times giving more reliable results.   
 
The step-loop is then established within the model index-loop. Since the 
optimal solution will change when new information about the spot price 
is revealed when the model moves to the next step, a new optimization is 
carried out for each step. 
 
Within each step an individual optimization should be carried out for all 
levels of regulation obligations. Hence, an obligation index-loop iterating 
over all levels of regulation obligations is needed. The given regulation 
obligation influences some of the physical restrictions, since it must be 
specified that the given regulation obligation must be available as 
rotating reserve within the system. To be able to compare the different 
regulation obligations the obligation index-loop must be inside the step-
loop. The same outcome of the stochastic properties will then be used on 
all regulation obligations. 
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The  ob j e c t i v e  f un c t i o n  and  ba s i c  phy s i c a l  c on s t r a i n t s  

The basic part of the linear model - an objective function and the 
necessary linear constraints needed to describe the physics of the 
watercourse and the other constraints affecting the solution space - is 
then specified within the model index-loop, the step-loop and the 
obligation index loop.  
 
Coup l i n g  o f  v a r i a b l e s  b e twe en  s t e p s  

When the model moves to the next step and new information is revealed 
a new optimization is carried out, but this time only from the current 
step to the end of the entire period. However, since it is assumed that 
the spot market under consideration is a day-ahead market the 
production for the next 24 hours must always be specified based on the 
current information about the spot price. Hence, there must be a 
coupling between the optimization in each step to be able to establish a 
continuous optimal solution for the entire period. This coupling is 
specified for all obligation indices. These restrictions specify that the 
decision variables in the hour prior to the first hour of the current step 
must be equal to the last hour of the previous step, considering the same 
regulation obligation. 
 
S av i n g  r e a l i z e d  r e s u l t s  

As mentioned earlier, the solution will change as new information about 
the spot price is revealed. However, it is always necessary to decide the 
optimal production for the next 24 hours based on the current available 
information. Therefore, to find the optimal solution for the entire period 
the solution for the next 24 hours must be saved from the optimization 
in each step. This is called the realized solution. 
 
S av i n g  s t e pw i s e  r e s u l t s  

Since there is a disclosure of new information regarding the spot price 
when the model moves to the next step, the optimal solution will change 
to some degree. Hence, it is possible to see how much the solution 
changes if the optimal solution for the entire optimization period is saved 
for each stepwise optimization.  These solutions are named stepwise 
results. However, since the model only optimizes from the current step to 
the end of the entire period, these stepwise results will always be zeros 
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for the hours already specified. Hence, it is only possible to compare the 
solutions in the hours that are not yet specified. 
 
Mode l  p r i c e  and  a c t u a l  p r i c e  

There are two price series that are interesting to save and compare from 
each execution of the model; the model price and the actual price. The 
model price is the price series that the model optimizes against in each 
step. It is the probability weighted average of all the price series that 
still can occur given the current node the model stands on in the scenario 
tree. This price series will change as new information is revealed when 
the model moves to the next step, because it will rule out approximately 
half of the scenarios that were possible in the last step.  
 
The actual price is the price that occurred given the results from the 
probability function that determines the models movement through the 
scenario tree.  
 
R e c a l c u l a t i n g  t h e  a c t u a l  o b j e c t i v e  v a l u e  

Since the model only optimizes over the time period from the current 
step to the end of the entire period, and the solution only will be realized 
for the first 24 hours of each step length, the objective value from the 
optimization in each step cannot be utilized directly. The values have to 
be recalculated based on the solutions that were previously saved in the 
model.  
 
There are two approaches to calculate the objective value; either the 
model price or the actual price could be utilized. Both methods are used 
in the model, but the result should be interpreted in different ways. The 
objective value calculated based on the model price should be interpreted 
as the value of the objective function the hydropower producers should 
expect during the given optimization period.  
 
The actual price however is not a calculated average but the spot price 
scenario that actually turned out to occur given the results from the 
probability function. The objective value calculated from the actual price 
should instead be interpreted as the realized objective value the 
hydropower producer actually observed standing at the end of the period 
looking back in time. 
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The  p r obab i l i t y  f un c t i o n  d e c i d i n g  t h e  p a th  t h r ough  
t h e  s c e na r i o  t r e e  

In each step, the model is standing in a branching point in the scenario 
tree. There are multiple branches with different probabilities the model 
could follow during the next time step. To choose which branch to follow 
the model utilizes a probability function. This function utilized a 
randomly generated number between 0 and 1 and the probabilities 
associated with each branch to choose which branch to follow in the 
scenario tree when moving to the next step. The probability function 
should be outside the obligation index-loop but within the step-loop, to 
achieve some consistency in the analysis.  
 
Ca l c u l a t i n g  t h e  b r e ak - e v en  p r i c e  

One of the reasons for calculating objective values is to be able to find 
the break-even price for each level of regulation obligation. This is the 
price that is needed to make it profitable for the producer to commit to 
the given regulation obligation. It is calculated by utilizing equation (1). 
 
Since there are two ways to calculate the objective values there will also 
be two different break-even prices for each regulation obligation. As with 
the objective values these should be interpreted in different ways. 
Utilizing the model price, the break-even price should be interpreted as 
the price the producer should expect is needed in order to make it 
profitable committing to a regulation obligation. On the other hand, 
utilizing the actual price, the break-even price should be interpreted as 
the break-even price that actually turned out to be necessary to make it 
profitable to commit to the given regulation obligation standing at the 
end of the period investigating the past. 
 
The model also makes it possible to see how the break-even prices 
develops when the model moves to the next step and new information is 
revealed. This can be done by investigating the stepwise results. 
However, if the given regulation market has a longer time block than the 
spot market this would not be interesting in the real world since the 
decision must be taken based on the information that was available in 
the past, not the information available during the period the regulation 
obligation applies for. 
 
!  
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Ca l c u l a t i n g  t h e  ma r g i n a l  r e gu l a t i o n  c o s t  

In addition to the break-even price the model calculates the marginal 
cost for the different levels of regulation obligations. This is the cost 
related to increasing the regulation obligation with one unit (1 MW). It 
is calculated as the difference in objective value between to incremental 
values of the regulation obligation dived by the number of hours in the 
optimization period. 
 
Just as for the break-even price, either the actual price or the model 
price could be utilized to calculate the objective values used to calculate 
the marginal costs. If the model price is used the marginal cost should be 
interpreted as the expected marginal cost standing within the 
optimization period. On the other hand, if the actual price is used it 
should be interpreted as the marginal cost the producers actually faced 
standing at the end of the optimization period investigating the past. 
 
Also, similarly as with the break-even price it is possible to see how the 
marginal cost changes as new information about the future spot price is 
revealed as the model moves through the scenario tree, by investigating 
the stepwise results. 
 
U t i l i z a t i o n  o f  t h e  mode l  
 
If the model should be utilized in practice the hydropower producer 
should emphasize using the break-even price and marginal cost 
calculated based on the model price, when considering if a regulation 
obligation should be accepted or not. This is because it is less dependent 
of the outcome from the probability function, and hence is a better 
decision support than the results calculated based on the actual price. 
The most reliable solution can be found by carrying out a Monte Carlo-
simulation and use these results to find the mean break-even price and 
marginal cost for each regulation obligation based on the model price. 
 
 
 
 
 

  



  34 

5  Results and analysis 
 
All results presented below are unaltered output data from executions 
done on the stochastic multi-stage optimization model described in 
chapter 4. The model was implemented using the optimization language 
Mosel, and executed in Xpress-IVE. 
 
The following subchapters contain results and corresponding analysis of 
a stochastic routine. Given the uncertainty and variations a model with 
such properties yields, different situations occur for each execution of the 
model. However, the results show how the model behaves considering the 
stochastic outcome of the individual model executions presented.  
 
The actual price that occurs with the introduction of new information for 
each step is compared against the model price. For each regulation 
obligation that is compared within the same stochastic outcome of the 
spot price, the optimal production patterns, reservoir behaviors, profit, 
break-even price and marginal cost are analyzed.  
 
Analyzing how the model optimizes within each step is also interesting. 
Thus, the same subjects mentioned in the paragraph above are also 
investigated stepwise by examining how the outcome of the stochastic 
uncertainty affects the decision variables and corresponding results. 
 
Lastly, to establish a more certain behavior of the model’s result, Monte 
Carlo-simulations with a vast amount of executions yielding different 
stochastic outcomes were performed. The expected values of the break-
even price and marginal cost were calculated. In addition to this, 
confidence intervals of the break-even price were created. 
 

5.1  Comparison of prices 
 
As mentioned in chapter 4.4.4, the model calculates an average price 
based on the possible scenarios that are available during each step called 
the model price. 
However, after the completion of each stepwise optimization, a random 
event based on probability occurs, yielding one of the possible outcomes 
to have actually happened. 
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Figure 8 shows the difference between the simulated actual price and the 
probability weighted model price the model optimizes against. 
Dependent on which event to occur, the actual price will either lie below, 
above or almost on the model price. Of course, the model price is - like 
the actual price - also dependent on the stochastic outcomes due to it’s 
probability weighted average of the still achievable spot prices given the 
current position in the scenario tree. But unlike the actual price, the 
model price has a more average based behavior regarding the steps not 
yet optimized. 
 
In this case, the actual price turned out to be above the model price in 
steps 1, 5 and 7, respectively, and below in steps 2 and 8. For the 
remaining steps, the model price and the actual price were 
approximately equal.  
 

 
Figure 8: Comparison between the actual realized price and the probability 

weighted model price optimized upon 

!

5.1.1  The model price vs. the actual price 
 
For analytical purposes, the model price is most essential, being the price 
profile that the model optimizes against. The results based on this price 
should be the ones hydropower producers rely on when utilizing the 
model to decide the bidding strategy for the upcoming period. 
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On the other hand, the actual price is a good pinpoint to what could 
happen, giving a simulated scenario-based result that varies between 
optimizations. In a retrospective deterministic perspective, the actual 
price would yield the optimal results. 
 

5.2  Comparison of regulation obligations 
 
While maintaining the same stochastic outcome of the price scenarios, 
the model also takes different regulation obligations into consideration, 
giving a good overview of how the physical properties of the watercourse, 
as well as the economic output varies with an increasing amount of 
capacity reserved for the regulation markets. 
 

5.2.1  Optimal production patterns 
 

 
Figure 9: Optimal production pattern considering different regulation obligations 

along with both the model price and the actual price 
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The graphs displayed in Figure 9 describe the optimal, realized scheduled 
production over all steps, considering different obligations. 
In this specific optimization, the model execution not considering 
regulation obligations is producing in high price curves, but has no 
production at all in time segments where the price is significantly lower 
than the water value. The combination of the difference between the 
spot price and the water value and the cost of restarting units defines 
when to produce and not produce. 
 
The price is never sufficiently high enough to give the units an incentive 
to produce above their best point on the efficiency curve. The maximal 
capacity of the watercourse is 418.2 MW, however the peak production 
never succeeds 360 MW when all units are activated.  
 
When introducing symmetric regulation obligations that must be fulfilled 
during the entire optimization period, no production stops are permitted. 
In low price segments, the trend is that the units combined produce just 
enough to be able to deliver the committed regulation obligation. 
Because the reduced flexibility in upward production does not intervene 
with the best point of the generators - the maximum production in the 
highest price peaks is just as high for all regulation obligations compared 
to the model execution where only a spot market is considered. However, 
since some units must run at all times, the model executions considering 
regulation obligations are taking advantage of the lower price peaks as 
well, trying to minimize the loss in the spot market as much as possible 
being that they must produce anyway. 
 

5.2.2  Reservoir behaviors 
!

 
Figure 10: Levels of Reservoir 1 considering different regulation obligations 

0 

2000000 

4000000 

6000000 

8000000 

10000000 

12000000 

14000000 

16000000 

18000000 

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 

Re
se

rv
oi

r l
ev

el 
(m

3 ) 

Hours 

0 MW 6 MW 12 MW 18 MW 24 MW 



  38 

 
Figure 11: Levels of Reservoir 2 considering different regulation obligations 

 
Considering the reservoir levels for each regulation obligation, the twelve 
times larger Reservoir 1 has a clear trend of using more water with each 
increasing level of regulation obligation. This is logical, because a higher 
obligation means a higher minimum production at all times, yielding a 
higher consumption of water.  
 
Reservoir 2, with the physical properties of being quite small, is heavier 
regulated with the introduction of regulation obligations. The maximum 
regulation between hours and maximum unit ramping restrictions are 
not binding, causing a rapidly changing reservoir level of Reservoir 2. It 
is clearly used as a regulation reservoir. However the limitations 
regarding its size are still a bottleneck in the watercourse. This 
sensitivity analysis is further discussed in chapter 6.2. 
 

5.2.3  The change in spot market profit 
 
Optimizing only considering a spot market gives the best possible 
objective value in the model, reflecting the profit a hydropower producer 
sees in the day-ahead spot market. 
 
When introducing regulation obligations, the profit from the day-ahead 
spot market decreases in accordance with increasing obligations. Adding 
additional constraints that restrict the solution space of the model – i.e. 
reducing the flexibility to benefit from price differences - will in most 
cases result in a lower value of the objective function, at best sustain its 
value [19].  
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Figure 12: Total profits considering different regulation obligations 

 
As shown in Figure 12, the profit from the spot market is gradually 
decreasing with each regulation obligation level. There is a vast increase 
of costs when an additional unit must start in order to fulfill a regulation 
obligation. This is due to the fact that the unit must produce at 
unfavorable times, often at a minimum production capacity plus the 
capacity needed for the obligation. For 24 MW of regulation obligation 
this is the case. Station 2 is preferred for delivering regulation capacity 
because of the risk of flooding Reservoir 2 when not producing. However, 
at 24 MW Station 2 is not able to cover the obligation alone, the two 
units has a maximal symmetric regulation contribution of 11 MW each, 
yielding at least 2 MW to come from the Station 1. This causes a lot of 
water to be discharged from the upper station during low price segments, 
thus making the change in profit between 18 MW and 24 MW extra 
noticeable. This is further discussed in chapter 6.4. 
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5.2.4  The break-even price in the regulation market 
 

 
Figure 13: The break-even price in the regulation market considering different 

regulation obligations 

 
Perhaps the most essential part of information a hydropower producer 
needs when deciding whether or not to participate in a regulation 
market, is an estimation of what the price in such a regulation market 
needs to be in order to make an increased profit compared to only 
bidding into the spot market. Figure 13 illustrates this break-even price 
needed in order to at least break even with the optimization only 
considering a day-ahead spot market.   
 
The effect of reserving capacities above 2x11 MW – as mentioned the 
watercourse prefers to deliver regulation from Station 2’s two units – is a 
drastic change in profit from 18 MW to 24 MW because Station 1 must 
start to deliver regulation as well, causing a much higher break-even 
price. This price will decrease again with an increased amount of 
regulation obligation, until another unit must be initiated in order to 
fulfill the obligation committed upon. Chapter 6.4 further discusses this. 
 

5.2.5  Marginal costs when entering regulation markets 
 
The marginal regulation cost is calculated as the decrease in the 
objective function when increasing the regulation obligation with one 
unit, in this case 1 MW, divided by the number of hours considered in 
the optimization period. 
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The decrease in the objective function is equivalent to the loss of profit 
in the spot market when reserving one more unit of regulation capacity 
for other markets. 
 

 
Figure 14: Marginal costs considering all regulation obligations between 1 MW 

and 25 MW 

!
Figure 14 illustrates this marginal regulation cost. The observed trend is 
that at the exact obligation when a new unit must be utilized to deliver 
regulation capacity, the cost is noticeably increased. This is because of 
the minimum production constraint on the unit causing at least 50% 
production at unfavorable periods. However, the marginal price for the 
following regulation obligation is often significantly lower, as the new 
loss in the spot market when already deciding to utilize a new unit is not 
necessarily as high. As mentioned, see chapter 6.4 for a further discussion 
regarding this observation. 
 
The use of such a graph is to see how much the regulation obligation can 
be increased, given that you already have decided upon delivering some 
regulation. It can be used in combination with the break-even price 
graph, which is further discussed in chapter 6.5. 
 

5.3  Stepwise analysis 
 
The model optimizes the production from the current step the model 
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tree are excluded. Hence, more information about the future is revealed 
and the model gets a new scope of opportunities regarding the spot price 
it optimizes against. 
 
Of course, in a day-ahead spot market the production in the next step 
must always be decided and specified based on the current information 
about the future. For each step, the optimal results for the next steps are 
specified as the optimal strategy. However, it is possible to change the 
production for the rest of the period as new information gets revealed at 
the beginning of the next step. 
 
The model saves the results from each time step as it iterates through 
the entire period. Hence, it is possible to see how the optimal results 
change as new information about the future is revealed. This also gives 
an indication of how dependent the results are of the price compared to 
other factors such as the topology and physical restrictions in the 
watercourse. If only small changes in the optimal production occurs as 
new information about the future spot price is revealed, this indicates 
that the topology of the watercourse or other physical restrictions are 
influencing the results more than the actual market price. [1] indicated 
that this often is the case. 
 

5.3.1  Stepwise changes in the model price 
 
The price profile that the model optimizes upon changes with each step, 
as new information is revealed. In the first step, all 512 price scenarios 
are probability weighted, but in the successive steps, many scenarios are 
no longer achievable, thus not taken into account when probability 
weighing the remaining possible scenarios. 
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Figure 15: The model price for each step during a stochastic optimization 

 
Figure 15 illustrates how the model price is affected by the different 
price profiles taken into consideration for each stepwise iteration. For 
instance, when considering the possible scenario prices in step 2, some 
scenarios are no longer available dependent on where in the scenario tree 
the random event tells the model to stand. This yields a higher 
probability weighted price for the rest of the period than when 
considering the possible scenario prices in step 1. This effect is observed 
at every step change, and the most prominent occurrence is seen when 
considering step 6. The magnitude of these effects will change between 
each execution of the model due to the discussed probability function 
within the stochastic model. 
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5.3.2  Stepwise optimal production patterns 
 

 
Figure 16: Optimal production pattern with no regulation obligation from each 

time step along with both the model price and the actual price 

!
Figure 16 illustrates the optimal production strategy for a case with no 
regulation obligations when the producer only participates in the day-
ahead spot market. It indicates that as new information about the future 
is revealed in each step, the optimal production pattern for the rest of 
the period changes.  
 
For instance, the optimal production pattern when standing in step 3 is 
adjusted downward compared to the optimal production pattern in step 
2. This is explained by looking at the price profiles. The actual price to 
occur in step 2 turned out much lower than the probability weighted 
model price used to optimize step 2, thus the model corrects itself during 
the optimization in step 3. 
 
When looking back in time after the current optimization period the 
producers will see that that optimal decision in the start of the period 
often was either too optimistic or too pessimistic given what actually 
happened with the random variable. How far away from the strategy 
that would be optimal in a deterministic back seeing perspective the 
actual scheduled production patterns is, are often very dependent of how 
wide the scope of opportunities for the stochastic input variables is, in 
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this case the spot price. Since the model utilizes the model price of all 
the full paths in the scenario tree that can occur in the given step, the 
optimal solution from a stochastic model often lies towards the center of 
the space of possible outcomes. Hence, the optimal solution from a 
deterministic back seeing perspective will be further away from the 
current optimal solution from the stochastic multi-stage model, if the 
realized value of the stochastic spot price is at the edge of the scope of 
opportunities. 
 
The model optimizes the bidding into a day-ahead market several days 
into the future, which can seem a bit unnecessary since it is a day-ahead 
market.  This is due to the fact that regulation markets often have 
longer time blocks and time horizons. If the producer participates in such 
a market and commits to deliverer a certain amount of available 
regulation capacity for the whole period, this will restrict the window of 
opportunities for the whole week also in the day-ahead spot market. 
Hence, the production pattern for the day-ahead spot market is to some 
degree already decided upon. The solution space in the day-ahead spot 
market optimization gets limited when the producer is committed to 
deliver regulation capacity. 
 

5.3.3  Stepwise optimal reservoir behavior 
!
It is also interesting to see how the reservoir levels given by the optimal 
production strategies changes as new information about the future spot 
price is revealed. This is illustrated in Figure 17 and Figure 18. 
  

 
Figure 17: Reservoir levels at Reservoir 1 given optimal production with no 

regulation obligation for each time step 
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Figure 18: Reservoir levels at Reservoir 2 given optimal production with no 

regulation obligation for each time step 

 
Since Reservoir 1 is much larger than Reservoir 2 relative to the 
maximum discharge of the stations the relative change in the optimal 
production strategy from step to step are much larger at Reservoir 2 
than at Reservoir 1. As discussed in chapter 5.3.2, the model was more 
optimistic regarding the future price when optimizing step 2 compared to 
step 3. This can again be observed through the end reservoir level of 
Reservoir 1, where more water is used in the optimization in step 2 than 
when optimizing step 3. 
 

5.3.4  Stepwise changes in spot market profit 
 
The expected value of the objective function also changes as new 
information is revealed. Of course, the actual value of the objective 
function will always decrease during this process since the model always 
maximizes the income from the current step to the end of the period. 
Hence, when the optimization period gets shorter the value of the 
objective function will decrease. 
 
Nevertheless, it is possible to see how the objective function would 
change as new information is revealed, if the income from the spot 
market and the startup costs from the past steps are taken into account. 
If the realized income from the spot market as well as the incurred 
startup costs for all past steps are added to the objective function it is 
possible to compare the values of the objective function from the 
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different steps. This procedure should be done for all steps except the 
first. The value of the remaining water in end reservoirs from the past 
time steps should not be considered since this will be taken into account 
by the optimized objective function in the current step. This method 
makes it possible to see how the disclosure of new information influences 
the expected value of the objective function over the entire period. 
 

 
Figure 19: Stepwise objective values for different regulation obligations when the 

model price is used to calculate the value from the past 

!

 
Figure 20: Stepwise objective values for different regulation obligations when the 

actual price is used to calculate the value from the past 
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Figure 20 illustrates the expected objective value for each step when the 
actual price, the price that actually occurred given the outcome from the 
probability function, is used to calculate the income from the past steps. 
In Figure 19 the expected objective value for each step when the model 
price, the probability weighted spot price that the models sees and 
optimizes against, is used to calculate the income from the past steps.  
 
For all regulation obligations, the above figures show a decrease in the 
objective function after step 2, due to the new information available after 
this step. In step 7 and 8, a new optimism regarding the spot price is 
again observed. However, the last step indicates a more pessimistic 
outcome in the actual price. 
 

5.3.5  Stepwise break-even price 
 
From the objective values it is possible to investigate how the disclosure 
of new information influences the expected break-even price related to 
committing to a given regulation obligation. This is illustrated in Figure 
21 and Figure 22. 
 

 
Figure 21: Stepwise break-even prices for different regulation obligations when 

the model price is used to calculate the income from past steps 
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Figure 22: Stepwise break-even prices for different regulation obligations when 

the actual price is used to calculate the income from past steps 

 
The trend regarding the development between step 2 and step 3 are also 
present in these figures, for the break-even price it is reflected in an 
increased value between the steps. This effect is generally more present 
when utilizing the actual price compared to when utilizing the model 
price, because the solutions calculated based on the model price will lie 
more towards the center of the possible solution space for the break-even 
price. 
  
The break-even price calculated with the model price should be 
interpreted as the expected break-even price when standing within the 
time horizon of the given regulation obligation, while the break-even 
price calculated with the actual price should be interpreted as the break-
even seen by the producer in a back seeing deterministic perspective 
standing at the end of the period. 
 
It should be noticed that the expected break-even price related to a 
regulation obligation varies significantly when new information is 
revealed in the model. This applies both when the actual price and when 
the model price is used to calculate the income from the past steps, and 
indicates that also with a stochastic multi-stage model there is great 
uncertainty related to the break-even price of committing to a regulation 
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obligation. The break-even price related to a certain level of regulation 
obligation is highly dependent on which of the possible scenarios outlined 
in the scenario tree that actually occurred from the outcome of the 
probability function within the stochastic model.  
 
Regulation markets often have longer time blocks than the spot market, 
i.e. an entire week. Hence, a hydropower producer would use the model 
to optimize over the entire period and use the calculated break-even 
price related to committing upon a regulation obligation, when 
considering if the regulation obligation would be profitable for the next 
week. In this case it would not be possible to recalculate after the 
disclosure of new information has happened, the decision of committing 
to a regulation obligation or not would already have been made. 
Accordingly, stepwise results are only interesting for analytic purposes, 
not for an actual scheduling of the production. 
 

5.3.6  Stepwise marginal cost 
 
It is also possible to investigate how the marginal cost for the different 
levels of regulation obligation changes as the model moves to the next 
step and new information about the future spot price is revealed. 
Similarly as for the break-even price, this can either be done by using the 
model price or the actual price to calculate the income from the past 
steps when calculating the objective values. 
 

 
Figure 23: Marginal costs for all regulation obligations when the model price is 

used to calculate the income from past steps 
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As for the break-even price the marginal cost calculated with the model 
price should be interpreted as the expected marginal cost standing within 
the time horizon of the given regulation obligation while the marginal 
cost calculated with the actual price should be interpreted as the 
marginal cost seen by the producer in a back seeing deterministic 
perspective standing at the end of the period. 
 

 
Figure 24: Marginal costs for all regulation obligations when the actual price is 

used to calculate the income from past steps 

 

Figure 23 and Figure 24 illustrates the stepwise marginal costs when 
utilizing the model price and the actual price respectively. 
They describe the same correlation regarding the development of the 
stepwise price, as mentioned in chapter 5.3.1. Due to the optimistic price 
forecast of step 6, the marginal cost correspondingly increases at this 
step. 
 
It should be noticed that the plots are dominated by the very large 
marginal cost occurring when it is necessary to activate another unit for 
the entire period to conduct the given regulation obligation. Hence, it is 
difficult to see how the marginal cost changes for the other regulation 
obligation from step to steps since these are of much smaller values.  
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5.4  Monte Carlo analysis 
 
Since the results vary to some degree between each full execution of the 
stochastic multi-stage model - due to the probability function within the 
model deciding the path through the scenario tree - Monte Carlo-
simulations were carried out. The model was executed a large number of 
times and the mean values of the key economic figures as well as the 
distributions of the results were analyzed. Because of limited 
computation time it was also investigated if a chosen number of 
executions was sufficient enough to establish stable results, and was done 
by comparing the results from a Monte Carlo-simulation with 100 
executions against a Monte Carlo-simulation with 1000 executions.  
 
Two different Monte Carlo-simulations is presented and used in this 
chapter: 

• A simulation with 100 model executions considering all regulation 
obligations between 1 MW and 25 MW. This simulation is used in 
5.4.1, 5.4.2, 5.4.3 and 5.4.6 

• A simulation with 1000 model executions considering regulation 
obligations of 6 MW, 12 MW, 18 MW and 24 MW.   This 
simulation is used in 5.4.4 and 5.4.6.  

Chapter 5.4.6 motivates that the empiric results obtained in both 100 
and 1000 model executions does not differ significantly enough to 
influence the analysis.  
 
When carrying out a Monte Carlo-simulation it is inefficient and 
unnecessary to analyze all results from each execution of the model. It is 
challenging and time-consuming to interpret all technical results 
describing the physics of the watercourse, e.g. production patterns, 
reservoir levels and run indicators.  Hence, the focus should lie on the 
key figures. In this case this means objective values, break-even prices 
and marginal costs for the different levels of regulation obligations. Since 
the latter two figures are calculated from the objective values, and the 
objective value do not have any practical meaning in such a scenario 
based setting, the focus should lie on the break-even prices and marginal 
costs.  
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5.4.1  Spot prices in a Monte Carlo-simulation 
 
When a Monte Carlo-simulation is carried out, the actual price occurring 
within the model will change between each execution. These price series 
are illustrated in Figure 25. 
 

 
Figure 25: Actual price series from a Monte Carlo-simulation with 100 executions 

of the model 

!
It illustrates that the number of possible outcomes for the spot price is 
increasing for each step, and is due to the structure of the scenario tree 
used in the model, described in Table 5. With a large number of 
executions, such a figure starts to look like the total scope of 
opportunities for the stochastic spot price, shown in Figure 5.  
 

5.4.2   Break–even price for different regulation 
obligations 

 
The development of the break-even price when the regulation obligation 
increases is illustrated in Figure 26 and Figure 27, and can be explained 
based on the physical properties of the watercourse. 
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Figure 26: Mean break-even price for different levels of regulation obligations 

when the model price is used to calculate the objective values 

!

 
Figure 27: Mean break-even price for different levels of regulation obligations 

when the actual price is used to calculate the objective values 

!
When it is necessary to let another unit run continuously throughout the 
entire period in order to meet the given regulation obligation, the break-
even price will increase. In this watercourse and for the regulation 
obligations investigated, this occurs for regulation obligation levels of 1 
MW, 12 MW and 23 MW. After such an increase the break-even price 
will decrease gradually until it is necessary to let yet another unit run for 
the entire period in order to meet the regulation obligation.  
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5.4.3  Marginal cost for different regulation obligations  
!
While the break-even price reflects the cost of committing to a given 
regulation obligation the marginal cost reflects the cost of increasing the 
regulation obligation with one unit (1 MW). Just as with the break-even 
price the development of the marginal cost with increasing levels of 
regulation obligations can be explained by the physics of the 
watercourse.   
 
As Figure 28 and Figure 29 illustrates, the marginal cost is significantly 
higher for certain levels of regulation obligations. These are the same 
levels as described in 5.4.2 where it is necessary to activate another unit 
for the entire period in order to meet the given regulation obligation. For 
the other levels of regulation obligations the marginal cost is relatively 
low. 
 

 
Figure 28: Mean marginal regulation cost for different levels of regulation 
obligations when the model price is used to calculate the objective values 
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Figure 29: Mean marginal regulation cost for different levels of regulation 
obligations when the actual price is used to calculate the objective values 

 
This indicates that it often will be profitable to commit upon a 
regulation obligation just below the level where it is necessary to activate 
another unit. Often, this will also be a local minima on the break-even 
price curve, see Figure 26 and Figure 27. A further discussion of how to 
use these results in order to optimize the bidding strategy in a regulation 
market can be found in chapter 6.5. 
 

5.4.4  Distribution of the results  
!
It was also investigated if it was possible to establish a general 
mathematical probability distribution of the results from a Monte Carlo-
simulation of the stochastic multi-stage optimization model. This would 
provide a more accurate description of the expected results than what is 
obtained by simply calculating the mean results from the Monte Carlo-
simulation. 
For this analysis a Monte Carlo-simulation with 1000 executions of the 
model, but only with regulation obligations of 6 MW, 12 MW, 18 MW 
and 24 MW, was used. The reason for this simplification is computation 
time, a Monte Carlo simulation with 1000 simulations considering all 
relevant regulation obligations would need a disproportionately long 
computation time.  
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Histograms illustrating the distribution of the break-even price for the 
different levels of regulation obligations are presented in Figure 30 - 
Figure 33. 
 
 

  
Figure 30: Real distribution of break-

even prices with 6 MW regulation 
obligation 

Figure 31: Real distribution of break-
even prices with 12 MW regulation 

obligation 

 
 

! !
Figure 32: Real distribution of break-

even prices with 18 MW regulation 
obligation 

!

Figure 33: Real distribution of break-
even price with 24 MW regulation 

obligation 

!
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The tool Minitab 17 Statistical Software5 was used to investigate if any 
general mathematical probability distribution could describe these results 
in a satisfying way. Many common probability distributions were 
analyzed, see appendix F. 
 
A Goodness of Fit Test was conducted for each distribution considering 
each level of regulation obligation. This is a form of statistical hypothesis 
testing, where a null-hypothesis is either accepted or rejected based on a 
chosen significance level [20]. In these tests, a significance level of 5% 
was used [21].  
 
However, all null-hypothesizes were rejected meaning that none of the 
tested distributions could describe the distribution of the break-even 
prices for the different levels of regulation obligations. The results from 
this testing can be found in appendices F.1 - F.4. 
 
In addition to the fact that it proves difficult to describe the 
distributions with a general mathematical formulation, Figure 30 - 
Figure 33 illustrates that the general shape of the distribution changes 
between different levels of regulation obligations.  This indicates that the 
physical properties of the watercourse - most likely the regulation levels 
where it is necessary to activate another unit to meet the given 
regulation obligation, further discussed in chapter 6.4 - influences the 
shape of the distribution. Hence, a regulation obligation close to one of 
these levels will have a different distribution than a regulation obligation 
lying approximately midway in between two such levels. 

5.4.5  Confidence intervals 
 
The main motive for finding a probability distribution was to facilitate 
the creation of confidence intervals describing the expected break-even 
prices. However, since no general mathematical probability distribution 
was found, an alternative solution was to create empirical confidence 
intervals.  If a confidence level of 95 % is desired, this is simply done by 
removing 2.5 % of the tail in both ends in the distributions presented in 
Figure 30 - Figure 33. 
 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 http://www.minitab.com/en-us/products/minitab/ 
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Figure 34: Empirical confidence intervals for the break-even price for different 

levels of regulation obligations 

!
Figure 34 illustrates both the expected value and the range of the 95% 
empirical confidence interval for the break-even price after considering 
1000 stochastic model executions. It is observed that the square 
representing the expected value lies closer to the lower tail of the 
confidence interval for all investigated regulation obligations. This 
indicates that it is more likely to achieve a larger break-even price than 
the expected value compared to a lower price. Thus, the distributions are 
asymmetrical. 

5.4.6  Sufficient data sets 
!
In order to have trustworthy data in a Monte Carlo-simulation, the 
number of individual simulations must be satisfactory. The actual 
number depends on the input data and the structure of the model itself.  
A simulation containing 100 iterations was compared to a simulation 
with ten times the number of iterations, featuring 1000 individual model 
executions. 
The average value of the break-even price was investigated for four 
different levels of regulation obligation, and the results reported almost 
the same values.  
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Figure 35: Mean of break-even prices considering Monte Carlo-simulations of 100 

and 1000 optimizations 

!
Table 9: Percentage change in mean values of the break-even prices considering 

100 and 1000 simulations 

Obligation [MW] 6 12 18 24 
Percentage change in mean value [%] 0,46 

 

0,69 
 

0,98 
 

0,99 
 

 
The fact that the percentage change in the mean break-even prices never 
exceeds 1% is adequate information yielding that 100 optimizations are a 
sufficient number when utilizing a Monte Carlo-simulation with 
incremental regulation obligations. 
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6  Discussion 
6.1  The significance of the regulation market’s 

structure and its properties  
 
The properties and guidelines of different regulation markets are varying 
and often changed. The markets can either be symmetric - which yields 
the same bidding volume for both upward and downward regulation - or 
asymmetric - the possibility of bidding different volumes of upward and 
downward regulation. Such markets may also have a block-based 
structure - dividing the regulation period into different blocks of hours 
that must have the same regulation capacity, but the blocks itself can 
consist of different bidding volumes [7]. When considering how to model 
optimal bidding into such markets, the best approach may be dependent 
on the properties of the regulation market itself. 
 
In this study, a symmetric regulation market consisting of only one time 
block over the entire time horizon was investigated. This structure made 
it ideal to iterate over different regulation obligations, with the goal of 
calculating the break-even price in the regulation market as well as the 
marginal regulation cost for corresponding regulation obligations. 
 
However, if the market was to have either an asymmetric property or 
consist of block-bids, using a multiple regulation obligation optimization 
strategy would cause challenges regarding both an increased amount of 
execution time as well as how to present and analyze the results in an 
efficient, comparable way.  
 
If the model were to consider O  obligation regulations, using a 
symmetric, block-free market as in this study, the different combinations 
of obligations needing comparison is equal to O . When adding an option 
to bid separate volumes in upward and downward regulation given an 
asymmetric property, this would yield O2  combinations. With the 
inclusion of block bids, the possible obligation combinations increase into 
OB  possible outcomes, where B is the number of blocks in the biddable 
period. And if combining both an asymmetric property with block-bids, 
the possible combinations of regulation obligations would be equal to 
O2B . 
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Even with only one obligation, O = 2  (the model always need an optimal 
solution only taking a spot market into account for comparison), the 
increase in obligation combinations is doubled when considering 
asymmetric properties or introducing two blocks, and quadrupled when 
combining those properties. With a multiple regulation obligations, these 
numbers increase rapidly. 
 
 

Table 10: The number of obligation combinations needed to be taken into 
consideration by the model with different regulation market properties 

Number of obligations: 2 3 4 5 
     
Regulation market properties:     
Symmetric market (O ) 2 3 4 5 
Asymmetric market (O2 ) 4 9 16 25 
Symmetric & 2 blocks (O2 ) 4 9 16 25 
Symmetric & 3 blocks (O3 ) 8 27 64 125 
Asymmetric & 2 blocks (O4 ) 16 81 256 625 
Asymmetric & 3 blocks (O6 ) 64 729 4096 15625 

 
When considering other market structures than symmetric, block-free 
bids, the desirable tool for describing a regulation market would be to 
optimize against a price profile, similar as to what is done against the 
day-ahead spot market. This approach was investigated in [2] for a 
deterministic model, both with asymmetric properties and with block-
bids. The difference between this approach and the approach conducted 
in this study, is that instead of finding the optimal bidding regulation 
volume into the market given the price, the break-even price needed 
given the bidding regulation volume is found. 
 
However, to do this it is necessary to have a good price forecast for the 
regulation market or balancing market. This proves difficult to obtain 
[17]. 
 
!  
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6.2  The sensitivity of reservoir volumes 
 
[1] used the same watercourse as in this analysis for all analytic 
purposes. Then as now, a short time optimization model taking both a 
spot market and a regulation market into account was utilized. However, 
the difference between the previous work and this report is that the 
regulation market volume was set as a variable and not as an obligation. 
One of the main conclusions from [1] was the significance of the physical 
properties regarding the watercourse in the results. Physical restrictions 
proved to be more important input factors than the price forecast for the 
regulation market under investigation. 
 
Therefore, a sensitivity analysis was carried out. The physical property 
that proved to be most influencing in [1] was the bottleneck at Station 2 
along with the quite small Reservoir 2. Station 2 has low total maximum 
discharge compared with the upper Station 1 and Reservoir 2 is small 
compared to the maximum discharge of Station 1 above. This influences 
the results heavily since participating in a regulation market with 
Station 1 very often will lead to flooding at Reservoir 2. 
 
To avoid the influence of these physical restrictions in this stochastic 
analysis, the total reservoir volume of both reservoirs were increased by a 
factor of ten. A Monte Carlo-simulation was then carried out to see how 
the results - mainly the break-even price of regulation markets related to 
different regulation obligations and the marginal cost of attending such 
markets - varied between this case and the case with the actual reservoir 
volumes. 
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Figure 36: Empirical 95% confidence intervals for the break-even prices of 

regulation obligations considering original reservoir volumes and ten times the 
original reservoir volumes 

 
Figure 36 illustrates empirical 95% confidence intervals of the needed 
break-even prices in regulation markets after a Monte Carlo-simulation 
of 1000 model executions both considering the original reservoir volumes 
and a relaxed version with ten times the original volumes. The square 
represents the expected value of the break-even price, and the line 
illustrates the empirical confidence interval itself. 
 
It easily observed that the confidence intervals concerning relaxed 
reservoirs are less asymmetric than when original reservoir levels are 
considered. Relaxing the reservoirs eliminates the bottlenecks previously 
described, which strongly influenced the distributions of the results 
observed in chapter 5.4.4. 
 
There is also another interesting trend regarding the comparison between 
the confidence intervals. The relaxed Monte Carlo-simulation has a 
higher expected break-even price and a larger total confidence interval 
than the Monte Carlo-simulation with original reservoir volumes, 
considering the first three regulation obligations. But when reaching the 
highest amount of regulation obligations, 24 MW, the expected value of 
the break-even price for the expanded reservoirs has a lower expected 
value than the original reservoir Monte Carlo-simulation. 
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This can be explained by the same bottleneck as discussed in chapter 
3.3. When the smallest Reservoir 2 has its original size, Station 2 must 
produce whenever Station 1 produces to avoid flooding. Thus, the 
solution only taking a spot market into account includes production and 
therefore the possibility of regulation capacity at Station 2 at almost all 
hours even before considering regulation obligations. 
 
This effect is illustrated in Figure 37, which compares the spot 
production for two stochastic scenarios with original reservoir levels and 
ten times the size.  
 

 
Figure 37: Optimal production patterns when only considering a spot market with 

original reservoir levels and ten times the original reservoir levels 

As a consequence of this, the difference in the objective value between 
the optimization only taking a spot market into account and the 
optimizations considering the smallest regulation obligations are larger 
when relaxing the reservoirs – illustrated through the break-even prices 
in Figure 36 - but are less indifferent considering original reservoir levels.  
However, when the regulation obligation is sufficient enough, causing a 
unit on Station 1 to deliver regulation capacity, this difference is smaller 
when analyzing results from the relaxed reservoirs.  
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Figure 38: Marginal regulation costs considering original reservoir levels and ten 

times the original reservoir levels 

When comparing marginal costs, the observed trend shows a slightly 
higher cost of reserving regulation capacity when considering a relaxed 
reservoir for almost all obligations. This is rather easily explained by the 
fact that when considering the original reservoir levels, units on Station 2 
must contribute regulation capacity regardless of the incremental 
increase in obligations to avoid flooding, thus the cost of contributing 
with another unit of regulation is lower compared to reservoir levels 
where flooding is not a concern.  
 
Nevertheless, for the 23 MW level of obligation, the marginal cost is 
significantly higher for the original reservoir level. This is the obligation 
level where Station 1 must start contributing regulation capacity at all 
times.  
 
The reason behind this sudden change of which marginal cost is the 
highest, are yet again subject to physical limitations of the original 
reservoir level. When considering ten times larger reservoirs and a 
regulation obligation where Station 1 must deliver regulation at all 
times, the optimization model tries to minimize the loss in the spot 
market by producing close to maximum capacity in certain peaks of the 
spot price profile. This however, is not possible without causing a flood 
considering the original reservoir levels, thus the marginal cost for these 
reservoir levels are higher than when relaxing the reservoirs. This effect 
also explains the decline in the break-even price for a ten times larger 
reservoir with a regulation obligation of 24 MW, compared to the 
original reservoir levels where the previous break-even prices were lower. 
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6.3  Negative marginal cost in certain stochastic 
outcomes 

 
The results from the stochastic multi-stage model changes to some 
degree between each execution due to the probability function within the 
model that decides the path through the scenario tree. In a small 
proportion of the model executions the results indicate a negative 
marginal cost for a few of the regulation obligation levels investigated. 
 
This should generally be impossible from a mathematical optimization 
point of view. To get a negative marginal cost the value of the objective 
function must increase when the regulation obligation increases. 
Increasing the regulation obligation means restricting the solution space 
for the optimization model, which never should increase the value of the 
objective function [19]. However, this phenomenon can be explained 
when a stochastic multi-stage optimization process is conducted. This 
observation only occurs in certain sequential outcomes of the probability 
function within the model. 
 
When the model stands in one step the production is optimized with the 
same stochastic outcome of the spot price for all regulation obligations. 
Then, the value of the objective function will always decrease with 
increasing regulation obligation. However, if the probability function 
creates an outcome of the spot price in the next step that is higher than 
the model price in the given step, this sometimes creates a situation 
where higher regulation obligations give a higher realized objective value 
investigating the entire period. Then it would have been optimal to 
produce more in the spot market in the previous step - given the realized 
path chosen by the probability function - and for higher regulation 
obligations the model is forced to do so.  
 
Hence, the realized objective value calculated over the entire period can 
in a few cases increase in line the with regulation obligations. This 
happens if the actual price is distinctively higher than the model price in 
the past steps during a sufficiently large share of the period. 
 
As mentioned earlier the marginal cost can be calculated in two ways; by 
using an objective value based on either the actual price or the model 
price. Since the model price always will lie towards the center of the 
opportunity scope of the uncertain spot price - it is a probability 
weighted average of the possible outcomes - this may produce a negative 
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marginal cost in fewer cases than when the actual price is used to 
calculate the marginal cost. 
 

 
Figure 39: Price outcome in a simulation that produced some negative marginal 

costs 

 
Figure 39 illustrates a case where the actual price became higher than 
the model price in a sufficient large proportion of the steps for this 
phenomenon to happen. In this simulation this occurred in step 4 and 
step 6. For this stochastic outcome considering 25 different levels of 
regulation obligations, a negative marginal cost occurred for seven 
regulation levels when the actual price was used in the calculation. 
Correspondingly, only one regulation obligation produced a negative 
marginal cost when the model price was used in the calculation. See 
appendix G for a list of these marginal costs. It should be pointed out 
that this was an extreme case, in most executions of the model the 
marginal cost were positive for all regulation obligations.  
 
The stepwise results would never produce negative marginal cost, in this 
case the normal mathematical logic applies meaning that the objective 
value always will decrease with increasing regulation obligations giving 
positive marginal costs. It is only the total objective value calculated 
after the last step based on the optimal production specified in each step 
that can yield negative marginal costs. 
 
This phenomenon can of course be seen upon as a weakness of the 
stochastic multi-stage model, since it should be impossible to increase the 
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value of the objective function when the solution space is decreased. 
However, as explained the reason is related to the uncertainty regarding 
the future spot price. Since this also is the case in practice, it illustrates 
the difficult optimization task the hydropower producers phase on a 
daily basis considering uncertain stochastic input variables and how they 
affect the production and the related costs. 
 

6.4  The increased break-even price and marginal 
cost when starting new units 

 
 
Figure 26 - Figure 29 in chapter 5.4.2 and 5.4.3 illustrates the expected 
break-even price and marginal cost for all levels of regulation obligations 
ranging from 1 MW to 25 MW calculated through a Monte Carlo-
simulation.  
 
Both these graphs have some characteristic breakpoints where the cost 
increases dramatically at the same levels of regulation obligations. For 
this watercourse and for the regulation obligations investigated in this 
study, these breakpoints are occurring at 1 MW, 12 MW and 23 MW.  
 
The marginal costs in Figure 28 and Figure 29 are generally low, except 
at these specific levels of regulation obligations. When it comes to the 
break-even prices in Figure 26 and Figure 27, they have a distinctive 
increase at these levels of regulation obligations before they decrease 
slowly until the next mentioned regulation level where it increases 
distinctively yet again. 
 
The explanation behind this behavior can be found by investigating how 
the model chooses to deliver the different levels of regulation obligations, 
together with the physical properties of the watercourse. The 
watercourse consists of three units at Station 1, which each can deliver a 
maximum symmetrical regulation capacity of 27.5 MW, and two units at 
Station 2, which each can deliver a maximum symmetrical regulation 
capacity of 11 MW. Due to reservoir properties - Reservoir 2 is small 
compared to the discharge from Station 1 - it is always most profitable 
to deliver regulation capacity from Station 2 before a unit at Station 1 is 
continuously activated. A continuous running of one of the units at 
Station 1 very often leads to a risk of flooding Reservoir 2 and restricts 
the flexibility of the units at Station 2 as well. A continuous discharge 
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from Station 1 would make it necessary to utilize both units at Station 2 
at high production levels the entire time. 
 
Hence, for regulation obligations up to 11 MW the optimal solution is to 
let one unit at Station 2 run continuously, and for regulation obligations 
between 11 MW and 22 MW the optimal solution is to let both units at 
Station 2 run continuously. After this the optimal solution is less 
unambiguous, the optimal way to meet the given regulation changes 
depending on reservoir levels and physical factors. However, the break-
even price is always higher for regulation obligation levels above 22 MW, 
since it will be necessary to use one of the units at Station 1 to some 
degree in order to meet the regulation obligation anyway. 
 
Thus, the mentioned regulation levels in Figure 26 - Figure 29 matches 
the levels where it is necessary to continuously active another unit in 
order to meet the given regulation obligation. When the regulation 
obligation increases to a level where this is necessary, this yields a 
drastic increase in the costs related to this regulation obligation due to 
the reduced flexibility it gives in the day-ahead spot market.  
 
This discontinuous behavior of the cost should be considered when 
choosing the bidding volume into a regulation market. It will often be 
most profitable to choose a regulation obligation right below one of these 
breakpoints at the break-even price and marginal cost curves. A more 
thorough discussion of how to use the break-even prices and the marginal 
costs to optimize the regulation bidding volume can be found in chapter 
6.5. 
 
!  
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6.5  Combining the break-even price and marginal 
regulation cost as a decision making tool 

 
If the forecasted price of a regulation market is unknown, a model with 
regulation obligations as parameters and the break-even price and 
marginal cost of providing such regulation as results can be a suitable 
solution. However, if the forecasted price of a regulation market is 
known, this price can be used as an input parameter and an optimal 
level of regulation obligation can be found, as shown in [2].  
 
The former approach is suboptimal opposed to the latter, but forecasts of 
regulation market and balancing market prices are hard to achieve [17], 
thus many hydropower producers are optimizing production with a 
predetermined regulation obligation. Nevertheless, an optimal level of 
regulation obligation can be found without an advanced regulation price 
forecast input, given a few conditions. By combining the break-even price 
of incremental regulations obligations along with the corresponding 
marginal costs of providing such a regulation, it is possible to rule out 
regulation obligations that are less valuable than others. 
 
The conditions are that a lower and an upper limit of regulation 
obligations must be decided upon. This is rarely a problem, as either the 
market or the physical properties of the watercourse restricts the 
solution space of regulation capacity to some degree. Also, an expected 
value of the regulation market price must be agreed upon. This value is 
not used as an input parameter in the optimization, but is needed in 
order to indicate whether or not the break-even price and the marginal 
cost is lower than the expected market price. 
 
In the following example graphs that accompany the explanation of this 
method, the break-even price and marginal regulation cost are dependent 
on the model price. This is because of it being the price the producer 
should expect when optimizing. A lower and upper limit of 0 MW and 25 
MW correspondingly is used, with an expected regulation price of 20 
NOK/MW. 
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6.5.1  Analyzing the break-even price graph 
 
The first graph that needs consideration is the break-even price graph.  
 

 
Figure 40: Example of the first regulation obligation with a break-even price 

below an expected regulation price of 20 NOK/MW 

!
The first regulation obligation within the limits decided upon that has a 
break-even price below the expected regulation price is considered the 
current optimal regulation obligation. Then, the graph illustrating the 
marginal costs must be investigated.  

6.5.2  Analyzing the marginal regulation cost graph 
 

 
Figure 41: Example of all successive regulation obligations with a marginal cost 

below 20 NOK/MW 
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If, and for as long as the next regulation obligation’s marginal cost is 
lower than the expected regulation price, this regulation obligation is the 
current optimal level. When the marginal cost exceeds the expected 
regulation price, the break-even price graph must again be examined. 
The last regulation obligation with a marginal cost below the expected 
price is now the current optimal regulation obligation.  
 
If there are no future regulation obligations with a break-even price 
(including the current regulation obligation examined in the marginal 
cost graph) below the expected regulation price, the current optimal 
level is the final optimal level. However, if there exists regulation 
obligations with break-even prices below the expected regulation price, a 
more extensive test should be carried out.  

6.5.3  Considering the surplus formula 
 
The first successive regulation obligation with a break-even price below 
the expected regulation price is then examined against the following 
surplus formula; 
 

 
Psym Ysym − !Ysym( ) > CMC (i)

i= !Ysym+1

Ysym

∑  
(36) 

    
where Psym  is the expected regulation price, Ysym  is the regulation 
obligation currently examined,  

!Ysym  is the current optimal regulation 
obligation and CMC  is the corresponding marginal cost of the regulation 
obligation. The formula states that the income from the regulation 
market when increasing regulation obligations must be higher than the 
incurred cost of losing capacity in the spot market due to this increase. 
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Figure 42: Example of the next successive regulation obligation with a break-even 
price below an expected regulation price of 20 NOK/MW. However it does not 
satisfy the surplus equation 

 
As long as this equation proves false, the current obligation must be 
increased. If there exists a regulation obligation level where this equation 
proves true, this is the new current optimal regulation obligation.  
 

 
Figure 43: Example of the first successive regulation obligation with a break-even 
price below 20 NOK/MW that satisfies the surplus equation 

 
If this is the case, it is then sufficient to yet again compare the next 
regulation obligation’s marginal cost with the expected regulation price, 
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and increase the current optimal regulation obligation as long as the 
marginal cost is below the expected regulation price.  
 

 
Figure 44: Example of all successive regulation obligations with a marginal cost 
below 20 NOK/MW 

This routine is of course only valid within the lower and upper limits 
decided upon beforehand. 
 

 
Figure 45: Example of the optimal level of regulation obligation considering an 
expected regulation price of 20 NOK/MW 

 
This method purposes a way to rule out inefficient levels of regulation 
obligations, if the possibility of having flexible decisions regarding the 
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regulation obligation exists. The optimal solution will often lie at the 
regulation obligation present before a huge rise in the marginal cost, 
often caused by a new unit delivering regulation, as discussed in chapter 
6.4.  
 
However, the strength of this method is that it compares which units 
and stations are most profitable of delivering regulation, thus finding the 
optimal regulation obligation by using the surplus formula mentioned to 
add up all accruing costs and expected revenues within the 
predetermined limits. 
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7  Conclusion 
 

A stochastic multi-stage optimization model proves to be useful for 
foreseeing the optimal behavior of a watercourse given different 
regulation obligations, and for estimating the cost a hydropower 
producer faces when committing to a given regulation obligation.  
Since estimating the price in regulation markets and balancing markets 
remains difficult [17], an alternative solution is to estimate the cost 
related to different bidding volumes into a regulation market - i.e. a 
range of regulation obligations - instead of optimizing the bidding 
volume based on a price forecast for the given regulation market. 
 
The market design is affecting the choice and design of the 
optimization strategy 
 
Generally it would be desirable with a model using a forecasted price in 
both the day-ahead spot market and the regulation market as input 
parameters and optimize the biddable volume into both markets based 
on this. 
Nevertheless, since price forecasts for regulation markets as mentioned 
are difficult to obtain, an alternative strategy can be to calculate the 
cost related to committing to different regulation obligations. However, if 
the regulation market consists of several time blocks, is unsymmetrical or 
has a combination of these properties, this strategy proves difficult to 
conduct as discussed in chapter 6.1. In such a case a model taking the 
forecasted price in the regulation market as input would be a preferable. 
 
Considering the physical behavior of the watercourse under 
different regulation obligations proves useful 
 
A model optimizing the production in a day-ahead spot market assuming 
that an obligation in a regulation market could be committed upon, 
gives hydropower producers the ability to see how different physical 
properties such as hourly unit production, reservoir levels, discharge, 
bypass, flood etc. are influenced by the different regulation obligations. 
This is valuable information when considering bidding into a regulation 
market and committing to a regulation obligation for a longer time 
horizon than the day-ahead, as it gives a compact overview of how the 
watercourse behaves for a range of different regulation obligations. 
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Stepwise results from stochastic outcomes indicates the value 
of good information 
 
As new information about the future is revealed when the model iterates 
to the next step - corresponding to the next day in this short-term model 
- the optimal solution often changes to some degree.  This reflects the 
issue hydropower producers’ face in practice when bidding into a 
regulation market with a longer time horizon than the day-ahead spot 
market. The decision of going into such a regulation market must be 
taken with less information about the future than what is available the 
day-ahead, and this influences the production schedule for the upcoming 
period. This illustrates how valuable accurate forecasts of the market 
price are.  
 
Monte Carlo-simulations yield more trustworthy results 
 
Some stochastic models, including the model developed in this thesis, 
produces different results between each execution of the model. Hence, 
the results can be regarded as stochastic variables with corresponding 
probability distributions. In such cases a Monte Carlo-simulation 
strategy produces more trustworthy results. However, calculation times 
may prove to be an issue. 
 
A bidding strategy can be developed based on calculated 
costs and prices related to a range of regulation obligations 
 
Calculating the cost related to committing upon regulation obligations 
facilitates the calculation of break-even prices and the marginal costs 
related to different regulation obligations. The break-even price reflects 
the needed price in the given regulation market to make the given 
regulation obligation profitable, while the marginal cost reflects the cost 
related to increasing the regulation obligation with one unit (1 MW).  
 
None of these figures alone provide precise information when it comes to 
finding optimal bid into a regulation market. They only indicate if a 
regulation obligation is profitable or not, and if it is desirable to increase 
the regulation obligation. Thus, it is necessary to obtain an expected 
value for the given regulation market to compare these values 
against.  However, the most profitable bidding volume will still be 
unknown. Nevertheless, if these figures are combined in an optimization 
strategy as discussed in chapter 6.5 it is possible to find the most 
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profitable regulation obligation, i.e. the volume the hydropower producer 
should bid into the regulation market under investigation. 
 
The design and physical properties of the watercourse are the 
most influencing factor of the results 
 
As indicated in [1] and [2], the physical properties of the watercourse 
often influences the results more than the market prices. This is also 
present in this stochastic study, where the same watercourse is 
considered. 
 
The break-even prices and marginal costs increase significantly when it is 
necessary to continuously activate a new unit in order to meet the given 
regulation obligations, especially when Station 1 is initiated. The 
discussed physical bottleneck of the system proves to be decisive for the 
optimal results obtained. 
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8  Further work 
 
 
One of the main developments in this master thesis compared to the 
work carried out in the specialization project [2] was the introduction of 
stochastic properties. So far, the spot price has been considered 
stochastic, however other input parameters have the same uncertain 
behavior and could be modeled accordingly.  
 
For instance the uncertainty of inflow can be modeled stochastic, along 
with price forecasts from all considered regulation markets. The latter 
parameters are rather hard to forecast correctly, but would be a more 
elegant solution to a multi-market optimization problem because of the 
relevance to practical decisions made by the hydropower producers. 
 
Regarding multi-market optimization, a more advanced model could 
possibly consider multiple regulation markets in addition to the spot 
market, finding the optimal distribution of production and regulation 
capacity between for instance a spot market, a primary regulation 
market, a secondary regulation market and a tertiary regulation market. 
However, since these markets are dependent and sometimes 
interconnected with each other, it would prove a challenging task to 
complete. 
 
It would also be interesting to analyze how the interaction between 
multiple participants in these markets are influencing for instance 
forecasting of regulation prices, given that all participants tries to 
maximize profit from the spot market and the considered regulation 
markets. 
 
Lastly, it would prove useful to integrate many of the discussed parts of 
this report into a more streamlined decision tool for finding optimal 
levels of regulation obligations by implementing algorithms that analyses 
results and delivers helpful decision support. 
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11  Appendices 

A  A thorough explanation of the entire 
stochastic mechanism of the developed 
model 

!

A.1 The SCENRED output data 
 
The output from SCENRED is fully understandable, but needs to have a 
different structure in order to be utilized by the developed model. 
Whereas SCENRED depends on nodes (individual hours) in a scenario 
tree, the developed model depends on steps (24 hour blocks). Thus the 
output data from SCENRED needs a conversion in order to work in this 
model.  
 

A.1.1  Definition of some terms 
!
A few terms further explained in chapter 4.4.1, will also be used during 
this explanation;  
Scenario: A full, unique path throughout the scenario tree, consisting of 
as many nodes as hours in the optimization period. Some nodes can (and 
will) be used by several scenarios, as the number of scenario tree 
branches increases throughout the scenario tree.  
Node: A specific hour in a specific scenario, consisting of a node 
number, predecessor node, probability and price. 
Step: A branching point in the scenario tree, where new information 
typically is revealed. In this case a step is equal to a day – 24 hours. 
 

A.1.1  Description of output data from SCENRED 
!
Two output files are used in this conversion process: 
!  
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A.1.1  Tree.dat output 
!
First, the tree.dat file consists of tree parameters: 

! The predecessor node of the current node 
! The probability in the current node 
! The price in the current node 

Table I: Example of output data in the tree.dat fi le from SCENRED 

tree.dat: 
    
(NODE) PRED PROB PRICE 
1 1 1.0000000000 348.7000 
2 1 0.2926666667 338.1464 
3 1 0.7073333333 354.0349 
4 2 0.2926666667 328.3813 
5 3 0.7073333333 355.9664 
 !   !   !   !  
336 330 0.2110000000 381.6977 

 
 
The node column is not explicitly written, but increases with each new 
line in the output file. Node 1 is a dummy node needed to have a branch 
at the first time step, and therefore has a probability equal to 1.  
It is also noteworthy to understand that the node indices increase 
vertically, then horizontally, as illustrated in Figure I. 
 

 
Figure I: How SCENRED indexes nodes in tree.dat relative to a scenario tree 

!  
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A.1.2  Row.dat output 
!
Secondly, the row.dat file consists of two parameters: 

! The probability for a full, unique scenario path 
! The price hour-by-hour for each scenario 

Table II: Example of output data in the row.dat fi le from SCENRED 

row.dat: Explanation of each row 
  
8.83333333333334e-002 Probability of Scenario 1 
3.4870000000e+002  Price in hour 0 of Scenario 1 (dummy) 
3.3814636210e+002  Price in hour 1 of Scenario 1 
3.2838127347e+002 Price in hour 2 of Scenario 1 
 !  Price in hour 3 -> second last hour of Scenario 1 
3.7722932700e+002 Price in last hour of Scenario 1 
 Free space indicating a new scenario 
 !  Reoccurring pattern for scenario 2 -> second last scenario 
2.10999999999998e-001 Probability of last scenario 
3.4870000000e+002 Price in hour 0 of last scenario (dummy) 
3.5403492181e+002  Price in hour 1 of last scenario 
3.5596642491e+002 Price in hour 2 of last scenario 
 !  Price in hour 3 -> second last hour of last scenario 
3.8169766065e+002 Price in last hour of last scenario 

 

 
Figure II: How SCENRED indexes scenario prices and probabilities in row.dat 

relative to a scenario tree 

 
The scenario number is not explicitly written for each scenario price 
column, but the file begins with scenario 1 and as a free space-row and a 
new probability appears, a new scenario is present. 
!  
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A.2 Structuring the SCENRED output data and creating new 
matrices 

!
Now, all the discussed parameters (except from the price relative to each 
node) must be read into matrices usable by the model. The node 
predecessors and node probabilities is obtained from tree.dat, whereas 
the scenario path prices and probabilities regarding each full scenario 
path is obtained from row.dat.  
They are read into four matrices in the model, named   
 

• NodePredecessor(n): Predecessor node for each node in the 
scenario tree. 
 

• NodeProbability(n): Probability for each node in the scenario 
tree. 

 
• ScenarioSpotPrice(e,h): The hourly price for each scenario in 

the scenario tree. 

 
• EndScenarioProbability(e): The probability for each scenario 

in the scenario tree 

where n is all nodes, e is all scenarios and h is all hours found in the 
scenario tree. 
 
In addition to this, the model needs to know how many branches the 
scenario divides itself into during each step. This is read into a matrix 
named  
 

• StepNumberOfBranch(t): The number of branches for each 
step in the scenario tree. (This matrix must comply with the 
input parameters from SCENRED) 

where t is all steps found in the scenario tree. 
 

!  
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A.2.1  Creating new matrices from SCENRED output 
data 

!
As new information about the stochastic spot price occurs whenever a 
new step is initiated, the goal is to transform the recently initialized 
matrices mentioned above into matrices that work on a step-level 
instead, containing only the value for the first hour of the current step 
instead of all values for all hours/nodes. Therefore, the information 
stored in NodePredecessor(n) and NodeProbability(n) needs to be 
transformed into two steps-scenarios-matrices 
 

• StepProbabilityDynamic(e,t): The probability of a scenario 
to occur at a given step 
 

• StepPredecessorDynamic(e,t): The predecessor node of the 
node corresponding to the probability in 
StepProbabilityDynamic(e,t) 

where e is all scenarios and t is all steps found in the scenario tree. 
 
By doing this, it is possible to obtain information about which 
probability occurs at each step for all scenarios, and which predecessor 
node the corresponding node is connected to. 
The dynamic property is related to the fact that they only contain as 
many probabilities and predecessor nodes for each unique path in the 
scenario tree – so if the tree branches into 2, 4 and 8 branches in steps 1, 
2 and 3, these matrices will only contain two values in the first column, 
four values in the second column and eight values in the third column. 
In addition to this, a matrix linking the predecessor nodes to the scenario 
price series must be created. Because the matrix ScenarioSpotPrice(e,t) 
contains price series for all scenarios and thus is not dynamic, the 
StepPredecessorDynamic(e,t) matrix must be converted into a full 
matrix, filling all elements in the last matrix needed by the model, 
named; 
StepPredecessorFull(e,t): The predecessor node of the node 
corresponding to the price series in ScenarioSpotPrice(e,t) 
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A.3 An illustrative example of how the model converts the 
output data into usable matrices 

!
The best way to explain the algorithm used to model the stochastic 
workflow of the model is by illustrating it via a small-scale example. 
Consider a three-step scenario tree with 2 branches in step 1, 4 branches 
in step 2 and 8 branches in step 3, as shown in Figure III. 
 
 

 
Figure III: A scenario tree with 2 branches in step 1, 4 branches in step 2 and 8 

branches in step 3, yielding a total of 8 scenarios 

 
 
The output from SCENRED is more or less read directly into the five 
following matrices; 
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1
1
1
2
3
!
330

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix I: NodePredecessor(n) 

 

1.000000000
0.2926666667
0.7073333333
0.2926666667
0.7073333333
!
0.2110000000

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix II: NodeProbability(n) 

8.83333333333334e-002
1.15333333333334e-001
8.90000000000001e-002
2.21333333333331e-001
7.83333333333333e-002
1.10333333333334e-001
8.63333333333334e-002
2.10999999999998e-001

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix III: EndScenarioProbability(n) 

 

3.3814636210e+002 ! 3.5321259813e+002 ! 3.6996504957e+002 ! 3.7722932700e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.4776862724e+002 ! 3.7556428774e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.2230479252e+002 ! 3.7181173959e+002
3.5403492181e+002 ! 3.4430806643e+002 ! 3.5122913388e+002 ! 3.7428140736e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.3520182830e+002 ! 3.7687502228e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.5681045540e+002 ! 3.7646913274e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.7862378559e+002 ! 3.8063768916e+002
3.5403492181e+002 ! 3.8334410033e+002 ! 3.6960673717e+002 ! 3.8169766065e+002

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟  

Matrix IV: ScenarioSpotPrice(e,t) 

2 4 8( )  
Matrix V: StepNumberOfBranches(t) 

Now, the matrices dependent on nodes must be converted into matrices 
dependent on steps. 



 VIII 

This is done by the following code, also available as a part of appendix 
E; 
 
! Creating the dynamic matrices from excel input data 
forall (tt in Steps) do 
 
    if (tt =1) then 
     
        forall (ee in 1.. StepNumberOfBranch(tt)) do 
         
            StepProbabilityDynamic(ee,tt):= NodeProbability(1+ee); 
            StepPredecessorDynamic(ee,tt):= NodePredecessor(1+ee); 
             
        end-do 
         
    else 
             
        forall (ee in 1.. StepNumberOfBranch(tt)) do 
         
            StepProbabilityDynamic(ee,tt) := NodeProbability(1+sum(ttt in 2.. 
tt)(24*StepNumberOfBranch(ttt-1))+ee);    
            StepPredecessorDynamic(ee,tt) := NodePredecessor(1+sum(ttt in 2.. 
tt)(24*StepNumberOfBranch(ttt-1))+ee); 
         
        end-do 
     
    end-if 
 
end-do 
 

 
This results in two new matrices: 
 

 

0.29 0.29 0.09
0.71 0.22 0.11
− 0.28 0.09
− 0.21 0.22
− − 0.08
− − 0.11
− − 0.09
− − 0.21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix VI: StepProbabilityDynamic(e,t) 

 

1 48 142
1 49 142
− 49 142
− 49 143
− − 144
− − 144
− − 144
− − 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix VII: StepPredecessorDynamic(e,t) 

With this information, it is possible to plot the scenario tree and adding 
the probabilities and predecessor nodes, giving a greater overview of the 
stochastic problem; 
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Figure IV: The scenario tree with probabilities and predecessor nodes 

As mentioned, the StepPredecessorDynamic(e,t) must also be converted 
into an explicit version, making it able to correspond with the scenario 
prices found in ScenarioSpotPrice(e,h). This is done by the following 
code, also available as a part of appendix E; 
 
!Creating the explicit matrix from the dynamic matrix 
     
    !Creating last column of the explicit matrix 
    forall (ee in Scenarios) do 
     
        StepPredecessorFull(ee,getsize(Steps)):=StepPredecessorDynamic(ee,getsize(Steps)); 
     
    end-do 
     
    ! Creating the remaining columns of the explicit matrix 
    forall (tt in 1.. getsize(Steps)-1) do 
     
        EqualNumbersCounter := 0; 
        IteratorCounter:= 1; 
        Counter:= 1; 
     
        forall (ee in 2.. getsize(Scenarios)) do 
         
            if (StepPredecessorFull(ee-1,1+getsize(Steps)-tt) = 
StepPredecessorFull(ee,1+getsize(Steps)-tt)) then 
                 
                EqualNumbersCounter:= EqualNumbersCounter + 1; 
                 
            else 
                forall(pp in IteratorCounter.. IteratorCounter+EqualNumbersCounter) do 
                 
                        StepPredecessorFull(pp,(getsize(Steps)-tt)) := 
StepPredecessorDynamic(Counter,getsize(Steps)-tt); 
                end-do 
                 
                Counter:= Counter + 1; 
                IteratorCounter := IteratorCounter + EqualNumbersCounter +1; 
                EqualNumbersCounter :=0; 
             
            end-if 
         
        end-do 
     
    end-do 
         
        forall (tt in 1.. getsize(Steps)-1) do 
         
            StepPredecessorFull(getsize(Scenarios),getsize(Steps)-tt):=  
            StepPredecessorDynamic(StepNumberOfBranch(getsize(Steps)-tt),getsize(Steps)-
tt); 
         
        end-do   
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which creates the last matrix needed in order to have the stochastic 
algorithm in the model work: 
 

 

1 48 142
1 48 142
1 48 142
1 49 143
1 49 144
1 49 144
1 49 144
1 49 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix VIII: StepPredecessorFull(e,t) 

 
 
Now, with all matrices created, the model is able to iterate through the 
scenario tree. 
 

A.3.1  Step 1 
!
Before starting the optimization, the model always stands in node 1, 
ready to start step 1. 

 
Figure V: Where the model stands in the scenario tree before step 1 

Not knowing the stochastic price outcome of step 1, the model takes a 
probability weighted average of all scenarios - also called the model price 
- into account when optimizing all hours from the start of step 1 until 
the end of step 3. 
 



 XI 

 

3.3814636210e+002 ! 3.5321259813e+002 ! 3.6996504957e+002 ! 3.7722932700e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.4776862724e+002 ! 3.7556428774e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.2230479252e+002 ! 3.7181173959e+002
3.5403492181e+002 ! 3.4430806643e+002 ! 3.5122913388e+002 ! 3.7428140736e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.3520182830e+002 ! 3.7687502228e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.5681045540e+002 ! 3.7646913274e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.7862378559e+002 ! 3.8063768916e+002
3.5403492181e+002 ! 3.8334410033e+002 ! 3.6960673717e+002 ! 3.8169766065e+002

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix IX: Scenario spot price series taken into account by the model before step 
1 

8.83333333333334e-002
1.15333333333334e-001
8.90000000000001e-002
2.21333333333331e-001
7.83333333333333e-002
1.10333333333334e-001
8.63333333333334e-002
2.10999999999998e-001

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix X: Corresponding end-scenario probabilities taken into account by the 
model before step 1 

!
All scenario prices with corresponding probabilities are therefore taken 
into account at the start of step 1. 
 

A.3.2  Step 2 
!
After the first step is optimized, new information regarding the actual 
outcome of step 1 is revealed, before optimizing at the start of step 2. 
This is done by a random event, drawing a number between 0 and 1.  
Referring to Matrix VI, if the number is below or equal to 0.29, Scenario 
1-3 will be happening, and all scenarios with a corresponding probability 
having a predecessor node equal to 48 can occur in step 2. If else, 
Scenario 4-8 will be happening, and all scenarios with a corresponding 
probability having a predecessor node equal to 49 can occur in step 2. 
The random event produces the number 0.57, and the latter alternative 
happens: 
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!
Figure VI: Where the model stands in the scenario tree before step 2 

 
Now, having the same structure in StepProbabilityDynamic(e,t) and 
StepPredecessorDynamic(e,t), the algorithm says that since 0.71 lies on 
the second row in the first column (step 1) in 
StepProbabilityDynamic(e,t), every scenario with a predecessor equal to 
the second numeric quantity in the second column (step 2) in 
StepPredecessorDynamic(e,t) should be probability weighted when 
optimizing step 2. 
 

 

0.29 0.29 0.09
0.71 0.22 0.11
− 0.28 0.09
− 0.21 0.22
− − 0.08
− − 0.11
− − 0.09
− − 0.21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇒

1 48 142
1 49 142
− 49 142
− 49 143
− − 144
− − 144
− − 144
− − 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix XI & XII: The connection between the realized probability in step 1 and 
the predecessor node for the achievable probabilities in step 2 

!
In this case, this yields all scenarios with the predecessor node 49 from 
step 2. Thus, all scenarios with the same scenario numbers as the rows in 
StepPredecessorFull(e,t) is optimized upon with corresponding 
probability weights for the remaining hours.  



 XIII 

 

1 48 142
1 48 142
1 48 142
1 49 143
1 49 144
1 49 144
1 49 144
1 49 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇓
 

 

3.3814636210e+002 ! 3.5321259813e+002 ! 3.6996504957e+002 ! 3.7722932700e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.4776862724e+002 ! 3.7556428774e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.2230479252e+002 ! 3.7181173959e+002
3.5403492181e+002 ! 3.4430806643e+002 ! 3.5122913388e+002 ! 3.7428140736e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.3520182830e+002 ! 3.7687502228e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.5681045540e+002 ! 3.7646913274e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.7862378559e+002 ! 3.8063768916e+002
3.5403492181e+002 ! 3.8334410033e+002 ! 3.6960673717e+002 ! 3.8169766065e+002

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

!
⇓

8.83333333333334e-002
1.15333333333334e-001
8.90000000000001e-002
2.21333333333331e-001
7.83333333333333e-002
1.10333333333334e-001
8.63333333333334e-002
2.10999999999998e-001

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix XIII, XIV & XV: The connection between the scenarios stil l achievable in 
step 2 due to the predecessor node, the corresponding scenario spot prices and the 

corresponding end scenario probabilities 

In this case, scenarios 3-8 are still achievable, and will be probability 
weighted when optimizing step 2. 
 
!  
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A.3.3  Step 3 
!
After step 2 is optimized, new information is again revealed in 
anticipation of step 3. The scenarios still achievable when calculating 
what actually occurred in step 2, are the probabilities situated on the 
same row indexes in the second column of StepProbabilityDynamic(e,t) 
as the predecessor that occurred during step 2 situated on the second 
column of StepPredecessorDynamic(e,t). 
 

 

1 48 142
1 49 142
− 49 142
− 49 143
− − 144
− − 144
− − 144
− − 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇒

0.29 0.29 0.09
0.71 0.22 0.11
− 0.28 0.09
− 0.21 0.22
− − 0.08
− − 0.11
− − 0.09
− − 0.21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

!

Matrix XVI & XVII: The connection between the predecessor node that occurred 
in step 2 and the scenario probabilities stil l achievable in step 3 

 

 
The random event is yet again initiated, drawing a new number between 
0 and 1. 
0.45 occurs, but this number needs to be adjusted due to the fact that 
some scenarios from step 2 no longer are achievable, as shown in Matrix 
XVI. 
The random number is adjusted by multiplying with the previous 
realized probability (0.71), because the sums of the probabilities of the 
branches in step 2 from the previous probability in step 1 always equal 
each other.  
This gives an adjusted value of 0.3195, yielding the second probability 
to actually occur (0.28), since 0.3195 is larger than 0.22, but smaller 
than 0.22+0.28. 
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Figure VII: Where the model stands in the scenario tree before step 2 

!
Since 0.28 lies on the third row in the second column (step 2) in 
StepProbabilityDynamic(e,t), every scenario with a predecessor equal to 
the third numeric quantity in the third column (step 3) in 
StepPredecessorDynamic(e,t) should be probability weighted when 
optimizing step 3. 
 

 

0.29 0.29 0.09
0.71 0.22 0.11
− 0.28 0.09
− 0.21 0.22
− − 0.08
− − 0.11
− − 0.09
− − 0.21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇒

1 48 142
1 49 142
− 49 142
− 49 143
− − 144
− − 144
− − 144
− − 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

Matrix XVIII & XIX: The connection between the realized probability in step 2 
and the predecessor node for the achievable probabilities in step 3 

!
Every scenario price with a corresponding predecessor node of 144 is 
now being taken into account. 



 XVI 

 

1 48 142
1 48 142
1 48 142
1 49 143
1 49 144
1 49 144
1 49 144
1 49 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇓

 

 

3.3814636210e+002 ! 3.5321259813e+002 ! 3.6996504957e+002 ! 3.7722932700e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.4776862724e+002 ! 3.7556428774e+002
3.3814636210e+002 ! 3.5321259813e+002 ! 3.2230479252e+002 ! 3.7181173959e+002
3.5403492181e+002 ! 3.4430806643e+002 ! 3.5122913388e+002 ! 3.7428140736e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.3520182830e+002 ! 3.7687502228e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.5681045540e+002 ! 3.7646913274e+002
3.5403492181e+002 ! 3.6334452893e+002 ! 3.7862378559e+002 ! 3.8063768916e+002
3.5403492181e+002 ! 3.8334410033e+002 ! 3.6960673717e+002 ! 3.8169766065e+002

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 
⇓

8.83333333333334e-002
1.15333333333334e-001
8.90000000000001e-002
2.21333333333331e-001
7.83333333333333e-002
1.10333333333334e-001
8.63333333333334e-002
2.10999999999998e-001

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

!

Matrix XX, XXI & XXII: The connection between the scenarios stil l achievable in 
step 3 due to the predecessor node, the corresponding scenario spot prices and the 

corresponding end scenario probabilities 

 
In this case, scenarios 5-7 are still achievable, and will be probability 
weighted when optimizing step 3. 
Since this was the last step of the scenario tree, no further calculations 
needs to be done. However, in order to complete the actual realized price 
profile including the last period as well, a final random event is initiated. 
This information will not have any influence on the optimization results 
as the model is done optimizing the last step, but it is useful to observe 
what actually occurred during this last step as well. 



 XVII 

The scenarios still achievable when calculating what actually occurred in 
step 3, are the probabilities situated on the same row indexes in the 
third column of StepProbabilityDynamic(e,t) as the predecessor that 
occurred during step 3 situated on the third column of 
StepPredecessorDynamic(e,t). 
 

 

1 48 142
1 49 142
− 49 142
− 49 143
− − 144
− − 144
− − 144
− − 145

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⇒

0.29 0.29 0.09
0.71 0.22 0.11
− 0.28 0.09
− 0.21 0.22
− − 0.08
− − 0.11
− − 0.09
− − 0.21

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

!

Matrix XXIII & XXIV: The connection between the predecessor node that 
occurred in step 3 and the final scenario probabilities achievable after step 3

 

 

 
The random event produces the number 0.77, and gets adjusted by 
being multiplied with 0.28, so it equals 0.2156. The actual probability 
to occur in step 3 is therefore 0.09, because 0.2156 is greater than 0.08, 
greater than 0.08+0.11 but smaller than 0.08+0.11+0.09. 
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Matrix XXV: The actual, realized scenario probability realized after step 3 

!
As illustrated in Figure VIII, Scenario 7 was the scenario that in the end 
actually occurred. 
!
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Figure VIII: The finished, actual path of the scenario tree after step 3 
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B  Additional theory (chapter 2 from [2]) 
 
There are three main properties that measure the state of the electrical 
power system [4]: 

• The frequency quality 
- Frequency containment 
- Frequency restoration 
- Reserve replacement 

• The time of operation with reduced reliability (time outside the 
N-1 criteria) 

• The voltage quality 
 

B.1 Frequency deviation 
 
This project focuses on optimization between a spot market and a 
corresponding regulation market. The purpose of regulation markets is to 
increase the frequency quality. Hence, given the three main properties 
that describe the state of an electrical power system it is the first 
property that is focused on in this project. 
 
An electrical power system cannot store electrical energy and there has 
to be a perfect balance between production and consumption at all 
times. If there is an unbalance between production and consumption in 
the system this will cause a frequency deviation from the nominal 
frequency in the system. If the consumption is greater than the 
production the frequency will decrease. On the other hand, if the 
production is greater than the consumption the frequency will increase 
[5].   
 
This physical property combined with the fact that consumers turn on 
and off their loads at all times, results in a need to regulate the system 
in order to obtain a stable operation and frequency. This responsibility 
lies on the Transmission System Operator (TSO) [4]. 
 
In theory the TSO could regulate either the production, the consumption 
or both of them in order to obtain balance in the system. However, due 
to physical and practical factors, the absolutely most common thing 
today is to regulate the producers in order to obtain balance. This may 
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change in a future Smart Grid system where consumers also can deliver 
regulating services and hence can be used by the TSO to obtain balance 
in the system [22].  
 
However, not all producers are suited to regulate their power production 
on short notice, and hence not able to deliver regulation services to the 
system. This, in general, applies to producers of thermal power, solar 
power, wind power and nuclear power. Thermal and nuclear power 
plants do not meet the requirement of being able to change the 
production quickly. When it comes to solar and wind power, these 
sources are non-predictable and hence not suited to contribute with 
regulation. Hydropower, especially hydro plants with reservoirs, on the 
other hand is highly suited for delivering such services.  
Therefore, it is possible for hydropower producers to bid into both the 
spot market and the regulation markets. By doing this they get an extra 
income because of their possibility to be flexible [23]. 

B.2 The current state of the grid frequency 
 
Over the recent years, the frequency quality in the Nordic region has 
decreased. Figure 1 illustrates that the proportion of time with a 
frequency outside 49.90-50.10 Hz has drastically increased the last 15 
years.  
 
 

 
Figure IX: Development in frequency quality given in minutes outside 49.90-50.10 

HZ per month [4] 

 
This reduces the reliability of the system, because when the frequency is 
outside of the 49.90-50.10 Hz interval some of the regulation capacity is 
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already in used. Hence, it would not be able to contribute with 
regulation in order to keep the system in equilibrium should a production 
failure occur.  
 
There are several reasons why the frequency quality has decreased the 
recent years. A large proportion of the unbalance happens during hour 
shifts, see Figure X. This is because the producers have unit 
commitments that change every hour, while the consumption changes 
continually throughout the day. This causes unbalance between 
production and consumption during the hour shifts. This phenomenon 
happens most often during the parts of the day with large change of 
consumption in the system, especially early in the morning and in the 
evening. More HVDC connections and more changes in the power flow 
direction throughout the day also increase the unbalance [4].  
 

 
Figure X: Number of events with frequency outside 49.90-50.10 HZ distributed 

over a day (adapted from [4]) 

 
Another reason to this negative development in frequency deviation is 
that the total load of the grid has increased during the recent years. This 
leads to more congestion in the grid, which again excludes producers in 
some part of the grid from contributing with regulation capacity. Hence, 
the total regulation capacity available to the TSO decreases. Regulation 
capacity can be defined as available and flexible production capacity 
that can be utilized to prevent unbalance between production and 
consumption on a short notice [4].   
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A third reason for this increase is that the power system in an 
increasingly proportion of the time is operated without the large 
hydropower units with large reservoirs. This is due to the fact that more 
cables between the Nordic region and the continent yields more import 
and expert. In these situations the load is covered by import and 
production that cannot be regulated that easily. The amount of 
regulation capacity in the Nordic system is strongly connected to these 
large hydropower units. Hence, when these units are turned off the 
available regulation capacity in the system is strongly reduced [4].  
 
The last thing that contributes to this increase in frequency deviation in 
the Nordic region is something called 60-seconds-oscillations. These are 
slow oscillations in the frequency that probably are caused by different 
settings and responses on corresponding units in the Nordic region. 
These oscillations have increased over the recent years [4].  
 

B.3 Different power markets 

B.3.1  The spot market 
 
The spot market is the main market for a hydropower producer. This is 
the market where the hydropower producer decide how much he wants 
to produce and at which price. It is a day-ahead market meaning the 
contracts agreed upon defines prices and volumes for the following day. 
In the Nordic region, this market is called Elspot and is organized by 
Nord Pool Spot [6], [23].    
 

B.3.2  The internal trading market 
 
The internal trading market is an intra-day-market where participants 
can buy and sell themselves into balance until one hour before delivery. 
In this case balance means the balance between the producers actual 
production and their obligation to the market manager from the day-
ahead spot market. The majority of the power is traded in the spot 
market, but if something unexpected happens participants can use this 
market to buy themselves into balance before the hour of delivery. In the 
Nordic region, this market is called Elbas and is organized by Nord Pool 
Spot. This market has become more important the last years due to the 
increasing share of non-controllable renewable energy in the system. 
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However, the volume traded in this market is still very low (3.2 TWh in 
2012) [6], [24], [25].  
 

B.4 Regulation markets 
 
To avoid unbalance between production and consumption the TSO 
controls several regulation capacity markets with different 
characteristics.  
There are three levels of regulation: 
- Primary regulation capacity 
- Secondary regulation capacity 
- Tertiary regulation capacity 
 
These regulation levels have different characteristics in terms of how 
they are activated and what level of power they can deliver. 
 

 

Figure XI: Regulation markets (adapted from [4]) 

B.4.1  The primary regulation market 
 
The first thing that will happen if something causes the consumption to 
exceed the production, is that the rotating energy of the system will be 
converted to electrical power. This will cause the frequency in the system 
to decrease. On the other hand, if the production exceeds the 
consumption, the rotating energy in the system and hence the frequency, 
will increase [5].  
 
This leads to the activation of the primary regulation in the 
system.  Primary regulation is defined as regulation of turbine governors 



 XXIV 

keeping the set-point of the generator constant. In this case the governor 
systems means the system controlling the power delivered to the prime 
mover shaft of the unit. In the case of hydropower this will be the blade 
position regulating the intake of water into the turbine [5].  
 
The primary regulation is controlled by an automatic regulating system, 
and is activated within seconds after a frequency deviation [4]. For a 
generator to be able to contribute with primary regulation it must be 
rotating when the frequency deviation occurs. The amount of primary 
regulation power a generator contributes with in a case of frequency 
deviation is given by the generator droop setting [5].  
 
When a power producer bids capacity into the primary market, he 
specifies how much power he will contribute with in a case of a given 
frequency deviation. Hence, the producer specifies what kind of droop 
setting he will use on his generators as well. It is also important to make 
sure that the generator is capable of increasing its power output. If the 
generator already produces at its maximum or its minimum it cannot 
respectively increase or decrease its output as a response to a frequency 
deviation. 
 
 

B.4.1.1 Droop settings 
 
How much the power output from a unit changes with a change in 
frequency is given by the droop settings of the unit. The formal 
definition of the droop coefficient d is given in Figure XII.  

 
Figure XII: Definition of droop coefficient [5] 

A more physical interpretation of the droop coefficient is the required 
percentage change in frequency to move the valves controlling the water 
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inlet to the turbine from a fully open to a fully closed position. 
Mathematically this can be described by equation (I). 
 

 

 
(I) 
 

This formula assumes a linear relationship between the valve positions 
and the mechanical power delivered to the generator. Δω  is representing 
the change in frequency, ω 0  is the nominal frequency, ΔP  is the change 
in output power with the given change in frequency, and Pm   is the 
maximum possible production on the unit. 
 

 
Figure XIII: Droop setting (adapted from [5]) 

When bidding into both the spot market and the primary regulation 
market the producers specifies the curve in Figure XIII for each unit 
during each hour. This figure describes the set point of the unit and how 
rapidly the production should change in the case of a frequency 
deviation. It is a linear function where the slope is given by the droop 
setting and the intersection is given by the set point of the generator. 
 

B.4.2  The secondary regulation market 
 
The secondary regulation has many similarities compared with the 
primary regulation. However, while the primary regulation is activated 
automatically by the droop setting on each unit, the secondary 
regulation is activated automatically by the TSO.  For a unit to be able 
to contribute with secondary reserves it must be connected directly to 
the TSOs secondary regulation controlling system. This is an automated 
system that detects frequency deviations too large or too long lasting for 

d =

Δω
ω 0
ΔP
Pm
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the primary regulation to handle. The system then sends a signal to the 
units contributing with secondary regulation telling them to increase or 
decrease the production by changing the setpoint of the generators [4].  
 
The most important difference between the primary and secondary 
regulation is the activation time. While the primary regulation responds 
in seconds to a change in frequency, the response time for the secondary 
regulation are 120-240 seconds after the signal from the TSO is received. 
In addition to bringing the frequency back to 50 Hz an important 
purpose of the secondary capacity is to free the primary regulation. 
When the primary regulation is activated the system has reduced 
capability to respond immediately to further frequency deviations. 
Hence, it is important to free the primary regulation capacity as quickly 
as possible after the activation. This makes the system capable of 
responding to another change in frequency [4].  
 

B.4.3  The tertiary regulation market 
 
The last regulation market is the tertiary market, also known as the 
balancing market. Unlike the primary and secondary regulation, this 
regulation is manually activated and has a maximum response time of 15 
minutes.  The purpose is to handle differences between production and 
consumption in the system over time, and to free the primary and 
secondary regulation. Producers can bid into this market by telling the 
market manager how much compensation they require to change their 
production [4].  
!! !
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C  Implementation techniques and pre-
assumptions (chapter 4.1 and 4.2 from 
[2]) 

C.1 Implementation of efficiency curves 
 
One of the key factors of a watercourse model is the relation between the 
discharge of water through the turbine and the power output from the 
corresponding generator. The input data is typically an efficiency curve, 
describing different sets of turbine efficiencies with respect to water 
discharge. 
 
The efficiency curve is often given as an efficiency-discharge-curve, where 
the turbines efficiency is plotted against the discharged water. 
Transforming the efficiency-discharge-curve into at power-discharge-
curve, and then doing a piecewise linearization of the new curve 
(illustrated in Figure XIV), gives the advantage of easily reading off the 
given power output at the intersection between the lowest linear curve 
and the chosen water discharge.  
The solution space is limited by the cuts and the x-axis due to the non-
negativity properties of the variables. The solution will lie on the border 
of the solution space because of the optimization process, and will often 
be found as a corner solution at the intersection of two cuts.  

 
Figure XIV: A piecewise linearization of a concave function 

 
The piecewise linearization is a consequence of the limitations given by 
the solver of the model - it uses mathematical algorithms that require all 
equations to be linear in order to solve the problem linearly.  
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It is also worth noting that for the piecewise linearization to give proper 
results, the original function needs to be concave. If not, each linear cut 
needs to have a restricted region of operation.  
 

C.2 Pre-assumptions and simplifications 
 
When building a model from scratch, some pre-assumptions were made 
in order to produce results within a given period of time. In this case, the 
following simplifications was done: 
 

C.2.1  Constant head factor during production 
 
The head of the water with respect to the turbine is proportional to the 
produced power in the unit, as equation (II) clearly states.  
 

 (II) 
 
   
This means a lower power output will be achieved from the same 
amount of water when the reservoir is half full rather than at HRV. The 
head of the water and the discharge is also interconnected, making the 
problem non-linear. Thus, this feature was neglected in this case. 
 

C.2.2  Same relative efficiency curve for all units 
 
Each production unit has it’s own unique efficiency curve, stating how 
much of the potential energy of the water the turbine is able to convert 
into electrical energy. But, given that all units on the same station are 
using the same type of turbine (i.e. Francis), the shape of the efficiency 
curve is relatively similar between the units. By using the same shape, 
but correspondingly different levels of maximum discharge, the input 
data to the model is heavily simplified, and the code itself gets more 
compact. This yields no difference between units of the same size, they 
are practically identical and will be used interchangeably, but the 
analysis of the watercourse itself is still realistic enough. 

P = ρgHQη
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C.2.3  No change in use of water when regulation is 
activated 

 
When upward regulation is activated, there is a small increase of water 
used for a short period of time, and vice versa for downward regulation. 
This effect is neglected in both models taking a regulation market into 
account. Because of differences in activated volume between the primary 
and the secondary regulation market, the effect of this is most prominent 
for the secondary regulation market. However, the water spared during 
downward regulation counteracts some of the increase in water used 
during upward regulation. This assumption implies a close-to-none cost 
of participating in the regulation markets. The only exception is when 
this leads to a production that lies far from the best point on the 
efficiency curve. 

C.2.4  Cascade-connected reservoirs 
 
The watercourse in this case study consists of cascade-connected 
reservoirs, and the model was built to conform to this property. 
Hence, the reservoirs need to be connected to each other in series, rather 
than in parallel. This is due to the water balance constraints, which says 
that discharge/bypass from Reservoir r is transferred to Reservoir (r+1), 
and from Reservoir (r+1) to Reservoir (r+2) accordingly. One could of 
course have multiple reservoirs discharging into the same lower elevated 
reservoir, but as of now they need to be summed up in to one larger 
reservoir in the input data. 
 

C.2.5  Best-point strategy when calculating the end 
reservoir value 

 
When calculating the total value of the remaining water in the reservoir 
at the end of the optimization period, one does not know how the water 
is going to be used in the future. It is possible to either produce at low 
discharge to fulfill a regulation bid, produce optimally to get the most 
out of the water, or produce at maximum discharge to avoid spilling. 
The most plausible assumption is that the unit produces at its best-
point; therefore this efficiency value was being used when calculating the 
value of the end reservoir. 
 



 XXX 

C.2.6   Water values assumed known and independent 
 
The water values are not calculated, but assumed known to the 
producer, i.e. from a seasonal/long term scheduling model. Water values 
are not obtainable in this case study. The model uses independent water 
values, meaning that the value of the water is constant during the 
optimization period, and not depended on the production during the 
period. The water values for a reservoir will be constant and optimal 
when production is utilized optimally [23]. 
 

C.2.7  All markets are assumed perfect 
 
The assumption that all participants in the different power markets are 
price takers was made. That means among other things [26] that no 
participant regardless of production capacity or bidding volume can 
influence the market price, because there are too many participants both 
demanding and supplying power. This however, is not completely true 
when it comes to hydropower producers as some of them have a huge 
market share compared to the market itself. But then again, the 
forecasted price would not be valid, and the model would depend on 
which producer using it. 
Nevertheless, this situation is not that present in the Nordic countries 
[27]. 
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D  The compact mathematical model 
formulations 

!
!
A note about the deterministic model presented in appendix D.2; 
!
The first model developed taking obligation regulations into 
consideration was a deterministic extension of the model developed in 
the specialization project, developed prior to the stochastic model. 
 
Instead of finding an optimal regulation capacity given a regulation 
price, this extended model finds a needed break-even regulation price 
given different regulation obligations. This model does an optimization 
iteration over O obligation regulations only having equation (XXXIV)-
(XXXVI) inside a obligation loop. All other equations ( (XXXVII)-(LV)) 
must be valid for all optimization iterations. The results of each iteration 
was saved into output files for further use. It was merely a proof of 
concept that comparing O regulation obligations proved useful for 
further development of the model, taking stochastic properties into 
account. 
 
Even though this model is not used to produce any results in this report, 
it was a necessary step towards the final stochastic model, and should be 
presented as well. 
!
!
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D.2 The deterministic model 
!

max Pspot
h xtot

h

h∈H
∑ + W r

r∈R
∑ α r − Cs,uβ s,u ,h

h∈H
∑

u∈U
∑

s∈S
∑ ! ∀o∈O ! (XXXIV)!

s.t.! ! !
xtot
t ,h +Ysym

o,h − Xmax
s,u ζ t ,s,u ,h

u∈U
∑

s∈S
∑ ≤ 0 ! ∀o∈O,∀s∈S,∀u ∈U,∀h∈H ! (XXXV)!

xtot
t ,h −Ysym

o,h − Xmin
s,uζ t ,s,u ,h

u∈U
∑

s∈S
∑ ≥ 0 ! ∀o∈O,∀s∈S,∀u ∈U,∀h∈H ! (XXXVI)!

γ r ,h + N r ,h − qs,u ,h
u∈U
∑

s∈S
∑ − f r ,h − br ,h −γ r ,(h+1) = 0 ! r = 1, s = 1,∀u ∈U,∀h∈H ≠ h = H ! (XXXVII)!

γ r ,h + N r ,h + q(s−1),u ,h
u∈U
∑

s∈S
∑ − qs,u ,h

u∈U
∑

s∈S
∑ − f r ,h − br ,h + b(r−1),h −γ r ,(h+1) = 0 ! ∀r ∈R ≠ r = 1,∀s∈S ≠ s = 1,∀u ∈U,∀h∈H ≠ h = H

!
(XXXVIII)!

γ r ,h + N r ,h − qs,u ,h
u∈U
∑

s∈S
∑ − f r ,h − br ,h −θ r = 0 ! r = 1, s = 1,∀u ∈U,h = H ! (XXXIX)!

γ r ,h + N r ,h + q(s−1),u ,h
u∈U
∑

s∈S
∑ − qs,u ,h

u∈U
∑

s∈S
∑ − f r ,h − br ,h + b(r−1),h −θ r = 0 ! ∀r ∈R ≠ r = 1,∀s∈S ≠ s = 1,∀u ∈U,h = H ! (XL)!

α r = θ rHtot
s,uρgηmax

s,u

3.6 ⋅109
!

∀r ∈R,∀s∈S,∀u ∈U ! (XLI)!

xs,u ,h ≤ Γ i qs,u ,h

Qmax
s,u +Ωi⎛

⎝⎜
⎞
⎠⎟
Qmax

s,u H s,u !
∀s∈S,∀u ∈U,∀h∈H ,∀i ∈I ! (XLII)!

Bmin
r ≤ br ,h ≤ Bmax

r ! ∀r ∈R,∀h∈H ! (XLIII)!

Lmin
r ≤ γ r ,h ≤ Lmax

r ! ∀r ∈R,∀h∈H ! (XLIV)!

Lmin
r ≤θ r , ≤ Lmax

r ! ∀r ∈R ! (XLV)!

Qmin
s,u ≤ qs,u ,h ≤Qmax

s,u ! ∀s∈S,∀u ∈U,∀h∈H ! (XLVI)!

xs,u ,h − xs,u ,(h−1) ≤Gmax
s,u ! ∀s∈S,∀u ∈U,∀h∈H ≠ h = H ! (XLVII)!

γ r ,h −γ r ,(h+1) ≤ Amax
r ! ∀r ∈R,∀h∈H ≠ h = H ! (XLVIII)!

xs,u ,h − Xmax
s,u ζ s,u ,h ≤ 0 ! ∀s∈S,∀u ∈U,∀h∈H ! (XLIX)!

xs,u ,h − Xmin
s,uζ s,u ,h ≥ 0 ! ∀s∈S,∀u ∈U,∀h∈H ! (L)!

β s,u ,h − ζ s,u ,h −ζ s,u ,(h−1)( ) ≥ 0 ! ∀s∈S,∀u ∈U,∀h∈H ≠ h = 1 ! (LI)!

β s,u ,h − ζ s,u ,(h+1) −ζ s,u ,h( ) ≥ 0 ! ∀s∈S,∀u ∈U,h = 1 ! (LII)!

xs,u ,h
u∈U
∑

s∈S
∑ − xtot

h = 0 ! ∀h∈H ! (LIII)!

ζ s,u ,h ∈ 0,1{ } ! ∀s∈S,∀u ∈U,∀h∈H ! (LIV)!

xs,u ,h , xtot
h ,α r ,β s,u ,h ,γ r ,h ,qs,u ,h , f r ,h ,br ,h ≥ 0 ! ∀r ∈R,∀s∈S,∀u ∈U,∀h∈H ! (LV)!

!
!
!
!  
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E  The implemented model in Mosel 
 

E.1 The stochastic multi-stage optimization model 
 
 
model stochastic !Model name 
options explterm !All statements must be terminated by a semicolon 
options noimplicit !No implicit declarations 
uses "mmxprs"; !Gain access to the Xpress-Optimizer library 
uses "mmodbc"; !Gain access to SQL for Excel input 
uses "mmsystem"; !Gain access to datetime 
 
!Declaration of tic/toc 
declarations  
    ModelStartTime: datetime; 
    ModelEndTime: datetime; 
    OptimizationStartTime: datetime; 
    OptimizationEndTime: datetime; 
end-declarations 
 
ModelStartTime:= datetime(SYS_NOW); 
 
!Declaration of sets 
declarations 
    Hours:          set of integer; 
    Units:          set of integer; 
    Stations:       set of integer; 
    Reservoirs:     set of integer; 
    Index:          set of integer; 
    ObligationIndex:set of integer;  
    Scenarios:      set of integer; 
    Steps:          set of integer; 
    Nodes:          set of integer; 
end-declarations 
 
!Reading input data of sets from excel 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\input_216.xlsx'); 
    SQLexecute("select HOURS from HH", Hours); 
    SQLexecute("select UNITS from UU", Units); 
    SQLexecute("select STATIONS from SS", Stations); 
    SQLexecute("select RESERVOIRS from RR", Reservoirs); 
    SQLexecute("select INDEX from II", Index); 
    SQLexecute("select OBLIGATIONINDEX from OO", ObligationIndex); 
SQLdisconnect; 
 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\stoch_input_216.xlsx'); 
    SQLexecute("select SCENARIOS from EE", Scenarios); 
    SQLexecute("select STEPS from TT", Steps); 
    SQLexecute("select NODES from NN", Nodes); 
SQLdisconnect; 
 
!Declaration of general parameters 
declarations 
    !Spotprice 
    SpotPrice:                  array(Hours)                of real; 
    !Symmetrical regulation obligation 
    SymRegObligation:           array(ObligationIndex)      of real; 
    !Water value 
    WaterValue:                 array(Reservoirs)           of real; 
    !Intial reservoir volume 
    InitialWaterVolume:         array(Reservoirs)           of real; 
    !Inflow 
    InflowRes:                  array(Reservoirs,Hours)     of real; 
    !Max production on each unit 
    MaxProduction:              array(Stations,Units)       of real; 
    !Min production on each unit 
    MinProduction:              array(Stations,Units)       of real; 
    !Max bypass m3/s 
    MaxBypass:                  array(Reservoirs)           of real;  
    !Min bypass m3/s 
    MinBypass:                  array(Reservoirs)           of real; 
    !Max reservoar volume m3 
    MaxReservoirVolume:         array(Reservoirs)           of real; 
    !Min reservoar volume m3 
    MinReservoirVolume:         array(Reservoirs)           of real; 
    !Max regulation of reservoar per hour m3/h 
    MaxRegulatingPerHour:       array(Reservoirs)           of real; 
    !Start-up cost at unit u at station s 
    StartUpCost:                array(Stations,Units)       of real; 
    !Max ramping at unit u at station s 
    MaxRamping:                 array(Stations,Units)       of real; 
    !Slopes of the piecewise linear PQ-curve 
    Slope:                      array(Index)                of real; 
    !Interceptions of the piecewise linear PQ-curve 
    Intercept:                  array(Index)                of real; 
    !Head for each unit 
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    HeadUnit:                   array(Stations,Units)       of real; 
    !System head for each unit 
    TotHeadUnit:                array(Stations,Units)       of real; 
    !Max discharge through unit u at station s 
    MaxDiscUnit:                array(Stations,Units)       of real; 
    !Min discharge through unit u at station s 
    MinDiscUnit:                array(Stations,Units)       of real; 
    !Best point efficiency for each unit 
    EffBPUnit:                  array(Stations,Units)       of real; 
     
    !Declaration of parameters used by the stochastic part of the model 
 
    !The spot prices for all possible Scenarios 
    ScenarioSpotPrice:          array(Scenarios,Hours)  of real; 
    !The distribution of probabilities for each Scenario to occur 
    EndScenarioProbability:     array(Scenarios)        of real; 
    !The predecessor node given each node 
    NodePredecessor:            array(Nodes)            of integer; 
    !The probability for each node in the scenario tree 
    NodeProbability:            array(Nodes)            of real; 
    !The number of branches in each step in the scenario tree 
    StepNumberOfBranch:         array(Steps)            of integer; 
    !The matrices created by the model in order to use Scenred data 
    StepProbabilityDynamic:             array(Scenarios,Steps)  of real; 
    StepPredecessorDynamic:     array(Scenarios,Steps)  of integer; 
    StepPredecessorFull:        array(Scenarios,Steps)  of real; 
    !Counters needed in order to create the above matrices 
    EqualNumbersCounter:        integer; 
    IteratorCounter:            integer; 
    Counter:                    integer; 
    CoordCounter:               integer; 
    Indicator:                  integer; 
    !Storing the random function deciding the stochastic outcomes 
    Dice:                       array(Steps) of real; 
    DiceAdjusted:               array(Steps) of real; 
    !Declaration of parameters used to store stochastic results  
    RealizedPredecessor:        array(Steps) of real; 
    RealizedPredDynCoord:       array(Steps) of integer; 
    RealizedProbDynCoord:       array(Steps) of integer; 
    RealizedProbability:        array(Steps) of real; 
     
    !Declaration of parameters used to store variables of stepwise runs 
    StepwisePTotSpot:               array(ObligationIndex,Steps,Hours)                  of real; 
    StepwiseQInRes:                 array(ObligationIndex,Steps,Reservoirs,Hours)       of real; 
    StepwiseRunIndUnit:             array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwisePUnit:                  array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwiseQBypassRes:             array(ObligationIndex,Steps,Reservoirs,Hours)       of real; 
    StepwiseQFloodRes:              array(ObligationIndex,Steps,Reservoirs,Hours)       of real; 
    StepwiseQProdUnit:              array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwiseStartIndUnit:           array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwisePEndRes:                array(ObligationIndex,Steps,Reservoirs)             of real; 
    StepwiseObjectiveValue:         array(ObligationIndex,Steps)                        of real; 
    StepwiseQEndRes:                array(ObligationIndex,Steps,Reservoirs)             of real; 
    StepwiseBreakEvenRegPrice:      array(ObligationIndex,Steps)                        of real; 
    StepwiseTurbEff:                array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwiseModelTotObjVal:         array(ObligationIndex,Steps)                        of real; 
    StepwiseModelBreakEvenRegPrice: array(ObligationIndex,Steps)                        of real; 
    StepwiseActualTotObjVal:        array(ObligationIndex,Steps)                        of real; 
    StepwiseActualBreakEvenRegPrice:array(ObligationIndex,Steps)                        of real; 
    StepwiseModelMarginalRegCost:   array(ObligationIndex,Steps)                        of real; 
    StepwiseActualMarginalRegCost:  array(ObligationIndex,Steps)                        of real; 
    StepwiseModelPrice:             array(Steps,Hours)                                  of real; 
 
     
    !Declaration of parameters used to store variables of realized runs 
    ActualPrice:                array(Hours) of real; 
    ActualObjectiveValue:       array(ObligationIndex)                          of real; 
    ActualBreakEvenRegPrice:    array(ObligationIndex)                          of real; 
    ActualMarginalRegCost:      array(ObligationIndex)                          of real; 
    RealizedPTotSpot:           array(ObligationIndex,Hours)                    of real; 
    RealizedQInRes:             array(ObligationIndex,Reservoirs,Hours)         of real; 
    RealizedRunIndUnit:         array(ObligationIndex,Stations,Units,Hours)     of real; 
    RealizedPUnit:              array(ObligationIndex,Stations,Units,Hours)     of real; 
    RealizedQBypassRes:         array(ObligationIndex,Reservoirs,Hours)         of real; 
    RealizedQFloodRes:          array(ObligationIndex,Reservoirs,Hours)         of real; 
    RealizedQProdUnit:          array(ObligationIndex,Stations,Units,Hours)     of real; 
    RealizedStartIndUnit:       array(ObligationIndex,Stations,Units,Hours)     of real; 
    RealizedPEndRes:            array(ObligationIndex,Reservoirs)               of real; 
    RealizedQEndRes:            array(ObligationIndex,Reservoirs)               of real; 
    RealizedTurbEff:            array(ObligationIndex,Stations,Units,Hours)     of real; 
    RealizedRunningUnits:       array(ObligationIndex,Stations,Hours)           of real;     
 
    !Declaration of parameters used to store the price and marginal cost for regulation  
    !(and correspondig objective value) that the model sees when optimizing  
    ModelPrice:                 array(Hours)            of real; 
    ModelObjectiveValue:        array(ObligationIndex)  of real; 
    ModelBreakEvenRegPrice:     array(ObligationIndex)  of real; 
    ModelMarginalRegCost:       array(ObligationIndex)  of real; 
     
end-declarations 
 
!Reading input data of parameters from excel 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\input_216.xlsx');  
    SQLexecute("select SPOTPRICE from HH", SpotPrice); 
    SQLexecute("select SYMREGOBLIGATION from OO", SymRegObligation); 
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    SQLexecute("select WATERVALUE from RR", WaterValue); 
    SQLexecute("select INITIALWATERVOLUME from RR", InitialWaterVolume); 
    SQLexecute("select INFLOWRES from RRHH", InflowRes); 
    SQLexecute("select MAXPRODUCTION from SSUU", MaxProduction); 
    SQLexecute("select MINPRODUCTION from SSUU", MinProduction); 
    SQLexecute("select MAXBYPASS from RR", MaxBypass); 
    SQLexecute("select MINBYPASS from RR", MinBypass); 
    SQLexecute("select MAXRESERVOIRVOLUME from RR", MaxReservoirVolume); 
    SQLexecute("select MINRESERVOIRVOLUME from RR", MinReservoirVolume); 
    SQLexecute("select MAXREGULATINGPERHOUR from RR", MaxRegulatingPerHour); 
    SQLexecute("select STARTUPCOST from SSUU", StartUpCost); 
    SQLexecute("select MAXRAMPING from SSUU", MaxRamping); 
    SQLexecute("select HEADUNIT from SSUU", HeadUnit); 
    SQLexecute("select MAXDISCUNIT from SSUU", MaxDiscUnit); 
    SQLexecute("select MINDISCUNIT from SSUU", MinDiscUnit); 
    SQLexecute("select TOTHEADUNIT from SSUU", TotHeadUnit); 
    SQLexecute("select EFFBPUNIT from SSUU", EffBPUnit); 
    SQLexecute("select SLOPE from II", Slope); 
    SQLexecute("select INTERCEPT from II", Intercept); 
    SQLdisconnect; 
     
    SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\stoch_input_216.xlsx');    
    SQLexecute("select SCENARIOSPOTPRICE from EEHH", ScenarioSpotPrice); 
    SQLexecute("select ENDSCENARIOPROBABILITY from EE", EndScenarioProbability); 
    SQLexecute("select NODEPREDECESSOR from NN", NodePredecessor); 
    SQLexecute("select NODEPROBABILITY from NN", NodeProbability); 
    SQLexecute("select STEPNUMBEROFBRANCH from TT", StepNumberOfBranch); 
SQLdisconnect; 
 
writeln("All input data successfully read from Excel file"); 
 
!Declaration of variables 
declarations 
 
    !Total spot volume in hour h 
    ptotspot:       array(ObligationIndex,Steps,Hours)                of mpvar; 
    !Reservoir volume at the end of the period 
    qendres:        array(ObligationIndex,Steps,Reservoirs)           of mpvar; 
    !Energy in the reservoir at the end of the period 
    pendres:        array(ObligationIndex,Steps,Reservoirs)           of mpvar; 
    !Discharge through unit u at station s in hour h 
    qprodunit:      array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    !Flood from reservoir r in hour h 
    qfloodres:      array(ObligationIndex,Steps,Reservoirs,Hours)     of mpvar; 
    !Bypass from reservoir r in hour h 
    qbypassres:     array(ObligationIndex,Steps,Reservoirs,Hours)     of mpvar; 
    !reservoar volume in reservoir r in hour h 
    qinres:         array(ObligationIndex,Steps,Reservoirs,Hours)     of mpvar; 
    !Spot production from unit u at station s in hour h 
    punit:          array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    !Start indicator, 1 if unit u starts in hour h 
    startindunit:   array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    !Run indicator, 1 if unit u runs in hour h  
    runindunit:     array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    
     
! Declaration of the objective function 
maxz:                   linctr; 
  
!Declaration of constranits 
 
! Sets initial reservoir volume in qinres for all reservoirs 
restInitWaterBalance:       array(Reservoirs)               of linctr;     
!Other water balances 
restWaterBalance1:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance2:          array(Reservoirs,Hours)         of linctr;   
restWaterBalance3:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance4:          array(Reservoirs,Hours)         of linctr;  
restWaterBalance5:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance6:          array(Reservoirs,Hours)         of linctr;  
restWaterBalance7:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance8:          array(Reservoirs,Hours)         of linctr;    
!Total spot production from unit to system level 
restTotSpotProd:            array(Hours)                    of linctr;     
!Max bypass 
restMaxBypassRes:           array(Reservoirs,Hours)         of linctr; 
!Min bypass 
restMinBypassRes:           array(Reservoirs,Hours)         of linctr;     
!Max reservoar volume 
restMaxVolumeRes:           array(Reservoirs,Hours)         of linctr; 
!Min reservoar volume 
restMinVolumeRes:           array(Reservoirs,Hours)         of linctr; 
!Max reservoar regulation  equation 1 
restMaxRegRes1:             array(Reservoirs,Hours)         of linctr;   
!Max reservoar regulation equation 2 
restMaxRegRes2:             array(Reservoirs,Hours)         of linctr; 
!Start-up cost     
restStartupCostUnit:        array(Stations,Units,Hours)     of linctr; 
!Max ramping equation 1 
restMaxRampUnit1:           array(Stations,Units)           of linctr; 
!Max ramping equation 2 
restMaxRampUnit2:           array(Stations,Units)           of linctr;   
!Max production on unit u at station s in hour h 
restMaxProdUnit:            array(Stations,Units,Hours)     of linctr;   
!Min production on unit u at station s in hour h 
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restMinProdUnit:            array(Stations,Units,Hours)     of linctr; 
!Production indicator for each unit in each hour 
restProdIndUnit:            array(Stations,Units,Hours)     of linctr; 
!Max reservoir volume at the end of the period 
restMaxVolumeEndRes:        array(Reservoirs)               of linctr; 
!Min reservoir volume at the end of the period 
restMinVolumeEndRes:        array(Reservoirs)               of linctr; 
!Calculates the equivalent energy of the water in the reservoar at the end of the 
!period in MWh 
restEndResEnergy:           array(Reservoirs)               of linctr; 
!Max discharge thruogh unit u at station s in hour h 
restMaxDiscUnit:            array(Stations,Units,Hours)     of linctr; 
!Min discharge thruogh unit u at station s in hour h 
restMinDiscUnit:            array(Stations,Units,Hours)     of linctr; 
!PQ-curve 
restPQCurve1:               array(Stations, Units, Hours)   of linctr; 
!PQ-curve 
restPQCurve2:               array(Stations, Units, Hours)   of linctr; 
!PQ-curve 
restPQCurve3:               array(Stations, Units, Hours)   of linctr; 
!PQ-curve 
restPQCurve4:               array(Stations, Units, Hours)   of linctr; 
!PQ-curve 
restPQCurve5:               array(Stations, Units, Hours)   of linctr; 
!PQ-curve 
restPQCurve6:               array(Stations, Units, Hours)   of linctr; 
!PQ-curve 
restPQCurve7:               array(Stations, Units, Hours)   of linctr;      
!Reserving upward regulation capacity 
restMaxProdObligation:      array(Hours)                    of linctr; 
!Reserving downward regulation capacity 
restMinProdObligation:      array(Hours)                    of linctr; 
!Connecting optimal decision variables from step to step 
restStepChangeQInRes:       array(Reservoirs)               of linctr; 
restStepChangeQProdUnit:    array (Stations, Units)         of linctr; 
restStepChangeQFloodRes:    array(Reservoirs)               of linctr; 
restStepChangeQBypassRes:   array(Reservoirs)               of linctr; 
restStepChangePUnit:        array (Stations, Units)         of linctr; 
restStepChangeRunIndUnit:   array (Stations, Units)         of linctr; 
restStepChangeStartIndUnit: array (Stations, Units)         of linctr; 
 
end-declarations 
 
! Creates binary variable 
forall (oo in ObligationIndex, tt in Steps,ss in Stations,uu in Units,hh in Hours) do 
    runindunit(oo,tt,ss,uu,hh) is_binary; 
end-do 
 
forall (oo in ObligationIndex, tt in Steps,ss in Stations,uu in Units,hh in Hours) do 
    startindunit(oo,tt,ss,uu,hh) is_binary; 
end-do 
 
writeln("All restrictions and variables successfully created"); 
writeln("Creating stochastic matrices needed by the optimization model"); 
 
! Creation of needed matrices for the stochastic calculations 
 
! Creating the dynamic matrices from excel input data 
forall (tt in Steps) do 
 
    if (tt =1) then 
     
        forall (ee in 1.. StepNumberOfBranch(tt)) do 
         
            StepProbabilityDynamic(ee,tt):= NodeProbability(1+ee); 
            StepPredecessorDynamic(ee,tt):= NodePredecessor(1+ee); 
             
        end-do 
         
    else 
             
        forall (ee in 1.. StepNumberOfBranch(tt)) do 
         
            StepProbabilityDynamic(ee,tt) := NodeProbability(1+sum(ttt in 2.. tt)(24*StepNumberOfBranch(ttt-
1))+ee);     
            StepPredecessorDynamic(ee,tt) := NodePredecessor(1+sum(ttt in 2.. tt)(24*StepNumberOfBranch(ttt-
1))+ee); 
         
        end-do 
     
    end-if 
 
end-do 
     
    !Creating the explicit matrix from the dynamic matrix 
     
    !Creating last column of the explicit matrix 
    forall (ee in Scenarios) do 
     
        StepPredecessorFull(ee,getsize(Steps)):=StepPredecessorDynamic(ee,getsize(Steps)); 
     
    end-do 
     
     
    ! Creating the remaining columns of the explicit matrix 
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    forall (tt in 1.. getsize(Steps)-1) do 
     
        EqualNumbersCounter := 0; 
        IteratorCounter:= 1; 
        Counter:= 1; 
     
        forall (ee in 2.. getsize(Scenarios)) do 
         
            if (StepPredecessorFull(ee-1,1+getsize(Steps)-tt) = StepPredecessorFull(ee,1+getsize(Steps)-tt)) 
then 
                 
                EqualNumbersCounter:= EqualNumbersCounter + 1; 
                 
            else 
                 
                forall(pp in IteratorCounter.. IteratorCounter+EqualNumbersCounter) do 
                 
                        StepPredecessorFull(pp,(getsize(Steps)-tt)) := 
StepPredecessorDynamic(Counter,getsize(Steps)-tt); 
                end-do 
                 
                Counter:= Counter + 1; 
                IteratorCounter := IteratorCounter + EqualNumbersCounter +1; 
                EqualNumbersCounter :=0; 
             
            end-if 
         
        end-do 
     
    end-do 
         
        forall (tt in 1.. getsize(Steps)-1) do 
         
            StepPredecessorFull(getsize(Scenarios),getsize(Steps)-tt):=  
            StepPredecessorDynamic(StepNumberOfBranch(getsize(Steps)-tt),getsize(Steps)-tt); 
         
        end-do   
             
    writeln("Model run start");      
             
    ! Model algoritm begins 
         
forall (tt in Steps) do ! Iterating over all steps 
         
        if (tt =1) then ! For the first step only 
         
        !Establishing initial values 
     
            RealizedProbability(tt):= 1; 
            RealizedPredecessor(tt):=1; 
            RealizedPredDynCoord(tt):=1; 
             
            !Optimizing the entire period with all scenarios weighted according to corresponding probability 
     
     
             
             
            !Saving the price optimized upon for the first 24 hours 
            forall (hh in 1..24) do 
                ModelPrice(hh) :=sum(ee in Scenarios)(ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)); 
            end-do 
             
        else    ! for all other steps 
                 
                ! Emulating what actually happend from the previous step 
         
            Dice(tt-1):= random;    ! Emulating which way the market will go 
            DiceAdjusted(tt-1):= Dice(tt-1)*RealizedProbability(tt-1);  ! Adjusting it to the same size as 
corresponding  
     
     
            ! Storing the coordinate to the probability that was realized in the previous step 
            Indicator:=0; 
             
            forall(ee in Scenarios | StepPredecessorDynamic(ee,tt-1) = RealizedPredecessor(tt-1)) do 
             
                if (DiceAdjusted(tt-1) < sum(pp in RealizedPredDynCoord(tt-
1)..ee)(StepProbabilityDynamic(pp,tt-1))) then 
                     
                    if (Indicator = 0) then 
                     
                    RealizedProbDynCoord(tt-1):=ee; 
                    RealizedProbability(tt):= StepProbabilityDynamic(ee,tt-1); 
                    Indicator:=1; 
                     
                    end-if 
                 
                end-if 
             
            end-do 
     
            ! Storing the predecessor for the probabilities that shall be weighted   
             
            Counter:=1; 
            CoordCounter:=1; 
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            while (Counter < RealizedProbDynCoord(tt-1)) do 
             
                if (StepPredecessorDynamic(CoordCounter,tt) <>  StepPredecessorDynamic(CoordCounter+1,tt)) 
then 
                     
                    Counter:= Counter +1; 
                 
                end-if 
                 
                CoordCounter:= CoordCounter +1;  
             
            end-do 
             
            RealizedPredDynCoord(tt):= CoordCounter; 
            RealizedPredecessor(tt):= StepPredecessorDynamic(CoordCounter,tt); 
                 
            ! Storing the actual realized spot price (by picking the first price series with the 
corresponding predecessor)  
                 
            Counter:=1; 
             
            while (StepPredecessorFull(Counter,tt) <> RealizedPredecessor(tt)) do 
             
                Counter:= Counter + 1; 
             
            end-do 
             
            forall (hh in (24*tt-47) .. 24*(tt-1)) do 
                 
                ActualPrice(hh):= ScenarioSpotPrice(Counter,hh); 
             
            end-do 
                 
            ! Maximizing over all periods remaining considering valid probabilities and price series 
             
            !Storing the price optimized upon for each step 
            forall (hh in 24*(tt-1)..24*tt) do 
                ModelPrice(hh) :=sum(ee in Scenarios | StepPredecessorFull(ee,tt) = RealizedPredecessor(tt)) 
                ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
                /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee)))); 
            end-do 
             
        end-if 
         
        forall(oo in ObligationIndex)do !Iterating over all obligations 
 
        if (tt = 1) then 
            !Setting initial volume of reservoirs 
            forall (rr in Reservoirs) do 
                restInitWaterBalance(rr) := qinres(oo,tt,rr,1) = InitialWaterVolume(rr); 
            end-do 
             
            !Water balance upper reservoir for first step 
            forall (rr in 1..1, hh in (24*tt-23)..(24*getsize(Steps)-1)) do 
                restWaterBalance1(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh) 
                -sum(ss in 1..1, uu in Units)(qprodunit(oo,tt,ss,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)-
qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Water balance other reservoirs for first step 
            forall (rr in 2.. getsize(Reservoirs), hh in 24*tt-23 .. (24*getsize(Steps)-1)) do 
                restWaterBalance2(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh)+ sum(uu in 
Units)(qprodunit(oo,tt,(rr-1),uu,hh)*3600) 
                -sum(uu in Units)(qprodunit(oo,tt,rr,uu,hh)*3600)-
qfloodres(oo,tt,rr,hh)+qbypassres(oo,tt,(rr-1),hh)-qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Max ramping equation 1 
            forall (ss in Stations, uu in Units, hh in 24*tt-22 .. 24*getsize(Steps)) do 
                restMaxRampUnit1(ss,uu) := punit(oo,tt,ss,uu,hh) - punit(oo,tt,ss,uu,(hh-1)) <= 
MaxRamping(ss,uu); 
            end-do 
             
            !Max ramping equation 2 
            forall (ss in Stations, uu in Units, hh in 24*tt-22 .. 24*getsize(Steps)) do 
                restMaxRampUnit2(ss,uu) := punit(oo,tt,ss,uu,(hh-1)) - punit(oo,tt,ss,uu,hh) >= -
MaxRamping(ss,uu); 
            end-do 
             
            !Max reservoir regulation equation 1 
            forall (rr in Reservoirs, hh in 24*tt-23 .. (24*getsize(Steps)-1)) do 
                restMaxRegRes1(rr,hh) := qinres(oo,tt,rr,(hh+1))-qinres(oo,tt,rr,hh) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
            !Max reservoir regulation equation 2 
            forall (rr in Reservoirs, hh in 24*tt-23 .. (24*getsize(Steps)-1)) do 
                restMaxRegRes2(rr,hh) := qinres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
                !Start-up costs 
            forall (ss in Stations, uu in Units,hh in 24*tt-22 .. 24*getsize(Steps)) do 
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                restStartupCostUnit(ss,uu,hh) := startindunit(oo,tt,ss,uu,hh) - (runindunit(oo,tt,ss,uu,hh) - 
runindunit(oo,tt,ss,uu,(hh-1))) >= 0 ; 
            end-do 
             
            !Start-up costs 
            forall (ss in Stations, uu in Units, hh = 24*tt-23) do 
                restStartupCostUnit(ss,uu,hh) := startindunit(oo,tt,ss,uu,hh) - 
(runindunit(oo,tt,ss,uu,(hh+1)) - runindunit(oo,tt,ss,uu,hh)) >= 0 ; 
            end-do 
             
            !Objective value for first step 
            maxz:= sum(ee in Scenarios, hh in (24*tt-23) .. 24*getsize(Steps)) 
            (ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)*ptotspot(oo,tt,hh)) 
            + sum(rr in Reservoirs)(WaterValue(rr)*pendres(oo,tt,rr)) 
            - sum(ss in Stations, uu in Units, hh in (24*tt-23) .. 24*getsize(Steps)) 
            (StartUpCost(ss,uu)*startindunit(oo,tt,ss,uu,hh)); 
             
            else 
                 
            ! Setting all variables in current step for hour 24 equal to hour 24 of previous step 
            forall (rr in Reservoirs, ss in Stations, uu in Units) do 
                restStepChangeQInRes(rr) := qinres(oo,tt,rr,(24*(tt-1))) = StepwiseQInRes(oo,tt-1,rr,(24*(tt-
1))); 
                restStepChangeQProdUnit(ss,uu):= qprodunit(oo,tt,ss,uu,(24*(tt-1))) = 
StepwiseQProdUnit(oo,tt-1,ss,uu,(24*(tt-1))); 
                restStepChangeQFloodRes(rr) := qfloodres(oo,tt,rr,(24*(tt-1))) = StepwiseQFloodRes(oo,tt-
1,rr,(24*(tt-1))); 
                restStepChangeQBypassRes(rr) := qbypassres(oo,tt,rr,(24*(tt-1))) = StepwiseQBypassRes(oo,tt-
1,rr,(24*(tt-1))); 
                restStepChangePUnit(ss,uu):= punit(oo,tt,ss,uu,(24*(tt-1))) = StepwisePUnit(oo,tt-
1,ss,uu,(24*(tt-1))); 
                restStepChangeRunIndUnit(ss,uu) := runindunit(oo,tt,ss,uu,(24*(tt-1))) = 
StepwiseRunIndUnit(oo,tt-1,ss,uu,(24*(tt-1))); 
                restStepChangeStartIndUnit(ss,uu) := startindunit(oo,tt,ss,uu,(24*(tt-1))) = 
StepwiseStartIndUnit(oo,tt-1,ss,uu,(24*(tt-1))); 
            end-do 
         
            !Water balance upper reservoir for other steps 
            forall (rr in 1..1, hh in (24*(tt-1))..(24*getsize(Steps)-1)) do 
                restWaterBalance3(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh) 
                -sum(ss in 1..1, uu in Units)(qprodunit(oo,tt,ss,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)-
qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Water balance other reservoirs for other steps 
            forall (rr in 2.. getsize(Reservoirs), hh in (24*(tt-1)) .. (24*getsize(Steps)-1)) do 
                restWaterBalance4(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh)+ sum(uu in 
Units)(qprodunit(oo,tt,(rr-1),uu,hh)*3600) 
                -sum(uu in Units)(qprodunit(oo,tt,rr,uu,hh)*3600)-
qfloodres(oo,tt,rr,hh)+qbypassres(oo,tt,(rr-1),hh)-qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Max ramping equation 1 
            forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
                restMaxRampUnit1(ss,uu) := punit(oo,tt,ss,uu,hh) - punit(oo,tt,ss,uu,(hh-1)) <= 
MaxRamping(ss,uu); 
            end-do 
             
            !Max ramping equation 2 
            forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
                restMaxRampUnit2(ss,uu) := punit(oo,tt,ss,uu,(hh-1)) - punit(oo,tt,ss,uu,hh) >= -
MaxRamping(ss,uu); 
            end-do 
             
            !Max reservoir regulation equation 1 
            forall (rr in Reservoirs, hh in 24*(tt-1) .. (24*getsize(Steps)-1)) do 
                restMaxRegRes1(rr,hh) := qinres(oo,tt,rr,(hh+1))-qinres(oo,tt,rr,hh) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
            !Max reservoir regulation equation 2 
            forall (rr in Reservoirs, hh in 24*(tt-1) .. (24*getsize(Steps)-1)) do 
                restMaxRegRes2(rr,hh) := qinres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
            !Start-up costs 
            forall (ss in Stations, uu in Units,hh in 24*tt-23 .. 24*getsize(Steps)) do 
                restStartupCostUnit(ss,uu,hh) := startindunit(oo,tt,ss,uu,hh) - (runindunit(oo,tt,ss,uu,hh) - 
runindunit(oo,tt,ss,uu,(hh-1))) >= 0 ; 
            end-do 
         
            ! The maximization function for all steps except tt=1 
            maxz:=  
            sum(ee in Scenarios | StepPredecessorFull(ee,tt) = RealizedPredecessor(tt), hh in (24*tt-23) .. 
24*getsize(Steps)) 
            ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
            /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee))) 
            *ptotspot(oo,tt,hh)) 
            + sum(rr in Reservoirs)(WaterValue(rr)*pendres(oo,tt,rr)) 
            - sum(ss in Stations, uu in Units, hh in (24*tt-23) .. 24*getsize(Steps)) 
            (StartUpCost(ss,uu)*startindunit(oo,tt,ss,uu,hh)); 
         
        end-if 
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        !Water balance last hour upper reservoir 
        forall (rr = 1, hh = 24*getsize(Steps)) do 
            restWaterBalance5(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh) 
            -sum(ss in 1..1, uu in Units)(qprodunit(oo,tt,ss,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)-
qbypassres(oo,tt,rr,hh)-qendres(oo,tt,rr) =0; 
        end-do 
         
        !Water balance last hour other reservoirs  
        forall (rr in 2.. getsize(Reservoirs), hh = 24*getsize(Steps)) do 
            restWaterBalance6(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh)+ sum(uu in 
Units)(qprodunit(oo,tt,(rr-1),uu,hh)*3600) 
            -sum(uu in Units)(qprodunit(oo,tt,rr,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)+qbypassres(oo,tt,(rr-
1),hh)-qbypassres(oo,tt,rr,hh)-qendres(oo,tt,rr) =0; 
        end-do 
         
        !Calculates the equivalent energy of the water in the reservoar at the end of the 
        !period in MWh 
        forall(rr in Reservoirs) do 
            restEndResEnergy(rr) := pendres(oo,tt,rr) = 
qendres(oo,tt,rr)*TotHeadUnit(rr,1)*1000*9.81*EffBPUnit(rr,1)/(3600*1000000); 
        end-do 
         
        !Cuts of PQ-curves 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps) |MaxDiscUnit(ss,uu) > 0) do 
            restPQCurve1(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(1)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(1))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve2(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(2)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(2))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve3(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(3)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(3))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve4(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(4)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(4))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve5(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(5)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(5))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve6(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(6)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(6))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
        end-do 
         
        !Max bypass  
        forall (rr in Reservoirs,  hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxBypassRes(rr,hh) := qbypassres(oo,tt,rr,hh)<= MaxBypass(rr); 
        end-do 
         
        !Min bypass  
        forall (rr in Reservoirs, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinBypassRes(rr,hh) := qbypassres(oo,tt,rr,hh)>= MinBypass(rr); 
        end-do 
         
        !Max resevoir volume 
        forall (rr in Reservoirs, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxVolumeRes(rr,hh) := qinres(oo,tt,rr,hh) <= MaxReservoirVolume(rr); 
        end-do 
         
        !Min reservoir volume 
        forall (rr in Reservoirs, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinVolumeRes(rr,hh) := qinres(oo,tt,rr,hh) >= MinReservoirVolume(rr); 
        end-do 
         
        !Max resevoir volume at the end of the period 
        forall (rr in Reservoirs) do 
            restMaxVolumeEndRes(rr) := qendres(oo,tt,rr) <= MaxReservoirVolume(rr); 
        end-do 
         
        !Min resevoir volume at the end of the period 
        forall (rr in Reservoirs) do 
            restMinVolumeEndRes(rr) := qendres(oo,tt,rr) >= MinReservoirVolume(rr); 
        end-do 
         
        !Max Discharge 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxDiscUnit(ss,uu,hh) := qprodunit(oo,tt,ss,uu,hh) <= MaxDiscUnit(ss,uu); 
        end-do 
         
        !Min Discharge 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinDiscUnit(ss,uu,hh) := qprodunit(oo,tt,ss,uu,hh) >= MinDiscUnit(ss,uu); 
        end-do 
         
        !Total production in the spot market from unit level to system level 
        forall (hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restTotSpotProd(hh) := sum(ss in Stations, uu in Units)(punit(oo,tt,ss,uu,hh)) - 
ptotspot(oo,tt,hh) = 0 ; 
        end-do 
         
         
        !Max production on each unit 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxProdUnit(ss,uu,hh) := punit(oo,tt,ss,uu,hh)-
MaxProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) <= 0; 
        end-do 
         
        !Min production on each unit 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
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            restMinProdUnit(ss,uu,hh) := punit(oo,tt,ss,uu,hh)-
MinProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) >= 0; 
        end-do 
                         
        !Reserving upward regulation capacity 
        forall(hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxProdObligation(hh) := ptotspot(oo,tt,hh)+SymRegObligation(oo)-sum(ss in Stations, uu in 
Units)MaxProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) <= 0; 
        end-do 
         
        !Reserving downward regulation capacity 
        forall(hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinProdObligation(hh) := ptotspot(oo,tt,hh)-SymRegObligation(oo)-sum(ss in Stations, uu in 
Units)MinProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) >= 0; 
        end-do 
             
        !Running optimizations for all steps and obligations 
        writeln("Optimizing Step: ",tt,", ObligationIndex: ",oo); 
        OptimizationStartTime:= datetime(SYS_NOW); 
        maximize(maxz); 
         
        StepwiseObjectiveValue(oo,tt):= getobjval; 
        OptimizationEndTime:= datetime(SYS_NOW); 
         
        !Check for optimiality / feasibility 
        if  (getprobstat = XPRS_INF) then  
            writeln("Infeasible solution"); 
            writeln("Step: ",tt,", ObligationIndex: ",oo); 
        end-if 
        if (not getprobstat = XPRS_OPT) then  
            writeln("Not solved to optimality"); 
            writeln("Step: ",tt,", ObligationIndex: ",oo); 
        else 
            writeln("Step: ",tt,", ObligationIndex: ",oo," is optimized successfully"); 
            writeln("Elapsed time of optimization: ",OptimizationEndTime-OptimizationStartTime," seconds"); 
                 
        end-if 
             
        !Saving the realized  solutions from each step to show the actual behavior throughout the step 
        forall(rr in Reservoirs, ss in Stations, uu in Units, hh in 24*tt-23 .. 24*tt) do 
             
            RealizedPTotSpot(oo,hh):= getsol(ptotspot(oo,tt,hh)); 
            RealizedQInRes(oo,rr,hh):= getsol(qinres(oo,tt,rr,hh)); 
            RealizedRunIndUnit(oo,ss,uu,hh):= getsol(runindunit(oo,tt,ss,uu,hh)); 
            RealizedPUnit(oo,ss,uu,hh):= getsol(punit(oo,tt,ss,uu,hh)); 
            RealizedQBypassRes(oo,rr,hh):= getsol(qbypassres(oo,tt,rr,hh)); 
            RealizedQFloodRes(oo,rr,hh):= getsol(qfloodres(oo,tt,rr,hh)); 
            RealizedQProdUnit(oo,ss,uu,hh):= getsol(qprodunit(oo,tt,ss,uu,hh)); 
            RealizedStartIndUnit(oo,ss,uu,hh):= getsol(startindunit(oo,tt,ss,uu,hh)); 
            RealizedPEndRes(oo,rr):= getsol(pendres(oo,tt,rr)); 
            RealizedQEndRes(oo,rr):= getsol(qendres(oo,tt,rr)); 
            if (getsol(qprodunit(oo,tt,ss,uu,hh)) >0) then 
                RealizedTurbEff(oo,ss,uu,hh):= 
(1000000*getsol(punit(oo,tt,ss,uu,hh))/(getsol(qprodunit(oo,tt,ss,uu,hh))*9.81*1000*HeadUnit(ss,uu))); 
            end-if 
        end-do 
         
        !Saving the Stepwise solutions from each step to show the Stepwise behavior throughout the step 
        forall (rr in Reservoirs, ss in Stations, uu in Units, hh in Hours) do 
            StepwisePTotSpot(oo,tt,hh):= getsol(ptotspot(oo,tt,hh)); 
            StepwiseQInRes(oo,tt,rr,hh):= getsol(qinres(oo,tt,rr,hh)); 
            StepwiseRunIndUnit(oo,tt,ss,uu,hh):= getsol(runindunit(oo,tt,ss,uu,hh)); 
            StepwisePUnit(oo,tt,ss,uu,hh):= getsol(punit(oo,tt,ss,uu,hh)); 
            StepwiseQBypassRes(oo,tt,rr,hh):= getsol(qbypassres(oo,tt,rr,hh)); 
            StepwiseQFloodRes(oo,tt,rr,hh):= getsol(qfloodres(oo,tt,rr,hh)); 
            StepwiseQProdUnit(oo,tt,ss,uu,hh):= getsol(qprodunit(oo,tt,ss,uu,hh)); 
            StepwiseStartIndUnit(oo,tt,ss,uu,hh):= getsol(startindunit(oo,tt,ss,uu,hh)); 
            StepwisePEndRes(oo,tt,rr):= getsol(pendres(oo,tt,rr)); 
            StepwiseQEndRes(oo,tt,rr):= getsol(qendres(oo,tt,rr)); 
        end-do 
     
    end-do !Ending obligations 
     
    if (tt = getsize(Steps)) then 
     
        ! Emulating the market for the last step 
        Dice(tt):= random; 
         
        DiceAdjusted(tt):= Dice(tt)*RealizedProbability(tt); 
     
        forall(ee in Scenarios | StepPredecessorDynamic(ee,tt) = RealizedPredecessor(tt)) do 
                if (DiceAdjusted(tt) < sum(pp in 
RealizedPredDynCoord(tt)..ee)(StepProbabilityDynamic(pp,tt))) then 
                    RealizedProbDynCoord(tt):=ee; 
                forall (hh in (24*(tt-1) .. 24*tt)) do 
                        ActualPrice(hh):= ScenarioSpotPrice(ee,hh); 
                    end-do 
                end-if                           
        end-do 
         
        !Storing the price optimized upon for the last step 
        forall (hh in (24*tt-23) .. 24*getsize(Steps)) do 
            ModelPrice(hh):= sum(ee in Scenarios | StepPredecessorFull(ee,tt) = RealizedPredecessor(tt)) 
            ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
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            /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee))));  
        end-do 
                 
    end-if 
 
end-do !Ending steps 
 
!Storing the ModelPrice for each step    
forall (tt in Steps, hh in (24*tt-23) .. 24*getsize(Steps)) do 
    if (tt=1) then 
        StepwiseModelPrice(tt,hh):= sum(ee in 
Scenarios)(ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)); 
    else 
        StepwiseModelPrice(tt,hh):=sum(ee in Scenarios | StepPredecessorFull(ee,tt) = 
RealizedPredecessor(tt)) 
            ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
            /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee))));      
    end-if 
end-do   
 
!Calculating and storing the actual realized objective value for each obligation 
forall (oo in ObligationIndex) do 
    ActualObjectiveValue(oo):= sum(hh in Hours)(ActualPrice(hh)*RealizedPTotSpot(oo,hh)) 
    -sum(ss in Stations, uu in Units, hh in Hours)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)) 
    +sum(rr in Reservoirs)(WaterValue(rr)*RealizedPEndRes(oo,rr));       
end-do 
 
!Calculating and storing the objective value optimized upon for each obligation 
forall (oo in ObligationIndex) do 
    ModelObjectiveValue(oo):= sum(hh in Hours)(ModelPrice(hh)*RealizedPTotSpot(oo,hh)) 
    -sum(ss in Stations, uu in Units, hh in Hours)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)) 
    +sum(rr in Reservoirs)(WaterValue(rr)*RealizedPEndRes(oo,rr)); 
end-do 
 
!Calculating and storing the actual realized break-even price optimized upon for attending regulation for 
each obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ActualBreakEvenRegPrice(oo):= (ActualObjectiveValue(1)-
ActualObjectiveValue(oo))/(getsize(Hours)*SymRegObligation(oo)); 
end-do 
 
!Calculating and storing the actual break-even price optimized upon for attending regulation for each 
obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ModelBreakEvenRegPrice(oo):= (ModelObjectiveValue(1)-
ModelObjectiveValue(oo))/(getsize(Hours)*SymRegObligation(oo)); 
end-do 
 
!Calculating and storing the actual realized marginal cost for attending regulation for each obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ActualMarginalRegCost(oo):= (ActualObjectiveValue(oo-1)-ActualObjectiveValue(oo))/(getsize(Hours)); 
end-do 
 
!Calculating and storing the actual realized marginal cost for attending regulation for each obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ModelMarginalRegCost(oo):= (ModelObjectiveValue(oo-1)-ModelObjectiveValue(oo))/(getsize(Hours)); 
end-do 
 
forall (oo in ObligationIndex, ss in Stations, hh in Hours) do 
    RealizedRunningUnits(oo,ss,hh):= (sum(uu in Units)RealizedRunIndUnit(oo,ss,uu,hh)); 
end-do 
 
!Calculating the objective values seen (and realized) for each Stepwise step 
forall (oo in ObligationIndex, tt in Steps) do 
        if (tt=1) then 
            StepwiseModelTotObjVal(oo,tt):=StepwiseObjectiveValue(oo,tt); 
            StepwiseActualTotObjVal(oo,tt):=StepwiseObjectiveValue(oo,tt); 
        else 
            StepwiseModelTotObjVal(oo,tt):= sum(hh in 1..24*(tt-1))(ModelPrice(hh)*RealizedPTotSpot(oo,hh)-
sum(ss in Stations, uu in 
Units)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)))+StepwiseObjectiveValue(oo,tt); 
            StepwiseActualTotObjVal(oo,tt):= sum(hh in 1..24*(tt-1))(ActualPrice(hh)*RealizedPTotSpot(oo,hh)-
sum(ss in Stations, uu in 
Units)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)))+StepwiseObjectiveValue(oo,tt); 
        end-if 
end-do 
 
!Calculating the needed regulation price for each Stepwise step 
forall (oo in 2.. getsize(ObligationIndex), ObligationIndex, tt in Steps) do 
    StepwiseModelBreakEvenRegPrice(oo,tt):= (StepwiseModelTotObjVal(1,tt)-
StepwiseModelTotObjVal(oo,tt))/(SymRegObligation(oo)*getsize(Hours)); 
    StepwiseActualBreakEvenRegPrice(oo,tt):= (StepwiseActualTotObjVal(1,tt)-
StepwiseActualTotObjVal(oo,tt))/(SymRegObligation(oo)*getsize(Hours)); 
end-do 
 
!Calculating the marginal regulation cost for each Stepwise step 
forall (oo in 2.. getsize(ObligationIndex), ObligationIndex, tt in Steps) do 
    StepwiseModelMarginalRegCost(oo,tt):= (StepwiseModelTotObjVal(oo-1,tt)-
StepwiseModelTotObjVal(oo,tt))/getsize(Hours); 
    StepwiseActualMarginalRegCost(oo,tt):= (StepwiseActualTotObjVal(oo-1,tt)-
StepwiseActualTotObjVal(oo,tt))/getsize(Hours); 
end-do 
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OptimizationStartTime:= datetime(SYS_NOW); 
!Writes all output data to Excel file 
writeln("Writing output data to Excel file"); 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\output.xlsx'); 
    !Writing actual and realized results  
    SQLexecute("insert into XACTUALPRICE (HOURS,ACTUALPRICE) values (?,?)",ActualPrice); 
    SQLexecute("insert into XPTOTSPOT (OBLIGATIONINDEX,HOURS,PTOTSPOT) values (?,?,?)",RealizedPTotSpot); 
    SQLexecute("insert into XQINRES (OBLIGATIONINDEX,RESERVOIRS,HOURS,QINRES) values 
(?,?,?,?)",RealizedQInRes); 
    SQLexecute("insert into XRUNINDUNIT (OBLIGATIONINDEX,STATIONS, UNITS,HOURS,RUNINDUNIT) values 
(?,?,?,?,?)",RealizedRunIndUnit); 
    SQLexecute("insert into XPUNIT (OBLIGATIONINDEX,STATIONS,UNITS,HOURS,PUNIT) values 
(?,?,?,?,?)",RealizedPUnit); 
    SQLexecute("insert into XQBYPASSRES (OBLIGATIONINDEX,RESERVOIRS,HOURS,QBYPASSRES) values 
(?,?,?,?)",RealizedQBypassRes); 
    SQLexecute("insert into XQFLOODRES (OBLIGATIONINDEX,RESERVOIRS,HOURS,QFLOODRES) values 
(?,?,?,?)",RealizedQFloodRes); 
    SQLexecute("insert into XQPRODUNIT (OBLIGATIONINDEX,STATIONS,UNITS,HOURS,QPRODUNIT) values 
(?,?,?,?,?)",RealizedQProdUnit); 
    SQLexecute("insert into XSTARTINDUNIT (OBLIGATIONINDEX,STATIONS, UNITS,HOURS,STARTINDUNIT) values 
(?,?,?,?,?)",RealizedRunIndUnit); 
    SQLexecute("insert into XPENDRES (OBLIGATIONINDEX,RESERVOIRS,PENDRES) values (?,?,?)",RealizedPEndRes); 
    SQLexecute("insert into XQENDRES (OBLIGATIONINDEX,RESERVOIRS,QENDRES) values (?,?,?)",RealizedQEndRes); 
    SQLexecute("insert into XACTUALOBJECTIVEVALUE (OBLIGATIONINDEX,ACTUALOBJECTIVEVALUE) values 
(?,?)",ActualObjectiveValue); 
    SQLexecute("insert into XACTUALBREAKEVENREGPRICE (OBLIGATIONINDEX,ACTUALBREAKEVENREGPRICE) values 
(?,?)",ActualBreakEvenRegPrice); 
    SQLexecute("insert into XSYMREGOBLIGATION (OBLIGATIONINDEX,SYMREGOBLIGATION) values 
(?,?)",SymRegObligation); 
    SQLexecute("insert into XTURBEFF (OBLIGATIONINDEX,STATIONS,UNITS,HOURS,TURBEFF) values 
(?,?,?,?,?)",RealizedTurbEff); 
    SQLexecute("insert into XMODELPRICE (HOURS,MODELPRICE) values (?,?)",ModelPrice); 
    SQLexecute("insert into XMODELOBJECTIVEVALUE (OBLIGATIONINDEX,MODELOBJECTIVEVALUE) values 
(?,?)",ModelObjectiveValue); 
    SQLexecute("insert into XMODELBREAKEVENREGPRICE (OBLIGATIONINDEX,MODELBREAKEVENREGPRICE) values 
(?,?)",ModelBreakEvenRegPrice); 
    SQLexecute("insert into XMODELMARGINALREGCOST (OBLIGATIONINDEX,MODELMARGINALREGCOST) values 
(?,?)",ModelMarginalRegCost); 
    SQLexecute("insert into XACTUALMARGINALREGCOST (OBLIGATIONINDEX,ACTUALMARGINALREGCOST) values 
(?,?)",ActualMarginalRegCost); 
 
     
    SQLexecute("insert into XRUNNINGUNITS (OBLIGATIONINDEX,STATIONS,HOURS,RUNNINGUNITS) values 
(?,?,?,?)",RealizedRunningUnits); 
    !Writing stepwise results 
    SQLexecute("insert into XIPTOTSPOT (OBLIGATIONINDEX,STEPS,HOURS,IPTOTSPOT) values 
(?,?,?,?)",StepwisePTotSpot); 
    SQLexecute("insert into XIQINRES (OBLIGATIONINDEX,STEPS,RESERVOIRS,HOURS,IQINRES) values 
(?,?,?,?,?)",StepwiseQInRes); 
    SQLexecute("insert into XIRUNINDUNIT (OBLIGATIONINDEX,STEPS,STATIONS,UNITS,HOURS,IRUNINDUNIT) values 
(?,?,?,?,?,?)",StepwiseRunIndUnit); 
    SQLexecute("insert into XISTARTINDUNIT (OBLIGATIONINDEX,STEPS,STATIONS,UNITS,HOURS,ISTARTINDUNIT) values 
(?,?,?,?,?,?)",StepwiseStartIndUnit); 
    SQLexecute("insert into XIPUNIT (OBLIGATIONINDEX,STEPS,STATIONS,UNITS,HOURS,IPUNIT) values 
(?,?,?,?,?,?)",StepwisePUnit); 
    SQLexecute("insert into XIQBYPASSRES (OBLIGATIONINDEX,STEPS,RESERVOIRS,HOURS,IQBYPASSRES) values 
(?,?,?,?,?)",StepwiseQBypassRes); 
    SQLexecute("insert into XIQFLOODRES (OBLIGATIONINDEX,STEPS,RESERVOIRS,HOURS,IQFLOODRES) values 
(?,?,?,?,?)",StepwiseQFloodRes); 
    SQLexecute("insert into XIQPRODUNIT (OBLIGATIONINDEX,STEPS,STATIONS,UNITS,HOURS,IQPRODUNIT) values 
(?,?,?,?,?,?)",StepwiseQProdUnit); 
    SQLexecute("insert into XIPENDRES (OBLIGATIONINDEX,STEPS,RESERVOIRS,IPENDRES) values 
(?,?,?,?)",StepwisePEndRes); 
    SQLexecute("insert into XIQENDRES (OBLIGATIONINDEX,STEPS,RESERVOIRS,IQENDRES) values 
(?,?,?,?)",StepwiseQEndRes); 
    SQLexecute("insert into XIOBJECTIVEVALUE (OBLIGATIONINDEX,STEPS,IOBJECTIVEVALUE) values 
(?,?,?)",StepwiseObjectiveValue); 
    SQLexecute("insert into XIMODELTOTOBJVAL (OBLIGATIONINDEX,STEPS,IMODELTOTOBJVAL) values 
(?,?,?)",StepwiseModelTotObjVal); 
    SQLexecute("insert into XIMODELBREAKEVENREGPRICE (OBLIGATIONINDEX,STEPS,IMODELBREAKEVENREGPRICE) values 
(?,?,?)",StepwiseModelBreakEvenRegPrice); 
    SQLexecute("insert into XIACTUALTOTOBJVAL (OBLIGATIONINDEX,STEPS,IACTUALTOTOBJVAL) values 
(?,?,?)",StepwiseActualTotObjVal); 
    SQLexecute("insert into XIACTUALBREAKEVENREGPRICE (OBLIGATIONINDEX,STEPS,IACTUALBREAKEVENREGPRICE) values 
(?,?,?)",StepwiseActualBreakEvenRegPrice); 
    SQLexecute("insert into XIACTUALMARGINALREGCOST (OBLIGATIONINDEX,STEPS,IACTUALMARGINALREGCOST) values 
(?,?,?)",StepwiseActualMarginalRegCost); 
    SQLexecute("insert into XIMODELMARGINALREGCOST (OBLIGATIONINDEX,STEPS,IMODELMARGINALREGCOST) values 
(?,?,?)",StepwiseModelMarginalRegCost); 
    SQLexecute("insert into XIMODELPRICE (STEPS,HOURS,IMODELPRICE) values (?,?,?)",StepwiseModelPrice); 
 
 
SQLdisconnect; 
 
OptimizationEndTime:= datetime(SYS_NOW); 
writeln("Successfully written data to Excel file"); 
writeln("Time used to write output data: ",(OptimizationEndTime-OptimizationStartTime)," seconds"); 
writeln("Model run complete"); 
ModelEndTime:= datetime(SYS_NOW); 
writeln("Total elapsed time of model: ",(ModelEndTime-ModelStartTime)," seconds"); 
end-model; 
!
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E.2 The stochastic multi-stage optimization model with Monte 
Carlo-properties 

 
model stochastic_montecarlo !Model name 
options explterm !All statements must be terminated by a semicolon 
options noimplicit !No implicit declarations 
uses "mmxprs"; !Gain access to the Xpress-Optimizer library 
uses "mmodbc"; !Gain access to SQL for Excel input 
uses "mmsystem"; !Gain access to datetime 
 
!Declaration of tic/toc 
declarations  
    ModelStartTime: datetime; 
    ModelEndTime: datetime; 
    OptimizationStartTime: datetime; 
    OptimizationEndTime: datetime; 
end-declarations 
 
ModelStartTime:= datetime(SYS_NOW); 
 
!Declaration of sets 
declarations 
    Hours:          set of integer; 
    Days:           set of integer; 
    Units:          set of integer; 
    Stations:       set of integer; 
    Reservoirs:     set of integer; 
    Index:          set of integer; 
    ObligationIndex:set of integer;  
    Scenarios:      set of integer; 
    Steps:          set of integer; 
    Nodes:          set of integer; 
    ModelIndex:     set of integer; 
end-declarations 
 
!Reading input data of sets from excel 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\input_216.xlsx'); 
    SQLexecute("select HOURS from HH", Hours); 
    SQLexecute("select UNITS from UU", Units); 
    SQLexecute("select STATIONS from SS", Stations); 
    SQLexecute("select RESERVOIRS from RR", Reservoirs); 
    SQLexecute("select INDEX from II", Index); 
    SQLexecute("select OBLIGATIONINDEX from OO", ObligationIndex); 
    SQLexecute("select MODELINDEX from MM", ModelIndex); 
SQLdisconnect; 
 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\stoch_input_216.xlsx'); 
    SQLexecute("select SCENARIOS from EE", Scenarios); 
    SQLexecute("select STEPS from TT", Steps); 
    SQLexecute("select NODES from NN", Nodes); 
SQLdisconnect; 
 
!Declaration of general parameters 
declarations 
    !Spotprice 
    SpotPrice:                  array(Hours)                of real; 
    !Symmetrical regulation obligation 
    SymRegObligation:           array(ObligationIndex)      of real; 
    !Water value 
    WaterValue:                 array(Reservoirs)           of real; 
    !Intial reservoar volum 
    InitialWaterVolume:         array(Reservoirs)           of real; 
    !Inflow 
    InflowRes:                  array(Reservoirs,Hours)     of real; 
    !Max production on each unit 
    MaxProduction:              array(Stations,Units)       of real; 
    !Min production on each unit 
    MinProduction:              array(Stations,Units)       of real; 
    !Max bypass m3/s 
    MaxBypass:                  array(Reservoirs)           of real;  
    !Min bypass m3/s 
    MinBypass:                  array(Reservoirs)           of real; 
    !Max reservoar volume m3 
    MaxReservoirVolume:         array(Reservoirs)           of real; 
    !Min reservoar volume m3 
    MinReservoirVolume:         array(Reservoirs)           of real; 
    !Max regulation of reservoar per hour m3/h 
    MaxRegulatingPerHour:       array(Reservoirs)           of real; 
     !Start-up cost at unit u at station s 
    StartUpCost:                array(Stations,Units)       of real; 
    !Max ramping at unit u at station s 
    MaxRamping:                 array(Stations,Units)       of real; 
    !Slopes of the piecewise linear PQ-curve 
    Slope:                      array(Index)                of real; 
    !Interceptions of the piecewise linear PQ-curve 
    Intercept:                  array(Index)                of real; 
    !Head for each unit 
    HeadUnit:                   array(Stations,Units)       of real; 
    !System head for each unit 
    TotHeadUnit:                array(Stations,Units)       of real; 
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    !Max discharge through unit u at station s 
    MaxDiscUnit:                array(Stations,Units)       of real; 
    !Min discharge through unit u at station s 
    MinDiscUnit:                array(Stations,Units)       of real; 
    !Best point efficiency for each unit 
    EffBPUnit:                  array(Stations,Units)       of real; 
     
    !Declaration of parameters used by the stochastic part of the model 
 
    !The spot prices for all possible Scenarios 
    ScenarioSpotPrice:          array(Scenarios, Hours) of real; 
    !The distribution of probabilities for each Scenario to occur 
    EndScenarioProbability:     array(Scenarios)        of real; 
    !The predecessor node given each node 
    NodePredecessor:            array(Nodes)            of integer; 
    !The probability for each node in the scenario tree 
    NodeProbability:            array(Nodes)            of real; 
    !The number of branches in each step in the scenario tree 
    StepNumberOfBranch:         array(Steps)            of integer; 
    !The matrices created by the model in order to use Scenred data 
    StepProbabilityDynamic:             array(Scenarios,Steps) of real; 
    StepPredecessorDynamic:     array(Scenarios,Steps) of integer; 
    StepPredecessorFull:        array(Scenarios,Steps) of real; 
    !Counters needed in order to create the above matrices 
    EqualNumbersCounter:        integer; 
    IteratorCounter:            integer; 
    Counter:                    integer; 
    CoordCounter:               integer; 
    Indicator:                  integer; 
    !Storing the random function deciding the stochastic outcomes 
    Dice:                       array(Steps) of real; 
    DiceAdjusted:               array(Steps) of real; 
    !Declaration of parameters used to store stochastic results  
    RealizedPredecessor:        array(Steps) of real; 
    RealizedPredDynCoord:       array(Steps) of integer; 
    RealizedProbDynCoord:       array(Steps) of integer; 
    RealizedProbability:        array(Steps) of real; 
     
    !Declaration of parameters used to store variables of stepwise runs 
    StepwisePTotSpot:               array(ObligationIndex,Steps,Hours)                  of real; 
    StepwiseQInRes:                 array(ObligationIndex,Steps,Reservoirs,Hours)       of real; 
    StepwiseRunIndUnit:             array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwisePUnit:                  array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwiseQBypassRes:             array(ObligationIndex,Steps,Reservoirs,Hours)       of real; 
    StepwiseQFloodRes:              array(ObligationIndex,Steps,Reservoirs,Hours)       of real; 
    StepwiseQProdUnit:              array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwiseStartIndUnit:           array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwisePEndRes:                array(ObligationIndex,Steps,Reservoirs)             of real; 
    StepwiseObjectiveValue:         array(ObligationIndex,Steps)                        of real; 
    StepwiseQEndRes:                array(ObligationIndex,Steps,Reservoirs)             of real; 
    StepwiseBreakEvenRegPrice:      array(ObligationIndex,Steps)                        of real; 
    StepwiseTurbEff:                array(ObligationIndex,Steps,Stations,Units,Hours)   of real; 
    StepwiseModelTotObjVal:         array(ObligationIndex,Steps)                        of real; 
    StepwiseModelBreakEvenRegPrice: array(ObligationIndex,Steps)                        of real; 
    StepwiseActualTotObjVal:        array(ObligationIndex,Steps)                        of real; 
    StepwiseActualBreakEvenRegPrice:array(ObligationIndex,Steps)                        of real; 
    StepwiseModelMarginalRegCost:   array(ObligationIndex,Steps)                        of real; 
    StepwiseActualMarginalRegCost:  array(ObligationIndex,Steps)                        of real; 
 
     
    !Declaration of parameters used to store variables of realized runs 
    ActualPrice:                array(ModelIndex,Hours)                     of real; 
    ActualObjectiveValue:       array(ModelIndex,ObligationIndex)           of real; 
    ActualBreakEvenRegPrice:    array(ModelIndex,ObligationIndex)           of real; 
    ActualMarginalRegCost:      array(ModelIndex,ObligationIndex)           of real; 
    RealizedPTotSpot:           array(ObligationIndex,Hours)                of real; 
    RealizedQInRes:             array(ObligationIndex,Reservoirs,Hours)     of real; 
    RealizedRunIndUnit:         array(ObligationIndex,Stations,Units,Hours) of real; 
    RealizedPUnit:              array(ObligationIndex,Stations,Units,Hours) of real; 
    RealizedQBypassRes:         array(ObligationIndex,Reservoirs,Hours)     of real; 
    RealizedQFloodRes:          array(ObligationIndex,Reservoirs,Hours)     of real; 
    RealizedQProdUnit:          array(ObligationIndex,Stations,Units,Hours) of real; 
    RealizedStartIndUnit:       array(ObligationIndex,Stations,Units,Hours) of real; 
    RealizedPEndRes:            array(ObligationIndex,Reservoirs)           of real; 
    RealizedQEndRes:            array(ObligationIndex,Reservoirs)           of real; 
    RealizedTurbEff:            array(ObligationIndex,Stations,Units,Hours) of real; 
    RealizedRunningUnits:       array(ObligationIndex, Stations,Hours)      of real;     
 
    !Declaration of parameters used to store the price and marginal cost for regulation  
    !(and correspondig objective value) that the model sees when optimizing  
    ModelPrice:                 array(ModelIndex,Hours)             of real; 
    ModelObjectiveValue:        array(ModelIndex,ObligationIndex)   of real; 
    ModelBreakEvenRegPrice:     array(ModelIndex,ObligationIndex)   of real; 
    ModelMarginalRegCost:       array(ModelIndex,ObligationIndex)   of real; 
end-declarations 
 
    !Reading input data of parameters from excel 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\input_216.xlsx');  
    SQLexecute("select SPOTPRICE from HH", SpotPrice); 
    SQLexecute("select SYMREGOBLIGATION from OO", SymRegObligation); 
    SQLexecute("select WATERVALUE from RR", WaterValue); 
    SQLexecute("select INITIALWATERVOLUME from RR", InitialWaterVolume); 
    SQLexecute("select INFLOWRES from RRHH", InflowRes); 
    SQLexecute("select MAXPRODUCTION from SSUU", MaxProduction); 
    SQLexecute("select MINPRODUCTION from SSUU", MinProduction); 



 XLVIII 

    SQLexecute("select MAXBYPASS from RR", MaxBypass); 
    SQLexecute("select MINBYPASS from RR", MinBypass); 
    SQLexecute("select MAXRESERVOIRVOLUME from RR", MaxReservoirVolume); 
    SQLexecute("select MINRESERVOIRVOLUME from RR", MinReservoirVolume); 
    SQLexecute("select MAXREGULATINGPERHOUR from RR", MaxRegulatingPerHour); 
    SQLexecute("select STARTUPCOST from SSUU", StartUpCost); 
    SQLexecute("select MAXRAMPING from SSUU", MaxRamping); 
    SQLexecute("select HEADUNIT from SSUU", HeadUnit); 
    SQLexecute("select MAXDISCUNIT from SSUU", MaxDiscUnit); 
    SQLexecute("select MINDISCUNIT from SSUU", MinDiscUnit); 
    SQLexecute("select TOTHEADUNIT from SSUU", TotHeadUnit); 
    SQLexecute("select EFFBPUNIT from SSUU", EffBPUnit); 
    !PQ curve 
    SQLexecute("select SLOPE from II", Slope); 
    SQLexecute("select INTERCEPT from II", Intercept); 
    SQLdisconnect; 
     
    SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\stoch_input_216.xlsx');    
    SQLexecute("select SCENARIOSPOTPRICE from EEHH", ScenarioSpotPrice); 
    SQLexecute("select ENDSCENARIOPROBABILITY from EE", EndScenarioProbability); 
    SQLexecute("select NODEPREDECESSOR from NN", NodePredecessor); 
    SQLexecute("select NODEPROBABILITY from NN", NodeProbability); 
    SQLexecute("select STEPNUMBEROFBRANCH from TT", StepNumberOfBranch); 
SQLdisconnect; 
 
writeln("All input data successfully read from Excel file"); 
 
!Declaration of variables 
 
declarations 
 
    !Total spot volume in hour h 
    ptotspot:       array(ObligationIndex,Steps,Hours)                of mpvar; 
    !Reservoar volume at the end of the periode 
    qendres:        array(ObligationIndex,Steps,Reservoirs)           of mpvar; 
    !Energy in the reservoar at the end of the periode 
    pendres:        array(ObligationIndex,Steps,Reservoirs)           of mpvar; 
    !Discharge thruogh unit u at station s in hour h 
    qprodunit:      array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    !Flood from reservoar r in hour h 
    qfloodres:      array(ObligationIndex,Steps,Reservoirs,Hours)     of mpvar; 
    !Bypass from reservoar r in hour h 
    qbypassres:     array(ObligationIndex,Steps,Reservoirs,Hours)     of mpvar; 
    !reservoar volume in reservoar r in hour h 
    qinres:         array(ObligationIndex,Steps,Reservoirs,Hours)     of mpvar; 
    !Spot production from unit u at station s in hour h 
    punit:          array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    !start indicator 
    startindunit:   array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    !Run indicator, 1 if unit u runs in hour h  
    runindunit:     array(ObligationIndex,Steps,Stations,Units,Hours) of mpvar; 
    
     
    ! Declaration of the objective function 
maxz:                   linctr; 
  
!Declaration of constranits 
 
! Sets initial reservoir volume in qinres for all reservoirs 
restInitWaterBalance:       array(Reservoirs)               of linctr;     
!Water balances 
restWaterBalance1:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance2:          array(Reservoirs,Hours)         of linctr;   
restWaterBalance3:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance4:          array(Reservoirs,Hours)         of linctr;  
restWaterBalance5:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance6:          array(Reservoirs,Hours)         of linctr;  
restWaterBalance7:          array(Reservoirs,Hours)         of linctr; 
restWaterBalance8:          array(Reservoirs,Hours)         of linctr;    
!Total spot production from unit to system level 
restTotSpotProd:            array(Hours)                    of linctr;     
!Max bypass 
restMaxBypassRes:           array(Reservoirs,Hours)         of linctr; 
!Min bypass 
restMinBypassRes:           array(Reservoirs,Hours)         of linctr;     
!Max reservoir volume 
restMaxVolumeRes:           array(Reservoirs,Hours)         of linctr; 
!Min reservoir volume 
restMinVolumeRes:           array(Reservoirs,Hours)         of linctr; 
!Max reservoir regulation  equation 1 
restMaxRegRes1:             array(Reservoirs,Hours)         of linctr;   
!Max reservoir regulation equation 2 
restMaxRegRes2:             array(Reservoirs,Hours)         of linctr; 
!Start-up cost     
restStartupCostUnit:        array(Stations,Units,Hours)     of linctr; 
!Max ramping equation 1 
restMaxRampUnit1:           array(Stations,Units)           of linctr; 
!Max ramping equation 2 
restMaxRampUnit2:           array(Stations,Units)           of linctr;   
!Max production on unit u at station s in hour h 
restMaxProdUnit:            array(Stations,Units,Hours)     of linctr;   
!Min production on unit u at station s in hour h 
restMinProdUnit:            array(Stations,Units,Hours)     of linctr; 
!Production indicator for each unit in each hour 
restProdIndUnit:            array(Stations,Units,Hours)     of linctr; 
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!Max reservoar volume at the end of the period 
restMaxVolumeEndRes:        array(Reservoirs)               of linctr; 
!Min reservoar volume at the end of the period 
restMinVolumeEndRes:        array(Reservoirs)               of linctr; 
!Calculates the equivalent energy of the water in the reservoir at the end of the 
!period in MWh 
restEndResEnergy:           array(Reservoirs)               of linctr; 
!Max discharge thruogh unit u at station s in hour h 
restMaxDiscUnit:            array(Stations,Units,Hours)     of linctr; 
!Min discharge thruogh unit u at station s in hour h 
restMinDiscUnit:            array(Stations,Units,Hours)     of linctr; 
!PQ-curve 
restPQCurve1:               array(Stations, Units,Hours)    of linctr; 
!PQ-curve 
restPQCurve2:               array(Stations, Units,Hours)    of linctr; 
!PQ-curve 
restPQCurve3:               array(Stations, Units,Hours)    of linctr; 
!PQ-curve 
restPQCurve4:               array(Stations, Units,Hours)    of linctr; 
!PQ-curve 
restPQCurve5:               array(Stations, Units,Hours)    of linctr; 
!PQ-curve 
restPQCurve6:               array(Stations, Units,Hours)    of linctr; 
!PQ-curve 
restPQCurve7:               array(Stations, Units,Hours)    of linctr;      
!Reserving upward regulation capacity 
restMaxProdObligation:      array(Hours)                    of linctr; 
!Reserving downward regulation capacity 
restMinProdObligation:      array(Hours)                    of linctr; 
 
restStepChangeQInRes:       array(Reservoirs)               of linctr; 
 
restStepChangeQProdUnit:    array (Stations,Units)          of linctr; 
 
restStepChangeQFloodRes:    array(Reservoirs)               of linctr; 
 
restStepChangeQBypassRes:   array(Reservoirs)               of linctr; 
 
restStepChangePUnit:        array (Stations,Units)          of linctr; 
 
restStepChangeRunIndUnit:   array (Stations,Units)          of linctr; 
 
restStepChangeStartIndUnit: array (Stations,Units)          of linctr; 
 
end-declarations 
 
 
! Creates binary variable runindunit  
forall (oo in ObligationIndex, tt in Steps,ss in Stations,uu in Units,hh in Hours) do 
    runindunit(oo,tt,ss,uu,hh) is_binary; 
end-do 
 
!forall (oo in ObligationIndex, tt in Steps,ss in Stations,uu in Units,hh in Hours) do 
!   startindunit(oo,tt,ss,uu,hh) is_binary; 
!end-do 
 
writeln("All restrictions and variables successfully created"); 
writeln("Creating stochastic matrices needed by the optimization model"); 
 
! Creation of needed matrices for the stochastic calculations 
 
! Creating the dynamic matrices from excel input data 
 
forall (tt in Steps) do 
 
    if (tt =1) then 
     
        forall (ee in 1.. StepNumberOfBranch(tt)) do 
         
            StepProbabilityDynamic(ee,tt):= NodeProbability(1+ee); 
            StepPredecessorDynamic(ee,tt):= NodePredecessor(1+ee); 
             
        end-do 
         
    else 
             
        forall (ee in 1.. StepNumberOfBranch(tt)) do 
         
            StepProbabilityDynamic(ee,tt) := NodeProbability(1+sum(ttt in 2.. tt)(24*StepNumberOfBranch(ttt-
1))+ee);     
            StepPredecessorDynamic(ee,tt) := NodePredecessor(1+sum(ttt in 2.. tt)(24*StepNumberOfBranch(ttt-
1))+ee); 
         
        end-do 
     
    end-if 
 
end-do 
     
    !Creating the explicit matrix from the dynamic matrix 
     
    !Creating last column of the explicit matrix 
    forall (ee in Scenarios) do 
     
        StepPredecessorFull(ee,getsize(Steps)):=StepPredecessorDynamic(ee,getsize(Steps)); 
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    end-do 
     
     
    ! Creating the remaining columns of the explicit matrix 
    forall (tt in 1.. getsize(Steps)-1) do 
     
        EqualNumbersCounter := 0; 
        IteratorCounter:= 1; 
        Counter:= 1; 
     
        forall (ee in 2.. getsize(Scenarios)) do 
         
            if (StepPredecessorFull(ee-1,1+getsize(Steps)-tt) = StepPredecessorFull(ee,1+getsize(Steps)-tt)) 
then 
                 
                EqualNumbersCounter:= EqualNumbersCounter + 1; 
                 
            else 
                 
                forall(pp in IteratorCounter.. IteratorCounter+EqualNumbersCounter) do 
                 
                        StepPredecessorFull(pp,(getsize(Steps)-tt)) := 
StepPredecessorDynamic(Counter,getsize(Steps)-tt); 
                end-do 
                 
                Counter:= Counter + 1; 
                IteratorCounter := IteratorCounter + EqualNumbersCounter +1; 
                EqualNumbersCounter :=0; 
             
            end-if 
         
        end-do 
     
    end-do 
         
        forall (tt in 1.. getsize(Steps)-1) do 
         
            StepPredecessorFull(getsize(Scenarios),getsize(Steps)-tt):=  
            StepPredecessorDynamic(StepNumberOfBranch(getsize(Steps)-tt),getsize(Steps)-tt); 
         
        end-do   
             
             
            forall (mm in ModelIndex) do             
             
    writeln("Model run start for ModelIndex ", mm);              
             
    ! Model algoritm begins 
         
forall (tt in Steps) do ! Iterating over all steps 
         
        if (tt =1) then ! For the first step only 
         
        !Establishing initial values 
     
            RealizedProbability(tt):= 1; 
            RealizedPredecessor(tt):=1; 
            RealizedPredDynCoord(tt):=1; 
             
            !Optimizing the entire period with all scenarios weighted according to corresponding probability 
     
     
             
             
            !Saving the price optimized upon for the first 24 hours 
            forall (hh in 1..24) do 
                ModelPrice(mm,hh) :=sum(ee in 
Scenarios)(ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)); 
            end-do 
             
        else    ! for all other steps 
                 
                ! Emulating what actually happend from the previous step 
         
            Dice(tt-1):= random;    ! Emulating which way the market will go 
            DiceAdjusted(tt-1):= Dice(tt-1)*RealizedProbability(tt-1);  ! Adjusting it to the same size as 
corresponding  
     
     
            ! Storing the coordinate to the probability that was realized in the previous step 
            Indicator:=0; 
             
            forall(ee in Scenarios | StepPredecessorDynamic(ee,tt-1) = RealizedPredecessor(tt-1)) do 
             
                if (DiceAdjusted(tt-1) < sum(pp in RealizedPredDynCoord(tt-
1)..ee)(StepProbabilityDynamic(pp,tt-1))) then 
                     
                    if (Indicator = 0) then 
                     
                    RealizedProbDynCoord(tt-1):=ee; 
                    RealizedProbability(tt):= StepProbabilityDynamic(ee,tt-1); 
                    Indicator:=1; 
                     
                    end-if 
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                end-if 
             
            end-do 
     
            ! Storing the predecessor for the probabilities that shall be weighted   
             
            Counter:=1; 
            CoordCounter:=1; 
            while (Counter < RealizedProbDynCoord(tt-1)) do 
             
                if (StepPredecessorDynamic(CoordCounter,tt) <>  StepPredecessorDynamic(CoordCounter+1,tt)) 
then 
                     
                    Counter:= Counter +1; 
                 
                end-if 
                 
                CoordCounter:= CoordCounter +1;  
             
            end-do 
             
            RealizedPredDynCoord(tt):= CoordCounter; 
            RealizedPredecessor(tt):= StepPredecessorDynamic(CoordCounter,tt); 
                 
            ! Storing the actual realized spot price (by picking the first price series with the 
corresponding predecessor)  
                 
            Counter:=1; 
             
            while (StepPredecessorFull(Counter,tt) <> RealizedPredecessor(tt)) do 
             
                Counter:= Counter + 1; 
             
            end-do 
             
            forall (hh in (24*tt-47) .. 24*(tt-1)) do 
                 
                ActualPrice(mm,hh):= ScenarioSpotPrice(Counter,hh); 
             
            end-do 
                 
            ! Maximizing over all periods remaining considering valid probabilities and price series 
             
            !Storing the price optimized upon for each step 
            forall (hh in 24*(tt-1)..24*tt) do 
                ModelPrice(mm,hh) :=sum(ee in Scenarios | StepPredecessorFull(ee,tt) = 
RealizedPredecessor(tt)) 
                ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
                /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee)))); 
            end-do 
             
        end-if 
         
        forall(oo in ObligationIndex)do !Iterating over all obligations 
 
        if (tt = 1) then 
            !Setting initial volume of reservoirs 
            forall (rr in Reservoirs) do 
                restInitWaterBalance(rr) := qinres(oo,tt,rr,1) = InitialWaterVolume(rr); 
            end-do 
             
            !Water balance upper reservoir for first step 
            forall (rr in 1..1, hh in (24*tt-23)..(24*getsize(Steps)-1)) do 
                restWaterBalance1(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh) 
                -sum(ss in 1..1, uu in Units)(qprodunit(oo,tt,ss,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)-
qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Water balance other reservoirs for first step 
            forall (rr in 2.. getsize(Reservoirs), hh in 24*tt-23 .. (24*getsize(Steps)-1)) do 
                restWaterBalance2(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh)+ sum(uu in 
Units)(qprodunit(oo,tt,(rr-1),uu,hh)*3600) 
                -sum(uu in Units)(qprodunit(oo,tt,rr,uu,hh)*3600)-
qfloodres(oo,tt,rr,hh)+qbypassres(oo,tt,(rr-1),hh)-qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Max ramping equation 1 
            forall (ss in Stations, uu in Units, hh in 24*tt-22 .. 24*getsize(Steps)) do 
                restMaxRampUnit1(ss,uu) := punit(oo,tt,ss,uu,hh) - punit(oo,tt,ss,uu,(hh-1)) <= 
MaxRamping(ss,uu); 
            end-do 
             
            !Max ramping equation 2 
            forall (ss in Stations, uu in Units, hh in 24*tt-22 .. 24*getsize(Steps)) do 
                restMaxRampUnit2(ss,uu) := punit(oo,tt,ss,uu,(hh-1)) - punit(oo,tt,ss,uu,hh) >= -
MaxRamping(ss,uu); 
            end-do 
             
            !Max reservoir regulation equation 1 
            forall (rr in Reservoirs, hh in 24*tt-23 .. (24*getsize(Steps)-1)) do 
                restMaxRegRes1(rr,hh) := qinres(oo,tt,rr,(hh+1))-qinres(oo,tt,rr,hh) <= 
MaxRegulatingPerHour(rr); 
            end-do 
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            !Max reservoir regulation equation 2 
            forall (rr in Reservoirs, hh in 24*tt-23 .. (24*getsize(Steps)-1)) do 
                restMaxRegRes2(rr,hh) := qinres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
                !Start-up costs 
            forall (ss in Stations, uu in Units,hh in 24*tt-22 .. 24*getsize(Steps)) do 
                restStartupCostUnit(ss,uu,hh) := startindunit(oo,tt,ss,uu,hh) - (runindunit(oo,tt,ss,uu,hh) - 
runindunit(oo,tt,ss,uu,(hh-1))) >= 0 ; 
            end-do 
             
            !Start-up costs 
            forall (ss in Stations, uu in Units, hh = 24*tt-23) do 
                restStartupCostUnit(ss,uu,hh) := startindunit(oo,tt,ss,uu,hh) - 
(runindunit(oo,tt,ss,uu,(hh+1)) - runindunit(oo,tt,ss,uu,hh)) >= 0 ; 
            end-do 
             
            !Objective value for first step 
            maxz:= sum(ee in Scenarios, hh in (24*tt-23) .. 24*getsize(Steps)) 
            (ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)*ptotspot(oo,tt,hh)) 
            + sum(rr in Reservoirs)(WaterValue(rr)*pendres(oo,tt,rr)) 
            - sum(ss in Stations, uu in Units, hh in (24*tt-23) .. 24*getsize(Steps)) 
            (StartUpCost(ss,uu)*startindunit(oo,tt,ss,uu,hh)); 
             
            else 
                 
        ! Setting all variables in current step for hour 24 equal to hour 24 of previous step 
        forall (rr in Reservoirs, ss in Stations, uu in Units) do 
            restStepChangeQInRes(rr) := qinres(oo,tt,rr,(24*(tt-1))) = StepwiseQInRes(oo,tt-1,rr,(24*(tt-
1))); 
            restStepChangeQProdUnit(ss,uu):= qprodunit(oo,tt,ss,uu,(24*(tt-1))) = StepwiseQProdUnit(oo,tt-
1,ss,uu,(24*(tt-1))); 
            restStepChangeQFloodRes(rr) := qfloodres(oo,tt,rr,(24*(tt-1))) = StepwiseQFloodRes(oo,tt-
1,rr,(24*(tt-1))); 
            restStepChangeQBypassRes(rr) := qbypassres(oo,tt,rr,(24*(tt-1))) = StepwiseQBypassRes(oo,tt-
1,rr,(24*(tt-1))); 
            restStepChangePUnit(ss,uu):= punit(oo,tt,ss,uu,(24*(tt-1))) = StepwisePUnit(oo,tt-
1,ss,uu,(24*(tt-1))); 
            restStepChangeRunIndUnit(ss,uu) := runindunit(oo,tt,ss,uu,(24*(tt-1))) = 
StepwiseRunIndUnit(oo,tt-1,ss,uu,(24*(tt-1))); 
            restStepChangeStartIndUnit(ss,uu) := startindunit(oo,tt,ss,uu,(24*(tt-1))) = 
StepwiseStartIndUnit(oo,tt-1,ss,uu,(24*(tt-1))); 
        end-do 
         
         
            !Water balance upper reservoir for other steps 
            forall (rr in 1..1, hh in (24*(tt-1))..(24*getsize(Steps)-1)) do 
                restWaterBalance3(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh) 
                -sum(ss in 1..1, uu in Units)(qprodunit(oo,tt,ss,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)-
qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Water balance other reservoirs for other steps 
            forall (rr in 2.. getsize(Reservoirs), hh in (24*(tt-1)) .. (24*getsize(Steps)-1)) do 
                restWaterBalance4(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh)+ sum(uu in 
Units)(qprodunit(oo,tt,(rr-1),uu,hh)*3600) 
                -sum(uu in Units)(qprodunit(oo,tt,rr,uu,hh)*3600)-
qfloodres(oo,tt,rr,hh)+qbypassres(oo,tt,(rr-1),hh)-qbypassres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) =0; 
            end-do 
             
            !Max ramping equation 1 
            forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
                restMaxRampUnit1(ss,uu) := punit(oo,tt,ss,uu,hh) - punit(oo,tt,ss,uu,(hh-1)) <= 
MaxRamping(ss,uu); 
            end-do 
             
            !Max ramping equation 2 
            forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
                restMaxRampUnit2(ss,uu) := punit(oo,tt,ss,uu,(hh-1)) - punit(oo,tt,ss,uu,hh) >= -
MaxRamping(ss,uu); 
            end-do 
             
            !Max reservoir regulation equation 1 
            forall (rr in Reservoirs, hh in 24*(tt-1) .. (24*getsize(Steps)-1)) do 
                restMaxRegRes1(rr,hh) := qinres(oo,tt,rr,(hh+1))-qinres(oo,tt,rr,hh) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
            !Max reservoir regulation equation 2 
            forall (rr in Reservoirs, hh in 24*(tt-1) .. (24*getsize(Steps)-1)) do 
                restMaxRegRes2(rr,hh) := qinres(oo,tt,rr,hh)-qinres(oo,tt,rr,(hh+1)) <= 
MaxRegulatingPerHour(rr); 
            end-do 
             
            !Start-up costs 
            forall (ss in Stations, uu in Units,hh in 24*tt-23 .. 24*getsize(Steps)) do 
                restStartupCostUnit(ss,uu,hh) := startindunit(oo,tt,ss,uu,hh) - (runindunit(oo,tt,ss,uu,hh) - 
runindunit(oo,tt,ss,uu,(hh-1))) >= 0 ; 
            end-do 
         
        ! The maximization function for all steps except tt=1 
            maxz:=  



 LIII 

            sum(ee in Scenarios | StepPredecessorFull(ee,tt) = RealizedPredecessor(tt), hh in (24*tt-23) .. 
24*getsize(Steps)) 
            ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
            /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee))) 
            *ptotspot(oo,tt,hh)) 
            + sum(rr in Reservoirs)(WaterValue(rr)*pendres(oo,tt,rr)) 
            - sum(ss in Stations, uu in Units, hh in (24*tt-23) .. 24*getsize(Steps)) 
            (StartUpCost(ss,uu)*startindunit(oo,tt,ss,uu,hh)); 
         
        end-if 
         
        !Water balance last hour upper reservoir 
        forall (rr = 1, hh = 24*getsize(Steps)) do 
            restWaterBalance5(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh) 
            -sum(ss in 1..1, uu in Units)(qprodunit(oo,tt,ss,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)-
qbypassres(oo,tt,rr,hh)-qendres(oo,tt,rr) =0; 
        end-do 
         
        !Water balance last hour other reservoirs  
        forall (rr in 2.. getsize(Reservoirs), hh = 24*getsize(Steps)) do 
            restWaterBalance6(rr,hh) := qinres(oo,tt,rr,hh)+InflowRes(rr,hh)+ sum(uu in 
Units)(qprodunit(oo,tt,(rr-1),uu,hh)*3600) 
            -sum(uu in Units)(qprodunit(oo,tt,rr,uu,hh)*3600)-qfloodres(oo,tt,rr,hh)+qbypassres(oo,tt,(rr-
1),hh)-qbypassres(oo,tt,rr,hh)-qendres(oo,tt,rr) =0; 
        end-do 
         
        !Calculates the equivalent energy of the water in the reservoar at the end of the 
        !period in MWh 
        forall(rr in Reservoirs) do 
            restEndResEnergy(rr) := pendres(oo,tt,rr) = 
qendres(oo,tt,rr)*TotHeadUnit(rr,1)*1000*9.81*EffBPUnit(rr,1)/(3600*1000000); 
        end-do 
         
        !Cuts of PQ-curves 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps) |MaxDiscUnit(ss,uu) > 0) do 
            restPQCurve1(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(1)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(1))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve2(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(2)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(2))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve3(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(3)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(3))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve4(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(4)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(4))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve5(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(5)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(5))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
            restPQCurve6(ss,uu,hh) := punit(oo,tt,ss,uu,hh) <= 
(Slope(6)*qprodunit(oo,tt,ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(6))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
        end-do 
         
        !Max bypass  
        forall (rr in Reservoirs,  hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxBypassRes(rr,hh) := qbypassres(oo,tt,rr,hh)<= MaxBypass(rr); 
        end-do 
         
        !Min bypass  
        forall (rr in Reservoirs, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinBypassRes(rr,hh) := qbypassres(oo,tt,rr,hh)>= MinBypass(rr); 
        end-do 
         
        !Max resevoir volume 
        forall (rr in Reservoirs, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxVolumeRes(rr,hh) := qinres(oo,tt,rr,hh) <= MaxReservoirVolume(rr); 
        end-do 
         
        !Min reservoir volume 
        forall (rr in Reservoirs, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinVolumeRes(rr,hh) := qinres(oo,tt,rr,hh) >= MinReservoirVolume(rr); 
        end-do 
         
        !Max resevoir volume at the end of the period 
        forall (rr in Reservoirs) do 
            restMaxVolumeEndRes(rr) := qendres(oo,tt,rr) <= MaxReservoirVolume(rr); 
        end-do 
         
        !Min resevoir volume at the end of the period 
        forall (rr in Reservoirs) do 
            restMinVolumeEndRes(rr) := qendres(oo,tt,rr) >= MinReservoirVolume(rr); 
        end-do 
         
        !Max Discharge 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxDiscUnit(ss,uu,hh) := qprodunit(oo,tt,ss,uu,hh) <= MaxDiscUnit(ss,uu); 
        end-do 
         
        !Min Discharge 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
        restMinDiscUnit(ss,uu,hh) := qprodunit(oo,tt,ss,uu,hh) >= MinDiscUnit(ss,uu); 
        end-do 
         
        !Total production in the spot market from unit level to system level 
        forall (hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restTotSpotProd(hh) := sum(ss in Stations, uu in Units)(punit(oo,tt,ss,uu,hh)) - 
ptotspot(oo,tt,hh) = 0 ; 
        end-do 
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        !Max production on each unit 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxProdUnit(ss,uu,hh) := punit(oo,tt,ss,uu,hh)-
MaxProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) <= 0; 
        end-do 
         
        !Min production on each unit 
        forall (ss in Stations, uu in Units, hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinProdUnit(ss,uu,hh) := punit(oo,tt,ss,uu,hh)-
MinProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) >= 0; 
        end-do 
                         
        !Reserving upward regulation capacity 
        forall(hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMaxProdObligation(hh) := ptotspot(oo,tt,hh)+SymRegObligation(oo)-sum(ss in Stations, uu in 
Units)MaxProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) <= 0; 
        end-do 
         
        !Reserving downward regulation capacity 
        forall(hh in 24*tt-23 .. 24*getsize(Steps)) do 
            restMinProdObligation(hh) := ptotspot(oo,tt,hh)-SymRegObligation(oo)-sum(ss in Stations, uu in 
Units)MinProduction(ss,uu)*runindunit(oo,tt,ss,uu,hh) >= 0; 
        end-do 
             
        !Running optimizations for all steps and obligations 
        writeln("Optimizing Step: ",tt,", ObligationIndex: ",oo); 
        OptimizationStartTime:= datetime(SYS_NOW); 
        maximize(maxz); 
         
        StepwiseObjectiveValue(oo,tt):= getobjval; 
        OptimizationEndTime:= datetime(SYS_NOW); 
         
        !Check for optimiality / feasibility 
        if  (getprobstat = XPRS_INF) then  
            writeln("Infeasible solution"); 
            writeln("Step: ",tt,", ObligationIndex: ",oo); 
        end-if 
        if (not getprobstat = XPRS_OPT) then  
            writeln("Not solved to optimality"); 
            writeln("Step: ",tt,", ObligationIndex: ",oo); 
        else 
            writeln("Step: ",tt,", ObligationIndex: ",oo," is optimized successfully"); 
            writeln("Elapsed time of optimization: ",OptimizationEndTime-OptimizationStartTime," seconds"); 
                 
        end-if 
             
        !Saving the realized  solutions from each step to show the actual behavior throughout the step 
        forall(rr in Reservoirs, ss in Stations, uu in Units, hh in 24*tt-23 .. 24*tt) do 
             
            RealizedPTotSpot(oo,hh):= getsol(ptotspot(oo,tt,hh)); 
            RealizedQInRes(oo,rr,hh):= getsol(qinres(oo,tt,rr,hh)); 
            RealizedRunIndUnit(oo,ss,uu,hh):= getsol(runindunit(oo,tt,ss,uu,hh)); 
            RealizedPUnit(oo,ss,uu,hh):= getsol(punit(oo,tt,ss,uu,hh)); 
            RealizedQBypassRes(oo,rr,hh):= getsol(qbypassres(oo,tt,rr,hh)); 
            RealizedQFloodRes(oo,rr,hh):= getsol(qfloodres(oo,tt,rr,hh)); 
            RealizedQProdUnit(oo,ss,uu,hh):= getsol(qprodunit(oo,tt,ss,uu,hh)); 
            RealizedStartIndUnit(oo,ss,uu,hh):= getsol(startindunit(oo,tt,ss,uu,hh)); 
            RealizedPEndRes(oo,rr):= getsol(pendres(oo,tt,rr)); 
            RealizedQEndRes(oo,rr):= getsol(qendres(oo,tt,rr)); 
            if (getsol(qprodunit(oo,tt,ss,uu,hh)) >0) then 
                RealizedTurbEff(oo,ss,uu,hh):= 
(1000000*getsol(punit(oo,tt,ss,uu,hh))/(getsol(qprodunit(oo,tt,ss,uu,hh))*9.81*1000*HeadUnit(ss,uu))); 
            end-if 
        end-do 
         
        !Saving the Stepwise solutions from each step to show the Stepwise behavior throughout the step 
        forall (rr in Reservoirs, ss in Stations, uu in Units, hh in Hours) do 
            StepwisePTotSpot(oo,tt,hh):= getsol(ptotspot(oo,tt,hh)); 
            StepwiseQInRes(oo,tt,rr,hh):= getsol(qinres(oo,tt,rr,hh)); 
            StepwiseRunIndUnit(oo,tt,ss,uu,hh):= getsol(runindunit(oo,tt,ss,uu,hh)); 
            StepwisePUnit(oo,tt,ss,uu,hh):= getsol(punit(oo,tt,ss,uu,hh)); 
            StepwiseQBypassRes(oo,tt,rr,hh):= getsol(qbypassres(oo,tt,rr,hh)); 
            StepwiseQFloodRes(oo,tt,rr,hh):= getsol(qfloodres(oo,tt,rr,hh)); 
            StepwiseQProdUnit(oo,tt,ss,uu,hh):= getsol(qprodunit(oo,tt,ss,uu,hh)); 
            StepwiseStartIndUnit(oo,tt,ss,uu,hh):= getsol(startindunit(oo,tt,ss,uu,hh)); 
            StepwisePEndRes(oo,tt,rr):= getsol(pendres(oo,tt,rr)); 
            StepwiseQEndRes(oo,tt,rr):= getsol(qendres(oo,tt,rr)); 
        end-do 
     
    end-do !Ending obligations 
     
    if (tt = getsize(Steps)) then 
     
        ! Emulating the market for the last step 
        Dice(tt):= random; 
         
        DiceAdjusted(tt):= Dice(tt)*RealizedProbability(tt); 
         
     
        forall(ee in Scenarios | StepPredecessorDynamic(ee,tt) = RealizedPredecessor(tt)) do 
                if (DiceAdjusted(tt) < sum(pp in 
RealizedPredDynCoord(tt)..ee)(StepProbabilityDynamic(pp,tt))) then 
                    RealizedProbDynCoord(tt):=ee; 
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                forall (hh in (24*(tt-1) .. 24*tt)) do 
                        ActualPrice(mm,hh):= ScenarioSpotPrice(ee,hh); 
                     
                    end-do 
                end-if               
        end-do 
         
        !Storing the price optimized upon for the last step 
        forall (hh in (24*tt-23) .. 24*getsize(Steps)) do 
            ModelPrice(mm,hh):= sum(ee in Scenarios | StepPredecessorFull(ee,tt) = RealizedPredecessor(tt)) 
            ((ScenarioSpotPrice(ee,hh)*EndScenarioProbability(ee)) 
            /(sum(eee in Scenarios | StepPredecessorFull(eee,tt) = 
RealizedPredecessor(tt))(EndScenarioProbability(eee))));  
        end-do 
                 
    end-if 
     
     
     
     
end-do !Ending steps 
 
 
 
!Calculating and storing the actual realized objective value for each obligation 
forall (oo in ObligationIndex) do 
    ActualObjectiveValue(mm,oo):= sum(hh in Hours)(ActualPrice(mm,hh)*RealizedPTotSpot(oo,hh)) 
    -sum(ss in Stations, uu in Units, hh in Hours)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)) 
    +sum(rr in Reservoirs)(WaterValue(rr)*RealizedPEndRes(oo,rr));       
end-do 
 
!Calculating and storing the objective value optimized upon for each obligation 
forall (oo in ObligationIndex) do 
    ModelObjectiveValue(mm,oo):= sum(hh in Hours)(ModelPrice(mm,hh)*RealizedPTotSpot(oo,hh)) 
    -sum(ss in Stations, uu in Units, hh in Hours)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)) 
    +sum(rr in Reservoirs)(WaterValue(rr)*RealizedPEndRes(oo,rr)); 
end-do 
 
!Calculating and storing the actual realized marginal price for attending regulation for each obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ActualBreakEvenRegPrice(mm,oo):= (ActualObjectiveValue(mm,1)-
ActualObjectiveValue(mm,oo))/(getsize(Hours)*SymRegObligation(oo)); 
end-do 
 
!Calculating and storing the break-even price optimized upon for attending regulation for each obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ModelBreakEvenRegPrice(mm,oo):= (ModelObjectiveValue(mm,1)-
ModelObjectiveValue(mm,oo))/(getsize(Hours)*SymRegObligation(oo)); 
end-do 
 
!Calculating and storing the actual break-even price optimized upon for attending regulation for each 
obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ActualMarginalRegCost(mm,oo):= (ActualObjectiveValue(mm,oo-1)-
ActualObjectiveValue(mm,oo))/(getsize(Hours)); 
end-do 
 
!Calculating and storing the actual realized marginal cost for attending regulation for each obligation 
forall (oo in 2.. getsize(ObligationIndex)) do 
    ModelMarginalRegCost(mm,oo):= (ModelObjectiveValue(mm,oo-1)-ModelObjectiveValue(mm,oo))/(getsize(Hours)); 
end-do 
 
forall (oo in ObligationIndex, ss in Stations, hh in Hours) do 
    RealizedRunningUnits(oo,ss,hh):= (sum(uu in Units)RealizedRunIndUnit(oo,ss,uu,hh)); 
end-do 
 
!Calculating the objective values seen (and realized) for each Stepwise step 
forall (oo in ObligationIndex, tt in Steps) do 
        if (tt=1) then 
            StepwiseModelTotObjVal(oo,tt):=StepwiseObjectiveValue(oo,tt); 
            StepwiseActualTotObjVal(oo,tt):=StepwiseObjectiveValue(oo,tt); 
        else 
            StepwiseModelTotObjVal(oo,tt):= sum(hh in 1..24*(tt-
1))(ModelPrice(mm,hh)*RealizedPTotSpot(oo,hh)-sum(ss in Stations, uu in 
Units)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)))+StepwiseObjectiveValue(oo,tt); 
            StepwiseActualTotObjVal(oo,tt):= sum(hh in 1..24*(tt-
1))(ActualPrice(mm,hh)*RealizedPTotSpot(oo,hh)-sum(ss in Stations, uu in 
Units)(StartUpCost(ss,uu)*RealizedStartIndUnit(oo,ss,uu,hh)))+StepwiseObjectiveValue(oo,tt); 
        end-if 
end-do 
 
!Calculating the needed regulation price for each Stepwise step 
forall (oo in 2.. getsize(ObligationIndex), ObligationIndex, tt in Steps) do 
    StepwiseModelBreakEvenRegPrice(oo,tt):= (StepwiseModelTotObjVal(1,tt)-
StepwiseModelTotObjVal(oo,tt))/(SymRegObligation(oo)*getsize(Hours)); 
    StepwiseActualBreakEvenRegPrice(oo,tt):= (StepwiseActualTotObjVal(1,tt)-
StepwiseActualTotObjVal(oo,tt))/(SymRegObligation(oo)*getsize(Hours)); 
end-do 
 
!Calculating the marginal regulation cost for each Stepwise step 
forall (oo in 2.. getsize(ObligationIndex), ObligationIndex, tt in Steps) do 
    StepwiseModelMarginalRegCost(oo,tt):= (StepwiseModelTotObjVal(oo-1,tt)-
StepwiseModelTotObjVal(oo,tt))/getsize(Hours); 
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    StepwiseActualMarginalRegCost(oo,tt):= (StepwiseActualTotObjVal(oo-1,tt)-
StepwiseActualTotObjVal(oo,tt))/getsize(Hours); 
end-do 
         
end-do !Ending ModelIndex 
     
OptimizationStartTime:= datetime(SYS_NOW); 
!Writes all output data to Excel file 
writeln("Writing output data to Excel file"); 
     
    !Writing out results  
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\output_mm.xlsx'); 
    SQLexecute("insert into XACTUALPRICE (MODELINDEX,HOURS,ACTUALPRICE) values (?,?,?)",ActualPrice); 
    SQLexecute("insert into XMODELPRICE (MODELINDEX,HOURS,MODELPRICE) values (?,?,?)",ModelPrice); 
    SQLexecute("insert into XACTUALOBJECTIVEVALUE (MODELINDEX,OBLIGATIONINDEX,ACTUALOBJECTIVEVALUE) values 
(?,?,?)",ActualObjectiveValue); 
    SQLexecute("insert into XMODELOBJECTIVEVALUE (MODELINDEX,OBLIGATIONINDEX,MODELOBJECTIVEVALUE) values 
(?,?,?)",ModelObjectiveValue); 
    SQLexecute("insert into XACTUALBREAKEVENREGPRICE (MODELINDEX,OBLIGATIONINDEX,ACTUALBREAKEVENREGPRICE) 
values (?,?,?)",ActualBreakEvenRegPrice); 
    SQLexecute("insert into XMODELBREAKEVENREGPRICE (MODELINDEX,OBLIGATIONINDEX,MODELBREAKEVENREGPRICE) 
values (?,?,?)",ModelBreakEvenRegPrice); 
    SQLexecute("insert into XACTUALMARGINALREGCOST (MODELINDEX,OBLIGATIONINDEX,ACTUALMARGINALREGCOST) values 
(?,?,?)",ActualMarginalRegCost); 
    SQLexecute("insert into XMODELMARGINALREGCOST (MODELINDEX,OBLIGATIONINDEX,MODELMARGINALREGCOST) values 
(?,?,?)",ModelMarginalRegCost); 
 
SQLdisconnect; 
 
OptimizationEndTime:= datetime(SYS_NOW); 
writeln("Successfully written data to Excel file"); 
writeln("Time used to write output data: ",(OptimizationEndTime-OptimizationStartTime)," seconds"); 
writeln("Model run complete"); 
ModelEndTime:= datetime(SYS_NOW); 
writeln("Total elapsed time of model: ",(ModelEndTime-ModelStartTime)," seconds"); 
end-model; 

!
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E.3 The deterministic model 
 
model deterministic 
options explterm 
options noimplicit 
uses "mmxprs"; 
uses "mmodbc"; !gain access to SQL for Excel input 
 
!Declaration of sets 
declarations  
    Hours:          set of integer; 
    Days:           set of integer; 
    Units:          set of integer; 
    Stations:       set of integer; 
    Reservoirs:     set of integer; 
    Index:          set of integer; 
    ObligationIndex:set of integer;  
end-declarations 
 
!Reading input data from excel 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\input.xlsx'); 
    SQLexecute("select HOURS from HH", Hours); 
    SQLexecute("select DAYS from DD", Days); 
    SQLexecute("select UNITS from UU", Units); 
    SQLexecute("select STATIONS from SS", Stations); 
    SQLexecute("select RESERVOIRS from RR", Reservoirs); 
    SQLexecute("select INDEX from II", Index); 
    SQLexecute("select OBLIGATIONINDEX from OO", ObligationIndex); 
SQLdisconnect; 
 
 
!Declaration of parameters 
declarations 
    !Spotpris 
    SpotPrice:                  dynamic array(Hours)            of real; 
    !Symmetrical regulation obligation 
    SymRegObligation:           dynamic array(ObligationIndex)  of real; 
   !Water value 
    WaterValue:                 dynamic array(Reservoirs)       of real; 
    !Intial reservoar volume m3 
    InitialWaterVolume:         dynamic array(Reservoirs)       of real; 
    !Inflow 
    InflowRes:                  dynamic array(Reservoirs,Hours) of real; 
    !Max production on each unit 
    MaxProduction:              dynamic array(Stations,Units)   of real; 
    !Min production on each unit 
    MinProduction:              dynamic array(Stations,Units)   of real; 
    !Max bypass m3/s 
    MaxBypass:                  dynamic array(Reservoirs)       of real;  
    !Min bypass m3/s 
    MinBypass:                  dynamic array(Reservoirs)       of real; 
    !Max reservoar volume m3 
    MaxReservoirVolume:         dynamic array(Reservoirs)       of real; 
    !Min reservoar volume m3 
    MinReservoirVolume:         dynamic array(Reservoirs)       of real; 
    !Max regulation of reservoar per hour m3/h 
    MaxRegulatingPerHour:       dynamic array(Reservoirs)       of real; 
     !Start-up cost at unit u at station s 
    StartUpCost:                array(Stations,Units)           of real; 
    !Max ramping at unit u at station s 
    MaxRamping:                 array(Stations,Units)           of real; 
    !Slopes of the oiecewize linear PQ-curve 
    Slope:                      array(Index)                    of real; 
    !Interceptions of the piecewize linear PQ-curve 
    Intercept:                  array(Index)                    of real; 
    !Head for each unit 
    HeadUnit:                   array(Stations,Units)           of real; 
    !System head for each unit 
    TotHeadUnit:                array(Stations,Units)           of real; 
    !Max discharge through unit u at station s 
    MaxDiscUnit:                array(Stations,Units)           of real; 
    !Min discharge through unit u at station s 
    MinDiscUnit:                dynamic array(Stations,Units)   of real; 
    !Best point efficiency for each unit 
    EffBPUnit:                  array(Stations,Units)           of real; 
     
     
   ! Defining output parameters(variables) 
    
    OutObjectiveValue:  array(ObligationIndex)                          of real; 
    OutMarginalRegPrice:array(ObligationIndex)                          of real;     
    OutHours:           array(Hours)                                    of real; 
    OutSpotPrice:       array(Hours)                                    of real; 
    OutPTotSpot:        array (ObligationIndex,Hours)                   of real; 
    OutQInRes:          array(ObligationIndex,Reservoirs,Hours)         of real; 
    OutInflowRes:       array(Reservoirs,Hours)                         of real; 
    OutPUnit:           array(ObligationIndex,Stations,Units,Hours)     of real; 
    OutWaterValue:      array(Reservoirs)                               of real; 
    OutAvailableUpReg:  array(ObligationIndex,Hours)                    of real; 
    OutAvailableDownReg:array(ObligationIndex,Hours)                    of real; 
    OutQFloodRes:       array(ObligationIndex,Reservoirs,Hours)         of real; 
    OutQBypassRes:      array(ObligationIndex,Reservoirs,Hours)         of real; 
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end-declarations 
 
    !Reading input data from excel 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\input.xlsx');  
    SQLexecute("select SPOTPRICE from HH", SpotPrice); 
    SQLexecute("select SYMREGOBLIGATION from OO", SymRegObligation); 
    SQLexecute("select WATERVALUE from RR", WaterValue); 
    SQLexecute("select INITIALWATERVOLUME from RR", InitialWaterVolume); 
    SQLexecute("select INFLOWRES from RRHH", InflowRes); 
    SQLexecute("select MAXPRODUCTION from SSUU", MaxProduction); 
    SQLexecute("select MINPRODUCTION from SSUU", MinProduction); 
    SQLexecute("select MAXBYPASS from RR", MaxBypass); 
    SQLexecute("select MINBYPASS from RR", MinBypass); 
    SQLexecute("select MAXRESERVOIRVOLUME from RR", MaxReservoirVolume); 
    SQLexecute("select MINRESERVOIRVOLUME from RR", MinReservoirVolume); 
    SQLexecute("select MAXREGULATINGPERHOUR from RR", MaxRegulatingPerHour); 
    SQLexecute("select STARTUPCOST from SSUU", StartUpCost); 
    SQLexecute("select MAXRAMPING from SSUU", MaxRamping); 
    SQLexecute("select HEADUNIT from SSUU", HeadUnit); 
    SQLexecute("select MAXDISCUNIT from SSUU", MaxDiscUnit); 
    SQLexecute("select MINDISCUNIT from SSUU", MinDiscUnit); 
    SQLexecute("select TOTHEADUNIT from SSUU", TotHeadUnit); 
    SQLexecute("select EFFBPUNIT from SSUU", EffBPUnit); 
    !PQ curve 
    SQLexecute("select SLOPE from II", Slope); 
    SQLexecute("select INTERCEPT from II", Intercept); 
    SQLdisconnect; 
 
 
!Declaration of variables 
 
declarations 
 
    !Total spot volume in hour h 
    ptotspot:       array(Hours)                of mpvar; 
    !Reservoar volume at the end of the periode 
    qendres:        array(Reservoirs)           of mpvar; 
    !Energy in the reservoar at the end of the periode 
    pendres:        array(Reservoirs)           of mpvar; 
    !Discharge thruogh unit u at station s in hour h 
    qprodunit:      array(Stations,Units,Hours) of mpvar; 
    !Flood from reservoar r in hour h 
    qfloodres:      array(Reservoirs,Hours)     of mpvar; 
    !Bypass from reservoar r in hour h 
    qbypassres:     array(Reservoirs,Hours)     of mpvar; 
    !reservoar volume in reservoar r in hour h 
    qinres:         array(Reservoirs,Hours)     of mpvar; 
    !Spot production from unit u at station s in hour h 
    punit:          array(Stations,Units,Hours) of mpvar; 
    !start indicator 
    startindunit:   array(Stations,Units,Hours) of mpvar; 
    !Run indicator, 1 if unit u runs in hour h  
    runindunit:     array(Stations,Units,Hours) of mpvar; 
     
 
     
    ! Declaration of objective function 
maxz:   linctr; 
 
  
!Declaration of constranits 
 
! Sets initial reservoir volume in qinres for all reservoirs 
restInitWaterBalance:   array(Reservoirs)           of linctr;     
!Water balance upper reservoir 
restWaterBalance1:      array(Reservoirs,Hours)     of linctr; 
!Water balance other reservoirs 
restWaterBalance2:      array(Reservoirs,Hours)     of linctr;     
!Total production i elspot from unit to system level 
restTotSpotProd:        array(Hours)                of linctr;     
!Max bypass 
restMaxBypassRes:       array(Reservoirs,Hours)     of linctr; 
!Min bypass 
restMinBypassRes:       array(Reservoirs,Hours)     of linctr;     
!Max reservoar volume 
restMaxVolumeRes:       array(Reservoirs,Hours)     of linctr; 
!Min reservoar volume 
restMinVolumeRes:       array(Reservoirs,Hours)     of linctr; 
!Max reservoar regulation m3 equation 1 
restMaxRegRes1:         array(Reservoirs,Hours)     of linctr;   
!Max reservoar regulation equation 2 
restMaxRegRes2:         array(Reservoirs,Hours)     of linctr; 
!Start-up cost     
restStartupCostUnit:    array(Stations,Units,Hours  of linctr; 
!Max ramping equation 1 
restMaxRampUnit1:       array(Stations,Units)       of linctr; 
!Max ramping equation 2 
restMaxRampUnit2:       array(Stations,Units)       of linctr;   
!Max production on unit u at station s in hour h 
restMaxProdUnit:        array(Stations,Units,Hours) of linctr;   
!Min production on unit u at station s in hour h 
restMinProdUnit:        array(Stations,Units,Hours) of linctr; 
!Production indicator for each unit in each hour 
restProdIndUnit:        array(Stations,Units,Hours) of linctr; 
!Max reservoar volume at the end of the periode 
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restMaxVolumeEndRes:    array(Reservoirs)           of linctr; 
!Min reservoar volume at the end of the periode 
restMinVolumeEndRes:    array(Reservoirs)           of linctr; 
!Calculates the equivalent energy of the water in the reservoar at the end of the 
!periode in MWh 
restEndResEnergy:       array(Reservoirs)           of linctr; 
!Max discharge thruogh unit u at station s in hour h 
restMaxDiscUnit:        array(Stations,Units,Hours) of linctr; 
!Min discharge thruogh unit u at station s in hour h 
restMinDiscUnit:        array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve1:           array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve2:           array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve3:           array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve4:           array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve5:           array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve6:           array(Stations,Units,Hours) of linctr; 
!PQ-curve 
restPQCurve7:           array(Stations,Units,Hours) of linctr;      
!check if there is enoght rotating reserves available on system level for upward regulation 
restMaxProdObligation:  array(Hours)                of linctr; 
!check if there is enoght rotating reserves available on system level for downward regulation 
restMinProdObligation:  array(Hours)                of linctr; 
 
end-declarations 
 
! Creates binary variable runindunit  
forall (ss in Stations,uu in Units,hh in Hours) do 
runindunit(ss,uu,hh) is_binary; 
end-do 
 
! Object function  
 
maxz := sum(hh in Hours)(SpotPrice(hh)*ptotspot(hh)) 
+ sum(rr in Reservoirs)(WaterValue(rr)*pendres(rr)) 
- sum(ss in Stations, uu in Units, hh in Hours)(StartUpCost(ss,uu)*startindunit(ss,uu,hh)); 
 
 
 
!Constranits 
 
! Sets initial reservoir volume in qinres for all reservoirs 
forall (rr in Reservoirs) do 
    restInitWaterBalance(rr) := qinres(rr,1) = InitialWaterVolume(rr); 
end-do 
 
 !Water balance upper reservoir 
forall (rr in 1..1, hh in 1..(getsize(Hours)-1)) do 
    restWaterBalance1(rr,hh) := qinres(rr,hh)+InflowRes(rr,hh) 
    -sum(ss in 1..1, uu in Units)(qprodunit(ss,uu,hh)*3600)-qfloodres(rr,hh)-qbypassres(rr,hh)-
qinres(rr,(hh+1)) =0; 
end-do 
 
!Water balance other reservoirs other hours 
forall (rr in 2.. getsize(Reservoirs), hh in 1..(getsize(Hours)-1)) do 
    restWaterBalance2(rr,hh) := qinres(rr,hh)+InflowRes(rr,hh)+ sum(uu in Units)(qprodunit((rr-
1),uu,hh)*3600) 
    -sum(uu in Units)(qprodunit(rr,uu,hh)*3600)-qfloodres(rr,hh)+qbypassres((rr-1),hh)-qbypassres(rr,hh)-
qinres(rr,(hh+1)) =0; 
end-do 
 
!Water balance last hour upper reservoar 
forall (rr = 1, hh = getsize(Hours)) do 
restWaterBalance1(rr,hh) := qinres(rr,hh)+InflowRes(rr,hh) 
-sum(ss in 1..1, uu in Units)(qprodunit(ss,uu,hh)*3600)-qfloodres(rr,hh)-qbypassres(rr,hh)-qendres(rr) =0; 
end-do 
 
!Water balance other reservoirs last hour 
forall (rr in 2.. getsize(Reservoirs), hh = getsize(Hours)) do 
    restWaterBalance2(rr,hh) := qinres(rr,hh)+InflowRes(rr,hh)+ sum(uu in Units)(qprodunit((rr-
1),uu,hh)*3600) 
    -sum(uu in Units)(qprodunit(rr,uu,hh)*3600)-qfloodres(rr,hh)+qbypassres((rr-1),hh)-qbypassres(rr,hh)-
qendres(rr) =0; 
end-do 
 
!Calculates the equivalent energy of the water in the reservoar at the end of the 
!periode in MWh 
forall(rr in Reservoirs) do 
    restEndResEnergy(rr) := pendres(rr) = 
qendres(rr)*TotHeadUnit(rr,1)*1000*9.81*EffBPUnit(rr,1)/(3600*1000000); 
end-do 
 
!Cuts of PQ-curves 
forall (ss in Stations, uu in Units, hh in Hours |MaxDiscUnit(ss,uu) > 0) do 
    restPQCurve1(ss,uu,hh) := punit(ss,uu,hh) <= 
(Slope(1)*qprodunit(ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(1))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
    restPQCurve2(ss,uu,hh) := punit(ss,uu,hh) <= 
(Slope(2)*qprodunit(ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(2))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
    restPQCurve3(ss,uu,hh) := punit(ss,uu,hh) <= 
(Slope(3)*qprodunit(ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(3))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
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    restPQCurve4(ss,uu,hh) := punit(ss,uu,hh) <= 
(Slope(4)*qprodunit(ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(4))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
    restPQCurve5(ss,uu,hh) := punit(ss,uu,hh) <= 
(Slope(5)*qprodunit(ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(5))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
    restPQCurve6(ss,uu,hh) := punit(ss,uu,hh) <= 
(Slope(6)*qprodunit(ss,uu,hh)/MaxDiscUnit(ss,uu)+Intercept(6))*MaxDiscUnit(ss,uu)*HeadUnit(ss,uu); 
end-do 
 
!Max bypass  
forall (rr in Reservoirs,  hh in Hours) do 
    restMaxBypassRes(rr,hh) := qbypassres(rr,hh)<= MaxBypass(rr); 
end-do 
 
!Min bypass  
forall (rr in Reservoirs, hh in Hours) do 
    restMinBypassRes(rr,hh) := qbypassres(rr,hh)>= MinBypass(rr); 
end-do 
 
!Max resevoir volume 
forall (rr in Reservoirs, hh in Hours) do 
    restMaxVolumeRes(rr,hh) := qinres(rr,hh) <= MaxReservoirVolume(rr); 
end-do 
 
!Min reservoir volume 
forall (rr in Reservoirs, hh in Hours) do 
    restMinVolumeRes(rr,hh) := qinres(rr,hh) >= MinReservoirVolume(rr); 
end-do 
 
!Max resevoir volume at the end of the periode 
forall (rr in Reservoirs) do 
    restMaxVolumeEndRes(rr) := qendres(rr) <= MaxReservoirVolume(rr); 
end-do 
 
!Min resevoir volume at the end of the periode 
forall (rr in Reservoirs) do 
    restMinVolumeEndRes(rr) := qendres(rr) >= MinReservoirVolume(rr); 
end-do 
 
! Max Discharge 
forall (ss in Stations, uu in Units, hh in Hours) do 
    restMaxDiscUnit(ss,uu,hh) := qprodunit(ss,uu,hh) <= MaxDiscUnit(ss,uu); 
end-do 
 
!Min Discharge 
forall (ss in Stations, uu in Units, hh in Hours) do 
    restMinDiscUnit(ss,uu,hh) := qprodunit(ss,uu,hh) >= MinDiscUnit(ss,uu); 
end-do 
 
!Max ramping equation 1 
forall (ss in Stations, uu in Units, hh in 2..getsize(Hours)) do 
    restMaxRampUnit1(ss,uu) := punit(ss,uu,hh) - punit(ss,uu,(hh-1)) <= MaxRamping(ss,uu); 
end-do 
 
!Max ramping equation 1 
forall (ss in Stations, uu in Units, hh in 1..1) do 
    restMaxRampUnit1(ss,uu) := punit(ss,uu,(hh+1)) - punit(ss,uu,hh) <= MaxRamping(ss,uu); 
end-do 
 
!Max ramping equation 2 
forall (ss in Stations, uu in Units, hh in 2..getsize(Hours)) do 
    restMaxRampUnit2(ss,uu) := punit(ss,uu,(hh-1)) - punit(ss,uu,hh) >= -MaxRamping(ss,uu); 
end-do 
 
!Max ramping equation 2 
forall (ss in Stations, uu in Units, hh in 1..1) do 
    restMaxRampUnit2(ss,uu) := punit(ss,uu,hh) - punit(ss,uu,(hh+1)) >= -MaxRamping(ss,uu); 
end-do 
 
!Max reservoir regulation equation 1 
forall (rr in Reservoirs, hh in 1..(getsize(Hours)-1)) do 
    restMaxRegRes1(rr,hh) := qinres(rr,(hh+1))-qinres(rr,hh) <= MaxRegulatingPerHour(rr); 
end-do 
 
!Max reservoir regulation equation 2 
forall (rr in Reservoirs, hh in 1..(getsize(Hours)-1)) do 
    restMaxRegRes2(rr,hh) := qinres(rr,hh)-qinres(rr,(hh+1)) <= MaxRegulatingPerHour(rr); 
end-do 
 
!Start-up costs 
forall (ss in Stations, uu in Units, hh in 2..getsize(Hours)) do 
    restStartupCostUnit(ss,uu,hh) := startindunit(ss,uu,hh) - (runindunit(ss,uu,hh) - runindunit(ss,uu,(hh-
1))) >= 0 ; 
end-do 
 
!Start-up costs 
forall (ss in Stations, uu in Units, hh in 1..1) do 
    restStartupCostUnit(ss,uu,hh) := startindunit(ss,uu,hh) - (runindunit(ss,uu,(hh+1)) - 
runindunit(ss,uu,hh)) >= 0 ; 
end-do 
 
!Total production in elspot from unit to system level 
forall (hh in Hours) do 
    restTotSpotProd(hh) := sum(ss in Stations, uu in Units)(punit(ss,uu,hh)) - ptotspot(hh) = 0 ; 
end-do 
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!Max production on each unit 
forall (ss in Stations, uu in Units, hh in Hours) do 
    restMaxProdUnit(ss,uu,hh) := punit(ss,uu,hh)-MaxProduction(ss,uu)*runindunit(ss,uu,hh) <= 0; 
end-do 
 
!Min production on each unit 
forall (ss in Stations, uu in Units, hh in Hours) do 
    restMinProdUnit(ss,uu,hh) := punit(ss,uu,hh)-MinProduction(ss,uu)*runindunit(ss,uu,hh) >= 0; 
end-do 
 
 
!! Run the optimization command for different levels of obligation in the regulation market. 
 
forall(oo in ObligationIndex)do 
 
 
!check if there is enoght rotating reserves available on system level for upward regulation 
forall(hh in Hours) do 
    restMaxProdObligation(hh) := ptotspot(hh)+SymRegObligation(oo)-sum(ss in Stations, uu in 
Units)MaxProduction(ss,uu)*runindunit(ss,uu,hh) <= 0; 
end-do 
 
!check if there is enoght rotating reserves available on system level for downward regulation 
forall(hh in Hours) do 
    restMinProdObligation(hh) := ptotspot(hh)-SymRegObligation(oo)-sum(ss in Stations, uu in 
Units)MinProduction(ss,uu)*runindunit(ss,uu,hh) >= 0; 
end-do 
 
!Run the optimization command 
maximize(maxz); 
 
!Save the solution from the objective function to the parameter OutObjectiveValue(oo) 
OutObjectiveValue(oo):=getobjval; 
 
forall (rr in Reservoirs, ss in Stations, uu in Units, hh in Hours) do 
    OutQInRes(oo,rr,hh):= getsol(qinres(rr,hh)); 
    OutInflowRes(rr,hh):= InflowRes(rr,hh); 
    OutQBypassRes(oo,rr,hh):= getsol(qbypassres(rr,hh)); 
    OutQFloodRes(oo,rr,hh):= getsol(qfloodres(rr,hh)); 
    OutPTotSpot(oo,hh) := getsol(ptotspot(hh)); 
    OutPUnit(oo,ss,uu,hh):= getsol(punit(ss,uu,hh)); 
    OutHours(hh):= hh; 
    OutSpotPrice(hh):= SpotPrice(hh); 
    OutWaterValue(rr):= WaterValue(rr); 
    OutAvailableUpReg(oo,hh):= sum(ss in Stations, uu in 
Units)MaxProduction(ss,uu)*getsol(runindunit(ss,uu,hh)) - getsol(ptotspot(hh)); 
    OutAvailableDownReg(oo,hh):= getsol(ptotspot(hh))-sum(ss in Stations, uu in 
Units)MinProduction(ss,uu)*getsol(runindunit(ss,uu,hh)); 
end-do 
 
end-do  !Ending oo 
 
!Calculate cost/required price in €/MW available reglation capacity  
forall (oo in 2..(getsize(ObligationIndex))) do 
    OutMarginalRegPrice(oo):=(OutObjectiveValue(1)-
OutObjectiveValue(oo))/(SymRegObligation(oo)*getsize(Hours)); 
end-d 
 
!Writes output data to Excel file 
SQLconnect('Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm, *xlsb)};DBQ=.\\output.xlsx'); 
    SQLexecute("insert into XHOURS (HOURS) values (?)",OutHours); 
    SQLexecute("insert into XSPOTPRICE (SPOTPRICE) values (?)",OutSpotPrice); 
    SQLexecute("insert into XMARGINALREGPRICE (MARGINALREGPRICE) values (?)",OutMarginalRegPrice); 
    SQLexecute("insert into XSYMREGOBLIGATION (SYMREGOBLIGATION) values (?)",SymRegObligation); 
    SQLexecute("insert into XOBJECTIVEVALUE (OBJECTIVEVALUE) values (?)",OutObjectiveValue); 
    SQLexecute("insert into XQINRES (SYMREGOBLIGATION,RESERVOIRS,HOURS,QINRES) values (?,?,?,?)",OutQInRes); 
    SQLexecute("insert into XQBYPASSRES (SYMREGOBLIGATION,RESERVOIRS,HOURS,QBYPASSRES) values 
(?,?,?,?)",OutQBypassRes); 
    SQLexecute("insert into XQFLOODRES (SYMREGOBLIGATION,RESERVOIRS,HOURS,QFLOODRES) values 
(?,?,?,?)",OutQFloodRes); 
    SQLexecute("insert into XPTOTSPOT (SYMREGOBLIGATION,HOURS,PTOTSPOT) values (?,?,?)",OutPTotSpot); 
    SQLexecute("insert into XPUNIT (SYMREGOBLIGATION,STATIONS,UNITS,HOURS, PUNIT) values 
(?,?,?,?,?)",OutPUnit); 
SQLdisconnect; 
 
end-model; 

!
 
 

!  
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F  Probability distribution testing 
!
 
The tool Minitab 17 Statistical Software was used to investigate if any 
general mathematical probability distribution could describe the results 
from the Monte Carlo-simulations in a satisfying way. The probability 
distributions the program analyzed were: 
 

• Normal 
• Exponential 
• 2-parameter Exponential 
• Weibull 
• 3-parameter Weibull 
• Lognormal 
• 3-parameter Lognormal 
• Smallest Extreme values 
• Largest Extreme values 
• Gamma 
• 3-parameter Gamma 

!
Detailed output data from the software is presented in appendices F.1 - F.4.!  
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F.1 Probability distribution testing 6 MW regulation obligation 
!
Distribution ID Plot for C1 [6MW regulation 
obligation] 
Descriptive Statistics 
 
   N  N*     Mean    StDev   Median  Minimum  Maximum  Skewness  Kurtosis 
1000   0  17.1155  7.27321  14.9673  8.03411  51.8352   1.55797   3.39438 
 
 
Box-Cox transformation: λ = -0.678532 
 
 
Goodness of Fit Test 
 
Distribution                  AD       P  LRT P 
Normal                    34.980  <0.005 
Box-Cox Transformation     5.693  <0.005 
Lognormal                 11.546  <0.005 
3-Parameter Lognormal      3.005       *  0.000 
Exponential              182.803  <0.003 
2-Parameter Exponential   23.404  <0.010  0.000 
Weibull                   28.278  <0.010 
3-Parameter Weibull        4.282  <0.005  0.000 
Smallest Extreme Value    78.681  <0.010 
Largest Extreme Value     14.387  <0.010 
Gamma                     17.489  <0.005 
3-Parameter Gamma          3.219       *  0.000 
Logistic                  27.558  <0.005 
Loglogistic               11.709  <0.005 
3-Parameter Loglogistic    4.192       *  0.000 
 
 
ML Estimates of Distribution Parameters 
 
Distribution             Location    Shape     Scale  Threshold 
Normal*                  17.11553            7.27321 
Box-Cox Transformation*   0.15814            0.03797 
Lognormal*                2.76411            0.37784 
3-Parameter Lognormal     2.05829            0.72151    7.08076 
Exponential                                 17.11553 
2-Parameter Exponential                      9.09051    8.02502 
Weibull                            2.44880  19.32507 
3-Parameter Weibull                1.31072   9.89069    8.02704 
Smallest Extreme Value   21.18796           10.12820 
Largest Extreme Value    14.02241            4.87433 
Gamma                              6.75215   2.53483 
3-Parameter Gamma                  1.64411   5.53916    8.00857 
Logistic                 16.13938            3.87027 
Loglogistic               2.73889            0.22048 
3-Parameter Loglogistic   1.96681            0.47034    7.71389 
 
* Scale: Adjusted ML estimate 

!
!
!
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Figure XV: Goodness of Fit Test graph A for 6 MW regulation obligation 

!
Figure XVI: Goodness of Fit Test graph B for 6 MW regulation obligation 

!
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!
Figure XVII: Goodness of Fit Test graph C for 6 MW regulation obligation 

!
Figure XVIII: Goodness of Fit Test graph D for 6 MW regulation obligation 

!
!
!
!
!
!
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!

F.2 Probability distribution testing 12 MW regulation 
obligation 

!
Distribution ID Plot for C2 �[ �12 �MW regulation 
obligation] 
Descriptive Statistics 
 
   N  N*     Mean    StDev   Median  Minimum  Maximum  Skewness  Kurtosis 
1000   0  22.1906  10.7025  19.4642  8.15650  64.0658   1.02209  0.960906 
 
 
Box-Cox transformation: λ = 0 
 
 
Goodness of Fit Test 
 
Distribution                  AD       P  LRT P 
Normal                    21.401  <0.005 
Box-Cox Transformation     4.440  <0.005 
Lognormal                  4.440  <0.005 
3-Parameter Lognormal      4.606       *  0.003 
Exponential              134.553  <0.003 
2-Parameter Exponential   18.107  <0.010  0.000 
Weibull                   11.444  <0.010 
3-Parameter Weibull        4.486  <0.005  0.000 
Smallest Extreme Value    50.365  <0.010 
Largest Extreme Value      7.381  <0.010 
Gamma                      6.597  <0.005 
3-Parameter Gamma          5.888       *  0.000 
Logistic                  17.956  <0.005 
Loglogistic                5.803  <0.005 
3-Parameter Loglogistic    5.950       *  0.000 
 
 
ML Estimates of Distribution Parameters 
 
Distribution             Location    Shape     Scale  Threshold 
Normal*                  22.19062           10.70254 
Box-Cox Transformation*   2.98890            0.47221 
Lognormal*                2.98890            0.47221 
3-Parameter Lognormal     2.78478            0.57635    3.20577 
Exponential                                 22.19062 
2-Parameter Exponential                     14.04817    8.14245 
Weibull                            2.21595  25.16232 
3-Parameter Weibull                1.25970  15.14897    8.04964 
Smallest Extreme Value   27.97587           13.08542 
Largest Extreme Value    17.38527            7.92474 
Gamma                              4.67393   4.74774 
3-Parameter Gamma                  1.40758  10.10783    7.96301 
Logistic                 21.05754            5.99171 
Loglogistic               2.98573            0.27876 
3-Parameter Loglogistic   2.67234            0.38627    4.91089 
 
* Scale: Adjusted ML estimate 

!
!
!
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!
Figure XIX: Goodness of Fit Test graph A for 12 MW regulation obligation 

!
!

!
Figure XX: Goodness of Fit Test graph B for 12 MW regulation obligation 
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!
Figure XXI: Goodness of Fit Test graph C for 12 MW regulation obligation 

!
!

 

Figure XXII: Goodness of Fit Test graph D for 12 MW regulation obligation 

!  
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F.3 Probability distribution testing 18 MW regulation 
obligation 

Distribution ID Plot for C3 �[18 �MW regulation 
obligation] 
Descriptive Statistics 
 
   N  N*     Mean    StDev   Median  Minimum  Maximum  Skewness  Kurtosis 
1000   0  18.5294  8.08141  16.4674  7.20652  49.7919  0.944627  0.825135 
 
 
Box-Cox transformation: λ = 0 
 
 
Goodness of Fit Test 
 
Distribution                  AD       P  LRT P 
Normal                    18.203  <0.005 
Box-Cox Transformation     4.495  <0.005 
Lognormal                  4.495  <0.005 
3-Parameter Lognormal      4.673       *  0.074 
Exponential              156.482  <0.003 
2-Parameter Exponential   29.319  <0.010  0.000 
Weibull                   11.246  <0.010 
3-Parameter Weibull        4.764  <0.005  0.000 
Smallest Extreme Value    46.446  <0.010 
Largest Extreme Value      5.920  <0.010 
Gamma                      5.987  <0.005 
3-Parameter Gamma          5.689       *  0.000 
Logistic                  15.677  <0.005 
Loglogistic                5.718  <0.005 
3-Parameter Loglogistic    5.796       *  0.003 
 
 
ML Estimates of Distribution Parameters 
 
Distribution             Location    Shape     Scale  Threshold 
Normal*                  18.52940            8.08141 
Box-Cox Transformation*   2.82788            0.42965 
Lognormal*                2.82788            0.42965 
3-Parameter Lognormal     2.69416            0.49010    1.90607 
Exponential                                 18.52940 
2-Parameter Exponential                     11.33421    7.19519 
Weibull                            2.43976  20.95428 
3-Parameter Weibull                1.38833  12.53156    7.05256 
Smallest Extreme Value   22.87386            9.76011 
Largest Extreme Value    14.86414            6.14413 
Gamma                              5.62711   3.29288 
3-Parameter Gamma                  1.80407   6.54130    6.72841 
Logistic                 17.74698            4.54665 
Loglogistic               2.82682            0.25226 
3-Parameter Loglogistic   2.57853            0.32607    3.49439 
 
* Scale: Adjusted ML estimate 

!
!
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Figure XXIII: Goodness of Fit Test graph A for 18 MW regulation obligation 

!
!

 

Figure XXIV: Goodness of Fit Test graph B for 18 MW regulation obligation 
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Figure XXV: Goodness of Fit Test graph C for 18 MW regulation obligation 

 

 

Figure XXVI: Goodness of Fit Test graph D for 18 MW regulation obligation 

F.4 Probability distribution testing 24 MW regulation 
obligation 
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Distribution ID Plot for C4 �[24 �MW regulation 
obligation] 
Descriptive Statistics 
 
   N  N*     Mean    StDev   Median  Minimum  Maximum  Skewness  Kurtosis 
1000   0  51.5334  10.0045  50.7279  30.2352  86.4873  0.562443  0.588250 
 
 
Box-Cox transformation: λ = 0 
 
 
Goodness of Fit Test 
 
Distribution                  AD       P  LRT P 
Normal                     4.136  <0.005 
Box-Cox Transformation     1.399  <0.005 
Lognormal                  1.399  <0.005 
3-Parameter Lognormal      1.360       *  0.820 
Exponential              304.140  <0.003 
2-Parameter Exponential  126.271  <0.010  0.000 
Weibull                   12.191  <0.010 
3-Parameter Weibull        2.258  <0.005  0.000 
Smallest Extreme Value    31.389  <0.010 
Largest Extreme Value      4.534  <0.010 
Gamma                      1.433  <0.005 
3-Parameter Gamma          1.459       *  0.022 
Logistic                   2.934  <0.005 
Loglogistic                1.337  <0.005 
3-Parameter Loglogistic    1.345       *  0.927 
 
 
ML Estimates of Distribution Parameters 
 
Distribution             Location     Shape     Scale  Threshold 
Normal*                  51.53343            10.00449 
Box-Cox Transformation*   3.92369             0.19283 
Lognormal*                3.92369             0.19283 
3-Parameter Lognormal     3.95589             0.18663   -1.62608 
Exponential                                  51.53343 
2-Parameter Exponential                      21.31956   30.21387 
Weibull                             5.22196  55.69309 
3-Parameter Weibull                 2.36009  25.20265   29.17689 
Smallest Extreme Value   56.76928            11.46541 
Largest Extreme Value    46.77305             8.73347 
Gamma                              27.12854   1.89960 
3-Parameter Gamma                  12.76299   2.80184   15.77352 
Logistic                 51.06074             5.61607 
Loglogistic               3.92484             0.10975 
3-Parameter Loglogistic   3.90806             0.11163    0.83582 
 
* Scale: Adjusted ML estimate 
 



 LXXIII 

 

Figure XXVII: Goodness of Fit Test graph A for 24 MW regulation obligation 

 

!

 

Figure XXVIII: Goodness of Fit Test graph B for 24 MW regulation obligation 
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Figure XXIX: Goodness of Fit Test graph C for 24 MW regulation obligation 

!
 

 

Figure XXX: Goodness of Fit Test graph D for 24 MW regulation obligation 
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G  Table with negative marginal costs 
referred to in the discussion chapter 6.3 

!
 

Table III: Table with negative marginal costs 

Regulation 
Obligation [MW] 

Actual marginal cost 
[NOK/MW] 

Model marginal cost 
[NOK/MW] 

1 13,6698555 40,8619789 
2 2,28760115 9,56889518 
3 18,5819412 3,94168358 
4 19,2816121 4,78707149 
5 2,03427301 5,31193578 
6 4,46542154 4,55389672 
7 -31,4936646 22,5581812 
8 31,0123979 -4,71401221 
9 13,6880833 1,32210538 
10 7,93175561 9,27834847 
11 -6,41188548 13,0383336 
12 -50,60616 46,3198001 
13 5,99056565 8,34512499 
14 9,31618014 8,88471642 
15 9,38929116 10,8319632 
16 -9,464062 6,91176345 
17 6,12469873 8,70337716 
18 -0,96369238 7,48270644 
19 17,1929615 11,0656367 
20 -10,5286478 12,0197685 
21 9,34983109 11,0028191 
22 13,0067357 12,3828121 
23 797,672474 719,829946 
24 -10,5130867 1,1709708 
25 24,6923386 13,042938 
26 19,8456252 17,3415993 
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H  Input data used in SCENRED 
 

H.1 Treecon.opt 
!
#"tree"construction"option"file"
"
construction_method"1""
""
reduction_method"""1"
first_branch"""""""1"
*red_percentage"""0.3"
*eps_evolution""""0.5"
order""""""""""""""1""
scaling""""""""""""0"
*eps_growth"""""""""1"
"
*read_distance"""""dist.sd"
*write_distance"""""dist.sd"
"
"
*section"epsilon"
""2*4*1""0.2"
""5""""""0.1"
end"
"
section"num_nodes"
2"" 2"
26"" 4"
50"" 8"
74" 16"
98" 32"
122" 64"
146" 128"
170" 256"
194" 512"
end"
!

H.2 Scenred.opt 
!
reduction_method""1""
"
red_num_leaves""""512"
*red_percentage""""0.40"
metric_type"""""""1""
order"""""""""""""1""
p_norm""""""""""""1""
scaling"""""""""""1"
write_distance"""dist.sd"
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I  The EEM14 article - Optimal day-ahead 
electricity market bidding considering 
different ancillary services 

!
!
This article was submitted, approved and presented at the 11th International 
Conference on the European Energy Market in Cracow, 28th-30th of May 
2014. It is based on the preliminary specialization project written last fall  
[2], however, this article was written during the spring as a part of the 
master thesis. 
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Abstract - This paper studies optimal bidding strategies for a 
hydropower producer in a day-ahead market and different 
regulation markets. It contains two case studies, analyzing the 
optimal production pattern considering a pre-spot situation 
taking different regulation markets into account. Both the 
optimal bid structure between the spot market and the primary 
regulation market in Switzerland as well as the spot market and 
the secondary regulation market in Norway were investigated. 
Models regarding both case studies were built, and the 
consistency of the analysis over an entire year was tested.  The 
results illustrate how a small change in the utilization of the 
watercourse can be very lucrative when considering an 
additional regulation market, and discusses the importance of 
correctly calculated water values and profit factors with such 
ancillary services present.  

Index Terms - multi-market optimization, regulation markets, 
primary regulation, secondary regulation, model development 

I. INTRODUCTION  
In the recent years it have been established an increased number of 
regulation markets that hydropower producers need to take into 
account when optimizing their production and bidding strategy. The 
time horizons span from seasonal and week-ahead markets to 
intraday markets that are cleared up to one hour before the delivery. 
Also, different physical properties between these markets are present, 
i.e. how fast the regulation capacity needs to be able to contribute to 
the system, and how much volume it should contribute with [1], [2]. 
In addition to a large number of markets to choose from, these 
properties complicate the producers’ decision-making concerning 
which market to enter. Due to this it has become an increasing need 
for developing multimarket optimization tools in order to help 
hydropower producers solve these problems.  
This paper focuses on two specific market cases: 

- Optimal bidding strategies between the spot market and the 
primary regulation market in Switzerland 

- Optimal bidding strategies between the spot market and the 
secondary regulation market in Norway 

Regulation markets are in general rapidly expanding, and 
hydropower producers are getting increasingly aware of the 
opportunities such markets offer. This paper studies the change in 
production patterns and observations related to this, when ancillary 
services are taken into account. To investigate these problems, two 
different models were developed. A base model only considering 
optimization in the spot market was also developed for a comparison 
of the results. 

II. NOMENCLATURE 
TABLE I: INDICES  TABLE II: SETS 

d   Day d  D   Number of days 
 Hour h   Number of hours 

 PQ-cut index i   Number of PQ-cut indices 
 Reservoir r   Number of reservoirs 
 Station s   Number of stations 
 Unit u   Number of units at station s 

 
TABLE III: VARIABLES 

 

 Bypass from reservoir r in hour h m3/s 

 Droop setting on unit u at station s in hour h 
(inverse due to a linearization of the model) 

% 

 Spilled flood from reservoir r in hour h m3/s 

 Discharge through unit u at station s in hour h m3/s 

 Spot production on unit u at station s in hour h MW 

 Total spot production in hour h MW 

 Total symmetrical primary regulation in hour h MW 

 Upward regulation capacity on unit u at station 
s in hour h 

MW 

 Downward regulation capacity on unit u at 
station s in hour h 

MW 

 Total upward regulation capacity in hour h MW 

 Total downward regulation capacity in hour h MW 

 Energy equivalent of final level at reservoir r MWh 

 Start indicator, 1 if unit u at station s starts in 
hour h, 0 otherwise 

{0,1} 

 Reservoir level at reservoir r in hour h m3 

 Final reservoir level at reservoir r m3 

 
Max primary regulation on unit u at station s in 
hour h limited by the droop setting 

MW 

 
Run indicator, 1 if unit u at station s runs in 
hour h, 0 otherwise 

{0,1} 

 Max primary regulation on unit u at station s in 
hour h 

MW 

 Max total primary regulation in hour h MW 
 

TABLE IV: PARAMETERS 

 Max reservoir regulation per hour at reservoir r m3 

 Max bypass from reservoir r m3/s 

 Min bypass from reservoir r m3/s 

 Startup cost for unit u at station s € 

 Constant droop setting on unit u at station s 
when optimizing against a secondary regulation 
market 

% 

 Max droop setting (inverse due to a 
linearization of the model) 

% 

 Min droop setting (inverse due to a linearization % 
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of the model) 

 Nominal system frequency Hz 

 Max ramping per hour on unit u at station s MW 

 Gravity constant m/s2 

 Head for unit u at station s m 

 
Total system head for unit u at station s m 

 Delivery factor for upward regulation in a 
secondary regulation market 

% 

 Delivery factor for downward regulation in a 
secondary regulation market 

% 

 Max reservoir volume in reservoir r m3 

 Min reservoir volume in reservoir r m3 

 Max upward regulation bidding volume into a 
secondary regulation market 

MW 

 Max downward regulation bidding volume into 
a secondary regulation market 

MW 

 Max regulation bidding volume into a 
symmetric primary regulation market 

MW 

 Inflow to reservoir r in hour h m3/s 

 Spot price of corresponding market in hour h €/MWh 

 
 

Price for reserved regulation capacity in a 
symmetric primary regulation market in hour h 

€/MWh 

 Price for reserved upward regulation capacity in 
a secondary regulation market in hour h 

€/MWh 

 Price for reserved downward regulation 
capacity in a secondary regulation market in 
hour h 

€/MWh 

 Price for delivered upward regulation volume in 
a secondary regulation market in hour h 

€/MWh 

 Price for delivered downward regulation 
volume in a secondary regulation market in 
hour h 

€/MWh 

 Max discharge through unit u at station s m3/s 

 Min discharge through unit u at station s m3/s 

 Water value for reservoir r €/MWh 

 Max production on unit u at station s MW 

 Min production on unit u at station s MW 

 Slope of cut i in the piecewise linearized PQ-
curve 

- 

 Frequency deviation limit for a symmetric 
primary regulation market 

Hz 

  

Turbine efficiency at best-point on unit u at 
station s 

% 

 Water density kg/m3 

 Intercept of cut i in the piecewise linearized 
PQ-curve 

- 

 

III. THE MATHEMATICAL FORMULATION OF THE MODEL 
Three independent models that utilize many of the same properties 
and equations are presented below. A deterministic day-ahead 
market model was developed only taking a spot market into account. 
This model was developed further by taking either a primary or a 
secondary regulation market into consideration. [3], [4] and [5] are 
other examples of models built to achieve many of the same 
purposes as the models considered in this paper.  
 
The efficiency curves of the turbines are implemented using a 
power-discharge-curve, doing a piecewise linearization due to the 

optimization solving algorithm’s limitations of having a linearized 
problem. 
Some other simplifications regarding the model were also made [6]; 

• Constant head factor during production 
• The same relative efficiency curve for all units 
• No change in use of water when regulation is activated 
• Cascade-connected reservoirs 
• Best-point strategy when calculating end reservoir value 
• Water values assumed known and independent 
• All markets are assumed perfect 

A. The day-ahead market model 

max Pspot
h xtot

h

h∈H
∑ + W r

r∈R
∑ α r − Cs,uβ s,u ,h

h∈H
∑

u∈U
∑

s∈S
∑

 
(1) 

 
The basic spot model - that does not take regulation capacity 
revenues into account - maximizes the profit from the main spot 
market and the remaining total value of the water left in the 
reservoir. The corresponding startup costs is also taken into 
consideration. See equation (1). 
 

γ r ,h + N r ,h − qs,u ,h
u∈U
∑

s∈S
∑

− f r ,h − br ,h −γ r ,(h+1) = 0  

r = 1, s = 1,∀u ∈U,
∀h∈H ≠ h = H  

(2) 

γ r ,h + N r ,h + q(s−1),u ,h
u∈U
∑

s∈S
∑ − qs,u ,h

u∈U
∑

s∈S
∑

− f r ,h − br ,h + b(r−1),h −γ r ,(h+1) = 0
 

∀r ∈R ≠ r = 1,∀s∈S ≠ s = 1,
∀u ∈U,∀h∈H ≠ h = H  

(3) 

γ r ,h + N r ,h − qs,u ,h
u∈U
∑

s∈S
∑

− f r ,h − br ,h −θ r = 0  

r = 1, s = 1,∀u ∈U,h = H  (4) 

γ r ,h + N r ,h + q(s−1),u ,h
u∈U
∑

s∈S
∑ − qs,u ,h

u∈U
∑

s∈S
∑

− f r ,h − br ,h + b(r−1),h −θ r = 0
 

∀r ∈R ≠ r = 1,∀s∈S ≠ s = 1,
∀u ∈U,h = H  

(5) 

 
Equation (2)-(5) describes the water balance of each reservoir in 
terms of initial water volume, inflow, discharge, flooding and bypass 
to other lower reservoirs. 
 

α r = θ rHtot
s,uρgηmax

s,u

3.6 ⋅109  

∀r ∈R,∀s∈S,∀u ∈U  (6) 

 
The conversion from reservoir volume (m3) to energy (MWh) is 
done by equation (6). Since it is unknown how the plant will operate 
with its future amounts of water, a best point strategy is used.  
 

xs,u ,h ≤ Γ i qs,u ,h

Qmax
s,u +Ωi⎛

⎝⎜
⎞
⎠⎟
Qmax

s,u H s,u

 

∀s∈S,∀u ∈U,∀h∈H ,∀i ∈I  (7) 

 
When calculating the power output, data from an efficiency curve 
has been converted into a PQ-curve. A piecewise linearization of 
that curve, the linear cuts described by the matrixes in equation (7), 
determines the power output a unit will get from the amount of 
discharged water. 
 

Bmin
r ≤ br ,h ≤ Bmax

r
 

∀r ∈R,∀h∈H  (8) 

Lmin
r ≤ γ r ,h ≤ Lmax

r
 

∀r ∈R,∀h∈H  (9) 

Lmin
r ≤θ r ,h ≤ Lmax

r
 ∀r ∈R  (10) 

Qmin
s,u ≤ qs,u ,h ≤Qmax

s,u
 ∀s∈S,∀u ∈U,∀h∈H  (11) 

F
,
max
s uG
g
,usH
,s u
totH

Κh
up

Κ h
down

Lmax
r

min
rL

upM

downM

symM

,r hN
 
Pspot

h

,Phreg sym

,upPhreg

,Phreg down

,P
h
en up

,
h
en downP

,
max
s uQ
,
min
s uQ
rW
,
max
s uX
,
min
s uX

Γi

Δ freq

ηmax
s,u

ρ
Ωi
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Equation (8)-(11) simply describes the minimum and maximum 
allowed levels of the respective bypass from reservoirs, reservoir 
volumes, end reservoir volumes and discharge from units,  
 

xs,u ,h − xs,u ,(h−1) ≤Gmax
s,u

 
∀s∈S,∀u ∈U,∀h∈H ≠ h = H

 
(12) 

γ r ,h −γ r ,(h+1) ≤ Amax
r

 
∀r ∈R,∀h∈H ≠ h = H  (13) 

 
whereas (12) and (13) limits the maximum change in reservoir 
volume (regulation) and production (ramping). 
 

xs,u ,h − Xmax
s,u ζ s,u ,h ≤ 0  ∀s∈S,∀u ∈U,∀h∈H  (14) 

xs,u ,h − Xmin
s,uζ s,u ,h ≥ 0  ∀s∈S,∀u ∈U,∀h∈H  (15) 

 
(14) and (15) limits the maximum and minimum production on each 
unit - as well as initializing a binary running indicator.  
 
β s,u ,h − ζ s,u ,h −ζ s,u ,(h−1)( ) ≥ 0

 

∀s∈S,∀u ∈U,∀h∈H ≠ h = 1
 

(16) 

β s,u ,h − ζ s,u ,(h+1) −ζ s,u ,h( ) ≥ 0
 

∀s∈S,∀u ∈U,h = 1  (17) 
 
This binary indicator is again used in equation (16) and (17) to tell if 
a unit is starting up at hour h. Due to the binary properties of the 
running indicator, the startup indicator remains continuous, as it will 
either be 0 or 1 anyway because of its presence in the objective 
function.  
 

xs,u ,h
u∈U
∑

s∈S
∑ − xtot

h = 0
 

∀h∈H  (18) 

 
The spot production from all units is summed up in equation (18). 
 

ζ s,u ,h ∈ 0,1{ }  
∀s∈S,∀u ∈U,∀h∈H  (19) 

xs,u ,h , xtot
h ,α r ,β s,u ,h ,γ r ,h ,qs,u ,h , f r ,h ,br ,h ≥ 0

 
∀r ∈R,∀s∈S,∀u ∈U,∀h∈H

 
(20) 

 
Equation (19) and (20) states the binary and non-negativity 
conditions of the variables. 

B. Introducing the primary regulation market 
When introducing a primary regulation market to the model, 
equations (2)-(20) are still used. A new objective function taking 
both the spot market and a symmetric primary regulation market into 
consideration, replaces equation (1). This objective function is then 
added along with new equations describing the new market, droop 
settings and biddable volumes of primary regulation. 
 
max Pspot

h xtot
h + Preg,sym

h ϕtot
h( )

h∈H
∑ + W r

r∈R
∑ α r − Cs,uβ s,u ,h

h∈H
∑

u∈U
∑

s∈S
∑

 

(21) 

 
The model with the included primary regulation market has an 
alternate way of income, thus the objective function (21) maximizes 
revenues from the spot market and the primary regulation market as 
well as the remaining value of the water in the reservoirs. Startup 
costs are still taken into account. Since the primary regulation in this 
case study is symmetrical, only the lowest value of upward 
regulation, downward regulation and regulation available by the 
droop setting is applicable. 
 
yup
s,u ,h = Xmax

s,u ζ s,u ,h − xs,u ,h
 

∀s∈S,∀u ∈U,∀h∈H  (22) 

ydown
s,u ,h = xs,u ,h − Xmin

s,uζ s,u ,h
 

∀s∈S,∀u ∈U,∀h∈H  (23) 

The maximum amount of primary upward and downward regulation 
capacity is determined by equation (22) and (23), simply calculating 
the difference between the production to the spot market and the 
corresponding maximum and minimum production limits of the unit.  
 

λ s,u ,h = Xmax
s,u Δ freq

F
dinv
s,u ,h

 

∀s∈S,∀u ∈U,∀h∈H  (24) 

 
But since the droop setting on a unit often limits the maximum 
change in power output, a third restriction for maximum primary 
regulation is implemented (24). To avoid a non-linear expression, 
the droop variable has been inverted, making the equation 
programmable in the linear optimization language used. 
 

Dinv,max
s,u ≤ dinv

s,u ,h ≤ Dinv,min
s,u

 
∀s∈S,∀u ∈U,∀h∈H  (25) 

dinv
s,u ,h − dinv

s,u ,(h−1) ≤ Dinv,reg
s,u

 
∀s∈S,∀u ∈U,∀h∈H ≠ h = H

 
(26) 

 
(25) and (26) gives the possible outcomes for the (inverse) droop 
setting, respectively minimum and maximum values and maximum 
change from hour to hour. 
 

ϕ s,u ,h ≤ yup
s,u ,h

 
∀s∈S,∀u ∈U,∀h∈H  (27) 

ϕ s,u ,h ≤ ydown
s,u ,h

 
∀s∈S,∀u ∈U,∀h∈H  (28) 

ϕ s,u ,h ≤ λ s,u ,h
 

∀s∈S,∀u ∈U,∀h∈H  (29) 
 
(27)-(29) states that the actual primary regulation capacity is limited 
to the lowest value of either upward regulation capacity, downward 
regulation capacity or regulation capacity available with the given 
droop setting.  
 

ϕ s,u ,h

u∈U
∑

s∈S
∑ −ϕtot

h = 0
 

∀h∈H  (30) 
 
Equation (30) sums up the total applicable primary regulation 
capacity for the system. 
 

ϕtot
h =ϕtot

h+1
 ∀h∈H ≠ h = H  (31) 

 
The market restriction in Switzerland states that the same amount of 
primary regulation must be bid in each hour for the whole period, as 
shown in equation (31).  
 

ϕtot
h ≤ Msym  

∀h∈H  (32) 
 
Equation (32) states a maximum bid volume for the primary 
regulation determined by the market rules. 
 
ϕ s,u ,h ,ϕtot

h , yup
s,u ,h , ydown

s,u ,h ,λ s,u ,h ,dinv
s,u ,h ≥ 0

 
∀s∈S,∀u ∈U,∀h∈H  (33) 

 
Lastly, the new variables need to be non-negative (33). 

C. Introducing the secondary regulation market 
Similarly as with the introduction of the primary regulation market, 
implementing a secondary regulation market yields a new objective 
function and equations describing the new market, while continuing 
using equation (2)-(20) as the basis for the technical definition of the 
watercourse. Note that none of the new equations introduced in the 
primary regulation market model is used in the model below. 
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max Pspot
h xtot

h + Preg,up
h ytot ,up

h + Preg,down
h ytot ,down

h + Pen,up
h Κup

h ytot ,up
h + Pen,down

h Κdown
h ytot ,down

h( )
h∈H
∑

+ W r

r∈R
∑ α r − Cs,uβ s,u ,h

h∈H
∑

u∈U
∑

s∈S
∑

 

(34) 

The secondary regulation market in Norway gives a payment for 
both reserved capacity and actual delivered energy in the delivery 
period. This yields that yet another element in the objective function 
must be added. Equation (34) now maximizes the revenues from the 
spot market, from the secondary regulation capacity and from the 
actual energy delivered through secondary regulation in the 
optimization period. It is not possible to predict the volume of 
activated secondary regulation; this depends on events during the 
operation hours. Delivery factors are used as a measurement of the 
actual delivered amount of secondary regulation energy. These 
parameters describe the relationship between the reserved upward 
and downward capacity and the actual volume of upward and 
downward regulation delivered to the system, that yields an 
additional income. The value of the remaining water in the reservoir 
as well as startup costs are also taken into account.  
 

yup
s,u ,h ≤ Xmax

s,u − Xmax
s,u

Δ freq

F
Dconst

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ζ s,u ,h − xs,u ,h

 

 
∀s∈S,∀u ∈U,∀h∈H  

 
(35) 

ydown
s,u ,h ≤ xs,u ,h − Xmin

s,uζ s,u ,h − Xmax
s,u

Δ freq

F
Dconst

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ζ s,u ,h

 

 
∀s∈S,∀u ∈U,∀h∈H  

 
(36) 

 
Equation (35) and (36) assumes that a droop setting has been 
decided upon when optimizing against the primary regulation 
market, yielding the droop setting constant. This gap of power 
variance is seen upon as unavailable for the secondary regulation 
market, since the primary market is implicitly taken into account. 
Accompanied by the actual spot production, the equations determine 
the maximum secondary upward and downward regulation capacity. 
 

yup
s,u ,h

u∈U
∑

s∈S
∑ − ytot ,up

h = 0
 

∀h∈H  (37) 

ydown
s,u ,h

u∈U
∑

s∈S
∑ − ytot ,down

h = 0
 

∀h∈H  (38) 

For simplicity, equation (37) and (38) sums up the total available 
secondary upward and downward regulation capacities from each 
unit. 
 
yup,tot
(24(d−1)+h) = yup,tot

(24(d−1)+h+1)

 
∀d ∈D,h = 1..7  (39) 

yup,tot
(24(d−1)+h) = yup,tot

(24(d−1)+h+1)

 
∀d ∈D,h = 9..19  (40) 

yup,tot
(24(d−1)+h) = yup,tot

(24(d−1)+h+1)

 
∀d ∈D,h = 21..23  (41) 

ydown,tot
(24(d−1)+h) = ydown,tot

(24(d−1)+h+1)
 

∀d ∈D,h = 1..7  (42) 

ydown,tot
(24(d−1)+h) = ydown,tot

(24(d−1)+h+1)
 

∀d ∈D,h = 9..19  (43) 

ydown,tot
(24(d−1)+h) = ydown,tot

(24(d−1)+h+1)
 

∀d ∈D,h = 21..23  (44) 

yup,tot
(24(d−1)+h) = yup,tot

(24(d )+h)

 
∀d ∈D ≠ d = D,h = 1..24  (45) 

ydown,tot
(24(d−1)+h) = ydown,tot

(24(d )+h)
 

∀d ∈D ≠ d = D,h = 1..24  (46) 

 
The market restrictions for the secondary regulation market in 
question divides the bidding into three time-blocks, where all 
secondary regulation must be equal each day of the period. This is 
taken into consideration by equations (39)-(46).  

 
ytot ,up
h ≤ Mup  

∀h∈H  (47) 

ytot ,up
h ≤ Mdown  

∀h∈H  (48) 

 
The maximum bid volume into the secondary regulation market is 
shown in (47) and (48).  

 
yup
s,u ,h , ydown

s,u ,h , ytot ,up
h , ytot ,down

h ≥ 0
 

∀s∈S,∀u ∈U,∀h∈H  (49) 

Equation (49) declares the new variables non-negative. 
 

IV. RESULTS 
To achieve a more consistent basis for further analysis, the models 
were executed over a period of one week throughout the months of 
February, May, August and November. Historical spot prices, 
regulation market prices and inflow corresponding to the different 
seasons were used as input data. In three out of four periods, 
adjusting the production pattern to take a primary regulation market 
into account yields an increased objective function value. When 
introducing the secondary regulation market, the same increase was 
observed for all four periods.  
 

 
Figure 1: Optimal production patterns in the Swiss spot market and when 

including the primary regulation market during a week of February 

Figure 1 illustrates the change in the production pattern when 
introducing a symmetric primary regulation market. When only 
optimizing against the spot market, it is optimal to avoid production 
in certain time segments. However, with the opportunity to 
participate in a regulation market with weekly obligations, no 
production stops are observed, and the amplitude of the maximum 
and minimum production are reduced in order to be able to deliver 
regulation if needed. 
 

 
Figure 2: Optimal production patterns in the Norwegian spot market and 
when including the secondary regulation market during a week of May 
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The same behavior is observed when introducing a secondary 
regulation market, as shown in Figure 2. 

V. DISCUSSION 
A.  Possibly inaccurate calculations of water values  

Water values are the expression for the expected marginal value of 
the energy stored in the reservoirs [7]. 
These are calculated based on reservoir levels, inflow forecasts and 
price forecasts in the market. However, in most models, only the spot 
price is taken into account, and with the growing need for regulation, 
this assumption may not be sufficient. 
 
Because primary and secondary regulation does not necessarily 
involve using any water – the market pays for reserving the capacity, 
not necessarily using it - this can be regarded as income not taken 
into account by water values. Attendance in the primary and 
secondary regulation market can of course be seen upon as a single 
incident, but when this occurs more and more often and at a rising 
regulation market price, it can be considered whether or not the value 
of the water should be calculated not only by spot price forecasts, but 
also taking the prices from the regulation markets into account.  
One challenge regarding this issue is at which degree to value the 
impact of these regulation markets, since the attendance is not known 
and brings yet another uncertainty into the calculations of the water 
values, if being considered.  

B. The influence of delivery factors  
In the Norwegian secondary regulation market the producers get paid 
both for reserved regulation capacity and delivered secondary 
regulation volume into the system. The reserved regulation capacity 
can be optimized as a variable in the model but since the amount of 
delivered secondary regulation volume depends on what actually 
happens with the frequency during the operating hours this cannot be 
optimized within the model itself.  
However, since the producers get paid for this activated volume, it 
should be taken into account by the optimization model. This was 
done by introducing two constant factors in the objective function, 
called delivery factors. These constants describe the relationship 
between the reserved capacity and the actual delivered volume of 
upward and downward regulation delivered to the system, see 
equation (34). Delivery factors of 5% were used in this study. These 
were estimated based on tertiary regulation data, stating an average 
activation proportion approximately 50% of the time, equally 
distributed between upward and downward regulation. Combining 
this with a maximum startup time of 15 minutes for the tertiary 
regulation - which equals the maximum activation time for secondary 
regulation - this yields a maximum estimate of the delivery factors of 
6.25%. If this model should be utilized in practice, historical data 
could be used to describe this relation between the reserved 
regulation capacity and actual delivered regulation volume into the 
system. 
 Since there was some uncertainty related to this assumption it was 
tested what happened if the delivery factors were neglected meaning 
that the producers only would get paid for the reserved secondary 
capacity and not the activated. This of course had an influence on the 
increase in profit but it did not influence the decision of going into 
the secondary market or not, the optimal production patterns were 
identical [6]. Even without payment of delivered capacity it was 
optimal to bid a maximum volume into the secondary market 
according to the market restrictions.  

VI. CONCLUSION 
Both case studies are showing that participating in regulation markets 
is profitable, if the production pattern is optimized taking both a spot 
market and a regulation market into account beforehand. It is 
however noteworthy that these case studies assumes that both the 
spot market and the regulation market are bid into simultaneously, 
and that the optimal production pattern presupposes all bids to be 
won by the producer. Also, no extra cost of attending such a 
regulation market is taken into account, and the possible additional 
use of water is neglected. Therefore, the increase in profit is 
somewhat over-exaggerated, and should not be interpreted in any 
other way than being an indicator of the possible profitability of 
bidding into a multi market structure. 
  
The optimal production pattern is not that affected by the introduction 
of regulation markets. For the primary regulation market, a general 
trend is that the minimum production during the period is raised from 
zero production to the production needed in order to cover the actual 
bid into the regulation market. Also, a subsequent effect is a lower 
possible maximum production when such a production is favorable. 
The same effect was seen by the introduction of the secondary 
regulation market, but due to the specific market definitions the 
production pattern can vary more between the given time-blocks. 
  
Perhaps the most essential and influencing factor of the results in 
these case studies is the topology and design of the watercourse 
optimized upon. The restrictions describing the physical properties of 
the watercourse, i.e. the reservoir size and production capacity, are 
more limiting than the applied market rules. If the same optimizations 
were to be done on a watercourse with a different design, other 
optimal results would most likely be found. 
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