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Abstract: Lifting is a frequently used offshore operation. In this paper, a nonlinear model predictive
control (NMPC) scheme is proposed to overcome the sudden peak tension and snap loads in the
lifting wires caused by lifting speed changes in a wind turbine blade lifting operation. The objectives
are to improve installation efficiency and ensure operational safety. A simplified three-dimensional
crane-wire-blade model is adopted to design the optimal control algorithm. A crane winch servo
motor is controlled by the NMPC controller. The direct multiple shooting approach is applied to
solve the nonlinear programming problem. High-fidelity simulations of the lifting operations are
implemented based on a turbulent wind field with the MarIn and CaSADi toolkit in MATLAB.
By well-tuned weighting matrices, the NMPC controller is capable of preventing snap loads and
axial peak tension, while ensuring efficient lifting operation. The performance is verified through a
sensitivity study, compared with a typical PD controller.

Keywords: offshore wind turbine; offshore operation; lifting operation; blade installation;
model predictive control

1. Introduction

The rapid development of offshore wind farms has been noticed with a trend of continued
increasing in turbine size. The favor of larger offshore wind turbines (OWTs) results in decreasing
costs of installation and grid connection per unit energy produced [1]. This comes with new challenges
in offshore OWT installation. Single blade installation is a method of OWT blade installation,
which allows for a broader range of installation vessels and lower crane capabilities. One blade
is lifted in one lifting operation. Passive and active single blade installation methods have been
studied [2–7].

Typically, the lifting operations are conducted according to pragmatic experiences and short-term
weather forecast. The large peak wire rope tension in the initial stages of the lifting and lowering of a
payload is risky for safety hazards. Extensive research has been conducted on effective crane and winch
control. Various simplified models have been developed to model the crane and payload systems,
e.g., Lagrangian models [8,9], Newton–Euler equations [10], and partial differential Equation [11].
Normally, the axial wire rope elongation is disregarded due to the its high stiffness. The ship-mounted
crane systems have more complicated dynamic characteristics, with a higher number of degrees of
freedom (DOFs) in the control system. A high-fidelity simulation-verification OWT blade installation
model for the control purpose is developed in [4]. However, the model is unnecessarily complex
for design of control laws. The ordinary studied payloads are lumped mass [12,13] and distributed
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mass [14]. Though wire rope elongation is always neglected in transportation mode, it is an important
issue in e.g., heave compensation through a wave zone during moonpool operations [15–19].

Model predictive control (MPC) is a widely applied optimal control technology. The MPC
controller provides real-time feedback by optimizing the future plant behavior in a finite horizon.
Considerable effort has been devoted to improving its robustness and performance [20–25].
The performance of the nonlinear model predictive controller (NMPC) depends on the computation
interval, initial guess, programming algorithms, etc. The stability can be ensured through a careful
selection of designed parameters [26]. Direct methods transform a continuous system of infinite
dimension into a discrete nonlinear programming system of finite dimension. The direct methods can
be categorized into sequential and parallel-in-time approaches. Direct single shooting is a sequential
approach, with a strong requirement to the initial guess, especially for highly nonlinear systems.
However, the shortages of the parallel-in-time approach are the unnecessarily strong nonlinearity of
the optimization problem and the poor convergence behaviors to the desired reference trajectory [27,28].
Optimization theories have been widely used in marine research [29–31]. To effectively solve the
programming problem using embedded platforms, automatic code generation is a widely discussed
issue. A number of user-friendly codes have been developed, where C++ codes for embedded systems
can be generated automatically by several published quadratic programming solvers [32–34].

Though efforts have been made to improve the level of automation for blade mating
operations [3,5,18,35,36], studies are lacking on constrained optimal blade lifting operations from
the deck to improve safety and performance. An NMPC framework for lifting a lumped-mass payload
was presented by the authors in [37]. In this paper, we extend the NMPC scheme for a winch servo to
reduce the abrupt wire tension load increase and to avoid snap loads resulting from a suspended blade
at the initial stages of lift-off (and also lowering) operation. This makes the transfer to the next phase,
moving the blade towards the hub safer and more efficient. The main advantages of NMPC are that an
optimal control action is achieved, where the performance and efficiency can be targeted by proper
tuning of an objective function, while at the same time adhering to constraints that for other methods
must be handled through implementation of logics. The lifted blade should reach the desired height in
a specified speed abstaining from possible dangers. An optimal control problem is formulated for the
lifting process of a blade, with implementation in a well-proven optimization solver. The performance
and properties of the method, compared to a standard proportional-derivation (PD) crane lifting
control law, are then demonstrated in a simulation study with a high-fidelity numerical model. In [37],
only a simplified lifting system was considered, with a lumped-mass payload and known parameters,
whereas wind-induced loads, motor dynamics, hook, and slings were neglected in the simulations.
The extensions made in this paper therefore consist of deriving a reduced model for a more realistic
blade payload in a lifting control design. Based on this, we design an NMPC controller to solve the
formulated constrained optimal lifting problem in a turbulent wind field. Compared to a lumped-mass
payload, a blade has more complex dynamics and aerodynamic characteristics. Simulations are finally
conducted in turbulent wind fields with different mean wind speeds, as well as varying parametric
uncertainties, and the simulation results are discussed.

The paper is structured as follows. In Section 2, the problem formulation is proposed with a
description of the system and an illustrative example. A simplified model of the NMPC controller is
introduced in Section 3. Basic concepts and theories concerning the direct multiple shooting approach
are introduced in Section 4. Simulation results and comparative studies with a proportional-derivative
(PD) controller are presented in Section 5. Finally, conclusions are drawn.

Notation: |x| and |x|A, respectively, denote the Euclidean vector norm and weighted Euclidean
vector norm, i.e., |x|2 = x>x and |x|2A = x>Ax with A = A> > 0. The vector inequality of b ∈ Rn

is denoted by b � b � b, i.e., component-wise inequalities bi ≤ bi ≤ bi hold for i = 1, · · · , n.
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Overlines and underlines, b, b ∈ Rn, stand for vectors containing all the lower and upper limits of the
elements in b, respectively. The saturation operator sat : R→ R is denoted by

sat(a) =


a if a ≥ a,

a if a < a < a,

a if a ≤ a.

(1)

2. Problem Formulation

2.1. System Description

A jackup vessel is considered hereafter for the single blade installation operation. The legs have
been lowered into the seafloor and the jack-up vessel has been lifted out of water, which provides a
stable platform for lifting operations. The blade lifting operation is conducted by a rigidly fixed boom
crane on the vessel. The blade is seized by a yoke through a lift wire and two slings; the configuration
is shown in Figures 1 and 2. A hook connects the lift wire and two slings. The yoke and crane boom are
fastened by two horizontal tugger lines, constraining the blade motion within the horizontal plane due
to the wind-induced loads. The lengths of the tugger lines are adjusted with the blade. Active tension
force control on the tugger lines, such as [3], is not considered. The blade is first lifted up from the
deck of the jackup or a barge, in which the lift wire gradually takes the gravity of the blade and
the wind-induced dynamic loads. The blade is then lifted from a low position up to the hub height.
During this phase, the main dynamic loads are the wind loads acting on the blades. If the lifting speed
changes, the lift wire experiences the inertial loads on the blade. There are always gravity loads acting
on the blade. When the blade is close to the hub height, one may reduce the lifting speed and adjust
the position of the blade root for the final connection.

In this paper, we consider a scenario in which the blade starts in the air with a zero lifting speed.
The supporting force from the deck is not considered. The lifting speed is increased to the target
value and then reduced to zero when it reaches the specific hub height. The payload motion can be
estimated by various methods, e.g., GPS and inertial measurement unit (IMU) sensor fusion algorithm
and motion capture systems.

Figure 1. Single blade installation (Image source: RIPR [38]).
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Figure 2. Free body diagram of the blade lifting operation.

2.2. System Modeling

The blade installation simulation framework used is developed in MATLAB and Simulink [4], in
which necessary modules for blade installation are included, e.g., wire rope, suspended blade, hook,
winch, and wind turbulence. This approach has been applied to analyze and verify active single blade
installation methods [3].

The hook and blade are modeled in 3DOF and 6DOF, respectively. Lift wires function as
single-direction tensile springs that can only provide tension when the axial elongation is greater than
zero. A turbulent wind field is generated by the Mann model in HAWC2. Because of the geometric
complexity, the wind-induced loads are calculated according to the cross-flow principle. The total wind
loads acting on the entire blade are the sum of the lift and drag forces measured at each airfoil segment.

An National Renewable Energy Laboratory (NREL) 5MW wind turbine blade is selected as the
payload for a case study [39]. Due to physical limitations, the winch cannot reach a reference speed
infinitely fast, nor exceed the designated safe speed. Hence, we assume the occurrence of saturation for
both winch acceleration and winch speed. The main system parameters used are tabulated in Table 1.

Table 1. Parameters of the single blade installation system.

Parameter Symbol Unit Value
Mass of the blade mt ton 17.74
Mass of the yoke mt ton 20
Mass of the hook mh ton 1

Initial length of the lift wire l̄1(0) m 40
Length of the rope positioned in front of the pulley lb m 60

Length of the slings ls m 9.17
Elastic module EA N 2.375× 109

Modified coefficient γ - 0.5
Initial lifting speed l2(0) m

s 0
Desired lifting speed v1d

m
s ±1.2

Winch speed boundary [v1, v1]
m
s [−1.2, 1.2]

Winch acceleration boundary [u, u] m
s2 [−2, 2]

A local Earth-fixed, assumed inertial, reference frame is adopted with the x-, y-, and z-axes
pointing in northern, eastern, and downward (NED) directions, respectively. Translational velocities
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measured along the axes are denoted ẋ, ẏ, and ż. The orientations about the fixed axes are given by
roll, pitch, and yaw angles, denoted φ, θ, and ψ, respectively.

2.3. Case Study

Since the blade is lifted off at a low level where the wind speed is low and the lift-off operation
happens in a short duration of a few seconds, we consider a blade lift without aerodynamic loads.
At the start of the simulation, the suspended blade is stabilized at an equilibrium point by the lift wire,
slings, and tugger lines without oscillation in the lift wire. When a sudden lifting or lowering action is
executed at 100 s, the lifting speed is changed to the constant desired speed v1d in a very short time.
The wire tension history is shown in Figures 3 and 4 for lifting and lowering, respectively.
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Figure 3. The lift wire tension history of a suspended blade with constant lifting-off speeds.

In the figures, the only changing parameter is the setpoint lifting speed. It is observed that snap
loads or sudden peak tensions are excited in the first 0.5 s, followed by the occurrence of damped
oscillations due to the axial damping. The larger sudden tension occurs at the beginning of the lifting
operation due to significant winch speed acceleration. The magnitude of the dynamic tension increases
with the lifting speed.

In the tension history curves, there are some high-frequency peaks of minor amplitude, which are
induced by the slings. The tension deviation caused by the blade’s motion in the horizontal plane is
very small compared to the peak values. The amplitude of the oscillation decreases slowly.

Jerking occurs more easily at a higher lifting speed. A sudden tension maximum is dangerous.
Snap loads, which occur when the axial tension decreases to below zero, are induced during this
lifting operation. The maximum tension, on the other hand, may exceed the lift wire strength. Thus,
the minimum value for the axial elongation of the wire should always be non-negative. The restoring
force does not act on the payload due to the negative axial elongation when snap occurs. Furthermore,
the magnitude of the blade motion is enlarged when snap loads occur, resulting in a potential impact
damage between the blade and deck.
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Figure 4. The lift wire tension history of a suspended blade with constant lowering speeds.

In practice, the lifting speed should be changed gradually from 0 to the setpoint speed to prevent
the zero tension in the lift wire. In this paper, we show how constrained optimization conveniently can
be designed to achieve this while simultaneously satisfying relevant constraints in the control system.

2.4. Problem Statement

The objective is to design a safe and efficient lifting scheme using constrained optimal control to
achieve the necessary lifting performance. In more detail, there are seven optimal targets:

(a) Reach the desired setpoint lifting speed v1d from zero speed in the shortest time possible within
the constraints,

(b) Protect overload tension and reduce dynamic tension by controlling the winch speed,
(c) Prevent winch servo motor burnout by limiting the winch acceleration,
(d) Prevent negative elongation and snap loads,
(e) Reduce the wire rope wear,
(f) Limit the maximum speed of the servo motor,
(g) Reach the desired wire rope length.

The tugger lines are assumed to be released with the lifting operation. Therefore, tugger lines
do not provide restoring forces unless wind-induced blade displacement is higher than expected.
We assume that the blade orientation variance caused by the lifting operation and the wind-induced
load is insignificant, and the lifting or lowering operation is so short that wind-induced motion is
not affected.

A lifting process is divided into three phases: the startup region, the steady region, and the
slowdown region; see Figure 5. The control objective of each region is tabulated in Table 2. Region I
denotes the startup stage, wherein the payload speeds up to the desired lifting speed v1d from initial
winch speed v1(0) = 0. Sudden overloads or snap loads mainly occur at the beginning of Region I.
In Region II, spanning from the end of the startup stage to the outset of the slowdown stage, a steady
motion is performed. The purpose of this stage is to ensure the desired lifting speed, i.e., v1(t) = v1d.
The controller should be deactivated during this stage due to the low dynamic tension. Instead,
a simple proportional controller is used in this phase for its simplicity. Region III is the slowdown stage,
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where the controller is again activated. The lifting speed should be reduced to zero. Dynamic tension
mainly occurs in the initial period. In addition to all requirements for Region I, the desired wire rope
length should be achieved. The controller is switched off at the end of Region III.

Figure 5. Example of the lifting problem in different regions.

Table 2. Objectives for Regions I and III.

Objective No. Region I Region III
(a) X X
(b) X X
(d) X X
(d) X X
(e) X X
(f) X X
(g) X

3. Reduced Model for Control Design

A reduced model is adopted for the optimization problem in a three-dimensional
north–east–down (NED) coordinate system [40]. The crane is assumed to be rigidly fixed on the vessel.
The masses of the hook, yoke, and blade are mh, my, and mb, respectively. We assume that the overall
payload mass mt is concentrated at the blade center of gravity (COG), where mt = mh + my + mb.
Furthermore, the lift wire and slings are considered as one unit without the consideration of the lift
wire control; it provides a restoring force on the moving blade. We assume that the ropes are replaced
by a lightweight rope, i.e., its mass is assumed to be zero. The blade COG is suspended by the rope,
which is connected to the winch through a pulley fixed at the crane tip. Hence, a tensile spring is
employed to model the wire rope. The unstretched length of the spring l̄1 denotes the distance between
the pulley and blade COG. Tugger lines are released at a speed such that only vertical lifting is allowed.
Because the lifting operation is executed over a short period, the horizontal wind-induced load is
assumed to be restrained by tugger lines and can be disregarded. A 3DOF lifting model, with an
elastic wire rope and a controllable winch, is deduced based on the Newton–Euler method in the NED
coordinate system. Four vectors are defined correspondingly:

the position of the blade COG: rt = [xt, yt, zt]
>,

the position of the pulley: rp = [xp, yp, zp]
>,

the translational velocity of the blade COG: ut = [ẋt, ẏt, żt]
>,

the velocity of the pulley: up = [ẋp, ẏp, żp]
>.

The total force acting on the payload is given by
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Mtu̇t = G + τtr + τtd, (2)

where the mass matrix is written as Mt = diag(mt, mt, mt), G, τtr, τtd are the gravity, restoring force,
and damping force, respectively. If the lifting speed changes quickly, the main reason for the large
dynamic tension is from the lifting wire. Then, the blade wind loads could be considered as quasi-static
loads. Hence, the controller is not developed to compensate the dynamic tension due to the disturbance
in wind.

3.1. Restoring Force

Additional two vectors are defined to shorten the equations. The relative position vector from the
pulley to payload ∆1 and its time derivative ∆2 are respectively defined as

∆1 := rt − rp, (3a)

∆2 := ut − up. (3b)

The restoring force of the lift wire τtr reacts with positive wire rope axial elongation, i.e.,

τtr = −κ(δ)krδ
∆1

|∆1|
, κ(δ) =

{
1, δ ≥ 0,

0, otherwise,
(4)

where κ denotes the restoring action coefficient, δ = |∆1| − l̄1 is the elastic elongation, and kr is the
stiffness. Determined by the material, diameter, and strand construction, the generalized stiffness of
the rope is modeled as

kr = γ
EAr

l1
, (5)

where γ is the modified coefficient of a stranded wire, E stands for the Young’s modulus, Ar denotes
the cross-sectional area of the rope, and l1 = l̄1 + lb, where we assume that the length of rope between
the winch and pulley lb is constant.

3.2. Damping

The wire rope has a small damping ratio, generally selected as 0.1–0.5% of the critical damping
value [41]. Hence, the damping force τtd is given by

τtd = −dl δ̇
∆1

|∆1|
= − dl
|∆1|

(
∆>1 ∆2

|∆1|
− v1)∆1, (6)

where v1: = l̇1 denotes the wire length changing rate, dl is the damping coefficient, and the elongation
changing rate δ̇ is given by

δ̇ =
∆>1
|∆1|

∆2 − v1. (7)

3.3. Winch Servo Motor

A variable-speed DC motor with motion feedback control is used as the winch servo motor to
follow the specific motion trajectory. The field voltage is employed as an input for the DC motor.
The produced magnetic torque Tm is proportional to the armature current i f , given by

Tm = kmi f = Tl + Td, (8)

where km is the motor constant, Tl is the load torque, and Td is the disturbance torque. The transfer
function between i f and the field voltage Vf is given by
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i f

Vf
(s) =

1
R f + L f s

, (9)

where R f and L f are the armature resistance and inductance. The transfer function between the winch
servo motor acceleration, u = v̇1, and Tl is given by

u
Tl
(s) =

s/rm

Jms + Bm
, (10)

where rm is the radius of the winch, Jm is the moment of inertial, and Bm denotes the viscous
friction coefficient. The low-level servo motor speed and torque control is not discussed in this
paper. We assume that the field-current-controlled motor can effectively track the signal u generated
from the proposed controller.

3.4. Model Summary

Under the aforementioned assumptions, disregarding wind-induced loads and substituting
Equations (4) and (6) into Newton’s second law (2), the simplified control design model for the
considered blade lifting operation is produced,

ṙt = ut, (11a)

Mtu̇t = −A(rt, rp, l1, v1)∆1 + G, (11b)

l̇1 = v1, (11c)

v̇1 = u, (11d)

where A(rt, rp, l1, v1) = at I3×3, with at = γEA |∆1|−l̄1
l1|∆1|

+ dl
|∆1|

(
∆>1 ∆2
|∆1|
− v1), and G = [0, 0, mtg]> is gravity.

The nonlinearity of the differential Equation (11) mainly derives from the function at.

4. Design of the Optimal Control

NMPC is adopted to solve the proposed constrained optimization problem. Numerical nonlinear
optimization involves finding suitable inputs for a complex nonlinear system that minimizes a specified
performance objective within system constraints. The direct multiple shooting approach is adopted
hereafter for discretization, and the ODE (11) is used for prediction.

4.1. Direct Multiple Shooting Method

A continuous optimal control problem is transformed into a nonlinear programming (NLP)
problem through a direct multiple shooting approach. According to the discretization of the
state variables and control inputs for finite dimensional parameterization of the path constraints,
shooting nodes and piecewise functions are adopted to approximate the variables. Then,
a quasi-Newton method is employed to solve it.

A time grid t0 < t1 < · · · < tN is generated over a time horizon [t0, t0 + T] by dividing the
period into N subintervals with a constant time step equal to the sampling time, i.e., δt = T/N.
To simplify the expression, x(tk) is denoted by xk, where tk = t0 + kδt. For a subinterval [tk, tk+1],
the state numerically updates with the explicit integrator F and approximates the solution mapping,
i.e., xk+1 = F(xk, uk). Two additional variables, si and qi, are introduced as discrete representations of
x and u, respectively, i.e., sk+1 = Fk(sk, qk). Zero-order hold is used as the feedback signal input from a
finite-dimensional NLP problem during subinterval [tk, tk+1]. The notations of the above processes are
presented in Figure 6.
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Figure 6. Illustration of direct multiple shooting.

A dynamic optimization problem with constraints can be solved using a multiple shooting
approach, which is formulated as

min
S,Q

1
2

N−1

∑
k=0

lk(sk, qk) + EN(sN), (12a)

s.t. x0 − s0 = 0, (12b)

F(tk+1; tk, sk, qk)− sk+1 = 0, k = 0, · · · , N − 1, (12c)

h(sk, qk) � 0, k = 0, · · · , N, (12d)

r(sN) � 0, (12e)

where S = [s1, · · · , sN ] denotes the state trajectory containing all the the state vector at the kth time
interval xk, Q = [q1, · · · , qN−1] refers to the control trajectory, equations (12b–12e) denote the initial
value, continuity condition, path constraints, and terminal constraints, respectively. The objective
function, which consists of an integral cost contribution (or Lagrange term) lk and an end time cost
contribution (or Mayer term) EN , can be chosen as, e.g.,

lk(sk, qk) = |sk − xre f
k |

2
Q + |qk − ure f

k |
2
R,

EN(sN) = |sN − xre f
N |

2
P ,

where Q,R, and P denote positive-definite diagonal weighting matrices.
An example of the path is given by

u � uk � u, k = 0, · · · , N − 1,

s � sk � s, k = 0, · · · , N − 1,

where s, s, u, and u are the lower and upper limits for state s and input u. The limits can be chosen
according to the critical operational conditions and physical actuator constraints. The desired trajectory
for sk and qk are denoted by xre f

k and ure f
k . Several established methods can be used to solve the NLP

problem, e.g., interior point methods [42–44] and genetic algorithms [45,46].
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4.2. NMPC Design

For the blade lifting problem, the NLP problems in Regions I and III are summarized in Table 3.

Table 3. Summary of the control algorithm for different regions.

Region Control Law

I

min
S,Q

N

∑
k=0

[kδ(
d

d t
|∆1| − v1)

2 + kd(v1 − v1d)
2] +

N−1

∑
k=0

kuu2, (13a)

s.t. u ≤ u ≤ u, k = 0, · · · , N − 1, (13b)

|∆1| − l̄1 ≥ 0, k = 0, · · · , N, (13c)
˙|∆|1 − v1d = 0, k = N; (13d)

II u = −kp(v1 − v1d); (14)

III

min
S,Q

N

∑
k=0

[kδ(
d

d t
|∆1| − v1)

2 + kd(v1 − v1d)
2 + kl(l̄1 − l̄1d)

2] +
N−1

∑
k=0

kuu2, (15a)

s.t. u ≤ u ≤ u, k = 0, · · · , N − 1, (15b)

|∆1| − l̄1 ≥ 0, k = 0, · · · , N, (15c)
˙|∆|1 − v1d = 0, k = N, (15d)

l̄1 − l̄1d = 0, k = N; (15e)

In Table 3, kp > 0 is the gain of the P controller, and ku, kδ, and kd are the weights for different
components in the cost function. Quadratic objective functions are adopted. The physical meaning of
different equations are explained as follows: in equations (13a) and (15a), ( d

d t |∆1| − v1)
2, (v1 − v1d)

2,
(l̄1 − l̄1d)

2, and u2 penalize the relative speed between the payload and winch, the deviation between
the real-time winch speed and the desired final winch speed, the difference between the real-time lift
wire length and the desired final length, and the winch input, respectively. The corresponding targets
of these terms in Section 2.4 are (b,e), (a,f), (g), and (c), respectively. The objectives of the inequality
constraints (13b) and (13c) are (c) by limiting the control input and (d) by ensuring that elongation is
always non-negative. The selection of the boundary values u and u depends on characteristics and
configuration of the winch. The equality constraints (13d) and (15e) ensure that the lifting speed and
lift wire length reach their specified values at the final time.

For the proposed model in (11), there are eight states and one control input. The initial prediction
is significant for the computational efficiency and stability. Figures 7 and 8 show an example of the
weight selection with respect to the time interval tk, k = 0, · · · , N − 1. Sudden tension peaks occur
at the beginning of the start up and slowdown phases. Hence, high weights are selected for kδ at the
beginning period to prevent significant sudden overload, and similarly high weights are needed for kd
at the end of the period to achieve desired lifting speed.
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Figure 7. An example of the normalizing weights for Region I with respect to the subinterval number.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

Figure 8. An example of the normalizing weights for Region III with respect to the subinterval number.
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4.3. Stability Considerations

Define new states as x1 = |∆1| − l̄1 − mgl1
γEA , x2 = ẋ1 = d

dt |∆1| − (1 + mg
γEA )v1 with d

d t |∆1| =
∆>1 ∆2
|∆1|

,
x3 = l1 − l1d, and x4 = ẋ3 = v1 − v1d. The dynamics are given by

ẋ1 =x2, (16a)

ẋ2 =− 1
|∆1|3

(∆>1 ∆2)
2 +

1
|∆1|

∆>2 ∆2 +
1
|∆1|

∆>1 ∆̇2 − (1 +
mg

γEA
)u, (16b)

ẋ3 =x4, (16c)

ẋ4 =u− v̇1d(t). (16d)

The vector form is

ẋ = f (t, x, u), x(t0) = x0, t ≥ t0 ≥ 0, (17)

where x = [x1, x2, x3, x4]
> and u is constrained, i.e., u ∈ U.

Function f is twice continuously differentiable. For x = 0, we have that |∆1| = l̄1 +
mgl1
γEA is a

constant, l1 = l1d, and v1 = v1d. Hence, d
dt |∆1| = 0, ∆>1 ∆2 = 0, |∆2|2 = 0. When the crane pulley is

fixed, ∆̇2 = u̇t = 0. In addition, if u = 0, we get f (t, 0, 0) = 0 for all t ≥ t0. From (13b) and (15b),
u = 0 is included in U, and U is a compact and convex set. Hence, system (16) has a unique solution
for any initial condition x0 and piecewise continuous input u(t), t ≥ 0. Furthermore, the Jacobian
linearization of the nonlinear system (16) is stabilizable. In our case, starting in Region I at zero velocity
and Region III from a constant desired speed, a feasible solution is a matter of accelerating slowly
enough. Hence, feasibility solutions always exist so that there exists at least one input profile Q for
which all the constraints are satisfied. Therefore, according to the Theorem 1 in [47], the closed-loop
system (16) with optimal control problem (13) and (15) is asymptotically stable, if a sufficiently small
sampling time δt is adopted and there exist no disturbances.

4.4. Overview of the Control System

A block diagram of the control scheme is presented in Figure 9. As several controllers are proposed
in Table 3, a switching logic outputs a signal σ to determine the working controller used for a specific
period. The switching rule is given in Algorithm 1, where σ = 0 denotes that all controllers are
switched off and σ ∈ {1, 2, 3} is the index of the corresponding controller; µ ∈ (0, 1) is a coefficient
setting the boundary of Controller I. The feedback to the controller I is the position and velocity of the
payload, length of lift wire, and winch servo motor speed. The feedback to the PD controller is the
length of lift wire and winch servo motor speed.

Figure 9. Block diagram of the hybrid control scheme.
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In addition, an observer is needed to filter the sensor noise and estimate unmeasured states
in practical applications [48]. Observer design is not the emphasis of this paper and therefore
not considered.

Algorithm 1 Switching rule.

Data: (l1, v1, µ, l1d, v1d, ls)
Initialize: σ = 0,
if operation starts

if (σ = 0 or 1) and v1 < µv1d

σ = 1
elseif (σ = 1 or 2) and v1 ≥ µv1d

σ = 2
elseif (σ = 2 or 3) and 0 ≤ |l1 − l1d| ≤ ls

σ = 3
end

else
σ = 0

end
Return: σ

5. Simulations and Results

5.1. Simulation Overview

The simulations are conducted in MATLAB. The structural parameters used are tabulated in
Table 1. The limits of the winch loads are considered to be expressed by the maximum acceleration.
The wind field with turbulence starts acting on the blade with a ramp over the first five seconds. Class C
turbulent winds with corresponding turbulence intensity (TI) are adopted in the simulations [49].
CaSADi and MarIn toolboxes are used to solve the NLP problems. The ipopt solver is adopted.

The simulation scenario involves lowering a suspended NREL 5 MW wind turbine blade 10 m.
The initial wire length is l̄1 = 40 m, the final desired length is l̄1 = 50 m, and the final desired
lifting speed is v1d = 1.2 m/s. The control horizon is topt = 4 s with 40 subintervals. The following
parameters are used for the different regions:

(a) Region I: Start a lifting with an initial wire length and initial speed, and reach a desired speed
in topt:

• l̄1(t0) = 40 m,
• v1(t0) = 0 m/s,
• v1(t0 + topt) = v1d = 1.2 m/s.

(b) Region II: Stabilize the lifting speed to the desired value:

• v1(t) = v1d = 1.2 m/s.

(c) Region III: Stop the lifting operation with the following initial speed, and reach the desired lift
wire length in topt:

• v1(t1) = 1.2 m/s,
• v1(t1 + topt) = 0 m/s,
• l̄1(t1 + topt) = 50 m.

Tugger lines are released with a speed of vtug, i.e.,



Energies 2019, 11, 50 15 of 22

vtug,i =
zt − ztug,i

ltug,i
v1, (18)

where subscript i is the index of the tugger line, ztug is the vertical position of the tugger line connection
point to the crane boom, and ltug is the length of the tugger line.

5.2. Basic PD Controller

To compare the NMPC controller performance, PD controllers are used. These open-loop
controllers accelerate the winch servo motor to the desired speed. Due to physical limitations of
the actuator (winch servo motor), saturation modules are applied to bound the lifting acceleration and
velocity. A lowpass filter is used as a reference model. In summary, the combination of the lowpass
filter and PD controller is given by

l̇d = −ωv1(ld − lre f ), (19a)
˙̄l1 = sat (v1) , (19b)

u =

{
sat
(
−ω2

v1(l̄1 − ld)− 2ζv1ωv1v1
)

, Reg. I, III,

sat (−kv1(v1 − v1d)) , Reg. II,
(19c)

where lre f and ld denote the final reference and desired trajectory for the lift wire length, ζv1 is the
relative damping ratio, and ωv1 is the natural frequency. Select ζv1 = 1 to ensure critical damping.
Different ωv1 values are assigned to different regions. In Region II, ωv1 can be smaller than ωv1 in
Regions I and III. In the simulation, ωv1 = 0.57 in Region I and III and kp = 0.5 in Region II.

5.3. Comparative Simulation Results

By well-tuned weighting matrices, the simulation results are illustrated in Figures 10–14. In the
simulations, γ = 0.5 is used in the NMPC controller. Each bar presents the mean value of five
simulations with different turbulence seeds.
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Figure 10. Performance of the PD controller with saturating elements and NMPC controller.
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45 50 55 60 65 70

4.5

5
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Figure 11. The field voltage, γ = 0.5, mean wind speed 0 m/s, TI = 0.

Note that this is not an accurate value because the overall stiffness is influenced by the slings.
The simulations feature a difficult scenario with a short Region II. Typically, the Region II operation
can be much longer than five seconds, so that the transient effect in the lifting wire tension may die
out. Hence, the maximum dynamic tension in the results simulated here may be higher than those
with a longer Region II. The controller is switched off at the end of Region III.

45 50 55 60 65 70

360

380

400

420

440

460

480

Figure 12. Comparison of the time-domain simulation results of the tension on the lift wire, γ = 0.5,
mean wind speed 0 m/s, TI = 0.
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Figure 13. Comparison of the time-domain simulation results of the tension on the lift wire, γ = 0.5,
mean wind speed 8 m/s, TI = 0.174.

Both the PD controller and NMPC controller are successful at lifting the payload to the desired
position at the required speed. However, much less dynamic tension is generated by the NMPC
controller than by the PD controller. The PD controller generates a smoother control input profile that
is unable to cancel out the axial oscillation. The lift natural frequency of the wire tension is the same
for both simulations. Because the NMPC controller significantly reduces the tension on the lift wire,
the amplitude oscillation of the servo motor field voltage input is much lower for the NMPC scheme.

45 50 55 60 65 70

250

300
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400

450

Figure 14. Comparison of the time-domain simulation results of the tension on the lift wire, γ = 0.5,
mean wind speed 12 m/s, TI = 0.146.
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Before the start of the lifting operation, the blade is stabilized by the tugger lines, and the tension
oscillation is not remarkable. In Region I, the NMPC controller eliminates most of the oscillation.
In Region II, the tension oscillation is caused by interactions between the wind-induced load and the
tugger lines. However, the tension oscillation is acceptable in this region. Although the axial tension is
not perfectly canceled out in Region III, the NMPC controller performs better than the PD controller.
Due to the small wire rope damping ratio, the dynamic tension continues to oscillate after reaching the
desired lifting speed. Additionally, because of the higher wind loads, the magnitude of the tension
oscillation after the end of the lifting operation increases with higher mean wind speed. It is evident
that the amplitude of oscillation is effectively reduced by the proposed NMPC scheme.

The NMPC approach exhibits a superior capacity to regulate the dynamic oscillation, compared to
the PD controller. Thus, the NMPC algorithm succeeds to limit winch wear. However, its performance
can be further improved, as shown in [37] owing to the simplification of the reduced model.

5.4. Robustness Test of the Algorithm

The performance of an NMPC controller is determined by the fidelity of the selected control
design model. In our case, the most uncertain parameters are the lift wire stiffness and the neglected
wind speed. The effects of model uncertainty matter, as the lift wire stiffness is estimated. Hence,
a series of simulations are conducted to test their influence to the controller performance. The wire
stiffness is changed by γ = {0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65}, while the γ of the NMPC controller
remains set at γ = 0.5. The mean wind speed is used as a variable in the simulation, ranges from
4–12 m/s. The corresponding results are presented in Figures 15 and 16.
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NMPC PD

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

50

100

150

Figure 15. Comparison of the maximum dynamic tensions resulted by the NMPC and PD controllers,
mean wind speed = 0 m/s (upper: Region I, lower: Region III).

In Figure 15, we see that the dynamic tension caused by the NMPC controller is almost less
than 40% of those resulting from the PD controller. The NMPC controller significantly reduces the
dynamic tension at the start and end of a lifting operation, even when the stiffness is not well known.
In Figure 16, the performance variation of the PD controller resulted from the increasing stiffness
uncertainty increasing significantly, while the performance variation of the NMPC controller is small
under the same uncertainties. The mean wind speed does not weaken the NMPC performance,
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since the mean wind speed does not seem to influence the wire tension considerably. Wind loads are
compensated by the tugger lines. Therefore, the robustness of the proposed NMPC law is satisfactory.
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0

50

100

150

Figure 16. Comparison of the maximum dynamic tensions resulted by the NMPC and PD controllers
in a turbulent wind field, mean wind speed = 4–12 m/s (upper: Region I, lower: Region III).

5.5. Discussion

We found that the NMPC performance deteriorates with a large sampling interval. In this case,
the sampling rate does not satisfy the Nyquist–Shannon sampling theorem if the interval is greater than
twice the natural period of the axial oscillation (approximately 0.4 s), i.e., discrete measurements do
not approximate the underlying continuous responses. Using shorter sampling and control intervals,
not surprisingly, the performance of the control scheme is significantly improved, resulting in more
subtle control. Nonetheless, the computation speed depends on the computational capabilities of the
measurement and embedded systems. Hence, a trade-off must be made between hardware capabilities
and control performance. In the simulation results, we have chosen the sampling period as 0.1 s for
this trade-off. The variance in results observed at various lengths of time horizons is limited, as several
axial oscillation periods exist in the selected optimal horizon. Therefore, several tension oscillation
periods occur over an optimization horizon.

The control effort is determined by the weight matrices in the cost functions. The weights in the
Mayer term is more important than the weight values for the end step, since the latter only determines
one value among N + 1 values of the sum operator. The final performance could be prioritized by
enhancing it. The running time for the direct multiple shooting approach is longer than that of the
direct single shooting approach due to much fewer Karush–Kuhn–Tucker (KKT) conditions involved
in the single shooting approach [50]. On the other hand, its application is limited by the strong
dependence on the initial guess.

6. Conclusions

An NMPC algorithm is proposed as a mean for efficient and safe lifting operations of a wind
turbine blade, by limiting sudden overloads and snatch loads. The simplified model for control
design is derived using the Newton–Euler approach. The proposed algorithm has a simple structure.
According to the comparative study results, the proposed controller successfully prevents the sudden
peak tension, tension dynamics, and the axial oscillation. The NMPC controller still performs well
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when the lift wire stiffness is poorly estimated or the suspended blade is exposed to a turbulent
wind field.

To further improve the system performance when exposed to higher wind speed and model
uncertainties, the further research emphasis is on adaptive and robust optimal control schemes, e.g.,
tube-based model predictive control. In addition, NMPC applications to the blade lifting operation
using a floating installation vessel for deep water installation will be investigated.
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