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Abstract: This paper presents methods for building and exploiting compact spatial models on
board an autonomous underwater vehicle (AUV) towards tracking suspended material plumes.
The research is aiming to improve real-time monitoring of dispersal dynamics connected to
marine industries such as oil and mine tailing. By exploiting in-situ information from sensors,
the AUV is able to assimilate and adapt the mission capitalizing on all the information available.
The spatial model is built using Gaussian process approximations and an objective function for
path planning is suggested to maximize the value of the collected information.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Keywords: Gaussian processes, Adaptive sampling, AUV, Oceanography

1. INTRODUCTION

Creating models describing the ocean is challenging be-
cause of its large scale nonlinear processes and high spatio-
temporal variability. Existing models continuously refine
numerical methods towards improving accuracy, (Griffies
et al., 2000). Still, model verification and data assimilation
continues to be a challenge that prompts the need for data
sampled from the ocean. Such data is commonly obtained
using either remote sensing, ships or buoys. This data
is usually expensive to acquire and process. Hence, the
ocean tends to be undersampled and strategic planning of
missions are essential to retrieve as much information as
possible. Planning of missions are usually based on histor-
ical data or simulation data from numerical models, but
often the real world differs much from these data. Hence,
being able to adapt the mission in real-time, adjusting the
plan based on current observations, will likely improve the
modeling efficiency.

In this paper we focus on a method using an AUV for
sampling in-situ oceanographic data with a goal of track-
ing suspended material plumes, and being able to adjust
the mission in real-time. To obtain real-time adaption, a
faster-than-real-time particle model onboard the AUV is
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required. The numerical models have a high computational
load, making them unfit for running on embedded robotic
systems with both data processing and storage constraints.
Hence, a simpler, more compact model approximating
the processes is built based on Gaussian processes (GP).
This simplified proxy model represents the current state
of the ocean at the time, and can be updated when new
information are added.

In addition to the GP proxy model, this paper presents an
objective function for path planning aiming to maximize
the value of information from the samples. The objective
function explores the area by choosing locations assumed
to be information rich, and also considers the limitations
of the AUV.

As a case study, an area in Fraenfjorden, Norway contain-
ing a seafill for submarine mine tailings is investigated.
The goal is to track the particle dispersal near this seafill,
aiming to improve real-time monitoring of dispersal dy-
namics. Two existing numerical ocean models, SINMOD
and DREAM, are used to train the GP proxy model
creating a prior proxy model of the particle concentration.
Having the prior model ready, the AUV can be deployed,
and sensor readings can be used to update the proxy model
onboard the AUV in real-time. In this paper a simulation
study is done using data from the numerical models as
sensor readings for the AUV. Figure 1 gives an overview
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Fig. 1. Block diagram showing the simulation routine. A
prior GP proxy model is built using training data
from SINMOD and DREAM. Then sensor readings
are used to update the proxy model real-time onboard
the AUV, and the updated model is used to find the
next sampling locations. In the simulation study, the
sensor readings are provided by a test data set from
SINMOD and DREAM.

of the method proposed in this paper, showing a block
diagram of the simulation routine.

1.1 Related work and contribution

GPs (Cressie and Wikle, 2011; Eidsvik et al., 2015) are
powerful for creating non-parametric, simple and time-
effective models, and are widely used when creating a
simplified spatial model. Using GPs for environmental

sensing is among others explored in Krause et al. (2008);
Zhang et al. (2012); Binney et al. (2010); Das et al. (2015).

In Krause et al. (2008), a method for static sensor place-
ments is suggested using GPs and maximization of mu-
tual information. Others use moving sensors attached to
robotic vehicles, as in Zhang et al. (2012) where an AUV
is used to track an upwelling front, or in Das et al. (2015)
which use an AUV to collect samples for ex-situ analysis,
selecting the sampling locations based on previous mis-
sions and maximizing a utility function.

When introducing robotic vehicles for sampling, path
planning is required to obtain the optimal sampling path.
This is among others discussed in Binney et al. (2010)
which use the measure of mutual information to optimize
information gain along a 2D path for a marine glider. This
is further elaborated and tested with a surface vehicle
in Binney et al. (2013), where a comparison of greedy
vs. recursive greedy approaches is explored for a similar
problem.

Zhang and Sukhatme (2007) create an adaptive sampling
algorithm based on local linear regression and minimizing
estimation error for a sensor network including static
sensors and an AUV. Yilmaz et al. (2008); Jadaliha and

Choi (2013) discuss environmental sensing and adaptive
sampling using more than one robotic vehicle.

A common approach when building a GP model is to
assume stationary variance, but when modeling particle
transportation there is reason to believe that some sites
vary more than others. In this paper an approach using
non-stationary variance is suggested, using empirical vari-
ance from numerical models as training data for the model
variance.

Section 2 presents preliminaries explaining the spatial
model and data assimilation procedures. The method
used is presented in section 3, before section 4 presents
simulation results.

2. MODELLING

Having a complex numerical model describing the ocean
onboard the AUV is not practical due to computational
limitations. Keeping an onboard representation of the
environment is resolved using a simpler proxy model, based
on Gaussian processes (GP). This section gives a short
introduction to the spatiotemporal modelling, and the
data assimilation methods used in this paper.

2.1 Numerical oceanographic models

Numerical oceanographic models are in this paper used
both to train the proxy model and for simulation purposes.
SINMOD and DREAM are two existing models that de-
scribe ocean dynamics, and the release and transport of
drill cuttings, respectively. SINMOD is a fully coupled hy-
drodynamic, sea ice and ecological ocean model (Slagstad
and McClimans, 2005; Lindstrgm et al., 2009). It is based
on the fundamental NavierStokes equations and uses a
nesting technique where high resolution models obtain
their boundary conditions from larger model domains with
lower resolution. This can be repeated in several steps
to achieve high resolution for selected areas. SINMOD is
established in configurations with horizontal resolutions
ranging from 20 km to 32 m. DREAM is a Lagrangian
particle transport model which can be used to simulate
behaviour and fate of marine pollutants, including partic-
ulate discharges from drilling operations (Rye et al., 1998,
2008). It provides time series of both concentrations of
released materials in the water column, as well as depo-
sition of these materials onto the sea floor. Input to the
DREAM model includes hydrodynamic data, which will
be delivered by SINMOD, as well as information about the
release (amount, rate, densities, grain size distribution).

For generating the forecast data as input for the AUVs
onboard model, SINMOD has been set up with 32 m reso-
lution. Bathymetry data is based on DBM Sgr-Norge, sup-
plemented by OLEX data recorded by SINTEF Materials
and Chemistry inside Fraenfjorden. The atmospheric input
data is produced using the Weather Research and Fore-
casting (WRF) (http://www.wrf-model.org/index.php)

model simulated with boundary values from the ERA-
Interim reanalysis, and climatologic data for freshwater
run-off is used. This data is then forwarded and used as
input for the DREAM model. The model area is Fraenfjor-
den (Norway) and the data is from two consecutive days
April 1st and April 2nd 2013. Data from 1st April is used
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as training data for the proxy model, and data from 2nd
April is used as test data in the simulation study.

2.2 Spatial Model

A GP is chosen to model the underlying spatial depen-
dencies of the particle concentration. The 2-dimensional
domain is divided into a regular grid with N grid points
[s1,...,8n], and the particle concentration in location s;
are assumed to be Gaussian with mean p; and variance
02. The random variable defining the concentration at
location s; is denoted x(s;). Hence, the joint distribution

of the state at all the locations & = [x(s1),...,x(sp)] is
multivariate Gaussian
2~ N, %) 1)

with mean vector g = [u1,. .., uxn]? and a positive definite
covariance matrix 3. The diagonal of the covariance
matrix contains the variances o2, and the off-diagonal
elements describe the covariance between the locations.
The fundamental concept of modelling spatial correlation
needs to fulfill two main properties: i) that correlation
decays with distance and ii) that the covariance matrix
is positive definite. To achieve this, it is common to
use known correlation functions or kernels. By comparing
covariance functions with the empirical covariance of the
training data, Matern (3/2) kernel (Matérn, 2013) is
chosen. The function is given by

Rij = (1 + ohy;) exp(—hyj), (2)
where h;; = |s; —s;| is the Euclidian distance between two
locations and ¢ is a constant meta-parameter regulating
the correlation decay with the distance. The best value for
¢ is estimated using training data by choosing the best fit
of the covariance function to the empirical covariance in
the data.

2.8 Prior distribution

The model is assumed to be updated sequentially for time
steps t = 1,...,T adding information from observations
in every time step. The initial prior belief at ¢ = 0 (o and
3) is found using the training data from the numerical
models (SINMOD/DREAM). The empirical mean of the
training data in each location is used as the prior mean
o Assuming M data [y;;,...,y; ] in location s;, this is
given by

b= o 3)

and the prior mean of the proxy model is obtained as the
vector o = [uf, ..., ui]7T.

A common approach for GPs is to simplify and assume the
same variance in each location. However, when modeling
ocean processes factors such as topology, currents, wind
patterns, and freshwater run-off in coastal areas imply
that some locations will have elevated variability. Thus,
the prior variance of the state in each location is chosen
to be the empirical variance from the training data (Stein,
2005)

1
*2 x o x\2
g; = M—1 Z(yi,m :u’z) . (4)

m
The entries of the prior covariance matrix 3 are given by

o(i,j) = o;0; Rij (5)

where I;; defines the correlation between points s; and s;
as defined by (2).

2.4 Data assimilation

To model the temporal changes, a simple Markovian
process is suggested

Ty = Tr—1 + G, (6)
where ¢z ~ Npy(0,VXg) is a N-dimensional normally
distributed vector with zero mean and covariance matrix
V3, where V' > 0 is a constant parameter. This temporal
model assumes that the current step in time is similar to
the previous with an increase in variance proportional to
the prior covariance matrix Xg. In this way, parts of the
spatial correlation between the locations is maintained,
and the increase in variance due to the dynamics of the
particle transportation is modeled. The constant value
V' determines the size of the increase in variance, and
this value can be tuned to fit the modelled domain. This
temporal process alone does not model the dynamics of
the process, and hence, we rely on the observations from
the AUV to catch the changes.

The observation model is given by

Y = Gixy + €. (7)
Here, G, is the sampling design, a matrix that contains
1 entries only at the sampled indices, otherwise it is 0.
€ ~ Ny(0,9) is a normally distributed error term with
zero-mean and covariance €2, assumed to be Gaussian,
describing the measurement noise.

Since a GP is fully represented by its mean and covari-
ance matrix, these are the only thing that needs to be
updated in each time step. Exploiting the properties of the
Gaussian distribution, the conditional updated mean and
covariance matrix at time step t: u; = E(x¢|y1,...,Yt)
and X; = Cov(xt|yi,...,yt) can be found by (Rasmussen
and Williams, 2005)

K, =% _GI'(G2;, .GT +)!

e = o1+ Ki(y: — Gepg—1) (8)
=% - KGXZ_ 1+ V.

3. METHOD

Having set the foundation by suggesting a proxy spatial
model in section 2, we now proceed to explain the adaptive
sampling method, including the path planning method
using an objective function and the overall sampling al-
gorithm.

3.1 Objective function

To obtain an information rich path for the AUV, an
objective function is suggested. The function is created
based on three criteria.

(1) Locations with high variance are preferred

(2) Locations close to the previous sampling location are
preferred

(3) Locations with high predicted concentration are pre-
ferred
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Fig. 2. Plot of the bathymetry of Freenfjorden. The red
rectangle shows the selected area, and the red dot
indicates the location of the seafill.

The first criterion is chosen because observing in areas
with high variance leads to a reduction in total variance,
hence creating a more accurate model. This criterion also
ensures that the AUV travels to areas that are unexplored.
The second criteron comes from the energy and speed
limitation of the AUV. When choosing the next sample
location, it is essential that the AUV does not travel too
far. The last criterion makes the method adaptive. When
studying the simulation results of the particle transport
from the complex model, it is clear that the variability is
highest where there is a high concentration of particles.
Hence, this last criterion is inspired by this observation,
and assumes that locations with high predicted concen-
tration will be rich with information.

The suggested objective function is then created by having
a term for each of these criteria. At time step ¢ for location
s; given the previous sampling location S;_1, the objective
function is given by

fi(s;) = 9102-2,t — 02]St—1 — Si| + 03100 9)
where the constant parameters 8 = [0, 0o, 03] defines the
weighting for each of the three criteria. These parameters
together with the parameter V in the updating equations

(8) are tuned by trial and error to obtain the desired
behavior of the AUV.

3.2 The algorithm

The sampling location S; at time step ¢ is chosen as the
location that maximizes the objective function f;(s;) for
$; € [81,.--,8N],

S; = argmax (f¢(sq)). (10)

The details of the sampling method are given in Algorithm
1.

The method is a greedy method that sequentially chooses
the best sampling location. First, the spatial GP model
is created using training data from simulations. Then the
sampling starts by evaluating the objective function and
choosing the location which maximizes it. After reaching
the desired location and doing observations, the GP model
is updated and the variance is increased in the unobserved
locations.

Algorithm 1 Sampling method

1: procedure SAMPLING

2 Initialize GP

3 fort=1,...,7T do

4: for s =s1,...,sy do
5: Evaluate fi(s)
6

7

8

9

Choose S; = argmax(fi(s))

Go to location S;

Retrieve observations from S;
Assimilate data according to (8)

4. SIMULATION RESULTS

Data for April 1st 2013 describing the particle concen-
tration in the fjord obtained from DREAM was used
to train the GP, and to create the prior mean gy and
covariance ¥j. For simplicity, only a small area around
the seafill was considered (2560 m x 1280 m) and the area
was divided into a regular grid with grid cells of size 32
m x 32 m (the same grid as for the simulation data).
Also, in this initial simulation only one depth layer was
considered at ~ 15 m depth, but this could be expanded
to 3 dimension considering multiple snapshots in different
depth layers. Figure 2 shows the bathymetry of the fjord
and the selected area as a red rectangle. From the training
data it was observed that the distribution of particles in
the location of the seafill was rapidly changing and had
very little correlation with the neighboring sites. Thus,
this location was disregarded in our model. When plotting
the results, this was handled by setting the variance to 0
in the location, and using the true value from the test data
as the mean.

The spatial model and the sampling method was im-
plemented using the language R (R Core Team, 2017),
and test data from DREAM (April 2nd) was used as
sensor readings for the AUV. Hence, for this simulation
we consider the test data from DREAM to be the true
distribution at all time. The time step was discretized
into intervals of 5 minutes. A total of 54 updates were
simulated, which corresponds to monitoring the outlets for
4.5 hours (270 minutes). The values used for the tuning
parameters was 6 = [1,125,100] and V' = 0.05.

The results of the simulation study are shown in Figure 3,
showing results at four different time steps. The particle
concentration is measured in pg/L, and the color bar
shows the intensity at each location. The x-and y-axis
shows the distance in metres from the seafill. The first
column of plots shows the true values from DREAM. The
predicted particle concentration is shown in the second
column, and the third column shows the prediction vari-
ance together with the path of the AUV showing the 10
most recent sampling locations as small white dots and
the current position of the AUV as a large white dot.

Comparing the predicted particle concentration with the
truth from the test data it can be seen that the sampling
method generally gives a smooth prediction that coincides
quite well with our "true” distribution. Still, many of the
finer details are overlooked, and more samples are needed
to model these details.
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Fig. 3. Results of the simulation study at four different time steps ¢t = 0, 18,36, 54 corresponding to [0,90,180, 270]
minutes. The particle concentration is measured in ug/L, and the color bar shows the intensity at each location.
The x-and y-axis shows the distance in metres from the seafill. The first column of plots corresponds to the true
values (a),(d),(g) and (j). The predicted mean particle concentration is shown in the second column (b), (e), (h)
and (k), and the third column corresponds to the prediction variance (c), (f), (i) and(l). The path of the AUV is
plotted as a red line, the small white dots shows the 10 most recent sampling locations and the large dot indicates

the current position of the AUV.

Considering the path of the AUV together with the predic-
tion variance, it can be seen that the variance is decreased
near the recently sampled locations. The increase in vari-
ance proportional to the prior variance can also be clearly
seen in the prediction variance plots.

The objective function controls the AUV path in an
intuitive way, leading it to unexplored areas on the one
hand, and in most cases assuring a reasonable travel
speed for the AUV between sampling locations. The travel
distance of the AUV lies between 100-400 metres for most
time steps, which is a suitable distance given the time step
length and the AUV speed.

An issue with the model, is that it does not seem to keep
up with the rapid changing of the ocean process. Since the
model relies on the observations from the AUV to catch the
change in the particle concentration, the prediction results
far from recently sampled locations will be inaccurate.
When the dynamics of the particle transportation are fast,
we will get a delay in the updating of the model. As an
example, the prediction results in the upper left area can
be considered. At t=18, the prediction in this area shows a
smaller concentration than the true value. Then at t=36,
the predicted concentration has increased in this area, but
in the true model the particles have moved resulting in a
low density. Finally, at t=54 the predicted and the true
value is quite similar. This example shows the delay in the
predicted values.
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5. CONCLUSION AND FUTURE WORK

A method for adaptive sampling of ocean processes using
an AUV is suggested, and tested using simulation data
from numerical models of particle transportation near a
seafill. The spatial model reconstructs the true field quite
well, showing the same tendencies as the true field. Still,
the temporal variability of the particle transporting is
faster than the AUV can keep up with, indicating that
more samples from multiple vehicles or buoys and/or a
better temporal model is useful.

Future work includes expanding the model such that it
considers the temporal variability of particle transporta-
tion, such that the the non-stationarity of the model is not
driven by the collected data alone. Path planning can be
improved both by considering optimizing for a sequence
of points instead of only choosing one sampling location
at a time. Fieldwork is also planned, enabling testing of
the method in real ocean conditions. This will give insight
in how the method works in the real world, and how this
differs from simulation.
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