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Abstract—Recent concerns for the frequency quality in the
Nordic power system has lead to an increased interest in hydro
turbine governors. Among this research have been papers on
identification of turbine and turbine governor dynamics from
PMU measurements. However, no attempt at a theoretical vali-
dation has been made. This paper fills in this gap by a theoretical
validation using a DC power flow model for modelling the
power flows in the grids. By doing this it is shown that it is
indeed possible to identify the closed loop transfer function of
the turbine, turbine governor and electromechanical dynamics.
An experimental validation using results from a real life power
system are also presented.

I. INTRODUCTION

Recent concerns for the frequency quality in the Nordic
power system [1] have lead to an increased interest in the
dynamic performance of hydro turbine governors. Among the
research being carried out is identification of turbine governors
using local measurements from phasor measurement units
(PMUs). The added value for the TSOs is the possibility to
validate the performance of the governors using their own
measurements instead of relying on information from the
production plant owners.

In this article the aim is to test the hypothesis that turbine
governor dynamics can be identified using PMU measurements
at generator bus bars. In the literature one can already find
papers where identification methods have been applied to PMU
measurements for the identification of turbine dynamics [2]–
[6]. In [2] an unscented Kalman filter is used to identify both
turbine and electromechanical dynamics using data from a
generator trip event. Another paper using data from distur-
bance1 recordings is [4] who uses constrained optimization to
perform the identification. Other papers such as [3], [5], [6] use
data from normal operation to do the identification. This is of
particular interest since the system is not always subjected to
large disturbances. We will therefore focus on measurements
from normal operation in this paper. The papers [3], [6]
uses the ARX and ARMAX model structure to perform the
identification whereas [5] uses time domain vector fitting. In
the present paper the same dataset as in [3], [5] will be used
for the experimental validation.

1In this context disturbance refers to a larger power system event, i.e. load
or generation tripping and not normal load variations

What lacks in the previous papers is an explicit study on
how the input and output to the identification is related to
each other through the power system. In other words there
is no analysis of whether or not the proposed methods will
yield consistent results. In this paper we give conditions under
which a consistent estimate of the transfer function between
the electrical power and the speed of a generator can be
deduced using only PMU data from normal operation.

The structure of the paper will be as follows. The system
under study is presented in Section II, the theoretical validation
in Section III, simulation results are give in Section IV, results
from a real life power system is given in Section V, and finally
the conclusions in Section VI.

II. TEST SYSTEM FOR IDENTIFICATION

To be able to analyze the identifiability of turbine and
turbine governors the components influencing the input and
output signals to the identification has to be modeled. To do
this we will consider a turbine located at bus 1 in a power
system. The location will be denoted by adding the number
1 to the subscript for the considered signals and functions.
In Fig. 1 the model used for representing a hydro turbine
governor and the turbine used in this paper is presented.
For the model of the turbine we have chosen a linearised
model represented by a first order transfer function with a
time constant Tw. Physically this time constant represents the
time the water uses to flow from the reservoir to the turbine at
the operating point of the linearization. The governor is a PID
regulator with a droop feedback ρ, which uses the generator
speed ∆ω1(s) to modify the power output ∆Pm1(s) of the
turbine. The transfer function between ∆ω1(s) and ∆Pm1(s)
will be denoted Gt1(s):

∆Pm1(s) = Gt1(s)∆ω1(s) (1)

It is worth noting that the steady state gain of Gt1(s) is always
equal to the inverse of the droop 1/ρ. The power output is
changed by adjusting the guide vane opening ∆g1(s). Other
modelling choices are available and a reference for many
common choices are [7].

To identify Gt1(s), one would need to use a data set
with ∆ω1(s) as input and ∆Pm1(s) as output. Unfortunately,
∆Pm1(s) is not available to the TSOs. Instead, they can install
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Fig. 1: Hydro turbine governor and turbine Gt1(s)

PMUs at the bus bar where the generator is connected to
their system. This will allow them to measure the electrical
power and frequency at the bus bar. The relation between the
electrical power, mechanical power, and generator speed is
given by the swing equation:

∆ω1(s) =
∆Pm1(s)−∆Pe1(s)

2H1s+Kd1
(2)

where:
H1: is the inertia constant of the machine, which is the inertia

of the machine scaled according to its rating.
Kd1: is the damping constant.
From now on we will denote GJ1(s) = 1/(2H1s+Kd1). We
will also combine (1) and (2) to obtain:

∆ω1(s) = − GJ1(s)

1 +GJ1(s)Gt1(s)
∆Pe1(s) + v1(s) (3)

where v1(s) is an additional contribution representing the
process disturbance acting on generator 1. It will be modeled
as white noise e1(s)2 filtered by the transfer function H1(s).
One should take note of that H1(s) can also be a closed loop
transfer function.

Consequently, using measurements of ∆ω1(s) and ∆Pe1(s)
we will never be able to identify Gt1(s). If we can identify
a transfer function based on these data it will be the closed-
loop transfer function G1(s) = −GJ1(s)/(1+Gt1(s)GJ1(s)).
It should be noted that the steady state gain of G1(s) is
approximately equal to the droop ρ, which means that we will
still be able to deduce information on the turbine governor’s
droop settings.

What remains to be proven is whether or not G1(s) can
be consistently identified from normal operation data. For this
purpose it is important to analyze how ∆Pe1(s) is generated
in the power system. We will therefore introduce the simple
power system depicted in Fig 2. The system consists of two
power plant buses, one load bus and the lines connecting
them. As already mentioned, our objective is to identify G1(s)
for the power plant at bus 1. The power plant at bus 2
is an aggregated plant designed to represent the rest of the
production capacity in the network and the load at bus 5
is meant to represent all loads in the system. In the power
system there is a strong coupling between active power and
frequency. Due to this we will assume that reactive power and
voltages can be assumed constant for our analysis, allowing
us to model the flow on the lines using a dc power flow. This
design choice allows us to include the most relevant dynamics
in our analysis, while keeping the system small.

2This is abuse of notation since white noise has no Laplace transform.
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Fig. 2: Single line diagram of the system

In Fig. 2 there are four reactances, x1 and x2 are line
reactances, and x′d1 and x′d2 are the subtransient reactances
of the generators at bus 1 and bus 2 respectively. It is
important to notice that the subtransient reactances are internal
to the generators. Therefore, our PMU measurements used for
identifying G1(s) will be taken at bus 3 not bus 1. We have
already assumed a dc power flow, hence the electrical power
measured at bus 3 will be the same as for bus 1. Furthermore,
we will also assume the frequency measured at bus 3 ∆f3(s)
is a good estimate of the electric speed at bus 1, in other words
ω1(s) ≈ 2πf3(s).

For the load it is assumed that the load has a frequency
dependency given by the transfer function Gl(s), this is
commonly due to rotating loads. The frequency at the load
is estimated using the centre of inertia equation.

f5(s) = 2π

∑2
i=1 ωi(s)Hi∑2

i=1Hi
(4)

In addition to frequency dependent part the load consists of a
stochastic part v5(s) = H5(s)e5(s), which represents the load
changes due to random load switching. It is modeled as white
noise e5(s) filtered by the filter H5(s).

The dc power flow assumption allows us to establish the
following relationship between the electrical angle at the two
production plant buses and the active power at the load bus [8].

Pe =
[
Y11 −Y12Y

−1
22 Y21 Y12Y

−1
22

] [θe
Pl

]
(5)

where the Yij are submatrices of the nodal admittance matrix,
θe is vector of generator angles, Pe is the vector of generator
bus active powers, and Pl is the vector of load active powers.
We can now derive a linear relationship between the plants
and load. This linear relationship is presented in Fig. 3 where
the K factors are constants derived from (4) and (5).

In Fig. 3 the process noise acting on the power plants are de-
picted and we see that the second power plant like power plant
1 is perturbed by filtered white noise v2(s) = H2(s)e2(s).
An important assumption is that the noise terms v1(s), v2(s),
and v5(s) are all statistically uncorrelated. This assumption
should easily hold for v5(s) as consumers are unlikely to
change their consumption due to process noise at production
plants. It is also very unlikely that the process noises at power
plants situated at geographical distant locations are dependent
on each other.

Based on Fig. 3 one can deduce, that in normal operation,
∆Pe1(s) is made of a contribution of the two process noises
v1(s) = H1(s)e1(s) and v2(s) = H2(s)e2(s) as well as the
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Fig. 3: Block diagram of the system depicted in Fig. 2

random load changes v5(s) = H5(s)e5(s). We can now write
Pe1(s) as a function of the white noises.

∆Pe1(s) = T5(s)e5(s) + T1(s)e1(s) + T2(s)e2(s) (6)

where T5(s), T1(s) and T2(s) are stable transfer functions.
The contribution of e2(s) and e5(s) are important, indeed,
these contributions show that ∆Pe1(s) will be made up of
external signals even under normal operations. These external
signals will excite the dynamics of G1(s) and help in the
identification. Opposed to this e1(s) could be detrimental as
it introduces a correlation between ∆Pe1(s) and the process
disturbance v1(s). However, we will show that this correlation
will not lead to identification problems if a certain technical
condition is satisfied.

III. THEORETICAL VALIDATION

For the validation we suppose that, after the application of
an antialiasing filter, we have collected N samples of ∆Pe1(t)
and ∆ω1(t) with a certain sampling frequency. We will denote
these samples u[n] and y[n] respectively, where [n] denotes
discrete time. These sampled signals make up the dataset
ZN = {u[n], y[n]|n = 1 . . . N}, and they are assumed related
by:

S : y[n] = G1(z, θ0)u[n] +H1(z, θ0)e1[n] (7)

where G1(z, θ0) and H1(z, θ0) are discrete versions of the
transfer functions G1(s) and H1(s), H1(z, θ0) is assumed
monic, e1[n] is discrete time white noise, θ0 is the vector that
parametrize the true system S, and z−1 is the delay operator.

For the input signal u[n] we have that:

u[n] = T5(z)e5[n] + T1(z)e1[n] + T2(z)e2[n] (8)

where T5(z), T1(z), and T2(z) are discrete versions of the
transfer functions in (6). We also define σ2

e1 , σ2
e2 , and σ2

e5 as
the power spectra of e1[n], e2[n], and e5[n].3

Before moving on to the proof what we mean by identifica-
tion should be defined. It is simply that given the dataset ZN

and a full order model structure M = {G1(z, θ), H1(z, θ)}
we can deduce an estimate of the unknown parameter vector
θ̂N using prediction identification [9]:

θ̂N = arg min
θ

1

N

N∑
n=1

ε2(n, θ) (9)

with:

ε(n, θ) = H−11 (z, θ)(y[n]−G1(z, θ)u[n]) (10)

In order to validate our identification setting it is important to
verify whether or not (9)-(10) will lead to a consistent estimate
of θ0 when the input signal is given by (8), or in other words,
whether or not (8) is a sufficiently informative signal for the
identification of S . For θ̂N to be a consistent estimate, one
needs to verify that the true parameter vector θ0 is the unique
solution to the asymptotic prediction criterion:

θ∗ = arg min
θ

Ēε2(n, θ) (11)

with

Ēε2(n, θ) = lim
N→∞

1

N

N∑
t=1

Eε2(n, θ) (12)

The operator E denotes the expectation operator.

Theorem 1. Consider the dataset ZN = {u[n], y[n]|n =
1 . . . N} where ZN is generated by (7) and (8). Suppose
also that e1[n], e2[n], and e5[n] are independent white noises.
Then the prediction error criterion (9)-(10) yields a consistent
estimate of θ0 if there is a delay in either G1(z, θ0) or T1(z).

Proof. We start by writing the prediction error in terms of the
input at node 1 by inserting (7) into (10) to get.

ε[n, θ] = e1[n] +
∆H1(z, θ)

H1(z, θ)
e1[n] +

∆G1(z, θ)

H1(z, θ)
u[n] (13)

with ∆H1(z, θ) = H1(z, θ0) − H1(z, θ) and ∆G1(z, θ) =
G1(z, θ0)−G1(z, θ). By inserting (8) into (13) we can write
ε[n, θ] as:

ε[n, θ] = e1[n] + ν(z, θ)e1[n]

+ Γ2(z, θ)e2[n] + Γ5(z, θ)e5[n] (14)

with:
ν(z, θ) =

∆H1(z, θ) + ∆G1(z, θ)T1(z)

H1(z, θ)
(15)

and
Γm∈2,5(z, θ) =

∆G1(z, θ)

H1(z, θ)
Tm∈2,5(z) (16)

Due to the fact that H1(z) is monic and the fact that
∆G1(z, θ)T1(z) contains a delay, we conclude that when

3For a white noise process the spectrum is its variance.



non zero ν(z, θ) also contains a delay. This property and the
assumption on the independence of e1[n], e2[n], and e5[n] can
be used to write Ēε2(n, θ) as:

Ēε2[n, θ] = σ2
e1

+
1

2π

∫ π

−π
ν(ejω, θ)σ2

e1ν
∗(ejω, θ)dω

+
1

2π

∫ π

−π
Γ2(ejω, θ)σ2

e2Γ∗2(ejω, θ)dω

+
1

2π

∫ π

−π
Γ5(ejω, θ)σ2

e5Γ∗5(ejω, θ)dω

(17)

To prove the consistency, we will show that θ0 is the unique
minimizer of (17), that is it is the unique parameter vector θ∗

yielding Ēε2[n, θ∗] = σ2
e1 . We observe that this only holds if

ν(z, θ∗) = Γ2(z, θ∗) = Γ5(z, θ∗) = 0. From (15) and (16)
we see that the latter statement implies that ∆G1(z, θ∗) =
∆H1(z, θ∗) = 0. This again implies θ∗ = θ0.

IV. SIMULATION RESULTS

In this section validation of the identification of turbine
dynamics using a simulation model developed in Simulink
will be presented. The system is depicted in Fig. 2 and was
presented in Section II. It was tuned to give a response similar
to the one area system in [10].

To obtain the models a Box-Jenkins model structure was
assumed, which has the following structure:

y(t) =
B(z)

F (z)
u(t) +

C(z)

D(z)
e(t) (18)

The reason for this choice is that it is a general model struc-
ture that allows for modelling the denominator dynamics of
G1(z, θ0) and H1(z, θ0) separately. The model order used was
[4, 6, 6, 5, 0] where the model orders are given in alphabetical
order and the last number represents the time delay. The
simulated signals were given with a sampling frequency of
50Hz to be the same as for a PMU signal. In addition the
signals were decimated using a factor of 25. The system
identification toolbox developed for MATLAB was used for
the filtering and identification [11].

It should be noted that the order of the delay is chosen to
be zero. This means that if there is a delay in G1(z, θ0) it is
shorter than 0.5s. If one considers the condition stated in 1
one realizes that this implies that there has to be a delay longer
than 0.5s in T1(z).

To validate the results we first start by plotting the analytical
transfer function of the true system against an estimated one.
This is depicted in Fig. 4, where one can see that there
is an almost perfect match between G1(s) and G1(z, θ̂N ).
One can also observe how the identified function follows
the dynamics of the inverse of Gt1(s) for low frequencies.
Although, in Fig. 4 one can also see that the transfer function
starts deviating from the governor as the frequency raises, one
can still extract information on the steady state gain of the
transfer function. This implies that one can derive information
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on the steady state gain of Gt1(s), which is related to the
droop settings, from the measurements. In general it will be
difficult to say something about the bandwidth of the governor
since the dynamics will be a mix of the electromechanical
and governor dynamics, however, one will still be able to say
something about the plants response as a whole.

A common method for benchmarking the performance of
identified transfer functions is to measure a second data set
Zv = {uv[n], yv[n]|n = 1 . . . Nv}. We then apply uv[n] to the
identified model G1(z, θ̂N ) to obtain a signal ŷ[n] that is:

ŷ[n] = G1(z, θ̂)uv[n] (19)

ŷ[n] can then be plotted against yv[n] to allow for a visual-
ization of the identified model’s performance. In addition one
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can calculate the normalized root mean square error (NRMSE)
given by the following equation.

NRMSE = 100(1− ||y[n]− ŷ[n]||
||y[n]− ȳ|| ) (20)

where:

y[n]: is a measured output signal.
ŷ[n]: is a signal simulated using a u[n] as the input signal to

the identified model G1(z, θ̂N ).
ȳ[n]: is the average of y[n].

The result of such a cross validation is presented in Fig. 5.
One will see that the response of the estimated function
follows the analytical one closely. One can also see that the
NRMSE value is very high, further indicating that the model
performs well.

Another useful test is the residual test for the model
structure. This test is useful, because it gives information on
whether or not the correct model structure was chosen. The
idea behind the test is to take the autocorrelation of (13), with
the autocorrelation defined by (21).

R̂Nε (τ) =
1

N

N−τ∑
n=1

ε[n+ τ, θ̂]ε[n, θ̂] (21)

From the proof for consistent results we recall that if S ∈ M
all the terms of (13) except for the first term will approach
zero. This means that if S ∈ M the autocorrelation of (13)
will approach zero for all τ 6= 0. For τ = 0 it will approach the
variance of e1[n]. The idea behind the test is then to use this
fact to plot values of R̂Nε (τ) for different values of τ against
the 99% confidence interval. The results from the residual test
is presented in Fig. 6, where one can see that the residues are
within or close to the confidence interval. From this we can
conclude that a good model structure was chosen.
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V. RESULTS USING PMU MEASUREMENTS

Since some assumptions were made for both the analytical
validation and the simulation results it is also useful to
investigate whether or not one will get good results using data
from a real power system. This was done by collecting data
from a generation plant in the Norwegian power system using
a PMU. The preparation of the data was done in the same way
as for the simulation case. For the PMU data the following
model order was selected [4, 5, 6, 5, 0].

In Fig. 7 one can see that the residues are within an
acceptable range. Since we don’t know the actual model of
the plant we can’t compare the bode plot to an analytical
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function. However, one can still inspect the bode plot to see
whether or not it look reasonable. It is clear from Fig. 8 that
the obtained model resembles the one from the simulation
validations. In addition the uncertainty corresponding to two
standard deviations is shown in the plot. The confidence
region of the model was calculated from the covariance of
the parameter vector using the system identification toolbox in
MATLAB [11]. For expressions for the covariance matrix one
may refer to [9]. The plot shows that the uncertainty is rather
low indicating that a decent estimate of the plant’s dynamic
behaviour has been obtained. However, as one can see from
Fig. 9 we observe a low NRMSE that could be explained by
a large noise power, but further analysis will be necessary.

VI. CONCLUSIONS

Several papers have already investigated system identifica-
tion for identifying turbine and turbine governor dynamics
using PMU measurements. However, no theoretical validation
have been attempted before now. It was shown that the
identification is indeed possible and that consistent results can
be obtained. It is also worth noting that what one identifies is
both the turbine dynamics including the governor as well as
the electromechanical dynamics.

It still remains to investigate the implications on some of
the assumptions made in this paper. However, the proposed
method should provide a quick and easy method for TSOs to
check whether or not production plants are well tuned, with
respect to the droop settings and frequency response.
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