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Abstract— This paper presents State-of-Charge (SoC) esti-
mation of lithium-ion batteries using eXogenous Kalman filter
(XKF). The state-space equation for the lithium-ion battery is
obtained from the equivalent circuit model (ECM). It has linear
process equations and a nonlinear output voltage equation. The
estimation is done using a cascade of nonlinear observer and a
linearized Kalman filter. The method is tested using experimen-
tal data of a lithium-ion-phosphate (LiFePO4) battery under
dynamic stress test (DST) and federal urban driving schedule
(FUDS). The results are compared with existing Kalman filters.

I. INTRODUCTION

State-of-Charge (SoC) battery estimation is an important
component in battery management system (BMS). It moni-
tors the states and parameters of the battery, thus provides
instantaneous information regarding when a battery needs to
be recharged and allows the BMS to prolong the battery life
by preventing it from over-charging or over discharging [1],
[2], [3]. The SoC cannot be measured directly and has to be
estimated based on measurable variables such as current and
voltage. The estimation is usually done by employing math-
ematical or physical models to describe complex nonlinear
dynamic processes arising from thermodynamics, electrode
kinetics, and transport phenomena [4].

Lithium-ion battery modeling can be approached in three
different ways. The first approach is based on thermal-
electrochemical model [5], [6], [7]. The model is derived
from the first principles and is written as a system of partial
differential equations (PDEs) to describe the physics of the
battery. Examples of this approach are the Doyle-Fuller-
Newman model [8] and the single particle model (SPM)
[9]. This approach can accurately match experimental data
but are complex and time consuming to solve. Advanced
battery modeling using coupled PDEs-ODEs has received
much attention in recent years since the estimation method
for this kind of systems has been well established [10], [11],
[12], [13]. The second approach is to consider a battery as an
equivalent circuit that represents the electrical characteristics
of the cell [14]. The model, which was taken from RC equiv-
alent circuit models (ECMs), serves as a proxy model and is
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written as a system of ordinary differential equations (ODEs).
Even though this approach does not accurately capture the
physics of the battery at high discharge conditions, it can be
solved quickly and used in real-time environments [15]. The
last approach is based on data-driven and relies on machine
learning algorithms to develop relationships between sensor
inputs and output of the battery [16], [17]. This approach
usually requires significant experimental data to train the
model. In resource-constrained computing platforms like in
micro unmanned aerial vehicles (UAVs), the complexity and
accuracy of the model should be well balanced [18].

The models for lithium-ion batteries are nonlinear. The
nonlinearity comes from the output voltage equation, which
is given by a nonlinear function of the SoC [19]. For the
lithium-ion SoC estimation, there are two common methods
[20]: methods based on filters (stochastic estimation) [21],
[22] and methods based on nonlinear observer (deterministic
estimation) [23], [24], [25], [26]. The first method is a
natural choice since the model and the measurements are
subject to noises. Kalman filter can be designed to sup-
press the noise affecting the battery systems. It has good
performance and general applicability. As an example, the
time-varying Kalman filter is globally exponentially stable
and gives optimal filtering by selection of tuning param-
eters to match the variances of white measurement noise
and process noise. Since the state is unknown, the filters
must rely on a linearization of the nonlinear model about
a state estimate. The second method usually has strong
and often has global stability properties, which make the
nonlinear observer has large region of attraction. However,
both methods have weaknesses. Nonlinear approximations
such as the extended Kalman filter (EKF) linearizes the
system about the estimated state trajectories. Therefore, in
general it loss of both global stability and optimality. On
the other hand, nonlinear observers are designed without
optimality objectives considering the presence of unknown
measurement errors and process disturbances.

In this paper, we presents the eXogenous Kalman filter
(XKF) for lithium-ion batteries SoC estimation. The XKF is
a cascade of a global nonlinear observer with the linearized
Kalman filter, where the estimate from the nonlinear observer
is an exogenous signal used for generating a linearized
model to the Kalman filter. The nonlinear observer is used
to guarantee the estimate converges to the actual value expo-
nentially, while the time-varying Kalman filter is used since
the current and voltage measurements are noisy. It has been
shown in [27] that the two-stage nonlinear estimator inherits
the global stability property of the nonlinear observer.



This paper is organized as follow. The lithium-ion battery
model based on the ECM with 2-RC circuit and Coulomb
counting method is presented in section II. Section III
contains SoC estimation using the XKF. The evaluation using
experimental data from the dynamic stress test (DST) and
the federal urban driving schedule (FUDS) are presented in
section IV. The last section contains conclusions and future
works.

II. LITHIUM-ION BATTERY MODELING

In this section, we present a lithium-ion battery model
based on the ECM. In general, the ECM offers low complex-
ity description of the lithium-ion battery dynamics with fewer
states and parameters, thus suitable for real-time application.
The battery SoC quantifies the usable energy at the present
cycle and can be defined as

SoC(t) = SoC(t0)−
∫ t

t0
I(τ)dτ

Qc
(1)

where I denotes the current, t0 denotes the initial time, and
Qc is the nominal capacity. Calculating the SoC from the
measured discharging current and integrating it over time is
known as Coulomb counting. This method, however, suffers
from long-term drift and lack of a reference point. Therefore,
the SoC should be calibrated on regular basis. Differentiating
(1) with respect to t, we have

˙SoC(t) = −I(t)

Qc
(2)

This model can be calibrated using measured terminal volt-
age. The terminal voltage can be obtained from the open cir-
cuit voltage (OCV), which underlying physical phenomenon
of lithium-ion intercalation/deintercalation process and is
expressed as a nonlinear function of the SoC. In practice,
we create an OCV-SoC curve from experiments and use it
as a lookup table for the model. An example could be seen
in Fig. 1.

SOC (%)
0 20 40 60 80 100

V
oc

 (
V

)

2.8

3

3.2

3.4

3.6

Fig. 1: A typical OCV-SoC lookup table for LiFePO4 battery.

Using the OCV-SoC lookup table and the ECM (Fig. 2),
the terminal voltage V can be calculated using the following
formula

V (t) = Voc(SoC)− I(t)R− C(t) (3)

where R is the internal resistance or the ohmic resistance.
This ohmic resistance is used to represent the electrical
resistance of battery components with the accumulation

and dissipation of charge in the electrical double-layer. We
assume Voc is a continuously differentiable function, i.e.,
V̇oc(SoC) exists and continuous. Furthermore, it could be
easily observed from Fig. 1, V̇oc(SoC) > 0, ∀SoC ∈ [0, 100].
Here, C is a correction factor due to model inaccuracy
and environmental conditions, e.g., ambient temperature
variations. Some authors use the resistor model [14] and
consider the value of C as a function of ambient temperature,
which could be determined using least-square fitting from
experimental data. Other authors consider C as the ECM
with 1-RC circuit [28], 2-RC circuit [29], and multiple-RC
circuit [30]. It could be also determined using a combination
of Thevenin-based ECM [31] with the hysteresis voltage
dynamics [32], which offers a grasp of dynamic current-
voltage characteristics and compensates the static current-
voltage property.

Fig. 2: Schematic diagram of the 2-RC circuit for LiFePO4

battery.

To balance between the computational effort and accuracy,
in this paper we use ECM with 2-RC circuit, i.e., C(t) =
V1(t) + V2(t), where

V̇1(t) = − V1(t)

R1C1
+
I(t)

C1
(4)

V̇2(t) = − V2(t)

R2C2
+
I(t)

C2
(5)

where R1, R2 and C1, C2 are diffusion resistances and dif-
fusion capacitances for the RC network, respectively. These
parameters could also be interpreted as the mass transport
effects and dynamic voltage performance. These parameters
together with the ohmic resistance could be determined from
the exponential-function fitting method or a simple least-
square algorithm [33].

III. SOC ESTIMATION USING EXOGENOUS
KALMAN FILTER

Given the nonlinear battery model and measurements (2)-
(5), the SoC estimation problem can be formulated as a
nonlinear state estimation. A popular and natural choice
for nonlinear state estimation is using Kalman filter-based
methods, e.g., extended Kalman filter (EKF), Iterative EKF,
and unscented Kalman filter (UKF), since they have the
ability to suppress the noise affecting a battery system.
Another method is using nonlinear observers, e.g., adaptive
observer, sliding-mode observer, backstepping PDE observer,
and robust nonlinear observer. These methods are relatively



easy to implement and thus enables higher computational
efficiency of SoC estimation.

The XKF is a cascade of a nonlinear observer and a
linearized Kalman filter. The idea is to utilize each strength
from both nonlinear state estimation methods, such as global
stability properties from the nonlinear observer and noise
elimination from the Kalman filter. The procedure is to use
the exogenous state estimation obtained from the nonlinear
observer to generate a linearized model for the Kalman filter,
as can be seen from Fig. 3.

Fig. 3: The schematic diagram of the XKF.

A. State space model

From (2)-(5), the state-space model for the lithium-ion
batteries is given by V̇1(t)

V̇2(t)
˙SoC(t)

 =

− 1
R1C1

0 0
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0

0 0 0

 V1(t)
V2(t)

SoC(t)


+

 1
C1
1
C2

− 1
Qc

 I(t) (6)

V (t) = Voc(SoC)− V1(t)− V2(t)−RI(t) (7)

To simplify the presentation, we can write (6)-(7) as follow

ẋ(t) = Ax(t) + BI(t) (8)
V (t) = h(x)−RI(t) (9)

where

x(t) =

 V1(t)
V2(t)

SoC(t)

 (10)

A =

− 1
R1C1

0 0

0 − 1
R2C2

0

0 0 0

 ,B =

 1
C1
1
C2

− 1
Qc

(11)

h(x) = Voc(SoC(t))− V1(t)− V2(t) (12)

To incorporate the model and measurement uncertainties and
inaccuracies, noises are added into (8)-(9), thus the complete
model becomes

ẋ(t) = Ax(t) + BI(t) + w(t) (13)
V (t) = h(x)−RI(t) + v(t) (14)
w ∼ (0,Qn) (15)
v ∼ (0,Rn) (16)

where w denotes the process noise, Qn is the process
noise covariance, v is the measurement noise, and Rn is
the measurement noise covariance. The values of Qn and
Rn can be obtained using Bayesian, maximum likelihood,
covariance matching, and correlation techniques [34]. Note
that the linear Kalman filter is optimal under the assumption
that the model perfectly matches the real system, the noise
w and v are white and uncorrelated, and the covariances of
the noise Qn and Rn are known. In this section, we design
the nonlinear observer and the linearized Kalman filter for
the XKF.

B. Nonlinear observer

The nonlinear observer is designed as follow

ẋ(t) = Ax(t) + BI(t) + K
(
V (t)− V (t)

)
(17)

V (t) = h(x)−RI(t) (18)

where x denotes the exogenous state estimation from the
nonlinear observer and K =

(
k1 k2 k3

)ᵀ ∈ R3 is the
observer gain.

Lemma 1: If the nonlinear function h in (18) is Lipschitz
and if we choose the gain K =

(
0 0 k3

)ᵀ
where

k3 > 0, then the nonlinear observer (17)-(18) is globally
exponentially stable.

Proof: Let us define x̆(t) = x(t) − x(t) and V̆ (t) =
V (t)− V (t), then we have

˙̆x(t) = Ax̆(t)−KV̆ (t) (19)
V̆ (t) = h(x)− h(x) (20)

Utilizing the smoothness property of the OCV-SoC lookup
table, we can linearize the nonlinear measurement equation
(20) using the mean value theorem. First, we write

V̆ (t) = −V̆1(t)− V̆2(t) + Voc(SoC)− Voc(SoC)(21)

Since h is Lipschitz, using the mean value theorem there
exists SoC ≤ ξ ≤ SoC, such that

Voc(SoC)− Voc(SoC) = V̇oc(ξ) ˘SoC(t) (22)

where V̇oc(ξ) > 0. Let us denote T =
(
−1 −1 V̇oc(ξ)

)
.

Thus, we can write

V̆ (t) = Tx̆(t) (23)

and the error equation becomes

˙̆x(t) = (A−KT) x̆(t) (24)

Note T is time-varying and bounded. In this particular case,
let k1 = k2 = 0. Then, V̆1(t) = V̆1(0)e−

1
R1C1 and V̆2(t) =

V̆2(0)e−
1

R2C2 , i.e., V̆1(t) and V̆2(t) are exponentially stable.
Correspondingly, we have ˙̆SoC(t) = −k3 dVoc

dSoC (ξ) ˘SoC(t).
Thus, if k3 > 0 then the nonlinear observer is globally
exponentially stable, i.e., the error will decay to zero and the
estimate x will converge to the actual value exponentially.



C. Linearized Kalman filter

Now we have x as an estimate of x, which is a bounded
signal given by the nonlinear observer (17)-(18). We use this
signal as an exogenous signal for the linearized Kalman filter.
A first-order Taylor series expansion about the trajectory x
gives

ẋ(t) = Ax(t) + BI(t) + w(t) (25)
V (t) = h(x) + H(x)x̆ + r(x,x)−RI(t) + v(t)(26)

where

H(x) =
∂h

∂x
(x) =

(
−1 −1 ∂Voc(SoC)

∂SoC

)
(27)

Remark that, since x is bounded and converges to x, we
can neglect the higher-order term r(x,x) since it has no
consequences for stability. Thus, we can design the second
stage estimator x̂ using the linearized Kalman filter as follow

˙̂x(t) = Ax̂(t) + BI(t) (28)
+KK(t) (V (t)− h(x)−H(x)(x̂− x) +RI(t))

The time-varying gain KK(t) is given by

KK(t) = P(t)Hᵀ(x)R−1
n (29)

where P(t) is the solution to the Riccati equation

Ṗ(t) = AP(t) + P(t)Aᵀ + Qn −KK(t)RnK
ᵀ
K(t)

(30)

with P(0) symmetric and positive definite. Note that, unlike
EKF, the XKF uses linear time-varying measurement model
that is independent of the estimate x̂ in (28). To imple-
ment the algorithm with a discrete-time Kalman filter, the
model has to be discretized, for example using the Euler
discretization method. Following [27], the XKF result for
SoC estimation is given as follow.

Lemma 2: Let x̃ = x − x̂. The origin x̆ = x̃ = 0 of the
unforced error dynamics cascade of the nonlinear observer
(17)-(18) and the linearized Kalman filter (28) with w = 0
and v = 0 inherits the stability properties of the nonlinear
observer (17)-(18).

IV. EVALUATION USING EXPERIMENTAL DATA

A LiFePO4 battery is tested in two dynamic loading
condition tests; the dynamic stress test (DST) and the federal
urban driving schedule (FUDS). The DST was used to
identify the model parameters, while the FUDS was used to
validate the performance of the SoC estimation. The battery
specification is given in TABLE I. A complete description
regarding the tests is given in [14].

Type Nominal Nominal Upper and lower
voltage capacity cut-off voltage

LiFePO4 3.3V 2.23Ah 3.6V and 2.0V

TABLE I: Battery specification.

To evaluate the validity and to identify the parameters
of the battery model, the DST is run at 20°C. This test is

designed by US Advanced Battery Consortium (USABC) to
simulate a variable-power discharge regime that represents
the expected demands of an electric vehicle (EV) battery.
The voltage and current are measured and recorded from
fully charged to empty with a sampling period of 1s based
on the battery test bench. The accumulative charge was run
continuously from 100% SOC at 3.6V to empty at 2V over
several cycles in a discharge process. The measured current
I and voltage V are given in Fig. 4. These measurements are
used to calibrate the estimation from the Coulomb counting
method.
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Fig. 4: Measured current and terminal voltage from dynamic
stress test (DST).

The root mean square (RMS) error is used to evaluate
the validity of the model and the parameters. The model
parameters and the RMS error are given in TABLE II. Fig.
5 shows the fitting between the measured and estimated
terminal voltage V and the error. A slight deviation can be
observed when the voltage close to 2V, or when the SoC
approach zero. This is due to inaccuracies when measuring
the open circuit voltage. Notice that the diffusion resistance
and the diffusion capacitance for V1 and V2 are equal, i.e.,
V1 = V2. The plots for V1 and V2 together with the estimated
SoC are given in Fig. 6. The estimated SoC is used as a
reference for the XKF.

R R1 C1 R2 C2 RMS
0.18 0.035 1e6 0.035 1e6 8.4157e-05

TABLE II: Model parameters and RMS.

To test the proposed method, we run the simulation with
initial SoC guess at 60% and compare it with some existing
filter, e.g, EKF and UKF. The standard deviation for the
process noise is 0.01, while for the measurement noise is
0.04. These values are obtained using a simple covariance
matching technique. The initial error covariance matrix P(0)
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Fig. 5: The measured and the estimated voltage response on
the DST profile and the model error.
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Fig. 6: The correction factor V1(t) = V2(t) and the SoC.

is defined based on the initialization error. In this case,
if the initial state is not very close, the value of P(0)
should be large, whereas if the initialization is very good a
smaller P(0) value can be used. The observer gain k3 =
1. The results are given in Fig. 7. It could be observed
that the nonlinear observer performs better in terms of the
convergence rate than the EKF and UKF. The XKF improves
the estimation further. The convergence rate can be increased
using higher value of the gain k3, as can be seen from Fig. 8.
With k3 = 2 the estimate converges to the actual value in one
minutes, while with k3 = 0.5, the estimate converges after
almost one hour. However, keep in mind that higher observer
tends to overshoot as can be seen between t = 6500s to the
end. Indeed, selecting an appropriate gain in crucial in SoC
estimation. There is a trade-off between convergence rate and
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Fig. 7: The SoC estimation from different estimation methods
for DST.

accuracy.
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A more realistic dynamics current test is given by the
FUDS test. FUDS is based on a time-velocity profile from
an automobile industry standard vehicle to test the dynamic
electric vehicle performance. The measured current and
voltage can be seen in Fig. 9. The current profile causes
variation of the SoC from fully charged at 3.6V to empty
at 2V. We run the simulations from three different initial
guesses. The results are given in Fig. 10. It can be observed
that the estimation converges to the SoC for any initial guess.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we present SoC estimation of a LiFePO4

battery using the XKF from the 2-RC ECM with Coulomb
counting method. The estimation algorithm consists of a
cascade of nonlinear observer and linearized Kalman filter.
Simulations against experimental data from the dynamics
stress test and federal urban driving schedule show the al-
gorithm is able to estimate the SoC accurately. Furthermore,
comparisons with existing filter show the estimation using
XKF converges faster, thanks to the exponential stability
from the nonlinear observer. Future work includes the use of
thermal-electrochemical model to improve the lithium battery
model.
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