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Abstract—In recent years, the use of Unmanned Aerial Systems
(UAS) has become commonplace in a wide variety of tasks due to
their relatively low cost and ease of operation. In this paper, we
explore the use of UAS in maritime Search And Rescue (SAR)
missions by using experimental data to detect and classify objects
at the sea surface. The objects are chosen as common objects
present in maritime SAR missions: a boat, a pallet, a human,
and a buoy. The data consists of thermal images and Gaussian
Mixture Model (GMM) is used to discriminate foreground objects
from the background. Then, bounding boxes containing the
object are defined and used to train a Convolutional Neural
Network (CNN). The CNN achieves the average accuracy of
92.5% when evaluating a testing dataset.

I. INTRODUCTION

Maritime Search and Rescue (SAR) operations are usually
based on the drifting trajectory, which is influenced by the
water streams and winds. In such operations, it is common
to estimate the drift by deploying buoys with GPS sensors to
transmit their positions [1]. Since changes in the environment
at the search region are common, the search parameters might
change many times during the mission, leading to the necessity
of the reconfiguration of the mission itself. The search is
usually performed using manned aircraft and vessels and is
limited by the costs, the availability of human resources, and
the mental and perception limitations of the human operators.
All these limitations impose that a method for automatic clas-
sification of objects would be beneficial to the SAR mission
as an additional assistance to the operators, due to its ability to
process multiple inputs at higher speeds and with an invariable
reliability rate, as it is not subject to exhaustion.

The use of Unmanned Aerial Systems (UAS) has grown
rapidly, especially because of its high endurance, reduced cost,
rapid deployment and flexibility. It also offers reduced risk for
humans and impact on the environment compared to manned
aircraft. Therefore, intelligent autonomous UAS equipped with
image recognition capabilities to classify vessels, wrecks,
people and objects pose as well suited tools to assist maritime
SAR operations.
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In these missions, it is fundamental to identifying key
objects in aerial images using the techniques of object de-
tection, classification and tracking. However, it might be more
challenging to solve these classic computer vision problems
when using UAS. Especially because of real-time requirements
and top-down view angles. Moreover, running computationally
intensive algorithms, such as deep neural networks with many
filters and convolution layers, is an additional challenge due
to UAS power consumption limitations, and space and weight
constraint for embedded hardware.

Leira et al. [2] used thermal camera images captured by
UAS to detect, classify, and track objects at the sea. The
solution presented arises as a useful tool for SAR operations.
The object detection algorithm used relies on static filter
parameters and thresholds, which are determined manually a
posteriori. The classifier used is based on the object area, the
average object temperature, and its general shape. However,
there are a number of scenarios where this classification would
be challenging, e.g., when motion blur is present or when the
object is moving across an image with varying sensor intensity,
which can be caused by an uneven scene radiance or sensor
noise. Therefore, a deep learning algorithm could be a more
effective tool for the object classification, since it can handle
variations on the images affected by environmental changes,
as long as these effects are widely present in the dataset.

Convolutional Neural Networks (CNN) are the state-of-the-
art deep learning tools for classification of images. Using
convolution and pooling layers, it is possible to efficiently
extract the most relevant features of the images. Some works
were done with CNN and UAS, as in [3], where bounding
boxes of images captured by a camera mounted on a UAS at
a high altitude were classified in real-time into four classes:
building, ground, tree and road. In [4], ground animals were
detected using CNN in aerial images captured by a camera
mounted on a low-cost UAS in Namibia and the step of object
detection for bounding boxes prediction was also explored in
the work. Sea animals were detected in aerial images in [5],
where the bounding boxes were defined by the confidence
of each pixel of being the center of a window containing
a mammal and then a CNN is used to classify the images.
Regarding the use of CNN to classify objects in aerial images
taken by a UAS in maritime environments, a work was done
by [6], where RGB images were used and bounding boxes



were classified into two classes: boat or notboat. SAR, CNN
and UAS are used together in [7], where near real-time
object detection was performed by a UAS for avalanche SAR
missions. A pre-trained CNN did the object detection and
a Support Vector Machine (SVM) was used to classify the
proposed human bodies. All of these works were done using
datasets of RGB images, but there are also some works using
CNN with thermal images, as in [8], to monitor machine health
and in [9], to detect pedestrians. However, there were not
found works using CNN to classify objects at the sea in aerial
thermal imagery and this is particularly important in night time
low visibility SAR operations.

In this paper, a CNN is trained to classify boats, buoys,
people and pallets in images captured by a thermal camera
mounted on a fixed-wing UAS. The foreground objects were
detected by modeling the background as a mixture of Gaussian
distributions and subtracting the foreground [10]. This method
is computationally cheaper than other object proposal methods
such as sliding windows [11] or selective search [12] because
it is particularly suitable for thermal images at the sea, as
there are two modes present in the distribution: the radiance
reflected from the sky, and the heat emitted from the sea [13].
Subsequently a window was fitted around the objects and
padded to ensure that the full objects were included in the
window. One other novelty brought by this study is the use
of the estimated observed area as an extra feature in the fully
connected layer of the CNN.

II. DATASET

The dataset consists of images captured by a thermal camera
mounted on a fixed-wing UAS. The thermal camera used is a
FLIR Tau2, which provides analogue video data at a 640 x
512 pixels resolution. The lens has a focal length of 19 mm,
which produces a 32° x 26° angle of view. The analogue
video data is converted to digital using a 16 bit analogue-to-
digital converter. In order to create 8 bit images, the 16 bit
images are normalized between 0 and 255 for the smallest
and largest intensity in the full dataset. The UAS was also
equipped with an Inertial Measurement Unit (IMU) and Global
Navigation Satellite System (GNSS) unit, in order to find the
surface area of the objects in the images (see section II-C).

Four different objects were placed in the ocean: a 26 feet
boat, an euro pallet, a human wearing an immersion suit, and
a buoy with a 60 cm diameter. The objects are chosen as
common objects present in maritime SAR missions, where
e.g. pallets are a common object to search for when trying
to locate fish aggregating devices. The objects can be seen in
higher resolution visual light camera images in figure 1. The
human varied between different actions during the experiment:
floating horizontally on the surface (creating a large, long
surface), swimming (creating a medium sized surface varying
in shape), and standing vertically (creating a small surface,
down to 20 cm across).

The total dataset consists of around 22,000 images were
captured during a time span of 50 minutes. The objects were
only fully inside in the camera field of view in a limited subset

Fig. 1. The different objects present in the scene, as captured by a higher
resolution, visual light camera. Top: boat and pallet, bottom left: human,
bottom right: buoy. The images were captured at different altitudes.

of the full dataset, leading to a smaller number of objects used
in the CNN.

Various imperfections were present in the images. Several
images contain motion blur caused by the dynamics of the
UAS. This effect is minor for larger objects such as the boat,
however for smaller objects such as a human head sticking
out from the water, it can greatly affect the shape, size,
and intensity of the object. See figure 2 for an example of
how motion blur changes the object size and dimensions.
The pixel intensity is also varying throughout each image,
which makes the same object take on intensities between 97
to 110 in an example 8 bit image sequence. This might be
caused by noise in the uncooled thermal image sensor, internal
camera intensity calibrations, or varying scene radiance. The
background varies between 81 and 98 in the same image
sequence. See figure 3 for an average of all images without
objects, where the intensity variation can be seen.

Fig. 2. The same object without motion blur (left) and with motion blur
(right). The shape, size, and intensity is greatly affected.

In order to find the objects in the images and label them,
their boundaries were first found (section II-A). The objects
were then automatically labeled based on the physical area
of the boundary (see section II-A for definition of the phys-
ical area) and finally manually corrected (section II-B). The
number of labeled objects in the dataset used in the CNN is
summarized in table I.



Fig. 3. The mean image without any objects, with its intensity stretched to
show the varying image intensity.

TABLE I
NUMBER OF LABELED OBJECTS IN THE DATASET

Boats 620
Pallets 739
Humans 313

Buoys 276

A. Bounding Boxes

In order to discriminate the foreground objects from the
background in the images, the background pixels were mod-
eled using an adaptive background Gaussian Mixture Model
(GMM) [10]. The GMM provides robust foreground segmenta-
tion and is suitable for thermal images at the sea since there are
two modes present in the distribution: the radiance reflected
from the sky, and the heat emitted from the sea. It can also
model the sensor varying sensor noise, but might fail when the
thermal camera is performing sudden noise corrections. The
algorithm was implemented using the Background Subtraction
Library [14]. A study by Borghgraef et al. [13] showed that
more advanced algorithms, such as ViBe and the behaviour
subtraction algorithm, outperformed the GMM for detecting
objects at the sea surface in thermal images. However, this was
for a static camera at a highly slant angle, which means that
the study is not completely applicable to the scenario of this
paper. For this project, the GMM is chosen as a good balance
between robustness and simplicity. The bounding box was then
defined as the smallest box that encloses the boundary of the
object. The bounding boxes of all objects were then padded
to the size of the largest bounding box found in the dataset.
See figure 4 for a sample boundary and bounding box.

B. Labeling

In order to use the extracted foreground objects in the
supervised learning algorithm, each object needs to be properly
labeled. The objects were first assigned one of three labels
based on their observed area in square meters (see section II-C)
- boat, pallet, or human/buoy. Each label was then manually
verified and adjusted if deemed incorrect.

Due to the low ground resolution and their similar dimensions,
discriminating humans from buoys was not possible only using
the size as a criterion or by looking at individual images due to

Fig. 4. The border around the extracted foreground object (red), and the
bounding box (green).

the varying shapes of the human and other effects, e.g., motion
blur. A manual classification was therefore done by analyzing
the shape of each object appearing in a sequence of images,
taking into consideration that the buoy is completely round
while the human has a more elliptical and varying shape. See
figure 5 and 6 for a comparison between a boat, a pallet, a
human, and a buoy in the images.

Fig. 5. The different objects which were labeled. Top left: boat, top right:
pallet, bottom left: human, bottom right: buoy. The images are scaled to show
more detail.

C. Object Area

The observed area of each object in square meters is used
as an extra feature in the fully connected layer of the CNN.
The real observed area is defined as the area of the object as
seen by the camera, when projected at the plane spanning the
North and East axes (NE-plane) at an altitude of zero (D = 0).
See figure 7 for a visual description of the observed area of
an object.

The pinhole camera model [15] is used to calculate the
observed area of the boundary of each object. First, the
observed area of the center pixel within the boundary is
calculated, which is then calculated by the number of pixels
within the boundary. In order to perform these calculations, it
is necessary to know the attitude and altitude of the camera.



Fig. 6. Objects in a different color map, in order to aid in manually
discriminating humans from buoys. Top left: boat, top right: pallet, bottom
left: human, bottom right: buoy.

2

Fig. 7. The observed length, I, of an object. The observed area is the
corresponding feature in two dimensions.

This data is obtained from the IMU and GNSS data, and is
represented in the form of the extrinsic camera matrix. The
intrinsic matrix is calculated from the camera specification. No
lens distortion is considered due to the difficulty of performing
distortion estimation for a thermal camera. Since the angle of
view is relatively small, it is not likely to cause any major
distortion.

The observed area distributions for each object is show
in figure 8. It can be seen while boats and pallets can be
almost completely classified based on their observed area (with
minor overlap between pallets and humans), while there are
major overlaps between humans and buoys. This is however an
artifact of this dataset — in other datasets, buoys and boats can
take on a variety of sizes. As previously mentioned, humans
can take on a wide variety of sizes due to the different poses.

The real observed area of a buoy with a diameter of 60
cm should be 0.28 m2. As can be seen in figure 8, the area
is biased towards higher values. One reason for this is that
a 60 cm circle can appear in 16 pixels (figure 9), when the
observed area of each pixel is 17.9 cm — which is the case
when flying at an altitude of 200 m with no roll or pitch using
the camera system used in the experiment performed. This
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Fig. 8. Distribution of observed areas for the objects present. From top to
bottom: boats, pallets, humans, buoys.

gives an observed area of 0.52 m?. Additionally, the motion
blur causes the object to appear larger than it really is.
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Fig. 9. A buoy with a diameter of 60 cm can appear in 16 pixels, when the
observed width and height of each pixel is 17.9 cm.

III. CONVOLUTIONAL NEURAL NETWORK

Traditionally, supervised learning based image analysis
combines feature extraction with classical machine learning
methods [16]. Convolutional Neural Network (CNN) is an al-
ternative and recent trend for image classification that has been
proven to produce high accuracy in image classification tasks
[17] without requiring any task-specific feature engineering
[18]. It is considered the most successful machine learning
model in recent years [19] and the most eminent method in
computer vision [20], in part because it consists of a powerful
image features extractor [21].

A CNN is based on neuroscience researches about the pro-
cesses that mammalian visual cortex uses to recognize images
[22]. Several basic stages typically compose a CNN. Each
stage consists of concatenation of convolution, normalization,
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Fig. 10. CNN architecture. If the Estimated Object Area is used, one more element is added in the flatten layer, resulting in an output of 3.376 elements.

activation (nonlinear), and pooling layers [23]. In this work,
two distinct architectures were used. The difference between
them was the employment of the observed object area as an
input of the fully connected layer.

A. Architecture

Regarding the architecture (see Figure 10), the proposed net-
work starts with an input layer containing the image window.
This layer is followed by the convolution layer which produces
30 feature maps from filters of size 5x5. The convolutional
layer has a set of learnable filters called kernels. By the
convolution between one kernel and a chunk of values from
the layer, a feature map is generated, which consists of a
presence representation of a specific feature in the image.
The next layer is a max pooling with a filter of a size of
2x2, whose purpose consists of extracting the hierarchical
features of the input image [24]. It works by mapping the
bigger value from a 2x2 chunk in only one value in the next
layer. Pooling helps to make the representation approximately
invariant to small translations of the input [22]. This function
is also responsible for reducing the width and the height of
the feature map. Reducing this dimension, the computational
demand is reduced due to the reduction of the number of
parameters, which helps to avoid over-fitting. Then, it comes
another convolution layer with 15 feature maps of size 3x3,
and finally one more max pooling layer composed by 2x2
filters.

The next layer is a flatten layer used to adjust the tensor
dimensions to the fully connected layers. At this point, the two
architectures become different. One network has the estimated
object size as an input and the other one does not. Then, it
follows 2 fully connected layers composed respectively by
128 and 50 neurons using the rectifier activation function.
The last fully connected layer is used to provide the predicted
classification, using the softmax activation function. This is the
most common solution for the regulation of the output values
within the range from O to 1 [25], which assigns a multinomial
probability distribution to the output vector [26]. It enhances
the discriminative modeling power of the CNN, providing

the probability of the input to belong to each possible class,
namely: boat, buoys, human or pallet.

B. Dropout

One technique widely used to improve the performance and
avoid the over-fitting (which is often a serious problem for
a CNN [27]) is the dropout. The term “dropout” refers to
dropping out units (hidden and visible) in a neural network
during the training phase. By dropping a unit out, it means
temporarily removing it from the network in the current epoch,
along with all its incoming and outgoing connections [28].

The dropout parameter controlled in this paper was the in-
dependent probability of deactivating a neuron. This parameter
was tested with 2 values: 0.2 and 0.5.

C. Cross-validation

In order to evaluate the generalization capacity of the
classifiers, it is preferable that the set used in the evaluation
process is different from the one used during the training
process. Typically, the formation of the training and test set
is based on non-repetitive sampling techniques, such as the k-
fold cross validation method [29]. Cross-validation is a robust
statistical technique for estimating the true risk function [30]
(or the generalization error), the most important operational
performance of a trained network [31].

In this paper, the database is divided into five sets of
equal size. During each execution of the algorithm, one set
is chosen to be out of the training phase, which will be the
corresponding test set. This process is repeated five times,
and the performance metric is inferred for each of the sets
that were left out of the training process. The value of the
overall performance will be defined by the average of the
values obtained for each of the five executions.

D. Stopping criterion

In the neural network training phase, a stopping criterion
has to be used to stop the training of the neural network.
There are some stopping criterion, such as number of epochs,
minimum mean square error, early stopping, among others. To
ensure that the training was stopped in a way to provide an



appropriate generalization, a validation based early stopping
is used in this work [32].

A small amount of the training dataset is sorted out to be
used as a validation set. At each epoch, the performance index
is evaluated for the new training set and for the validation set.
When the performance of the validation set stops to decrease,
i.e., when the training starts to over-fit, the training is stopped.

IV. RESULTS

After testing the convergence for different parameters, the
very first CNN was chosen and trained for 5-folds of images
in 8 bit format, without taking into consideration the estimated
size of the objects. The maximum number of epochs was 500
and the early stopping was set to stop the training after 50
validation evaluations without improvements. The validation
split was 0.18 and dropout was 0.50. After doing 10 execu-
tions to get an indicative statistical performance, the average
accuracy was 92.0% with 0.50% of standard deviation. This
result shows that the configuration of the training algorithm
was well set, so that the performances of all executions for all
folds were similar.
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Fig. 11. Accuracy for different configurations.

When using the estimated objects size as an extra input of
the fully connected layer, the resulted accuracy is higher as
shown in figure 11 for 8 bit and 16 bit images, achieving
92.5% and 92.1% of accuracy, respectively. Regarding the
classification, it is possible to notice that classifying between
buoys and humans is a challenge as seen in the Confusion
Matrix (table IT). However, the use of the estimated object size
helps the CNN to get better results (table IIT). When looking
to the Confusion Matrix for buoys, there are fewer cases when
the buoy is classified as a human. There is even a case of a
boat being classified as a pallet when the estimated object size
was not used (table II).

The ability of the CNN to classify humans vs. buoys is
further investigated in figures 12 and 13, where the probability
of each human and buoy test sample being either a human or a
buoy are shown. In the humans samples, it is possible to notice
that it is easier for the CNN to differentiate them from buoys.
However, when analyzing the classification probabilities of the
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Fig. 12. Probability that a human is either a human (blue) or buoy (red).
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Fig. 13. Probability that a buoy is either a human (blue) or buoy (red).

buoys samples, it shows that it is very challenging to the CNN
to decide if it is a buoy or a human.

Regarding the comparison of the performance between 8
and 16 bit images, even with the fact that the 16 bit images
have more detail, the accuracy was sightly higher for the
configuration with 8 bit images. This might be caused by the
reduction of noise when reducing the bit depth, e.g., small
intensity variations in the sea surface.

TABLE II
CONFUSION MATRIX FOR 8 BIT IMAGES WITHOUT USING OBJECT SIZE.
Predicted
Boat | Human | Buoy | Pallet

Boat | 128 0 0 1

True Human 0 36 18 0
Buoy 0 15 45 1
Pallet 0 0 1 145

Images of three vessels from an external dataset (Figure 14)
were used to evaluate the performance of the CNNs.

The observed areas of the vessels were estimated and chosen
to be 200 m?, 25 m? and 10 m? for the big, medium and small
boat, respectively.

When using the CNN where the observed area is not used,
all the three samples achieved 100% of probability of being
a boat. Regarding the CNN where the observed area is used



TABLE III
CONFUSION MATRIX FOR 8 BIT IMAGES USING OBJECT SIZE.
Predicted
Boat | Human | Buoy | Pallet

Boat | 114 0 0 0

True Human 0 41 13 0
Buoy 0 7 64 0
Pallet 0 0 1 150

as an input, the big and medium vessel achieved 100% of
probability of being a boat and the small vessel was classified
as a pallet.

Fig. 14. Images of vessels from an external dataset. Top left: big vessel, top
right: medium vessel, bottom: small vessel.

V. DISCUSSION

To obtain the images of the objects, the bounding boxes
were defined as the smallest box that encloses the boundary
of the object. Then, the bounding boxes of all objects were
padded to the size of the largest bounding box found for the set
of objects of the same class. However, in the SAR mission, it is
not possible to know the class of the object a priori, therefore,
another strategy need to be used to define the bounding boxes.
One solution is to define a specific amount of pixels to be
added to the boundaries of the detected object, to ensure that
the whole object will be inside the bounding box, occupying
as much of it as possible. This amount of pixels should be
defined by the altitude of the UAS when the image is being
captured and also the estimated size of the object. Thus, effects
by the distance to the scene would also be mitigated.

The observed area, as well as its appearance in the thermal
images, are greatly affected by motion blur. For larger objects
this does not pose a major problem, but for objects just a
few pixels in size, the difference can be of major concern.
An actively stabilized gimbal and carefully chosen shutter
times based on the UAS dynamics could prevent this. Another
mitigating solution would be to collect a larger dataset in order
to be able to properly classify objects even with motion blur.

The major difficulty of the CNN is to properly distinguish
between humans and buoys, which is likely due to the low
resolution of the thermal image sensor and relative high
altitude, resulting in the objects being represented by very few
pixels in the images. In real world maritime SAR missions,

however, a buoy being classified as a human would not be a
major issue, as the operator would still be notified, and could
dismiss the notification from the CNN. Incorrectly classifying
a human as a buoy could potentially cause a missed person, but
could be solved by lowering the human probability threshold
for notifying the operator.

In the dataset used in this work, all boat samples have
similar observed areas. Therefore, when evaluating the clas-
sification performance for images of vessels from an external
dataset, the result was superior when using the CNN where
the object area was not considered as an input. However, the
generalization power of the CNN containing the observed area
can be improved by using a dataset with more samples of boats
of different sizes. Also, in general, it is beneficial to have more
data, especially at different angles and altitudes.

VI. FUTURE WORK

In the mission carried out to gather the data used for this
work, an Electro-Optical (EO) camera was also equipped in
the UAS to capture RGB images. However, the thermal and
the RGB images were not obtained during the same flight, so
it is not possible to use the two images together as inputs of
the same CNN.

Therefore, one of the next steps is to develop a CNN to
classify the objects in the RGB images, as the work done by
[6]. Then, investigating a method to use both datasets together,
for example, trying to use the results of each independent CNN
multiplying the probability of each sample to be of each one
of the classes.

For the CNN proposed by this work, the classification
of images of vessels obtained in another mission in totally
different conditions was evaluated. However, it is important to
evaluate the classification for images of humans, buoys and
pallets as well. Thus, it would be possible to estimate how
well the CNN could perform in a real mission.

Another aspect that needs to be evaluated is how to improve
the classification between humans and buoys, especially in
the case of boys, where the calculated probability of one
buoy sample being a buoys is very close to the probability
of being a human. Examples of this approach would be to
use an actively stabilized and sweeping gimbal together with
a lens with higher focal length, in order to get a higher ground
resolution.

VII. CONCLUSION

In this paper, the algorithm for detecting and classifying
objects at the sea surface in thermal camera images taken by
Unmanned Aerial Systems (UAS) has been discussed. The
algorithm uses a Gaussian Mixture Model (GMM) in order to
discriminate foreground objects from the background in the
images. Then, bounding boxes around the objects are defined
and used to train and test a Convolutional Neural Network
(CNN). The observed area of the objects was also estimated
and used as an input. The CNN was evaluated using the k-
fold method with 5 folds and achieved an average of 92.5%
of accuracy. Images of vessels from an external dataset were



also evaluated and all of them achieved 100% of probability
of being a boat when using the CNN where the observed
area was not used. The results and the robustness of the CNN
algorithm prove it to be a useful tool to assist maritime SAR
operations, and be a central part in a future fully autonomous
UAS operation in SAR missions.
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