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Sammendrag 
 

Denne masteroppgaven har tatt for seg beregninger av en spesiell diffusor geometri som er 

utviklet ved institutt for energi og prosessteknikk ved Norges teknisk-naturvitenskaplige 

universitet. Denne diffusor geometrien produserer likevekts-strømning som er den raskeste 

måten energien kan gjennvinnes på og som derfor gir de minste tapene. Beregningene er 

utført ved hjelp av kommersielt numerisk beregningsverktøy ANSYS Fluent 14.5. Diffusoren 

har blitt beregnet i orginal likevekts form med glatte vegger, og for industrielle applikasjoner 

noe som i dette tilfelle betyr at den ene veggen har blitt tilført k-type ruhetselementer. 

Resultatene av beregningene av den orginale likevekts diffusoren har blitt validert mot de 

fysiske målingene utført i [17]. Resultatene av beregningene når diffusoren har blitt tilført k-

type ruhetselementer har blitt validert mot de fysiske målingene utført i [43]. Etter 

beregningene har blitt validert, er de sammenlignet for å forklare hvilken mekanisme som 

forårsakt separasjon i diffusoren med k-type ruhets elementer. 

Beregningene på den orginale likevekts diffusoren har blitt utført ved hjelp av k-ω SST, k-ε 

RNG of Spalart-Allmaras turbulens modeller. Modellene viste god overensstemmelse med 

målingene i [17], dog påviser ingen av modellene tilsvarende likevekts-strømning som målt i 

[17]. Spalart-Allmaras modellen ble vurdert som den modellen som produserte best 

resultater på bakgrunn av at den viste størst tendenser til konstante likevektsparametre i det 

aktuelle likevektsområdet i [17] 

Beregningene på den orginale likevekts diffusoren har blitt utført ved hjelp av k-ω SST, 

Standard k-ω,  k-ε RNG, k-ε Realizable, RSM og Spalart-Allmaras turbulens modeller. Når 

diffusoren var dekket av k-type ruhetselementer var spredningen relative stor i de 

produserte resultatene for de forskjellige turbulens modellene. Det ble funnet at turbulens 

modellen som gav de beste resultatene for den massive grensesjiktseparasjonen i diffusoren 

dekket av ruhetselementer var Spalart-Allmaras modellen. 

Sammenligningen av de to beregningene viser at k-type ruhetselementene gir en betydelig 

økning av fortregnings og bevegelsesmengdetykkelsen. Bidraget fra de økte fortregnings og 

bevegelsesmengdetykkelsene er mye kraftigere enn bidraget fra den økte turbulente 

miksingen som ruhetslementene også skaper. Dette fører til at grensesjiktet ikke klarer å 

overvinne den ugunstige trykkgradienten i diffusoren og dermed separerer grensesjiktet. 
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Abstract 
 

In this thesis the flow through the special equilibrium diffuser geometry developed by the 

department of Energy and Process Engineering at the Norwegian University of Science and 

Technology has been simulated. The simulations have been performed utilizing the 

commercial computational fluid dynamics tool ANSYS Fluent 14.5. The diffuser flow has been 

simulated in original form when the walls were smooth, and for industrial applications 

meaning that the floor of the diffuser were covered with k-type roughness elements. The 

results of the simulations for the original equilibrium diffuser have been validated against 

the measurements performed in [17]. The results of the simulations on the diffuser when 

covered with k-type roughness have been validated against the measurements in [42]. 

Thereafter the simulations have been compared to investigate the mechanism causing the 

boundary layer to separate in the diffuser covered with the roughness elements.  

The simulations performed on the smooth equilibrium diffuser have been executed with the 

k-ω SST, k-ε RNG and the Spalart-Allmaras turbulence models. These models displays good 

resemblance with the measurements in [17] but unfortunately none of the applied models 

shows complete equilibrium flow as in [17]. Nevertheless it was found that the Spalart-

Allmaras model produced the best results, since this models showed the best tendencies of 

constant values of the equilibrium parameters in the specific equilibrium area in [17].  

The simulations performed on the diffuser covered with roughness elements have been 

executed with the k-ω SST, Standard k-ω, k-ε RNG, k-ε Realizable, RSM and Spalart-Allmaras 

models. For the rough diffuser the deviation of the results produced by the different 

turbulence models were significantly larger than for the smooth diffuser. It was found that 

the turbulence model producing the best results for the massively separated flow over k-

type roughness were the Spalart-Allmaras model. 

The comparison of the two simulations shows that the k-type roughness elements causes a 

substantially increase of the displacement and momentum thicknesses which far 

overwhelms the enlarged turbulent mixing also produced by the roughness elements.  

Thereby the boundary layer separates. 
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Introduction 
 

A diffusor is a common device used in fluid mechanical systems to convert kinetic energy, 

into static pressure by decelerating the flow by means of expanding the geometrical area. It 

has many applications, and is used extensively in compressors, pumps, water turbines, inlet 

to incineration chambers and in general everywhere you need to decrease the velocity and 

increase the pressure of the flow. In an ideal diffuser any kinetic energy losses will be 

converted into a pressure gain, this is because the total energy of the fluid is conserved since 

the fluid does not experience any frictional losses or other non-isentropic processes. 

However all real fluid experience losses in the form of energy dissipation, and for the 

diffuser, the dissipation of kinetic energy takes place inside the boundary layer. The 

boundary layer is the region next to the wall where the velocity increases from zero to the 

free stream, and therefore viscous effects becomes important. For the diffuser to operate at 

its peak performance it must be able to use the total geometrical area that is available for 

flow expanding, and to minimize the energy losses due to friction. Because of the increasing 

area of the diffuser, the flow is subjected to an adverse pressure gradient which it has to 

overcome. However the flow in the boundary layer may not be as energetic as the free 

stream due to frictional energy dissipation based on the surface texture. As a result the flow 

can be forced away from the wall and separated areas with recirculating flow can occur, 

severely affecting the diffuser performance. To predict separation the turbulent boundary 

layer growth must be calculated, however this is not a simple process mainly because the 

phenomenon of turbulence is not well understood.  

At the department of Energy and Process Engineering at the Norwegian University of Science 

and Technology a diffuser with smooth walls producing equilibrium flow has been 

developed. Equilibrium flow is the fastest way for pressure recovery and thereby this type of 

diffuser flow gives the smallest losses. However, for industrial applications it will be difficult 

to produce a diffuser with completely smooth walls, meaning that the surface texture will 

always have some degree of roughness. Therefore, k-type roughness elements has been 

placed along the lower wall of the diffuser to study how the diffuser reacts. Unfortunately 

measurements carried out, shows that the diffuser flow now separates massively and 

therefore will be unsuited for industrial applications.  

In this thesis the mechanism causing the separation is to be studied. Understanding this 

mechanism will be fundamental for improving the geometry of the diffuser, and thereby 

making it operate at peak performance.   
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Method and approach 

 

In order to study the effects of surface roughness and thereby the mechanism causing the 

separation, the thesis will divided into six main chapters in the interest of achieving a 

comprehensive investigation of the problem. These chapter are as follows: 

 

Chapter 1 – Theory: 

Fundamental theory regarding turbulent flows and corresponding governing equations are 

presented. Thereafter follows sections where surface roughness and adverse pressure 

gradient effects are outlined. The chapter is concluded with a presentation of computational 

fluid dynamics (CFD) and turbulence modeling. 

Chapter 2 – Model description: 

In this chapter the model used to simulate the flow through the original equilibrium diffuser 

and the diffuser covered with roughness elements is presented. The chapter is concluded 

with a presentation of the physical measurements for the original equilibrium diffuser 

obtained in [17], and for the diffuser when covered with roughness elements obtained in 

[43]. 

Chapter 3 – Results: 

In this chapter the results from the simulations are presented. First the simulations on the 

original equilibrium diffuser are presented, and validated against the physical measurements 

obtained in [17]. Secondly the results from the simulations on the diffuser when covered 

with roughness elements are presented and validated against the measurements in [43]  

Chapter 4 – Discussion of CFD results: 

In this chapter the results from the simulations are discussed. First the results from the 

original equilibrium diffuser are discussed, secondly the results from the diffuser when 

covered with roughness elements are discussed. 

Chapter 5 – Smooth versus rough diffuser 

In this chapter the simulations on the original equilibrium diffuser and the diffuser when 

covered with roughness elements are compared and discussed. 

Chapter 6 – Conclusion  

In this chapter the conclusion and thereby the reason behind the boundary layer separation 

is outlined. 
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Chapter 1 - Theory 
 

1.1 Fluid Flow  
 

1.1.1 Laminar flow 

 
To describe fluid flow it is useful to create the concept of a streamline, this is an imaginary 

line which is defined as: A line drawn through the flow field in such a manner that the local 

velocity vector is always tangent to the streamline at every point. 

In laminar flow the streamlines are parallel, the flow is well ordered and there is no mixing 

going on between adjacent layers. Laminar flow is also characterized as having a relative low 

Reynolds number, i.e. the ratio of inertial forces to viscous forces.  Given the characteristic 

velocity U and length scale L of a system, the Reynolds number (Re) is defined as Re= UL/𝜈, 

where 𝜈 is the kinematic viscosity. As the velocity increases the shear between the adjacent 

laminar layers grows and at sufficiently high Re, the fluid starts to rotate and rapidly 

becomes turbulent. The existence of any given laminar flow situation is therefore governed 

by its poor resistance to high Re numbers. 

 

1.1.2 Turbulent Flow 
 

The turbulent flow regime is characterized as chaotic and therefore if you look at a point in 

the flow e.g. points (A) in you will observe velocity fluctuations in the form of swirls. The 

velocity fluctuations are denoted u’, v’ and w’ for velocity fluctuations in respectively x, v 

and z direction. Most flows of practical interest are turbulent. Turbulence can be generalized 

to include the following statements as in [1, p.3]. 

 

 Irregularity: The flow is irregular and random which require statistical methods. 

 

 Diffusivity:  Rapid mixing of heat, momentum and mass. This is considered one 

of the most important properties of turbulence. 

 

 

 Large Re:  Turbulence occurs at high Re where the inertial effects are much 

more significant than the viscous forces. 
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 Three dimensional vorticity fluctuations: Turbulence is 3D and rotational. In 2D 

an important aspect of turbulence known as vortex stretching would not be 

possible 

 

 Dissipation: Turbulent flows dissipate energy because of the viscous shear 

stress perform deformation work. This increases the internal energy of the fluid 

at the expense of the kinetic energy of the turbulence. Therefor turbulent flows 

always need a constant supply of energy or the turbulence will decay rapidly.  

 

 

 Continuum: Turbulence is governed by the equations of fluid mechanics. The 

smallest scale of turbulence happens at the Kolmogorov scale and these are far 

larger than any molecular length scale. 

 

 

Figure 1: Laminar and turbulent flow visualization [2, p.1] 
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1.2 Governing equations 
 

The governing equations of fluid dynamics can be derived by considering these fundamental 

physical laws: 

 Conservation of mass 

 Conservation of momentum 

 Conservation of energy 

In this thesis the flow is assumed to have a negligible temperature difference and therefore 

the governing equations are reduced to conservation of mass and momentum. 

 

1.2.1 Reynolds Transport theorem 
 

In an Eulerian representation of an incompressible fluid, the variables x, y, z, t are 

independent i.e. the coordinate axis is independent to the flowing fluid particles. The symbol 

∂ denotes a partial derivative in an Eulerian reference frame. In a Lagrangian reference 

frame x, y, z, t are not independent i.e. the coordinate frame is fixed to a volume or a 

particle. The symbol D denotes a partial derivative in a Lagrangian reference frame [3, p.17].  

Reynolds transport theorem gives us an relation between the Lagrangian and Eulerian 

description, of the temporal rate of change of a fluid at every point (x,y,z,t) in a flow field 

with Eulerian reference frame velocity u(x,y,z,t). Reynolds transport theorem can be derived 

by considering the rate of change of an extensive property (property that depends on mass) 

of a system as it passes through a control volume. For derivational details see [3, p.141]. 

 

Dφ

Dt
=

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) 

(1) 

 

 

Where u, v and w is speed in x, y and z direction and 𝜑 is an extensive property i.e. mass, 

momentum or energy. By substituting mass = ∫ 𝜌𝑑𝑉
.

𝑉
 in for 𝜑, the continuity or conservation 

of mass equation is derived, yielding: 

∂ρ

∂t
=

∂ρu

∂x
+

∂ρv

∂y
+

∂ρw

∂z
 

(2) 
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This means that in an incompressible two dimensional flow, a decrease in the stream wise 

velocity u, must be compensated for by an increase in the wall normal velocity v, by the 

relation: 

v = −
∂

∂x
∫udy

y

0

 

(3) 

          

1.2.2 Navier-Stokes Equation (conservation of momentum) 
 

The Navier-Stokes equation is derived by considering Newton’s second law  ∑𝑭 = 𝑚𝒂 

where bold letters denote a vector quantity. The sum of forces can be divided into: 

 Surface forces: Pressure and viscous 

 Body forces: Gravity. Also Coriolis and electromagnetic but these are not of influence 

in this project. 

Newton’s second law is defined in a Lagrangian reference frame, so it can be written  

∑𝑭 = 𝑚
𝐷𝑽

𝐷𝑡
  =  

𝐷

𝐷𝑡
∫ 𝜌𝒖𝑑𝑉

.

𝑉(𝑡)
 (4) 

   

By considering the x direction (similar for y and z direction) ρu becomes ρ𝑢𝑥 and is a scalar 

quantity. Setting 𝜑= ρ𝑢𝑥 and applying Reynolds transport theorem: 

𝐷

𝐷𝑡
∫ 𝜌𝑢𝒙𝑑𝑉 

.

𝑉(𝑡)
= ∫ [

𝜕𝜌𝑢𝑥

𝜕𝑡

.

𝑉(𝑡)
+∇ · (𝜌𝑢𝑥𝒖)]dV= ∑𝐹𝑥 (5) 

 

When considering the right hand side of equation (5), the sum of forces acting on the fluid 

volume will be; pressure, viscosity and gravity. The Navier-Stokes equations for 

incompressible viscous fluid in strong form can therefore be written in x, y and z direction as: 

      

D(ρux)

Dt
= −

∂p

∂x
+ ∇ · (µ∇ux) + ρgx 

(6) 

 

D(ρux)

Dt
= −

∂p

∂x
+ ∇ · (µ∇ux) + ρgx 

(7) 

 

D(ρuz)

Dt
= −

∂p

∂z
+ ∇ · (µ∇uz) + ρgz 

(8) 
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1.2.3 Reynolds Average Navier-Stokes equation (RANS) 
 

Because of the fluctuations in turbulent flow, the velocities and pressures are changing 

rapidly in time and space. This makes a full solution of the N-S equations very difficult to 

obtain. Also for engineering purpose one is much more interested in averaged values for 

velocity, pressure and shear stress. Therefor Osborne Reynolds decomposed the velocity and 

pressure terms in N-S into a mean part and a fluctuating part, written in Einstein tensor 

notation as.  

𝑢𝑖 = 𝑈𝑖 + 𝑢𝑖
′ 

 
(9) 

 

𝑝𝑖 = 𝑃𝑖 + 𝑝𝑖
′ 

 
(10) 

 

Where capital letter denote mean values. Inserting these into the N-S and taking the average 

of the different terms will yield the Reynolds average Navier-Stokes equation written in 

Einstein summation tensor notation and with the Kronecker delta 𝛿𝑖𝑗= |
1 0 0

0 1 0

0 0 1

| 

 

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −

1

ρ

∂

∂xj
[−Pδij + µ

∂Ui

∂xj
− ui

′uj
′̅̅ ̅̅ ̅] 

(11) 

 

             

 

Figure 2 RANS principle [4] 
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1.2.4 Reynolds stresses 
 

If one compares equation (11) to the conventional N-S equations, one see that the RANS 

equation has one extra term included. This is the Reynolds stresses 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  which is a second 

order tensor and arises from the convective term in the Navier-Stokes equation and 

represent the effect of turbulent fluctuations. Turbulent fluctuations transport momentum 

(and other properties) across the flow field and thereby increases the mixing and transport 

in the flow.  Turbulent fluctuations means that small masses of fluid are swept around in the 

fluid flow. If a small mass of fluid from a high velocity zone is swept into a low velocity zone, 

it will have an accelerating effect on the fluid in the lower velocity zone. If a small mass of 

fluid is swept from a low velocity zone into a high velocity zone, it will have a retarding effect 

on the fluid in the high velocity zone. Even though turbulent fluctuations are called stresses, 

they actually represent average momentum flux. However as far as the mean flow is 

concerned this extra flux of momentum per unit area has the same effect as an additional 

stress. Therefore the total effective stress in a turbulent flow consist of the turbulent 

Reynolds stresses and the viscous stress [5, p.77] 

 

𝜏𝑖𝑗 =  µ
𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅  

 

(12) 

 

The turbulent contribution to the transport of momentum is substantially higher than the 

viscous component. In this way, the turbulence can be viewed as an additional viscosity. As a 

result, in turbulent flows one will have one effective stress and one effective viscosity. 

 

𝝉𝒆𝒇𝒇 = 𝝉 + 𝝉𝒕𝒖𝒓𝒃   ;    𝝁𝒆𝒇𝒇 = 𝝁 + 𝝁𝒕𝒖𝒓𝒃 

 

The turbulent viscosity or eddy viscosity is not a thermodynamic property like the molecular 

viscosity but it has the same units Pa∙s, and varies instead with flow conditions and 

geometry. 
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1.2.5 Turbulent kinetic energy 
 

In the same way the RANS equations where derived, the kinetic energy of the turbulent 

motions per unit mas can be derived by subtracting the mean kinetic energy from the 

instantaneous kinetic energy of the flow, and then average the remaining part: 

1

2
[  𝑢𝑖𝑢𝑖 − 𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] =

1

2
𝑢𝑖

′𝑢𝑖
′̅̅ ̅̅ ̅̅ = 𝑘 

 

(13) 

 

The mean turbulent kinetic energy refereed to from now on as turbulent kinetic energy 

(TKE), is a measurable quantity and its transport equation can be derived by introducing 

Reynolds decomposition into the instantaneous Navier-Stokes equations. By multiplying the 

entire equation by the fluctuating velocity 𝑢𝑖
′ and average the final expression, we arrive at 

the exact transport equation for k:   

𝜕𝑘

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
= 𝐷𝑘 + 𝑃𝑘 − 휀 

 

(14) 

 

The two first terms on the left hand side are respectively the rate of change of k plus the 

transport of k by convection. The terms on the right hand is as follows: 

𝐷𝑘 = −
𝜕

𝜕𝑥𝑗
[
1

𝜌
𝑢𝑗

′𝑝′̅̅ ̅̅ ̅̅ +
1

2
𝜌𝑢𝑖

′𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ ̅̅ − 2
𝜇

𝜌
𝑢𝑖

′𝑠𝑖𝑗
′̅̅ ̅̅ ̅̅ ] 

 

(15) 

 

Equation (15) represent diffusion of TKE due to turbulent and molecular transport. The name 

diffusion is somewhat misleading since it actually refers to advection of TKE. This advection 

is caused by fluxes of TKE from areas of high concentration of TKE to areas of low 

concentration of TKE and thereby the analogy to diffusion. 

The first term inside the bracket represent the transport of k by pressure, the second 

represent the transport of k by Reynolds stresses, and finally the third one represent the 

transport of k by viscous stresses. The latter term is negligible for high Reynolds numbers, 

and are therefore neglected except near the walls where viscous effects are important. 
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𝑃𝑘= − 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅
𝜕𝑈𝑖

𝜕𝑥𝑗
 

 

(16) 

 

Equation (16) represent production of TKE by interaction of the mean flow and the turbulent 

stresses. More exactly it describes the rate of energy transfer from the mean motion to the 

turbulence and is always positive. One can see that without mean velocity gradients there is 

no production of turbulence and hence it will decay. Velocity gradients are strongest near 

solid boundaries and therefore it is in this region where most of the turbulent production 

takes place before it get diffused towards the axis. 

 

 

휀 = 2𝜈𝑠𝑖𝑗
′ 𝑠𝑖𝑗

′̅̅ ̅̅ ̅̅  
 

(17) 

 

Equation (17) represent the average turbulent dissipation rate and it is this term that 

converts mechanical energy into thermal energy. It is always positive which consequently 

means that energy is extracted from the turbulence by the action of the viscous stresses. 

The dissipation term is of the same order as the production term and consequently never 

negligible. 

 

1.2.6 Turbulent scales 
 

Turbulent flow transfer its energy from large swirls (eddies) to smaller swirls at the 

dissipation rate ε~𝑢3/l. Here l and u are the largest scale of motion, and in a pipe these will 

be typically of the order of the pipe diameter. At these scales the viscosity is not enough to 

dissipate the eddies, and in order to avoid energy accumulation the large eddies must 

transfer their energy to smaller and smaller eddies until the length scale of the eddies is such 

that viscosity becomes important and hence will dampen them out i.e. dissipating them into 

heat. This transfer of energy from the largest scale down to the smallest scale is known as 

the energy cascade. The scale where the dissipations take place is called the Kolmogorov 

scale, which consists of the smallest turbulent scales.  

 

Figure 3: Energy cascade [6] 
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The molecular viscosity is a product of one velocity scale and one length scale.  

 

𝜇 = 𝜌𝑙𝑣 
 

(18) 

 

Where 𝑙  is the molecular mean free path, and 𝑣 is the mean molecular velocity. In like 

manner the eddy viscosity can be interpreted as the product of one characteristic length and 

velocity scale. 

𝜇𝑡 = 𝜌𝑙′𝑣′ 
 

(19) 

 

The eddy viscosity is a function of the flow and varies with geometrical flow area and flow 

conditions. Therefore an adequate scale for the velocity is √𝑘 since  𝑣′~√𝑘.  By dimensional 

analysis a scale for the characteristics length of the largest eddies with physical meaning, can 

be derived by: 

𝑙 ≈
𝑘

3
2⁄

휀
 

 

(20) 

 

Where the quantity 𝑘/휀 is a measure of eddy turnover time indicating how fast turbulence 

is dissipated by viscosity. Using these quantities, one can derive a viable expression for the 

kinematic eddy viscosity: 

𝜈𝑡 ≈
𝑘2

휀
 

 

(21) 

 

1.2.6 Bernoulli’s equation 

 

For constant viscosity and density i.e. thermally uncoupled, the Navier-Stokes equation 

yields 

 

𝜌
𝐷𝑽

𝐷𝑡
= −

𝜕𝑝

𝜕𝑥
+ ∇ · (µ∇𝑽) + 𝜌𝒈 

(22) 
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If one assumes that the viscous terms are negligible and that the flow is steady, then by 

integrating the remaining part along a streamline between any points 1 and 2, Bernoulli’s 

equation will reveal itself. 

(𝑝1 +
1

2
𝜌𝑉1

2 + 𝜌𝑔𝑧1) = (𝑝2 +
1

2
𝜌𝑉2

2 + 𝜌𝑔𝑧2) 

 

p +
1

2
𝜌𝑉2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(23) 

 

Bernoulli’s equation states that for an incompressible (within Mach 0.3 compressibility 

effects are negligible), inviscid and steady flow along a streamline, the sum of static (p) and 

dynamic (
1

2
𝜌𝑉2) pressures are constant. In equation (23) the gravity term is neglected and 

this is realistic in gas dynamics. 

 

1.3 The Boundary layer 
 

Boundary layers appear on the surface of bodies because of the no-slip condition. The no slip 

condition states that because of viscosity, the velocity at the surface must be zero in all 

directions, meaning that the presence of a wall will have a retarding effect on the flow. The 

distance needed for the fluid to reach 99.5% of the free stream velocity is defined as the 

boundary layer, denoted 𝛿. The boundary layer therefore represents the distance from the 

wall at which viscous effects becomes negligible, which again implies by mass conservation, 

that when the flow is subjected to the retarding effect of wall friction the free stream 

velocity increases. The layers above the surface are moving, consequently there will be shear 

stress between the different layers of fluid [7, p.2]. The shear stress between the surface and 

the layer immediately above is called wall shear stress or 𝜏0. In a laminar boundary layer the 

viscous forces are capable of dampening out disturbances in the flow. As the laminar layer 

grows the inertial forces gets stronger and at one point will surpass the viscous forces, the 

disturbances in the flow will amplify and transition to turbulence will occur.  

 

 

Figure 4 Typical boundary layer profile [8, p.8] 
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The shear stress is directly related to the rate of deformation of a volume of fluid. The wall 

shear stress was discovered by Newton to follow the relation: 

𝜏0 = 𝜇
𝑑𝑢

𝑑𝑦
|
𝑦=0

 

 

(24) 

 

Here 𝜇 is the dynamic viscosity, 
𝑑𝑢

𝑑𝑦
 is the velocity gradient and 𝜏0 is the wall shear stress. 

This definition implies that the shear stress is not constant over, e.g. the total length (L) of a 

plate with width (B), and hence one must integrate over the entire surface to obtain total 

surface resistance [9, p.436] 

 

𝐹𝑠 = ∫ 𝜏0𝐵𝑑𝑥
𝐿

0

 

 

(25) 

 

The drag experienced by the flow consists however not only by the surface friction drag, but 

also of a form or pressure drag related to pressure differences experienced by the flow. The 

form drag is by far the dominant term in bluff bodies, whilst for streamline bodies the skin 

friction drag is the major contributor. 

𝐷𝑟𝑎𝑔 = ∯𝜏0⃗⃗  ⃗ ∙ �̂�∞𝑑𝑆 − ∯𝑝�̂� ∙ �̂�∞𝑑𝑆 

 

(26) 

 

In equation 23, �̂�∞ is a unit vector parallel to the free stream and integration takes place 

over the entire wetted area [10, p.237]. The second integral represent the form drag. 

 

 

1.3.1 Boundary layer parameters 
 

In order to describe the boundary layer it is useful to employ different tools. The most 

important boundary layer parameters are therefore explained in this section. 

 

 The boundary layer thickness 

The boundary layer thickness is defined as the distance from the surface to a point vertical 

to the surface where the velocity has reached 99.5% of the free stream velocity i.e: 

𝛿 = 𝑦(0.995𝑈𝑒 (27) 
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 Displacement thickness 

The displacement thickness 𝛿∗is defined as: “The displacement of the streamlines from the 

wall compared to the inviscid solution in order to obtain the same mass flow rate as in the 

real case” I.e. 

∫ 𝑢𝑑𝑦

∞

0

= ∫ 𝑈𝑒𝑑𝑦
∞

𝛿∗

→  𝛿∗ = ∫ (1 −
𝑢

𝑈𝑒
)𝑑𝑦

∞

0

 

 

(28) 

 

 

Figure 5:  Displacement thickness visualization [11, p.1]  

 

 Momentum Thickness 

In the same way the momentum thickness 𝜃 is defined as the distance the wall would have 

to be displaced parallel to itself in an inviscid solution to give the same momentum as in the 

real case I.e. 

𝜃 = ∫
𝑢

𝑈𝑒
(1 −

𝑢

𝑈𝑒
)𝑑𝑦

∞

0

 

 

(29) 

 

 

 Von Kármans integral relation 

In Von Kármans integral relation the displacement and momentum thickness is related to 

the friction coefficient. The relation states that the rate of change of momentum in the 

boundary layer at any value of x, is equal to the force produced by the shear stress at that 

location.  

1

2
𝐶𝑓 =

𝑑𝜃

𝑑𝑥
+ (2 + 𝐻)

𝜃

𝑈𝑒

𝑑𝑈𝑒

𝑑𝑥
 

(30) 
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Where the friction coefficient 𝐶𝑓 is defined as: 

𝐶𝑓 =
𝜏0

0.5𝜌𝑈𝑒
2
 (31) 

 

 

 𝑅𝑒𝜃 

𝑅𝑒𝜃 is the momentum thickness Reynolds number defined as: 

𝑅𝑒𝜃 =
𝜌𝑈𝑒𝜃

𝜇
 

(32) 

 

 

 Shape factor (H) 

 

The shape factor is defined as the ratio of displacement to momentum thickness, and gives 

an indication of the fullness of the boundary layer profile. In figure (7) the turbulent 

boundary layer profile is fuller than the laminar one. High shape factors signifies that the 

boundary layer is near separation. For turbulent flows a shape factor of around 3 would 

indicate that the flow is on the verge of separation or has in fact separated. 

𝐻 =
𝛿∗

𝜃
 

(33) 

 

 

Figure 6 :  Boundary layer profile during large and small Shape factor values [11, p.2] 
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1.3.1 Turbulent boundary layer 
 

Most flows of interest are turbulent and so are the boundary layers. The boundary layer is 

important because it is here that the surface shear force takes place and hence it is vital for 

flow rates, drag, flow separation and heat transfer. The turbulence causes much more rapid 

diffusion of momentum from the wall and hence the turbulent boundary layer grows faster 

than the laminar one. Also since the velocity gradients are much steeper, due to velocity 

fluctuations in turbulent boundary layers, the wall shear stress in turbulent boundary layers 

are higher. The turbulent boundary layer has three different zones that need different 

equations for the velocity distribution.  

Prandtl [12] showed that for the boundary layer, the Navier-Stokes equations can be 

reduced to a simpler form. By doing an order of magnitude analysis of the N-S and applying 

Reynolds decomposition one can derive these. For details [10, p149] Where 𝑝𝐸 is the 

external pressure, impinged on the boundary layer, therefor the external pressure dictates 

the boundary layer pressure. The turbulent boundary layer equation in the x-direction yields: 

𝑈
𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
= −

1

𝜌

𝜕𝑝𝑒

𝜕𝑥
+

𝜕

𝜕𝑦
(𝜈

𝜕𝑈

𝜕𝑦
− 𝑢′𝑣′̅̅ ̅̅ ̅̅ ) 

 

(34) 

 

 

Figure 7:  Laminar boundary layer to the left and turbulent boundary layer to the right plotted in non-
dimensional profiles [13]. 

 

1.3.2 Viscous sub-layer 
 

This is the region very close to the wall, and here the wall dampens out the cross stream 

mixing. Therefor in this region, viscosity is responsible for the vertical transport of 

momentum. In the viscous sub-layer is very close to the wall and 𝜏 is equal to 𝜏0, thus 

equation (34) yields:  
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µ
𝑑𝑈

𝑑𝑦
= 𝜏0 

 

(35) 

 

 

Which after some integration and rearranging can be written: 

𝑢

√
𝜏0

𝜌⁄

=
√

𝜏0
𝜌⁄

𝜈
𝑦    

(36) 

  

The expression  √
𝜏0

𝜌
  is an important term in boundary layer theory, it has the dimensions of 

velocity and has been given the name “friction velocity” with the symbol 𝑢𝜏. Equation (35) 

can now be written in non-dimensional form: 

 

𝑢

𝑢𝜏
=

𝑢𝜏𝑦

𝜈
 → 𝑢+ = 𝑦+ 

 

(37) 

 

Where 𝑦+ is the local Reynolds number, and measures the ratio of viscous to inertial forces 

at different distances from the wall. 

 

 

1.3.3 The logarithmic velocity profile 
 

The region just outside the viscous sub-layer is turbulent and therefor one has to include the 

Reynolds stresses. Prandtl developed a theory to relate the Reynolds stresses to the mean 

velocity distribution known as; Prandtl’s mixing length theory. The mixing length 𝑙 is defined 

by Prandtl as: “The mixing length may be considered as the diameter of the masses of fluid 

moving as a whole in each individual case; or again, as the distance traversed by a mass of 

this type before it becomes blended in with neighbouring masses”. Prandtl also made the 

assumption that the mixing length was proportional to the distance from the wall i.e. 𝑙 = ĸ𝑦. 

The Reynold stresses can be approximated using the mixing length theory to yield [14, 

p.128] 

-𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ =𝜌ĸ2𝑦2 |
𝑑𝑢

𝑑𝑦
|
𝑑𝑢

𝑑𝑦
 

 

(38) 
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Taking the square root of the above and integrating yields the logarithmic velocity 

distribution for the turbulent zone next to the viscous sub-layer: 

𝑢+ =
1

ĸ
ln 𝑦++ B           

 

(39) 

 

The logarithmic velocity profile is valid in a region from approximately; 𝑦+ = 30 until 𝑦+ =

500. The constants ĸ and B are determined experimentally and are most often respectively 

0.41 and 5.2. The logarithmic and viscous sub-layer belongs to the turbulent boundary 

layers, inner layer. In the case of turbulent flow over rough surfaces, the log law must be 

modified with a roughness function ∆𝑈+which main effect is to give the log law a vertical 

down shift. The log law corrected for roughness yields: 

𝑢+ =
1

ĸ
ln 𝑦++ B - ∆𝑈+           

 

(40) 

 

 

1.3.4 Velocity defect layer and Coles law of the wake 
 

The velocity defect region is in the outer layer of the boundary layer. In this region 

momentum transport by turbulence is far greater than by viscosity, hence the velocity 

profile should depend on u, y, 𝜏0, 𝜌 and 𝛿 but not 𝜈. Using dimensional analysis one can 

obtain two dimensionless numbers, and by setting those equal to each other one obtains the 

velocity defect law: 

𝑈𝑒−𝑢

𝑢𝜏
 = 

𝑦

𝛿
→  

𝑈𝑒−𝑢

𝑢𝜏
= 𝑓(𝜂) 

 

(41) 

 

Here 𝑈𝑒 is the flow at the edge of the boundary layer. The velocity defect law contains as 

much as 80 to 90 % of the turbulent boundary layer. 

Particularly in non-equilibrium boundary layers with an adverse pressure gradient APG (see 

chapter 5) the log law deviates from the velocity profile. Coles found that this deviation had 

a wake like shape and could be represented by adding an extra term to the log law namely: 

2П

ĸ
𝑤(

𝑦

𝛿
) 

 

(42) 
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The term 𝑤(
𝑦

𝛿
) is often given an s shaped function in the form of; sin2(

𝜋𝑦

2𝛿
 ) where П is the 

wake strength and depends on the pressure gradient, it has a typical value of 0.45 for zero 

pressure gradients. The turbulent boundary layer equation corrected for roughness and 

pressure gradient can therefore be adequately represented by the function: 

𝑢+ =
1

ĸ
 ln 𝑦++ B +∆𝑈+ +

2𝜋

ĸ
sin2(

𝜋𝑦

2𝛿
)          

 

(43) 

 

 

 

Figure 8: Turbulent boundary layer structure [15]  

 

 

 

1.3.5 Equilibrium boundary layers 
 

The concept of an equilibrium turbulent boundary layer was first laid out by the most 

renowned aerodynamicist Francis H. Clauser in the year 1954. Clauser found that if the 

mainstream velocity distribution can be classified by a constant value of the Clauser 

parameter: 

𝛽 =
𝛿∗

𝜏𝑤
(
𝜕𝑃𝑒

𝜕𝑥
) 

 

(44) 

 

Then the flow is self-similar also known as equilibrium flow. The Clauser parameter 

represent the ratio of shear forces to pressure forces in a section of the boundary layer. The 
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pressure gradient controls the growth rate of the boundary layer, and a constant Clauser 

parameter gives a streamwise pressure distribution which provides a boundary layer growth 

characterized by similarity of the velocity defects profiles. The origin of equilibrium flow is 

observed in the logarithmic region, where during equilibrium flows the amount of 

production and dissipation of TKE is equal [16, p.73]. This leads to boundary layer velocity 

profiles that are independent of the stream wise direction when plotted using the velocity 

defect law.  

An important implications of a constant Clauser parameter is that the freestream velocity 

distribution in the streamwise direction can be expressed using a power law formulation [9, 

p.420]:  

𝑈𝑒 = 𝑈𝑟𝑒𝑓(𝑥0 − 𝑥)−𝑚 

 

(45) 

 

Where the different variables are: 

 𝑈𝑒 is the freestream velocity in the specific crossection 

 

 𝑈𝑟𝑒𝑓 is a theoretical reference velocity 

 

 To have equilibrium flow it is required that the momentum, displacement and 

boundary layer thickness grow linearly. 𝑥0 is the virtual origin from where these 

parameters in the equilibrium part of the boundary layer have a common origin [17, 

p.325]. 

 

This constitute that the strength of the APG can be controlled by adjusting the value of m. 

For zero pressure gradient m equals zero, whilst for strong APG the value of m can be as high 

as 0.23 for non-separating APG flows.  

 

The last parameter defined by Clauser that must be constant in equilibrium boundary layer 

flow is the Clauser shape factor: 

𝐺 =
(𝐻 − 1)

(𝐻√0.5𝐶𝑓)
 

 

(46) 

 

Where 𝐻 is the shapefactor and 𝐶𝑓is the skin friction coefficient. The Clauser shape factor 

gives an indication of the fullness of the boundary layer related to the friction. 
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1.3 Surface roughness 
 

As mentioned in section (1.3) the presence of a wall will have a retarding effect on the flow 

caused by an imposed drag force from the wall. The magnitude of this drag force is highly 

dependent on the surface texture. In the case of flow over a smooth surface the drag force 

consist mainly of skin friction, whilst in flow over a rough surface, the roughness elements 

will protrude into the flow, thereby giving rise to pressure forces acting on the roughness 

elements. Consequently, a pressure difference over each roughness element will appear, 

leading to increased drag since the fluid particles will impinge more of their momentum to 

the wall. The momentum loss experienced by the flow, will thus consist of both a skin 

friction drag and the form drag. The latter is however, often significantly higher especially 

during flow separation. Roughness will also by its nature stimulate turbulence, giving rise to 

steeper velocity gradients near the surface, and thereby bringing more momentum into the 

boundary layer. 

 

Figure 9: Laminar flow left figure, turbulent flow induced by roughness right figure 

 

Roughness can also have a substantial effect on the log law in figure (8). Prandtl’s student 

Nikuradse found that surface roughness will tend to shift the log law down by an 

amount ∆𝑈+. The amount of downshift will be determined by the type of roughness and the 

roughness distribution, the slope of the log law will however remain the same at 1 𝑘⁄  [3, 

p.362]. However, one situation that can occur in turbulent boundary layers with rough walls, 

is that the logarithmic layer might not survive. If this happens or not is influenced by the 

ratio 𝛿 𝑘⁄   which is the ratio of the boundary layer thickness to the roughness height. In [18, 

p.192] the author suggest that this ratio has to be larger the 40 before similarity laws can be 

expected. In a study performed by [45, p.1] the authors found that the roughness 

significantly changed the secondary flow pattern in rectangular ducts with one rough wall. 
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 Nikuradse simulated roughness by gluing sand grains with approximately the same size at 

the walls of pipes. He found that the influence of roughness is determined by 𝑘𝑠
+ =

𝑢𝜏𝑘𝑠

𝜈
  

where 𝑘𝑠 is sand grain size. He managed to determine the following regimes: 

 

Hydraulically smooth:  ks
+ < 5. In this regime roughness has no effect on the friction factor 

or the velocity profile. 

 

Transitional roughness: 5 < ks
+ < 70. In this regime both roughness and viscous effects 

operate. 

 

Fully rough: ks
+ >70. Transfer of momentum to the wall is predominantly by pressure drag 

on surface elements. Wall friction becomes independent of Reynolds number. 

 

 

1.4.1 The Moody chart 
 

Nikuradse did experiments with pipe flow of constant cross section and found that the 

surface resistance increased with increasing roughness ratio (k/d) where d is the diameter of 

the pipe. Moody [19] managed to make a chart now known as the Moody chart. This is a 

non-dimensional chart that relates the Darcy-Weisbach friction factor, Reynolds number and 

relative roughness (ε/d in Moody chart) for a pipe with fully developed flow. It is used to 

calculate pressure drops and flow rates down pipes and is valid for both liquid and gas in 

circular or non-circular pipe flows [3, p.363]. From the Moody chart we can deduct that 

increased relative roughness gives higher friction factors, and also that when the Reynolds 

number gets sufficiently large the relative roughness curves are basically horizontal and the 

friction factor is thereby independent of the Reynolds number. Similarly at higher relative 

roughness the Reynolds number has less impact on the friction factor. The pressure drop ∆𝑃 

can be estimated as follows: 

∆𝑃 = 𝜌
𝑓𝐿𝑉2

2𝐷
 

 

(47) 

 

Where 𝜌, 𝑉, 𝐿 𝑎𝑛𝑑 𝐷 are respectively the density of the fluid, the average velocity in the 

pipe, the length of the pipe and the diameter of the pipe. From equation (47) one can see 

that increased roughness in the form of higher friction factor 𝑓 gives a larger pressure drop 

and thereby increased energy losses in the pipe.  
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Figure 10:  Moody diagram [20] 

 

 

1.4.2 Roughness types 
 

At the scale of the roughness elements, the flow is no longer parallel to the ground plane 

and will depend on the geometry of the roughness elements.  For roughness elements 

resembling e.g. bluff bodies, the flow structure is dominated by the wake created by the 

roughness elements and is therefore non homogenous above the crest of the roughness 

elements [21, p.2]. According to the wall similarity hypothesis the turbulent motion, outside 

the roughness sub layer (a region stretching out approximately five roughness heights k) is at 

a sufficiently high Reynolds number, unaffected by the surface roughness [22, p.600]. 

However Krogstad et al [22, p.615] suggest that the roughness effect spreads throughout the 

boundary layer. 

It has been made a distinction between so called k-type and d-type roughness. If the 

roughness height (k) is smaller than the distance (s) between the roughness elements, then 

one has k-type roughness. If the density of the roughness elements i.e. the spacing between 

the elements is less than the height (k) then one has d-type roughness. [23, p.1]. The 

roughness function ∆𝑈+ for flows over k-type roughness depends on the roughness height k, 

but for d-type roughness where the distance between the roughness elements are small, the 

roughness function depends on an outer scale e.g. the pipe diameter. More roughly a 

distinction between d and k-type roughness is also often determined using the pitch to 

height ratio defined in figure (11). With a P/k≥ 3 one has k-type roughness if the ratio is less 

one has d-type roughness. 
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Figure 11: Pitch (P) to height (k)   [24] 

 

In [23, p.2] the authors suggest that for a k-type roughness eddies with length scales of order 

(k) are shed into the flow above the crests of the elements. Further away from the crests, 

these eddies diffuse into the flow. The same authors suggest that for d-type roughness 

stable vortices form within the grooves, and there is essentially no eddy shedding into the 

flow above the elements. The flow in the recirculation zone will however experience friction 

against all sides in the cavity. K-type roughness will therefore be the roughness type 

responsible for the biggest downshift in ∆𝑈+ and is also the one giving the greatest 𝐶𝑓 

values. This is because in the d-type roughness a recirculation zone as seen in figure (12) 

isolates the outer flow from the roughness cavities, and therefore shelters the flow from the 

roughness. Whilst in k-type roughness two recirculation zones exist and the streamlines 

curve inward. Consequently the interaction between the overlying flow and the roughness 

elements becomes stronger with k-type roughness 

 

Figure 12 : D-type and K-type roughness [26] 
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1.5 Adverse pressure gradient 
 

A favourable pressure gradient is one in which the static pressure decreases in the stream 

wise direction i.e. 
𝜕𝑝

𝜕𝑥
< 0. An adverse pressure gradient (APG) is one in which the  static 

pressure increase in the stream wise direction i.e. 
𝜕𝑝

𝜕𝑥
> 0. APG occurs whenever the flow 

experiences an enlargement in flow area. This is in accordance with the continuity and 

Bernoulli equations. The continuity equation yields:  𝑉2 =
𝐴1

𝐴2
𝑉1, and since 𝐴2 is bigger then 

𝐴1 the velocity 𝑉2 must be less then 𝑉1. The Bernoulli equation states that the sum of 

dynamic and static pressure is constant, within the limitations already mentioned. This 

implies that if the velocity goes down the static pressure must go up. Therefor an 

enlargement in flow area will decelerate the fluid particles. Also if one takes the derivative of 

the Bernoulli equation along the x direction, on will obtain: 

𝑈
𝑑𝑈

𝑑𝑥
= −

1

𝜌

𝑑𝑝0

𝑑𝑥
 

 

(48) 

 

Showing that a negative pressure gradient gives acceleration to the flow and a positive 

gradient will decelerate the flow.  

The main effect of an APG on the turbulent boundary layer is to shift the outer layer in figure 

(8) upwards and to the left. Meaning that the APG increases the wake region which in turn 

reduces the section where the logarithmic law of the wall is applicable. In flows near 

separation the wall shear stress and therefore the friction velocity becomes vanishingly 

small, causing 𝑈+ to become very large, hence 𝑦+ is reduced. Consequently there will be an 

increase in the wake region to the extent that the log law representation may not survive.  

Nikuradse did experiments with converging-diverging water flow, he found that in the 

diverging channel the boundary layer grows fast, and that at a certain angle the flow 

becomes unstable. 

 

Figure 13 Flow separation [27] 
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1.5.1 Boundary layer separation  
 

Boundary layer separation is the process of breakdown and departure of the boundary layer 

flow. This leads to a rapid thickening of the rotational flow region close to the wall. When 

the pressure increases in the direction of the flow as in a diffuser, the pressure rise is trying 

to push the flow backwards. Because the frictional losses in the boundary layer are greater 

than in the rest of the flow, the boundary layer suffers from a momentum deficit compared 

to the free stream. The momentum in the boundary layer might not be enough to overcome 

the backwards pushing force the APG creates. The velocity in the boundary layer will slow 

down and hence the boundary layer will grow until  
𝑑𝑢

𝑑𝑦
|
𝑦=0

= 0.  This position is known as 

the separation point, at this point the shear stress must be according to equation (24) also 

zero. After this point the flow near the walls will flow in the opposite direction of the mean 

flow. As seen in figure (14), boundary layer separation will cause an increase in the 

turbulence because vortices are generated by the fluid which is moving in both directions. 

The result is higher energy losses in the flow [25]. Regardless if the boundary layer separates 

or not an APG will give rise to an inflection point in the boundary layer, which coincides with 

the maximum shear in the boundary layer.  

 

Figure 14 Boundary layer separation and turbulence increasement [25] 

Prandtl explained separation in this manner: “On an increase of pressure while the free fluid 

transforms parts of its kinetic energy into potential energy, the transition layer instead 

having lost a part of their kinetic energy, have no longer a sufficient quantity to enable them 

to enter a field of higher pressure, and therefor turn aside from it”.   

The pressure distribution after the separation point will determine if the flow reattaches to 

the surface or not. If the APG continues then the wake of backflow will endure and grow. If 

the APG vanishes then a separation bubble will form, the reattachment point can however 

move up and down. 

 
 

 



27 
 

1.5.2 Separation dynamics 
 

Even though separation reduces skin friction drag on the surface, it tends to decrease the 

pressure coefficient which expresses how much of the static pressure the diffuser recovers 

from the incoming dynamic head at the reference location and is defined as: 

𝐶𝑝= 
𝑃−𝑃𝑟𝑒𝑓

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑟𝑒𝑓
 (49) 

 

The pressure coefficient, or pressure recovery coefficient decreases because the effective 

expansion of the flow is not as large as the geometry would indicate. The separated zone 

consist of large eddies unable to convert their rotational kinetic energy into pressure. 

Consequently the separating zone will produce a blockage effect making the actual flow area 

less. Therefore according to Bernoulli, the freestream will increase and consequently the 

pressure recovery is reduced. Since the separation causes the pressure rise to be less than 

the geometry would indicate, the APG in the case of separation will also be less than it was 

initially. This means that when the separation has grown to a specific size, the flow will have 

enough momentum to overcome the APG and the separation zone will shrink or disappear 

completely. After this the APG will build up again and the cycle repeats itself.    

One way of delaying flow separation is to increase the amount of turbulence in the flow. The 

turbulent fluctuations and mixing capabilities causes much higher drag, but puts more 

momentum into the boundary layer and thus prevents or delays flow separation. 

Conventional methods for doing this consist of increasing the surface roughness or applying 

a turbulence tripping tool to the flow.  

 

 

1.6 The diffuser 
 

As mentioned in the introduction the diffuser is a device intended to reduce the kinetic 

energy and thereby increase the potential energy of a flow by means of expanding the flow 

area. The diffuser utilizes the Bernoulli and continuity equation in order to achieve as high 

pressure recovery as possible. Poor diffuser design is a major cause of pressure loss. If the 

Bernoulli and one dimensional continuity equation are manipulated one can write the 

diffuser efficiency i.e. the pressure recovery coefficient: 𝐶𝑝 = 1 − (
𝑉2

𝑉1
)
2

= 1 − (
𝐴2

𝐴1
)
−2

. This 

formula is based on frictionless estimates, therefor phenomena’s like flow separation will 

not occur, resulting in an overestimation of the diffuser performance. Dimensional analysis 

done on a flat walled conical diffuser shows that to have an adequate pressure recovery one 

must take these factors into consideration [3, p.400] 
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 Area ratio 𝐴2/𝐴1 

 Divergence angle 

 Inlet Reynolds and Mach number 

 Slenderness: Length/Diameter 

 Blockage factor 𝐴𝑏𝑙=Wall area displaced by retarded boundary layer 

 

 

 

Figure 15: Diffuser with ideal flow pattern and accordingly excellent pressure recovery [3, .399] 

 

 

Figure 16 Diffusor with flow separation giving poor pressure recovery [3, p.399] 

 

1.6.1 Diffuser stability map 
 

Fox and Kline published in 1962 a flat diffuser stability map which can be used to determine 

a design with a minimum pressure loss coefficient, seen in figure (17) as the dotted 𝐶𝑝,𝑚𝑎𝑥 

line. In the no stall region the flow is steady, viscous and the performance is moderately 

good. In the Transitory stall region the flow is unsteady but it is here that the maximum 

efficiency occurs. In the bistable region there is a steady stall, but from one side only, the 

stall side may however flip flop back and forth from the two sides and performance is poor. 
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In the jet region the flow has separated almost completely from the wall and flows through 

the diffuser at nearly constant cross section making the pressure recovery very poor.   

        

 

Figure 17 Diffusor stability map [3, p.398] 

 

 

1.7 Computational fluid dynamics 
 

Computational fluid dynamics or CFD is a tool used by scientist and engineers to solve heat 

and fluid flow problems. Because of the complexity of the governing equations, most 

practical problems does not have an analytical solution. CFD replaces the governing partial 

differential equations with a system of algebraic equations which can be solved by a 

computer, usually in an iterative way based on the boundary conditions. In this way an 

approximate numerical solution to the governing equations are obtained. 

The most reliable information regarding heat and fluid flow challenges are obtained from 

measurements. However to build full scale models and conduct measurements can be very 

expensive and in some cases not possible. Another approach would be to build small scale 

models and extrapolate the information to full scale. Extrapolating is in itself an uncertain 

procedure and it is also likely that the small scale model cannot simulate all the mechanisms 

of the full scale model. 

CFD is therefore a cost effective tool to use for simulating heat and fluid flow, especially in 

the studies of new designs and detailed product development. Nevertheless, CFD uses 

approximate numerical models and algorithms to solve the governing equations. It is 
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consequently of vital importance that these models are validated against trustworthy 

experimental data before they are utilized in the industry or elsewhere. 

Computational fluid dynamics consist basically of four components which all people that are 

going to use a commercial or self-made CFD program have to think through. 

 Discretization of the governing equations and solver 

 Mesh  

 Validation 

 

In this thesis the commercial CFD program ANSYS Fluent 14.5 is to be utilized to study the 

effects of surface roughness. 

 

 

1.7.1 Discretization of governing equations 
 

To solve the governing continuous partial differential equations numerically it is necessary to 

convert the derivatives to discrete expressions. Much as when a physical quantity is 

measured in a laboratory at discrete points in the region of interest, the discrete expressions 

are solved at discrete points in space. By connecting the measurement points, a picture of 

the flow can be produced. The flow quantities between the measurement points are 

obtained by some interpolation technique which quality depends on how far the 

measurement points are from each other and the accuracy required. 

The most widely used discretization techniques are: 

 Finite difference method (FDM) 

 Finite volume method (FVM) 

 Finite element method (FEM) 

 

ANSYS Fluent 14.5 uses the Finite Volume Method to discretize the governing equations. The 

fundamental flow equations are derived in FVM using integral approach. The FVM 

subdivides the spatial domain of the physical problem into non-overlapping cells known as 

control volumes. A single node is put in the geometrical center of the control volume. The 

numerical approximations are then obtained at the node by integrating the governing 

equations over the control volume. The increase of some quantity inside the control volume 

is equal to flux of quantity into CV minus flux of quantity out of CV plus a source term i.e: 

Rate of increase of quantity inside CV = Flux of quantity in – Flux of quantity out + source 
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The quantity can be either a mass, momentum or energy component. This concept leads to 

the conservative equations in integral form with its general arrangement: 

𝜕

𝜕𝑡
∮𝜌𝜑𝑑𝑉

.

𝑣

= −∮𝜌𝜑�⃗� ∙ 𝑑𝑆 
.

𝑠

+ ∮𝛤∇𝜑 ∙ 𝑑𝑆 
.

𝑠

+ ∫𝑆𝜑𝑑𝑉
.

𝑣

 

 

(50) 

 

 V=Volume 

 S=Surface 

 𝜑=Flow quantity 

 F=Flux of 𝜃 

 𝑆𝜑=Source of 𝜃 

 𝛤= Diffusion coefficient 

 

Figure (18) shows a typical control volume with a node P in it is center. In the figure W, E, N 

and S represent respectively nodes west, east, north and south of node P. Likewise cell faces 

or surfaces are denoted 𝑥𝑒,𝑤 and 𝑦𝑛,𝑠. 

 

 

Figure 18: Control volume FVM [26] 
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As an example the one dimensional steady state convection equation without source term 

and constant velocity and surface area, is to be integrated around the control volume 

surrounding node P.  

∫
𝜕(𝑢𝑥𝜑)

𝜕𝑥

.

𝑉

𝑑𝑉 = 0 

 

(51) 

 

This will produce the discretized version of the equation by the finite volume method. The 

flow travels from left to right and by applying the Divergence theorem, we can replace the 

volume integral with surface integral: 

∫
𝜕(𝑢𝑥𝜑)

𝜕𝑥
𝑑𝑉 = ∮𝑢𝑥𝜑𝑛𝑥𝑑𝐴

.

𝐴

.

𝑉

= (𝑢𝑥𝜑𝐴)𝑒 − (𝑢𝑥𝜑𝐴)𝑤 = 0 

 

(52) 

 

 

The problem now is to obtain discrete expressions for the face fluxes. This process requires 

interpolation techniques, which vary in complexity and accuracy. The most known 

interpolation technique is the central difference scheme.  

 

 

Central difference interpolation scheme: 

 

In the central difference scheme the value of 𝜑 at the faces are approximated by assuming 

that the value at the faces is the average of the nodes in the immediately vicinity of the 

faces. I.e. 

 
𝜑𝑒 = (𝜑𝑃 + 𝜑𝐸)/2 

 

(53) 

 

𝜑𝑤 = (𝜑𝑊 + 𝜑𝑃)/2 
 

(54) 
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Figure 19: Central differencing scheme [26] 

This method is very simple but unfortunately unstable, and also unable to identify flow 

directions. This means that in a strong convective flow, central differencing is unfitting 

because a certain flow direction would have almost all the influence. Therefore Fluent 14.5 

offers to use another approach called upwinding.   

 

First order upwinding interpolation scheme: 

 

The upwind interpolation scheme employs the node “upstream” relative to 𝑢𝑥 and in this 

way recognizes flow direction. Hence face values are approximated as: 

𝜑𝑤 = 𝜑𝑊 
 

(55) 

 

𝜑𝑒 = 𝜑𝑃 
 

(56) 

 

 

Figure 20: First order upwind scheme [26] 

The first order upwind scheme has problems with numerical or false diffusion if the grid lines 

are not aligned. Therefore second order upwind scheme has been developed which employs 

two nodes upstream to determine the face values. This scheme is very popular because of its 

increased accuracy and high stability. Fluent 14.5 offers to use both first order and second 

order upwinding.  

 



34 
 

 

The first order upwind, one dimensional, steady state, incompressible convection equation, 

without source terms and constant velocity and area therefore yields: 

 

∫
𝜕(𝑢𝑥𝜑)

𝜕𝑥

.

𝑉

𝑑𝑉 = 𝑢𝑥(𝜑𝑃 − 𝜑𝑊)𝐴 + 𝑒𝑟𝑟𝑜𝑟 

 

(57) 

 

Higher order schemes: 

 

The Quadratic upwind interpolation for convective kinetics or QUICK scheme is similar to the 

second order upwind scheme, but instead fits a quadratic curve to the two nodes upstream 

and one node downstream of the faces to determine their values. This discretization 

technique has superb accuracy, but is more prone to instability problems during the 

calculations. The QUICK scheme has third order accuracy which will be explained later. 

 

 

Figure 21: Second order upwind scheme to the left and QUICK scheme to the right [27] 

 

 

Temporal discretization: 

 

Steady state settings are favored in CFD analysis because they are easy to post process and 

have a lower computational cost. However, often the flow conditions are unsteady and the 

solution at a given point will therefore vary in time. The unsteadiness within the fluid 

happens due to the development of instabilities such as generation of eddies, shock waves, 

time dependent boundary condition and many more. Fluent 14.5 offers implicit temporal 

discretization. Implicit temporal discretization is often referred to as backward difference 
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method i.e. temporal terms are evaluated a 𝑡+∆𝑡. The transient one dimensional 

incompressible convection equation with constant velocity and area yields: 

𝜑𝑡+∆𝑡 − 𝜑𝑡

∆𝑡
+

𝜕(𝑢𝑥𝜑
𝑡+∆𝑡)

𝜕𝑥
= 0 

 

(58) 

 

The transient discretization with a first order upwind method would result in the following 

expression: 

𝜑𝑡+∆𝑡 − 𝜑𝑡

∆𝑡
+ 𝑢𝑥

(𝜑𝑃
𝑡+∆𝑡 − 𝜑𝑊

𝑡+∆𝑡)

∆𝑥
= 0 + 𝑒𝑟𝑟𝑜𝑟(𝑠𝑝𝑎𝑡𝑖𝑎𝑙, 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙) 

(59) 

 

In a transient simulation the solution to the flow field is obtained by iterating through 

discrete points in time, typically from the inlet boundary. The solution at time 𝑡 + ∆𝑡 is then 

reached when the residuals are within a certain limit when compared with the solution at 

time=𝑡. The chosen time step is of major importance when doing a transient analysis, 

because if the time step is too large the transient effects may not be resolved and 

consequently the results obtained will not lie on the correct solution curve.  

By using the Courant number, one can be assured that the time step used is satisfactory. The 

Courant number gives the typical number of control volumes that a fluid parcel passes 

through in one time step. Having a Courant number less than or equal to one means that the 

fluid parcel does not pass a typical control volume in one time step, and that reassures that 

the solution field found is adequate. The two dimensional Courant number yields: 

𝐶 =
𝑢𝑥∆𝑡

∆𝑥
+

𝑢𝑦∆𝑡

∆𝑦
 

 

(60) 

 

Where 𝑢𝑥 and 𝑢𝑦are respectively typical speed in x and y direction and ∆𝑥 and ∆y denotes 

the typical size of the control volume (mesh size) in x and y direction.  

 

 

1.7.2 Meshing  

 

The mesh is the discrete representation of the geometry of the physical domain. The domain 

is divided into cells where the discretized partial differential equations are solved at each cell 

center. Since the accuracy of the solution is dependent on cell center distances, it is 

important that areas of strong gradients or high interest are divided into smaller control 

volumes. This is particularly important for boundary layer flow where the transverse 

gradient is by far the dominant gradient and hence needs to be resolved better. Dividing the 

geometrical area of interest into finer and finer cells devotes more computer capacity and 
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therefore it is necessary to have a coarser mesh in areas of less interest or little change in 

order to make the CFD analysis feasible.  

The mesh is often characterized as structured or unstructured. Structured meshes have a 

regular connectivity which means that each point has the same number of neighboring 

points, whilst this may not be true in an unstructured mesh.  

 

 

Figure 22: Structured mesh left versus unstructured mesh right [28] 

 

A structured mesh is more computational efficient and may also be more accurate, but 

unfortunately not applicable to all geometrical shapes. Some complex geometries however 

have areas with regular curves which can be modeled using a structured grid, these grids are 

referred to as hybrid mesh.  

 

Mesh quality 

 

The quality of the mesh can be measured by several parameters, which together decides 

how appropriate the mesh is to produce good CFD results. In general a good quality mesh 

means that the solution is grid independent i.e. refining or altering the grid does not change 

the CFD results. Is also means that the studied physics are captured well and that the 

geometrical details of the flow problem are thoroughly incorporated. If the mesh is of poor 

quality there can be problems with convergence, numerical diffusion and the physics can 

also be treated in an incorrect way.    

The three most common parameters for mesh quality testing are: 

 

 Mesh aspect ratio 

 Mesh smoothness 

 Mesh skewness 
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Mesh aspect ratio 

 

The mesh aspect ratio is the ratio of the longest edge length to the shortest edge length. A 

large aspect ratio means that a change in one direction will propagate much faster in one 

direction than the other, resulting in over or underestimating flow properties.  

 

 

Figure 23 : Aspect ratio for quadratic and triangular cells [32] 

 

However in boundary layer flow, large aspect ratios are accepted as the gradient in the 

transverse direction is much stronger than in the axial direction and to capture it is a vital 

part of resolving the boundary layer.  

 

 

Figure 24: Boundary layer meshing [33] 

 

Mesh smoothness  

 

Because of the computational cost and the effectiveness of the CFD program, it is not 

feasible to have the same density of control volumes as in the near the wall regions 

throughout the flow domain. Therefore the ratio of the size of the control volumes have to 

increase as the flow enters areas of the flow domain with smaller gradients and less interest. 

The transition of cell sizes should not be higher than 20% in order to adequately capture the 
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flow properties. Abruptly change in cell size can like cells with high aspect ratio, cause errors 

in calculating face fluxes.  

 

Mesh skewness 

 

The mesh skewness is a measure of how much the cells differs from ideal geometry. In 2D 

the ideal shape would be triangles and squares. The skewness factor is defined in different 

ways for different shapes in 2D and 3D but in general a skewness factor of 0 is the best 

possible and a skewness of 1 is unsuitable. A large skewness is unfortunate for the accuracy 

of the interpolation techniques utilized by the numerical solvers. 

 

To summarize the mesh quality parameters the following can be stated: 

 Change in cell volumes should be smooth and not increase or decrease by a ratio of 

more than 1.2. 

 More cells gives higher accuracy but is more computationally demanding. 

 The aspect ratio should be close to one in multidimensional flows, but can be high in 

boundary layer flow. 

 Areas of high interest must be resolved using a non-uniform mesh with variable 

mesh concentration. 

 

 

1.7.3 Validation 
 

For the numerical solvers to be effective in obtaining numerical results they need to be 

verified. There are three different rules that govern numerical schemes: 

 

 Convergence 

 Stability 

 Consistency  

 

Convergence: 

 

Convergence can have several meanings. One definitions is that the finite volume solution 

approaches the true solution to the partial differential equations as the increments ∆𝑥, 𝑦, 𝑧 

and ∆t goes to zero. This implies that the solution should improve as the time step and cell 
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sizes are refined. In most cases the true solution is not known and hence it can be 

problematic to prove factual convergence. [31, p.50] 

In steady state simulations another definition of convergence is to monitor the residuals or 
the difference in a particular iteration compared with the next iteration. If this approaches 
zero the solution is tending to converge, and when it reaches a certain value close to zero it 
has converge i.e. the solution is good enough. However if the residuals are still decreasing 
when the residual criterion is reached, then the solution may not be properly converged. 
Also if the residuals are no longer decreasing but have not reached the residual criterion, the 
solution is considered converged. Higher order discretization schemes are more accurate, 
but typically have higher residuals then lower order discretization schemes. [27, p.18] 
 

In a transient simulation, the simulation is said to be converged when the time derivative for 

each time step reaches close to zero, this signifies that the solution has reached a steady 

state condition and is said to be converged.  

Grid convergence or independency is also by many used as a convergence criterion. The 

solutions are obtained on finer and finer meshes until the results stop changing or reaches 

an acceptable limit. The result is then assumed to be the exact solution. 

In all the cases above, one can however only conclude that a solution to the discretized 

domain and equations has been reached. This does unfortunately not mean that the physical 

correct solution has been obtained.  

 

Stability: 

 

Due to final precision of computers an error known as round off error is introduced. How 

this error perturbed as the computation is advancing can severely affect the solution. The 

numerical scheme is stable if the round off error does not accumulates or are negligible and 

can be dampen out. If the error builds up gradually and is mounting up, then the scheme is 

unstable, and the solutions given by the CFD program will typically be very oscillating. 

 

Figure 25: Demonstrating the instability of the Forward Euler method and the stability of the Backward Euler 
and Crank Nicolson methods [32] 
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Consistency: 

 

Consistency implies that the discretization of the partial differential equations becomes the 

equation which it is related to when ∆𝑥, 𝑦, 𝑧 and ∆𝑡 tends to zero. This means that the 

truncation error should disappear. The order of the truncation error can be quantified by 

doing a Taylor series expansion of equation (57) around node P in figure (18) 

∫
𝜕(𝑢𝑥𝜑)

𝜕𝑥

.

𝑉

𝑑𝑉 = 𝑢𝑥(𝜑𝑃 − 𝜑𝑊)𝐴 + 𝑒𝑟𝑟𝑜𝑟 

 

(61) 

 

𝜑𝑊 = 𝜑𝑃 − ∆𝑥
𝜕𝜑

𝜕𝑥
|
𝑃
+

∆𝑥2

2

𝜕2𝜑

𝜕𝑥2
|
𝑃

−
∆𝑥3

6

𝜕3𝜑

𝜕𝑥3
|
𝑃

+
∆𝑥4

6

𝜕4𝜑

𝜕𝑥4
|
𝑃

− ⋯ 

 

Where dV=dA/dx. The first order upwind approximation may be obtained from the above by 

re-arranging the equation and multiplying by 𝑢𝑥 as:  

 

𝜕(𝑢𝑥𝜑)

𝜕𝑥
|
𝑃

= 𝑢𝑥

(𝜑𝑃 − 𝜑𝑊)

∆𝑥
+ 𝑢𝑥

∆𝑥

2

𝜕2𝜑

𝜕𝑥2
|
𝑃

− 𝑢𝑥

∆𝑥2

2

𝜕3𝜑

𝜕𝑥3
|
𝑃

+ ⋯ 

𝜕(𝑢𝑥𝜑)

𝜕𝑥
|
𝑃

= 𝑢𝑥

(𝜑𝑃 − 𝜑𝑊)

∆𝑥
+ 𝑂(∆𝑥) 

 

(62) 

 

Proving first order accuracy for equation (57) and also shows that the discretized equation is 

consistent as ∆𝑥 goes to zero.  

 

 

1.7.4 Numerical diffusion 

 

When examining equation (62), we can see that the error associated with the discretization 

by the FVM first order upwind scheme is of first order. This means that the first order 

upwind scheme will introduce some error into the solution of the flow field. The error will 

make the simulated system behave differently than the real physical system and can make 

the solution more diffusive. Since the discretization are approximations of the governing 

equations, and solved discrete in time and space, some of the flow properties must be 

convected from one cell into the neighboring one whether this is physical true or not. This is 

because of the interpolation techniques utilized to set the face values of the cells. To cope 

with this problem one can include more terms from the Taylor series expansion above into 
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the discrete equation and give it higher order accuracy. With a similar procedure as above 

one can show that the QUICK scheme is of third order accuracy 𝑂(∆𝑥3), meaning that it 

takes the second order derivative from the Taylor expansion into account.  

 

1.7.5 Relaxation factors  

 

To improve the numerical stability of the different solution schemes one can apply 

relaxation factors. Meaning that the new value of some variable 𝜑 will be “relaxed” in 

comparison of the predicted value. This will slow down convergence, but will suppress 

oscillations resulting from numerical errors. Fluent uses relaxation factors by default. 

𝜑𝑃
𝑛𝑒𝑤,𝑢𝑠𝑒𝑑= 𝜑𝑃

𝑜𝑙𝑑 + 𝑈(𝜑𝑃
𝑛𝑒𝑤,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝜑𝑃

𝑜𝑙𝑑) (63) 

 

 

 

 

Where U is the relaxation factor. 

 U< 1 gives underrelaxation, will slow down convergence but increase stability 

 U=1 means no relaxation, the predicted value of the variable is used 

 U> 1 gives overrelaxation, is used to speed up convergence but decreases stability 

 

 

1.8 Turbulence modelling 
 

Essentially all flows of engineering interest are turbulent and consequently the important 

effects of turbulence must be included in flow simulations.  There are currently three 

numerical methods for capturing the turbulent effects: 

 

 Reynolds-averaged Navier-Stokes equations (RANS) 

 

As discussed in section (1.2.3) for most engineering purposes one are not interested 

in resolving the full scale turbulent fluctuations, but rather in the mean properties of 

the flow. Therefore the Navier-Stokes equations are time averaged, and this process 

results in an extra term i.e. the Reynolds stresses which needs to be modeled in 

order to close the system of mean flow equations. There are many models 

developed for the Reynolds stresses which will be outlined later. However these 

models are based on the assumption that there exist a limited number of universal 
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features of turbulence, which when identified properly can lay the foundation for 

the full or adequately representation of the flow variables of importance to users of 

CFD. The computational cost for modeling the Reynolds stresses are relative low, as 

a result this approach has been and most likely will be, the favored method utilized 

by the industry.  

 

 

 Large eddy simulations (LES) 

 

In large eddy simulations the large scale eddies are resolved and the small scale 

eddies are modeled.  The effects of the small scale eddies on the large eddies and 

mean flow are included through a sub-grid system. LES is implicitly based on 

Kolmogorov’s self-similarity theory, where large eddies are dependent upon the 

geometry surrounding the flow, whilst small eddies are universal. LES has been more 

successful in areas where RANS fail to meet, for example; flow around bluff bodies, 

combustion, mixing flow and flow separation [33, p.7]. In terms of computational 

resources, LES are much more costly then RANS but more accurate in some 

applications. 

 

 

 Direct numerical simulations (DNS) 

 

In direct numerical simulations all scales of the turbulence have to be resolved, no 

modeling should be included. This implies that the full Navier-Stokes equations are 

solved on a spatial and temporal grid fine enough to resolve the Kolmogorov length 

scale up to the integral scale associated with the eddies containing most of the 

turbulent kinetic energy. It must also capture the fastest turbulent fluctuations, this 

means that in order to be accurate the time step must be appropriately small such 

that a fluid parcel only moves a fraction of the mesh size for each time step. DNS is 

the most accurate but costly method in terms of computer resources and is currently 

not utilized commercially by the industry. 

 

 

 

1.8.1 Reynolds averaged Navier-Stokes turbulence models 

 

The preferred method used to capture the effects of turbulence in this thesis is the Reynolds 

averaged Navier-Stokes equations. This means that a turbulence model for the Reynolds 

stresses must be incorporated. Since to this day, there is no classical model based on the 

time average equations, which represent a complete and general multi-purpose turbulence 
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depiction suitable for all flows, the development and optimization of turbulence models for 

a limited number of flows has been necessary. There are many models design for this task, 

all with its own strengths and weaknesses but in general they have to be economical, 

accurate to run and have a wide range of applicability. Some of the more well-known models 

includes: 

 

 Zero equation model: Mixing length model 

 One equation model: Spalart-Allmaras model 

 Two equation model: K-휀 models  

 Two equation model: K-𝜔 models 

 Seven equation model: Reynolds stress model (RSM) 

 

Where the number of equations denote how many extra PDE’s needed to solve the model. 

All of the above except the RSM are based on the assumption that there exist an analogy 

between the action of the viscous stresses and the Reynolds stresses on the flow. This lays 

the foundation for Boussinesq eddy viscosity hypothesis. Boussinesq suggested that the 

Reynolds stresses can be modeled adequately through use of the mean velocity gradients 

and the eddy viscosity. The idea behind this is the observation that turbulence increases as 

the mean rate of deformation increases, likewise turbulence decays if there is no shear in 

isothermal incompressible flow [34, p.67]. In this way the transfer of momentum by 

turbulent fluctuations, can be modeled in the same way as the momentum transfer caused 

by molecular diffusion. The incompressible Boussinesq eddy viscosity hypothesis states that:   

 

−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗

...

 

 

(64) 

 

 

The last term on the right hand side is there to ensure that the normal Reynolds stresses 

sum to the mean turbulent kinetic energy. 

The Boussinesq approximations corresponds with the observations in [34, p.67], where 

turbulence increases as the mean rate of deformation increases and decays in the absence 

of shear. The deformation rates are because of viscosity, high near solid surfaces and 

decreases towards the free stream velocity, where the inertial forces are dominant and the 

effects of wall shear is shrinking. Accordingly towards the free stream, the turbulence should 

also decline. In the Boussinesq approximation one can see that the turbulent fluctuations 

drops as the mean rate of deformation decreases. 

Another implication of Boussinesq is the assumption of isotropic eddy viscosity. This 

suggests that the ratio of the velocity gradients and the Reynolds stresses are independent 
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of directions. However many complex flows has several velocity gradients and the 

assumption that one single eddy viscosity should represents an accurate relationship 

between all the velocity gradients and the Reynolds tresses is doubtful. Therefore when 

using the Boussinesq assumption one need to be considerate especially towards these 

effects [16, p.59]: 

 

 Flows with strong curvature (diffuser, bends) 

 Flows with strong anisotropy  

 Flows where directional forces affects the turbulence 

 Flows where turbulent production and dissipation are uncorrelated. 

 Flows involving separation 

 

I more complex flows because of the isotropic eddy viscosity assumption in equation (64), 

the Boussinesq approximation can easily predict to small or to large Reynolds stresses. In 

these circumstances it is better to use transport equations for the Reynolds stresses 

themselves.  

 

1.8.2 Mixing length model (zero equation) 
 

The mixing length model is also referred to as a zero equation model because no extra 

equations are needed in order to close the RANS equations. The mixing length concept was 

developed by Prandtl which proposed that each turbulent fluctuation could be related to a 

length scale and a velocity scale. The mixing length is defined analogous to the molecular 

mean free path, as the distance a fluid parcel will conserve its properties before blending in 

with the surroundings.  

The mixing length models can be used to some extent where there is only one dominant 

velocity gradient as for example in a thin shear layer. In this case, the relevant components 

of X can be expressed as: 

−𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝜇𝑡

𝜕𝑈

𝜕𝑦
 

 

(65) 

 

 

Then Prandtl assumed that  𝜇𝑡~𝑢𝑙𝑚 and that 𝑢~𝑙𝑚 |
𝜕𝑈

𝜕𝑦
| where 𝑙𝑚 is the mixing length and 𝑢 

is a turbulent velocity scale.  
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Consequently the Reynolds stresses could be modeled as: 

−𝑢′𝑣′̅̅ ̅̅ ̅̅ = 𝑙𝑚
2 |

𝜕𝑈

𝜕𝑦
|
𝜕𝑈

𝜕𝑦
 

 

(66) 

 

 

One quite considerable disadvantage of this model is that the mixing length is dependent on 

the nature of the flow, and hence empirical correlations are needed. This makes the model 

not suited for complex flows and separation. The mixing length model also only calculates 

mean flow properties and Reynolds shear stresses. 

 

 

1.8.3 Spalart-Allmaras (one equation) 

  

The Spalart-Allmaras model is a one equation model that solves a modeled transport 

equation for turbulent viscosity[34, p.89]. The model is especially is designed for 

aerodynamic and turbo machinery applications where it is necessary to resolve the 

boundary layer and effectively handle pressure gradients, both favorable and adverse. 

The Reynolds stresses are modeled using the Boussinesq approach, but without the mean 

turbulent kinetic energy term and therefore yields: 

−𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) 

 

(67) 

 

The transport equation for kinematic eddy viscosity: 

 

𝜕𝜌�̃�

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝜌𝜈𝑈𝒊) =

1

𝜎𝜈
𝑑𝑖𝑣 [(𝜇 + 𝜌𝜈)𝑔𝑟𝑎𝑑(𝜈) + 𝐶𝑏2𝜌 (

𝜕�̃�

𝜕𝑥𝑘
)
2
] + 𝐶𝑏1𝜌𝜈�̃� − 𝐶𝑤1𝜌 (

�̃�

𝑘𝑦
)
2
𝑓𝑤             (68) 
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Where the different terms are as follows: 

Rate of change of kinematic eddy parameter 𝜈: 

𝜕𝜌𝜈

𝜕𝑡
 

(69) 

 

 Transport of 𝜈 by convection 

𝑑𝑖𝑣(𝜌𝜈𝑼) (70) 
 

Transport of 𝜈 by turbulent diffusion 

 

1

𝜎𝜈
𝑑𝑖𝑣 [(𝜇 + 𝜌𝜈)𝑔𝑟𝑎𝑑(𝜈) + 𝐶𝑏2𝜌

𝜕�̃�

𝜕𝑥𝑘

𝜕�̃�

𝜕𝑥𝑘
]: (71) 

 

Rate of production of 𝜈 

𝐶𝑏1𝜌𝜈�̃� (72) 
 

Rate of dissipation of 𝜈 

𝐶𝑤1𝜌 (
�̃�

𝑘𝑦
)
2

𝑓𝑤: 
(73) 

 

The eddy viscosity is linked to the kinematic eddy parameter by the relation  

𝜇𝑡 = 𝜌𝜈𝑓𝜈1 
 

(74) 

 

Where 𝑓𝜈1 is a wall dampening function which goes to zero at the wall and towards one at 

high Re numbers. In this way Newtonian viscosity dominates at the wall and likewise the 

eddy viscosity is the principal viscosity at high Re numbers?  

�̃� = 𝛺 +
𝜈

(𝑘𝑦)2
𝑓𝑣2 

 

(75) 

 

Where 𝛺 is the mean vorticity defined as: 

𝛺 = √2𝛺𝑖𝑗𝛺𝑖𝑗 
(76) 
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And 𝛺𝑖𝑗 is the mean vorticity tensor defined as: 

𝛺𝑖𝑗 =
1

2
(
𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
) 

(77) 

 

 

 𝑓𝑣2 and  𝑓𝑤2 are additional wall damping functions and 𝑘𝑦 is an algebraic expression for the 

length scale with the wall distance y and the Von Karman constant 0.41. The constants 𝐶𝑏1, 

𝐶𝑏2 and 𝐶𝑤1 are models parameters which has been tuned for external aerodynamic flows.  

As mentioned the Spalart-Allmaras model is developed for aerodynamic and turbo 

machinery applications which implies that it is especially suited for wall bounded flows. In its 

original form the model is effectively a low Reynolds number model, meaning that for the 

model to perform at its best the boundary layer must be properly resolved. If the mesh is 

found fitting the model will utilize equation (37) to obtain the wall shear stress. Fluent will 

however utilize wall functions if the resolution of the boundary layer is not found suitable 

[42]. 

 

Pro and cons Spalar-Allmaras model 

 

The Spalart-Allmaras model is especially designed to handle pressure gradients and has also 

proven economical and accurate for flows with mild separation and recirculation. However, 

because the model does not include transport effects for turbulent length scales it is 

considered weak for internal, complex and massively separated flows [33, p.32].    

The Spalart-Allmaras model has not yet been extensively validated to all type of complex 

engineering flows and cannot be relied on to predict the decay of homogeneous, isotropic 

turbulence [33, p.12]. Moreover, the model might encounter problems with flows subjected 

to rapidly changes in length scales.  

 

1.8.4 K-ε two equation model 
 

The standard two equation k-ε model represent the eddy viscosity in terms of transport 

equations for the mean turbulent kinetic energy and for the turbulent dissipation rate. These 

transport equation contains several new unknowns which themselves are needed to be 

modeled. The Reynolds stresses are represented by the Boussinesq approximation, and 

thereby closes the equations. Since the k-ε model uses transport equation for the TKE and 

the dissipation rate, it follows from equation (20) that the model explicitly also calculates 

characteristic turbulent velocity and length scales, hence the model includes historical 

effects related to the flow. When considering the transport equation of TKE i.e. equation 

(14), there are three terms in addition to the Reynolds stresses that needs modeling. The 
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triple correlation 𝑢𝑖
′𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ̅̅  and the pressure-velocity correlation 𝑝′𝑢𝑗

′̅̅ ̅̅ ̅̅  in the diffusive term 𝐷𝑘 

are unknown, whilst the viscous part of the diffusive term is neglected. The k-ε model 

therefore only applies to fully turbulent flows and consequently the use of wall functions 

near solid boundaries are vital. The dissipative term of the TKE equation are modeled by 

another transport equation to make the model complete. 

 

The production term 𝑃𝑘 contains only known quantities provided we use the Boussinesq 

assumption, and therefore can be modeled in this manner: 

𝑃𝑘 = (2𝜈𝑡𝑆𝑖𝑗 −
2

3
𝜌𝑘𝛿𝑖𝑗

...

)
𝜕𝑈𝑖

𝜕𝑥𝑗
 

 

(78) 

 

Where 𝑆𝑖𝑗 is the rate of strain tensor defined as: 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) 

(79) 

 

 

Therefor in incompressible and more compact form, the modeled production term can be 

written: 

𝑃𝑘 = 2𝜈𝑡𝑆𝑖𝑗𝑆𝑖𝑗 

 

(80) 

 

In flows with high Reynolds number the diffusive transport of k due to viscous stresses are 

very small compared with the turbulent diffusion and is therefore neglected. The remaining 

part can be modeled using an analog to Fick law of mass flux, which states that flux goes 

from regions of high concentration to regions of low concentration, with a magnitude that is 

proportional to the concentration gradient. Fick law yields: 

𝐽 = −𝐷∇𝜑 
 

(81) 

 

Here 𝐽 is the diffusion flux, or amount of substance per unit area per unit time. 𝐷 is the 

diffusion constant with dimensions (length^2)/time, and 𝜑 is the concentration in substance 

per volume. Using this analogy the turbulent diffusion term can be modeled accordingly: 

𝐷𝑘 =
𝜕

𝜕𝑥𝑗
(
𝜇𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑥𝑗
) 

 

(82) 
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Where 𝜎𝑘 is the turbulent Prandtl number, which is the ratio of the eddy viscosity to the 

eddy diffusivity.  

 

To make the model complete, the dissipative term is modeled through a separate transport 

equation. The transport equation for the dissipative term is derived from the Navier-Stokes 

and continuity equation. The form of the modeled equation for the dissipative term has 

similar structure as the one for TKE and yields: 

 

𝜕휀

𝜕𝑡
+ 𝑈𝑗

𝜕휀

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗

(𝐷 ) +
휀

𝑘
𝑐 1𝑃 𝑘 − 𝑄 

 

(83) 

 

Where the terms on the left hand side is respectively the rate of increase, plus the 

convective transport of ε. The first term on the right-hand side is the diffusive transport of ε 

followed by the rate of production and destruction of ε. 

 

For the diffusive term in the dissipation equation a gradient model is used analogous to the 

one used in the TKE equation: 

𝐷 =
𝜈𝑡

𝜎

𝜕휀

𝜕𝑥𝑗
 

 

(84) 

 

The production and destruction of ε is put proportional to production and destruction of 

TKE. 

𝑃 = 𝐶 1

휀

𝑘
𝑃𝑘 (85) 

 

𝑄 = 𝐶 2

휀

𝑘
휀 

 

(86) 

 

These two terms are closely linked, as a greater production of TKE should be followed by an 

increase in the dissipation rate to avoid energy accumulation. Likewise should the 

destruction of turbulence be less if the production is decreasing [16, p.54] 
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The famous general k-ε epsilon equations are presented [34, p.75]: 

 

𝜕(𝑘)

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[
𝜈𝑡

𝜎𝑘
 
𝜕𝑘

𝜕𝑥𝑗
] + 2𝜈𝑡𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 − 휀 

(87) 

 

 

𝜕(휀)

𝜕𝑡
+ 𝑈𝑗

𝜕휀

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[
𝜈𝑡

𝜎

𝜕휀

𝜕𝑥𝑗
] + 𝐶1

휀

𝑘
2𝜈𝑡𝑆𝑖𝑗 ∙ 𝑆𝑖𝑗 − 𝐶2 휀 

 

(88) 

 

The kinematic eddy viscosity in the k-ε model is specified analogous to equation (21), but 

with an extra proportionality term. 

𝜈𝑡 = 𝐶𝜇

𝑘2

휀
 

 

(89) 

 

From equation (19), the eddy viscosity was defined as a function proportional to a length 

and velocity scale related to the largest eddy structures. Therefore the use of the small eddy 

variable ε to define the large eddy scale 𝑙 could be dubious. But since the extraction of 

energy from the mean flow by the large eddies is matched by the energy cascade ending up 

at the smallest dissipating eddies, this is acceptable. 

The k-ε model thus has five empirical constants: 

 

𝐶𝜇 = 0.09         𝜎𝑘 = 1          𝐶1 = 1.44          𝐶2 = 1.92        𝜎𝑘 = 1.3 

 

These parameters are derived by systematic data fitting for a comprehensive range of 

turbulent flows. They are constants in the equations, since they are not altered during 

calculations. Still, the constants are not universal but are expected to change little between 

different flow scenarios. Modifications of the constants can however be imposed to account 

for effects such as rotation, curvature or swirl. 

Since the Newtonian viscosity is neglected in the k-ε model, wall functions are needed to 

resolve the boundary layer. 

To account for the k-ε models lack of accuracy in the near wall region, different variants of 

the model has been developed to challenge these difficulties. These variants includes the k-ε 

RNG (renormalization group theory) and the k-ε Realizable model. The main improvements 

for these models are as follows: 
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K-ε RNG 

 

 Rather than standard wall functions, the RNG model uses an analytically derived 

differential formula for the effective viscosity that accounts for low-Reynolds number 

effects. [35]   

 

 The RNG models is modified with an additional term in the epsilon equation to 

improve accuracy for rapidly strained flows. 

 

 The effect of swirl is included in the RNG model. 

 

K-ε Realizable 

 

 In the k-ε Realizable model, a new transport equation for the dissipation rate has 

been derived from the exact equation for the transport of the mean square velocity 

fluctuation.[36] 

 

 The 𝐶𝜇 parameter is not constant in the Realizable model but a function of the mean 

strain rotation rates, angular velocity of the system and the turbulent fields (k and ε) 

[36]. 

 

 

Pro and cons k-ε model 

 

The k-ε model is one of the most widely used turbulence models because of its reasonably 

well predictions of a wide range of industrial flows. The model is simple to implement, 

relatively affordable in terms of computational costs, it incorporate history effects and only 

initial or boundary conditions are needed to be supplied. 

The model is however developed for high Reynolds number flow, and consequently it is not 

accurate close to the wall where TKE and ε have large peaks. This especially true for flows 

with adverse pressure gradients [37, p.120], which is because the k-ε model tends to 

produce too large turbulent length scales in the near wall region and other areas with large 

strain rates. Thereby the TKE gets amplified and in this way, phenomenon’s such as 

separation gets suppressed or delayed [37, p.121]. The k-ε model also performs poorly for 

flows where large streamlined curvature is present [33, p.14].  

Models like the k-ε RNG and k-ε Realizable are often preferred to the standard k-ε model 

since these models includes terms which improves results for rapidly strained flows, strong 

streamline curvature and low Reynolds number effects. These correction terms have shown 
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to improve the results for the k-ε based models in some areas, e.g. the RNG model shows 

better results towards expanding ducts flow, relative to the standard k-ε model, however it 

performs worse for contracting duct flow of the same area ratio [34, p.88].  According to [36] 

studies have shown that the k-ε realizable model gives the most accurate results towards 

complex and separated flows when compared with the standard k-ε and RNG model. 

Attempts to improve the results for k-ε based equations by including terms for low Reynolds 

effects is according to [37, p.142] a popular misconception since observations show that the 

k-ε model is inconsistent with the defect layer, and therefore it is not reasonable that 

viscous correction will be a remedy for the problems with the k-ε towards for example flow 

separation.       

 

1.8.5 K-ω two equation model 
 

The k-ω model is analogous to k-ε in the way that it utilizes the Boussinesq assumption, but 

employs the specific dissipation rate of TKE i.e. omega rather than epsilon. The specific 

dissipation rate of TKE is defined as ω = ε / k which is the reciprocal of the eddy turnover 

time, and accordingly it is related to the frequency of the largest eddies.   

When using this equation the length scale compared to k-ε has to change because of 

dimensional requirements to yield: 

𝑙 =
√𝑘

𝜔
 

 

(90) 

 

And naturally the eddy kinematic viscosity becomes: 

𝜈𝑡 =
𝑘

𝜔
 

 

(91) 

 

Consequently the k-ω model also account for history effects related to the flow. It was 

Kolmogorov that first postulated the k-ω equations, but this first version has been found 

unfitting [37, p.86] therefore Fluent utilizes the k-ω model which is based on Wilcox 

improved model and incorporates modifications for low-Reynolds number effects, 

compressibility and shear flow spreading [44] and yields: 

     

𝜕(𝑘)

𝜕𝑡
+ 𝑈𝑗

𝜕𝑘

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝑘
) 

𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝛽∗𝑓𝛽𝑘𝜔 

(92) 
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𝜕(𝜔)

𝜕𝑡
+ 𝑈𝑗

𝜕𝜔

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝜔
)
𝜕𝜔

𝜕𝑥𝑗
] + 𝛼

𝜔

𝑘
𝑃𝑘 − 𝛽𝑓𝛽𝜔2 

 

(93) 

 

 

The first two terms on the left hand side represent respectively the rate of change, and the 

transport of k or ω by convection. The first term on the right hand side is the diffusive 

transport of k or ω and the two last terms represent respectively the rate of production and 

rate of dissipation of k or ω. 

Fluent uses a modified eddy viscosity for the k-ω model to account for low Reynolds number 

effects. Therefore the operational eddy viscosity in Fluent yields: 

𝜈𝑡 = 𝑎∗
𝑘

𝜔
 

(94) 

 

 

𝑎∗ = 𝑎∞
∗ (

𝑎0
∗ +

𝑅𝑒𝑡

𝑅𝑘

1 +
𝑅𝑒𝑡

𝑅𝑘

) 

 

(95) 

 

Where the 𝑎∗ is a dampening function implemented to damp the turbulent viscosity in order 

to make sure that viscous stresses takes over from turbulent stresses at low Reynolds 

numbers and in the viscous sub-layer next to the walls. Consequently 𝑎∗=1 in the outer area 

of the boundary layer where to flow is fully turbulent and 𝑎∗=0 near the surface in the 

viscous region. The production of ω has a similar damping function in 𝛼, whilst the 

dissipative terms for TKE and ω have more complex correction terms in the form of 𝛽∗, 𝛽 

and  𝑓𝛽.  

 

 

The model constants are as follows: 

𝑅𝑒𝑡 =
𝜌𝑘

𝜇𝜔
             𝑅𝑘 = 6             𝜎𝑘 = 2            𝜎𝜔 = 2          𝛼0

∗ =
𝛽𝑖

3
            𝛽𝑖 = 0.072 
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Pro and cons k-ω model 

 

The k-ω equations inhabits several advantages over the more popular k-ε model. The 

greatest difference is seen in the way the k-ω model handles boundary layers with adverse 

pressure gradients in a quite accurate manner, whilst k-ε model almost completely fails 

under such flow conditions [37, p.165] This is especially true when the wake strength 

parameter is more than [37, p.120] which is not particularly high. The model can also easily 

be integrated to the wall without any viscous damping, and with viscous damping the model 

predicts TKE boundary layer features in a relatively correct way. There is also evidence that 

the model effectively engage problems with recirculating [37, p.165]. Accordingly to [9, 

p.462] the k-ω model has proven to be superior to the k-ε model with regards to APG 

boundary layer flow 

The k-ω model is however not as effective in free shear flows as the k-ε model, and the 

boundary layer computations can be sensitive to the values of ω in the free stream [37, 

p.165] 

 

1.8.6 Menter K-ω SST (Shear stress transport) 
 

Menter [46] noted the superior achievement of the k-ω model over the k-ε in the near wall 

region and under adverse pressure gradients. He also understood that Wilcox’s original k-ω 

model is overly sensitive to the free stream value of ω, while the k-ε model is not prone to 

such problems. Therefore Menter developed a hybrid model to effectively blend the robust 

and accuracy of the k-ω model in the near wall region with the free stream independence of 

the k-ε model in the fully turbulent region far from the wall [34, p.91].    

By converting the k-ε equations into a ω formulation using the relation ε=kω, Menter 

successfully established the SST k-ω model which is quite similar to the k-ω model but with 

the following modifications: 

 

 The eddy viscosity is modified to account for the transport of turbulent shear stress. 

 The k-ω and k-ε model are both multiplied with a blending function and added 

together. The blending function is modified to be one near the wall to activate the 

standard k-ω model, and zero away from the surface which activates the 

transformed k-ε model. 

 The k-ω SST model incorporates a damped cross diffusion term in the ω formulation. 

 The modeling constants are different. 
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Figure 26: k-ω SST model wall transformation from k-ε to k-ω model [33, p.19] 

 

 

The k-ω SST transport equations for respectively TKE and specific turbulent dissipation rate 

are presented as in the fluent user guide: 

𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + �̃�𝑘 − 𝑌𝑘  

(96) 

 

 

 

𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕(𝜌𝑘𝜔)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡

𝜎𝜔
)
𝜕𝜔

𝜕𝑥𝑗
] +

𝛼

𝜈𝑡
�̃�𝑘 − 𝑌𝜔 + 𝐷𝜔 

 

(97) 

 

Where the two first terms on the left hand side are respectively rate of change of k or ω and 

the transport of k or ω due to convection. The first term on the right hand side is the 

diffusive transport of k or ω. The capital letter �̃�𝑘 represent production of k and ω, whilst Y 

represent dissipation of k and ω. 

 

When comparing equation (84) with (88) we can see that equation (88) has an extra term 𝐷𝜔 

included at the right hand side. When the standard k-ε model is transformed into a k-ω 

formulation by the substitution ε=kω, the cross diffusion term is introduced and in this way 

couples the k-ε and k-ω models. The cross diffusion term stems from the k-ε formulation and 

is therefore only active in the far field remote from the wall and tends to zero when 

approaching the wall. 

𝐷𝜔 = 2(1 − 𝐹1)𝜌𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 

 

(98) 
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Where 𝐹1 is a blending function, which purpose is to switch the SST model between the k-ω 

and k-ε formulations by changing smoothly from 1 close to the wall so as to make the cross 

diffusion term zero, and one far from the wall giving the k-ε formulation in the far field.  

The constants used in the cross diffusion term are also blended between the two 

formulations. 

 

The eddy viscosity is defined as: 

𝜈𝑡 =
𝑘

𝜔

1

𝑚𝑎𝑥 [
1
𝛼∗ ,

𝑆𝐹2

𝛼1𝜔
]
 

 

(99) 

 

Where S is the strain rate magnitude, 𝛼∗is defined above and and 𝐹2 is another blending 

function which ensures that the eddy viscosity model accounts for turbulent shear stress 

transport in regions of adverse pressure gradients. 

The production term �̃�𝑘 is modified to limit the buildup of turbulent kinetic energy in 

stagnation areas, and therefor yields: 

�̃�𝑘 = 𝑚𝑖𝑛(𝑃𝑘 , 10𝜌𝛽∗𝑘𝜔) 
 

(100) 

 

 

Where 𝑃𝑘 is the same as in the standard k-ω model and 𝛽∗ is in this case a correction term 

based on compressibility and low Reynolds numbers. 

For more details see fluents user guide  

 

 

Pro and cons k-ω SST 

 

By combining the k-ω and k-ε models it is possible to utilize the individual strengths of the 

two models and thereby get the best of each model. The sensitivity of the k-ω model 

towards free stream values of ω are avoided by utilizing the k-ε model which has no such 

sensitivity. The low Reynolds number difficulties of the k-ε model are encountered by 

switching to the k-ω model which shows great accuracy in boundary layer flows. 

Additionally the k-ω SST model has been fitted with stress limiters in the viscosity and 

production term respectively in order to ensure that the turbulent stress does not become 

too large in regions of adverse pressure gradients and to avoid buildup of turbulent kinetic 

energy in stagnation areas. 
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1.8.7 Reynolds stress models (RSM) 
 

By subtracting the mean values from the instantaneous Naver-Stokes equations the 

differential transport equations governing the behavior of the individual stresses can be 

derived. The Boussinesq assumption and thereby the eddy viscosity are discarded and the 

Reynolds stresses are computed directly together with an equation for the dissipation rate. 

The transport equations for the Reynolds stresses are very complex and thus need modeling. 

The solution to these modeled form of the stresses are often referred to as second order 

closure [9, p.452].  

The RSM model is the most sophisticated turbulence model that Fluent provides  

 

The RSM differential equations can be expressed as follows [34, p.81]: 

𝐷

𝐷𝑡
(𝑅𝑖𝑗) = 𝐷𝑖𝑗 + 𝑃𝑖𝑗 + П𝑖𝑗 − 휀𝑖𝑗 + 𝛺𝑖𝑗  

 

(101) 

 

 

Where 𝑅𝑖𝑗 = 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  and the first term on the left hand side represent respectively rate of 

change, and transport of 𝑅𝑖𝑗 by convection. The terms on the right hand side are as follows: 

 

𝐷𝑖𝑗 = Transport of 𝑅𝑖𝑗  by turbulent diffusion plus 

𝑃𝑖𝑗 = Rate of production of 𝑅𝑖𝑗 plus 

П𝑖𝑗 = Transport of 𝑅𝑖𝑗 due to turbulent pressure strain interactions minus 

휀𝑖𝑗 = Rate of dissipation 

𝛺𝑖𝑗 = Transport of 𝑅𝑖𝑗 due to rotation 

 

Where the exact different terms are as follows: 

 

𝐷𝑖𝑗 = −
𝜕

𝜕𝑥
(𝑢𝑖

′𝑢𝑗
′𝑢𝑘

′̅̅ ̅̅ ̅̅ ̅̅ ̅ +
𝑝′𝑢𝑖

′̅̅ ̅̅ ̅̅

𝜌
𝛿𝑘𝑖)          𝑃𝑖𝑗 = −𝑢𝑖

′𝑢𝑘
′̅̅ ̅̅ ̅̅
𝜕𝑢�̅�

𝜕𝑥𝑘
− 𝑢𝑗

′𝑢𝑘
′̅̅ ̅̅ ̅̅
𝜕𝑢�̅�

𝜕𝑥𝑘
 

 

П𝑖𝑗 =
𝑝′

𝜌
(
𝜕𝑢𝑖

′

𝜕𝑥𝑗
+

𝜕𝑢𝑗
′

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
              휀𝑖𝑗 = 2𝜈

𝜕𝑢𝑖
′

𝜕𝑥𝑗

𝜕𝑢𝑗
′

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                      𝛺𝑖𝑗 = 𝜈∇2(𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) 
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The terms related to convection, molecular diffusion and production of 𝑅𝑖𝑗 are all exact. To 

obtain a solvable form of equation (101) the terms governing the turbulent diffusion, 

dissipation and pressure strain correlation have to be modeled. 

The diffusion term can be modeled by a gradient assumption similar to what is done in the 

two equation models. Therefore the transport of Reynolds stresses by diffusion is assumed 

proportional to the gradients of Reynolds stresses 

𝐷𝑖𝑗 = 𝑑𝑖𝑣 (
𝜈𝑡

𝜎𝑘
𝑔𝑟𝑎𝑑(𝑅𝑖𝑗)) (102) 

 

 

Where the kinematic eddy viscosity is defined by equation (89) and the value of 𝜎𝑘is set to 

0.82 

 

The pressure strain term is the one that is the most difficult to model accurately, and is 

regarded as the term bringing the highest amount of uncertainty into the model. That the 

term is unmeasurable is not making the process of producing improved models any easier 

either. The general effect of the pressure strain term is to redistribute energy between the 

normal stresses and in this way make them more isotropic.  This process will then implicitly 

reduce the Reynolds shear stresses. When approaching the wall however the anisotropy of 

the normal stresses increases due to the dampening of fluctuations normal to the wall. It is 

therefore necessary to add a wall reflection term in the model to include these effects [34, 

p.82].   

    

The dissipative rate term is modeled similar to the one used in the k-ε equation. The smaller 

eddies are assumed to dissipate their energy isotropic by relating the dissipation of the 

normal Reynolds stresses to the dissipation of TKE. This is achieved by the relation: 

휀𝑖𝑗 =
2

3
𝛿𝑖𝑗(𝜌휀 + 𝑌𝑀) 

 

(103) 

 

Where 𝛿𝑖𝑗 is the Dirac function and 𝑌𝑀is related to dilation of dissipation through 

compressibility effects.  
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Pro and cons RSM 

 

The RSM model is the most complete turbulence model available in Fluent in the sense that 

history effect, transport and anisotropy of turbulent stresses are all accounted for. Hence 

flows that are not adequately represented by the Boussinesq eddy viscosity model can be 

better predicted by the RSM. However the models requires substantially higher CPU time, 

and can in many circumstances be computationally too expensive to run.  

 

 

1.8.8 Near Wall treatment 

  

Accurate calculations in the near wall region is of highest importance in achieving good 

simulation results. The near wall region can inhabit very large velocity gradients, therefore 

incorporation of these effects are related to how the boundary layer is resolved. This can be 

achieved using wall functions or resolving the boundary layer itself by near wall modeling. 

 

Wall functions 

 

This approach is based on the law of the wall formulations from section (1.3) and tries to 

correctly incorporate the effects of the boundary layer, without having modify the 

turbulence models to account for the presence of a wall and thereby build a mesh fine 

enough to resolve the boundary layer behavior explicitly. This can be done because the near 

wall conditions are often predictable. The first grid cell is be placed in the region 30 < 𝑦+ <

300 and then the inner laws are patched [9, p.451] into the calculations. This makes the use 

of wall functions very economical and robust. However, this method is based on empirical 

observations of simple high Reynolds number flows and is not usable for flow separation or 

low Reynolds number flow. Also the distance of the first grid cell from the wall is essential in 

obtaining good results, because if it is placed to near the wall the model becomes invalid, 

too far and the boundary layer is not properly resolved. ANSYS /Fluent recommends this 

approach if one is more interested in the mixing in the middle of the domain, rather than the 

forces on the wall [33, p.20].  

 

Near wall modelling 

 

The other method commonly in use to calculate the boundary layer flow is by utilizing a 

concept called enhanced wall treatment. In this model, molecular viscosity and dampening 

terms are added to the model and the boundary layer is resolved right up to the wall by 

using an adequately fine mesh disregarding empirical correlations. The first grid cell should 

be placed at  𝑦+ = 1 for high accuracy demands, and consequently the computational cost is 



60 
 

significantly increased. When using enhanced wall treatment the boundary layer is divided 

into two parts: 

 

 The inner and overlapping region in the boundary layer is assumed to be affected by 

both Newtonian and turbulent viscosity. 

 

 The outer region is regarded as fully turbulent and thereby only dependent on 

turbulent viscosity. 

 

The two regions are separated by a wall distance Reynolds number defined by: 

𝑅𝑒𝑦 ≡
𝜌𝑦√𝑘

𝜇
 

 

(104) 

 

Figure 27: Wall function vs near wall model approach [30] 

 

 

Considerations in boundary layer modelling 

 

For best predictions ANSYS fluent recommends the use of enhanced wall treatment as it can 

handle complex flows, pressure gradients, low Reynolds number applications and it does not 

rely on the empirical law of the wall formulation. The enhanced wall treatment also gives the 

most consistent wall shear stress and is the least sensitive to 𝑦+values. To allow the grid to 

capture the features of the boundary layer it is highly recommended to have a structured 

grid in the wall normal direction. The structured grid should extend beyond the boundary 

layer to ensure that the boundary layer growth is not restricted, and at the same time the 

most important shear layers should be covered by at least 10 cells normal to the wall [38, 

p.687]. 
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It should also be noted that in ANSYS Fluent all 𝜔 based models uses the enhanced wall 

treatment as default. Therefore it is generally not recommended to include low Reynolds 

number effects when utilizing this turbulence model, since low Reynolds number correction 

is not needed to integrate the equation through the viscous sub layer. The low Reynolds 

number correction is not widely calibrated and the main influence is to mimic laminar-

turbulent transition. [38, p.686]. 

 

 

 1.8.9 Modeling complex flows 

 

The 1981 Stanford Conference on Complex Turbulent Flows was assembled to investigate 

different computer methods to predict complex flows. By complex flow one means in this 

context “a complex turbulent flow is simply one that is more complicated than the steady, 

incompressible, two-dimensional attached thin shear layers”. [9, p.469]. 

 Parameters that contribute to complexity are: 

 Wall effects such as irregular geometry, suction, blowing and roughness 

 Strain interactions 

 Fluid effects e.g. multiple phases, compressibility, chemical reactions 

 Turbulent fluctuations  

At the conference a total of 35 computer groups were put together for comprehensive 

testing of different methods for flow predicting. Their findings were that no single method 

could handle adequately the full spectrum of flow scenarios that were tested, but different 

methods worked in different cases. Further findings made by the committee were: 

 Differential methods that integrate right down to the wall give better results than 

wall functions 

 There were no general correlation between the complexity of the models used and 

their actual predictive capability 

 Prediction of separated flows, were significantly worse than for the corresponding 

attached flows. 

 The weakest part of the two equation models is the ε relation. 
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Chapter 2 - Model description 

2.1 Geometry and mesh 
 

When it is decided to use CFD as a tool for obtaining detailed information of a flow, the 

approach within CFD communities follows basically the same recipe. The steps are as 

follows: 

 

1. Real life physical problem is decided to be addressed using CFD. 

2. The actual geometry of interest is evaluated and discretized 

3. The mathematical model with suitable governing equations, numerical solvers and 

boundary conditions are applied. 

4. The solution is obtained and evaluated. 

 

I this thesis the problems of interest are presented in the introduction. The discretized 

geometry, mathematical model and evaluation of results are presented in the next sections. 

For CFD ANSYS has developed a software tool called Workbench. In Workbench the steps 

above are followed in a firm way, where it is necessary to finish one section before you can 

continue to the next. You can however import geometry, mesh or solution files directly into 

workbench without creating them yourself.  

 

 

Figure 28:  ANSYS Fluent workbench system 

 As can be seen from figure (28), ANSYS uses different software programs for the different 

parts of the CFD analysis. In this thesis the geometry is created in Design modeler, which is 

ANSYS CFD geometry designer. The geometry is then imported into the mesh section, where 

the mesh is applied. The mesh is then imported into Fluent which is ANSYS CFD setup and 

solver program. In Fluent the mesh is refined using mesh adaption tools available in Fluent. 

The geometry, meshing and setup are done on a Dell Inspiron 5520 computer, with a 

memory of 4.00 GB RAM and a Intel® Core™ 2.50GHz processor.  
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The CFD setup is then sent to NTNU super computer Kongull [39] for solving, from there the 

solution is imported back for post processing. 

 

2.1.1 The geometry 
 

As stated in the introduction, the flow through the diffuser is to be simulated, both when the 

floor is smooth and when the floor is covered with k-type roughness elements. The 

dimensions of the diffuser and roughness elements are given in appendix (E). Due to limited 

computer resources available only two-dimensional simulations have been performed. In 

figure (29), the geometry off the diffuser when it is smooth, and when the floor is covered 

with k-type roughness elements is depicted. From now on the former will be denoted the 

“smooth diffuser” whilst the latter will be denoted “the rough diffuser”. To give the 

boundary layer some time to develop, an entrance length of 0.3 meter have been added. 

Likewise an outlet length of 0.3 meter have also been added, to prevent any unwanted 

backflow taking place. The roughness elements in figure (29), are only meant to illustrate the 

scenario and are not scaled correctly. 

 

 

Figure 29: Smooth and rough diffuser depiction.  

 

 

In Design modeler the geometry is constructed according to the coordinates given in 

appendix (E). For every ten centimeter there is given a corresponding height, therefore the 

diffuser is built by drawing sets of horizontal lines (representing the floor) with lengths of 10 

cm and at the end of each horizontal line, a vertical line with the correct dimension is placed 

to represent the diffuser height at the specific cross section. This process is copied and 



64 
 

pasted throughout the design of the diffuser. Finally straight lines are drawn between the 

end points of the vertical lines in order to generate the rough of the diffuser. 

 

 

Figure 30: Diffuser geometry building principle 

 

In figure (30), the letters H and V are respectively horizontal and vertical dimensions which 

must be given to design modeler, each horizontal line is 10 cm long. It is also possible to 

import the geometry directly into design modeler using a coordinate file. This process did 

however cause some difficulties in the creation of the rough diffuser, and therefore it was 

decided to produce the rough diffuser in the same manner as the smooth diffuser. When the 

rough diffuser was created, roughness elements replaced the floor.  

 

 

Figure 31: Roughness element construction 

 

The roughness elements are squares with sides of 1.7mm. They have all an equally spacing 

of 1.19cm between them which means that this is k-type roughness with a pitch to height 

ratio of 8. The roughness elements are created in design modeler by first drawing a square 

and give it the right dimension i.e. define H4 and V1 in figure (31). Then the line H3 is drawn 

and dimensioned, for thereafter to utilize the copy and paste function in design modeler to 

cover the entire floor of the diffuser with the roughness elements   
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2.1.2 The mesh 

 

After the geometry of the rough and smooth diffusers are created, the mesh is to be applied. 

For the purpose of this thesis two meshes for the smooth diffuser, and four meshes for the 

rough diffuser have been generated. The smooth diffuser meshes are denoted 1.1 and 1.2 

whilst the rough diffuser meshes are denoted 2.1, 2.2, 2.3 and 2.4. 

As discussed in section (1.7.2), in order to generate the most accurate solutions, a grid 

should be as fine as possible. However this is not always computational feasible. Therefore it 

is better to create a mesh where the regions of interest are meshed very fine, whilst the 

lesser important regions have a coarser mesh. How this is achieved in this thesis is will be 

outlined in the following section, but first it is important to understand the following 

concepts: 

 

Mesh adaption: 

 

Mesh adaption means that the cells are refined in a particular way. In this thesis mesh 

adaption functions are utilized in Fluent after the base mesh is designed in Workbench.  

Region adapt: In this function you choose the specific area you would like to refine and how 

many times you want to refine it. By refining a cell one time, the cell is divided into four new 

cells. This means that if your mesh consist of one cell and it is refined two times the number 

of cells in the mesh is now 16. Carefulness must therefore be employed, so as to not 

generate a mesh which is to computational expensive.  

Boundary adapt: In this function you choose a boundary and then the number of cells 

normal to the boundary you would like to refine. 

 

 

Figure 32: Mesh adaption 
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Mesh inflation: 

 

Mesh inflation is another tool for designing as computational feasible and at the same time 

efficient mesh. Inflation is utilized at the boundaries by adding layers of mesh normal to the 

boundary. This means that the mesh is only refined in one direction. The number of inflation 

layers and a growth rate between each layer must be specified. Inflation is especially suited 

for capturing high velocity gradients in the normal direction to the boundaries, and the 

process can be seen in figure 24. 

  

2.1.3 Smooth diffuser mesh 

 

Mesh 1.1 

 

This mesh is only produced in workbench using the mesh software and is without any mesh 

adaption in Fluent. By applying the sizing function and choosing a region, the dimensions of 

the cells in that specific region can be set. The scale that was found most fitting was to give 

every cell throughout the diffuser the dimension of 1 𝑐𝑚2. The boundary layer belonging to 

the upper and lower walls are then covered using the inflation function. Twenty layers of 

inflation with a growth rate of 1.2 and first layer thickness set to 0.00001 meters are 

employed for this purpose.  Using values from [17]  𝑦+ = 1 was found to be 0.00003 meter. 

The boundary layer should therefore be properly resolved.  

 

 

Figure 33: Smooth diffuser mesh overlook 
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Figure 34: Mesh 1.1 near wall structure 

 

Mesh 1.2 

 

This mesh has the same foundation as mesh 1.1, but the first centimeter up from the floor 

have been refined one time, meaning that every cell in that region including the inflation 

layers have been divided in four new cells.  

 

 

Figure 35: Mesh 1.2 near wall structure 
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2.1.4 Rough diffuser mesh 
 

There have been constructed four grids for the rough diffuser in the attempt to acheive 

mesh independence. In common for mesh 2.1 and 2.2 is that they both share the same 

starting point i.e. they use the same mesh created from the meshing software in 

Workbench, but they are refined different later in Fluent. The base mesh used for mesh 2.1 

and 2.2 is constructed as follows: 

 

 The diffuser is divided into two separate areas, where the first or lower section 

stretches from the floor out to 20 roughness heights i.e. 34 mm. I this region a 

structured mesh with cells of size (0.85 ∗ 0.85)𝑚𝑚2 are created. This mesh gives 

two cells on the top and at the sides of each roughness element, and a total of 14 

cells between the roughness elements.  

 

 The second or upper region stretches from the roof of the diffuser down to the first 

section. In this region a structured mesh with cells of size 1𝑐𝑚2 are created. To 

resolve the boundary layer at the roof of the diffuser inflation is used. Since main 

attention is given to the boundary layer along the floor, only 10 layers of inflation 

with a growth rate of 1.2 are utilized at the roof.   

 

 To obtain a smooth transition between the two regions, the lower edge of the upper 

region is set to have cells of size (0.85 ∗ 0.85)𝑚𝑚2. This is done to make the merging 

process of the two regions as effective as possible, it also increases the region of fine 

meshing close to the floor. However one side effect of the merging process is that 

more heaps of cell structures have emerged relative to the smooth diffuser.  

 

 

 

 

 

Figure 36: Rough diffuser overlook 
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Figure 37: Rough diffuser mesh transition  

 

 

 

Figure 38: Rough diffuser near wall base structure 

 

Mesh 2.1 

 

Mesh 2.1 is constructed as mentioned with the previous structure as a base. Further it is 

refined in Fluent using the adapt function according to the following procedure: 

 

1. The region from the floor and stretching out two roughness heights i.e. 

3.4mm is refined one time using region adapt function in Fluent. 

 

2. Then using boundary adapt function, the six cells closest to the floor are 

refined one time. 

 

3. Last, using boundary adapt the two cells closest to the floor are then refined. 
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Figure 39: Steps used to build mesh 2.1 

In mesh 2.1 the roughness elements are therefore surrounded by 16 cells on each side. 

                              

Mesh 2.2 

 

This mesh has been further refined in Fluent compared to mesh 2.1 in order to detect any 

mesh dependent solutions. By refinening finer close to the roughness elements and also 

extend the region of refinement out to three roughness elements, the hope is that more of 

the near wall dynamics shall be advected out from the wall and into a larger part of the 

boundary layer. Mesh 2.2 is constructed as follows: 

 

1. The region from the floor stretching out three roughness heights i.e. 0.51 cm is 

refined one time using region adapt function in Fluent. 

 

2. The six cells closest to the floor are then refined one time using boundary adapt.  

 



71 
 

 

3. The three cells closest to the floor are the refined one time using boundary adapt. 

 

 

4. Finely the three cells closest to the wall are refined one time, using boundary adapt  

 

 

 

Figure 40: Steps used to build mesh 2.2 
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Figure 41: Mesh 2.2 detailed view of mesh 2.2 at roughness elements 

In mesh 2.2 the roughness elements are therefore surrounded by 32 cells on each side. 

 

Mesh 2.3 

 

It was recommended by [40] not to divide the diffuser geometry into two parts as done in 

mesh 2.1 and 2.2, but rather mesh the hole geometry as one body and then utelize inflation 

to capture the important velocity gradients along the boundaries. This is therfore the 

baseline for mesh 2.3 and 2.4. 

1. The mesh is created from same principle as the smooth diffuser by setting the cell 

size in the entire diffuser to 1 cm2, and putting 20 layers of inflation with first layer 

thickness of 0.00001 meter at the roof of the diffuser. 

 

2. The lower edge or the floor of the diffuser is then set to have cells of size 

(0.425 ∗ 0.425)𝑚𝑚2. Since the height of the roughness elemets are 1.7mm, this will 

place four cells along the sides of the roughness element. 

 

3. Five layers of inflation with first layer thickness of 0.00001 meter and a growth rate 

of 1.2 are then placed at the floor of the diffuser. 

 

4. Using Region adapt in Fluent the mesh is further refined from the floor and stretching 

out five roughness elements i.e. 8.5mm. 
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Figure 42: Steps used to build mesh 2.3. Notice the thick black and green line following the geometry of the 
roughness elements at respectively step 3 and 4. This line represent the inflation layers  

In mesh 2.3 the roughness elemets are therefore surronded by 8 cells on each side and also, 

10 layers of inflation with first layer thickness of 0.000005 meter and a growth rate of 1.2 

have been placed along the floor.  

 

Mesh 2.4 

 

The start point for mesh 2.4 is step 3, in mesh 2.3. Using Region adapt in Fluent mesh 2.4 is 

refined one time from the floor and extending out ten roughnesss heights i.e 17mm. In 

addition the region from the floor and extending out one and a half roughness heights i.e. 

2.55 mm have been further refined one time. By refineing deeper close to the roughness 

elements and also extendnig the region of refinement, the hope is that some of the near 

wall dynamics will be advected out into the boundary layer. 
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Figure 43: Detailed view of mesh 2.4 at roughness element  

In mesh 2.4 the roughness elements are therefore surronded by 16 cells on each side and 

also 20 layers of inflation with first layer thickness of 0.0000025 meter and a growth rate of 

1.2 have been placed along the floor.  

 

 

In table (1) information regarding number of cells and first cell height in the different meshes 

are given. 

Mesh Number of cells 
initially 

Number of cells 
after refinement 

Increasement 
factor 

First cell height 
[m] 

1.1 58951 58951 1 0.00001 

1.2 58951 94591 1.6 0.000005 

2.1 456912 1056825 2.3 0.00010625 

2.2 456912 1881876 4.1 0.000053125 

2.3 356918 1202600 3.4 0.000005 

2.4 356918 3139001 8.8 0.0000025 
 

Table 1: Information of number of cells and first cell height in the different meshes. 
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2.2 Fluent settings 
 

When the geometry and the proceeding mesh is built, the next step is to load these into 

Fluent for solving. To start the iteration process a number of parameters needs to be set, 

these are crucial to the overall result. In this thesis the following input parameters have been 

chosen: 

 

1. Solver: 

For pressure velocity coupling the pressure based solver has been favored over the density 

based solver. The pressure based approach was chosen because this is the standard for low 

speed incompressible and mildly compressible flows. With regards to time, the steady state 

solver has primarily been utilized. To check for any time dependency, transient simulations 

have been carried out on some of the turbulence models. The results from the transient 

simulations are presented in appendix (G). 

 

2. Turbulence models: 

A number of turbulence models are available in Fluent included the models outlined in 

section (1.8). In addition, other less relevant models related to the particular scenario in this 

thesis are offered. Each turbulence model utilized have been adjusted with the modification 

functions given in Fluent for optimal performance. 

 

 K-ω SST model, with the following modifications: 

 

o Low Re correction 

o Curvature correction 

 

The Curvature correction suppresses or enhances turbulence based on the flow curvature. 

As already mentioned the low-Re number correction application is generally not 

recommended with the k-ω models. However, best results were obtained when this 

modification were applied. 

 

 Standard K-ω model, with the following modifications: 

 

o Low Re correction 

o Shear flow correction 

o Curvature correction 
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 K-ε RNG model, with the following modifications: 

 

o Differential viscosity model 

o Enhanced wall treatment 

o Pressure gradient effects 

o Curvature correction 

 

 K-ε Realizable model, with the following modifications: 

 

o Enhanced wall treatment 

o Pressure gradient effects 

o Curvature correction 

 

 RSM model, with the following modifications: 

 

o Linear pressure strain 

o Wall boundary condition from k equation 

o Wall reflection effects 

o Enhanced wall treatment 

o Pressure gradient effects 

 

 Spalart-Allmaras model, with the following modifications: 

 

o Vorticity based 

o Curvature correction 
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3. Material  

In this unit the specific fluid and material of the diffuser is to be defined. The fluid is set to air 

and the material is set to aluminum. These are also the default terms in Fluent. 

 

4. Boundary conditions: 

The boundary conditions for the diffuser is then to be specified. These will be the same for 

all the simulations and are also the basis for the initialization values of the turbulence 

models.  

 

 Inlet: The inlet conditions has been set as a velocity-inlet meaning that the solver 

needs a velocity input to start the iteration process. The velocity magnitude was 

given from the measurements in [17] and yields 31 m/s. 

 

 Turbulent intensity: The turbulence models needs an input for the intensity at the 

inlet for the models to start. This value has been set to 0.5% of the inlet velocity [41]. 

 

𝐼 =
√(2 3⁄ )𝑘

𝑈𝑒
 

(105) 

 

 

 Turbulent length scale: The characteristic length of the largest eddies needs 

initialization for the turbulence models to start. The size of the largest eddies at the 

inlet was found by the correlation [34, p.70]. 

 

𝑙0 = 0.07𝐿 
 

(106) 

 

Where L has been chosen as the vertical height of the diffuser throat giving 𝑙0 a value 

of 0.0168 meter. 

 

 Outlet: The outlet condition is set to pressure-outlet meaning that a pressure input 

must be given for the iteration process to start. This was set to atmospheric or 

equivalently zero gauge pressure. 

 

 The walls: The walls are set to impermeable stationary walls with no slip.  
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5. Reference values: 

Reference values are used in ANSYS Fluent as a basis for the post processing. For example 

are computed values for the friction coefficient based on the reference velocity and not on 

the free stream velocity. The Reference values are based on the default values computed 

from inlet yielding: 

 Air density equal to 1.225  𝑘𝑔 𝑚3⁄  

 Temperature equal to 288.16 k 

 Dynamic viscosity equal to 1.7894*10−5 𝑁𝑠 𝑚2⁄  

 Atmospheric operating conditions 

 

6. Solution methods: 

In solution methods the type of pressure velocity coupling and spatial discretization method 

are specified. For the steady state solver the Simple (Semi-Implicit Method for Pressure-

Linked Equations) algorithm is utilized. This is a pressure based solver, and is based on the 

principle that fluid flows from regions of high pressure low to low pressure. In this solver the 

pressure is found by manipulating the momentum and continuity equations. If more mass is 

flowing into a cell then out of the cell, indicates that the pressure in that cell compared to 

the neighboring cell must be too low. The correct value of the pressure is then established 

by an iterative process to satisfy the continuity equation. For the transient simulation the 

PISO (Pressure Implicit with Splitting of Operators) scheme is used. For spatial discretization 

the QUICK scheme has been chosen. 

 

7. Solution controls: 

The default relaxation coefficients are used, except for the RSM simulation where the 

relaxation coefficient where adjusted for the solution to converge. 

 

8. Monitors: 

The iterations needs a residual criterion for the solution to converge. This criterion has been 

set to 10−7. The residuals in some of the simulations showed a tendency to drop even after 

the residual criterion was reached, new residual criterions were therefore put in for these 

simulations. Also some of the simulations converged before the residual criterion was 

reached (meaning that the residuals stop changing). 
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9. Solution initialization: 

The iterations starts by initializing from inlet. Meaning that the entire domain has been given 

the values of the inlet.   

 

 

10. Run calculation: 

In this section the number of iterations in steady state or equivalently time step and number 

of time steps in transient simulation are given. When these parameters are chosen Fluent 

will starts the calculation process until the solution diverges, converges or the number of 

iterations has been reached. 

 

 

2.2.1 Fluent simulations 
 

As stated in the problem description, the flow through both the smooth and rough diffuser is 

to be simulated. Measurements for both geometries are available and accordingly the 

simulations will be compared with the relevant measurements for validation. Different 

meshes have been used in order to detect any mesh dependencies, consequently only the 

results from the meshes that gave the best answers will be presented. If the output from the 

meshes were identical then the least computational expensive mesh where chosen. The 

results from all of the simulations are found appendix (F) and (G). The focus of the 

simulations have been on the rough diffuser, therefore more meshes and turbulence models 

have been applied to the rough diffuser than to the smooth diffuser.   

 

The turbulence models that have been applied to the smooth diffuser are respectively: 

1. K-ω SST  

2. K-휀 RNG 

3. Spalart-Allmaras 

 

The turbulence model that have been applied to the rough diffuser are respectively: 

1. K- ω SST 

2. Standard k- ω 

3. K-ε RNG 

4. K-ε Realizable 

5. RSM 

6. Spalart-Allmaras 
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2.3 Measured values 
 

Physical measurements have been conducted for the smooth diffuser in [17[ and for the 

rough diffuser in [43]. Therefore the simulations on the smooth diffuser will be compared 

with and validated against the data available from [17]. Likewise the simulations on the 

rough diffuser will be compared with and validated against the data available from [43]. 

 

2.3.1 Smooth diffuser  
 

The data available for the smooth diffuser are from the measurements performed in [17], 

and are shown in table (2): 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝜃 
[m] 

H 
[-] 

G 
[-] 

𝛽 
[-] 

𝑑𝑝𝑒

𝑑𝑥
 

𝜏𝑤 
[N/𝑚2] 

 

𝐶𝑓*10−3 

[-] 

𝑅𝑒𝜃 
[-] 

3.0 48.4 22.35 0.1091 0.0176 1.793 20.8 12.2 107 0.2754 0.900 25400 

3.2 51.3 21.92 0.1257 0.0201 1.840 22.9 14.0 89 0.2343 0.797 28420 

3.4 54.1 21.21 0.1394 0.0226 1.901 24.8 15.7 74 0.2011 0.730 30910 

3.6 56.7 20.53 0.1538 0.0248 1.936 26.4 16.9 61 0.1753 0.672 33020 

3.8 59.1 20.10 0.1672 0.0270 1.957 27.0 17.3 53 0.1618 0.654 34570 

4 61.0 19.91 0.1856 0.0301 2.006 29.2 19.9 47 0.1418 0.590 39120 

4.2 63.0 19.42 0.1997 0.0325 1.999 29.3 20.0 41 0.1344 0.582 41580 

4.4 64.7 19.38 0.2153 0.0348 1.989 29.1 19.6 38 0.1346 0.585 44420 

4.6 66.2 18.84 0.2353 0.0374 1.998 29.6 20.1 33 0.1241 0.571 46250 

4.8 67.6 18.67 0.2474 0.0400 1.994 29.6 20.2 31 0.1211 0.567 49180 

5 68.7 18.30 0.2637 0.0430 1.998 30.2 21.2 28 0.1120 0.546 50980 

5.2 70.0 18.04 0.2829 0.0458 1.986 30.2 21.4 25 0.1078 0.541 53970 
 

Table 2: Measured characteristic boundary layer parameters for the smooth diffuser 

In addition measured values for the pressure coefficient (𝐶𝑝) and the corresponding 

pressure coefficient gradient (
𝑑𝐶𝑝

𝑑𝑥
) through the smooth diffuser are available and will be 

compared with the simulations for the smooth diffuser.   
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2.3.2 The rough diffuser 
 

The data available for the rough diffuser are from the measurements performed in [43] and 

are given in table (3): 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 
[m] 

𝜃 
[m] 

H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 30.3 0.1990 0.0950 0.0280 3.39 58213 

3.25 51.70 28.7 0.3485 0.1803 0.0426 4.23 83890 

3.6 56.68 27.9 0.3980 0.2138 0.0517 4.14 98973 
 

Table 3: Measured characteristic boundary layer parameters for the rough diffuser 

 

In addition, values for the pressure coefficient (𝐶𝑝) and the corresponding pressure 

coefficient gradient (
𝑑𝐶𝑝

𝑑𝑥
) through the rough diffuser are available and will be compared 

with the simulations for the rough diffuser. Detailed LDA (Laser Doppler anemometer) 

measurement off the velocity profiles at the respective stations in table (3) are also 

presented and compared with the simulations.  

 

During simulations the velocity profiles at the different locations in table (2) and (3) have 

been obtained. From them many of the parameters in the tables have been computed 

accordingly: 

 

 The free stream velocity 𝑈𝑒 was chosen as the highest velocity found on the cross 

section. 

 

 The boundary layer height 𝛿 is computed according to equation (27) 

 

 The displacement thickness 𝛿∗ is computed according to equation (28) 

 

 The momentum thickness is computed according to equation (29) 

 

 Clauser shape factor 𝐺 is computed according to equation (46) 

 

 The non-dimensional pressure gradient 𝛽 is computed according to equation (44) 

 

 The pressure gradient 
𝑑𝑝𝑒

𝑑𝑥
 is provided by Fluent and is computed by taking the 

average of the pressure gradient in the free stream cross section. In the simulations, 

the pressure gradient at the cross sections were seldom constant. Therefore the 
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values of the pressure gradient in the free stream were averaged to get the most 

reasonable results. 

 

 The Reynolds number based on momentum thickness is computed according to 

equation (32)   

 

 The pressure coefficient 𝐶𝑝 is computed by equation (49), after the values for the 

static pressure through the diffuser is given by Fluent. The reference pressure used is 

the static pressure at the inlet i.e. x=0. The reference dynamic pressure used is 

according to a free stream velocity of 31 m/s. 

 

 The pressure coefficient gradient 
𝑑𝐶𝑝

𝑑𝑥
 is computed by creating a polynomial function 

matching the pressure coefficient, and taking the derivative of this function. This 

process is done using Matlab functions “polyfit()” and “diff()” respectively for 

creating the polynomial function and for differentiating the function thereafter. 

 

 For the smooth diffuser the wall friction 𝜏𝑤 is provided by Fluent and the friction 

coefficient is computed by equation (31) 

 

 To obtain the wall friction for the rough diffuser, equation (26), has been applied to 

the control volume in figure (44), and integrated over one roughness period defined 

by the red line. 

 

 

Figure 44: Control volume surrounding roughness period 

The viscous drag contribution follows from the horizontal (x direction) red lines, and the 

contribution from the pressure drag follows from the vertical (y direction) red lines. The 

length of the roughness period is defined as total horizontal length of the roughness period.  
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The surface resistance over one roughness period is then found by dividing equation (26), by 

the roughness period: 

 

𝐷

𝑅𝑝
=

∯ 𝜏𝐴⃗⃗  ⃗ ∙ �̂�∞𝑑𝑆𝐴 − ∯ 𝑝
𝐵
�̂� ∙ �̂�∞𝑑𝑆𝐵 + ∯ 𝜏𝐶⃗⃗  ⃗ ∙ �̂�∞𝑑𝑆𝐶 − ∯ 𝑝

𝐷
�̂� ∙ �̂�∞𝑑𝑆𝐷

𝑅𝑝
 

(107) 

 

Friction coefficients for the viscous drag and the pressure drag can be obtained by adding 

their respective contributions and dividing by the free stream dynamic pressure at the 

specific cross section. The effective friction coefficient is the sum of the two above. 

 

𝐶𝑓_𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐶𝑓_𝑠𝑘𝑖𝑛 + 𝐶𝑓_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝐷 𝑅𝑝⁄

0.5𝜌𝑈𝑒
2

 
(108) 
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Chapter 3 - Results  

3.1 Results from simulations on smooth diffuser 
 

In this chapter the results of the simulation done on the smooth diffuser are presented. As 

stated in section 2.2.1 only the results from the meshes with the best replication of the 

physical measurements are presented. First the results from each turbulence model will be 

given in a table identical to table (2), next follows plots showing the development of some of 

the most important flow parameters together with their physical measurements. Thereafter 

will figures displaying the pressure coefficient and the pressure coefficient gradient be 

presented. Finally, there is a section where some of the flow parameters from the different 

turbulence models are plotted together for comparison.   

As can be seen in appendix (F), the meshes used for the smooth diffuser simulations show 

very little deviation from each other. Since both of these meshes are relatively light in terms 

of computational effort, all the results presented in the section are from mesh 1.2.  

 

3.1.1 k-ω SST 
 

In this section the results from the simulations where the turbulence model k-ω SST have 

been utilized are presented. 

In table (4), characteristic boundary layer parameter for the region 3 ≤ 𝑥 ≤ 5.2 meter are 

presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝜃 
[m] 

H 
[-] 

G 
[-] 

𝛽 
[-] 

𝑑𝑝𝑒

𝑑𝑥
 

𝜏𝑤 
[N/𝑚2] 

 

𝐶𝑓*103 

[-] 

𝑅𝑒𝜃 
[-] 

3.0 48.4 21.91 0.1104 0.0176 2.1222 29.1 19.3 101 0.1947 0.6621 26406 

3.2 51.3 21.23 0.1279 0.021 2.1890 30.6 20.9 82 0.1719 0.6226 29234 

3.4 54.1 20.61 0.1413 0.0226 2.2267 31.4 21.5 68 0.1593 0.6122 31990 

3.6 56.7 20.10 0.1502 0.0251 2.2489 31,7 21.5 58 0.1521 0.6146 34719 

3.8 59.1 19.65 0.1656 0.0277 2.2541 31.6 21.4 50 0.1464 0.6190 37408 

4 61.0 19.25 0.1860 0.0303 2.2498 31.3 20.4 43 0.1432 0.6309 40002 

4.2 63.0 18.90 0.1932 0.0328 2.2360 30.7 19.7 38 0.1416 0.6471 42504 

4.4 64.7 18.58 0.2064 0.0352 2.2158 30.0 18.2 33 0.1414 0.6729 44972 

4.6 66.2 18.30 0.2185 0.0376 2.1898 29.2 16.7 29 0.1423 0.6937 47197 

4.8 67.6 18.05 0.2300 0.0400 2.1582 28.3 15.6 26 0.1439 0.7211 49504 

5 68.7 17.83 0.2416 0.0422 2.1276 27.4 14.2 23 0.1462 0.7508 51588 

5.2 70.0 17.62 0.2618 0.0423 2.0930 26.4 12.4 20 0.1492 0.7846 53469 
Table 4: Characteristic boundary layer parameters from simulation with k-ω SST turbulence model 

 

 



85 
 

In figure (45), the development of the displacement thickness 𝛿∗, momentum thickness 𝜃 

and boundary layer thickness 𝛿 are presented for the region 3 ≤ 𝑥 ≤ 5.2. The measured 

values of the same parameters are also displayed. 

 

Figure 45: Development of boundary layer parameters for the simulation with k-ω SST mode versus 
measurements.  

  

 

In figure (46) the pressure coefficient and the derivative of the pressure coefficient in the 

streamwise direction are presented together with the measured values of the same 

parameters. The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 46: Plots showing pressure coefficient distribution left figure and the derivative of the pressure 
coefficient in the streamwise direction right figure for the k-ω SST model versus measurements 
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3.1.2 k-ε RNG 
 

In this section the results from the simulations where the turbulence model k-ε RNG have 

been utilized are presented. 

In table (5), characteristic boundary layer parameter for the region 3 ≤ 𝑥 ≤ 5.2 meter are 

presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝜃 
[m] 

H 
[-] 

G 
[-] 

𝛽 
[-] 

𝑑𝑝𝑒

𝑑𝑥
 

𝜏𝑤 
[N/𝑚2] 

 

𝐶𝑓*103 

[-] 

𝑅𝑒𝜃 
[-] 

3.0 48.4 21.22 0.1207 0.0188 1.76 19.31 13.5 113 0.2761 1.00111 27347 

3.2 51.3 20.43 0.1279 0.0217 1.80 20.50 14.5 89 0.2402 0.93879 30457 

3.4 54.1 19.76 0.1513 0.0247 1.82 21.05 15.0 73 0.2197 0.91865 33554 

3.6 56.7 19.19 0.1601 0.0277 1.83 21.441 14.9 60 0.2040 0.90443 36429 

3.8 59.1 18.70 0.1768 0.0305 1.84 21.55 14.6 50 0.1932 0.90202 39184 

4 61.0 18.29 0.1962 0.0334 1.84 21.44 13.8 42 0.1864 0.90973 41863 

4.2 63.0 17.93 0.2130 0.0360 1.84 21.16 12.7 35 0.1822 0.92530 44330 

4.4 64.7 17.63 0.2293 0.0387 1.82 20.76 12.1 31 0.1801 0.94603 46777 

4.6 66.2 17.36 0.2369 0.041 1.81 20.3 11.2 27 0.1793 0.97026 48988 

4.8 67.6 17.09 0.2414 0.0434 1.79 19.7 10.4 24 0.1796 1.00395 50885 

5 68.7 16.91 0.2688 0.0458 1.77 19.2 9.5 21 0.1808 1.00322 53088 

5.2 70.0 16.72 0.2954 0.0478 1.75 18.6 8.3 18 0.1829 1.06815 54828 
Table 5: Characteristic boundary layer parameters from simulation with k-ε RNG turbulence model 

 

In figure (47), the development of the displacement thickness 𝛿∗, momentum thickness 𝜃 

and boundary layer thickness 𝛿 are presented for the region 3 ≤ 𝑥 ≤ 5.2. The measured 

values of the same parameters are also displayed. 

 

Figure 47 : Development of boundary layer parameters for the simulation with k-ε RNG model versus 
measurements.  
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In figure (48), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 48: Plots showing pressure coefficient distribution left figure and the derivative of the pressure 
coefficient in the streamwise direction right figure for the k-ε RNG model versus measurements 
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3.1.3 Spalart-Allmaras  
 

In this section the results from the simulations where the turbulence model Spalart-Allmaras 

have been utilized are presented. 

In table (6), characteristic boundary layer parameter for the region 3 ≤ 𝑥 ≤ 5.2 meter are 

presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝜃 
[m] 

H 
[-] 

G 
[-] 

𝛽 
[-] 

𝑑𝑝𝑒

𝑑𝑥
 

𝜏𝑤 
[N/𝑚2] 

 

𝐶𝑓*103 

[-] 

𝑅𝑒𝜃 
[-] 

3.0 48.4 21.6 0.1283 0.0180 1.89 27.7 21.2 103 0.1646 0.57599 26630 

3.2 51.3 20.9 0.1366 0.0205 1.95 31.4 25.1 81 0.1292 0.48291 29390 

3.4 54.1 20.3 0.1513 0.0230 2.00 34.7 29.5 67 0.1050 0.41600 32076 

3.6 56.7 19.83 0.1701 0.0256 2.04 37.5 32.8 56 0.0892 0.37035 34826 

3.8 59.1 19.39 0.1883 0.0281 2.07 39.6 35.5 48 0.0785 0.34089 37320 

4 61.0 19.00 0.1962 0.0304 2.09 40.9 36.3 41 0.0718 0.32472 39687 

4.2 63.0 18.66 0.2130 0.0328 2.09 41.5 36.5 36 0.0677 0.31744 41974 

4.4 64.7 18.36 0.2293 0.0351 2.09 41.4 35.7 32 0.0659 0.31918 44186 

4.6 66.2 18.09 0.2370 0.0373 2.09 40.8 34.6 29 0.0653 0.32578 46320 

4.8 67.6 17.85 0.2508 0.0396 2.07 39.6 30.8 25 0.0664 0.34024 48441 

5 68.7 17.63 0.2598 0.0416 2.05 38.2 28.6 23 0.0687 0.36087 50303 

5.2 70.0 17.44 0.2954 0.0436 2.03 36.8 24.9 20 0.0710 0.38112 52137 
Table 6: Characteristic boundary layer parameters from simulation with Spalart-Allmaras turbulence model 

 

In figure (49), the development of the displacement thickness 𝛿∗, momentum thickness 𝜃 

and boundary layer thickness 𝛿 are presented for the region 3 ≤ 𝑥 ≤ 5.2 meter. The 

measured values of the same parameters are also displayed. 

 

Figure 49: Development of boundary layer parameters for the simulation with Spalart-Allmaras model versus 
measurements.  
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In figure (50), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 50: Plots showing pressure coefficient distribution left figure and the derivative of the pressure 
coefficient in the streamwise direction right figure for the Spalart-Allmaras model versus measurements 
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3.1.4 Comparing results from smooth diffuser simulations 
 

In this section some of the boundary layer parameters from the different turbulence models 

are compared with each other and with the physical measurements.  

 

In figure (51), 𝐶𝑝 values obtained from the different turbulence models are plotted together 

with the physical measurements. The plots starts at the diffuser inlet and ends at the 

diffuser outlet. 

 

Figure 51: Pressure coefficient distribution with applied turbulence model versus measured distribution 

 

In figure (52), 𝑑𝐶𝑝 𝑑𝑥⁄  from the different turbulence models are plotted together with the 

𝐶𝑝 gradient in the axial direction obtained from the physical measurements. 

 

Figure 52: Pressure coefficient gradient for applied turbulence models versus measured distribution 
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In figure (53), the Clauser pressure parameter (𝛽) is plotted for the different turbulence 

models, together with the physical measurements in the region 3 ≤ 𝑥 ≤ 5.2 meter. 

 

Figure 53: Clauser pressure parameter 𝜷 for applied turbulence models versus measured values 

 

 

In figure (54), the shape factor (H) is plotted for the different turbulence models, together 

with the physical measurements in the region 3 ≤ 𝑥 ≤ 5.2 meter. 

 

Figure 54: Shape factor H for applied turbulence models versus measured values 
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In figure (55), the Clauser shape factor (G) is plotted for the different turbulence models, 

together with the physical measurements in the region 3 ≤ 𝑥 ≤ 5.2 meter. 

 

Figure 55: Clauser shape factor G for applied turbulence model versus measured values 

 

In figure (56), the friction coefficient 𝐶𝑓 is plotted for the different turbulence models, 

together with the physical measurements in the region 3 ≤ 𝑥 ≤ 5.2 meter. The 𝐶𝑓 values 

displayed are for 𝐶𝑓 ∗ 103. 

 

Figure 56: Friction coefficient for applied turbulence models versus measured values 
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3.2 Results from simulations on rough diffuser 
 

In this chapter the results of the simulation done on the rough diffuser are presented. From 

appendix (F) it can be seen that there are some mesh dependencies on several of the 

turbulence models, therefore as stated in section 2.2.1 only the results from the meshes 

with the best replication of the physical measurements are presented. The results of the 

simulations will first be given in a table identical to table (3), next follows detailed velocity 

profiles produced by the different turbulence models at the respective locations where the 

physical measurements from the LDA is at hand. Thereafter will figures displaying the 

pressure coefficient and the pressure coefficient gradient be presented. Finally, there is a 

section where some of the flow parameters from the different turbulence models are 

plotted together for comparison. Attention has been given to the development of the flow 

along the floor of the diffuser where the roughness elements are placed. Therefore, the 

velocity plots which are all presented in [m/s] has only been plotted up until the cross 

sectional height presented in [m] where the freestream velocity starts. 

 

 

 

 

 

3.2.1 k-ω SST 
 

In this section the results from the simulations where the turbulence model k-ω SST have 

been utilized on mesh 2.4 are presented. 

In table (7), characteristic boundary layer parameters for the region 2.6 ≤ 𝑥 ≤ 3.6 meter are 

presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 
[m] 

𝜃 
 [m] 

H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 26.8 0.1683 0.0831 0.0207 4.01 38046 

   3.25 51.70 24.9 0.2641 0.1544 0.0315  4.90 53744 

3.6 56.68 24.2 0.3117 0.1879 0.0373 5.03 61963 
Table 7: Boundary layer parameters for the k-ω SST turbulence model 
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In figure (57) the velocity profiles given by the k-ω SST model at 2.6, 3.25 and 3.6 meter are 

presented together with the physical LDA measurements   

 

Figure 57: The k-ω SST velocity profiles presented in [m/s] versus the cross sectional height presented in [m], 
plotted together with the physical measurements at the respective locations.  

 

 

In figure (58), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 58: The k-ω SST pressure coefficient distribution to the left and the pressure coefficient gradient to 
the right versus their physical measurements. 
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3.2.2 Standard k-ω 
 

In this section the results from the simulations where the standard k-ω turbulence model 

have been utilized on mesh 2.4 are presented. 

 

In table (8), characteristic boundary layer parameters for the region 2.6 ≤ 𝑥 ≤ 3.6 meter are 

presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 

[m] 
𝜃 

[m] 
H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 26.4 0.1697 0.0776 0.0232 3.34 42064 

3.25 51.70 24.7 0.2564 0.1510 0.0325 4.64 55145 

3.6 56.68 24.2 0.3112 0.1867 0.0372 5.01 61827 
Table 8: Boundary layer parameters for the standard k-ω turbulence model 

 

In figure (59) the velocity profiles given by the standard k-ω model at 2.6, 3.25 and 3.6 

meter are presented together with the physical LDA measurements   

 

Figure 59: The standard k-ω velocity profiles presented in [m/s] versus the cross sectional height presented 
in [m], plotted together with the physical measurements at the respective locations.  
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In figure (60), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 60: The standard k-ω pressure coefficient distribution to the left and the pressure coefficient gradient 
to the right versus their physical measurements. 
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3.2.3 k-ε RNG 
 

In this section the results from the simulations where the turbulence model k-ε RNG have 

been utilized on mesh 2.3 are presented. 

 

In table (9), characteristic boundary layer parameters for the region 2.6 ≤ 𝑥 ≤ 3.6 meter are 

presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 

[m] 
𝜃 

[m] 
H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 26.6 0.1698 0.0801 0.0260 3.1 47406 

3.25 51.70 24.5 0.2722 0.1464 0.0398 3.7 66973 

3.6 56.68 23.7 0.3223 0.1777 0.0469 3.8 76266 
Table 9: Boundary layer parameters for the k-ε RNG turbulence model 

 

In figure (61) the velocity profiles given by the k-ε RNG model at 2.6, 3.25 and 3.6 meter are 

presented together with the physical LDA measurements   

 

Figure 61: The k-ε RNG velocity profiles presented in [m/s] versus the cross sectional height presented in [m], 
plotted together with the physical measurements at the respective locations.  
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In figure (62), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 62: The k-ε RNG pressure coefficient distribution to the left and the pressure coefficient gradient to 
the right versus their physical measurements. 
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3.2.4 k-ε Realizable 
 

In this section the results from the simulations where the turbulence model k-ε Realizable 

have been utilized on mesh 2.3 are presented. 

In table (10), characteristic boundary layer parameters for the region 2.6 ≤ 𝑥 ≤ 3.6 meter 

are presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 
[m] 

𝜃 
[m] 

H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 26.3 0.1698 0.0754 0.0269 2.8 48618 

3.25 51.70 24.1 0.2618 0.1407 0.0412 3.4 68713 

3.6 56.68 23.4 0.3229 0.1717 0.0478 3.6 76815 
Table 10:  Boundary layer parameters for the k-ε Realizable turbulence model 

 

In figure (63) the velocity profiles given by the k-ε Realizable model at 2.6, 3.25 and 3.6 

meter are presented together with the physical LDA measurements   

 

Figure 63: The k-ε Realizable velocity profiles presented in [m/s] versus the cross sectional height presented 
in [m], plotted together with the physical measurements at the respective locations.  
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In figure (64), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 64: The k-ε Realizable pressure coefficient distribution to the left and the pressure coefficient gradient 
to the right versus their physical measurements. 
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3.2.5 RSM 
 

In this section the results from the simulations where the RSM turbulence model have been : 

In table (11), characteristic boundary layer parameters for the region 2.6 ≤ 𝑥 ≤ 3.6 meter 

are presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 

[m] 
𝜃 

[m] 
H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 28.4 0.2235 0.1034 0.0370 2.8 72026 

3.25 51.70 26.5 0.3377 0.1773 0.0538 3.3 97838 

3.6 56.68 25.9 0.3981 0.2124 0.0623 3.4 110690 
Table 11: Boundary layer parameters for the RSM turbulence model 

 

In figure (65) the velocity profiles given by the RSM model at 2.6, 3.25 and 3.6 meter are 

presented together with the physical LDA measurements   

 

Figure 65: The RSM velocity profiles presented in [m/s] versus the cross sectional height presented in [m], 
plotted together with the physical measurements at the respective locations.  
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In figure (66), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 66: The RSM pressure coefficient distribution to the left and the pressure coefficient gradient to the 
right versus their physical measurements. 
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3.2.6 Spalart-Allmaras 
 

In this section the results from the simulations where the Spalart-Allmaras turbulence model 

have been utilized on mesh 2.3 are presented. 

In table (12), characteristic boundary layer parameters for the region 2.6 ≤ 𝑥 ≤ 3.6 meter 

are presented. 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/𝑠−1] 

𝛿 
[m] 

𝛿∗ 
[m] 

𝜃 
[m] 

H 
[-] 

𝑅𝑒𝜃 
[-] 

2.6 42.14 27.5 0.1815 0.0927 0.0218 4.25 41131 

3.25 51.70 26.2 0.2895 0.1738 0.0292 5.96 52338 

3.6 56.68 25.8 0.3450 0.2119 0.0332 6.4 58795 
Table 12: Boundary layer parameters for the Spalart-Allmaras turbulence model 

 

In figure (67) the velocity profiles given by the Spalart-Allmaras model at 2.6, 3.25 and 3.6 

meter are presented together with the physical LDA measurements   

 

Figure 67: The Spalart-Allmaras velocity profiles presented in [m/s] versus the cross sectional height 
presented in [m], plotted together with the physical measurements at the respective locations.  
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In figure (68), the pressure coefficient and the derivative of the pressure coefficient in the 

axial direction are presented together with the measured values of the same parameters. 

The plots starts from the diffuser inlet and ends at the diffuser outlet.    

 

Figure 68: The Spalart-Allmaras pressure coefficient distribution to the left and the pressure coefficient 
gradient to the right versus their physical measurements. 
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3.2.7 Comparing results from rough diffuser simulations 

 

In figure (69) the distribution of the pressure coefficient of the respective turbulence models 

and the physical measurements are presented 

 

Figure 69: Pressure coefficient distribution for the applied turbulence models versus the physical 
measurements.  

 

In figure (70) the pressure coefficient gradient for the respective turbulence models are 

presented together with the physical measurements.  

 

Figure 70: The pressure coefficient gradient for the applied turbulence models versus the physical 
measurements 
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In figure (71), the development of the boundary layer thickness 𝛿, is presented for the 

respective turbulence models and the physical measurements in the region 2.6 ≤ 𝑥 ≤ 3.6 

meter.  

 

Figure 71: Development of boundary layer thickness [m] for applied turbulence models versus physical 
measurements 

 

 

In figure (72), the development of the boundary layer thickness 𝛿∗, is presented for the 

respective turbulence models and the physical measurements in the region 2.6 ≤ 𝑥 ≤ 3.6 

meter. 

 

Figure 72: Development of the displacement thickness [m] for the applied turbulence models versus the 
physical measurements 
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In figure (73), the development of the Shape factor is presented for the respective 

turbulence models and the physical measurements in the region 2.6 ≤ 𝑥 ≤ 3.6 meter.  

 

Figure 73: Development of the shape factor H for the applied turbulence models versus the physical 
measurements 

 

 

In figure (74), the development of the momentum thickness 𝜃, is presented for the 

respective turbulence models and the physical measurements in the region 2.6 ≤ 𝑥 ≤ 3.6 

meter.  

 

Figure 74: The development of the momentum thickness [m] for the applied turbulence models versus the 
physical measurements 
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In figure (75), the velocity profiles produced by the different turbulence models at 2.6 

meters are plotted and displayed together with the physical measurements obtained from 

the LDA. 

 

Figure 75: Velocity profiles [m/s] for the applied turbulence models versus the physical measurements 
plotted at 2.6 meter. Cross sectional height given in [m]. 

 

 

In figure (76), the velocity profiles produced by the different turbulence models at 3.25 

meters are plotted and displayed together with the physical measurements obtained from 

the LDA.  

 

Figure 76: Velocity profiles [m/s] for the applied turbulence models versus the physical measurements 
plotted at 3.25 meter. Cross sectional height given in [m]. 
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In figure (77), the velocity profiles produced by the different turbulence models at 3.6 

meters are plotted and displayed together with the physical measurements obtained from 

the LDA 

 

Figure 77: Velocity profiles [m/s] for the applied turbulence models versus the physical measurements 
plotted at 3.6 meter. Cross sectional height given in [m]. 
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Chapter 4 - Discussion of CFD results 
 

In this chapter the results from the simulations are discussed. First the simulations 

performed on the smooth diffuser are discussed, secondly follows the discussion of the 

results from the rough diffuser.  

 

4.1  Smooth diffuser 
 

In this section the results from the smooth diffuser simulations are discussed. First the two 

equation models will be discussed in the same section. Thereafter follows a discussion of the 

results from the Spalart-Allmaras one equation model. In the article [17] equilibrium 

boundary layer flow was obtained in the region 4 ≤ 𝑥 ≤ 5 meter, therefore most of the data 

will be for the region 3 ≤ 𝑥 ≤ 5.2 meter, from now on denoted “measurement area”. As can 

be seen from appendix (F), the smooth diffuser simulations shows little mesh dependencies 

between the applied meshes. Nevertheless, there might be that a certain threshold value in 

relation to the number of cells in the geometry have not been met. It is therefore possible 

that the simulations will continue to show similar results until the mesh refinement reaches 

this threshold value. It is however assumed that the refinement made to the mesh was 

adequately to discovery any mesh dependencies. 

 

4.1.1 Two equation models 
 

In this section the results from the two equation turbulence models k-ω SST and k-ε RNG are 

discussed. They are discussed together because the results from the simulations utilizing the 

k-ω SST and k-ε RNG models where quite similar. 

As can be seen from the figures (45) and (47) the development of the boundary layer, 

displacement and momentum thickness shows strong resemblance with the physical 

measurements for both models. However, in the region 4 ≤ 𝑥 ≤ 5.2  both models have a 

period where the boundary layer curve flattens. This happens for the k-ω SST model at 4 

meter and for the k-ε RNG model at 4.4 meter. The same occurrence takes place for the 

displacement and momentum thicknesses but not before 4.8 meters and at slower pace. 

Consequently the two equation models does not show a linear growth rate of the boundary 

layer thickness in the region where equilibrium flow where obtained in [17, p.323].  

From the 𝐶𝑝 values in the figures (46) and (48) one can see that the k-ω SST and k-ε RNG 

models does not replicate the high velocities found in the throat of the diffuser, this is 

because the boundary layer at the throat has not developed as much as for the physical 

measurements, and thereby the two equation models produces lower free stream velocities. 

Accordingly the two equation models shows better pressure recovery than what is physically 

measured.  
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 For the Clauser pressure parameter 𝛽, one can see in figure (53) that the two 

equation models follows similar trends. Both start off with an increasing 

development lasting from 3 meter until 3.4 meter. Then follows reasonable constant 

𝛽 values for a short period stretching from 3.4 ≤ 𝑥 ≤ 3.6 meter for which the k-ω 

SST model has a  𝛽 value of 21.5, and the k-ε RNG model has a 𝛽 value of 15. 

Thereafter decreases the slope of the simulated 𝛽 values until the end of the 

measurement area. The measured 𝛽 values in [17] does also have a positive 

development in the start but rises faster and reaches a constant 𝛽 value of 20 in the 

region 4 ≤ 𝑥 ≤ 4.8 meter, from where it grows a small positive slope and end off at 

a 𝛽 of around 21. The reason behind the decreasing slope for the 𝛽 values of the two 

equation models is that the simulated wall friction drops quite fast in the beginning 

of the measurement area and starts to level out at 3.6 meter and even increases 

towards the end of the measurement area, whilst the wall friction obtained in [17] 

decreases more or less all the way. The two equation models does therefore clearly 

not give a constant 𝛽 value at the equilibrium region in [17].      

 

 

 The friction coefficient obtained from the k-ω SST and k-ε RNG models displayed in 

figure (56), shows both clear deviation from the values obtained in [17]. As 

mentioned above the wall friction in the two equation models are increasing towards 

the end of the measurement area and therefore also gives increasing 𝐶𝑓 values. The 

𝐶𝑓 obtained in [17] showed virtually constant values of in the region 4 ≤ 𝑥 ≤ 5 

meter, this is evidently not the case for the two equation models. They do however 

create some regions of approximately constant 𝐶𝑓 which for the k-ε RNG model is 

found between  3.5 ≤ 𝑥 ≤ 4 meter with a  𝐶𝑓 ≈ 0.0009 and then again at 4.8 ≤ 𝑥 ≤

5.2 with a 𝐶𝑓 ≈ 0.0001.  For the k-ω SST model a region of nearly constant 𝐶𝑓is found 

3.5 ≤ 𝑥 ≤ 3.8 with a 𝐶𝑓 ≈ 0.00061. 

 

 

 The shape factor H obtained from [17] shows an increasing slope from the start of 

the measurement area until it flattens out and remains constant from 4 meters. Both 

the two equation models follows the same trend in the beginning of the 

measurement area but starts to flatten out at around 3.5 meter. The k-ω SST model 

shows a small region of constant shape factor of 2.25 at the section 3.6 ≤ 𝑥 ≤ 3.8 

meter, from where after it has a decreasing slope until the end of the measurement 

area. The k-ε RNG model also has a section of constant shape factor with a value of 

1.84 but this region has shifted location to 3.8 ≤ 𝑥 ≤ 4.4 meter from where it too 

has a decreasing slope. The decreasing slope of the two equation models is however 
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not substantial, and small changes in displacement or momentum thickness causes 

deviations from the measured values. For the two equation models the displacement 

thickness flattens out a bit before the momentum thickness and thereby causes the 

small decreasing slope of the shape factor. 

 

 

 For the Clauser shape factor G, both the k-ω SST and the k-ε RNG models show 

similar trends, but as the 𝐶𝑓and the shape factor H is not constant in the 

measurement area for neither of them, nor will the Clauser shape factor be either.   

 

 

4.1.2 Spalart Allmaras 
 

In this section the results from the one equation Spalart-Allmaras turbulence model is 

discussed.   

One can see from figure (49) that the development of the displacement and momentum 

thickness follows the measured values in [17] closely. The boundary layer thickness is a bit 

larger for the Spalart-Allmaras model in the region 3 ≤ 𝑥 ≤ 4.5 meter before it collapses 

smoothly at 4.6, 4.8 and 5 meter with the measured values in [17].  Even though the 

simulated boundary layer produced by the Spalart-Allmaras model follows the same trend as     

the measured values in [17], it is apparent that the boundary layer does not have a linear 

growth rate in the region 4 ≤ 𝑥 ≤ 5  meters and hence the displacement, momentum and 

boundary layer will not share a common virtual origin based on their values in the region 

4 ≤ 𝑥 ≤ 5  meter where equilibrium flow where obtained in [17]. 

 

In figure (50), one can see as for the two equation models that also the Spalart-Allmaras 

model produces lower free stream velocities at the throat of the diffuser, and thereby 

obtains a better pressure recovery than the actual measured values in [17]. This is because 

the boundary layer in the throat of the diffuser in the Spalart-Allmaras model has not 

developed as much as the one measured in [17]. However, the Spalart-Allmaras model 

together with the k-ω SST model has the closest match to the measured 𝐶𝑝 curve. Due to the 

higher throat velocities in the physical measurements, there will naturally also be a stronger 

adverse pressure gradient in the physical diffuser then in the simulated diffuser, this can be 

seen in figure (51).   
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 The Clauser pressure gradient  𝛽 produced by the Spalart-Allmaras simulations shows 

somewhat higher 𝛽 values compare with the two equation models and the measured 

values in [17]. The pressure gradients for the two equation models, Spalart-Allmaras 

model and the physical measurements are not particularly different, but the wall 

friction is much lower in the Spalart-Allmaras model then in its comparisons. As a 

consequence, the Spalart-Allmaras model produces higher 𝛽 values then what is 

physically measured. The 𝛽 values in the Spalart-Allmaras model are a bit high, but 

shows a period of more or less constant values in the region 3.8 ≤ 𝑥 ≤4.6 meter 

which is close to the equilibrium region obtained in [17].   

 

 In figure (56) one can see that the 𝐶𝑓 values produced by the Spalart-Allmaras model 

is the lowest by its comparisons. The low 𝐶𝑓 is an effect of the low wall friction made 

by the model. Nevertheless these values are the closest to have a constant curve in 

the equilibrium region  4 ≤ 𝑥 ≤ 5 meter as obtained in [17].  

 

 

 The shape factor obtained in [17] had a rising slope from the start of the 

measurement area until it developed a constant value of approximately 2 in the 

equilibrium region 4 ≤ 𝑥 ≤ 5 meter. The shape factor produced by the Spalart-

Allmaras model shows in figure (54) very good resemblance with the measured 

value, and develops a constant shape factor curve of 2.1 in the region 4 ≤ 𝑥 ≤ 4.6 

meters. From there the slope decreases slightly until the end of the measurement 

area.  

 

 The Clauser shape factor G produced by the Spalart-Allmaras model shows similar 

trends as the two equation models but the G curve for the Spalart-Allmaras model 

has shifted to the right and peaks at about 4.25 meters, whilst the k-ω SST and the k-

ε RNG  peaked both at around 3.6 meter. The Spalart-Allmaras G curve also consists 

of higher values, which are a reflection of the low 𝐶𝑓 made by the Spalart-Allmaras 

model.   
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4.2  Rough Diffuser 
 

In this section the results from the rough diffuser simulations are discussed. First, the two 

equation models K-ω and K-ε are discussed, where after a discussion of the RSM model 

follows. Finally the one equation Spalart-Allmaras model is discussed. Detailed LDA 

measurements of the velocity profiles at 2.6, 3.25 and 3.6 meter have been carried out 

in[43], therefore most of the discussion of the rough diffuser simulations will be about this 

region.   

 

4.2.1 K-ω models 
 

In this section the results from the k-ω models are discussed. 

The k-ω SST model was the first turbulence model that were tested in this thesis. 

Simulations with this model were first conducted utilizing the second order upwind scheme 

described in section (1.7.1). However, it was discovered as can be seen in appendix (H), that 

the QUICK scheme gave better results, producing higher free stream velocities and more 

separation. Therefore it was decided to switch to QUICK scheme for all later simulations    

By investigating the respective velocity profiles produced by the k-ω models at 2.6, 3.25 and 

3.6 meter in figure (57) and (59), it is evident that both k-ω models predicts separating 

boundary layers. It is also visible that the k-ω models have not separated at 2.6 meter which 

was also the case for the LDA measurements, thereby the models correctly predicts the 

onset of separation. The magnitude of separation that the k-ω models displays are however 

not as large as the physical LDA measurements revealed. Consequently, the k-ω models also 

under predicts the boundary layer thickness recognized in figure (71). The effective flow area 

will therefore be larger with the k-ω models then in the physical rough diffuser. Therefore 

the k-ω models fail to replicate the correct magnitude of the free stream velocities which 

can be seen from figures (57) and (59) are substantially lower than the LDA measurements. 

The velocity deviation observed in the k-𝜔 models are also due to considerably lower 

velocities in the throat of the diffuser, caused by a less developed boundary layer for the k-ω 

models then what was the case for the real diffuser flow. The result is that the k-ω model 

displays a higher pressure recovery at the exit of the diffuser then the physical 

measurements, and thereby over predicts the diffuser performance. 

The slope for the development of the boundary layer thickness produced by the k-ω models 

as can be seen in figure (71), grows a bit slower than the physical measurements, this occurs 

until 3.25 meter where the growth rate of the physical measured boundary layer slows 

down. The same event is viewable in figure (72) for the displacement thickness but to a 

lesser extent. The magnitude of the boundary layer is also less then what is physically 

measured, because of what is already discussed above.  

In figure (73), one can see that the k-ω SST model displays the same profile as the curve of 

the measured shape factor, although with a bit higher values. The shape factor curve of the 
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standard k-ω model grows faster and don’t have the same flattening at 3.25 meter as the k-

ω SST model and the physical measurements. 

The development of the momentum thickness is quite similar for both k-ω models, and 

follows a curve with a lesser gradient than the curve of the measurements, as can be seen in 

figure (74). The lower momentum thickness values are because of the thinner boundary 

layer produced by the k-ω models.    

 

       

4.2.2 K-ε models 
 

In this section the results from the k-ε models are discussed.  

By inspecting figure (61) and (63) it is evident that neither of the k-ε models applied, manage 

to predict the boundary layer separation occurrence of physical rough diffuser. The free 

stream velocities in the throat also suffers from lack of boundary layer development 

compared with the measured values, and consequently the 𝐶𝑝 values in the throat is higher 

than the measurement. The result is an over prediction of the pressure recovery of the 

diffuser. Interestingly the shape factors of the k-ε models are quite high, yielding 3.8 and 3.6 

respectively for the RNG and Realizable models at 3.6 meters. This suggests that the k-ε 

models are right on the verge of separation. 

 

As stated in section (1.8.4), the k-ε model is developed for high Reynolds number flow, and 

tends to produce large turbulent length scales in the near wall region, this amplifies the 

turbulent kinetic energy and thereby suppresses or delays flow separation.  The origin of the 

overproduction of turbulent kinetic energy in the k-ε model is found in the defect layer. 

Therefore specialized versions of the k-ε model like the RNG and Realizable models, where 

viscous correction and extra terms for strained flow is included, should not necessarily cure 

the k-ε models inconsistency in the defect layer. Therefore it is nor surprising that the k-ε 

models do not display any separating flow, neither at the designated comparison stations, 

nor throughout the rest of the diffuser.  

The k-ε models are therefore not applicable for analyzing the roughness caused boundary 

layer separation in this thesis.    
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4.2.3 RSM model 
 

In this section the results from the RSM model is discussed. 

The RSM model is the most advanced model utilized in this thesis. As in this case, for 

two-dimensional simulations the RSM model employs 5 extra partial differential 

equations to obtain a solution to the flow. The model required the longest simulation 

time of all the other models in this thesis and was particularly difficult to converge. It was 

not succeeded to converge the RSM model in steady state mode, and therefore transient 

simulation had to be employed. Also during transient simulation there were difficulties, 

to make the model converge, the transient simulation had to start from the converged 

steady state solution of the k-ω SST model in addition some of the relaxation coefficients 

had to be adjusted accordingly: 

Pressure: 0.3 Momentum: 0.5 Turbulent kinetic energy: 0.6 

Reynolds Stresses: 0.4 

The rest of the relaxation coefficient where held in their default values. Because of 

limited computer power available, it was only possible to load mesh (2.3) back into 

Fluent for relaxation coefficient adjusting. Which was needed when the RSM model 

diverged. Therefore only results from mesh (2.3) is available for this model.  

In figure (65), the velocity profiles produced by the RSM model are plotted together with 

the physical measurements. Rather surprising, at these locations the RSM simulations 

show no flow separation, nor at these point or in the rest of the domain, the boundary 

layer is therefore attached to the wall. From table (11), one can see that even though the 

boundary layer has not separated, the shape factors at the different locations are quite 

high. At 3.6 meter the shape factor of the RSM model is 3.4, which is below the 

measured value but still fairly high. Relatively to the other models, one can see from 

figure (73) that the RSM model is however the model with the least signs of flow 

separation. 

As for the other turbulence models discussed so far, the RSM model also does not 

produce the high velocities in the throat of the diffuser as the measured values, this is 

because the boundary layer has not developed as much as the for the flow in the 

physical diffuser. Nevertheless the RSM model gives the most authentic 𝐶𝑝 distribution 

of all the turbulence models applied in this thesis. Meaning that the free stream 

velocities produced by the RSM model are in a reasonable agreement with the free 

stream velocities in the physical diffuser, recognized in figure (75), (76) and (77). This can 

also be seen from figure (71), where the boundary layer development of the RSM model 

and of the physical diffuser has the best fit of all the turbulence models.  

The RSM model produces the most authentic replication of the pressure recovery 

measured in the physical diffuser. Thereby, even though it does not show separation, it 

indicates that the roughness severely effects the performance of the diffuser. The reason 

why the RSM model does not produce flow separation might be: 
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 Turbulence is a 3-dimensional problem, and by making the flow, 2-dimensional the 

RSM model might not work as effectively as intended because it loses some of the 

information that is carried sideways by the Reynolds stresses. The loss of this 

information can affect the ability of the RSM model to reproduce real physical flows, 

which of course are 3-dimensional.  

 

 In a 3-dimesnional flow, there will also be boundary layers developing along not only 

the roof and floor of the diffuser, but also at the side walls. The boundary layer at the 

side walls can alter the boundary layer developing at the floor and roof of the 

diffuser. By running a 2-dimensional simulation theses effects will not be reflected 

into the solution of the flow.  

 

 Secondary flows occurs in rectangular ducts, and can play an important role in the 

boundary layer characteristics, these effects are not captured in a two-dimensional 

simulation  

 

 

 The mesh resolution can also be to coarse in the near wall region for the RSM model 

to effectively handle the presence of a wall.  

 

 

4.2.4 Spalart-Allmaras 
 

In this section the results from the Spalart-Allmaras models is discussed. 

The one equation model Spalart-Allmaras is the least computational expensive and easiest 

model to converge of all the models utilized in this thesis. From figure (68) one can see that 

the model does not show the same velocity magnitudes at the throat of the diffuser as the 

physical measurements, because of a lack in the boundary layer development up to this 

point. By investigating figure (67) one can see that the model predicts the largest amount of 

flow separation of all the other turbulence model, also when compared with the actual 

measured values at the designated locations. Because of the models successfulness in 

predicting the massively flow separation that occurred in the physical rough diffuser, the 

boundary layer produced by the Spalart-Allmaras model is also thicker than the boundary 

layer predicted by the two-equation models as seen in figure (71). 

Following the development of the displacement thickness in figure (72) it is clear that the 

Spalart-Allmaras model produces quite accurate mass deficit values which by continuity also 
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produces a thicker boundary layer. Consequently, the effective flow area of the diffuser goes 

down which as displayed in figure (75), (76) and (77) generates higher freestream velocities. 

The freestream velocities predicted by the Spalart-Allmaras model are all within 10 percent 

of the physical measured values at the designated locations in table (3), this is unfortunately 

not the case for the two equation models. The higher free stream velocities hinders the 

static pressure from rising as much as the geometry would indicate. Therefore one can 

identify from figure (69), that the Spalart-Allmaras model predicts one of the best 

replications of the physical rough diffusers pressure recovery among the models applied in 

this thesis. The RSM model showed slightly better pressure recovery at the outlet of the 

diffuser, but as mentioned did not separate. As seen in figure (73) the shape factor of the 

Spalart-Allmaras model is considerable higher then what is physically measured which is 

consistent with the larger magnitude of separating flow seen in figure (67). The slope of the 

shape factor is also somewhat steeper than the measured shape factor, and at 3.25 meter 

the slop of the shape factor produced by the Spalart-Allmaras model continues to grow 

whilst the physically measured values is slightly decreasing. This indicates a shorter 

separation zone in the physical rough diffuser than what is predicted by the Spalart-Allmaras 

model. 

The good results produced by the Spalart-Allmaras model is somewhat striking, since 

according to [33, p.32] the model is weak for strongly separated flow. However the model is 

especially developed for turbo machinery and aerodynamic applications which includes 

boundary layers under both adverse and favorable pressure gradients. Also the model is 

designed to handle mildly separating boundary layers and recirculating flow [44, p.20] What 

is meant by mildly separating flow is not clear from [44, p.20], but in the author’s opinion 

comparing the separation occurring in the diffuser with a mildly separating airplane wing, 

then the separation in the rough diffuser might be called mild after all. 
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Chapter 5 - Smooth versus rough diffuser flow 
 

In this chapter the simulated flow through the smooth and rough diffuser will be compared. 

This is done by selecting the most physical correct simulation from the smooth diffuser and 

comparing it with the most physical correct simulation from the rough diffuser. For the 

smooth diffuser, based on the discussion in chapter (4), the turbulence model that 

accomplished to replicate the real physical flows in the most accurate way, were the Spalart-

Allmaras model. This is because of the following: 

 Together with the k-ω SST model the Spalart-Allmaras model produces the best 𝐶𝑝 

distributions of the models applied. Figure (51) 

 The Clauser pressure parameter are for all the models not very accurate, but the 

Spalart-Allmaras models 𝛽 values are the ones that are closest to constant in the 

equilibrium region in [17]. Figure (53) 

 The shape factor of the Spalart-Allmaras model has the best fit of all the applied 

models and are also nearly constant in the equilibrium region in [17]. Figure (54)   

 The 𝐶𝑓values of the Spalart-Allmaras model although a bit low, have the most 

constant curve of all the applied model in the equilibrium region in [17]. Figure (56). 

 

For the rough diffuser, based on the discussion in chapter (4), the turbulence model that 

accomplished to replicate the real physical flows in the most accurate way, were also the 

Spalart-Allmaras model. This is because of the following: 

 Together with the RSM (which did not show separation) model the Spalart-Allmaras 

model produces the best 𝐶𝑝 distributions of the models applied. Figure (69) 

 The boundary layer and displacement thicknesses produced by the Spalart-Allmaras 

model have the closest match to the measured values in [43], compared with the 

models that did show separation. Figure (71) and (72). 

 The velocity profiles of the Spalart-Allmaras model shows the best alikeness with the 

values in [43], compared with the models that did show separation. Figures (75), (76) 

and (77) 

 

Therefore for both the smooth and rough diffuser, extended tables of flow parameters have 

been generated based on the results from the Spalart-Allmaras model. The extended tables 

are used to describe the mechanism that caused the boundary layer to separate in the rough 

diffuser. First the results of the generated extended tables of flow parameters will be 

presented, followed by figures where specially selected flow parameters are displayed and 

compared. Secondly, there will be a section where the results from the comparison of the 

two simulations are discussed.  
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5.1 Smooth and rough diffuser comparison 
 

In this section the flow through the smooth and rough diffuser will be compared in figures 

and contour plots.  

In table (13), characteristic boundary layer parameter for the smooth diffuser in the region 

0.4 ≤ 𝑥 ≤ 5.6 meter are presented, this region is from now on called the examined area. As 

seen from table (13), flow parameters are calculated for every 0.4 meters, except for the 

region 1.8 ≤ 𝑥 ≤ 2.4, where boundary layer separation were observed in the rough diffuser, 

and hence this region is studied more closely. 

Smooth diffuser 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/s] 

𝛿 
[m] 

𝜃 
[m] 

H 
[-] 

G 
[-] 

𝛽 
[-] 

𝑑𝑝𝑒

𝑑𝑥
 

𝐶𝑓 

10^3 

𝑅𝑒𝜃 
[-] 

0.4 25.7 34.1 0.0158 0.0012 1.34 5.96 -0.18 -306 3.64034 2709 

0.8 24.4 36.1 0.0264 0.0016 1.31 5.84 -0.08 -97 3.34176 4112 

1.2 25.1 35.4 0.0372 0.0025 1.33 6.42 0.35 247 2.92526 5988 

1.6 28.1 32.2 0.0459 0.0040 1.39 8.20 1.50 395 2.31277 8912 

1.8 30.4 30.2 0.0556 0.0052 1.44 9.65 2.54 376 1.97778 10808 

2 33.0 28.2 0.0656 0.0067 1.49 11.5 3.13 333 1.65339 12924 

2.2 35.9 26.4 0.0773 0.0085 1.57 13.9 6.32 274 1.35309 15404 

2.4 39.0 24.9 0.0873 0.0108 1.64 16.8 9.32 218 1.08889 18384 

2.8 45.3 22.5 0.1144 0.0155 1.81 23.9 16.7 130 0.70405 23947 

3.2 51.3 20.9 0.1366 0.0205 1.95 31.4 25.1 81 0.48291 29390 

3.6 56.7 19.83 0.1701 0.0256 2.04 37.5 32.8 56 0.37035 34826 

4 61.1 19.00 0.1962 0.0304 2.09 40.9 36.3 41 0.32472 39687 

4.4 64.7 18.36 0.2293 0.0351 2.09 41.4 35.7 32 0.31918 44186 

4.8 67.6 17.85 0.2508 0.0396 2.07 39.6 30.8 25 0.34024 48441 

5.2 70.0 17.44 0.2954 0.0436 2.03 36.8 24.9 20 0.38112 52137 

5.6 71.7 17.11 0.3001 0.0471 1.98 33.1 16.3 14 0.44541 55251 
Table 13: Extended table of characteristic boundary layer parameters for the smooth diffuser with the 

Spalart-Allmaras turbulence model 
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In table (14), characteristic boundary layer parameter for the rough diffuser in the region 0.4 

≤ 𝑥 ≤ 5.6 meter are presented. The Clauser shape factor G, is not defined for the region 

after 2 meter. This is because of negative 𝐶𝑓 values, and by equation (46) the Clauser shape 

factor becomes complex. Flow separation was found to occur at about 2.1 meter. Therefore, 

more calculations have been carried out in this region to obtain more information from the 

location where the boundary layer separated.  

Rough diffuser 

X 
[m] 

h 
[cm] 

𝑈𝑒  
[m/s] 

𝛿 
[m] 

𝜃 
[m] 

H 
[-] 

G 
[-] 

𝛽 
[-] 

𝑑𝑝𝑒

𝑑𝑥
 

𝐶𝑓_𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 

*10^3 

𝑅𝑒𝜃 
[-] 

0.4 25.7 34.7 0.0301 0.0025 2.33 8.2 -0.27 -341 9.7933 5980 

0.8 24.4 36.9 0.0454 0.0037 2.12 8.3 -0.15 -129 8.7199 9269 

1.2 25.1 36.5 0.0552 0.0054 2.06 9.9 0.54 218 5.4340 13470 

1.6 28.1 33.6 0.0788 0.0087 2.13 15.5 4.09 360 2.6392 20000 

1.8 30.4 31.9 0.0915 0.0112 2.27 24.2 12.8 333 1.0728 24711 

2 33.0 30.3 0.1169 0.0141 2.56 113 296 268 0.0580 29278 

2.2 35.9 29.1 0.1288 0.0169 3.01 - -50 194 -0.3812 33786 

2.4 39.0 28.2 0.1567 0.0195 3.61 - -37.9 141 -0.5378 37720 

2.8 45.3 27.0 0.2122 0.0241 4.88 - -29.5 77.3 -0.6935 44708 

3.2 51.3 26.3 0.2817 0.0286 5.83 - -23.7 47.2 -0.7835 51618 

3.6 56.7 25.8 0.3449 0.0322 6.38 - -22.6 35.4 -0.8125 58795 

4 61.1 25.3 0.3992 0.0382 6.51 - -23.7 29.6 -0.7922 66364 

4.4 64.7 24.9 0.4554 0.0444 6.25 - -23.2 29.1 -0.9188 75943 

4.8 67.6 24.5 0.4962 0.0519 5.77 - -36.3 31.9 -0.7170 87371 

5.2 70.0 24.0 0.5346 0.0598 5.25 - -47.7 38.4 -0.5948 98449 

5.6 71.7 23.4 0.5488 0.0679 4.72 - -56.9 37.8 -0.6759 109059 
Table 14: Extended table of characteristic boundary layer parameters for the Rough diffuser with the Spalart-

Allmaras turbulence model 
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In figure (78), the friction coefficients for the smooth and rough diffuser are plotted for the 

region 0.4 ≤ 𝑥 ≤ 5.6 meter. Notice the dominating pressure form drag.  

 

Figure 78: Friction coefficients for the smooth and rough diffuser. 

 

 

In figure (79), the development of the displacement thickness and momentum thickness are 

plotted for the smooth and rough diffuser in the region 0.4 ≤ 𝑥 ≤ 5.6 meter. 

 

Figure 79: Displacement and momentum thickness for smooth and rough diffuser height in [m] 

 

 

 



123 
 

In figure (80), the development of the boundary layer for the smooth and rough diffuser are 

plotted in the region 0.4 ≤ 𝑥 ≤ 5.6 meter. 

 

Figure 80: Boundary layer profiles for smooth and rough diffuser displayed in [m] 

 

 

In figure (81), the ratio of the displacement thickness in the rough and smooth diffuser are 

plotted together with the ratio of the momentum thickness of the rough and smooth 

diffuser for the region 0.4 ≤ 𝑥 ≤ 5.6 meter. 

 

Figure 81: Ratio of displacement and momentum thickness for the rough diffuser to the smooth diffuser. 
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In figure (82), the stream wise pressure gradients of the smooth and rough diffuser are 

plotted in the region 0.4 ≤ 𝑥 ≤ 5.6 meter. 

 

Figure 82: Free stream Pressure gradient in the stream wise direction for smooth and rough diffuser 

 

 

 

In figure (83), the freestream velocities of the rough and smooth diffuser are plotted for the 

region 0.4 ≤ 𝑥 ≤ 5.6 meter. 

 

Figure 83: Freestream velocities [m/s] for smooth and rough diffuser  
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In figure (84), the development of the shape factor for the smooth and rough diffuser are 

plotted in the region 0.4 ≤ 𝑥 ≤ 5.6 meter. 

 

Figure 84: Shape factor development for smooth and rough diffuser 
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In figure (85) velocity and eddy viscosity contours for the smooth diffuser are presented. In 

addition detailed profiles for the velocity and eddy viscosity distribution at different cross 

sections are available from appendix (B) and (C). In appendix (A) an in depth view of the flow 

in the immediate vicinity of the wall for the smooth and rough diffuser are presented in the 

form of vector and streamline plots. 

 

Figure 85: Velocity contour left and eddy viscosity contour right of the smooth diffuser 
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In figure (86) velocity and eddy viscosity contours for the smooth diffuser are presented. In 

addition detailed profiles for the velocity and eddy viscosity distribution at different cross 

sections are available from appendix (B) and (C). In appendix (A) an in depth view of the flow 

in the immediate vicinity of the wall for the smooth and rough diffuser are presented in the 

form of vector and streamline plots. 

 

Figure 86:  Velocity contour left and eddy viscosity contour right of the rough diffuser 
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In figure (87) the wall shear stress produced by the smooth and rough diffusers along the top 

or roof of the diffuser are displayed and compared 

 

Figure 87: Wall shear stress along the roof 
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5.2 Discussion of smooth versus rough diffuser flow 
 

In this section the figures and plots presented in section (5.1) are discussed. 

When investigating figure (78) it is clear that the roughness elements causes an increase in 

the friction coefficient and thereby contributes to higher drag characteristics in the rough 

diffuser. The higher drag in the rough diffuser is evidently explained by the form drag 

produced by the roughness elements, which is by far the dominant source of drag in figure 

(78). The influence of the skin friction to the effective friction coefficient in the rough 

diffuser is almost negligible except at the beginning of the examined area. Noticeably, the 

effective friction coefficient in the rough diffuser becomes negative at 2 meters, meaning 

that the boundary layer has separated and is flowing in the opposite direction of the mean 

free stream. The Clauser shape factor G, is from equation (46) therefore not defined for the 

region after 2 meters because of negative 𝐶𝑓 values. 

 

In figure (79), the displacement and momentum thicknesses for the rough and smooth 

diffuser are plotted. As seen in figure (79), the displacement and momentum thicknesses are 

substantially higher in the rough diffuser. The higher mass and momentum deficit in the 

rough diffuser are consistent with the increased form drag caused by the roughness 

elements, meaning that the fluid particles hitting the roughness elements imparts more of 

their momentum to the wall as compared to the corresponding smooth wall.  

 

The higher mass and momentum deficits caused by the roughness elements will by the 

continuity equation, lead to a larger boundary layer in the rough diffuser as observed in 

figure (80). Consequently, the increased boundary layer decreases the available effective 

flow area, thereby generates stronger favorable pressure gradients, but unfortunately also 

less powerful adverse pressure gradients, as recognized in figure (82). Therefore higher free 

stream velocities are observed from figure (83) in the rough diffuser.   

 

In figure (84), the shape factors for the rough and smooth diffuser are plotted. As seen from 

figure (84), already at the start of the examined area the shape factor of the rough diffuser is 

about twice as high as its comparison. From there the slope of the rough shape factor 

decreases some towards the throat of the diffuser, whilst the shape factor of the smooth 

diffuser is rather unchanged in the same area. Meaning that the converging channel has 

more influence on the velocity profile of the rough diffuser by making the velocity profile 

relatively fuller. From about 2 meter, the shape factor of the rough diffuser increases 

substantially, which implicates that the relative motion between fluid layers near the wall is 

reduced and the wall shear stress becomes close to zero, this is recognized and consistent 

with table (78). Further down the diffuser the rough shape factor continues to grow, peaking 

at 4 meter with a shape factor of 6.51 which is very high and is an almost certain indication 

of flow separation, which also is demonstrated in table (78), where negative 𝐶𝑓 values are 
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identified. The higher shape factor values in the rough diffuser also shows that the 

roughness is more efficient in producing mass deficits than momentum deficits. Noticeably 

in figure (84), the shape factor of the smooth diffuser is also quite high, peaking at 4 meter 

with a value of 2.09, meaning that the boundary layer is close to separation, this is verified 

by the low friction coefficient displayed figure (78).    

 

In figure (85) and (86) the velocity and eddy viscosity contours of the smooth and rough 

diffuser are displayed. From these plots it is clearly shown that the roughness generates a 

substantially thicker boundary layer, decreasing the effective flow area and thereby 

produces significantly higher freestream velocities. The increased boundary layer produced 

by the roughness elements pushes the free stream upwards towards the roof of the diffuser 

and thereby increases the velocity gradients at the upper wall, meaning that the wall shear 

stress in this location intensifies, which is demonstrated in figure (87). 

 

By examining the eddy viscosity in the contour plots in figure (85) and (86) it is apparent that 

the roughness elements has significantly increased the turbulence levels in the rough 

diffuser compared with the smooth diffuser. In the immediate vicinity of the wall the 

velocity gradients are much larger than the turbulent fluctuations for both diffuser. However 

from appendix (C) one can see that the roughness elements amplifies the magnitude of the 

turbulent fluctuations close to the wall even long before the boundary layer separate at 

about 2.1 meter from figure (78). When comparing the eddy viscosity in the free stream of 

the rough and smooth diffuser, one can see that they are both very small, which is 

consistent with the nearly uniform free stream velocities observed in both diffusers in 

appendix (B). The boundary layer separation at about 2.1 meter in the rough diffuser causes 

an increases in the turbulent fluctuations as from figure (14) and section (1.5.2), this is 

recognized in figure (86). 

 

In total the roughness has increased the turbulent mixing and thereby enhanced the 

boundary layers resistance to separation. Contrary it has also amplified the drag 

characteristics of the diffuser and consequently, produced a thicker boundary layer and 

heavier mass and momentum deficits. These deficits far overwhelms the increased turbulent 

mixing and causes the boundary layer to separate.    

 

From Appendix (A), it is evident that the roughness elements significantly alters the flow in 

the immediate vicinity of the wall. At the throat of the diffuser (0.9 meter) there exist two 

recirculation zones in between the roughness elements and local separation is also evident 

at the top of the roughness element. The streamlines curve inward, causing significant 

interactions with the flow above the crest and the roughness elements. This is consistent 

with the theory in section (1.4.2). The flow in the immediate vicinity of the wall in the 

smooth diffuser at 0.9 meter reveals strong velocity gradients consistent with a turbulent 
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boundary layer as described in section (1.3.1). At the separation point of the rough diffuser 

(2.1 meter) the flow between the roughness elements has a tendency to build one large 

recirculation zone, meaning that the interaction with the overlaying flow and thereby the 

wall shear stress is less than before, which is consistent with a the theory of section (1.5.1). 

Following the flow further down the rough diffuser, one can identify at 4 meter, where there 

is heavy boundary layer separation apparent from figure (84), that two recirculation zones 

has again developed between the roughness elements. No local separation is however 

captured by the model at 4 meters.  

For the smooth diffuser, one can recognize the decay of the velocity gradients near the wall 

as the geometry of the diffuser is expanding, which is consistent with the theory from 

section (1.5) and figure (78). In total the figures in appendix (A) suggest that the roughness 

elements generates significant amounts of vorticity in the near wall region, compared with 

the smooth diffuser. 

As seen in from figure (81) the roughness generates higher mass and momentum deficits, 

indicating by continuity that the free stream velocities must increase in the rough diffuser. 

The higher free stream velocities and increased displacement and momentum thicknesses 

eventually leads to boundary layer separation in the rough diffuser. In order to investigate if 

equilibrium flow is also attainable in the rough diffuser, the geometry needs to be changed. 

From figure (84) one can see that the converging section of the diffuser has to some extent 

greater impact on the shape factor of the rough diffuser then its comparison the smooth 

diffuser. Therefore the shape factor of the rough diffuser can be reduced by decreasing the 

size of the throat of the diffuser, bringing more momentum to the boundary layer. In the 

converging section the roof of the diffuser then has to be lowered considerably, and also 

significantly lengthened in the streamwise direction in order to facilitate the correct pressure 

recovery. This process will however increase the friction in the diffuser by equation (24), 

which again will affect the boundary layer development and pressure gradients to the extent 

that if equilibrium flow is possible when the diffuser is covered with roughness elements, the 

diffuser might be unmanageable for industrial use.  

By placing more roughness elements of the same shape along the floor of the diffuser, one 

will generate d-type roughness and in this way decrease the surface roughness effects on 

the flow as discussed in section (1.3). For industrial use this procedure might not be feasible 

since decreasing the surface roughness will often substantially increase the manufacturing 

cost.  
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Chapter 6 - Conclusion 
 

In this thesis the flow through the special equilibrium diffuser developed by the department 

of Energy and Process Engineering at the Norwegian University of Science and Technology 

has been simulated, both when the walls were smooth and when the floor of the diffuser 

were covered with k-type roughness elements. The simulations have been accomplished 

utilizing different turbulence models, where after the results of the simulations have been 

validated against the physical measurements performed in [17] for the smooth diffuser, and 

in [43] for the rough diffuser. Finally the results of the simulations on the smooth and rough 

diffuser have been compared. 

 

The Spalart-Allmaras turbulence model has proven to predict the best results both for the 

equilibrium flow in the smooth diffuser, and for the massively separated flow over the k-

type roughness in the rough diffuser. The meshes utilizing inflation produced the best results 

for the rough diffuser. For the smooth diffuser the mesh dependencies were negligible. The 

QUICK scheme was found to predict the most accurate results towards flow separation. 

 

From the results of the simulations on the smooth and rough diffuser it is evident that the 

surface roughness has severely altered the flow. Close to the wall at the scale of the 

roughness elements, in contrary to the smooth diffuser, there exist local separation and 

recirculation zones generating vorticity and increases turbulence. The form drag attributed 

the roughness elements has amplified the drag characteristics of the rough diffuser and 

thereby introduced much higher mass and momentum deficits in the flow compared to the 

smooth diffuser. The associated thicker boundary layer is more prone to separation. In the 

case of the simulated flow through the rough diffuser, the enlarged displacement and 

momentum thicknesses far overwhelms the increased turbulent mixing also produced by the 

roughness elements. The result is that the boundary layer separates.  

The effects of the adverse pressure gradient and k-type roughness under the settings in this 

thesis is therefore to augment each other to the level where the boundary layer separates.   

This is because the boundary layer in the smooth diffuser is already on the verge of 

separation, meaning that the inflection point is just at the point away from the wall where it 

can sustain enough momentum to the near wall flow to stop it from separating. For the 

rough diffuser, the k-type roughness elements will have a stronger retarding effect on the 

near wall flow and thereby intensify the vortex generation. When the flow is from left to 

right these near wall vortices must be in the clockwise direction. Accordingly the vortex 

generation produced by the k-type roughness elements have a greater magnitude than the 

supply rate of counter-clockwise vortices produced close to the inflection point, hence the 

near wall flow turns away from the wall and the boundary layer separates.   
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7 - Further work 
 

Surface roughness plays an important role in flow engineering, where phenomenon’s such as 

drag, heat transfer, flow separation and many more are highly connected to the surface 

texture. It is therefore important to continue to gain insight into the effects emanating from 

surface roughness.   

Due to limited computer resources it was not possible to build a 3-dimensional replication of 

the diffuser in this thesis. Nevertheless both the physical LDA measurements and several 

turbulence models shows that the rough diffuser severely separates, and thereby is far from 

being in equilibrium. A very interesting study would therefore be to build a 3 dimensional 

replication of the diffuser and apply different turbulence models to see which model that 

matches the measurements in the most correct way. Thereafter one could adjust the 

geometry of the diffuser in order to investigate if some of the turbulence models predicts 

equilibrium flow also with the roughness elements.  

By adjusting the spacing between the roughness elements one can generate d-type 

roughness, as described in section (1.4.2) this will reduce the drag compared to k-type 

roughness. This can easily be incorporated in the existing model and thereby the effects d-

type roughness has one the diffuser can be evaluated and compared with the effects of the 

k-type roughness.   

It would also be very interesting to apply Large Eddy Simulation (LES) or Direct Numerical 

simulation (DNS) to the diffuser in order to obtain detailed information of the eddies 

produced by the roughness elements and also acquire a comprehensive picture of the flow 

scenario in the rough diffuser. 
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Appendix 
 

Appendix A - Vector and streamline plots rough diffuser 
 

In this section Spalart-Allmaras produced vector and streamline plots are displayed for the 

rough and smooth diffuser at respectively the throat of the (0.9 meter), at the separation 

location (2.1 meter in the rough diffuser) and at heavy separation location at 4 meter(in the 

rough diffuser). The plots are for the floor (lower wall) of the diffuser and the flow direction 

is from left to right. The meshes utilized are respectively mesh 2.3 and 1.2 for the rough and 

smooth diffuser. 

 

Vector and streamline plots throat of rough diffuser 0.9 meter 

 

 

 

Note, two recirculation zones as of figure (12). At the lower right and left corners there 

should also have been induced, recirculation zones but these are not captured by the model 
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Note, local separation at the roughness element at 0.9 meter. 
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Vector and streamline plots rough diffuser at separation point 2.1 meter 

 

 

No, local separation visible.  
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Vector and streamline plots rough diffuser thoroughly separated location 4 meter 
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Vector plots smooth diffuser   
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Appendix B - Velocity development smooth versus rough diffuser 
 

The figures in this section presents the development of the velocity profiles for the Spalart-

Allmaras simulations thru both the smooth and rough diffuser. For the rough diffuser the 

velocity profiles from mesh 2.3 are depicted and for the smooth diffuser the velocity profiles 

for mesh 1.2 are depicted.   
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Appendix C - Eddy viscosity comparison smooth and rough diffuser 
 

In this section the eddy viscosity for the smooth and rough diffuser are plotted together at 

different locations throughout the diffuser 
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Appendix D - Contour plots 
 

In this section contour plots for the velocity and eddy viscosity are plotted for some of the 

turbulence models utilized in this thesis. The plots are all from the meshes which produced 

the most authentic replication of the physical measurements as given in Chapter 3.   

 

Contour plots smooth diffuser simulations 

K-ω SST model 
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K-ε RNG model 
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Contour plots rough diffuser simulations 

K-ω SST model 
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K-ε Realizable 
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RSM model: 
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Appendix E - Geometry description 
 

In table (A.1) the diffuser geometry is given. In figure (A.1) the geometry of the roughness 

elements are presented 

 

Table A. 1:  Diffuser geometry 

 

 

Figure A. 1: Roughness element geometry 
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Appendix F - Mesh independence analysis 
 

In this section different figures are presented to illustrate the degree of mesh dependency 

associated with the different simulations and applied meshes. Note that the reference static 

pressure for the 𝐶𝑝 distribution presented in this section is zero gauge, whilst the reference 

velocity is 31 m/s. 

Analysis smooth diffuser meshes: 

 

K-ω SST model 
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K-ε RNG model 
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Spalart-Allmaras model 
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Analysis rough diffuser meshes: 

Note that mesh 2.3 and 2.4 had to be plotted separately. This was because the computer 

resources power available was not sufficient for loading all the solution into the ANSYS post- 

processor.  

 

K-ω SST model 
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Standard k-ω model 
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K-ε RNG model 
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K-ε Realizable model 
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RSM model 
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Spalart –Allmaras model 
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Appendix G - Transient dependence 
 

In this section the results from the transient simulations performed on the rough diffuser are 

presented. As seen from the figures virtually no time dependence is present. All the 

transient simulations have been performed on mesh 2.3. Time step was set to 0.00001 and 

number of time step was set to 150000. Effective flow time was therefore 1.5 seconds. For 

the RSM model, the number of time step was set to 350000, producing an effective flow 

time of 3.5 seconds. Typical courant number was calculated to 0.02, based on these typical 

values: 

Cell size 1 cm, velocity 20 m/s and time step 0.00001.  

 

Transient k-ω SST simulations: 
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Transient k-ε RNG simulations: 
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Transient Spalart-Allmaras simulations: 
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Transient RSM simulations: 
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Appendix H - Second order upwind vs Quick scheme 
 

In this section the improved accuracy of the QUICJK scheme over the second order upwind 

scheme is visualized. Blue lines represent the velocity profiles of the second order upwind 

scheme and red lines represent the QUICK scheme 
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Appendix I - Standard k-ε with wall functions 
 

In this section some plots of the standard k-ε model employed with wall functions are 

presented. 
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Appendix J - Residuals 
 

In this section the residuals for each turbulence model and the associated mesh which the 

turbulence model where applied are presented. Note that iter is short for iterations. 

 

Residuals Smooth diffuser simulations 

 

 K-ω SST model 

 

SST mesh 1.1: 

iter continuity x-velocity y-velocity          k      omega      

2184 5.2964e-08 2.5960e-07 3.8425e-08 9.9799e-07 1.6063e-07   

 

SST mesh 1.2: 

iter continuity x-velocity y-velocity          k      omega      
 
52246 5.1649e-09 2.8078e-08 2.6765e-09 9.9876e-08 1.2832e-08   

 

 

 K-ε RNG model: 

 

RNG mesh 1.1: 

iter continuity x-velocity y-velocity          k    epsilon      
 
2001 6.8562e-11 3.6184e-10 7.3664e-11 9.9885e-10 9.9627e-11   
 
 

RNG mesh 1.2: 

iter continuity x-velocity y-velocity          k    epsilon      
 
13683 2.5710e-09 1.8518e-10 4.7185e-11 8.0975e-09 3.4568e-09   
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 Spalart-Allmaras model: 

 

Spalart-Allmaras 1.1: 

iter continuity x-velocity y-velocity        nut      
 
2650 4.6731e-10 1.6864e-09 3.5474e-10 9.9978e-09   

 

Spalart-Allmaras 1.2: 

iter continuity x-velocity y-velocity        nut      
 
5878 3.2735e-11 1.3433e-10 2.2116e-11 9.8403e-10   

 

 

 

Residuals rough diffuser simulations 

 

 K-ω SST model 

 

SST mesh 2.1: 

iter continuity x-velocity y-velocity          k      omega      
 
13068 3.8882e-08 8.5053e-07 4.1812e-08 9.9970e-07 1.6984e-07   

 

SST mesh 2.2: 

iter continuity x-velocity y-velocity          k      omega      
 
13368 2.7851e-08 8.3988e-07 4.0075e-08 9.9972e-07 1.4501e-07   

 

SST mesh 2.3: 

iter continuity x-velocity y-velocity          k      omega      
 
11811 1.279e-09 6.2516e-08 6.6567e-09 5.5967e-08 1.3762e-10  

 

SST mesh 2.4: 

iter continuity x-velocity y-velocity          k      omega      
 
12471 3.4179e-09 6.5816e-08 5.4267e-09 9.9990e-08 1.3362e-10  
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 Standard k-ω model 

 

Standard k-ω mesh 2.1: 

iter continuity x-velocity y-velocity          k      omega 

20000 9.3158e-07 3.1696e-08 1.2840e-08 6.0274e-07 3.9040e-06 

 

Standard k-ω mesh 2.2: 

iter continuity x-velocity y-velocity          k      omega 

20000 4.2229e-07 2.5577e-08 7.0064e-09 4.6363e-07 1.7879e-0 

 

 

Standard k-ω mesh 2.3: 

iter continuity x-velocity y-velocity          k    epsilon 

20000 1.0484e-07 1.3841e-08 3.8675e-09 3.4709e-07 1.3752e-09 

 

Standard k-ω mesh 2.4: 

iter continuity x-velocity y-velocity          k      omega 

20000 9.1800e-05 5.6817e-05 5.8305e-05 2.1405e-04 2.5537e-05   

 

 

 

 K-ε RNG model: 

 

RNG mesh 2.1: 

iter continuity x-velocity y-velocity          k    epsilon 

17224 6.3670e-09 6.1879e-08 3.6176e-09 9.9912e-08 3.1869e-08 

 

RNG mesh 2.2: 

iter continuity x-velocity y-velocity          k    epsilon 

17461 2.8009e-09 6.2087e-08 3.4431e-09 9.9998e-08 2.8169e-08 
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RNG mesh 2.3: 

iter continuity x-velocity y-velocity          k    epsilon 

6231 6.5867e-08 4.1977e-07 1.8379e-08 9.9984e-07 2.3528e-07 

 

RNG mesh 2.4: 

iter continuity x-velocity y-velocity          k    epsilon      
 
10815 1.1633e-08 5.2866e-08 2.5269e-09 9.9919e-08 2.4125e-08 

 

 

 

 K-ε Realizable model: 

 

Realizable mesh 2.1: 

iter continuity x-velocity y-velocity          k    epsilon 

20000 1.3932e-08 2.3536e-07 1.1320e-08 2.0747e-07 5.5003e-08 

 

Realizable mesh 2.2: 

iter continuity x-velocity y-velocity          k    epsilon 

20000 1.0684e-08 2.3474e-07 1.0960e-08 2.1318e-07 5.2449e-08 

 

Realizable mesh 2.3: 

iter continuity x-velocity y-velocity          k    epsilon 

9589 1.1291e-08 9.9926e-08 4.8063e-09 1.9033e-07 6.0158e-08 

 

Realizable mesh 2.4: 

iter continuity x-velocity y-velocity          k    epsilon 

30000 1.8273e-09 9.6434e-10 3.4308e-10 5.1255e-09 7.1619e-09 
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 RSM model: 

 

RSM mesh 2.3: 

Flow time : 2.999 seconds, time step 300000 

iter continuity x-velocity y-velocity          k    epsilon   

513805 1.6616e-11 9.9429e-11 6.5658e-11 5.0521e-09 7.3005e-10 

 

uu-stress  vv-stress  ww-stress  uv-stress 

9.1184e-10 9.0421e-10 7.1610e-10 1.0414e-09 

 

 

 

 

 Spalart-Allmaras model: 

 

Spalart-Allmaras mesh 2.1: 

iter continuity x-velocity y-velocity        nut 

12063 8.3564e-09 4.1172e-08 3.4489e-09 9.9949e-08 

 

Spalart-Allmaras mesh 2.2: 

iter continuity x-velocity y-velocity        nut 

12245 7.0488e-09 4.0756e-08 3.3010e-09 9.9936e-08 

 

Spalart-Allmaras mesh 2.3: 

iter continuity x-velocity y-velocity        nut 

7454 1.5431e-08 2.5892e-08 2.0762e-09 9.9949e-08 

 

Spalart-Allmaras mesh 2.4: 

iter continuity x-velocity y-velocity        nut 

9447 5.2810e-09 2.7419e-08 2.1613e-09 9.9975e-08 
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