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Abstract

Perforated plates, relevant for several marine applications, are experimentally

and numerically investigated. The numerical investigations are performed

using a presently developed Navier–Stokes solver. Several comparison and

sensitivity studies are presented, in order to validate and verify the solver.

Forced heave experiments are performed on two perforated plates with perfo-

ration ratios 19 % and 28 %. Amplitude-dependent added mass and damping

coefficients are presented. Good agreement is obtained between the solver

and the present experiments. Consistent with existing data, the results show

that the hydrodynamic coefficients of perforated plates are highly amplitude

dependent. The damping force is found to dominate over added mass force.

The damping force dominance increases with increasing perforation ratio.

It is highlighted that plate-end flow separation has an important effect on

the damping coefficient. The developed numerical solver is two-dimensional,

but is found to yield reasonable estimates of hydrodynamic force coefficients
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when compared with a previous three-dimensional experimental investiga-

tion. This could indicate that three-dimensional effects are not dominant for

the hydrodynamic forces of perforated plates, and that a two-dimensional vis-

cous flow solver could have relevance as a tool for estimating hydrodynamic

forces on three-dimensional perforated structures.

Keywords: Perforated plate, Numerical model, Damping, Added mass,

Computational fluid dynamics, Experimental study

1. Introduction

The hydrodynamic behavior of perforated plates are relevant in several

marine applications. Direct similarities exist between perforated plates and

the ventilated or perforated structures that can be used to damp motions of

structures, e.g. heave plates, swash bulkheads and wave absorbers, or are

used in complex subsea structures, e.g hatch covers, mudmats and various

protection structures. Complex subsea modules may also consist of rows of

several densely packed equipment and pipes, for which the flow, and resulting

loads, may be simplified to that of a perforated structure.

The motivation for this work is to reduce uncertainty when performing

marine deployment operations, which is likely to be cost saving by reducing

conservatism and delays when it comes to the time used on waiting for ac-

ceptable weather conditions. The objective of the project involves increased

knowledge on the hydrodynamic loads on typical members of subsea struc-

tures, including how to account for interaction and shielding effects between

different member types. In an initial study [1], experimentally obtained

added mass and damping coefficients for different configurations of perfo-
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rated plates and cylinders were presented. The challenges with estimating

the hydrodynamic coefficients were highlighted. In the present study, further

experimental investigations have been performed, as well as development of a

numerical viscous flow solver, which can estimate hydrodynamic coefficients

of these type of structures. The focus is how to model and compute coeffi-

cients for perforated plates. Special attention is given to the effect of flow

separation at the plate-ends, which has been pointed out by several previous

studies to be of importance [2, 3, 4, 5, 6].

Due to the industrial relevance, there has been a great deal of analyti-

cal, numerical and experimental investigations on perforated plates. Molin

presented an extensive review in 2011 [6]. After his review paper, there has

been other relevant studies, including the works by An and Faltinsen [2, 7],

Li et al. [5], and Tian et al. [8], which will be briefly summarized in the

following.

An and Faltinsen [7] studied semi-analytical solutions for two-dimensional

perforated plates in infinite and finite water depths, and followed up with

a three-dimensional study including an experimental investigation of two

rectangular plates with perforation ratios of 8 % and 16 % [2]. Their semi-

analytical investigation is based on using a vortex distribution along the

plate, and their study includes both linear and quadratic pressure-drop con-

ditions, the latter analysis yielding hydrodynamic coefficients corresponding

to the result by Molin [6, 7]. In their experimental study, the two perforated

plates, both with cross-sectional areas of 520 mm × 365 mm, were forced to

oscillate at two different submergences, for different periods of motions and
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a range of amplitudes corresponding to Keulegan–Carpenter numbers,

KC =
WT

D
, (1)

with W the velocity amplitude, T the period of oscillation and D the char-

acteristic width of the plate, of 0.17 ≤ KC ≤ 1.7 with KC based on the

smallest of the two plate sides (D = 365 mm). They found strong amplitude

dependence for both the added mass and damping coefficients. Improved

agreement was found in the hydrodynamic coefficients between their experi-

mental investigation and semi-analytical method when adding a drag force in

order to account for flow separation at the plate-ends in an empirical manner.

Li et al. [5] performed an experimental study of heave plates for spar

platforms. The plates were flat square sections of 400 mm× 400 mm in size.

Four of the tested plates were perforated, with perforation ratios of 1 %, 5 %

with two different hole sizes, and 10 %. The plates were forced to oscillate

harmonically in heave for Keulegan–Carpenter numbers ranging from 0.2 ≤

KC ≤ 1.2. The resulting added mass and damping coefficients were found

to depend on the amplitude. It was pointed out that the differences in

the (quadratic) damping coefficients between the three different perforation

ratios becomes negligible for KC > 1.0, and are similar to that of a solid

plate. Only minor differences were found in both hydrodynamic coefficients

between the two hole sizes tested.

Tian et al. [8] performed an experimental investigation of oscillating flat

circular disks. Unlike many previous studies, their experiments included high

KC numbers, with a total range 0.15 ≤ KC ≤ 3.15 when normalizing with

the disk diameter. Seven perforated disks were investigated, with perforation

ratios τ of, τ = 0.05, τ = 0.10 (five different hole sizes), and τ = 0.20.

4



Amplitude dependence was found to be important for both the added mass

and damping coefficients, for all perforation ratios, generally with increasing

coefficients at increasing amplitude. A considerable decrease in the added

mass coefficients was found when increasing the perforation ratio, with 40 %-

60 % reduction of the most perforated disk (τ = 0.20) compared to tests with

a solid disk. The damping coefficients were less sensitive to the perforation

ratio, with less clear trends when increasing the perforation ratio, however a

slight reduction was in general found. The sensitivity to hole size was found

to be small, and the coefficients were almost identical for the five different

versions of the τ = 0.10 disk, throughout the whole range of KC numbers

tested.

The present study consists of four main parts. This introduction and the

description of the experimental setup and potential flow methods serve as

background (Sections 2-3). In the second part, the presently developed CFD

method is described (Section 4). It is a basic, two-dimensional Navier–Stokes

solver. Sensitivity studies and verification of the code are given. In the third

part, the experimental results for two perforated plates are presented, and

good agreement with the numerical counterparts of the CFD simulations is

in general demonstrated (Sections 5.1-5.2). We conclude from this that the

CFD is able to predict the main physical effects of the problem; i.e. the flow

through and around the plates. In the fourth and last part, Section 5.3, we

investigate differences between 2D and 3D plates.
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Figure 1: Principle sketch of the experimental setup in the present experiments carried

out in a glass flume with dimensions 13.5 × 1.0 × 0.6 m at the Marine Technology center

(see [1] for a more detailed description). Plate dimensions: D = 420 mm, t = 3 mm.

2. Experimental investigation

The present experimental investigations are based on the same setup and

facilities as [1], except for the change of force transducer (6 kN compared to

the previous 400 N). A sketch of the experimental setup is presented in Fig.

1. Forced oscillation tests are performed. The amplitudes of oscillation range

from Z = 1.7 cm to Z = 13 cm. The markers in the result figures are used

to indicate the five different periods of oscillation tested: 1.0 s (diamonds),

1.25 s (pentagons), 1.5 s (hexagons), 1.75 s (circles), and 2.0 s (stars).

Two perforated plates, denoted P19 and P28, are tested. A picture of

P28 placed in the experimental rig is presented in Fig. 2. The perforated

plates consist of many small circular holes with sharp corners, making up

perforation ratios of τ = 0.19 and τ = 0.28 for, respectively, P19 and P28,

when accounting for two stiffeners used on the plates, as well as the profiles

used to fasten the plates. The profiles and stiffeners are visible in Fig. 2.

The thickness of the plates is t = 3 mm, while the lateral dimension (into the
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Figure 2: A photo of the perforated plate model denoted P28 (perforation ratio τ = 0.28)

placed inside the experimental rig (near bird’s eye view). The acrylic glass plates with the

hole matrix are indicated.

paper in Fig. 1) is L = 570 mm. More details are given in Table 1.

The perforated plates are fastened with screws through acrylic glass plates

on each side, cf. Fig 2. The acrylic glass plates consist of a range of holes,

making up a hole matrix which enables the possibility of testing several

structures at different positions and submergences in the tank. The flexibility

of the hole matrix was utilized in previous experimental investigations of

simplified subsea structures [1]. Holes that are not used are filled with yellow

putty to ensure a smooth surface on the acrylic glass plates.

The experimental, analytical and numerical results are presented in terms
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Table 1: Characteristics of the two presently experimentally tested perforated plate mod-

els.

Perforation ratio Dry mass Hole diameter Material

P19 τ = 0.19 2.3 kg 2 mm 5754 aluminum

P28 τ = 0.28 2.1 kg 3 mm 5754 aluminum

of hydrodynamic coefficients. The coefficients are made nondimensional by

the analytical added mass of a solid plate with the same area as the perforated

plates tested,

A0 =
π

4
ρD2L, (2)

with ρ being the density of the fluid. The nondimensional added mass coef-

ficient is expressed as A
A0

. A linear damping model is used, and the nondi-

mensional damping coefficient is expressed as B
ωA0

, with ω being the circular

frequency of motion. The motions are harmonically varying. Consequently,

the added mass and damping are obtained by Fourier averaging.

The tested perforated plates are close to ideal, in the sense that they

consist of many small holes (P19 with 2 mm hole diameter: ≈ 15 000, P28

with 3 mm hole diameter: ≈ 10 000), and thus would yield negligible added

masses in the low-KC limit. Note that the two stiffeners used on the plates are

non-perforated and cover approximately 9 % of the total area of the plates,

hence some added mass in the low-KC limit should be expected. The effect

of the stiffeners was calculated to yield A
A0
≈ 0.02 by using the source panel

method [1].
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Figure 3: Parameters involved in the numerical investigations of flow through one opening

in a channel (left) and several openings in a channel (right).

3. Potential flow methods

Two potential flow methods are presented in the following. First, an an-

alytical method is described (Section 3.1). This method estimates the added

mass of a perforated plate for KC → 0 by modeling the flow through the

openings of the plate as the flow through openings in a channel. Second, a

source panel method, which can provide added mass coefficients for KC→ 0

in both open and channel flow conditions, is presented (Section 3.2). Later

in the text, we compare results obtained by these methods with the experi-

mental investigations and numerical viscous flow solver, in order to increase

our understanding of, and confidence in, the results.

3.1. Analytical added mass for flow through openings in a channel

The analytical result for the added mass due to potential flow through

an opening in a two-dimensional rectangular channel is presented in Morse
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and Ingard [9, p. 487],

A = ρ
π

4
D2 8

π2
ln

(
1

2
tan

(
πd

4D

)
+

1

2
cot

(
πd

4D

))
. (3)

Here d is the width of the opening and D the width of the channel, cf. left

part of Fig. 3. The open-area ratio (perforation ratio) of the channel is

τ =
d

D
. (4)

Inserting the open-area ratio, and normalizing (3) by the added mass of a

two-dimensional solid plate of width D, (2), one obtains a nondimensional

expression for the added mass of flow through an opening in a channel,

A

A0

=
8

π2
ln

(
1

2
tan

(πτ
4

)
+

1

2
cot

(πτ
4

))
. (5)

The expression for one opening may be extended to the case of a channel with

nh equal openings, cf. right part of Fig. 3, that together yield an open-area

ratio τ ,
A

A0

=
8

nhπ2
ln

(
1

2
tan

(πτ
4

)
+

1

2
cot

(πτ
4

))
. (6)

As pointed out by Molin [6], the added mass goes to zero as the number of

openings goes to infinity, regardless of the perforation ratio. For a perforated

plate with perforation ratio τ consisting of nh openings, (6) can be used

to estimate the added mass coefficient for the low-KC limit for perforated

plates close to sidewalls, that is, in channels. Sketches of the two cases with

corresponding nomenclature as in (5) and (6) are presented in Fig. 3.

As part of verification of the present numerical viscous flow solver (to be

presented in Section 4), two test cases have been simulated and compared to

the analytical added mass expressions of (5) and (6).
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3.2. Source method

A two-dimensional source panel method is presently implemented to cal-

culate added mass coefficients for the low-KC limit. Unlike the analytical

expression in (6), the source panel method can be used to calculate added

mass coefficients for arbitrary configurations, in particular plates in both

infinite fluid and channels.

The basis of the two-dimensional source panel method is the source-dipole

formulation arising from Green’s 2nd identity, where matching of the inner

and outer potentials yields a method that depends on the source strengths

only [10]. Hence, by distributing sources on the boundaries, the velocity

potential can be determined everywhere in the fluid domain. In the present

study, sources with constant strengths are distributed along discretized bod-

ies and boundaries. The hydrodynamic heave added mass coefficients are

then calculated by numerically integrating the contribution from the lin-

earized pressure on the bodies in the vertical direction. Results from the

source method is denoted BEM (boundary element method) in the present

text. Numerical convergence is investigated. The code has been verified

against analytical solutions for the added mass of simpler structures.

4. Numerical viscous flow solver

In addition to the source method described in Section 3.2, numerical

results are obtained from solving the governing equations of incompressible

and isothermal flows of a homogeneous Newtonian fluid with negligible bulk

viscosity, the continuity and momentum (Navier–Stokes) equations,

∂ui
∂xi

= 0, (7)
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∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

. (8)

Here ui represents the velocity component in the xi direction, ρ is the fluid

density, p the pressure and ν the kinematic viscosity. Standard index notation

is used. The solver is two-dimensional. Results from this solver are denoted

CFD (computational fluid dynamics) in the present text.

The governing equations are solved with a fractional-step method, as that

by Chorin [11], where the momentum equation is split into two steps,

u∗i − uni
∆t

= −uj
∂ui
∂xj

+ ν
∂2ui
∂x2j

, (9)

un+1
i − u∗i

∆t
= −1

ρ

∂p

∂xi
. (10)

Here n represents the present time-step, n + 1 the next time-step, and ∗ an

auxiliary step. Since the velocity field at n + 1 is divergence free, (7), the

divergence of (10) yields a Poisson equation for the pressure

∂2p

∂x2i
=

ρ

∆t

∂u∗i
∂xi

. (11)

For each time step, the following solution procedure is performed:

1. Find the tentative velocity field from (9).

2. Use the tentative velocity field to calculate the pressure from (11).

3. Use the tentative velocity field and the calculated pressure to calculate

the velocity from (10).

4. Extrapolate the lagged pressure to obtain second order temporal accu-

racy [12].
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4.1. Discretization

The governing equations are solved on a Cartesian grid. The implemen-

tation allows for variable grid cell sizes. A staggered grid approach is chosen.

A Crank–Nicolson based scheme for the time-stepping procedure of (9) is

applied. The Crank–Nicolson method is based on central differencing and

yields second-order temporal accuracy [13], without need for corrector steps.

However, a drawback of the method is the time penalty of solving the inter-

mediate velocity field in an implicit manner. The Crank–Nicolson method

will yield higher accuracy than the fully implicit scheme. However, unphysi-

cal results can occur, and there are limitations to the time-step size in order

to achieve physically plausible solutions [14].

The diffusion terms of (9), the pressure gradient terms of (10), as well as

the terms of (11) are solved with central difference schemes. The discretiza-

tion of these terms are made second-order accurate, taking into account vari-

able cell sizes.

The non-linear advection terms of Eq. (9) are solved by using the known

velocity field at the previous time-step. Consequently, the present approach is

not fully second-order accurate in time with regards to the advection terms,

despite being based on a Crank–Nicolson approach. Upwind schemes are

used to discretize the advection terms. First, second, and third order up-

wind schemes are tested. The first order scheme approximates the differential

based on values of the present cell and the upstream cell, whereas the second

order scheme includes information about the present cell and two upstream

cells. The third order scheme also includes information about one cell down-

stream. Different combinations of the first, second and third order schemes
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have been applied as follows

∂uki
∂xj

= (1− σ − ε) ∂u
k
i

∂xj

∣∣∣∣
1st

+ σ
∂uki
∂xj

∣∣∣∣
2nd

+ ε
∂uki
∂xj

∣∣∣∣
3rd

. (12)

Here σ and ε are constants, 0 ≤ σ + ε ≤ 1, and k is either n or ∗. Increas-

ing σ and/or ε increases the order of the discretization, potentially increas-

ing the accuracy of the calculation. Simulations are performed with (σ, ε)

set to (0, 0), (0.5, 0) or (0, 0.5) yielding pure first order schemes, or hybrid

schemes based on combinations of first order with either second or third or-

der schemes. Only small differences are found in the resulting hydrodynamic

coefficients between the different upwind scheme approaches, typically within

5 %. However, using schemes based on higher order approaches are found to

give stability issues in some cases, consistent with numerical theory, while

such problems are not encountered with the first order scheme. Additionally,

the higher-order schemes will increase the computational cost since a larger

matrix system must be solved. For consistency, all presented CFD results

are those obtained using the pure first order scheme, that is, (σ = 0, ε = 0).

As for the central difference schemes, the upwind schemes are constructed

by taking into account the potentially varying cell sizes. Additionally, since

a staggered grid is used, the velocity components used to calculate cross-

derivative advection terms, are interpolated based on the four surrounding

velocity components, in order to determine the direction of the flow. As for

the differentials, this interpolation accounts for the possibility of variable cell

sizes.
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4.2. Boundary conditions

On the boundaries of the fluid domain, the prescribed harmonically os-

cillating fluid velocity is set,

u = 0, (13a)

w = W sin(ωt), (13b)

where u is the fluid velocity in the x-direction and w that in the z-direction

(coordinate system, cf. Fig 1). No-slip conditions are enforced on the models,

u = 0, (14a)

w = 0. (14b)

The pressure gradient is set to zero on all boundaries of the CFD domain,

∂p

∂n
= 0. (15)

Sensitivity tests were performed to avoid domain boundary influence, by

placing the boundaries with different distances from the body. Typically, the

domains are of sizes l
D
≈ 15, with l being the domain length and width.

4.3. Simulation parameters

Three parameters are constant in all simulations, the period of oscilla-

tion, T = 1.0 s, the density, ρ = 1000 kgm−3, and the kinematic viscosity,

ν = 1.0× 10−6 m2s−1. This will ensure similar Reynolds number in the sim-

ulations as in the present experimental investigation.

The time steps in the simulations are set to

∆t = min

(
0.005T, 0.4

min (∆x,∆z)

W

)
, (16)
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where min (∆x,∆z) is the length of the smallest cell size. The first condition

ensures a minimum of 200 time-steps per period of oscillation, while the latter

was chosen based on sensitivity studies on the time-step size (not presented).

Limiting the number of oscillation periods reduces the number of time-

steps needed, and thereby the computational cost of the simulation. A sen-

sitivity study (not presented) on the number of oscillation periods needed to

obtain oscillation period independent results, was performed. Based on our

findings, the added mass and damping coefficients are calculated based on

oscillation period 4, 5 and 6. The three first oscillations, 1-3, are ignored due

to start-up of flow.

4.4. Grid cell size sensitivity

A grid sensitivity study has been carried out for a plate with 80 mm

total hole width and 352 mm total solid width, that is, the plate is 432 mm

wide and has a perforation ratio of τ = 0.185. The plate thickness is set to

t = 8 mm. The number of plate elements is 11, with 10 holes in between.

These parameters are chosen such that three grids can be tested, keeping all

other parameters the same, i.e. using two, four, and eight fluid cells between

each plate element, and, respectively, eight, 16, and 32 solid cells to model

the plate elements, as well as having two, four, and eight cells across the

thickness of the plate. This fictitious plate resembles the plates that have

been tested experimentally in the present study. The time-step size used in

this sensitivity analysis was set based on the finest grid, cf. (16).

In order to have a fine resolution around the bodies, but limit the com-

putational time, stretched grids are used in the simulations. We define a

fixed cell size, ∆ = ∆x = ∆z in the vicinity of the plate, and geometrically
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Figure 4: Upper right parts of the fine region of the grids tested in the grid cell size

sensitivity. ∆ = 4 mm (top), 2 mm (middle), and 1 mm (bottom). Total plate size: D =

432 mm, t = 8 mm. Total domain size is 6 m× 6 m.

increase cell sizes towards the boundaries of the domain. Based on sensi-

tivity tests on stretching (not presented), the increase in adjacent cell size

in the stretched regions is set to 20 %. The stretching will increase the cell

sizes up to a given maximum value, typically set to 50 mm, beyond which a

constant cell size is applied. Such relatively large cell sizes are justified by

that the spatial variation of the flow is small far away from the body. The

total number of grid cells are 34 672 (∆ = 4 mm), 56 176 (∆ = 2 mm), and

101 376 (∆ = 1 mm), for the three grids in the grid cell size sensitivity test.

A section of the fine regions of these grids is shown in Fig. 4. The grids are

symmetric with respect to both axes. To increase readability, such that the

smallest grid cells can be seen, only the upper right parts (x ≥ 0, z ≥ 0) of
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Figure 5: Added mass coefficients predicted by the present CFD for perforated plates of

τ = 0.185, modeled with different grid cell sizes, ∆ = 4 mm, 2 mm, and 1 mm, in the fine

region close to the plate. The number of plate elements is fixed to 11.

the fine regions of the grids (and perforated plate) are shown.

The results from the grid size sensitivity are presented in Figs. 5 and

6. Except for minor differences in the damping coefficients, the results are

nearly insensitive to the grid size within the tested range of ∆x, ∆z. Note

in particular that using two fluid cells between each plate element is suffi-

cient when discretizing perforated plates with the present numerical viscous

flow solver. It may be somewhat surprising that so few cells over the gap

is sufficient. Later in the text, we demonstrate good agreement with the
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Figure 6: Damping coefficients predicted by the present CFD for perforated plates of

τ = 0.185, modeled with different grid cell sizes, ∆ = 4 mm, 2 mm, and 1 mm, in the fine

region close to the plate. The number of plate elements is fixed to 11.

experiments, using similar grids.

Testing the grid cell size sensitivity is not trivial, in general, and also

when modeling a perforated plate with a numerical viscous solver. This is

related to restrictions that follows when modeling such a structure with the

constraints of a Cartesian mesh. The perforation ratio of the plate must be

the same for all grids, hence there are constraints on both the plate elements

with solid cells, and the fluid cells between them. Further, in order to have

flow through the openings of the plate, there must be at least two fluid cells
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Table 2: Relevant parameters in the numerical hole size sensitivity study, carried out with

the present CFD. n and nh refers to number of plate elements and holes, respectively. lh

refers to hole size.

n nh × lh
2 1× 78 mm

4 2× 25.5 mm and 1× 27 mm

7 2× 12 mm and 4× 13.5 mm

14 13× 6 mm

27 26× 3 mm

between each plate element due to the use of a staggered grid system. At

the same time, these openings are small, such that increasing the number

of fluid elements between each plate element will increase the computational

time considerably. Even if larger hole sizes are used, there is still the problem

of modeling the thickness of the plate correctly.

4.5. Hole size sensitivity

Different numerical hole sizes have been tested. The total number of solid

cells, 228, and fluid cells, 52, along the width of the plate are kept constant,

such that the perforation ratio in all tests are τ = 52
280

= 0.19. Further, the

same grid and setup are used, such that only the plate elements have been

changed when performing the different simulations. Five different hole size

setups, presented in Table 2, are tested.

The results from the sensitivity study on the numerical hole size are pre-

sented in Figs. 7 and 8. As expected, clearly, the number of plate elements,
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Figure 7: Added mass coefficients predicted with the present CFD for perforated plate

models with τ = 0.19. Comparison of predictions with different number of plate elements,

2, 4, 7, 14, and 27, cf. Table 2.

and corresponding hole size, is an important factor at low KC for the added

mass coefficient. However, and most important, there is in general little

difference between the four smallest hole sizes simulated, for n ≥ 4. This

applies in particular for damping. For added mass, n ≥ 7 may be a better

limit.

A possible explanation is the importance of flow separation at the plate-

ends, which may dominate the damping contribution no matter the hole

size. Consistent with the present results, two previous experimental studies
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Figure 8: Damping coefficients predicted with the present CFD for perforated plate models

with τ = 0.19. Comparison of predictions with different number of plate elements, 2, 4, 7,

14, and 27, cf. Table 2.

have reported similar negligible hole size sensitivity [5, 8]. However, both

these studies are limited to relatively low perforation ratios (τ = 0.05 [5]

and τ = 0.1 [8]) with a limited number of hole sizes and low KC numbers.

If the present numerical results for the plate with only one hole (n = 2)

is disregarded, the differences are small. Consequently, it seems that the

number of plate elements should not be of major importance for relevant KC

numbers, as long as there are at least three holes on the plate. However,

there may be numerical benefits of using more holes; using more holes seems
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Figure 9: Added mass coefficient as function of the perforation ratio, τ = d
D , due to

oscillating flow through a slit in a 2D channel. “CFD” refers to predictions by the present

CFD, run with small KC = WT
D = 0.01. “Analytical” refers to Eq. (5).

favorable in terms of domain size needs and numerical stability, due to less

stagnation (potential flow effects) of the flow and thereby less need for a large

domain.

4.6. Simple channel flow validation cases

Oscillating flow through an opening in a channel is simulated with the

presently developed CFD code at low KC-number; KC = 0.01, with D being

the channel width. The opening is discretized by using 320 grid cells across
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Figure 10: Added mass coefficient as function of the number of openings, nh, due to

oscillating flow through a series of openings in a 2D channel. “CFD” refers to predictions

by the present CFD, run with small KC = WT
D = 0.01. “Analytical” refers to Eq. (6).

the channel width and one grid cell across the opening height. The channel

length is l
D

= 5, and the total number of grid cells is 32 480. The numerical

results are compared with the analytical expression (5), and the comparison

is presented in Fig. 9. The curve and trend predicted with the analytical

expression is well captured by the numerical simulations.

Next, the effect of number of openings is investigated. For the case of

τ = 0.5, four number of openings (nh = 1, 2, 4 and 8) were simulated,

and compared with the analytical expression (6). The resulting added mass
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Table 3: Relevant parameters in the numerical discretizations of the P19 and P28 plates,

as used in the present CFD computations. The plates are discretized using n = 27 plate

elements. Total width and thickness of the plates are, respectively, D = 420 mm and

t = 3 mm. The number of (#) solid and fluid grid cells along the width and thickness of

the plates are indicated.

P19 P28

Fine region cell size, ∆ 1.5 mm 1.5 mm

Hole size, lh 3.0 mm 4.5 mm

# plate width solid cells 228 202

# plate width fluid cells 52 78

# plate thickness cells 2 2

coefficients are presented in Fig. 10. Again, the trend predicted by the

analytical expression is captured by the numerical results.

This concludes the sensitivity tests and verification studies for KC → 0

of our CFD code. In the remaining parts of the paper, the main results of

perforated plates of 19 % and 28 % perforation ratios are presented at a large

range of KC numbers.

5. Results

5.1. Perforated plates in oscillating open flow

The main results from the present study are given in this section. Nu-

merical and experimental results for the hydrodynamic force coefficients in

oscillating open flow conditions of the two perforated plates (P19 and P28)
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Figure 11: Added mass coefficients from present CFD simulations (one period, T = 1.0 s),

the present experiments (five different periods), source panel results (crosses at KC =

0), and Molin’s semi-analytical (MSA) method using a discharge coefficient µ = 0.5 [6].

Recommendations by DNV GL for use in the low-KC limit [15, Section 3.3.4] and for all

KC numbers [15, Section 4.6.4] yield, respectively, A
A0

= 0.51 and A
A0

= 0.78 (τ = 0.19),

and A
A0

= 0.37 and A
A0

= 0.54 (τ = 0.28).
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Figure 12: Damping coefficients from present CFD simulations (one period, T = 1.0 s), the

present experiments (five different periods), and Molin’s semi-analytical (MSA) method

using a discharge coefficient µ = 0.5 [6].

are provided. The term open is here used to emphasize that the outer bound-

aries are far from the plate, as opposed to the channel flow results presented

in Section 5.2. The configuration is nearly that of infinite fluid, except that

there is a free surface and a tank floor, cf. Fig. 1. Free-surface effects are

investigated and found to be small.

In the experiments, the perforated plates are placed in the middle of the

water tank, approximately 6.5 m from each side wall, and 0.5 m from the tank

bottom and free surface. This corresponds to a ratio between the distance
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Figure 13: Ratio between damping force and added mass force, cf. Figs. 11 and 12.

to the free surface compared to the amplitude of motion of approximately 30

for the smallest amplitudes tested, but only four for the largest amplitudes

tested. The numerical simulations are performed with the plates 3 m from all

four computational boundaries, hence the domain size to plate width ratio

is l
D

= 6
0.42

= 14.3. There is no free surface in the CFD simulations. A

large simulation domain is necessary in order to avoid numerical instabilities

and unphysical results, since the velocity is forced to prescribed values at

the boundaries. Hence, the present CFD simulations provide infinite fluid

results, whereas the experimental investigations are in principle affected by
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free-surface effects. However, in [1], we concluded that these were negligible

based on small measured radiated waves.

The final discretization in CFD was chosen based on the grid sensitivity

study presented in Section 4.4. Details on the discretization are given in

Table 3. In addition to the experimental and numerical viscous flow results,

added mass results for KC → 0 are predicted by the present BEM with

identical plates as that in the CFD.

We have included hydrodynamic coefficients obtained using Molin’s semi-

analytical method [6] with a discharge coefficient µ = 0.5, abbreviated MSA

in the plot legends. The value for the discharge coefficient was chosen based

on Blevins [16, pp. 314–315] and Molin [6]. Included are also added mass

estimates from the recommended practice by DNV GL for modeling and

analysis of marine operations [15].

The added mass coefficients are presented in Fig. 11. The small mark-

ers represent experimental results (five different periods), whereas the larger

triangles represent the CFD results. Source panel results are indicated by

crosses at KC = 0. There is, in general, good agreement between the ex-

perimental and CFD results for both perforation ratios. P19 yields the best

comparison, while some of the numerical results for P28 underpredict. Nev-

ertheless, these differences are relatively small.

The damping coefficients for the two perforated plates are presented in

Fig. 12. The results from the numerical simulations agree well with the

experimental values.

For a given KC number, both the added mass coefficient and damping

coefficient decrease with increasing perforation ratio. The added mass co-
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Figure 14: A photo illustrating the present experimental setup of the tests of oscillating

plates in a channel. In particular, the channel walls are indicated.

efficient decreases the most, such that the hydrodynamic force balance, B
ωA

,

increases with increasing perforation ratio. The ratio B
ωA

is presented in Fig.

13. The hydrodynamic load on both plates are found to be dominated by

damping for the whole range of KC numbers. In particular, for P28, the

damping force is clearly dominant over the added mass force. This has prac-

tical importance, but has not been reported in previous studies, prior to [1];

previous studies have focused on the amplitude dependent added mass.

5.2. Perforated plates in oscillating channel flow

As an attempt to investigate the forces on the plates without allowing

the massive flow separation at the plate-ends, experiments and numerical

simulations were set up in which the plates were placed inside two walls

yielding a setup that mimics oscillating channel flow conditions. These walls

were placed approximately 2 cm from the ends of the perforated plates in both
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Figure 15: Flow visualization from numerical simulations. The subplots show the right

part of the perforated plate with τ = 0.19 in open (top) and channel (bottom) conditions.

The velocity amplitude is W = 0.4 ms−1, corresponding to KC = 0.94. The flow visual-

izations are captured at a time-instant 30 % into an oscillation period. Blue arrows are

used for positive vertical velocity, red for negative.
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Figure 16: Added mass coefficients for perforated plates in channel flow conditions. Present

CFD (one period, T = 1.0 s) compared with present experimental results (five different

periods), present source panel results (BEM), and the analytical expression of Eq. (6). C

refers to channel.

the experiments and the numerical simulations. Results from the channel flow

investigations are denoted with a C, that is, P19C and P28C for, respectively,

the perforated plates with 19 % and 28 % perforation ratios. A photo of the

experimental setup is presented in Fig. 14.

When the plates are forced to oscillate inside the channel, vortex shed-

ding from flow separation at the plate-ends will be limited, but so will the

possibility for the fluid to flow around the plate, since the water is forced to
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Figure 17: Damping coefficients for perforated plates in channel flow conditions. Present

CFD (one period, T = 1.0 s) compared with present experimental results (five different

periods). C refers to channel.

pass the plate either through the perforated openings or through the gaps

between the plate-end and the channel walls, due to continuity of mass. As a

result, the force that acts on the plate will be in almost exact phase with the

velocity of the ambient flow or plate, and therefore completely dominated by

a large damping force (and correspondingly large damping coefficient), and

only yield a minor added mass coefficient.

Differences between open and channel flow conditions are illustrated in

Fig. 15. Here, flow visualizations, in terms of velocity vector plots, from the
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Table 4: Linear regression analysis of damping coefficients as function of KC number. The

analysis is based on the experimental results (Exp.) and numerical simulations (CFD)

of oscillating perforated plates in a channel, P19C and P28C. r2 is the coefficient of

determination.

Method Intercept Slope r2

P19C Exp. 0.27 1.43 0.999

P19C CFD 0.08 1.67 1.000

P28C Exp. 0.11 0.83 0.999

P28C CFD 0.05 0.85 0.999

Table 5: Linear regression analysis of the ratio between hydrodynamic force amplitude

as function of KC in channel flow and open conditions. The analysis is based on the

experimental results (Exp.) and numerical simulations (CFD) of the perforated plate

models. r2 is the coefficient of determination.

Method Intercept Slope r2

τ = 0.19 Exp. 0.97 0.63 0.947

τ = 0.19 CFD 0.99 0.84 0.988

τ = 0.28 Exp. 0.91 0.29 0.957

τ = 0.28 CFD 0.98 0.36 0.960
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Figure 18: Ratio between damping force and added mass force, cf. Figs. 16 and 17.

numerical simulations of the perforated plate with τ = 0.19, are presented.

The velocity amplitude is W = 0.4 ms−1, corresponding to KC = 0.94. The

plots are obtained at a time-step 30 % into an oscillation period, that is, the

vertical velocity is w = 0.4 sin (0.6π) at the boundaries. In both open (top

subplot) and channel (bottom subplot) conditions, the fluid flow is acceler-

ated in the vertical direction through the perforations of the plates. Further,

in open conditions, a large vortex is developed from the plate-end (centered

in x = 0.224, z = 0.094 at this time instant). For channel flow conditions, a

similar vortex is not seen. Instead, the fluid between the plate and the chan-

35



nel wall is accelerated in the vertical direction, similar to the acceleration of

fluid through the openings.

The numerical and experimental channel flow added mass coefficients

agree reasonable well, as seen in Fig. 16. For P19C, the experimental results

show considerable period dependence, where the drop in added mass occurs

at different KC numbers for different periods of oscillation. This can be

related to free-surface effects, not captured in the CFD simulations.

The analytical expression (6) does not account for the thickness of the

plate elements, and underpredicts the added mass coefficients in the low-

KC limit. The number of plate elements are here 27, and their thickness is

important, t
Di
≈ 0.25, with Di being the width of each plate element. In

tests with the BEM where the thickness is reduced to t
Di
≈ 0.025, the added

mass coefficients reduce considerably (P19C: −38 %, P28C: −32 %), and are

thus more in line with (6).

The damping coefficients from the oscillating channel flow investigation

are presented in Fig. 17. Both the experimental and numerical results indi-

cate a nearly perfect linear relation between the damping coefficient and KC,

meaning that a quadratic pressure-loss model is very good for this setup. Re-

sulting interceptions (damping at zero KC) and slopes from linear regression

of the experimental and numerical results, are presented in Table 4. The

coefficients of determination confirms the perfect linearity (r2 = 1) with KC.

The total hydrodynamic force on the perforated plates is larger in channel

flow conditions compared to open conditions. A linear regression analysis is

presented in Table 5. The analysis is here performed between the increase in

hydrodynamic force in channel flow compared to open conditions, as a func-
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tion of the KC number. The increase in force is found to be approximately

linear with the KC number (r2 ≈ 1). The intercept refers to the value at

KC = 0. The analysis shows that all intercepts are close to 1, meaning that

at very small KC numbers, the total hydrodynamic force is approximately

the same in channel as in open flow conditions. Further, the slope is depen-

dent on the perforation ratio; the total hydrodynamic force on the plate with

19 % perforation ratio is found to increase more rapidly with increasing KC

number, compared to the plate with 28 % perforation ratio.

Figure 18 is included to illustrate the damping dominance in channel flow

conditions. Even at small KC numbers, the hydrodynamic force on the plates

are completely dominated by damping. The fact that the hydrodynamic force

on the plates increase considerably in channel flow conditions, and that the

damping force is dominating completely, can have relevance for operations

performed in an environment restricted by walls or boundaries. Moonpool

operations, where objects are lowered through an opening in the hull of the

ship, is a relevant example.

5.3. 3D effects and comparison with 3D experiments

A 2D simplification of the 3D experiments performed by An and Faltinsen

[2] has been simulated with the present CFD. Their study included one plate

with perforation ratio τ = 0.08 and one plate with τ = 0.16. The plates are

numerically modeled as being 440 mm wide, to match the square root of the

plate area (520 mm× 365 mm) in their experiments.

The resulting coefficients are presented in Figs. 19 and 20 with compar-

isons to digitization of their experimental results. The experimental results

were made nondimensional by the 3D solid plate potential flow added mass,
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Figure 19: Added mass coefficients for 2D perforated plates as predicted by the present

CFD, compared with experimental (four periods) 3D results by An and Faltinsen [2].

numerically calculated by An and Faltinsen [2]. Different markers are used

to indicate four periods of oscillation in the experiments; T = 1.5 s (squares),

T = 2.0 s (circles), T = 2.5 s (triangles), and T = 3.0 s (diamonds).

There is in general reasonable agreement between the present 2D numer-

ical simulations and the 3D experiments. There is larger difference in the

added mass of the two plates in the experimental investigation than what is

found in the numerical simulations. This can be related to obvious differ-

ences between a 3D experiment and a 2D simulation. Further, free surface

effects may be of importance. Since the densest perforated plate has a per-
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Figure 20: Damping coefficients for 2D perforated plates as predicted by the present CFD,

compared with experimental (four periods) 3D results by An and Faltinsen [2].

foration ratio of only τ = 0.08, it is likely to cause non-negligible free surface

deflections at the largest amplitudes of motions. This plate is more sensitive

to the period of oscillation than the less dense plate, an indication that the

presence of the free surface may be of importance for the force on the plate.

As elaborated earlier, plate-end flow separation is important for the hy-

drodynamic force on perforated plates, in particular for the damping. The

flow separation will occur on two sides of a two-dimensional plate, and on

four sides of a three-dimensional plate. Nevertheless, the damping coeffi-

cients agree reasonable well when comparing the 2D simulations and the 3D
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Figure 21: Explanation of parameters used in discussion of 2D (left) vs 3D (right) plate

flow. The flow will separate at the plate-ends in both cases (numbered edges), but is

allowed to circumvent the plate without separation in 3D (A, B, C and D).

experiments. We identify two effects in this respect. 1) Interaction between

the flow separation from the four sides in 3D is more dominant than the

interaction from flow separation at the two sides in 2D. 2) The flow has more

freedom to circumvent the plate in 3D. This is illustrated in the sketch in Fig.

21. The flow will separate on the sides 1 and 2 in the two-dimensional case,

and from sides 1, 2, 3 and 4, including their corners, in the three-dimensional

case. However, the freedom to flow in the intermediate quadrants A, B, C

and D without separation is only possible in 3D.

6. Conclusion

A two-dimensional numerical viscous flow solver based on the Navier–

Stokes equations has been developed in order to investigate hydrodynamic

forces on perforated plates in oscillating flow conditions, which has relevance

in several marine applications, for instance in relation to marine operations

with complex subsea modules. In order to validate and verify the solver,

experimental, analytical and numerical methods have been compared, and

sensitivity studies have been performed. Sensitivity analyses on the grid cell
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size were performed, and converged results were obtained. The analytical

expressions for oscillating flows in channels with openings were well captured

with the numerical solver. Further, the effect of hole size on perforated

plates was investigated. Except for an increase in added mass for very small

KC numbers, the effect of increasing the hole size (decreasing hole number)

on the numerically modeled perforated plates, was, in general, small. The

differences were relatively small if using at least three holes on the plate, but

using more holes was found numerically favorable due to less stagnation of

the flow.

The results from present experimental investigations of two ideal per-

forated plates of perforations 19 % and 28 % in a two-dimensional setup,

are in good agreement with the numerical simulations for oscillating flow in

open conditions far from boundaries. The numerical and experimental re-

sults demonstrate that the hydrodynamic force on plates of perforation ratios

19-28 % are dominated by damping, with increasing damping dominance for

increasing perforation ratio. As an attempt to isolate the effect of plate-end

flow separation, channel flow conditions were tested. Although unsuccess-

ful in isolating the plate-end flow separation effect, these trials provided a

useful result demonstrating nearly perfect quadratic damping and negligible

added mass. The total hydrodynamic force on the plates in channel flow

conditions was found to increase considerably compared to open conditions,

with increasing difference for increasing amplitude of motion, which can have

relevance for, among others, moonpool operations.

The developed solver is two-dimensional, but provided reasonable esti-

mates of the hydrodynamic force coefficients when compared with a previous
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three-dimensional experimental investigation, despite the fact that the flow

separates from four sides in 3D. This could indicate that three-dimensional

effects are not dominant for the hydrodynamic forces of perforated plates,

and that a two-dimensional viscous flow solver could serve as a tool for es-

timating hydrodynamic forces on three-dimensional perforated structures.

However, the comparison was limited to a three-dimensional experimental

investigation of two rectangular perforated plates. These plates had circular

holes and perforation ratios of 8 % and 16 %. Further validation, including

more perforation ratios and other three-dimensional perforated structures

types and shapes, is needed to draw more firm conclusions.
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