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Abstract—Secure operation of the evolving power systems,
characterised by more renewable energy sources and increas-
ingly variable consumption, will require enhanced monitoring
and more automatic control actions. One example is the
need for fast detection and control actions to avoid loss of
synchronism or grid islanding caused by transient instability. In
this paper, we present a method suitable for on-line transient
stability assessment of power systems, based on Lyapunov’s
second method for stability analysis of dynamical systems. The
method uses Sum-Of-Squares optimization to algorithmically
construct a Polynomial Lyapunov Function and estimate the
Region-Of-Attraction for a given stable operating state. The
main benefit of the method is that it obviates the painstaking
process of finding a suitable Lyapunov function. Our approach
includes a robust handling of the truncation error in the Taylor
series expansion of the system model, and thereby ensures that
the estimate of the region of attraction around an operating
point is inside the actual region of attraction. Using a single-
machine-infinite-bus system, we demonstrate the application of
the method in this paper.

Keywords—Direct Methods for Stability, Polynomial Lya-
punov Function, Region of Attraction, Sum-Of-Squares Opti-
mization, Transient Stability Analysis.

I. Introduction

Today’s power systems are characterised by a mix
of different renewable energy sources and increasingly
variable consumption. These characteristics will even be
more prominent in future power systems. The natural
variability of renewable generation and active loads results
in a highly dynamic system with large variations in power
flows. Maintaining the power balance and system stability
at all times becomes an increasing challenge for power
system operators. The complexity and variability of the
systems call for more automatic monitoring and control
actions in order to ensure secure system operation. In a
more complex system it is likely that transient stability
phenomena, resulting in loss of synchronism and grid
islanding, becomes a greater risk. On the other hand,
with more distributed generation, it is also more likely
(or technically possible) that separate grid islands can
continue to operate if the separation is properly controlled.
However, this demands that functions in today’s Energy
Management and Supervisory Control And Data Acquisi-
tion (SCADA) systems are extended to take into account
on-line Transient Security Analysis (TSA). Information

about critical system stability properties of the current
operating state, and a set of credible contingencies, must
be readily available. Based on this information and fast
detection of a problem, automatic control actions can be
taken that minimise the loss of load. Such control schemes
require several breakthroughs in measurement systems,
computation methods, and control schemes.

At present, stability analysis programs routinely used
in utilities around the world are based mostly on offline
step-by-step numerical integration of power system stabil-
ity models used to simulate system dynamic behaviour
[1]. This analysis is not suitable for on-line TSA as
it requires long computation times, involving studies of
several contingencies, and does not provide information
regarding the degree of stability or instability.

An alternative approach to TSA is Lyapunov’s second
method also known as Lyapunov’s direct method. This
approach employs a Lyapunov function to estimate the
Region-Of-attraction (ROA) [1], [2]. The Lyapunov func-
tion approach to transient stability analysis, however, has
been traditionally considered very difficult due to the lack
of a systematic methodology for constructing Lyapunov
functions.

The approach using Sum-Of-Squares (SOS) decomposi-
tion and Polynomial Lyapunov Functions (PLF) has been
proposed to determine wider estimates of the ROA for non-
linear dynamical models [3], [4], [5], [6], [7], [8]. The PLF
approach uses SOS optimization technique to progressively
obtain estimates of the ROA. The main advantage of this
approach lies in its ability to algorithmically synthesize
the Lyapunov function, which is a key element in stability
assessment. The key challenge in PLF based approaches,
however, is that most of the proposed methods have
numerical problems when higher order Lyapunov functions
are used. Another problem is that the approach requires
the system model to be polynomial, and of finite degree,
whereas dynamic models for power systems normally
involve trigonometric functions. This has normally been
handled using Taylor series expansion of the trigonometric
functions [4]. In this paper, a method suitable for on-
line Transient Stability Assessment using a Polynomial-
Lyapunov–Function to obtain an estimate of the ROA is
proposed. The method is a further development of the
approach in [4], whose main benefit is that it obviates



the painstaking process of finding a suitable Lyapunov
function. The method allows for the use higher order
Lyapunov functions, which leads to wider estimates of the
ROA. In the paper, we show how to robustly account for
the approximation error when using a finite order Taylor
series approximation, thereby ensuring that the estimate
of the region of attraction around an operating point is
inside the actual region of attraction. In contrast, the
method in [4] could result in an exaggerated region of
stability estimate. This paper is organised in six sections.
Section I provides the background for transient stability
assessment of power systems and the main contribution
of the paper. In Section II, the general stability features
of Lyapunov’s second method for analysing stability of
dynamical systems is briefly discussed and then in Section
III, the SOS/PLF method is presented in detail. Power
system modelling aspects are discussed in Section IV and
then in Section V, results from some case studies showing
the performance of the proposed approach are presented.
Finally, the main conclusions are presented in Section VI.

II. Lyapunov’s second method for stability
According to Lyapunov’s second method for stability

of dynamical systems, an operating point, x̄ = 0, is an
equilibrium point of the system

.
x = f(x) (1)

if there exists a function V (x), which is continuously
differentiable in a neighbourhood, U , of x̄ = 0, such that:

V (0) = 0;

V (x) > 0 ∀x ∈ U ; x 6= 0.
V (x) ≤ 0 ∀x ∈ U ; x 6= 0

(2)

In addition, the neighborhood U must be positive invari-
ant, i.e., a state originating in U must remain in U for all
future times. If such a function V (x) exists, it is called a
Lyapunov function for the system (1) in the neighbourhood
U . In this work, an estimate of the ROA is based on a level
set of the Lyapunov function, i.e., a set {x|V (x) ≤ γ}, with
γ some positive scalar. Level sets of Lyapunov functions
are known to be positive invariant.

As shown in Fig. 1, the domain, U , of all states,
x, from which the system converges to the equilibrium
point, x̄, without leaving the domain, is called the region
of attraction (ROA) of the equilibrium point x̄. For a
perturbed system, the initial state x in Fig. 1 is the system
state at the end of the disturbance. It should be noted
that during the fault, the system is controlled by fault-on
dynamics, which are different from (1). After the fault has
been cleared, however, the trajectory of the system state
x is governed by (1), starting from the state at the time
of clearing the fault. If this state at the time of clearing
the fault lies inside the ROA, conditions (2) can assert,
without numerically integrating the post-fault trajectory
that the system will eventually converge to its post-fault
equilibrium x̄. The knowledge of a Lyapunov function V (x)
and a scalar γ defining an ROA estimate can therefore
allow for very quick assessment of system stability. ROA
estimates based on Lyapunov function level sets are always
conservative, i.e. there may be initial states outside the

U

x
x̄

Fig. 1: An illustration of the ROA

level set for which the state conveges to the equilibrium
point, but there cannot be any state inside the level set for
which the state does not converge to the level set (under
the assumption that the dynamics are governed by (1),
i.e., that no further fault occurs).

III. SOS/PLF Approach
A. Obtaining the ROA estimate

The starting point for our approach is the ROA analysis
method proposed by [4]. The method iteratively improves
feasible solutions to the equation set

V (x)− ε1x
Tx is SOS (3)

− d

dx
V (x)f(x)− ε2x

Tx− s1(x)(γ − V (x)) is SOS (4)

(γ − V (x))− s2(x)(β − p(x)) is SOS (5)

Here V (x) is the PLF, and the first equation above,
equation (3), ensures that this is strictly positive ev-
erywhere except at the origin. We only search for SOS
polynomials V (x) with zero constant term (as otherwise
V (0) 6= 0) and zero first order terms (as otherwise
x = 0 would not be the minimum of V (x)). ε1 and ε2
are small positive scalars. The second equation above,
equation (4), ensures that the time derivative of V (x) is
negative for all {x|V (x) < γ}. The polynomial s1(x) is
an SOS polynomial. In the third equation, s2(x) is also
an SOS polynomial, and the equation ensures that the set
{x|γ−V (x) ≥ 0} includes the set {x|β−p(x) ≥ 0}. This is
used to ensure that, as the iteration progresses, each new
ROA estimate includes the ROA estimate from preceding
iterations.

The equation set (3 - 5) contains several bilinear terms.
In the second equation s1 multiplies γ and V (x), and in
the third equation s2 multiplies β. Optimization solvers for
bilinear systems is an active research field (which we do not
attempt to cover). Instead, in our work, we have resorted
to the more common approach of iteratively solving linear
sub-problems obtained by setting some of the variables



constant. The iteration is initialized using a quadratic
Lyapunov function obtained by solving a Linear Quadratic
(LQ) problem for the linearised system.

B. Transforming non-polynomial model into a set of poly-
nomial differential algebraic equations

Conditions (3 - 5) and SOS programming cannot be
directly applied to study the stability of power systems
because their models contain trigonometric non-linearities
and are, therefore, non-polynomial. Hence, the first step is
to transform the original non-polynomial system model (1)
into a set of polynomial differential algebraic equations.
This is achieved by applying a Taylor series expansion
based procedure to obtain an estimate of the trigonometric
functions in the model, as was shown in [4]. In this paper,
however, the procedure in [4] is extended to robustly
account for the approximation error when using a finite
order Taylor series approximation.

In standard engineering mathematics textbooks (e.g.
[9]) we find that, for an (n+1) times differentiable function
g(z), with z = a+v and a a known scalar, the Taylor series
expansion of g(z) around a is given by

g(a+ v) = g(a) + vg′(a) +
v2

2
g′′(a) + · · ·+ vn

n!
g(n)(a)

+
vn+1

(n+ 1)!
g(n+1)(a+ ξ)

(6)

where 0 ≤ ξ ≤ v. In power systems, the functions g(z) in
consideration are commonly sine or cosine functions, and
their derivatives of all orders are therefore also sine or
cosine functions. Therefore we can bound the final (error)
term in the expansion by defining ∆ = g(n+1)(a+ ξ), and
we observe that −1 ≤ ∆ ≤ 1. Consequently, provided
each trigonometric term in (1) enters affinely, we may
for each term introduce the Taylor series expansion (6),
and a corresponding bounded uncertain term ∆i. If, for
all possible combinations of extreme values of the ∆is
(from Taylor series expansion of different trigonometric
terms), (4) is fulfilled, it will necessarily also be fulfilled
for the actual value of f(x) in (1). This follows from the
observation that the ∆is enter affinely in (4). The actual
value of the this equation can therefore be found by linear
interpolation between the values at the extreme values of
∆i. A non-negative linear combination of sums of squares
is clearly also a sum of squares. Note that the same V (x)
has to be used for all combinations of ∆is, whereas the
polynomials s1(x) may be different for each i provided all
the s1,i(x) are SOS polynomials.

C. Estimating the ROA

Our approach to estimating the ROA follows closely
that of [4]:

1) To initialize the calculations, the model in (1)
is linearized at the operating point under study,
yielding .

x = Ax (7)

Then a quadratic Lyapunov function is found for
the linearized system by solving the Lyapunov
equation

ATP + PA+Q = 0 (8)

where Q is a positive definite matrix and P defines
the corresponding quadratic Lyapunov function
V (x) = xTPx.

2) Then an ROA estimate based on the quadratic
Lyapunov function is found by holding V (x) fixed
while maximizing γ in (4), with s1(x) as a degree
of freedom in the optimization1. In accordance
with the description above of the robust approach
to handling the truncation error from the Taylor
series expansion, one version of (4) is used for each
combination of extreme values of the truncation
errors ∆i. The same V (x) and γ are used in each
of these equations, whereas different versions s1,i
may be used for the polynomial s1(x). Due to the
fact that s1,i multiplies γ, the maximal value of
γ is found using bisection.

3) Setting β equal to the value of γ obtained in Step
1, p(x) equal to V (x) from Step 1, and keeping the
s1,i from Step 1, γ is maximized for equations (3
- 5) using V (x) and s2(x) as degrees of freedom2.

4) Keeping γ and V (x) fixed, s1,i is optimized in
(4). This is a semidefinite feasibility problem, and
since the interior point solvers generally return
a solution in the analytic center of the feasible
region [10], this provides opportunities for further
optimization in the subsequent steps.

5) Keeping β, p(x) and s1,i fixed, γ is maximized
in (3 - 5) using V (x) and s2(x) as degrees of
freedom. At this point the initialization procedure
is finished, and the next three points are iterated
until the estimated ROA no longer increases in
size, or until feasible solutions no longer can be
found.

6) Perform Step 4 with the new values of γ and V (x).
7) Set p(x) equal to V (x) in the previous step.
8) For fixed p(x) and s1,i, maximize β with γ,

V (x), and s2(x) as degrees of freedom and (3
- 5) as constraints. β multiplies s2(x) in (5), and
therefore this maximization is performed using
bisection on β. Note that in this step we attempt
to maximize the size of the level set of p(x) (the
Lyapunov function from the previous iteration)
that fits inside the ROA estimate for the present
iteration.

It would be possible to arrange the calculations in steps 6
- 8 such that the computationally demanding bisection in
step 8 could be avoided. However, in our experience the
calculations proceeded much more reliably when optimiz-
ing β and s2(x) simultaneously.

1More precisely, it is the coefficients of the polynomial s1(x) that
are degrees of freedom in the optimization.

2Now V (x) is of full degree, and it is no longer constrained to be
a quadratic function.



IV. Power system modelling
The dynamics of power system components are repre-

sented by mathematical models with several levels of diffi-
culty, depending on the intended purpose for the model.
A synchronous generator is represented by differential
equations which account for the machine speed deviations
and changes in rotor angle during disturbances. Addition-
ally, the manner in which the armature flux gradually
penetrates into the rotor, during system disturbances,
is quantified by differential equations. These additional
equations sufficiently quantify the effects of generator
components such as field and damper windings. For TSA, a
third-order model, which is presented as a transient voltage
behind the direct axis transient reactance, is generally
considered to be sufficient [11]. The 3rd order dynamic
model of the ith generator is given as:

∆
.
wi =

1

Mi
(Pmi − Pei −Di∆wi) (9a)
.
δi = ω0∆wi (9b)

.
E′

qi =
1

T ′
d0i

(
Efi − E′

qi + Idi(xdi − x′
di)

)
(9c)

where, i = 1, 2, 3, . . . , N ; Mi = 2Hi, Hi is the inertia
constant of the ith generator; ∆wi is the speed deviation of
the ith generator; Pmi is the mechanical input power to the
ith generator; Pei is the active electrical power injection
from the ith generator; Di is the damping constant of
the ith generator. δi is the power angle of ith generator;
T ′
d0i is the direct-axis open circuit transient time constant

for the ith generator; E′
qi is the quadrature-axis transient

voltage of the ith generator; Efi is the field voltage for
the ith generator; Idi is the direct-axis current of the ith

generator; xdi and x′
di are the direct-axis synchronous and

transient reactances of the ith generator, respectively.

Idi = −E′
qiYiisinθii +

N∑
j=1
j 6=i

YijE
′
qjsin(δi − δj − θij); (10)

Pei =E′2
qiYiicosθii + E′

qi

N∑
j=1
j 6=i

YijE
′
qjcos(δi − δj − θij);

(11)
where, Yij are the magnitudes of elements of the bus
admittance matrix of the power system and θij are the
corresponding phase angles.

To obtain a dynamical model in polynomial form, the
model (9a) - (9c) is expanded using Taylor series expansion
of the sine and cosine functions. The truncation error in the
Taylor series expansion is handled as described in Section
III-B.

V. Case Study: Single-Machine-Infinite-Bus system
A. Model description

In order to evaluate the consistency and performance
of the proposed method in estimating the ROA, a Sin-
gle Machine connected to large external system (SMIB

system) was used. The model is represented by equations
(12), where x1 = δ (in radians), x2 = ∆ω (in per unit) and
x3 = E′

q (per unit). The model has multiple equilibrium
points. However, in this study, the the ROA was estimated
for the equilibrium point x̄ = {0.3398, 0, 1 }.

.
x1 =0.0750− 0.2250x3 sin(x2)− x1.
x2 =314x1.
x3 =0.7361− 1.1251x3 + 0.4126 cos(x2)

(12)

Using this nominal equilibrium point, the model (12) is
translated to the origin, yielding the dynamical model in
(13).

.
x1 =0.0750− 0.22121x3 sin(x2)− 0.0750x3 cos(x2)− x1

− 0.2121 sin(x2)− 0.0750 cos(x2).
x2 =314x1.
x3 = − 0.389− 1.1251x3 + 0.389 cos(x2)− 0.1375 sin(x2)

(13)

The model (13) is then converted to a polynomial
representation using Taylor series expansion of the sine and
cosine functions. The degree of the Taylor approximation is
decided taking into account the trade-off between model
accuracy and computational overhead. In this study, a
sixth order Taylor series approximation was used.

B. Stability assessment - Actual ROA
To obtain the actual ROA, a time-domain simulation

of the model was carried out to obtain the ROA as shown
in Fig. (2). The nominal equilibrium point is indicated
by a plus sign in this figure. While the time-domain
simulation gives the actual ROA, this process is tedious
and, therefore, not suitable for on-line stability assessment.
There are also no rules for determining how closely the
initial conditions of the simulations have to be spaced
in order to reliably determine the ROA. In contrast,

−1 0 1 2 3
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0.00

2.00

4.00

6.00
·10−2

δ [rad]

∆
ω

[p
u]

Unstable region
Stable region

Fig. 2: Actual ROA - Time-domain simulation of the model



Lyapunov-based analysis, albeit conservative, gives an
explicit region inside which the system is guaranteed to
be stable.

C. Stability assessment - Estimated ROA

Using the proposed SOS/PLF algorithm, with a Taylor
series approximation of order 6, the ROA was estimated
as shown in Fig. 3. In this Figure, the estimated ROA
is compared with the actual ROA obtained from time-
domain simulations. From the Figure, it can be observed
that the estimated ROA is a relatively accurate estimate
of the actual ROA. As can further be observed from Fig.
4, the algorithm progressively estimates the ROA from
an initial estimate to increasingly accurate estimates over
successive iterations. Throughout this work, Yalmip [12]
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Fig. 3: Actual ROA and Estimated ROA
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Fig. 4: Time-domain simulation results and successive
estimates of the ROA

with the optimization solver MOSEK has been used for
solving the SOS problems.

D. Validation of Estimated ROA - Step change in speed

To validate the estimated ROA further, the model
(12) was constructed in Matlab/Simulink. The model
was initialised by introducing a step change in the state
variable x2 (generator speed). Fig. 5 shows the system
trajectory following a step change ∆x2 = 0.039. As can
be seen from the Figure, the system converges to the
equilibrium point following this disturbance. The initial
point following the disturbance lies within the estimated
ROA. Therefore, the estimated ROA is fairly accurate.
Stability is also confirmed by plotting the variation of the
Lyapunov function as shown in Fig. 6, where it can be
observed that the value of the Lyapunov function remains
below a pre-set threshold.
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Fig. 5: Estimated ROA and simulation results from
Simulink
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Fig. 6: Lyapunov function - stable point

When the system is perturbed by a change in speed
∆x2 = 0.045, the ensuing system trajectory does not
converge to the equilibrium point as shown in Fig. 7.
This agrees with the observation that the initial starting
point following the disturbance lies outside the estimated



ROA. This observation reinforces the conclusion that the
estimated ROA is fairly accurate. The evolution of the
Lyapunov function is depicted in Fig. 8, where it is clear
that the stability threshold is exceeded.
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Fig. 7: Estimated ROA and simulation results from
Simulink
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Fig. 8: Lyapunov function - unstable initial point

E. Validation of Estimated ROA - Simulating a fault

To further validate the estimated ROA, a fault was sim-
ulated. The system was constructed in Matlab/simulink,
but it can be visualized as the SMIB system shown in
Fig. 9. A short-circuit was applied on the line as shown
in the Figure. The fault clearing time was adjusted so as
to determined the critical fault clearing time that puts
the system on the verge of instability. For this system,

∼ Line

Generator

Transformer

Infinite bus

E
fault

Fig. 9: Single-Machine-Infinite-Bus (SMIB) power system

the critical fault clearing time was obtained as 325 milli-
seconds. The trajectory of the rotor angle versus change
in speed was then compared with the estimated ROA
as shown in Fig 10. According to asymptotic Lyapunov
stability, the system is stable if the system trajectory
remains within the ROA. From the Figure, it is evident
that the system trajectory lies within the estimated ROA
for this fault clearing time. Therefore, the estimated ROA
accurately captures the system dynamics. The evolution
of the Lyapunov function is depicted in Fig. 11, where it
is clear that the post-fault value of the Lyapnov function
stays below the stability threshold.
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Fig. 10: Estimated ROA and simulation results from
Simulink
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Fig. 11: Lyapunov function - unstable point

When the fault clearing time is increased to 362 milli-
seconds, the system becomes unstable and the system
trajectory does not converge to the equilibrium point in
the estimated ROA as shown in Fig. 12. From Fig. 13,
it is also clear that the value of the Lyapunov function
exceeds the set stability threshold. Therefore, the system
is unstable.

F. Validation of Estimated ROA - Simulation from Pow-
erFactory

To further validate the ROA estimate, the SMIB sys-
tem, Fig. 9, was modelled in the power system simulation



−1.0 0.0 1.0 2.0 3.0

−4.0

−2.0

0.0

2.0

4.0

6.0

·10−2

A

B

δ [rad]

∆
ω

[p
u]

Estimated ROA
Results from simulink

Fig. 12: Estimated ROA and simulation results from
Simulink - unstable. Note: the trajectory A-B is due to the
simulation of the fault, and thus does not follow the dynamics used
when calculating the Lyapunov function. From point B, the trajectory
follows the system dynamics as given by (1)
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Fig. 13: Lyapunov function - unstable point

software DIgSILENT PowerFactory, with the generator
represented by a detailed 5th order model. The system
parameter values used are provided in Tables (I) and
(II), in the appendix. The critical fault clearing time was
obtained as 320ms. The system response is depicted in Fig.
14. Again, it is observed that the system trajectory remains
within the estimated ROA at all times. The estimate of
the ROA is, therefore, fairly accurate.

VI. Conclusion

n this paper, a method suitable for on-line Transient
Stability Assessment using a Polynomial-Lyapunov–Func-
tion to obtain an estimate of the ROA was presented.
Starting with an initial estimate of the ROA, the algo-
rithm rapidly expands the ROA estimate and then slowly
converges as the boundary for asymptotic stability is ap-
proached. Robust truncation of trigonometric functions in
the power system model has also been demonstrated in the
paper. With this, we avoid dangerous over-approximation
of the stable region, i.e., there are no unstable tra-
jectories which would be incorrectly labelled as stable
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Fig. 14: Estimated ROA and simulation results from
PowerFactory

by the ROA estimate. A simple Single-Machine-Infinity-
Bus power system model was used in this paper. The
method still needs to be further tested in a realistic power
system, with multiple operational areas. However, the real
challenge in the method is the size of the resulting semi-
definite optimization problems, in particular for higher-
order Taylor series approximations. Current research on
exploiting sparsity patterns in SOS calculations bear the
promise of allowing larger systems to be handled [13].

Appendix A
Parameters for the SMIB Model in Power Factory

TABLE I: Generator Parameters

Parameter H xd = xq x′
d x′′

d = x′′
q T ′

d T ′′
d = T ′′

q

Value 4 1.25 0.528 0.01 1.5 0.03

TABLE II: Transformer and Line Parameters

Parameter R X

Transformer 0 0.022

Line 0 0.5
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