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Abstract
Ever since the German Renewable Energy Act became effective in 2000,

it has been a steady increase of renewable energy based electricity production
in Germany. The largest share of this growth originates from wind and solar
energy, where the solar energy to a large extent is utilized through small-scale
distributed generators connected to the low voltage networks. This has altered
the hierarchic structure of conventional electrical power systems, where power
is generated at large sites, transmitted over long distances through high voltage
grids, step-wise transformed down to lower voltages and reaching end-users at
the lowest voltage level. Instead, the generators are connected directly to the
distribution grid and surplus power from these can end up being transmitted
upstream in the grid.

Besides the forthcoming additional installations of distributed generators, an
increase in the number of electric vehicles in Germany is expected. The charging
of all these could lead to significantly larger loading for the power systems.

If these two foreseen developments in the German electricity sector happen,
it could introduce some challenging effects for the electricity network. Thus, it
can be wise to analyze if, how or where the impact might occur.

The aim of this master’s thesis is to statistically evaluate the impact of
future solar photovoltaic and electro mobility scenarios on the grid of Garmisch-
Partenkirchen. The town is located in the very south of Germany and has an
electricity supply covered 45% by photovoltaics. In addition, it is a model
community for electro mobility.

A futuristic Monte Carlo simulation model was developed. Based on a
database containing information regarding all buildings in Garmisch- Partenkirchen,
the simulation model installs the expected increase in photovoltaic capacity and
electric vehicles for the year of 2030 randomly among the buildings in the distri-
bution network. Subsequently, the resulting network situations were examined
by a steady state power flow simulation program constructed in MatLab and
the distribution system simulator OpenDSS.

The conclusions reached are that the projected photovoltaic capacity for 2030
in Garmisch-Partenkirchen most probably can be integrated without major vi-
olations of technical requirements. However, it is observed from the simulation
results that network situations with several generators aggregated in close vicin-
ity to each other, cause voltages that violate the 3%-limit set by the German
VDE directive. In addition, lines are overloaded with respect to their thermal
limits.

Further, the results for electro mobility show that the extra loading from
charging vehicles causes large under voltages. The largest voltage drop is ob-
served to be 27.5% below nominal voltage. In addition, congestion of line seg-
ments and transformer overloading are observed. Some simulations result in a
total of 2.5% overloaded lines and 36% overloaded transformers. Thus, it can be
concluded that the existing network in Garmisch-Partenkirchen could encounter
difficulties handling large amount of charging vehicles, especially if fast-charging
is utilized.
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Sammendrag
Helt siden Tysklands Erneuerbare-Energien-Gesetz ("Loven om Fornybar

Energi") trådte i kraft i 2000, har det vært en jevn økning av kraftproduksjon
fra fornybar energi i Tyskland. Den største andelen av veksten stammer fra
vind -og solenergi, der solenergi i stor grad utnyttes gjennom småskala gener-
eratorer tilknyttet lavspent fordelingsnett. Dette har endret den hierarkiske
strukturen i konvensjonelle kraftsystemer, hvor elektrisk kraft produseres på
store anlegg, overføres over lange avstander gjennom høyspentnett, blir trinnvis
transformert ned til lavere spenninger og ender hos sluttbrukere på det laveste
spenningsnivået. I stedet er kraftproduksjonen koblet direkte til distribusjon-
snettet og overskuddskraft fra disse kan ende opp med å bli overført oppstrøms
i nettet.

Foruten flere installasjoner av distribuerte generatorer, er det forventet en
økning i antall elbiler i Tyskland. Lading av disse kan føre til betydelig økt
belastning for kraftsystemet.

Hvis disse to antatte endringene i tysk kraftsektor slår til, vil det kunne føre
med seg noen negative effekter for elektrisitetsnettet. Av denne grunn kan det
være lurt å analysere hvorvidt, hvordan eller hvor disse effektene vil oppstå.

Målet for masteroppgaven er å statistisk evaluere fremtidige scenarier av
solenergi og elektromobilitet og deres påvirkning på distribusjonsnettet i Garmisch-
Partenkirchen.

For å lykkes med dette, er en Monte Carlo simuleringsmodell utviklet. Mod-
ellens inngangsverdier er, blant annet, en database bestående av alle bygninger
i Garmisch-Partenkirchen og informasjon om disse. Modellen plasserer den for-
ventede økningen i hhv. solenergikapasitet og antall elektriske biler for året
2030 tilfeldig blant bygningene i distribusjonsnettet. Dette gjøres via repeterte
simuleringer til modellen har konstruert 1000 individuelle fordelinger av solcel-
leanlegg og elbiler. De forskjellige fordelingenes effekt på nettet blir deretter
studert ved hjelp av stasjonær effektflytanalyse utført av et simuleringsprogram
konstruert i Matlab og distribusjonsnettsimulatoren OpenDSS. Gjennom effek-
tflytanalysene er det observert hvor den antatte økningen mest sannsynligvis vil
ha størst påvirkning.

Konklusjonen er at forventet solenergikapasitet for 2030 i Garmisch- Partenkirchen
trolig kan integreres i ekstisterende nett uten, eller kun i beskjeden grad, å
komme i konflikt med eltekniske krav. Imidlertid er det observert at geografiske
fordelinger der flere solcelleanlegg er plassert i nærheten av hverandre, kan forår-
sake overspenninger og termisk overbelastning av kabler.

Analysene rundt elektromobilitet viser at den ekstra belastningen fra elbil-
lading forårsaker kraftige spenningsfall i lavspentnettet. Enkelte simuleringer
viste spenningsfall på 27.5%. I tillegg viser resultatene tilfeller av opp mot 2.5%
termisk overbelastede linjer og opp til 36% overbelastede transformatorer. Det
kan dermed se ut til at det eksisterende lavspentnettet i Garmisch-Partenkirchen
vil få problemer med å håndtere den ekstra lasten fra lading av elbiler, spesielt
hvis hurtiglading benyttes.
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Motivation
In autumn 2013, the United Nations Intergovernmental Panel on Climate

Change (IPCC) published its fifth assessment report "Climate Change 2013:
The Physical Science Basis". It provides the most comprehensive assessment
of scientific knowledge on climate change. Among other things, it shows that
the atmospheric concentrations of the greenhouse gases carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O) have increased by 40%, 150% and
20% respectively, since 1750 due to human activity. Further it concludes with
95-100 % certainty that human influence has been the dominant cause of the
observed warming since the mid-20th century [1].

Scientific reports like this help arise the general environmental awareness and
hopefully an increasing number of countries across the globe will shift towards
greener economies and more renewable based energy consumption. A green
pioneer in this context is Germany, which for the time being is going through
a major transition in their energy sector. The German Renewable Energy Act
contains principles that aim to help Germany reach an electricity supply covered
50% by renewable energies by 2030. The country is focusing its efforts on
photovoltaics and on-/offshore wind energy [2].

One of the principles that has increased the renewable energy based elec-
tricity production in Germany is that all electricity produced from renewable
energy sources are guaranteed a fixed feed-in tarif for 20 years [4]. This has
led to an increase in small-scale electricity producers, such as households with
rooftop photovoltaics. These are situated in a network, which was traditionally
not designed for the connection of generating units. Originally, a house in the
distribution grid is considered a load which consumes electricity. If this house
installs rooftop photovoltaics and produce power that exceeds the consumption
in the house, electricity is fed into the grid and the power flow changes direction.
This might influence the network in an undesirable way.

In addition to the ongoing installations of distributed generators in Germany,
the federal government has stated that in cooperation with the German indus-
try they intend to make Germany the leading international market for electro
mobility [3]. The national goal is 1 million electric vehicles in Germany by 2020
and 6 million electric vehicles by 2030 [26], all powered from sustainable energy
sources [3]. Such an amount of electric vehicles will cause higher loading in the
electricity network and the consequences arising from this will be studied in
detail here.

The city Garmisch-Partenkirchen experienced a rapid increase in rooftop
photovoltaic installations after the introduction of the Renewable Energy Act.
In addition, a further increase in distributed generation and electro mobility
is expected in the city. This makes Garmisch-Partenkirchen suitable for in-
vestigating whether the projected increase in small-scale photovoltaics and/or
electric vehicles will lead to any technical issues for the distribution network
operators.
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Scope of Work
The overall goal of the master’s thesis is to develop methods for statistical

evaluation of the impact of future solar photovoltaic (PV) and electro mobility
scenarios on the grid of Garmisch-Partenkirchen. The overall goal has been
divided into the following work tasks:

• Photovoltaics

– Based on the findings in [23], assess the effect of different future PV
scenarios on the grid of Garmisch-Partenkirchen

– Develop and perform Monte Carlo simulations distributing the ex-
pected additional PV installations locally and in size in the grid of
Garmisch-Partenkirchen

– Statistically examine the results and the effect on the grid, i.e.: with
regard to voltage issues, transformer or line overloading etc.

• Electro Mobility

– Based on several assumptions, define future scenarios for expected
electro mobility development in Garmisch-Partenkirchen

– Develop and perform Monte Carlo simulations distributing the ex-
pected additional electric vehicles locally and in size in the grid

– Statistically examine the results and the effect on the grid, i.e.: with
regard to voltage issues, transformer or line overloading, etc.

Focus of the work will be put on the development of the methods for the Monte
Carlo simulations and the statistical evaluation of the results. The work will be
done using MatLab and OpenDSS.

Outline
Part II presents the theoretical foundations relevant for the research in this

thesis. First, the German Renewable Energy Act and some of its effects are elab-
orated, followed by a chapter explaining voltage characteristics. Last, relevant
statistical terms and methods applied later in the thesis are introduced.

Part III covers all analysis performed in this thesis. Chapter 4 gives an
overview of the city Garmisch-Partenkirchen. Chapter 5 presents the network
model, the simulation program and the load modelling. In chapter 6, all analysis
and simulations on photovoltaics are collected. Here, the photovoltaic forecast of
Garmisch-Partenkirchen is introduced, as well as the development of the Monte
Carlo simulation model. In addition, the results of all photovoltaic simulations
are presented in this chapter. Electro mobility analysis and studies are collected
in chapter 7. Here, future electro mobility scenarios are defined, before they are
modelled and power flow simulations are performed. The chapter ends with a
presentation of the results regarding electro mobility. Last, chapter 8 discusses
the results, the challenges and the solutions regarding the findings.
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Part II

Theory
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Chapter 1

The German Renewable
Energy Act and Its Effects

Currently, there is a major shift in Germany’s energy sector. This is mainly
due to The German Renewable Energy Act, called EEG (short for Erneuerbare-
Energien-Gesetz) or Energiwende that came into force April 1st 2000. It leg-
islates that electricity produced from renewable energy sources is guaranteed
a fixed feed-in tariff for 20 years[4]. In addition, the distribution network op-
erators are obliged to feed in the power produced by renewables before they
feed in electricity from conventional sources. These principles have resulted in
a widespread installation of renewables and the total electricity consumption in
Germany is now 22% covered by electricity from renewable energy sources [5].
The share among the different renewables in these 22% is displayed in figure
1.1. As seen, a large part originates from intermittent power sources like wind
and solar energy.
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Source MWh/year
Wind 59 039 301
Bio 36 419 637

Photovoltaics 32 376 442
Hydro 6 281 034

Sewage Gas 2 224 282
Geothermal 123 697

Total Renewables 136 464 395
Total All Sources 608 050 600

Figure 1.1: Installed Renewables in Germany. Numbers from [5]
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Figure 1.2: Electricity production from renewables divided by voltage level [5].

Figure 1.3: Electricity production from renewables divided by size [5].

Figure 1.2 depicts the distribution of the renewables among the different volt-
age levels. As seen, the major part is connected to the low voltage (230/400V)
and the medium voltage (20 kV) level. Looking exclusively at the photovoltaics,
the largest part is connected to the low voltage grid. Figure 1.3 depicts the dis-
tribution of the renewables after their size. As seen, a large share of the installed
capacity is small-scale generators. These two figures illustrate an important ef-
fect of The German Renewable Act: the easy access to the electricity market for
small and medium producers. Private households with rooftop photovoltaics,
like in picture 1.4, are examples of such small-scale producers.

When travelling around in Germany, roofs of impressively many houses and
barns can be seen covered by photovoltaic panels. Typically, at day time when
the sun is shining and there is minimal consumption in the house, the power
production can be larger than the consumption and thus surplus power is fed
into the grid and the direction of power flow is reversed, even up to higher
voltage levels. In the evening, on the other hand, when the load is typically at
its highest, and there is zero power production from PV, the house consumes
power. Thus, buildings with rooftop PV serve both as a generator and a load.

In addition to the German Renewable Energy Act, the federal government

15



Figure 1.4: Small scale electricity producer in Munich. Photo by author.

has developed the National Platform for Electric Mobility in Germany which
will help Germany be the leading international market for electro mobility [3]
with 1 million electric vehicles in Germany by 2020 and 6 million electric vehicles
by 2030 [26]. With this increase in electro mobility in Germany, the evening
peak load is expected to increase, as people tend to charge their electric vehicles
in the afternoon and evening when returning from work.
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Chapter 2

Voltage Characteristics

2.1 Framework for Permissible Voltage Variations
As for the rest of Europe, the general power quality in the distribution system

in Germany is regulated by the standard EN 50160 Voltage Characteristics
of Public Distribution Systems. Regarding permissible voltage variations, the
following requirements from EN 50160 are especially relevant:

2.1.1 EN 50160 - Slow Voltage Variations
Definition 1 Slow voltage variations are changes in voltage stationary root-
mean-square (r.m.s.) value measured over a given time interval. [6]

The requirements for slow voltage variations under normal operating conditions
are:

• During one week, 95% of the 10 minutes mean r.m.s. values of the supply
voltage shall be within the range of ±10%

• During one week, 100% of the 10 minutes mean r.m.s. values of the supply
voltage shall be within the range of +10%/− 15%

2.1.2 EN 50160 - Rapid Voltage Changes
Definition 2 A rapid voltage change (δu) is a change of the voltage r.m.s.
value within ±10% of the agreed voltage level, which is faster than 0.5% of the
agreed voltage level per second. [6]

The requirements for δu is:

• Normal operating conditions: δu ≤ 5%

• In special cases a few times per day: δu ≤ 10%
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2.1.3 Additional Framework for Germany
Low Voltage Grid Framework

For Germany, there is additional framework applicable when a generating
unit is to be connected to the low voltage distribution grid. The directive Gener-
ators connected to the low-voltage distribution network - Technical requirement
for the connection to and parallel operation with low-voltage distribution net-
works was published in 2011 by VDE (Verband der Elektrotechnik, Elektronik,
Informationstechnik e.V.). It requires, among others, that voltage variation
caused by a generating unit connected at the low voltage level may not exceed
3% [7].

Medium Voltage Grid Framework

The essential aspects which have to be taken into consideration when con-
necting a generating plant to the medium voltage grid is given in the technical
guideline Generating Plants Connected to the Medium-Voltage Network pub-
lished in 2007 by BDEW (Bundesverband der Energie- und Wasserwirtschaft
e.V.). It states that under normal operating conditions of the network, the mag-
nitude of the voltage changes caused by all generating plants with a point of
connection to a medium-voltage network, must at no junction point within this
network exceed a value of 2% as compared to the voltage without generating
plants [8].

Illustration of Application of Regulations

Figure 2.1 illustrates an example how a network operator distributes the
permissible ±10% voltage variation limit amongst the voltage levels in Germany.
As seen in the graph, the +3% limit meets the +10% limit at the same point,
but the +3% limit is absolute even though the deviation from nominal voltage
is less than +10%. The limits of ±10% always apply.

2.2 Conventional Power Systems
In the following section, voltage characteristics for a conventional power sys-

tem is elaborated, with the focus on slow voltage variations. Consider the simple
circuit of figure 2.2. It represents a substation/transformer with voltage Us, a
load with voltage Uc and the power line between them. The line is represented
with its series impedance Z = R + jX. The resistance R represents the ohmic
losses in the transmission. The reactance X represents the magnetic field that is
caused by the currents in the line. In reality there is also a capacitance present,
which is caused by the electric field between the lines and between the lines
and the ground. However, for the sake of the coming explanations, it will be
sufficient to use a simplified line diagram with only the series impedance. For
clarification it should be mentioned that for the power flow simulations that are
performed later in the thesis, the capacitance is not disregarded.

As shown in figure 2.2, the load consists of a parallel combination of a resis-
tor and an inductor. This results in an inductive load, which often is the case of
typical real life power system loads [10][13]. The reason for this is that a load in
this context often is a house with all its electrical equipment. A large share of
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Figure 2.1: Illustration of Permissible Voltage Variations in Germany [9]

this equipment is slightly inductive, e.g. vacuum cleaners, refrigerators, freez-
ers, washing and drying machines or dishwashers to mention some. Inductive
loads operate at lagging power factor and require positive reactive power for
their operation [13][14]. Instead of the term require, the expressions absorb or
consume are often used. As the loads are inductive and demand reactive power,
generators are usually overexcited, operating at lagging power factor and supply
positive reactive power to the system [13]. Table 2.1 contains an overview of
the subject. In this table the consumer reference system is applied.

Table 2.1: Q

System Unit power factor Characterization Q- support Sign of Q
Load Lagging Inductive Consumes Q + Q

Generator Lagging Capacitive Supplies Q + Q
Load Leading Capacitive Supplies Q - Q

Generator Leading Inductive Consumes Q - Q
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Figure 2.2: Line diagram of inductive load
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To explain the voltage characteristics for a power line, it can be illustrative
to use phasor diagrams. Here, they serve as a per phase representation and
they are simplified for illustrative purposes. The reference voltage is the phasor
which is held constant. It can either be the load voltage, or the substation
voltage. The reference phasor is often placed on the positive real axis, but this
is no rule. Two phasor diagrams are presented in figures 2.3 and 2.4. The two
diagrams illustrate the same. They only differ in which of the voltage phasors
that is chosen as reference and placed on the positive real axis and so the other
phasors end up in different quadrants.

Figure 2.3: Phasor Diagram Voltage Drop 1st quadrant

An explanation of the phasors will now follow. The current at the load
connection point is named Ic. It is known from basic circuit theory that the
inductor branch current Icq lags behind the resistor branch current Icp by 90°.
The three currents Ic, Icp and Icq are drawn in the phasor diagrams, starting
from origin. Icq is in reality much smaller than Icp, so Ic lies in reality closer
to the real axis.

Further, there is a voltage drop across the line impedance. The voltage drop
across Rl is Rl ∗ Ic and in phase with the line current. The voltage drop across
jX l is jX l ∗ Ic and leads the line current by 90°. These are also drawn in the
phasor diagrams. For phasor diagram 2.3, the voltage at the substation Us can
now be illustrated by drawing a phasor from origin to the tip of phasor jX l ∗Ic.
For phasor diagram 2.4, the voltage at the customer Uc can be illustrated by
drawing a phasor from origin to the tale of phasor Rl ∗ Ic.

As Ic lies closer to the real axis in reality, the voltage angle between phasor
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Figure 2.4: Phasor Diagram Voltage Drop 4th quadrant

Uc and Us is quite small. It can be seen that it is a good approximation to
take the projection of Us on the line of Uc (or the opposite way if diagram 2.4
is applied) and use the difference between the projection and Uc as the voltage
drop [10]. This can be mathematical expressed as:

∆U ≈ RIc ∗ cosφ+XIc ∗ sinφ, φ ≥ 0 (2.1)

Where φ is the load angle. The apparent power at the customer connection
point is [12]:

S = P + jQ = Uc(Ic ∗ cosφ+ Ic ∗ sinφ) (2.2)

Which can be reformulated to:

P

Uc
= Ic ∗ cosφ (2.3)

Q

Uc
= Ic ∗ sinφ (2.4)

Combining these with equation 2.1 gives the final equation, where the voltage
drop is given by the power and the voltage at the customer connection point.

∆U ≈ PR+QX

Uc
(2.5)

From this equation, it can be seen that the voltage drop increases with the
power at the customer connection point and with the impedance of the line. In

22



high voltage transmission networks, the reactance is much higher than the re-
sistance (XR > 10) [11]. Because of this, even though the active power P usually
is higher than the reactive power Q, the voltage variations at higher voltage
levels are assumed to be highly dependent on the QX product of equation 2.5
[10]. In low voltage distributions grids on the other hand, the X

R -ratio is much
smaller, around 1 or less [10][11]. Because of this, the PR product is of higher
importance, meaning the active power at the customer connection point will
affect the voltage drop to a large extent.

When characterizing lines and cables, the impedance is often given per kilo-
metre. This means, that the total impedance of a line depends on the length
of the line. As the voltage drop is dependent on the impedance, the voltage
drop is dependent on the cable length. According to equation 2.5, the higher
the impedance, the higher the voltage drop.
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2.3 Power Systems with Distributed Generation
It was seen from equation 2.5 in the previous section that the active power

at the load affects the voltage drop in a distribution network. What happens
when active power at the load is no longer consumed, but actually produced?
This can be the case of a grid connected distributed generator and the situation
that arises from it will be investigated in this section.

Let us assume that the load of the circuit in figure 2.2 represents a farm,
which decides to install photovoltaic panels on its rooftops. A quite realistic
scenario in Germany, as explained in section 1. The new circuit that arises from
this assumption is shown in figure 2.5. If the rooftop PV produces more power
than the amount that is consumed at the farm, Ip ends up with a negative value
and surplus power is fed into the grid.

Figure 2.5: Line Diagram of Load with Generator

When the line current has a negative value like in this situation, it affects
the voltages in the grid. The new situation will be illustrated through a phasor
diagram. Both of the previous phasor diagrams could have been used as a basis,
but here it has been found explanatory easiest to define the connection point
voltage Uc as the reference phasor.

Assuming first, that no reactive power is present in the grid, no imaginary
current Icq exists, and both the power produced and the injected current is
purely real. The resulting situation is illustrated in phasor diagram 2.6. The
current Icp changes direction and flows from the connection point to the sub-
station. The direction of the voltage drop is reversed and it results in Us being
smaller than Uc. In other words there is a voltage rise over the line from the
substation to the connection point. This voltage rise that occur subsequent to
active power injection is due to the low X

R -ratio in low voltage networks, and
the high dependency of the PR-product [11]. This induced voltage rise may
exceed the permissible voltage variations introduced in section 2.1. It can be
problematic for other reasons as well, which will be explained in the next section.
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Figure 2.6: Phasor Diagram of Generator Producing Active Power

2.3.1 Physical Impact of Distributed Generation
Distributed generators introduce several new issues that could impact the

power quality. Many aspects could be elaborated and investigated, but in this
thesis the focus will be on the reversed power flow, the subsequent voltage rise,
and the possible overvoltages that distributed generators can cause.

Overvoltages

Generally speaking, overvoltages are unwanted, as they can lead to damage
of equipment and challenge proper operation of the system which are designed
and optimized for operation at a certain voltage level [17]. Consequences of too
high voltages can be[6]:

• Break down of insulation in electrical and electronic equipment (E.g. ca-
pacitors, transistors, surge protection)

• Excessive heat and losses which can damage equipment and lead to fire
hazard

• Accelerated ageing due to high temperatures

• Malfunction and tripping

To avoid these consequences, the voltage variation limits presented in section
2.1 must be followed.
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Other Issues

In addition to the already mentioned overvoltages, the reversed power flow
can introduces other challenges for the grid operators. Examples of such chal-
lenges are:

• Reverse power flow may interact with the power system’s voltage-regulating
devices in an unfavourable way, which can lead to incorrect operation of
control equipment. [15]

• Conventional fault detection systems may fail, e.g. fuses that are designed
to protect the current carrying capability of a line, will not detect power
injection of power downstream from a fuse, leading to a potential for
overload. [16]

Influence on Undervoltages

The longer the network feeder, the higher the feeder impedance, and the
larger the voltage drop along the feeder. Thus, for especially remote network
users, the voltage drop could be undesirably large and result in an undervoltage.
In Germany, there haven’t been any issues regarding undervoltages up to now.
The situation could be different in other countries. An analysis of 142 customer
complaints in Norway, presented in [6], showed that 14% of the complaints was
related to undervoltages. This was the second largest share of the complaints.
Only the complaints on voltage dips, which accounted for 23%, was higher.
The grid operators are obliged to keep the voltage at the customers connection
points within a certain range, as was explained in section 2.1. Network user
appliances are typically designed to tolerate supply voltages in this range and
if the voltage drop is too large, it will have consequences for the network users
appliances. Examples of such consequences are [6]:

• The power in ohmic appliances (e.g. heaters, stoves, light) is dependent
on the square of the voltage (P = U2

R ). Low voltages in ohmic equipment
will lead to reduced output power/light.

• Some electronics will compensate for reduced voltage by increasing the
current to keep the power constant (P = U ∗ I). This can lead to over-
heating and damage of equipment.

• Asynchronous motors do not come up to speed.

• Malfunction and tripping

Adding a generating unit on a line with significant voltage drop, could give
a voltage rise and thus improve the voltage profile. This way some of the
mentioned issues could be avoided.
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Chapter 3

Statistics and Probability

An important aim for the master’s thesis is to construct a Monte Carlo
simulation model. The model will help estimate the network impact from a
high penetration of distributed photovoltaics and electric vehicles. As the Monte
Carlo model is a statistical problem solving technique, a theoretical foundation
of statistical terms and methods is necessary before further explanations are
carried out.

3.1 Collection of Data; the Sample
The collection of data for statistical testing results is what we call a sample.

Samples are collected from populations that are collections of all individuals or
individual items of a particular type and the sample size n is the number of
elements in the sample [18]. As the whole population seldom is available for
analysis, a sample is taken from the population, and with the help of statistical
methods and elements of probability, the sample allows us to draw conclusions
about the population as a whole.

3.1.1 Sample Mean
The sample mean is a numerical average, denoted by x̄ and defined as:

x̄ =
1

n
·

n∑
i=1

xi (3.1)

It gives a quantitative measure of where the data center of the sample is and
serves as en estimate for the population mean [18].

3.1.2 Sample Standard Deviation
A common way to measure spread or variability of a sample is the standard

deviation. The real standard deviation is denoted σx. The sample standard
deviation is denoted by Sx and defined as:

Sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (3.2)
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3.2 Probability

3.2.1 Sample Space and Events
Consider the simple experiment: Tossing of two coins. There are two possi-

ble outcomes per coin: Heads (H) or Tails (T). The set of all possible outcomes
of a statistical experiment is called the sample space and is represented by the
symbol S [18]. For the coin example, the sample space would be

S = {HH,HT, TH, TT} (3.3)

All the outcomes are subsets of the sample space. In statistical theory this
is called an event. Each of the outcomes in S is equally likely to occur, if the
coin is balanced [18].

3.2.2 Probability of an Event
The probability of an event A is found by summing the probabilities assigned

to the sample points in A [18]. E.g. if A represent the event "At least one head
will occur when two coins are tossed", then

A = {HH,HT, TH} (3.4)

P (A) =
1

4
+

1

4
+

1

4
=

3

4
(3.5)

3.3 Random Variable
A random variable is a function that associates a real number with each

element in the sample space [18]. For the example with the two coins, a random
number can be e.g. the number of heads that occur per toss. The values of
this random number, let us call it R, can be 0, 1 or 2. If the coins are tossed
16 times, and the result is 4 tosses with no head, 7 tosses with one head and 5
tosses with two heads, then the value of R would be:

R = (0) ∗ 4

16
+ (1) ∗ 7

16
+ (2) ∗ 5

16
= 1.06 (3.6)

As most of us would probably guess, it is close to 1.

3.3.1 Mean of a Random Variable
The calculated R in the previous section, represents the average number of

heads per toss of the two coins for 16 tosses. The relative frequencies of the
different values of R (0, 1 and 2) are the fractions in equation 3.6. According
to [18], in the long run, the relative frequencies equals the probabilities of the
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given events. Thus, if two fair coins were tossed, it follows that

P (R = 0) = P (TT ) =
1

4
(3.7)

P (R = 1) = P (HT ) + P (TH) =
1

4
+

1

4
=

1

2
(3.8)

P (R = 2) = P (HH) =
1

4
(3.9)

From this we can calculate the expected value of R:

E(R) = (0)∗P (R = 0)+(1)∗P (R = 1)+(2)∗P (R = 2) = 0∗ 1

4
+1∗ 1

2
+2∗ 1

4
= 1

That is, tossing of two fair coins a very large number of times, gives on the
average one head per toss.

3.4 Monte Carlo Simulation
In this thesis, a Monte Carlo simulation model is developed. A general

explanation of the concept follows here. A Monte Carlo simulation is a very
broad term. It encompasses every method based on the use of random numbers
and probability statistics to investigate problems. A definition of the method is
proposed in [19]:

Definition 3 A Monte Carlo simulation is a problem solving technique used to
approximate the probability of certain outcomes by running multiple trial runs,
called simulations, using random variables.

The simulation method is named after the city Monte Carlo in Monaco,
known for its casinos with gambling games. These gambling games, such as
roulette, dice, or slot machines, are based on random behaviour.

The method can be found applied in many different areas, but common for
them all is that they try to model the future. The future is unknown, but past
data and experience are known. The input data to the model is based on the
known past with a certain range of possibilities. This range of possibilities is the
basis for the random number generation. The model performs its calculation
using the random number. The calculation is repeated several times, each time
with a new random number. This is referred to as repeated sampling.

The output will be a large number of results with a certain range. Based
on this range, the likelihood (mean, standard deviation etc.) of the future
projection can be found. According to [20], this is exactly the key feature of
the Monte Carlo simulation: based on how you create the ranges of estimates,
it can tell you how likely the resulting outcomes are.
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Part III

Analysis
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Chapter 4

Overview of the Analyzed
Grid

4.1 Background
The city Garmisch-Partenkirchen is for the time being subject to several

research studies, due to the German government funded projectModellkommune
Elektromobilität Garmisch-Partenkirchen or simply e-GAP. This project was
started in July 2012 as a part of a five-point strategy for developing better
electro mobility in the Bundesland Bavaria in Germany. A part of this strategy
is Smart Grid - Basis einer elektromobilen Zukunft, a research project that deals
with the creation of a smart grid in Garmisch-Partenkirchen. The city already
has a large share of photovoltaic plants connected to the low voltage grid and the
installation of photovoltaic capacity is expected to increase significantly. This,
in addition to the planned growing electro mobility in Garmisch-Partenkirchen,
introduces possible challenges.

4.2 Garmisch-Partenkirchen
Garmisch-Partenkirchen is a mountain resort town located in the very south

of Germany with 27 890 inhabitants. The city will from here on be referred
to as GaP. The electricity network of GaP covers a geographical area of 200.55
km2 and on November 26th 2013 at 16:45 the utility of GaP registered its peak
power of 26 611 kW [21]. Some basic data for the electricity network of GaP is
provided in table 4.1. Numbers are and based on the situation 31.12.2013.

Table 4.1: Data for the electricity network in GaP

0.4 kV network 10 kV network
Length over head lines 0 km 6.835 km

Length cables 233.459 km 182.338 km
Energy delivered in 2013 98 804 418 kWh 21 972 373 kWh
Number of supply points 22 391 10
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4.3 Current Energy Situation in Garmisch-Partenkirchen
All figures in this section are based on numbers from the utility of GaP

([22]). Figure 4.1 gives an overview of the current energy sources of the power
generation in GaP. As seen, the largest share is generated from photovoltaics.

Figure 4.1: Energy Sources GaP

The German Renewable Act led to a rapid increase in installation of photo-
voltaics in GaP. This is clearly shown in 4.2, where all the solar units in GaP
are sorted after their commission date.
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Figure 4.2: PV installation in LV grid of GaP after commissioning date

After a steady yearly increase since the act came into force, 295 PV units
are by the end of 2012 connected to the low voltage distribution grid, together
making up a photovoltaic capacity of 3451.418 kW of electricity. In addition,
two larger PV parks are connected to the medium voltage grid. An overview is
given in table 4.2

Table 4.2: Sum installed photovoltaic capacity in GaP

Low Voltage Grid (0.4 kV) 3451.418 kW
Medium Voltage Grid (10 kV) 1756.520 kW
Total 5207.938 kW
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Chapter 5

Power Flow Simulation Model

5.1 OpenDSS
For the power flow simulations, Matlab and the open-source simulation tool

Open Distribution System Simulator (OpenDSS) were chosen. OpenDSS is
provided by Electric Power Research Institute and developed for the purpose
of distribution grid simulations. It is possible to use OpenDSS as an indepen-
dent program or as a Component Object Model (COM ). The latter variant is
what is used in this thesis and it allows the integration of OpenDSS in Matlab.
OpenDSS is script-based, which means that the grid is given as several (*.dss)
files. These files contain power system circuits with it’s lines, transformers, loads
and generators. These are all modelled as three phase symmetrical components.
Figure 5.1 shows an example on how the different components are defined in
OpenDSS.

Figure 5.1: Example of the component definition in a (*.dss) file

In order to do simulations on the grid of Garmisch-Partenkirchen, the grid
had to be digitalized and presented as (*.dss) files like in figure 5.1. The files
were constructed based on real grid values provided by the utility of Garmisch-
Partenkirchen. The digitalization process that was performed prior to the power
flow simulations is explained in the following section.
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5.2 Grid Digitalization
To start with, the networks were depicted as two-dimensional drawings in

the form of (*.dwg) files (DraWinG-files). Converting the grids from (*.dwg)
to (*.dss) is a process which requires several steps. First, the data is put to a
network calculation program. Version 5.5.1 of NEPLAN has been found suitable
for this task. With NEPLAN it is possible to manually build the grid with the
correct component characteristics and correct topology. Two different kinds of
(*.dwg) files of the grid are provided by the utility of GaP:

• The Connection Plan containing cable characteristics and switch and fuse
states.

• The Network Plan containing cable lengths and the correct topology of
the grid. In addition the streets and houses are visible, which means that
it is possible to identify the position of the loads (customers).

The Network Plan is integrated in NEPLAN as a background image and
the grid was build in NEPLAN by drawing the cables exactly on top of the
background image. Also a coordinate system had to be specified, in order for
NEPLAN to calculate the exact lengths and the positions of the cables and
the loads. This is done by looking up the XY - coordinates of two different
locations (e.g. corners of two different houses) in the (*.dwg) file, and add these
coordinates to the exact same locations in the NEPLAN file. Figure 5.2 shows
how the NEPLAN elements will look in the network model. Typically, each
distribution transformer with it’s underlying grid are digitalized one at a time
and saved as separate (*.dss) files.

Figure 5.2: Example of the components in a NEPLAN grid. [34]

The cable types of each line segment has to be found in the Connection
Plan and then registered in NEPLAN by looking up the cable type in the
NEPLAN Cable Library. In addition, the loads, i.e. the customer connections,
and the fuse boxes have to be drawn in the same network model and assigned the
correct customer connection ID. As later chapters will show, the Monte Carlo
simulations results in a large excel file containing all the buildings in GaP and
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information on whether they have a rooftop PV or not. In this excel file, the
buildings are named after their customer connection ID’s. This excel file is the
basis for the power flow simulations and the MatLab power flow script will add
the PV plants from the excel sheet as generators to the (*.dss) file. In order for
the power flow model to know on which roof tops to place the generators, it is
important that the customer ID’s in the (*.dss) file correspond to the customer
ID’s in the Monte Carlo excel result file.

When the drawing of the low voltage distribution grid and it’s components
is finished, a power flow is run as a test in NEPLAN. The power flow verifies
whether everything is properly connected. If the power flow converges, the
project file is ready for export.

Four files need to be exported from NEPLAN in order to obtain a (*.dss)
file in the end. The four files are:

• loads and feeders(*.ndb)

• topology data(*.zdb)

• buses (*.ndt)

• element table (*.edt)

The Forschungstelle für Energiewirtshaft in Munich has developed a tool that
can convert these four files into one single (*.dss) file. The tool is constructed
by scripts in python programming language. This is the very last step of the
digitalization process.

As the grid of Garmisch-Partenkirchen is subject to a lot of research, the
digitalization is an ongoing process. At the time of the power flow calculations,
the following parts of the grid were digitalized:

• Complete 10 kV distribution network

• The following 0.4 kV distribution network parts (Numbered after their
10/0.4 kV transformer): 3, 23, 44, 56, 57, 60, 63, 65, 66, 75, 84, 85, 88,
92, 100 and 147.

The author of this thesis stayed two weeks in Munich to participate in the
digitalization process. During this stay, three transformers were digitalized:
Number 23, 44 and 100. These were chosen in order to have a selection of each
sector, in addition to cover areas with different properties. Transformer 23 lies
in a suburban area and has a high share of industrial loads. Transformer 44 is
located in a rural area and supplies a particular high share of agricultural loads.
Transformer 100 is placed in the city centre and supplies 100% residential loads.

In general, the low voltage distribution grids that are digitalized up to now
represent examples from the three different sectors in GaP and they cover rural,
suburban and urban areas.

The 10 kV distribution network, is connected to the higher voltage levels
through three substations transforming the voltage between 110 kV and 10 kV.
These all have a rated power of SN = 31.5MVA. The slack bus is defined at
the 110 kV bus.
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5.3 Load Modelling
The customer connection points are modelled as loads in the (*.dss) file (see

example in figure 5.1). The power demand of the loads can be scaled using load
profiles, assigned a constant power or set inactive to clearly see the effect of the
loads in conjugation with distributed generation. In this thesis there will be
no time simulation due to the large amount of data. Instead, snapshots will be
taken at two different dates and times and the situation at these times will be
studied.

Two assumptions are made. First, all loads are assigned the same average
power. As 91 % of the buildings belong in the residential sector, the loads are
calculated based on numbers for an average residential building in Garmisch-
Partenkirchen. Second, many buildings are connected to distribution grids that
are not yet digitalized. This is solved in the following manner: the number of
buildings connected to the same transformer are aggregated and the respective
transformer is assigned the total load value of all the buildings. In this case,
the transformer itself is considered a large load.

5.3.1 Active Power of Loads
On the web page of the utility of GaP, both production and normalized load

profiles for the year of 2011 are available, see [35]. The standardized load profiles
represent the average over many households in GaP and are given as 15 minutes
averages. The loads are normalized based on a yearly energy consumption of 1
GWh. E.g., from the standardized load profile given in figure 5.3, the energy
consumption at the 15 minute interval beginning at 14.00 is found to be 34.66
kWh. This means that in the 15 minutes between 14.00 and 14.15 an average
household in GaP will consume 34.66kWh

1GWh of the total energy it consumes in one
year. From this, it is possible to calculate the average power of the customer
for the different 15 minutes intervals. The calculation will be explained in the
following paragraphs. All graphs are constructed from [35].

Summer Day Scenario: Minimum Consumption - Maximum Produc-
tion

A mid-July day will serve as a good example of a low load - high production
scenario. Figures 5.3 and 5.4 represent the situation in GaP on July 19th 2011,
and it can be seen that 14.00 is a time where the load is low and the production
from PV is high. Thus, the average load for this time frame will be calculated
and used as the value in power flow calculations for summer day scenario.

In the standardized load profile of figure 5.3, it can be seen that the energy
consumption at the 15 minute interval beginning at 14.00 is 34.66 kWh.

W14.00 = 34.66kWh (5.1)

The load profile is normalized with a yearly energy consumption of 1 GWh, so
a normalization factor a can be defined:

a =
W14.00

Wyear
=

34.66kWh

106kWh
= 0.00003466 (5.2)
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Figure 5.3: Average household load in GaP on summer day

Figure 5.4: Production from PV in GaP on summer day

The annual energy consumption of an average household in Germany is assumed
to be 4000 kWh, so the consumption for one household in 15 minutes is:

W15min = a ∗ 4000kWh = 138.64Wh (5.3)

The average power within this 15 minutes time frame can then be found as:
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P15min =
W15min

∆T
=

138.64Wh

0.25h
= 555W (5.4)

That is, for the summer day scenario, all loads are assigned P = 555W .

Winter Evening Scenario: Maximum Consumption - Minimum Pro-
duction

For a high load - low production scenario, profiles from January 8th 2011
will be used. They are depicted in figures 5.5 and 5.6. The highest load is
registered at 19.00 and at this time, there is no production from photovoltaics.
Thus, the average load for this time frame will be calculated and used as the
value in power flow calculations for winter evening scenario.

Figure 5.5: Average household load in GaP on winter day

In the standardized load profile of figure 5.5, it can be seen that the energy
consumption at the 15 minute interval beginning at 19.00 is 53.399 kWh.

W19.00 = 53.399kWh (5.5)

The load profile is normalized with a yearly energy consumption of 1 GWh,
so a normalization factor a can be defined:

a =
W19.00

Wyear
=

53.399kWh

106kWh
= 0.0000534 (5.6)

The annual energy consumption of an average household in Germany is assumed
to be 4000 kWh, so the consumption for one household in 15 minutes is:

W15min = a ∗ 4000kWh = 213.60Wh (5.7)

The average power within this 15 minutes time frame can then be found as:
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Figure 5.6: Production from PV in GaP on winter day

P15min =
W15min

∆T
=

213.60Wh

0.25h
= 854W (5.8)

That is, for winter evening scenario, all loads are assigned P = 854W .

5.3.2 Reactive Power of Loads
As explained in section 2, the voltage is highly influenced by the amount of

reactive power. It is therefore important to define the reactive power Q when
characterizing the loads.

The power factor (pf) is a common way to express the active power share
of the load apparent power, and thus indirectly also the reactive power share.
Referring to the phasor diagrams of section 2, the power factor is defined as
the cosine of the phase angle between the voltage and current phasor [37]. This
equals the active power share of the apparent power and can be expressed as in
equation 5.9.

pf = cos(φ) =
P

S
(5.9)

The tangent of the phase angle is the fraction of Q to P

tan(φ) =
Q

P
(5.10)

Combining equations 5.9 and 5.10 leads to the result in 5.11. With this equation,
the reactive power of the load connection point can be found, if P and pf are
known.

Q = P ∗ tan(arccos(pf)) (5.11)

As the share between reactive and active power in a household changes through-
out the day, the power factor will also vary. In addition, the power factor differ
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from load to load. It is therefore not evident which power factor that should
be chosen for the loads. According to [36], when households are modelled as
loads in a power system in Germany, a power factor of 0.9 can be assumed. As
elaborated in section 2.2, the lagging power factor is due to the many induc-
tive appliances present in households. In other countries, such as Norway, where
heating mainly is electricity based, the ohmic loading share is much larger. This
means a less inductive power factor of the house as a whole, and certain utilities
in Norway use a standard power factor as high as 0.97 for households.

Referring to table 2.1, inductive loads consume reactive power. A high power
factor, means a less inductive load and thus less consumption of reactive power.
As was explained by the phasor diagram in figure 8.1, consumption of reactive
power at the point of connection for a generating unit (e.g. a rooftop PV plant)
will help mitigate the voltage rise that the distributed generator can cause. The
choice of power factor in load modelling can thus give tremendous effects. For
this reason, it was decided to measure the power factor of the grid in GaP to get
higher level of accuracy in the simulations. Measurements of the loads when no
PV is present have been performed and they show that the power factor always
is higher than 0.95. For this reason, pf = 0.95 is chosen and for simplicity, the
same power factor is applied for all loads.
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Chapter 6

Studies on Photovoltaics

6.1 Future Scenario of Photovoltaic Development
in GaP

6.1.1 Potential and Assumed Development
The installed PV power in GaP has rapidly increased every year since the

introduction of the German Renewable Act, as was seen in figure 4.2. An im-
portant question is how this trend will develop in the future. A study conducted
by C. Gerdiken at the Hamburg University of Applied Science ([23]) in cooper-
ation with Forschungstelle für Energiewirtschaft (FfE), addresses this topic in
detail. The study has found the effective usable roof area in GaP and thus the
accessible rooftop PV potential of the municipality. The existing building mass
was analysed in the context of the following properties:

• Azimuth angles

• Shadowing

• Rooftop types (e.g. flat, hipped, saddelback or tent roofs)

• Building type (e.g. block, detached or semi-detached houses)

• Building sectors (e.g. residential, agriculture, industry

The work resulted in an extensive database of all the houses in GaP, showing
a large theoretical potential of 70 MW of rooftop PV. But to which extent will
this potential be exploited? The study found that economical incentives are
the most important parameter for the decision whether to install a PV-plant
or not. Thus, the development of the German Renewable Energy Act and its
planned future economical incentives is important to find future scenarios of PV-
installation. On basis of this, the study found reasonable expansion scenarios
for the different sectors in GaP and the result can be seen in figure 6.1. The
figure is extracted from the data found in the study and illustrates the expected
expansion of installed rooftop photovoltaics in GaP.
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Figure 6.1: Installed PV-capacity on rooftops in GaP [23]

6.1.2 Spatial Distribution of the Expected PV
The database of the houses in GaP serves as a basis for this thesis. From this,

the theoretical PV potential per house is known, in addition to the assumption of
the expected increase of total PV capacity per sector. However, exactly where in
the grid the expected PV will be installed, is unknown. As explained in section
2, distributed generation might influence the grid in an undesirable way. Some
parts of the grid can be more vulnerable than others, e.g. it is more critical if
a high number of PV plants are connected at long lines or remote feeder ends,
as the impedance and thus the line length has a large impact on voltage profile
along the line. Thus, for examining whether the expected PV-increase in GaP
will cause grid problems or not, investigations of the location of the PV-plants
is important. In this thesis a probabilistic approach to the spatial distribution
of PV plants will be developed. Using MatLab, a Monte Carlo simulation model
is created.
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6.2 Monte Carlo Simulation Model for Photo-
voltaics

The number of different possible combinations for the distribution of the
forecast among the houses in GaP is infinitely large. For this reason, a large
number of simulations will be performed and the results will be saved, in order
to statistically examine the effect on the grid with regard to voltage issues,
transformer and/or line overloading.

The main unknown parameter for the model is on which buildings rooftop
PV plants will be installed and on which will not. This is a choice of the
house owner, which depends on numerous unknown factors, e.g. the house
owner’s economy or environmental consciousness, to mention some. For this
reason, to simplify the complexity of the model, the parameter is treated as
random. Running a large number of simulations of a system with such random
variation of input parameters is the concept of Monte Carlo simulation, which
was explained in section 3.4. For every house, a random number r is generated
and this random number represents the choice whether to install (r = 1) or not
install (r = 2) a PV plant on the respective rooftop. The probability of the
random number r is dependent on the sector, to which the house belongs. The
sectors in Garmisch-Partenkirchen are defined to be:

• Residential

• Industrial

• Agricultural

The forecast in [23], has taken the three sectors into account, and numbers
for the PV capacity exist for both present and future buildings mass. The
probabilities of the random numbers will be calculated in section 6.2.2 in order
to reach the total expected PV in GaP.

6.2.1 Size of Photovoltaic Generators
On November 7th 2006, the first amendment of the Renewable Energy Act

came into effect. This inhibited some important changes regarding the data
publications of the renewable energy installations. From this date on, the net-
work operators were obliged to publish information on their website regarding
all grid connected producers of electricity from renewable energy sources. The
information to be published, were among others, the power, the site and energy
source of the electricity production. Based on this information, Die Forschung-
stelle für Energiewirtschaft (FfE) in Munich developed a database containing all
renewable energy sources in Germany. From this data base, values for typical
rooftop PV installations has been calculated. When the Monte Carlo model
runs through all the buildings in GaP, it checks the sector of the building and
assigns the random number with a probability that will be calculated in section
6.2.2. If the building in question is assigned a random number r = 1, a PV
plant will be installed. In this case, the model verifies the rooftop size of the
respective house, and assigns one of three values, dependent on what the roof
can fit: no PV, a small PV plant or a large PV plant. For each sector, common
values for small and large rooftop PV installations are defined and given in table
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6.1. These are based on the data base from FfE of presently installed PV plants
in Germany.

Table 6.1: Typical sizes for rooftop PV installations

Sector PV plant large [kW] PV plant small [kW]
Residential 10 3
Agricultural 30 10
Industrial 75 20

6.2.2 Probability Tuning
The forecast of future PV installation in GaP were depicted in figure 6.1.

The numbers for year 2030 are given in table 6.2, together with the installed
capacity of year 2012. The numbers for 2030 are the amount that the Monte
Carlo model is going to distribute among the houses in GaP.

Table 6.2: Installed PV in LV grid of GaP

Sector PV capacity in 2012 [MW] PV capacity in 2030 [MW]
Residential 2.44026 10.2465
Agricultural 0.15408 0.6610
Industrial 0.851 2.3726
Total 3.4513 13.2801

The exact number of houses in GaP that can fit the different configurations
in table 6.1 are known due to the studies in [23]. In order to reach the forecast
per sector for the year 2030 by assigning the predefined PV-sizes in table 6.1,
the random number must be calculated. The following equation can be applied:

P increase sector[kW ]

N sector
= probability∗[

(
NP<Psmall
N sector

∗ 0kW ) + (
NPsmall<=P<Plarge

N sector
∗ P small[kW ]) + (

NPlarge<=P
N sector

∗ P large[kW ])

]
Solving for the probability gives equation 6.1.

prob =
P increase sector[kW ]

(NPsmall<=P<Plarge ∗ P small[kW ]) + (NPlarge<=P ∗ P large[kW ])
(6.1)

P increase sector is found by subtracting the already installed PV capacity from
the forecast (column two from column three in table 6.2). N is the number of
houses that can fit the different PV configurations. The houses that already
have an installed rooftop PV are not included in N , as it is assumed that they
will remain the same installation also in the future. In equations 6.2 - 6.4, the
probability per sector is calculated.

probability(residential) =
(10246.5− 2440.26)kW

(3689 ∗ 3kW ) + (1796 ∗ 10kW )
= 0.2689 (6.2)
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probability(agricultural) =
(661− 154)kW

(88 ∗ 10kW ) + (16 ∗ 30kW )
= 0.3727 (6.3)

probability(industrial) =
(2372.6− 851)kW

(96 ∗ 20kW ) + (8 ∗ 75kW )
= 0.6038 (6.4)

This leads to the probability distribution in figure 6.2.

Figure 6.2: Probability distribution for Monte Carlo simulation

The assignment of the random number to each house can be considered as
tossing a coin, where one toss equals one house. As was elaborated in section
3.3.1, the properties of tossing a coin several times is:

• There is two possible outcomes of every toss

• Each toss is independent from the outcome of the other tosses

The same two principles yield when assigning the random number to a house.
Each house is assigned a random variable with two possible outcomes (PV or no
PV) which is independent from the outcome of the other houses. Thus, when
repeated several times, the mean or the expected value of the random variable is
given by the probability distribution of the two outcomes. Since there is a high
number of houses in every sector (equivalent to a high number of tosses), the
mean of the random variable will end up close to the calculated number from
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equations 6.2 - 6.4. It will later be shown that the percentage error between
the forecast and the calculated values is less for the residential sector which has
a much higher number of buildings, than for the two other sector which has a
smaller number of buildings.

Thus, when all houses install a PV plant based on the random variable, which
again are based on the forecast and the actual number of houses in each sector
that can fit the different PV sizes, the total PV installation should aggregate
up to approximately the forecast.

Figure 6.3 shows a plot of 100 Monte Carlo simulations, where the random
numbers of figure 6.2 are applied. Each simulation gives exactly one distribution
of PV plants amongst the rooftops of GaP. This figure shows that the total
aggregated power is quite close to the numbers in table 6.2 every time.

Figure 6.3: Aggregated PV per simulation

6.2.3 Required Number of Simulation Runs
In the previous section, it was shown that running the Monte Carlo model

with the random numbers of figure 6.2 will give values around the forecasted
photovoltaic installation in GaP in 2030. But how many simulations are needed
in order to obtain a satisfying accuracy in the result? There are nearly 8000
buildings in GaP and each is assigned a random number. Running a loop
through all the houses exactly one time equals one iteration and gives exactly
one result of the PV distribution. The explanation of the statistical terms sample
and population was given in section 3.1. The number of iterations in the Monte
Carlo simulation are a collection of data, and serve as our sample. The real
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mean value of the population, from where our sample origin, is denoted µx and
in our case, µx is the forecast which we try to reach. From our sample we can
calculate the sample mean (called the average) and denoted X̄. The higher the
number of iterations, the closer X̄ will be to the real mean value. However, the
amount of data in our case is very large, and the number of iterations that can
be performed is limited due to time and computational power constraints. In the
following paragraphs, the dependency between some statistical parameters and
the number of iterations will be investigated. To illustrate this dependency, a
loop with 200 Monte Carlo simulations is performed. Each of the 200 simulations
has a different number of iterations, increasing from 1 to 200.

Mean

The mean of a Monte Carlo simulation sample comprising of n iterations
can be calculated by equation 6.5 from section 3.1.1:

x̄ =
1

n
·

n∑
i=1

xi (6.5)

In figures 6.4 - 6.6, x̄ is plotted versus the number of iterations per Monte
Carlo simulation. This must not be confused with the results in figure 6.3, where
the total PV in GaP is plotted for every time the model has run through all
the 8000 houses exactly one time. The average of all the iterations in figure 6.3
would give exactly one data point (the data point corresponding to 100 on the
x-axis) in figures 6.4 - 6.6. It can be seen, that the mean gets closer to the real
mean from table 6.2 as the number of iterations increases.
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Figure 6.4: x̄ versus simulation number

Figure 6.5: x̄ versus simulation number
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Figure 6.6: x̄ versus simulation number
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Standard Deviation

From our sample we can calculate the sample standard deviation Sx by
equation 3.2 from section 3.1.2

Sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 (6.6)

We do not know the real standard deviation for our population (σx). But
according to [25], σx ≈ Sx when running a large number of iterations. A plot
of the sample standard deviations versus the number of iterations (figure 6.7),
shows that Sx is quite stable as the number of iterations increase, thus the
value for our sample standard deviation is taken from a simulation with a large
number of iterations.

Figure 6.7: Sx versus simulation number

Confidence Interval

If the Monte Carlo simulation is performed a high number of times times,
with a sample size n, it can be shown that the expected mean of x̄ is the real
mean µx and that the expected standard deviation of x̄ (if large sample size) is:

σx̄ =
σx√
n

(6.7)
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We can use a confidence interval to indicate the reliability of this estimate. An
upper (U) and lower (L) limit of the deviation has to be defined. The range
between U and L represent the interval where we expect the value of x̄ to be.
The interval can be written as:

L,U = µx̄ ± zc ∗ σx̄ = µx̄ ± zc ∗
Sx√
n

(6.8)

where zc is the confidence coefficient, and it’s value is given in statistical
tables (e.g. [24]) according to the confidence level. Since the population variance
is unknown, the approximation σx ≈ Sx explained in the previous section is
applied in the equation.

The confidence level has to be chosen in respect to the maximum error that
the model is allowed to have. Figure 6.8 gives an idea on the percentage error
that this Monte Carlo model inhibits. As seen, the error shrinks when the
number of simulation per sample rises.

Figure 6.8: Percentage error versus simulation number

To find a reasonable maximum error per sector when approaching a large
number of simulations, the largest simulations must be investigated. Figure 6.9,
is a close up of the error simulations from figure 6.8.

It can be seen that the residential sector has an overall lower percentage
error than the two other sectors. As explained in section 6.2.2 by the coin-
tossing example, the less percentage error in residential sector is due to a much
higher number of buildings in this sector than in the other two sectors and
thus the expected value of the random number is closer to the real probability
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Figure 6.9: Close up of percentage error versus simulation number

distribution. The closer the generated mean value is to the real mean value, the
less the percentage error.

Like the confidence interval, the error can occur on both sides of the mean
value. Thus, it is possible to set the confidence interval to represent twice the
error.

Errormax = zc ∗
Sx̄√
n

(6.9)

53



Estimating required number of simulations

A study on the required number of iterations for Monte Carlo simulations are
presented in [25]. In the study, equation 6.9 is rewritten, so that the acceptable
error is expressed as the percentage error of the mean. This gives equation 6.10.

Errormax[%] = 100 ∗ zc ∗
Sx̄

x̄ ∗
√
n

(6.10)

Solving this equation with respect to n, an expression for the number of required
iterations can be found, based on the choice of percentage allowable error, the
standard deviation, the mean and the confidence coefficient:

n =

[
100 ∗ zc ∗ Sx̄

x̄ ∗ Errormax[%]

]2

(6.11)

Equation 6.11 will now be applied to the three sectors of GaP, in order to
find the number of required simulations. The input values for the equation is
listed in table 6.3. To verify how the numbers are found, an explanation of
sector residential follows:

An reasonable error value for residential sector would be, according to figure
6.9, set at around 0.5%. This means a confidence level of 100−0.5 = 99.5. Using
a statistics table (e.g. [24]), the zc is found for this confidence interval. The
standard deviation is found by running a Monte Carlo simulation with a large
number of iterations, in order for the approximation σx ≈ Sx to be applicable,
as explained in section 6.2.3. The x̄ is the real mean value, i.e. the forecast for
year 2030.

Table 6.3: Input values for equation 6.11

Sector Emax[%] ConfidenceLevel zc Sx̄[MW ] x̄[MW ]
Residential 0.5 99.5 2.807 0.2087 10.2465
Agricultural 1.5 98.5 2.451 0.0713 0.661
Industrial 1 99 2.576 0.1297 2.3726

Applying the numbers of table 6.3 to equation 6.11, gives the required iter-
ations for the Monte Carlo model in this thesis:

nres = 130

nagr = 310

nind = 199

As the same number of iterations must yield for all sectors, an iteration
number that is higher than the nind will be applied. The Monte Carlo Model is
run with 1000 iterations and the result saved as excel files, ready to be used for
power flow simulations.

It should be mentioned that to have a power flow simulation result that
covers the entire voltage range between possible extreme voltage drops and
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voltage rises, the number of necessary power flow simulations must also be
calculated. In this case the mean value would be the voltage value, and most
probably the result would be that a very large number of simulations is required.
Due to time limitation, this was not performed in the thesis.
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6.3 Results for Photovoltaic Studies

6.3.1 Monte Carlo Simulation Results
Figure 6.10 depicts a histogram of the total PV per simulation in the low

voltage grid of GaP. As seen, the occurrence is high around the forecasted value
of 13.28 MW. All the simulations end up with a total PV capacity between 12.4
MW and 14.2 MW

Figure 6.10: Histogram of total PV

The variation from simulation to simulation in the Monte Carlo model lies
not only in the total PV in the grid, but of course also in the spatial distribu-
tion of the PV plants. This will be thoroughly investigated by the power flow
analysis. Figure 6.11 shows the average aggregated PV of all the simulations
per transformer station and can give an idea of which transformer that will get
high penetration of PV.
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Figure 6.11: Average aggregated PV per transformer station

6.3.2 Power Flow Simulation Results
Winter Evening Scenario: High Load - Zero Generation

This scenario is based on the load for GaP on the situation a January evening,
which was calculated in section 5.3.1. As opposed to the summer day scenario,
where a large amount of power flow simulations must performed to see the
different effects among the Monte Carlo spatial distributions, only one single
power flow is necessary to see the status of this scenario. No production from
PV is present in the grid and the loads are modelled after the standardized
load profile for the 15 minute interval beginning at 19.00. The single power
flow is runs and the resulting bus voltages are displayed as a box plot in figure
6.12. The squared box represents the central 50% of the bus voltages. The
green line indicates the median of the bus voltages. The two blue lines which
extend vertically from the square, indicate the remaining bus voltages outside
the central 50%, but extend maximally to 3

2 times the height of the squared box.
All bus voltages larger or smaller than 3

2 times the central 50% are considered
outliers and these are marked with red crosses.

The slack bus voltage is set to 1.0 pu. The left data set depicts the situation
in the 400 V network. The majority of these buses have voltages between 0.992
and 0.982 pu, which means a voltage drop between 0.8% and 1.8%. The outliers
have voltages down to 0.975 pu (2.5% voltage drop). The outliers are buses,
which after closer investigations, turns out to be almost exclusively located on
transformer 85. This transformer has a rating of 250 kVA and supplies 64 loads,
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where 62 of them are residential and 2 agricultural. The 2 agricultural loads are
located in the end of a long line, which again are connected to a radial feeder
supplying residential buildings. All the most extreme outliers are registered at
this feeder, with the largest voltage drop in the very end of the feeder.

The right data set depicts the situation in the 10 kV network. The majority
of the buses has voltages between 0.99 and 0.9975 pu, which means a voltage
drop between 0.25% and 1%. The outliers have voltages down to 0.97 pu (3%
voltage drop). These outliers are found to be buses located mainly far south in
the medium voltage grid, on long lines supplying lifts and railways in the GaP
skiing area.

Figure 6.12: Voltages for Winter Evening Scenario

The result of the winter evening is in compliance with the theoretical founda-
tions in section 2.2: the voltage drop increases with the line length because the
line impedance Z increases with the line length. Thus the lowest voltages are
in the end of long feeders. However, it can be concluded that for this scenario,
all voltages are inside the permissible limits.

Summer Day Scenario: Low Load - Max Generation

Basis for the power flow simulations on the summer day scenario is the Monte
Carlo simulation results where the expected PVs are distributed among the
houses in GaP. These simulations results represent a large amount of different
spatial distributions. It exist an infinite number of distributions, but the power
flow simulations are time demanding. For this reason, a limit of 1000 has been
set, that is, a power flow snapshot simulation of the grid is performed for each
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of the 1000 different Monte Carlo results. This takes approximately 40 hours.
Graphical illustration of the 1000 power flow results for the summer day scenario
must be done in a slightly different manner than the single power flow result
from the winter evening scenario.

Voltages As explained in section 2.3, distributed generating units like rooftop
PV plants can cause overvoltages if the power production from the PV exceeds
the consumption of the customer. As this situation inhibits low load and max
generation, overvoltages are expected. The 10 kV network consists of 338 buses.
In the winter evening scenario, all of these were below nominal voltage. In
the summer day scenario, on the other hand, the situation is different. The
histogram in figure 6.13 shows the occurrence of 10 kV buses with voltages
above nominal voltage. From this histogram it can be seen, that in 800 of 1000
simulations, 182 of the 338 10 kV buses has a voltage above nominal voltage.

Figure 6.13: Voltages in 10 kV Network for Summer Day Scenario

The actual value of the buses are of great interest, thus a plot of the bus
voltage magnitude from the histogram are presented in figure 6.14. As seen,
some of the buses get a voltage close to 1% above nominal voltage. This is
inside the permissible voltage limits for medium voltage grids in Germany. Two
large PV plants are connected to the 10 kV network through transformers. They
have a rated power of 1212.2 kW and 544.32 kW. The highest voltages occur at
the connection point of these two transformers and influence parts of the grid,
creating high voltages on several buses.
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Figure 6.14: Voltages in 10 kV Network for Summer Day Scenario

The 16 low voltage parts of the network are made up of together 2487 buses.
In the winter evening scenario, all of these were below nominal voltage. On
a summer day the situation is quite different. The histogram of figure 6.15
shows the occurrence of 0.4 kV buses with voltages above nominal voltage for
the summer day scenario. In around 450 of the 1000 simulations, every single
of the 2487 low voltage buses are above nominal voltage. There is never less
than 2150 buses with voltage above nominal voltage. This means that for 100%
of the 1000 different spatial distributions, minimum 2150

2487 ∗ 100% = 86% of the
buses have a voltage above nominal voltage. The voltage magnitude of these
buses are plotted in figure 6.16. A reference line for the 3% voltage rise limit set
by the VDE directive mentioned in section 2 is also included in the figure, and
as seen the limit is equivalent to a voltage of 412 V. Since the LV grids consists
of 2487 buses, it is not easy to graphically illustrate all the voltages. However,
it can be seen from the graph 6.16, that the +3% limit is violated in several of
the simulations. By closer analysis, it was clear that exactly 37 buses violated
the limit.
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Figure 6.15: Voltages in 0.4 kV Network for Summer Day Scenario

Figure 6.16: Voltages in 0.4 kV Network for Summer Day Scenario
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Figure 6.17: Voltages for critical bus in Summer Day Scenario

Of the 37 overvoltages occurring in the low voltage grids, 4 instances of a
voltage above 413 V was recorded. These over voltages were all occurring at
the same bus. A box plot of this bus is shown in 6.17. The top outlier represent
the highest bus voltage of 1000 Monte Carlo simulations for this building. This
outlier has a value of 413.9 V which means a voltage rise of 3.45 % above nominal
voltage. The green line is the median and it has a value of 408 V. In addition,
it can be seen that 100% of the 1000 simulations result in a voltage above 404.4
V.

The bus is the connection point of a residential house connected to trans-
former 3. The transformer supplies an urban area that is densely populated
and the building with the highest voltage is one of the buildings that is located
furthest away from the transformer.

Overloading An important part of power flow analysis is to check whether
the grid infrastructure can physically accommodate such large power flows that
is the consequence of 13.28 MW of grid connected photovoltaics. Two aspects
regarding overloading will be examined here. First, the power at all the 10
kV/0.4 kV transformers are measured and compared to their rated power. Sec-
ond, currents of all line segments will be measured and compared to the cable
type’s thermal limit.

The apparent power at all transformers were measured for the 1000 Monte
Carlo distributions, and by comparison to the transformer rating, it was shown
that never was any of the transformers overloaded.

In the line definition of the (*.dss)-files, the cable types of each line are in-
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cluded. In the cable type specification a value called "NormAmps" lies, which is
the thermal limit of the respective cable type. After the power flow simulations,
it is possible to export a list of all lines, with the thermal limit of the cable type
and the current each line segment is actually carrying. Thus, it is possible to
check whether any of the lines are overloaded with regard to the cable type’s
thermal limit. The results showed that for the 1000 Monte Carlo distributions,
zero line segments were overloaded in regard to their thermal limit.
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6.4 Worst Case Scenario

6.4.1 Concept
The Monte Carlo results represent a certain amount of distributions gener-

ated by random numbers. These are most-likely scenarios and can give a picture
of the influence that the PV could cause. However, with almost 8000 buildings,
there exists an infinite larger number of combinations for the PV plants distri-
bution. The 1000 spatial distributions from the Monte Carlo simulation will
only cover a tiny fraction of the total number of different distributions possible.

The probability that a worst-case scenario exist in any of the 1000 distribu-
tions from the Monte Carlo simulation model is therefore small. For this reason,
a spatial distribution representing a worst case scenario is manually constructed.

Considering voltage rise, the worst case arises from the combination of a high
line impedance and a large amount of PV power on this line. Therefore, to find
the worst case scenario, the low voltage distribution grids must be investigated,
looking for long lines with large rooftop areas.

Transformer 23 has a mix of residential and industrial buildings, and supplies
in total 67 loads. It has a rating of 630 kVA. The lines from this transformer are
not particular long, but have some very large buildings connected and thus a
large theoretical rooftop PV potential. Figure 6.11 from section 6.3.1 depicted
the average PV per transformer for 1000 Monte Carlo simulations. From this
it was seen that transformer 23 on average was assigned 224 kW. However, a
plot of the PV per simulation for this particular transformer (figure 6.18), shows
that the PV is ranging from 75 kW to 350 kW.

Figure 6.18: Aggregated PV per simulation

Among the lines from transformer 23 is a radial feeder which supplies eight
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industrial buildings, some with very large rooftop areas. The eight buildings are
from here on named A-H and their PV potential are listed in table 6.4. A line
diagram of the feeder is shown in figure 6.19. The small circles on the feeder
represent fuse boxes where, in reality, several cables are connected.

Figure 6.19: Feeder at transformer 23

Table 6.4: PV Potential for buildings A-H. Numbers from [23].

Building PV potential [kW]
A 128,31
B 57,99
C 59,78
D 57,02
E 57,00
F 12,41
G 14,16
H 118,67

A simulation model to perform the worst case scenario is created in MatLab.
It assigns rooftop PV plants to the houses on the critical feeder one at a time.
For every house a power flow is run, until all the 8 houses on the feeder have PV
plants installed. Since the scenario is representing a worst case, the entire roof is
filled with solar panels. That is, a generator is added to the bus where the house
is connected, with the power from table 6.4. The power flow is performed with
the same assumptions as the summer day scenario that was presented in section
5.3.1, that is, max production from the PV plants and minimum consumption
of the loads.

6.4.2 Simulation Results for Critical Feeder
Referring to the line diagram in figure 6.19, the PV plants are added to the

houses one at a time, starting in the end of the feeder at building A, ending
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with building H. Figure 6.20 is a plot of the total loading of the transformer,
measured on the secondary side of the transformer after every power flow. As
seen, before any PV is added to the grid, the active power has a negative value
of 31,7 kW, which means the loads are consuming power. At the instant the
large PV plant is added at building A, the power turns positive, which means
that the power flow has changed direction and is flowing from the feeder to the
transformer. The reactive power in the grid is present due to the power factor
of the loads (pf = 0.95). Through equation for Qload the value for the situation
before any PV is added can be verified:

Qload = Pload ∗ tan(arccos(pf)) = −31, 7kW ∗ tan(arccos(0.95)) = −10.42kV Ar

This value corresponds to the measured reactive power value represented by the
blue line plotted in graph 6.20.

Figure 6.21 is a plot of the voltage at the connection points for the 8 buildings
on the critical feeder. Before any PV is added to the grid, the voltage is between
396 and 397 Volt for all the loads on the feeder. When the voltage is below the
nominal voltage, it means that there is a voltage drop from the transformer to
the loads. When the PV plant is added at A, the voltage rises above nominal
voltage at the connection point for this building. Also the other buildings on
the feeder are affected by the PV plant at A. It can be seen, that the further
away from the transformer, the higher the voltage rise becomes.

Figure 6.20: Power for transformer 23

As mentioned, the Monte Carlo model assigned a maximum of 350 kW to
transformer 23. This amount is reached when buildings A-E has filled their

66



Figure 6.21: Voltage for critical feeder on transformer 23

roofs with solar panels. The voltage rise at this point is 419.5 V, which is 4.9%
above nominal voltage and it already represents a violation of the 3% limit.
The probability that this exact spatial distribution was included in the Monte
Carlo results is extremely small. It could however happen in reality and when
looking at the voltage rise that this exact distribution can cause, it shows the
importance of defining and investigating such special-case scenarios.

However, the Monte Carlo results are not definitive. It is not known how
much PV that will end up for the different transformers. Continuing to install
PV plants for buildings F,G and H result in a total of 505 kW PV power. When
subtracting the load, the total power is 455 kW, as shown in figure 6.20. It leads
to a violation of the 3% limit for all buildings, except H, which is located close
to the transformer.

The underlying grid of transformer 23 consists of 182 line segments. Mea-
surements of currents of all line segments were compared to their cable type’s
thermal limit. From this it was seen, that when all the houses on the critical
feeder have installed PV plants, two lines are carrying a current larger than
their thermal limit. Location of the overloaded line segments is a complex op-
eration, as they have to be identified among hundreds of other lines, where the
only information is which buses they are connected between. However, in this
situation, where only one feeder is assigned PV plants, it can be assumed that
the overloaded line segments are somewhere on this feeder, thus the search for
the overloaded line segments is easier. Closer investigations confirm the as-
sumptions. Two aluminium line segments (NAYY 4x120) between the two fuse
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boxes are overloaded. This cable type has a thermal limit of 245 A, but the two
line segments carry 303 A and 367 A, respectively. These cables are overloaded
because they must carry large amount of PV power. In addition, the copper
cable (NYYx50) between the large building H and the right fuse box is close
to its thermal limit. The limit of this cable type is 188 A, and the measured
current is 166 A. This can be verified by a simple calculation: From table 6.4,
it can be seen that building H has a max power production of 118.67 kW. The
load at 14:00 is 0.555 kW, as calculated in section 5.3.1.

From this, the current in this line segment can be approximately calculated
using equation 2.3 from section 2.2:

Ic =
P

Uc
=

118.67kW − 0.555kW

0.4kV ∗
√

3
= 170A

Overloading of Transformer

In addition to the eight buildings on the critical feeder in figure 6.19, there
are 59 more loads connected to the transformer. Next, the simulation model
will assign PV plants to rooftops until the rated power of the transformer is
exceeded. The power plot is shown in figure 6.22 and the dark blue reference
line shows the rating of the transformer. When 19 buildings are assigned their
full PV potential, it can be seen from the plot in 6.22 that the transformer
rating is exceeded. The voltage development for these 19 buildings are plotted
in figure 6.23. The highest voltage rise is still at building A, which is located
in the end of the feeder. Even though the new PV plants are added at other
places in the underlying grid of transformer 23, the critical feeder is influenced
and the voltage rise gets even higher at all the buildings at this feeder. Building
A now has a voltage of 427,8 V, which is 7% above nominal voltage and a clear
violation of the limit stated by the VDE directive. It was seen in figure 2.1
that the medium voltage grid can have a voltage above nominal voltage, which
means that there is already a voltage rise present before these 7%. If that is
the case, it would mean that this worst-case scenario is close to violating the
10%-limit from EN 50160. In addition, the simulation results show that five line
segments are carrying a current larger than their thermal limit.
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Figure 6.22: Power for transformer 23

Figure 6.23: Load voltages at transformer 23
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Chapter 7

Studies on Electro Mobility

7.1 Future Scenario of Electromobility Develop-
ment in GaP

GaP is subject to research also in the field of electro mobility. A forecast of
the number of electric vehicles in the city is however not available. Some studies
regarding future e-mobility situation in GaP is therefore carried out here.

According to the National Platform for Electric Mobility in Germany, 6
million electric vehicles can be expected in Germany by 2030 [26].

In a study published by the Rheinisch-Westfälischen Instituts für Wirtschafts-
forschung ([27]) on population decline and car ownership in Germany, some
useful forecasts are presented: The number of inhabitants decline, but the size
of the households (i.e.: the number of people per house) is decreasing. That
means the number of households keeps almost constant and in 2030 the number
of households in Germany is expected to be around 41 millions, according to
this study.

If the national goal of 6 million electric vehicles in Germany by 2030 is
reached and the forecast of households in [27] is correct, the percentage of
households with electric vehicles can be calculated to be 14.6%, see equation
7.1.

ElectricV ehicles

Households
∗ 100% =

6000000

41000000
∗ 100% = 14.6% (7.1)

Assuming the same number of households in GaP in 2030, the number of
electric vehicles can be found in equation 7.2.

ElectricV ehicles =
Households

100%
∗ 14.6% =

7992households

100%
∗ 14.6% = 1167

(7.2)
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7.2 Monte Carlo Simulation Model for Electro
Mobility

The Monte Carlo simulation of electric vehicles, will result in a spatial distri-
bution of the future amount of electric vehicles in the grid of GaP, calculated in
section 7.1. It is through their charging process that electric vehicles can have
an impact on the grid. Picture a feeder, supplying a neighbourhood where all
the inhabitants own an EV and charge their vehicle when returning from work
in the evening. The resulting power on this feeder could in this situation exceed
the maximum load that the grid was designed for. The charging process of an
electric car will vary in several ways, through time of charge, elapsed charging
time, charging technology and power and place of charging. Thus, it exists
countless different charging scenarios. It is therefore necessary to define cer-
tain assumptions around the charging process before running the Monte Carlo
model.

7.2.1 EV Charging Power
International Electrotechnical Commission (IEC) has developed standards

that specify plugs and sockets for the charging of electric vehicles and the ef-
fects that these require. The specifications can be found in the standards IEC
62196-1 and IEC 62196-2. The purpose of the standards is to avoid that man-
ufacturers in different regions develop solutions incompatible to other regions
[32], in addition to ensure good communication between the grid and the battery
electronics for safe charging and to adapt to future smart grid scenario where
current and power can be exchanged between electric vehicle batteries and the
grid [28].

The two standards are based on the electric vehicle charging system standard
IEC 61851-1: Electric road vehicles and electric industrial trucks [31]. This
standard encompasses four different charging modes:

• Mode 1 (AC): slow charging from a household-type socket-outlet

• Mode 2 (AC): slow charging from a household-type socket-outlet with an
in-cable protection device

• Mode 3 (AC): slow or fast charging using a specific EV socket-outlet with
control and protection function installed

• Mode 4 (DC): fast charging using an external charger (e.g. charging of
a vehicle in under 10 minutes via an off-grid DC charger such as a high
voltage battery [31])

In addition to the Mode, it is common to specify the Type when referring to
plugs. IEC 62196-1 contains the general requirements for charging, while IEC
62196-2 standardizes the three types of plugs, known as Types 1, 2 and 3. These
are defined in IEC paper [32] to be:

• Type 1: single phase vehicle coupler (vehicle connector and inlet)

• Type 2: single and three phase vehicle coupler and mains plug and socket-
outlet without shutters
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• Type 3: single and three-phase vehicle coupler and mains plug and socket-
outlet with shutters

In Germany, the Type 2 plug from the German manufacturer Mennekes,
is used. Type 2 is sometimes referred to as simply the Mennekes plug. The
European Commission has announced, that this plug will be the common stan-
dard for charging electrified vehicles across the European Union [33]. The plug
enables mode 3 charging from 16 A/single-phase up to 63 A/three-phase [28].
The plug has 7 pins: 3 for charging, 1 neutral, 1 and 2 for communication and
an external connector [30]

The amount of charging power from a vehicle using this standard plug can
be categorized as follows:

• AC normal charging: 11 kW

• AC semi-fast charging: 22 kW

• AC fast charging: 43 kW

The trend is seen to go towards faster charging [29]. In Germany, a large
number of houses are already equipped with three-phase AC semi-fast charge,
which enables a 80% charge of 30 minutes with 22-24 kW [30]. For the year
2030 it is therefore reasonable to assume that most cars use either semi- or fast
charging technology.

7.2.2 Scenarios for Electro Mobility
Assuming that the numbers for the 2030-situation presented in section 7.1

would yield also for GaP, then approximately 14.6% of the GaP households
would have an electric vehicle. For simplicity, it is not differentiated between
sectors in this simulation. All buildings are treated as a household and thus,
14.6% is equal to a total of 1167 electric vehicles in total in GaP.

Two electro mobility scenarios will be created by Monte Carlo simulations
and studied by power flow simulations. These two scenarios are:

• Semi-Fast Charging Scenario: All electric vehicles use semi-fast charging
of 22 kW.

• Fast Charging Scenario: All electric vehicles use fast-charging and charge
with the maximum power that the standard plug Type 2 allows, equal to
43 kW.

Except for the new input values, the simulation model will be principally
the same as for the PV Monte Carlo model. Each house in GaP is, with a
probability of 14.6%, assigned an EV. If the EV is placed to charge at this
house, the charging power is either 22 kW or 43 kW.

The simulations are run assuming an evening load to create a worst case
scenario. The load value calculated in section 5.3.1 is applied here. The charging
vehicles are added to the power flow model as an increase in the customer’s load.
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7.2.3 Required Number of Simulation Runs
To find the required number of simulations for the EV Monte Carlo model,

equation 7.3 from section 6.2.3 can be applied.

n =

[
100 ∗ zc ∗ Sx̄

x̄ ∗ Errormax[%]

]2

(7.3)

The x̄ is the real mean value, i.e. the expected number of electric vehicles
for year 2030, which is 1167. The other input values zc, Sx̄ and Errormax

need to be calculated. This is done in MatLab, the same way as for the PV
model, by a loop of 200 Monte Carlo simulations. Each of the 200 simulations
have a different number of iterations, increasing from 1 to 200. Each simulation
represent a sample, and the sample mean is calculated in every simulation.
From this, it is possible to see how the parameters stabilizes around certain
values when reaching a large number of iterations. As seen in figure 7.1, the
larger the number of iterations per sample, the closer the sample mean gets to
the real mean.

According to figure 7.2 the error doesn’t exceed 0.5% when the number of
iterations gets large. This means it is reasonable to apply a confidence level of
100−0.5 = 99.5. Using a statistics table (e.g. in [24]), the zc for this confidence
level is found to be zc = 2.807. According to figure 7.3, the standard deviation
is approximately 31 cars. The values are summarized in table 7.1.

Figure 7.1: x̄ versus simulation number

Applying the numbers of table 7.1 to equation 7.4, gives the required itera-
tions for the Monte Carlo model for EV in this thesis:
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Figure 7.2: Percentage error versus simulation number

Table 7.1: Input values for equation 7.4

EV Emax[%] ConfidenceLevel zc Sx̄[MW ] x̄[MW ]
EV 0.5 99.5 2.807 28 1167

n =

[
100% ∗ zc ∗ Sx̄

x̄ ∗ Errormax[%]

]2

=

[
100% ∗ 2.807 ∗ 31

1167 ∗ 0.5%

]2

= 222 (7.4)

It can be seen that also for the Monte Carlo e-mobility model, a run of
1000 iterations is more than enough to reach the forecast. The result for the
two different scenarios is saved as excel files, ready to be used for power flow
simulations.
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Figure 7.3: Sx versus simulation number
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7.3 Results for Electro Mobility Studies

7.3.1 Monte Carlo Simulation Results
For a Monte Carlo simulation with 1000 iterations, the amount of total

charging power in the GaP-grid for the two scenarios of 22 kW and 43 kW
charging power per vehicle end up as shown in figures 7.4 and 7.5. As for

Figure 7.4: Histogram of total EV charging power for semi-fast charging

the case of PV, the spatial distribution of the charging vehicles is the core of
interest. Figure 7.6 shows a plot of average power per transformer for the semi-
fast scenario and figure 7.7 represent the case for the fast charging scenario.
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Figure 7.5: Histogram of total EV charging power for fast-charging

Figure 7.6: Average EV charging power per transformer station. Semi-fast
charging.
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Figure 7.7: Average EV charging power per transformer station. Fast charging.
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7.3.2 Power Flow Simulation Results
As was shown in figure 7.1, the Monte Carlo simulation model adds around

1167 charging vehicles randomly to the grid in GaP. The Monte Carlo simu-
lations represent 1000 different spatial distributions of these charging vehicles.
A power flow is run for every one of the 1000 distributions. The scenarios are
considered to be in the evening, which means that no PV production is present
in the grid and that all houses have the evening load calculated in section 5.3.1.
This would represent a worst-case for the electro mobility studies, as the charg-
ing vehicles are added to the laready high evening load.

Semi-Fast Charging Scenario

Voltage Considerations When all of the electric vehicles charge with a
power of 22 kW, it can be seen from figure 7.8 that there is a large voltage
drop for many of the buses in the 0.4 kV grid. The −10% limit is violated for
some of the buses. These undervoltages are located on buses where there is a
charging vehicle in the end of a long feeder. A voltage drop of 11.6% is regis-
tered at the connection point of a residential building with a charging vehicle.
This building is placed in the end of a radial line connected to transformer 84.
Transformer 3 are also experiencing voltage drops of more than 10%. These are
located at loads with charging vehicles far from the transformer. The 10 kV
grid handles the increased loading better, but also here a voltage drop of nearly
3% is present, as seen in figure 7.9.

Figure 7.8: Voltages in 0.4 kV Network for Semi-Fast Charging Scenario
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Figure 7.9: Voltages in 10 kV Network for Semi-Fast Charging Scenario

Overloading Considerations Measurements of the line currents were per-
formed and compared to each line segments respective carrying capacity. A plot
of the percentage number of lines with a current exceeding their thermal limits
is shown in figure 7.10. As seen, some of the simulations leads to overloading of
lines. As the current measurement and comparison is a time consuming iteration
process, only the first 100 simulations were considered, due to time limitations.

The power at all 10 kV/0.4 kV transformers was recorded for all 1000 simu-
lations, and the result of this is shown as a boxplot in figure 7.11. As seen, every
single simulations lead to overloading of some transformers and the median is
around 7% overloaded transformers.
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Figure 7.10: Overloaded Lines for Semi-Fast Charging Scenario

Figure 7.11: Overloaded Transformers for Semi-Fast Charging Scenario
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Fast Charging Scenario

Voltage Considerations Assuming that all the electric vehicles charge with
a power of 43 kW, the voltage drop gets even larger, see figure 7.12 of the low
voltage network grid and figure 7.14 of the medium voltage network. The −10%
and the −15% limit are both violated for several buses in the low voltage grid.
To see exactly how many buses that violate the −10% limit, a histogram of
the occurrence of undervoltages is shown in figure 7.13. It can be seen, that
for some of the distributions, up to 350 buses violate the permissible voltage
drop limit. The lowest voltage is registered at a bus, which has two buildings
connected it. The bus is located near the end of a line supplying residential
houses on transformer 84. Closer investigations show that only one of the build-
ings connected to this bus are assigned a charging vehicle by the Monte Carlo
model. The second house has a normal evening load of 0,854 kW. Even so, the
voltage at this bus is 290,01 V, meaning a voltage drop of 27,5%. Also for this
scenario, the 10 kV grid handles the increased loading better, but a voltage drop
of nearly 6% is present, see figure 7.14.

Figure 7.12: Voltages in 0.4 kV Network for Fast Charging Scenario
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Figure 7.13: Under voltages in 0.4 kV Network for Fast Charging Scenario

Figure 7.14: Voltages in 10 kV Network for Fast Charging Scenario
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Overloading Considerations Line currents were measured and compared to
the line segments carrying capacity. Also for this scenario, only 100 simulations
were considered. A plot of the number of lines with a current exceeding their
thermal limits is shown in figure 7.15. It can be seen, that every simulation
results in overloaded lines, some with 2.5% overloaded lines.

Figure 7.15: Overloaded Lines for Fast Charging Scenario

Also for this scenario, the power at the 10 kV/0.4 kV transformers were
measured after every power flow simulation. The result is shown in figure 7.16
and shows that among the 166 transformers in the grid of GaP, up to 36% are
overloaded when all electric vehicles simultaneously charge with 43 kW.
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Figure 7.16: Overloaded Transformers for Fast Charging Scenario
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Chapter 8

Summary and Discussions

The first part of work in this master’s thesis consisted in programming a
Monte Carlo simulation model in MatLab. This model creates spatial distribu-
tions of rooftop photovoltaic distributed generators and electric vehicles in the
low voltage grid of Garmisch-Partenkirchen. The model can assign any desired
amount of total generating capacity or charging power, but here the situation
in year 2030 has been studied. Forecasts for the year have been defined and the
Monte Carlo model was tuned in order to assign this projected amount of gen-
erating capacity and electric vehicles randomly among the nearly 8000 houses
in Garmisch-Partenkirchen.

The second part of work in this thesis consisted in statistically examining the
results from the Monte Carlo model and analyze the effect these have on the grid.
This was done by running power flow simulations on the spatial distributions
from the Monte Carlo results.

8.1 Photovoltaic
The number of required iterations that was calculated for the photovoltaic

and electro mobility Monte Carlo models gave the necessary number of sim-
ulations in order to reach the forecast of future PV and EV in the grid. The
resulting number was a couple of hundred simulations, yielding for both EV and
PV, and thus 1000 simulations was enough to get an average value close to the
forecast.

1000 different distributions from the Monte Carlo model were analyzed by
running a power flow of every of the 1000 network situations. The overall
result regarding voltage issues is that at day time, when the load is low and the
production from the photovoltaic generators is high, at least 86% of the 0.4 kV
buses have a voltage above nominal voltage. Some of the spatial distributions
lead to overvoltages which violate the +3%-limit at certain buses. The summer
day scenario is in clear contrast to the evening load scenario, where 100% of the
0.4 kV network nodes have a voltage below nominal voltage.

However, none of the lines are overloaded in regard to their thermal limits.
Nor are any of the transformers overloaded with respect to their ratings.

These 1000 different spatial distributions are only a fraction of the number of
possible distributions. The probability that any extreme situations, e.g. that a
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large amount of PV or EV end up on the same remote feeder ends, is extremely
low. As the time frame for this thesis was limited, the maximum number of
simulations was set at 1000 and instead a worst case scenario was manually
created. With this scenario, it was possible to clearly see the possible impact
from distributed generation on the network operating system. The scenario was
constructed based around transformer 23, by filling the entire roof of buildings
along a single radial feeder with PV plants, starting from the feeder end. It
was seen that the generation exceeds the total consumption for the transformer
and as a result, active power is injected to the overlying 10 kV network. The
generators cause large overvoltages at their point of connection and violate the
thermal limits of some cables.

The findings from the photovoltaic studies show that on a most probable
basis, this distribution network can handle most of the projected increase in
photovoltaic capacity for the year of 2030. However, if large shares of the pro-
jected capacity is concentrated around a small area, e.g. on a single feeder, this
can introduce several challenges. Before every new installation of photovoltaics
among the grid connected customers, in can be wise to perform calculations
regarding the network situation in order to verify that no lines or transformers
will be overloaded.

If the network status has reached a point where the voltage at the customer
connection point is no longer within the limits, voltage regulation could be
an alternative. The mitigation of voltage rise is a large field of study which
covers numerous technologies. In the specialization project that was written
prior to this thesis, different regulation methods for mitigation of voltage issues
caused by distributed generation were investigated. Due to time limitations, no
regulation methods were tested in this thesis. However, two important voltage
control alternatives to cope with the voltage rise will be briefly mentioned at
the end.

8.2 Electro Mobility
As was shown in equation 2.5, the voltage drop along a line is dependent

on both the power at the loads and the impedance of the line. In the electro
mobility studies in this thesis, the loads were assigned electric vehicles with two
different charging powers. In both cases the voltage drop increases significantly
compared to the standard evening scenario. It was also seen that the voltage
drop becomes larger when the charging power of the vehicles increases from
semi-fast to fast charging. This confirms the theoretical foundations, that a
voltage drop is dependent on the power of the receiving end.

The semi-fast charging scenario causes certain violations of the -10% voltage
drop limit defined in the standard EN 50160. In addition, for every simula-
tion there is overloading of transformers with a median value of around 7%
overloaded transformers. Some simulations reach a value of 11% overloaded
transformers. For a few lines the thermal limits are violated

Among the total 2487 low voltage buses, the fast charging scenario causes up
to 350 buses to violate the -10% voltage drop limit. In addition, a large share
of the bus voltages drop below the -15% - requirement. Up to 36% of the 166
transformers are overloaded, with a median of 29.5% overloaded transformers.
In addition, thermal limits are violated for up to 2.5% of the lines. With a total
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of 3113 lines in the distribution grid, this corresponds to up to 80 overloaded
lines.

It is seen as a general trend, that the remote network users are especially
vulnerable in regard to voltage drops. The lowest voltages are recorded at loads
near the end of radial feeders or far from the transformer. This confirms what
was elaborated in the theoretical foundations: the voltage drop increases with
line length.

It was shown that the distribution grid will experience difficulties handling
large scale integration of semi-fast and fast charging electric vehicles. Under-
voltages will be a issue, as well as overloading of lines and transformers. Some
possible solutions will be briefly discussed in the next section.

8.3 Voltage Regulation
Reactive Power Compensation One solution for voltage rise mitigation
can be to control the amount of reactive power at the point of connection. This
is done by operating the generator in an under excited mode, at a leading power
factor. Referring to table 2.1, the generator will then consume reactive power.
The phasor diagrams from sections 2.2 and 2.3 are used to illustrate the concept.
The phasor representing the imaginary part of the current −Icq is drawn along
the positive imaginary axis and the new situation can be seen in figure 8.1.

Figure 8.1: Phasor Diagram of Generator with Active Power production and
Reactive Power control

The addition of−Icq shrinks the difference between Us and Uc and mitigates
the voltage rise. Thus, reactive power can be a solution to the overvoltages that
distributed generation can cause.
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Tap Changing Control Distribution transformers have conventionally been
designed in such a way that the tap settings cannot be changed under load.
Just arising in Europe is on load tap changing mechanisms also for distribu-
tion transformers. With taps in the windings that enable changes in the turns
ratio, it is possible with adjustments of a certain percentage above or below
the nominal voltage rating of the transformer while the transformer is under
load. The tap changing control can be integrated on the main transformer, or
a new tap changing transformer can be added to a feeder. The latter is often
used by power companies on power lines whose voltage varies widely with the
load, due to high impedance between generators and the particular load [12].
On-load tap changers can also be operated in combination with line drop com-
pensation, in which the turns ratio are adjusted depending on the actual voltage
level in the network. Line drop compensation can be utilized by measuring the
impedance and length of the line between the transformer and the critical gen-
erating unit/load [38]. In addition to this, the current through the transformer
must be measured. Knowing the current and impedance of the line, the volt-
age rise can be found by voltage drop equation 2.1 presented in section 2.2. It
should be mentioned that if tap changer control shall be utilized in networks
with distributed generation, it is crucial that the controller have the capability
to detect change in power flow direction.

Comparing the photovoltaic and electro mobility scenarios, large voltage
differences between day time with PV generation and evening load with EV
charging are seen. Even without the most extreme voltage rises and drops,
these differences alone may necessitate voltage regulation.

Grid Reinforcement It has been shown here that semi-fast and fast charging
of electric vehicles leads to a clearly overloading of both lines and transform-
ers. For the network to be able to integrate this amount of extra loading, grid
reinforcement might be a necessary solution.

It can be mentioned that in Norway, the network is seen to handle electric
vehicle charging better than in the study conducted in this thesis due to the fact
that the Norwegian electricity network is dimensioned to supply heavy loading
from electricity based heating.
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Part IV

Conclusions and Outlook
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Conclusions
After the theoretical foundations are carried out in part II, the analysis fol-

lows in part III. Chapter 4 gives an overview of the medium and low voltage
distribution network in Garmisch-Partenkirchen in Germany. The city already
has a large share of its electricity generation based on solar energy and is expect-
ing a further increase in small scale photovoltaic installations. Due to former
studies of the city, a database containing all buildings and their rooftop PV
potential exist.

The power flow simulations in this master’s thesis are performed using a
network model based on the 10 kV and 0.4 kV distribution grid in Garmisch-
Partenkirchen. The process of creating this network model in a suitable format
is an ongoing process. This process, as well as the load modelling are elaborated
in chapter 5.

All studies regarding photovoltaics are collected in chapter 6. Based on a
projected increase in photovoltaic capacity, in addition to the database of the
buildings and their PV potential, a Monte Carlo model is created. The model
distributes rooftop photovoltaic generators randomly among the buildings in
the 0.4 kV network of Garmisch-Partenkirchen. Subsequently, a large amount
of power flow simulations are run on the same network model, but with new
locations of the generating units for every simulation. Thus, it is possible to
examine the different spatial distributions effect on the grid, i.e.: with regard
to voltage issues, transformer and line overloading. The power flow simula-
tions show large differences between the situation during winter evenings contra
summer days. On a summer day, when the load is low and generation from
photovoltaics is high, the active power feed-in from the distributed generators
causes a voltage rise from the transformer to the connection points of the PV’s.
The voltage rises are in certain cases violating the 3% voltage rise limit set by
the German VDE directive. This is in contrast to the conventional networks,
where a continuously decreasing voltage along the distribution feeder can be
assumed because only loads are connected.

Chapter 7 studies the effect from an increased integration of electric vehi-
cles among the households in Garmisch-Partenkirchen. With some adjustments,
the same Monte Carlo model was applied also for electro mobility simulations.
Houses were randomly assigned charging vehicles in order to produce a large set
of different spatial distributions. These were subsequently analyzed by power
flow simulations. In the case of future electro mobility scenarios in Garmisch-
Partenkirchen, no thorough studies have been carried out. For this reason,
certain assumptions regarding future electro mobility situations in Garmisch-
Partenkirchen were defined. The power flow simulations on the network with
increased loading due to charging electric vehicles have shown that large under-
voltages are expected. Some simulations resulted in buses with voltages 27.5%
below nominal voltage. In addition, line overloading in certain parts of the
grid is seen, as well as a high number of overloaded transformers. A total of
2.5% overloaded lines and 36% overloaded transformers are registered for some
simulations.

To summarize, a Monte Carlo model that can add either generators or loads
at random customer connection points in a distribution network has been cre-
ated. Through statistical verification, it was shown that by tuning the prob-
abilities of the random numbers, the model can assign the desired amount of
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total PV or EV. Further, the thesis has investigated how an increase in small-
scale photovoltaics and electro mobility could have an impact on the low voltage
distribution grid. This is done by simulations on a network model constructed
based on a real 10 kV/0.4 kV grid in Garmisch-Partenkirchen in Germany.

However, all the results in this thesis are based on assumed projections of the
future. Even though national plans and goals lie behind the forecasts, assump-
tion regarding a situation in 2030 are highly uncertain. It must be emphasized
that the results here only serve as a rough estimate and an illustration of the
impact an increase in PV and EV may have.

Outlook
At the very end, some thoughts regarding further work are proposed. First

of all, there is yet large parts of the low voltage grid in Garmisch-Partenkirchen
that haven’t been digitalized. In this thesis, the simulations were performed on
the 10 kV distribution network in addition to 16 low voltage networks, i.e.: 16
distribution transformers and their underlying 0.4 kV networks. However, there
are 166 10 kV/0.4 kV transformers, so in order to find all critical buses and
feeders, the remaining network parts should also be digitalized and studied.

If the entire voltage range from minimum voltages to maximum voltages
should be included in the power flow simulation results, simulations on a very
large number of spatial distributions must be performed. The statistical evalu-
ation around this subject, i.e.: how to calculate the number of necessary power
flow simulations, has yet to be studied. This leads to another point, that possi-
ble problematic spatial distributions could be closer investigated. In this thesis
only one worst-case scenario was defined and analyzed, but the combination of
long lines and large roofs are probably found on several places in the grid. Thus,
further studies and investigations of critical network parts could be an option.

Numerous parameters could have been studied in regard to voltage quality
and network characteristics. One of them is the power factor, which in these
simulations was chosen to be 0.95. An option for further studies could be to
evaluate the impact on the power quality due to the power factor. In addition,
the power losses in the different spatial distributions could perhaps be of par-
ticular interest. When electricity is generated locally, and the need of power
transfer decreases, the losses associated with this power transfer naturally re-
duces. This benefit of reduced losses would only yield up to the point where
the local generation is so large that an equally amount of power must be trans-
ferred in the opposite direction. Thus, the loss impact from a growing number
of distributed generators could be an object of future research.

If large scale implementation of distributed generation and/or electro mobil-
ity is going to succeed, the voltage and overloading issues that have been seen
to occur, need to be solved. Some solutions were briefly mentioned here, but
the implementation and simulation of these are an important field of research.
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Appendix A

MatLab Script for Monte
Carlo Simulation

%Code to perform Monte Carlo Simulat ion on d i s t r i b u t i o n among roo f top ←↩
PV

%Author : C e c i l i e S . Arnemo
%Last update : 17 . 05 . 14

c l c ; c l e a r a l l ; format compact ;
cd ( 'M:\ GaP_simulations ' )
RootPath = 'M:\ GaP_simulations ' ; %f o r remote desktop NTNU
addpath ( 'M:\ GaP_simulations\GaP_matlabscripts ' ) ;

%Read exc e l f i l e conta in ing houses
[ house_numbers , house_char ]= x l s r ead ( ' / Exc e l_ f i l e s /AllHouses_ha_idvs2 ' ) ;
id_ont_l i s t = x l s r ead ( ' \ Exc e l_ f i l e s \ id_ont_l i s t ' ) ;
id_HA_list = x l s r ead ( ' \ Exc e l_ f i l e s \ id_HA_list ' ) ;
MyMonteCarloInput . id_HA_list = id_HA_list ;
PV_pot_all = house_numbers ( : , 1 6 ) ;
houses_IDs = house_numbers ( : , 1 ) ;
HA_IDs = house_numbers ( : , 1 ) ;
MyMonteCarloInput .HA_IDs = HA_IDs ;
id_ont = house_numbers ( : , 3 ) ;
nr_houses = length ( house_numbers ( : , 1 ) ) ;
category = house_char ( 2 : l ength ( house_char ) ,9 ) ;
ex ist ing_pv = house_numbers ( : , 1 7 ) ;
ex i s t ing_pv_log ic = isnan ( exist ing_pv ) ;

%% ================ INPUT CHOICES ==================== %%
%Decide which method to use f o r random number genera t i on :
% method = 1 : Ei ther P_typ , P_typ_redu or no PV i s as s i gned
% method = 2 : PV po t en t i a l from normal d i s t r i b u t i o n
method = 1 ;
nr_sim = 1000 ; %number o f s imu la t i on s
number_of_HA = 1577; %number o f houses that are as s i gned a HA_ID
year = 2030 ;

forecast_2030 = [10 . 2465 0 .661 2 .3726 1 3 . 2 8 0 1 ] ;
%sp e c i f y c a l c u l a t ed p r o b a b i l i t i e s f o r Monte Carlo d i s t r i b u t i o n
i f method == 1 && year == 2030

prob_res = [0 . 2 692 (1−0.2692) ] ;
prob_agr = [0 . 3 596 (1−0.3596) ] ;
prob_ind = [0 . 6 052 (1−0.6052) ] ;

e l s e i f method == 2 && year == 2030
prob_res = [ 0 . 4 0 . 6 ] ;
prob_agr = [ 0 . 4 0 . 6 ] ;

prob_ind = [ 0 . 4 0 . 6 ] ;
end
%Def ine t yp i c a l PV s i z e
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PV_typ = 0 ;
PV_typ_redu = 0 ;
PV_typ_array = [ 1 0 , 3 0 , 7 5 ] ; %Common va lues f o r l a r g e r PV plant s
PV_typ_array_reduced = [ 3 , 1 0 , 2 0 ] ; %Common va lues f o r sma l l e r PV plant s

%Run loop through a l l houses o f GaP
%% ==== MAKE ARRAY of RANDOM NUMBERS f o r a l l houses === %%
MyMonteCarlo = MonteCarlo ( ) ;
MyMonteCarloInput . method = method ;
MyMonteCarloInput . category = category ;
MyMonteCarloInput . nr_sim = nr_sim ;
random_nr = 0 ;
random_numbers_houses = 0 ;
PV_all = 0 ;
std_dev_array = 0 ;
average_total_PV_array =0;
MyMonteCarloInput . id_ont = id_ont ;
MyMonteCarloInput . id_ont_l i s t = id_ont_l i s t ;
% %%%%%%% to v e r i f y number o f s imu la t i on s needed %%%%%%%%%%%%%
% i t e r a t i o n s = 0 ;
% nr_ i t e r a t i on s = 200 ;
% f o r t = 1 : 2 : n r_ i t e r a t i on s
% i t e r a t i o n s = i t e r a t i o n s + 1 ;
% nr_sim = t ;
% nr_simulations_array ( i t e r a t i o n s ) = nr_sim
f o r j = 1 : nr_sim
f o r i = 1 : nr_houses

PV_pot = PV_pot_all ( i ) ;
%Input f o r Random Number Generator
i f ( strcmp ( category ( i ) , 'Wohnbau ' ) )

PV_typ = PV_typ_array (1) ;
PV_typ_redu = PV_typ_array_reduced (1) ;
prob = prob_res ;

e l s e i f ( strcmp ( category ( i ) , ' Landwirtschaf t ' ) )
PV_typ = PV_typ_array (2) ;
PV_typ_redu = PV_typ_array_reduced (2) ;
prob = prob_agr ;

e l s e i f ( strcmp ( category ( i ) , 'GHD ' ) )
PV_typ = PV_typ_array (3) ;
PV_typ_redu = PV_typ_array_reduced (3) ;
prob = prob_ind ;

e l s e i f ( strcmp ( category ( i ) , ' Mi l i t a e r ' ) )
PV_typ = 0 ;
PV_typ_redu = 0 ;
PV_pot = 0 ;
prob = 0 ;

end %i f ( strcmp ( category ( i ) , 'Wohnbau ' )

MyMonteCarloInput .PV_typ = PV_typ ;
%For every house , generate a random number
MyMonteCarloInput . prob = prob ;
temp = MyMonteCarlo . random_nr (MyMonteCarloInput ) ;
random_numbers_houses ( i , j ) = temp (1) ;
s ize_prob = temp (2) ;

i f ex i s t ing_pv_log ic ( i ) == 0 && exist ing_pv ( i ) ~= 0 % check ←↩
whether house has i n s t a l l e d PV
PV_all ( i , j ) = exist ing_pv ( i ) ; %as s i gn the e x i s t i n g PV to the ←↩

house
e l s e %%ASSIGN PV TO HOUSES ACCORDING TO THE RANDOM NUMBERS%%
i f method == 1

i f random_numbers_houses ( i , j ) == 1
i f PV_pot < PV_typ && PV_pot <PV_typ_redu

PV_all ( i , j ) = 0 ;
e l s e i f PV_pot < PV_typ && PV_pot >= PV_typ_redu

PV_all ( i , j ) = PV_typ_redu ;
e l s e

PV_all ( i , j ) = PV_typ ;
end

e l s e i f random_numbers_houses ( i , j ) == 2
PV_all ( i , j ) = 0 ;

end
e l s e i f method == 2

i f random_numbers_houses ( i , j ) == 0
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PV_all ( i , j ) = 0 ;
e l s e
PV_all ( i , j ) = random_numbers_houses ( i , j ) ;

i f PV_all ( i , j ) >= PV_pot && PV_all ( i , j ) >= ←↩
PV_typ_redu
PV_all ( i , j ) = PV_typ_redu ;

e l s e i f PV_all ( i , j ) >= PV_pot && PV_all ( i , j ) <= ←↩
PV_typ_redu
PV_all ( i , j ) = PV_pot ;

end
i f PV_all ( i , j ) < 0 .2∗PV_typ

PV_all ( i , j ) = 0 ;
end

end
end %i f method == 1

end %i f ex i s t ing_pv_log ic == 0

%% ================ ASSIGN PV TO HOUSES f i n i s h e d ============== %%
end %fo r i = 1 : nr_houses
% %%PV per t r a f o per s imu la t i on %%
MyMonteCarloInput . PV_all = PV_all ;
MyMonteCarloInput . simulation_number = j ;
matr ix_of_trafos ( : , j ) = MyMonteCarlo . find_PV_per_trafo_per_sim (←↩

MyMonteCarloInput ) ;
MyMonteCarloInput .PV_HA = PV_all ( 1 : number_of_HA , : ) ;
MyMonteCarloInput . number_of_HA = number_of_HA ;
temp = MyMonteCarlo . sum_ha_id( MyMonteCarloInput ) ;
ha_id_and_ont = temp ( : , 1 : 2 ) ;
matrix_of_ha_id ( : , j ) = temp ( : , 3 ) ;
end %f o r j = 1 : nr_simulat ions

MyMonteCarloInput . PV_all = PV_all ;
%%%%save the t o t a l aggregated power per s imu la t i on%%%%
temp = MyMonteCarlo . find_total_PV ( MyMonteCarloInput ) /1000;
array_of_sums_res = temp ( : , 1 ) ;
array_of_sums_agr = temp ( : , 2 ) ;
array_of_sums_ind = temp ( : , 3 ) ;
array_of_sums = temp ( : , 4 ) ;

%% ====== PLOTTING r e s u l t s o f Monte Carlo ============= %%

MyMonteCarloInput . array_of_sums_res = array_of_sums_res ;
MyMonteCarloInput . array_of_sums_agr = array_of_sums_agr ;
MyMonteCarloInput . array_of_sums_ind = array_of_sums_ind ;
MyMonteCarloInput . array_of_sums = array_of_sums ;
%% == PLOT to t a l aggregated PV a f t e r Monte Carlo s imu la t i on===== %%
MyMonteCarlo . plot_total_PV (MyMonteCarloInput ) ;
average_PV = MyMonteCarlo . find_average_total_PV (MyMonteCarloInput ) ;

% %%%%%%STATISTICS PLOT%%%%%%%%
% average_res ( i t e r a t i o n s ) = average_PV (1) ;
% average_agr ( i t e r a t i o n s ) = average_PV (2) ;
% average_ind ( i t e r a t i o n s ) = average_PV (3) ;
% average_tot ( i t e r a t i o n s ) = average_PV (4) ;
%
% std_deviat ion_res ( i t e r a t i o n s ) = std ( array_of_sums_res ) ;
% std_deviation_agr ( i t e r a t i o n s ) = std ( array_of_sums_agr ) ;
% std_deviation_ind ( i t e r a t i o n s ) = std ( array_of_sums_ind ) ;
% std_deviat ion_tot ( i t e r a t i o n s ) = std ( array_of_sums ) ;
%
% error_res ( i t e r a t i o n s ) = ( average_res ( i t e r a t i o n s ) − forecast_2030 (1) )←↩

/ forecast_2030 (1) ∗100 ;
% error_agr ( i t e r a t i o n s ) = ( average_agr ( i t e r a t i o n s ) − forecast_2030 (2) )←↩

/ forecast_2030 (2) ∗100 ;
% error_ind ( i t e r a t i o n s ) = ( average_ind ( i t e r a t i o n s ) − forecast_2030 (3) )←↩

/ forecast_2030 (3) ∗100 ;
% error_tot ( i t e r a t i o n s ) = ( average_tot ( i t e r a t i o n s ) − forecast_2030 (4) )←↩

/ forecast_2030 (4) ∗100 ;
%
% end %fo r t = 1 : n r_ i t e r a t i on s

%%%===== plo t s t a t i s t i c a l r e s u l t s ============ %%%%
% MyMonteCarloInput . average_res = average_res ;
% MyMonteCarloInput . average_agr = average_agr ;
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% MyMonteCarloInput . average_ind = average_ind ;
% MyMonteCarloInput . average_tot = average_tot ;
%
% MyMonteCarloInput . std_deviat ion_res = std_deviat ion_res ;
% MyMonteCarloInput . std_deviation_agr = std_deviation_agr ;
% MyMonteCarloInput . std_deviation_ind = std_deviation_ind ;
% MyMonteCarloInput . std_deviat ion_tot = std_deviat ion_tot ;
%
% MyMonteCarloInput . e r ro r_res = error_res ;
% MyMonteCarloInput . error_agr = error_agr ;
% MyMonteCarloInput . error_ind = error_ind ;
% MyMonteCarloInput . e r ror_tot = error_tot ;
%
% MyMonteCarloInput . nr_simulations_array = nr_simulations_array ;
% MyMonteCarlo . s t a t i s t i c s_p l o t (MyMonteCarloInput ) ;
nbins = size_prob ; %number o f equa l l y spaced b ins = number o f random ←↩

numbers
MyMonteCarloInput . random_numbers_houses = random_numbers_houses ;
MyMonteCarloInput . houses_IDs = houses_IDs ;
MyMonteCarloInput . nbins = nbins ;
MyMonteCarlo . plot_histogram (MyMonteCarloInput ) ;
%MyMonteCarlo . plot_duration_curve ( MyMonteCarloInput ) ;
%MyMonteCarlo . plot_standard_deviat ion (MyMonteCarloInput ) ;

% MyMonteCarloInput . prob_res = prob_res ;
% MyMonteCarloInput . prob_agr = prob_agr ;
% MyMonteCarloInput . prob_ind = prob_ind ;
% MyMonteCarlo . p l o t_probab i l i t y_d i s t r i bu t i on (MyMonteCarloInput ) ;

%%Average PV per t r a f o %%
MyMonteCarloInput . id_ont = id_ont ;
MyMonteCarloInput . id_ont_l i s t = id_ont_l i s t ;
l i s t_o f_t r a f o s = MyMonteCarlo . find_PV_per_trafo ( MyMonteCarloInput ) ;
MyMonteCarloInput . l i s t_o f_t r a f o s = l i s t_o f_t r a f o s ;
MyMonteCarlo . plot_pv_per_trafo ( MyMonteCarloInput ) ;

%%%===== plo t std_dev vs . t o t a l PV ============ %%%%
% average_total_PV_array (x ) = MyMonteCarlo . find_average_total_PV (←↩

MyMonteCarloInput ) /1000; %MW
% MyMonteCarloInput . average_total_PV_array = average_total_PV_array ;
% std_dev_array (x ) = x ;
% MyMonteCarloInput . std_dev_array = std_dev_array ;

%%========== FIND the f o r e c a s t f o r the s p e c i f i e d year=========%%
% year = 2030 ;
% MyMonteCarloInput . year = year ;
% forecast_2030 = MyMonteCarlo . f i nd_fo r e ca s t (MyMonteCarloInput )
%
% year = 2050 ;
% MyMonteCarloInput . year = year ;
% forecast_2050 = MyMonteCarlo . f i nd_fo r e ca s t (MyMonteCarloInput )

%% == Save r e s u l t s o f Monte Carlo to ex c e l f i l e === %%
f i l ename = [ ' Exce l_ f i l e s \ Sim_results \PV_MC_' , num2str ( nr_sim ) , '←↩

sim_all_ONTs_HA . x l sx ' ] ;
h ead l i n e s1 = [{ 'HC_ID ' } { 'Tr ._ID ' } { 'PV[kW] per sim −> ' } ] ;
x l sw r i t e ( f i l ename , head l ines1 , 1 , 'A1 :C1 ' ) ;
xlrange_HA_id = 'A2 ' ;
xlrange_ONT_id = 'B2 ' ;
xlrange_PV_all = 'C2 ' ;
x l sw r i t e ( f i l ename , houses_IDs ( (number_of_HA+1) : end ) ,1 , xlrange_HA_id ) ;
x l sw r i t e ( f i l ename , id_ont ( (number_of_HA+1) : end ) ,1 , xlrange_ONT_id ) ;
x l sw r i t e ( f i l ename , PV_all ( ( number_of_HA+1) : end , : ) ,1 , xlrange_PV_all ) ;
x l sw r i t e ( f i l ename , ha_id_and_ont , 3 , 'A2 ' ) ;
x l sw r i t e ( f i l ename , matrix_of_ha_id , 3 , 'C2 ' ) ;
x l sw r i t e ( f i l ename , l i s t_o f_t ra f o s , 2 , 'A2 ' ) ;
x l sw r i t e ( f i l ename , matrix_of_trafos , 2 , 'D2 ' ) ;
h ead l i n e s2 = [{ 'Tr ._ID ' } { ' Houses per Tr . ' } { ' Average PV ' } { 'PV [kW] ←↩

per sim −> ' } ] ;
x l sw r i t e ( f i l ename , head l ines2 , 2 , 'A1 :D1 ' ) ;
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Appendix B

Matlab Script for Monte
Carlo Simulation Functions

%Functions f o r Monte Carlo RunSim s c r i p t
%Author : C e c i l i e S . Arnemo
%Last update : 21 . 05 . 14

c l a s s d e f MonteCarlo < handle
methods

%cons t ruc to r
func t i on obj = MonteCarlo ( )

obj ;
end

func t i on Output = random_nr ( obj , MyMonteCarloInput )
c l e a r CLASSES;
method = MyMonteCarloInput . method ;
prob = MyMonteCarloInput . prob ;
s ize_prob = 0 ;
i f method == 1

r = rand ; %uni formly d i s t r i bu t e d number between 0 and 1
random_nr = sum( r >= cumsum( [ 0 , prob ] ) ) ; %gene ra t e s i n t e g e r ←↩

number with the s p e c i f i e d p r obab i l i t y
size_prob = length ( prob ) ;

e l s e i f method == 2
r = rand ; %uni formly d i s t r i bu t e d number between 0 and 1

random_nr = sum( r >= cumsum( [ 0 , prob ] ) ) ; %gene ra t e s i n t e g e r ←↩
number with the s p e c i f i e d p r obab i l i t y

size_prob = length ( prob ) ;
i f random_nr == 1

std_dev = MyMonteCarloInput . std_dev ;
PV_typ = MyMonteCarloInput .PV_typ ;
random_nr = PV_typ + std_dev ∗( randn (1) ) ;%gene ra t e s a ←↩

number from normal d i s t r i b u t i o n with mean = PV_typ and←↩
std=std_dev

e l s e i f random_nr == 2
random_nr = 0 ; %no PV

end %i f random_nr
end %i f method
Output = [ random_nr size_prob ] ;

end % random_nr

func t i on plot_histogram ( obj , MyMonteCarloInput )
array_of_sums_res = MyMonteCarloInput . array_of_sums_res ;
array_of_sums_agr = MyMonteCarloInput . array_of_sums_agr ;
array_of_sums_ind = MyMonteCarloInput . array_of_sums_ind ;
array_of_sums = MyMonteCarloInput . array_of_sums ;

PV_all = MyMonteCarloInput . PV_all ;
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random_numbers_houses = MyMonteCarloInput . random_numbers_houses ;
method = MyMonteCarloInput . method ;

nbins = MyMonteCarloInput . nbins ;
houses_IDs = MyMonteCarloInput . houses_IDs ;
nr_sim = MyMonteCarloInput . nr_sim ;
i f method == 1

xvalues = [ 1 , nbins ] ;
end
%%==== plo t histogram ======= %%
histogram of the random numbers
f i g u r e (1 ) ;
i f method == 1
h i s t ( random_numbers_houses ' , xvalues , nbins ) ;
e l s e
h i s t ( random_numbers_houses ' ) ;
end
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} D i s t r i bu t i on o f random number ' ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Monte Carlo , method ' num2str (method ) , ' . ←↩

Number o f S imulat ions : ' num2str ( nr_sim ) ] ) ;

f i g u r e (2 ) ; hold on ;
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} S i z e o f PV plant [kW] ' ) ;
h i s t (PV_all ' ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Monte Carlo , method ' num2str (method ) , ' . ←↩

Number o f S imulat ions : ' num2str ( nr_sim ) ] ) ;

f i g u r e (3 ) ; hold on ;
y l ab e l ( ' \ f o n t s i z e {12} Occurrence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Aggregated PV [MW] ' ) ;
h i s t ( array_of_sums ) ;

t i t l e ( [ ' \ f o n t s i z e {12} Monte Carlo s imu la t i on . Number o f s imu la t i on s←↩
: ' num2str ( nr_sim ) ] ) ;

end % histogram

func t i on plot_duration_curve ( obj , MyMonteCarloInput )
PV_all = MyMonteCarloInput . PV_all ;
random_numbers_houses = MyMonteCarloInput . random_numbers_houses ;
method = MyMonteCarloInput . method ;
nbins = MyMonteCarloInput . nbins ;
houses_IDs = MyMonteCarloInput . houses_IDs ;
nr_sim = MyMonteCarloInput . nr_sim ;
l = length (PV_all ( 1 , : ) ) ;
n = 0 ;
xbins = 0 ;
p = 0 ;
P=0;
%%==== plo t durat ion curve ======= %%
f i g u r e (4 ) ;
[ n , xbins ] = h i s t (PV_all ' ) ;
p=n/ l ;
P = cumsum(p) ;
p l o t (cumsum(n) , xbins ) ;
%s e t ( gca , ' ydir ' , ' rev ' ) ;
y l ab e l ( ' \ f o n t s i z e {12} Generation s i z e [kW] ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Duration ' ) ;
t i t l e ( [ ' \ f o n t s i z e {12} MC method ' num2str (method ) , ' . Number o f ←↩

Simulat ions : ' num2str ( nr_sim ) ] ) ;
end %durat ion curve

func t i on output=f ind_fo r e ca s t ( obj , MyMonteCarloInput )
%%========== f ind the f o r e c a s t f o r the s p e c i f i e d year=========%%

year = MyMonteCarloInput . year ; %year o f f o r e c a s t
f o r e c a s t = x l s r ead ( ' 20140128_Ausbauszenario_PV_je_Sektor ' ) ;
a l l_year s = s i z e ( f o r e c a s t ) ;
f o r e c a s t_ag r i c u l t u r a l = 0 ;
f o r e ca s t_ indus t ry = 0 ;
f o r e c a s t_ r e s i d e n t i a l = 0 ;
f o r i = 1 : a l l_year s (1 )

i f f o r e c a s t ( i , 1 ) == year
f o r e c a s t_ r e s i d e n t i a l = f o r e c a s t ( i , 2 ) ;
f o r e ca s t_ indus t ry = f o r e c a s t ( i , 3 ) ;
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f o r e c a s t_ag r i c u l t u r a l = f o r e c a s t ( i , 4 ) ;
end %f o r e c a s t ( i , 1 ) == 2030

end %i = 1 : a l l_year s
PV_forecast_total_MW = fo r e c a s t_ag r i c u l t u r a l+fo r eca s t_ indus t ry+←↩

f o r e c a s t_ r e s i d e n t i a l ;%kW
output = [ f o r e c a s t_ r e s i d e n t i a l f o r e c a s t_ag r i c u l t u r a l ←↩

f o r e ca s t_ indus t ry PV_forecast_total_MW ] ;
end

func t i on output = find_total_PV ( obj , MyMonteCarloInput )
%f i nd t o t a l aggregated PV among roo f t op s a f t e r Monte Carlo ←↩

s imu la t i on
PV_all = MyMonteCarloInput . PV_all ;
category = MyMonteCarloInput . category ;
size_PV_all = s i z e (PV_all ) ;
nr_sim = size_PV_all (2 ) ;
nr_houses = size_PV_all (1 ) ;
%%============ f ind sum f o r every s imu la t i on =========%%
array_of_sums = 0 ;
array_of_sums_res = 0 ;
array_of_sums_agr = 0 ;
array_of_sums_ind = 0 ;
f o r j = 1 : nr_sim

sum_PV = 0 ;
sum_PV_res = 0 ;
sum_PV_agr = 0 ;
sum_PV_ind = 0 ;
f o r i = 1 : nr_houses

i f ( strcmp ( category ( i ) , 'Wohnbau ' ) )
sum_PV_res = sum_PV_res + PV_all ( i , j ) ;

e l s e i f ( strcmp ( category ( i ) , ' Landwirtschaf t ' ) )
sum_PV_agr = sum_PV_agr + PV_all ( i , j ) ;

e l s e i f ( strcmp ( category ( i ) , 'GHD ' ) )
sum_PV_ind = sum_PV_ind + PV_all ( i , j ) ;

end
sum_PV = sum_PV + PV_all ( i , j ) ;

end %i = nr_houses
array_of_sums ( j ) = sum_PV;
array_of_sums_res ( j ) = sum_PV_res ;
array_of_sums_agr ( j ) = sum_PV_agr ;
array_of_sums_ind ( j ) = sum_PV_ind ;
end %j = 1 : nr_sim
output = [ array_of_sums_res ' , array_of_sums_agr ' , ←↩

array_of_sums_ind ' , array_of_sums ' ] ;
end %find_total_PV

func t i on plot_total_PV ( obj , MyMonteCarloInput )
method = MyMonteCarloInput . method ;

array_of_sums_res = MyMonteCarloInput . array_of_sums_res ;
array_of_sums_agr = MyMonteCarloInput . array_of_sums_agr ;
array_of_sums_ind = MyMonteCarloInput . array_of_sums_ind ;
array_of_sums = MyMonteCarloInput . array_of_sums ;

%% ============ PLOT ALL SUMS ============ %%%
f i g u r e (5 ) ;
nr_sim = MyMonteCarloInput . nr_sim ;
hold on
p lo t ( array_of_sums_res , ' r ' )%, nr_sim , array_of_sums_agr /1000 , 'b←↩

' , nr_sim , array_of_sums_ind /1000 , 'g ' , nr_sim , ←↩
array_of_sums_agr /1000 , ' c ' )

p l o t ( array_of_sums_agr , 'b ' )
p l o t ( array_of_sums_ind , ' g ' )
p l o t ( array_of_sums , ' c ' )
s e t ( gca , ' yt i ck ' , [ 1 : 1 : 1 5 ] )
legend ( ' Res i d en t i a l ' , ' Agr i cu l t u r a l ' , ' Industry ' , ' Total ' , '←↩

Locat ion ' , ' NorthEastOutside ' )
t i t l e ( ' Total aggregated PV a f t e r Monte Carlo s imu la t i on ' )
y l ab e l ( ' \ f o n t s i z e {12} Total PV in g r id [MW] ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Simulat ion number ' ) ;
hold o f f

% f i g u r e (6 )
% p lo t ( array_of_sums /1000 , ' c ' )
% legend ( ' Total ' , ' Location ' , ' NorthEastOutside ' )
% t i t l e ( [ ' Total aggregated PV f o r MC method ' , num2str (method ) ] )
% y l ab e l ( '\ f o n t s i z e {12} Total PV in gr id [MW] ' ) ;
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% xlabe l ( '\ f o n t s i z e {12} Simulat ion number ' ) ;
end %plot_total_PV

func t i on plot_standard_deviat ion ( obj , MyMonteCarloInput )
std_dev_array = MyMonteCarloInput . std_dev_array ;
average_total_PV_array = MyMonteCarloInput . average_total_PV_array ;
method = MyMonteCarloInput . method ;
nr_sim = MyMonteCarloInput . nr_sim ;
f i g u r e (7 ) ;
p l o t ( average_total_PV_array , std_dev_array , ' r−−∗ ' )
t i t l e ( [ ' Total aggregated PV in GaP a f t e r Monte Carlo d i s t r i b u t i o n '←↩

] ) ;% method ' , num2str (method ) ] )
x l ab e l ( [ ' \ f o n t s i z e {12} Total PV [MW] . Every s t a r r ep r e s en t s ←↩

average o f ' , num2str ( nr_sim ) , ' s imu la t i on s ' ] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Standard dev i a t i on [kW] ' ) ;
s e t ( gca , ' yt i ck ' , [ 1 : 1 : 1 5 ] )

end

func t i on output = find_average_total_PV ( obj , MyMonteCarloInput )
%f i nd average aggregated PV among roo f t op s a f t e r Monte Carlo ←↩

s imu la t i on
array_of_sums_res = MyMonteCarloInput . array_of_sums_res ;
array_of_sums_agr = MyMonteCarloInput . array_of_sums_agr ;
array_of_sums_ind = MyMonteCarloInput . array_of_sums_ind ;
array_of_sums = MyMonteCarloInput . array_of_sums ;

average_res = mean( array_of_sums_res ) ;
average_agr = mean( array_of_sums_agr ) ;
average_ind = mean( array_of_sums_ind ) ;
average_tota l = mean( array_of_sums ) ;
output = [ average_res , average_agr , average_ind , average_tota l ] ;

end %find_average_total_PV

func t i on p l o t_probab i l i t y_d i s t r i bu t i on ( obj , MyMonteCarloInput )
prob_res = MyMonteCarloInput . prob_res ;
prob_agr = MyMonteCarloInput . prob_agr ;
prob_ind = MyMonteCarloInput . prob_ind ;
method = MyMonteCarloInput . method ;

i f method == 1
%%==== bar p lo t o f p r o b a b i l i t i e s ======= %%
f i g u r e (8 ) ; hold on ;
random_numbers_houses = MyMonteCarloInput . random_numbers_houses ;
method = MyMonteCarloInput . method ;
nbins = MyMonteCarloInput . nbins ;
houses_IDs = MyMonteCarloInput . houses_IDs ;
nr_sim = MyMonteCarloInput . nr_sim ;
xva lues = [ 1 , nbins ] ;
prob = [ prob_res ; prob_agr ; prob_ind ] ;
bar ( xvalues , prob ' )
s e t ( gca , ' xt i ck ' , [ 1 : 1 : 2 ] )
s e t ( gca , ' x t i c k l a b e l ' ,{ 'PV ' , 'No PV ' } ' )
y l ab e l ( ' \ f o n t s i z e {12} Probab i l i t y ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Random Number ' ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Input f o r Monte Carlo Model ' ] ) ;

l egend ( ' Res i d en t i a l ' , ' Agr i cu l t u r a l ' , ' I n du s t r i a l ' )
e l s e i f method == 2
%%==== plo t histogram ======= %%
%histogram of the random numbers

f i g u r e (9 ) ; hold on ;
h i s t ( random_numbers_houses ' ) ;
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} D i s t r i bu t i on o f random number ' ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Monte Carlo , method ' num2str (method ) , ' . ←↩

Number o f S imulat ions : ' num2str ( nr_sim ) ] ) ;
end

end %p lo t_probab i l i t y_d i s t r i bu t i on

func t i on output = find_PV_per_trafo ( obj , MyMonteCarloInput )
id_ont = MyMonteCarloInput . id_ont ;
PV_all = MyMonteCarloInput . PV_all ;
nr_houses = length ( id_ont ) ;
nr_sim = MyMonteCarloInput . nr_sim ;
simulation_number = MyMonteCarloInput . simulation_number ;
matrix_trafo_and_PV = 0 ;

105



%%average PV per house :
f o r i = 1 : nr_houses

sum_PV_per_house = 0 ;
f o r j = 1 : nr_sim

sum_PV_per_house = sum_PV_per_house + PV_all ( i , j ) ;
% i f ( strcmp ( category ( i ) , 'Wohnbau ' ) )
% sum_PV_res = sum_PV_res + PV_all ( i , j ) ;
% e l s e i f ( strcmp ( category ( i ) , ' Landwirtschaft ' ) )
% sum_PV_agr = sum_PV_agr + PV_all ( i , j ) ;
% e l s e i f ( strcmp ( category ( i ) , 'GHD' ) )
% sum_PV_ind = sum_PV_ind + PV_all ( i , j ) ;
% end

end %j = 1 : nr_sim
average_PV_per_house ( i ) = sum_PV_per_house/nr_sim ;
matrix_trafo_and_PV( i , 1 ) = id_ont ( i ) ;
matrix_trafo_and_PV( i , 2 ) = average_PV_per_house ( i ) ;
%matrix_trafo_and_PV( i , simulation_number ) = ←↩

sum_PV_per_house
end %i = nr_houses

%%make l i s t o f pv per t rans former :
id_ont_l i s t = MyMonteCarloInput . id_ont_l i s t ;
f o r i = 1 : l ength ( id_ont_l i s t )

sum_pv_trafo = 0 ;
nr_houses = 0 ;

f o r j =1: l ength (matrix_trafo_and_PV) %look f o r t r a f o number
i f matrix_trafo_and_PV( j , 1 ) == id_ont_l i s t ( i , 1 )

sum_pv_trafo = sum_pv_trafo + matrix_trafo_and_PV( j , 2 ) ;
nr_houses = nr_houses + 1 ;

end
end %fo r j =1: l ength (matrix_trafo_and_PV)

l i s t_o f_t r a f o s ( i , 1 ) = id_ont_l i s t ( i , 1 ) ;
l i s t_o f_t r a f o s ( i , 2 ) = nr_houses ;
l i s t_o f_t r a f o s ( i , 3 ) = sum_pv_trafo ;

end %f o r i = 1 : l ength ( id_ont_l i s t )

output = l i s t_o f_t r a f o s ;

end %PV_per_trafo

func t i on output = sum_ha_id( obj , MyMonteCarloInput )
PV_HA = MyMonteCarloInput .PV_HA;
nr_sim = MyMonteCarloInput . nr_sim ;
HA_IDs = MyMonteCarloInput .HA_IDs ;
nr_houses = MyMonteCarloInput . number_of_HA ;
id_ont = MyMonteCarloInput . id_ont ;
%f o r s = 1 : nr_sim

simulation_number = MyMonteCarloInput . simulation_number ;
matrix_HA_and_PV = 0 ;
%%PV per row :

f o r i = 1 : nr_houses
matrix_HA_and_PV( i , 1 ) = HA_IDs( i ) ;
matrix_HA_and_PV( i , 2 ) = id_ont ( i ) ;
matrix_HA_and_PV( i , 3 ) = PV_HA( i , simulation_number ) ;

end %i = nr_houses
%%make l i s t o f pv per HA_id :

id_HA_list = MyMonteCarloInput . id_HA_list ;

f o r i = 1 : l ength ( id_HA_list )
sum_pv_HA = 0 ;

f o r j =1: l ength (matrix_HA_and_PV) %look f o r t r a f o number
i f matrix_HA_and_PV( j , 1 ) == id_HA_list ( i , 1 )

sum_pv_HA = sum_pv_HA + matrix_HA_and_PV( j , 3 ) ;
this_ONT = matrix_HA_and_PV( j , 2 ) ;

end
end %fo r j =1: l ength (matrix_trafo_and_PV)

list_of_HA ( i , 1 ) = id_HA_list ( i ) ;
list_of_HA ( i , 2 ) = this_ONT ;
list_of_HA ( i , 3 ) = sum_pv_HA;

end %f o r i = 1 : l ength ( id_ont_l i s t )

output = [ list_of_HA ] ;
end %sum_ha_id
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f unc t i on output = find_PV_per_trafo_per_sim ( obj , MyMonteCarloInput )
id_ont = MyMonteCarloInput . id_ont ;
PV_all = MyMonteCarloInput . PV_all ;
nr_houses = length ( id_ont ) ;

simulation_number = MyMonteCarloInput . simulation_number ;
matrix_trafo_and_PV = 0 ;
%%PV per house :

f o r i = 1 : nr_houses
matrix_trafo_and_PV( i , 1 ) = id_ont ( i ) ;
matrix_trafo_and_PV( i , 2 ) = PV_all ( i , simulation_number ) ;

end %i = nr_houses

%%make l i s t o f pv per t rans former :
id_ont_l i s t = MyMonteCarloInput . id_ont_l i s t ;

f o r i = 1 : l ength ( id_ont_l i s t )
sum_pv_trafo = 0 ;

f o r j =1: l ength (matrix_trafo_and_PV) %look f o r t r a f o number
i f matrix_trafo_and_PV( j , 1 ) == id_ont_l i s t ( i , 1 )

sum_pv_trafo = sum_pv_trafo + matrix_trafo_and_PV( j , 2 ) ;
end

end %fo r j =1: l ength (matrix_trafo_and_PV)
l i s t_o f_t r a f o s ( i ) = sum_pv_trafo ;

end %f o r i = 1 : l ength ( id_ont_l i s t )

output = l i s t_o f_t r a f o s ;

end %PV_per_trafo_per_sim

func t i on plot_pv_per_trafo ( obj , MyMonteCarloInput )
l i s t_o f_t r a f o s = MyMonteCarloInput . l i s t_o f_t r a f o s ;
number_of_trafos = length ( l i s t_o f_t r a f o s ) ;
nr_sim = MyMonteCarloInput . nr_sim ;
l i s t_o f_t r a f o s = l i s t_o f_t r a f o s ( 1 : ( number_of_trafos−4) , : ) ;
f i g u r e (10)
bar ( l i s t_o f_t r a f o s ( : , 1 ) , l i s t_o f_t r a f o s ( : , 3 ) )
x l ab e l ( ' \ f o n t s i z e {12} Transformer number ' ) ;
y l ab e l ( ' \ f o n t s i z e {12} Total PV [kW] ' ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Aggregated PV per t rans fo rmer ( average o f ' ←↩

num2str ( nr_sim ) , ' s imu la t i on s ) ' ] ) ;
s e t ( gca , ' xt i ck ' , [ 1 : 1 5 : 2 0 2 ] )

end %func t i on

func t i on s t a t i s t i c s_p l o t ( obj , MyMonteCarloInput )
f i g u r e (11) ;
hold on ;

e r ro r_res = MyMonteCarloInput . e r ro r_res ;
error_agr = MyMonteCarloInput . error_agr ;
error_ind = MyMonteCarloInput . error_ind ;
er ror_tot = MyMonteCarloInput . e r ror_tot ;
nr_simulations_array = MyMonteCarloInput . nr_simulations_array ;
p l o t ( nr_simulations_array , error_res , ' r ' ) ;
p l o t ( nr_simulations_array , error_agr , 'm ' ) ;
p l o t ( nr_simulations_array , error_ind , ' g ' ) ;
p l o t ( nr_simulations_array , error_tot , ' c ' ) ;
l egend ( ' Res i d en t i a l ' , ' Agr i cu l t u r a l ' , ' Industry ' , ' Total ' )
t i t l e ( [ ' Percentage Error o f Sample Mean vs . Number o f S imulat ions ←↩

per Sample ' ] )
y l ab e l ( ' \ f o n t s i z e {12} Percentage Error ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions ' ) ;
hold o f f

f i g u r e (12) ;
hold on ;
std_deviat ion_res = MyMonteCarloInput . std_deviat ion_res ;
std_deviation_agr = MyMonteCarloInput . std_deviation_agr ;
std_deviation_ind = MyMonteCarloInput . std_deviation_ind ;
std_deviat ion_tot = MyMonteCarloInput . std_deviat ion_tot ;
p l o t ( nr_simulations_array , std_deviat ion_res , ' r ' ) ;
p l o t ( nr_simulations_array , std_deviation_agr , 'm ' ) ;
p l o t ( nr_simulations_array , std_deviation_ind , ' g ' ) ;
p l o t ( nr_simulations_array , std_deviation_tot , ' c ' ) ;
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l egend ( ' Res i d en t i a l ' , ' Agr i cu l t u r a l ' , ' Industry ' , ' Total ' ) ;
t i t l e ( [ ' Standard Deviat ion o f Sample vs . Number o f S imulat ions per←↩

Sample ' ] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Standard dev i a t i on ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions ' ) ;
hold o f f

f i g u r e (13) ;
hold on ;
average_res = MyMonteCarloInput . average_res ;
average_agr = MyMonteCarloInput . average_agr ;
average_ind = MyMonteCarloInput . average_ind ;
average_tot = MyMonteCarloInput . average_tot ;
p l o t ( nr_simulations_array , average_res , ' r ' ) ;
p l o t ( nr_simulations_array , average_agr , 'm ' ) ;
p l o t ( nr_simulations_array , average_ind , ' g ' ) ;
p l o t ( nr_simulations_array , average_tot , ' c ' ) ;
l egend ( ' Res i d en t i a l ' , ' Agr i cu l t u r a l ' , ' Industry ' , ' Total ' ) ;
t i t l e ( [ 'Mean Value o f Sample vs . Number o f S imulat ions per Sample '←↩

] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Mean o f sample [MW] ' ) ; %$\bar{X}$ ' , '←↩

i n t e r p r e t e r ' , ' l a tex ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions per Sample ' ) ;
hold o f f
forecast_PV = MyMonteCarloInput . forecast_PV ;

f i g u r e (14) ;
hold on ;

p l o t ( nr_simulations_array , average_tot , ' c ' ) ;
r e f l i n e (0 , forecast_PV (4) ) ;
t i t l e ( [ 'Mean Value o f Sample vs Number o f S imulat ions per Sample . ←↩

Total ' ] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Mean o f sample [MW] ' ) ; %$\bar{X}$ ' , '←↩

i n t e r p r e t e r ' , ' l a tex ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions per Sample ' ) ;
hold o f f

f i g u r e (15) ;
hold on ;
p l o t ( nr_simulations_array , average_res , ' r ' ) ;
r e f l i n e (0 , forecast_PV (1) ) ;
t i t l e ( [ 'Mean Value o f Sample vs Number o f S imulat ions per Sample . ←↩

Res i d en t i a l . ' ] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Mean o f sample [MW] ' ) ; %$\bar{X}$ ' , '←↩

i n t e r p r e t e r ' , ' l a tex ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions per Sample ' ) ;
hold o f f

f i g u r e (16) ;
hold on ;
p l o t ( nr_simulations_array , average_agr , 'm ' ) ;
r e f l i n e (0 , forecast_PV (2) )
t i t l e ( [ 'Mean Value o f Sample vs Number o f S imulat ions per Sample . ←↩

Agr i cu l tu r e . ' ] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Mean o f sample [MW] ' ) ; %$\bar{X}$ ' , '←↩

i n t e r p r e t e r ' , ' l a tex ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions per Sample ' ) ;
hold o f f

f i g u r e (17) ;
hold on ;
p l o t ( nr_simulations_array , average_ind , ' g ' ) ;
r e f l i n e (0 , forecast_PV (3) )
t i t l e ( [ 'Mean Value o f Sample vs Number o f S imulat ions per Sample . ←↩

I n du s t r i a l . ' ] ) ;
y l ab e l ( ' \ f o n t s i z e {12} Mean o f sample [MW] ' ) ; %$\bar{X}$ ' , '←↩

i n t e r p r e t e r ' , ' l a tex ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f S imulat ions per Sample ' ) ;
hold o f f

end %func t i on s t a t i s t i c s_ s p l o t

func t i on trafo_histogram ( obj , MyMonteCarloInput )
nr_sim = MyMonteCarloInput . nr_sim ;
nr_LVov_sim = MyMonteCarloInput . nr_LVov_sim ;
nr_MVov_sim = MyMonteCarloInput . nr_MVov_sim ;

f i g u r e (18) ; hold on ;
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
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x l ab e l ( ' \ f o n t s i z e {12} Number o f buses in 0 ,4 kV gr id with V > ←↩
1 .0 pu ' ) ;

h i s t (nr_LVov_sim ' ) ;
%h i s t ( array_of_sums_res ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Number o f S imulat ions : ' num2str ( nr_sim )←↩

] ) ;

f i g u r e (19) ; hold on ;
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f buses in 10 kV gr id with V > ←↩

1 .0 pu ' ) ;
h i s t (nr_MVov_sim) ;
%h i s t ( array_of_sums_res ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Number o f S imulat ions : ' num2str ( nr_sim )←↩

] ) ;
end %trafo_histogram

func t i on trafo_histogram_ev ( obj , MyMonteCarloInput )
nr_sim = MyMonteCarloInput . nr_sim ;
nr_LVov_sim = MyMonteCarloInput . nr_LVov_sim ;
nr_MVov_sim = MyMonteCarloInput . nr_MVov_sim ;

f i g u r e (20) ; hold on ;
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f buses in 0 ,4 kV gr id with V < ←↩

0 .9 pu ' ) ;
h i s t (nr_LVov_sim ' ) ;
%h i s t ( array_of_sums_res ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Number o f S imulat ions : ' num2str ( nr_sim )←↩

] ) ;

f i g u r e (21) ; hold on ;
y l ab e l ( ' \ f o n t s i z e {12} Occurence ' ) ;
x l ab e l ( ' \ f o n t s i z e {12} Number o f buses in 10 kV gr id with V < ←↩

0 .9 pu ' ) ;
h i s t (nr_MVov_sim) ;
%h i s t ( array_of_sums_res ) ;
t i t l e ( [ ' \ f o n t s i z e {12} Number o f S imulat ions : ' num2str ( nr_sim )←↩

] ) ;
end %trafo_histogram_ev

end %methods ( S t a t i c )
end %c l a s s d e f
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Appendix C

MatLab Script for Worst
Case Scenario

%% Code to perform power f low o f Worst Case Scenar io
%% Author : C e c i l i e S . Arnemo
%% Last update : 28 . 05 . 14

c l c ; c l e a r a l l ; format compact ;
RootPath = 'M:\ GaP_simulations\ ' ; %f o r remote desktop at NTNU
cd ( [ RootPath ] ) ;
addpath ( [ RootPath ' GaP_matlabscripts ' ] ) ;
addpath ( [ RootPath 'GaP_dss\WorstCaseScenario ' ] ) ;

%% Network data i n i t i a l i s a t i o n
NetworkFilename = ( [ RootPath 'GaP_dss\WorstCaseScenario \←↩

GW_GAP_MS_20131128. dss ' ] ) ;
mySimulator = NetSim ( NetworkFilename ) ;
%% Set vo l tage bases
mySimulator . SetVoltBase ( 'ALL ' , [ 0 . 4 2 .1 10 20 110 ] ) ;
mySimulator . SetParam ( ' load ' , 'ALL ' , 'Vminpu ' , 0 ) ;
mySimulator . SetParam ( ' load ' , 'ALL ' , 'Vmaxpu ' , 5 ) ;
mySimulator . SetParam ( ' load ' , 'ALL ' , ' model ' , 1 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vminpu ' , 0 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vmaxpu ' , 5 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , ' model ' , 1 ) ;
mySimulator . SolveNetwork ;

V_pu_original=mySimulator . GetBusPosSeqVolt ( ' a l l ' , 'pu ' ) ;

%% Load exc e l f i l e with cab l e l im i t s s%%%%
[ cable_nr , cable_char ] = x l s r ead ( ' Exce l_ f i l e s \ c a b l e l im i t s ' ) ;
cable_types = cable_char ( : , 1 ) ;
cab l e_ l im i t s = cable_char ( : , 8 ) ;
xlrange_HA_id = 'A1 : A7391 ' ;
xlrange_ONT_id = 'B1 : B7391 ' ;
xlrange_PV_all = 'C1 : ALN7391 ' ;
HA_id = x l s r ead ( f i l ename , 1 , xlrange_HA_id ) ;
ONT_id = x l s r ead ( f i l ename , 1 , xlrange_ONT_id ) ;
PV_all = x l s r ead ( f i l ename , 1 , xlrange_PV_all ) ;
ONT_id_SUM = xl s r ead ( f i l ename , 2 ) ;
NrHouses = length (HA_id) ;
ONTs = s i z e (ONT_id_SUM) ;
NrONTs = ONTs(1) ;
%% Number o f network buses
NrBus = mySimulator . NrBuses ;
AllLoads = mySimulator . GetList ( 'Load ' , ' a l l ' ) ;
load_and_volt = mySimulator . GetParam( 'Load ' , ' a l l ' , 'kV ' ) ;
NrLoads = length ( AllLoads ) ;
Pload = 0 . 5 5 5 ;

110



%% To f ind the PV po t en t i a l o f the r o o f s
[ house_numbers , house_char ] = x l s r ead ( ' / Exc e l_ f i l e s /←↩

AllHouses_ha_worstcase ' ) ;%
%numbers s to r ed in "numbers " , t e x t s t r i n g s s to r ed in " char "
id_ont_l i s t = x l s r ead ( ' \ Exc e l_ f i l e s \ id_ont_l i s t ' ) ;
id_HA_list = x l s r ead ( ' \ Exc e l_ f i l e s \ id_HA_list ' ) ;
PV_pot_all = house_numbers ( : , 1 6 ) ;
number_of_HA = 1577;
houses_IDs = house_numbers ( 1 : number_of_HA , 1 ) ;
%% === ASSIGN VALUES TO LOADS === %%
pf = 0 . 9 5 ;
f o r i = 1 : NrLoads
i f strcmp ( load_and_volt ( i , 2 ) , ' 0 .4 ' ) %%%%check i f load i s a LV load

mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , 'kW ' , ←↩
Pload ) ;

mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' pf ' , p f )←↩
;

mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' kvar ' , ←↩
Pload∗ tan ( acos ( pf ) ) )

e l s e i f strcmp ( load_and_volt ( i , 2 ) , ' 10 ' ) %%%%check i f load i s a ←↩
t rans former
noOfThisTransformer = st r2doub l e ( load_and_volt ( i , 1 ) ) ;
ix_row_nr = f ind (ONT_id_SUM( : , 1 )==noOfThisTransformer ) ;%%%%look up←↩

the ONT in MCS exc e l f i l e
noOfHousesThisTransformer = ONT_id_SUM( ix_row_nr , 2 ) ; %%%%%%f ind ←↩

number o f houses per ONT
mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , 'kW ' ,←↩

noOfHousesThisTransformer∗Pload ) ;
mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' pf ' , p f )←↩

;
mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' kvar ' , ←↩

noOfHousesThisTransformer∗Pload∗ tan ( acos ( pf ) ) ) ;
end
end
AllLoads = mySimulator . GetList ( 'Load ' , ' a l l ' ) ;
CustomerID_array = [0 ,5909 ,5806 ,5804 ,1022 ,1123 ,5836 ,5811 ,5535 ] ;%←↩

, 5813 ,822 ,2631 ,2632 ,2633 ,2615 ,2614 ,2612 ,820 ,821 ,815 ]
nr_customers = length ( CustomerID_array ) ;
f o r s = 1 : nr_customers
%s= nr o f PVs on f e ed e r
%% Add pas s i v e gene ra to r s %%%%

BusName = mySimulator . GetParam( 'Load ' , num2str (←↩
CustomerID_array ( s ) ) , 'Bus1 ' ) ;%f i nd bus where house i s ←↩
connected

mySimulator . AddElem( ' Generator ' , num2str ( CustomerID_array ( s ) )←↩
, ' bus1 ' ,BusName{2 ,2} , 'kW ' , 0 , ' kvar ' , 0 )

end
%% === Assign PV to loads === %%
fo r s = 1 : nr_customers

s %s= nr o f PVs on f e ed e r
f o r h = 1 : s

ix = f i nd ( houses_IDs==CustomerID_array (h) ) ;
PV_pot = 0 ;
f o r i = 1 : l ength ( ix ) ;
PV_pot = PV_pot + PV_pot_all ( i x ( i ) ) ;

end
PV_pot_array (h) = PV_pot ;

%%%%% Assign PV to house%%%%
mySimulator . SetParam ( ' Generator ' , num2str (←↩

CustomerID_array (h) ) , 'kW ' ,PV_pot_array (h) )
mySimulator . SetParam ( ' Generator ' , num2str (←↩

CustomerID_array (h) ) , ' kvar ' , 0 )
mySimulator . SetParam ( ' Generator ' , num2str (←↩

CustomerID_array (h) ) , ' pf ' , 1 )
end %h

%% === Solve the c i r c u i t === %%%%
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vminpu ' , 0 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vmaxpu ' , 5 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , ' model ' , 1 ) ;
mySimulator . DSSObj . Text . command = ( ' s o l v e mode=snap ' ) ;
mySimulator . SolveNetwork ;

%% === Save Resu l t s ===
%Save Bus Voltages :
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V_temp = mySimulator . GetBusPosSeqVolt ( 'ALL ' , 'pu ' ) ;
VBusAllpu ( : , 1 ) = V_temp( 2 : end , 1 ) ;
VBusAllpu ( : , s+1) = (V_temp( 2 : end , 2 ) ) ;
temp_kV = mySimulator . GetBusPosSeqVolt ( ' a l l ' , 'kV ' ) ;
VBusAll_kV ( : , 1 ) = temp_kV( 2 : end , 1 ) ;
VBusAll_kV ( : , s+1) = temp_kV( 2 : end , 2 ) ;
%%Save Powers
temp_S=mySimulator . GetPosSeqPower ( ' Transformer ' , 'TR2−1076931842 ' ,←↩

'kw ' ) ;
P( s ) = ce l l2mat (temp_S(2 ,5 ) ) ;
Q( s ) = ce l l2mat (temp_S(2 ,6 ) ) ;

end %f o r s=1:nr_customer

%% ==== Postproce s s ing r e s u l t s o f power f low ==== %%
%% Voltages
V_pu = ce l l2mat (VBusAllpu ( : , 2 : end ) ) ;
V_kV = ce l l2mat (VBusAll_kV ( : , 2 : end ) ) ;
VBusAll_kV ( : , 1 ) = temp_kV( 2 : end , 1 ) ;
VBusAll_kV ( : , s+1) = temp_kV( 2 : end , 2 ) ;

%% Find PV−buses
V_customer_buses=ze ro s ( nr_customers , nr_customers ) ;

f o r h=1: nr_customers
BusName = mySimulator . GetParam( 'Load ' , num2str ( CustomerID_array (h)←↩

) , 'Bus1 ' ) ;%f i nd bus where house i s connected
f o r x = 1 : l ength (VBusAll_kV)

i f strcmp (VBusAll_kV(x , 1 ) ,BusName{2 ,2})
V_customer_buses (h , : ) = ce l l2mat (VBusAll_kV(x , 2 : end ) ) ;

end
end

end

PV_pot_array
sum(PV_pot_array )
V_customer_buses

%% ==== Check over l oad ing o f l i n e segments ==== %%
al l_cur r en t s = mySimulator . GetPosSeqCurrent ( ' l i n e ' , ' a l l ' , ' a ' ) ;
thermal_l imit_vio lat ion = 0 ;
f o r i = 2 : l ength ( a l l_cu r r en t s )

i f strncmpi ( ce l l 2mat ( a l l_cur r en t s ( i , 2 ) ) , ' c i r c b ' , 5 )
e l s e i f strncmpi ( ce l l 2mat ( a l l_cur r en t s ( i , 2 ) ) , ' d i s c ' , 4 )
e l s e
th i s_ l i n e = ce l l2mat ( a l l_cu r r en t s ( i , 2 ) ) ;
th i s_current_l imi t = mySimulator . GetParam( ' l i n e ' , num2str (←↩

t h i s_ l i n e ) , 'NormAmps ' ) ;
i f c e l l 2mat ( a l l_cu r r en t s ( i , 3 ) )>str2num ( ce l l 2mat (←↩

th i s_current_l imi t (2 , 2 ) ) )
th i s_l inesegment = a l l_cur r en t s ( i , : )

th i s_current_l imi t
thermal_l imit_vio lat ion = thermal_l imi t_vio lat ion + 1 ;

end
end

end
thermal_l imit_vio lat ion

%% ====== Plot Resu l t s ===== %%
co l o r = { 'b ' ' g ' ' r ' ' c ' 'm ' 'k ' 'y ' '−∗b ' '−∗r ' '−∗c ' '−∗m ' '−∗k ' '←↩

−∗y ' '−.b ' '−.g ' '−. r ' '−. c ' '−.m ' '−.k ' '−.y ' } ;

f o r h=2: nr_customers
f i g u r e (1 )
t i t l e ( ' Voltages at Connection Point f o r Bu i ld ings ' )
x l ab e l ( ' \ f o n t s i z e {12}Number o f Bu i ld ings with roof−top PV ' ) ;
y l ab e l ( ' \ f o n t s i z e {12} Voltage [V] ' ) ;
s e t ( gca , ' xt i ck ' , [ 0 : 1 : ( nr_customers−1) ] )
x = [ 0 : 1 : ( nr_customers−1) ] ;
p l o t (x , V_customer_buses (h , : ) ∗1000 , c o l o r {h} , ' LineWidth ' , 1 ) ; hold←↩

on ;
legend ( ' Bui ld ing A ' , ' Bui ld ing B ' , ' Bui ld ing C ' , ' Bui ld ing D ' , '←↩

Bui ld ing E ' , ' Bui ld ing F ' , ' Bui ld ing G ' , ' Bui ld ing H ' , '←↩
Bui ld ing I ' , ' Bui ld ing J ' , ' Bui ld ing K ' , ' Bui ld ing L ' , '←↩
Bui ld ing M' , ' Bui ld ing N ' , ' Bui ld ing O ' , ' Bui ld ing P ' , '←↩
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Bui ld ing Q ' , ' Bui ld ing R ' , ' Bui ld ing S ' , ' Locat ion ' , '←↩
NorthEastOutside ' ) ;

end

f i g u r e (2 )
p l o t (x ,Q, '−c∗ ' ) ; hold on ;
p l o t (x ,P, '−b∗ ' ) ; hold on ;
p l o t (x , s q r t ( (P.^2)+(Q.^2) ) , '−. r+ ' ) ; hold on ;
%r e f l i n e (0 ,630) ;
t i t l e ( 'Power at Transformer 23 . ' )
x l ab e l ( ' \ f o n t s i z e {12}Number o f Bu i ld ings with roof−top PV ' ) ;
y l ab e l ( ' \ f o n t s i z e {12}Power [kVA,kW, kVAr ] ' ) ;
s e t ( gca , ' xt i ck ' , [ 0 : 1 : nr_customers ] )
x = [ 0 : 1 : ( nr_customers ) ] ;
l egend ( 'Q ' , 'P ' , 'S ' , ' Locat ion ' , ' NorthEastOutside ' )
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Appendix D

MatLab Script for Power
Flow Simulations

%% Code to perform power f low o f Monte Carlo Simulat ion Resu l t s
%% Author : C e c i l i e S . Arnemo
%% Last update : 01 . 06 . 14

c l c ; c l e a r a l l ; format compact ;
RootPath = 'M:\ GaP_simulations\ ' ; %f o r remote desktop at NTNU
cd ( [ RootPath ] ) ;
addpath ( [ RootPath ' GaP_matlabscripts ' ] ) ;
addpath ( [ RootPath 'GaP_dss ' ] ) ;

% Network data i n i t i a l i s a t i o n
NetworkFilename = ( [ RootPath 'GaP_dss\GW_GAP_MS_20131128. dss ' ] ) ;
mySimulator = NetSim ( NetworkFilename ) ;
% Set vo l tage bases
mySimulator . SetVoltBase ( 'ALL ' , [ 0 . 4 2 .1 10 20 110 ] ) ;
mySimulator . SetParam ( ' load ' , 'ALL ' , 'Vminpu ' , 0 ) ;
mySimulator . SetParam ( ' load ' , 'ALL ' , 'Vmaxpu ' , 5 ) ;
mySimulator . SetParam ( ' load ' , 'ALL ' , ' model ' , 1 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vminpu ' , 0 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vmaxpu ' , 5 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , ' model ' , 1 ) ;
mySimulator . SolveNetwork ;

V_pu_original=mySimulator . GetBusPosSeqVolt ( ' a l l ' , 'pu ' ) ;

%% Load exc e l f i l e with thermal l im i t%%
[ cable_nr , cable_char ] = x l s r ead ( ' Exce l_ f i l e s \ c a b l e l im i t s ' ) ;
cable_types = cable_char ( : , 1 ) ;
cab l e_ l im i t s = cable_char ( : , 8 ) ;

%% Load exc e l f i l e with Monte Carlo Simulat ion Resu l t s%%%%
f i l ename = [ ' Exce l_ f i l e s \ Sim_results \PV_MC_1000sim_all_ONTs_HA ' ] ;
xlrange_HA_id = 'A1 : A7391 ' ;
xlrange_ONT_id = 'B1 : B7391 ' ;
xlrange_PV_all = 'C1 : ALN7391 ' ;
HA_id = x l s r ead ( f i l ename , 1 , xlrange_HA_id ) ;
ONT_id = x l s r ead ( f i l ename , 1 , xlrange_ONT_id ) ;
PV_all = x l s r ead ( f i l ename , 1 , xlrange_PV_all ) ;
ONT_id_SUM = xl s r ead ( f i l ename , 2 ) ;
NrHouses = length (HA_id) ;
ONTs = s i z e (ONT_id_SUM) ;
NrONTs = ONTs(1) ;
%% Number o f network buses
NrBus = mySimulator . NrBuses ;
AllLoads = mySimulator . GetList ( 'Load ' , ' a l l ' ) ;
load_and_volt = mySimulator . GetParam( 'Load ' , ' a l l ' , 'kV ' ) ;
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NrLoads = length ( AllLoads ) ;
Pload = 0 . 5 5 5 ;
%% === ASSIGN VALUES TO LOADS === %%
pf = 0 . 9 5 ;
f o r i = 1 : NrLoads
i f strcmp ( load_and_volt ( i , 2 ) , ' 0 .4 ' ) %%%%check i f load i s a LV load

mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , 'kW ' , ←↩
Pload ) ;

mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' pf ' , p f )←↩
;

mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' kvar ' , ←↩
Pload∗ tan ( acos ( pf ) ) )

e l s e i f strcmp ( load_and_volt ( i , 2 ) , ' 10 ' ) %%%%check i f load i s a ONT
noOfThisTransformer = st r2doub l e ( load_and_volt ( i , 1 ) ) ;
ix_row_nr = f ind (ONT_id_SUM( : , 1 )==noOfThisTransformer ) ;%%%%look up←↩

the ONT in MCS exc e l f i l e
noOfHousesThisTransformer = ONT_id_SUM( ix_row_nr , 2 ) ; %%%%%%f ind ←↩

number o f houses per ONT
mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , 'kW ' ,←↩

noOfHousesThisTransformer∗Pload ) ;
mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' pf ' , p f )←↩

;
mySimulator . SetParam ( 'Load ' , c e l l 2mat ( load_and_volt ( i , 1 ) ) , ' kvar ' , ←↩

noOfHousesThisTransformer∗Pload∗ tan ( acos ( pf ) ) ) ;
end
end

AllLoads = mySimulator . GetList ( 'Load ' , ' a l l ' ) ;
%% === Add gene ra to r s to buses === %%
s = 1 ;
a = 0 ;
f o r i = 1 : NrLoads
thisLoad = AllLoads ( i ) ;

f o r j = 1 : NrHouses
i f s trcmpi ( AllLoads ( i ) , mat2str (HA_id( j ) ) ) %%check i f load i s a ←↩

house
a=a+1;

%% === Assign generator to houses === %%
BusName = mySimulator . GetParam( 'Load ' , mat2str (HA_id( j ) ) , '←↩

Bus1 ' ) ;%f i nd bus where house i s connected
mySimulator . AddElem( ' Generator ' , mat2str (HA_id( j ) ) , ' bus1 ' ,←↩

BusName{2 ,2} , 'kW ' , PV_all ( j , s ) , ' kvar ' , 0 ) ;
loads_with_HAid ( a )=thisLoad ;

end %i f strcmp
end %fo r j = 1 : NrHouses

f o r k = 1 :NrONTs
i f strcmpi ( AllLoads ( i ) , mat2str (ONT_id_SUM(k , 1 ) ) ) %%←↩

check i f load i s a t rans former
%% === Assign t o t a l g ene ra to r s to t rans fo rmer === %%

a=a+1;
BusName = mySimulator . GetParam( 'Load ' , mat2str (←↩

ONT_id_SUM(k , 1 ) ) , 'Bus1 ' ) ; %f i nd the bus where ←↩
t rans former i s connected

mySimulator . AddElem( ' Generator ' , mat2str (ONT_id_SUM(k←↩
, 1 ) ) , ' bus1 ' ,BusName{2 ,2} , 'kW ' ,ONT_id_SUM(k , s+3) , '←↩
kvar ' , 0 ) ;

ONTS_with_gen( a ) = thisLoad ;
end

end %fo r k
end %f o r i =1:NrLoads

%% === Assign PV from Monte Carlo to gene ra to r s === %%
nr_sim = 1000 ;
f o r s = 1 : nr_sim

s
f o r i = 1 : l ength ( loads_with_HAid )%NrLoads

f o r j = 1 : NrHouses
i f s trcmpi ( loads_with_HAid ( i ) , mat2str (HA_id( j ) ) ) %%check i f load←↩

i s a house
%% === Assign PV to house === %%

BusName = mySimulator . GetParam( 'Load ' , mat2str (HA_id( j ) ) , '←↩
Bus1 ' ) ;%f i nd bus where house i s connected

mySimulator . SetParam ( ' Generator ' , mat2str (HA_id( j ) ) , 'kW ' ,←↩
PV_all ( j , s ) ) ;
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mySimulator . SetParam ( ' Generator ' , mat2str (HA_id( j ) ) , ' pf ' , 1 ) ;
mySimulator . SetParam ( ' Generator ' , mat2str (HA_id( j ) ) , ' kvar ' , 0 )←↩

;
end %i f strcmp

end %fo r j = 1 : NrHouses
end
f o r i = 1 : l ength (ONTS_with_gen)%NrLoads

f o r k = 1 :NrONTs
i f strcmpi (ONTS_with_gen( i ) , mat2str (ONT_id_SUM(k , 1 ) ) ) %←↩

%check i f load i s an ONT trans fo rmer
%% === Assign t o t a l PV of ONT === %%

BusName = mySimulator . GetParam( 'Load ' , mat2str (←↩
ONT_id_SUM(k , 1 ) ) , 'Bus1 ' ) ; %f i nd the bus where ←↩
ONT i s connected

mySimulator . SetParam ( ' Generator ' , mat2str (←↩
ONT_id_SUM(k , 1 ) ) , 'kW ' ,ONT_id_SUM(k , s+3) ) ;

mySimulator . SetParam ( ' Generator ' , mat2str (←↩
ONT_id_SUM(k , 1 ) ) , ' pf ' , 1 ) ;

mySimulator . SetParam ( ' Generator ' , mat2str (←↩
ONT_id_SUM(k , 1 ) ) , ' kvar ' , 0 ) ;

end
end %fo r k

end %f o r i =1:NrLoads
%% === Solve the c i r c u i t with new s e t t i n g s === %%
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vminpu ' , 0 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , 'Vmaxpu ' , 5 ) ;
mySimulator . SetParam ( ' Generator ' , 'ALL ' , ' model ' , 1 ) ;
mySimulator . DSSObj . Text . command = ( ' s o l v e mode=snap ' ) ;
mySimulator . SolveNetwork ;
%% === Save Resu l t s === %%

%Save Bus Voltages
V_temp = mySimulator . GetBusPosSeqVolt ( 'ALL ' , 'pu ' ) ;
VBusAllpu ( : , 1 ) = V_temp( 2 : end , 1 ) ;
VBusAllpu ( : , s+1) = (V_temp( 2 : end , 2 ) ) ;
temp_kV = mySimulator . GetBusPosSeqVolt ( ' a l l ' , 'kV ' ) ;
VBusAll_kV ( : , 1 ) = temp_kV( 2 : end , 1 ) ;
VBusAll_kV ( : , s+1) = temp_kV( 2 : end , 2 ) ;

%% === Check trans fo rmer over l oad ing === %%
fo r i = 1 : NrLoads

f o r k = 1 :NrONTs
i f strcmpi ( AllLoads ( i ) , mat2str (ONT_id_SUM(k , 1 ) ) ) %%←↩

check i f load i s an ONT trans former
S_temp = mySimulator . GetPosSeqPower ( 'Load ' , mat2str (←↩

ONT_id_SUM(k , 1 ) ) , 'kW ' ) ;
S_trafo (k , 1 )=ONT_id_SUM(k , 1 ) ;
P_temp = ce l l2mat (S_temp(2 ,3 ) ) ;
Q_temp = ce l l2mat (S_temp(2 ,4 ) ) ;
S_trafo (k , s+1)=sq r t ( (P_temp^2)+(Q_temp^2) ) ;

end
end %fo r k

end
%% === Check thermal l im i t v i o l a t i o n === %%

al l_cur r en t s = mySimulator . GetPosSeqCurrent ( ' l i n e ' , ' a l l ' , ' a ' ) ;
thermal_l imit_vio lat ion = 0 ;

f o r i = 2 : l ength ( a l l_cu r r en t s )
i f strncmpi ( ce l l 2mat ( a l l_cur r en t s ( i , 2 ) ) , ' c i r c b ' , 5 )
e l s e i f strncmpi ( ce l l 2mat ( a l l_cur r en t s ( i , 2 ) ) , ' d i s c ' , 4 )
e l s e
th i s_ l i n e = ce l l2mat ( a l l_cu r r en t s ( i , 2 ) ) ;
th i s_current_l imi t = mySimulator . GetParam( ' l i n e ' , num2str (←↩

t h i s_ l i n e ) , 'NormAmps ' ) ;
i f c e l l 2mat ( a l l_cu r r en t s ( i , 3 ) )>str2num ( ce l l 2mat (←↩

th i s_current_l imi t (2 , 2 ) ) )
th i s_l inesegment = a l l_cur r en t s ( i , : )

th i s_current_l imi t
thermal_l imit_vio lat ion = thermal_l imi t_vio lat ion + 1 ;

end
end

end
number_of_TLV( s ) = thermal_l imit_vio lat ion ;
end %f o r s=1:nr_sim
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%% === Postproce s s ing r e s u l t s o f power f low === %%
f i l ename = [ ' Exce l_ f i l e s \ Sim_results \LF\LLMG\VBusAll_kV_ ' , num2str (←↩

nr_sim ) , ' pf ' , num2str ( pf ) , ' . x l sx ' ] ;
x l sw r i t e ( f i l ename , VBusAll_kV , 1 ) ;

%% === Transformator Overloading Cons ide ra t ions ==== %%
trans formator_rat ing = x l s r ead ( ' Exce l_ f i l e s \TransformatorRatings ' ) ;
f o r s= 1 : nr_sim
over load = 0 ;
f o r i = 1 : l ength ( S_trafo )

f o r j = 1 : l ength ( t rans formator_rat ing )
i f S_trafo ( i , 1 ) == trans formator_rat ing ( j , 1 )

i f S_trafo ( i , s+1)>trans formator_rat ing ( j , 3 )
over load = over load + 1 ;
S_trafo ( i , : )
t rans formator_rat ing ( j , : )

end
end

end
end
over loaded_tra fos ( s ) = over load ;
end

f i g u r e (4 )
bar ( over loaded_trafos , 'm ' ) ;
t i t l e ( [ ' Overloaded Transformers f o r Semi−Fast Charging Scenar io . ←↩

Total number o f t rans fo rmer s : ' , num2str ( l ength (←↩
t rans formator_rat ing ) ) ] )

x l ab e l ( ' \ f o n t s i z e {12} Simulat ion number ' ) ;
y l ab e l ( ' \ f o n t s i z e {12}Number o f Overloaded Transformers ' ) ;
s e t ( gca , ' xt i ck ' , [ 1 : 9 : nr_sim ] )

%% ========= Current Cons ide ra t ions ============ %%

nr_l ines = length ( a l l_cur r en t s ) ;
f i g u r e (3 )
bar (number_of_TLV , ' g ' ) ;
t i t l e ( [ ' Overloaded Lines f o r Summer Day Scenar io . Total number o f ←↩

l i n e s : ' , num2str ( nr_l ines ) ] )
x l ab e l ( ' \ f o n t s i z e {12} Simulat ion Number ' ) ;
y l ab e l ( ' \ f o n t s i z e {12}Number o f Lines ' ) ;
s e t ( gca , ' xt i ck ' , [ 1 : 9 : nr_sim ] )

%% ========= Voltage Cons ide ra t i ons ============ %%
V_pu = ce l l2mat (VBusAllpu ( : , 2 : end ) ) ;
V_kV = ce l l2mat (VBusAll_kV ( : , 2 : end ) ) ;

%% Count the number o f ove rvo l t ag e s in LV gr id and MV gr id
size_V_kV = s i z e (V_kV) ;
nr_buses = size_V_kV(1) ;
nr_simulations_performed = size_V_kV(2) ;
f o r s=1: nr_simulations_performed

nr_lv = 0 ;
nr_mv = 0 ;
f o r h=1:nr_buses

i f V_kV(h , s )< 0 .6 && V_kV(h , s )> 0 .4
nr_lv = nr_lv+1;

end
i f V_kV(h , s )< 15 && V_kV(h , s )> 10

nr_mv = nr_mv+1;
end

end
nr_LVov_sim( s ) = nr_lv ;
nr_MVov_sim( s ) = nr_mv ;

end
nr_LVov_sim ;
nr_MVov_sim ;

%% plo t histogram of the number o f ove rvo l t ag e s per s imu la t i on

MyMonteCarlo = MonteCarlo ( ) ;
MyMonteCarloInput . nr_LVov_sim = nr_LVov_sim ;
MyMonteCarloInput . nr_MVov_sim = nr_MVov_sim ;
MyMonteCarloInput . nr_sim = nr_sim ;
MyMonteCarlo . trafo_histogram (MyMonteCarloInput )
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%% f ind vo l tage va lues that are above 1 .0 pu %%
[ ix , i y ] = f i nd (V_pu ( : , : ) >1.0) ;
i x_la s t = ix ( l ength ( ix ) ) ;
ix_nr_rows = f ind ( ix ( : ) == ix_las t ) ;
ix_rows = ix_nr_rows (1) ;
overvoltages_pu = ze ro s ( ix_rows , nr_sim ) ;
overvoltages_kV = ze ro s ( ix_rows , nr_sim ) ;
f o r i =1: ix_rows

thisBus = ix ( i ) ;
overvoltages_names ( i , 1 ) = VBusAllpu ( thisBus , 1 ) ;
overvoltages_pu ( i , : ) = V_pu( thisBus , : ) ;
overvoltages_kV ( i , : ) = V_kV( thisBus , : ) ;

end

[ ix2 ] = f i nd ( overvoltages_kV ( : , 1 ) <1.0) ; %f i nd LV buses
LV_buses = ze ro s ( l ength ( ix2 ) , nr_sim ) ;
f o r i =1: l ength ( ix2 )

thisBus = ix2 ( i ) ;
LV_buses ( i , : ) = overvoltages_kV ( thisBus , : ) ;

end
[ ix3 ] = f i nd ( overvoltages_kV ( : , 1 ) >8.0 & overvoltages_kV ( : , 1 ) <15) ; %←↩

f i nd MV buses
MV_buses = ze ro s ( l ength ( ix3 ) , nr_sim ) ;
f o r i =1: l ength ( ix3 )

thisBus = ix3 ( i ) ;
MV_buses( i , : ) = overvoltages_kV ( thisBus , : ) ;

end

f o r i =1: l ength (LV_buses ( : , 1 ) )
f i g u r e (1 )
t i t l e ( 'LV buses with V > 0.4 kV ' )
x l ab e l ( ' \ f o n t s i z e {12} Simulat ion number ' ) ;
y l ab e l ( ' \ f o n t s i z e {12} Voltage [ kV ] ' ) ;
p l o t (LV_buses ( i , : ) , ' r ' , ' LineWidth ' , 1 ) ; hold on ;

end
f i g u r e (1 )
r e f l i n e ( [ 0 0 . 4 1 2 ] ) ;

f o r i =1: l ength (MV_buses ( : , 1 ) )
f i g u r e (2 )
t i t l e ( 'MV buses with V > 10 kV ' )
x l ab e l ( ' \ f o n t s i z e {12} Simulat ion number ' ) ;
y l ab e l ( ' \ f o n t s i z e {12} Voltage [ kV ] ' ) ;
p l o t (MV_buses( i , : ) , ' r ' , ' LineWidth ' , 1 ) ; hold on ;

end
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