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S U M M A R Y
The reflecting zone in the subsurface insonified by the first quarter of a wavelength and the
portion of the reflecting surface involved in these reflections is called the Fresnel zone or first
Fresnel zone. The horizontal resolution is controlled by acquisition factors and the size of the
Fresnel zone. We derive an analytic expression for the radius of the Fresnel zone in time domain
in transversely isotropic medium with a vertical symmetry axis (VTI) using the perturbation
method from the parametric offset-traveltime equation. The acoustic assumption is used for
simplification. The Shanks transform is applied to stabilize the convergence of approximation
and to improve the accuracy. The similar strategy is applied for the azimuth-dependent radius
of the Fresnel zone in orthorhombic (ORT) model for a horizontal layer. Different with the VTI
case, the Fresnel zone in ORT model has a quasi-elliptic shape. We show that the size of the
Fresnel zone is proportional to the corresponding traveltime, depth and the frequency. From
the numerical examples, we can see that the Shanks transform approximations for Fresnel
zone are very accurate for both VTI and ORT media.
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I N T RO D U C T I O N

The most common question in the reflection seismology is the res-
olution of the seismic image. We can consider both vertical and
horizontal resolution. The horizontal resolution is controlled by ac-
quisition factors and the size of the Fresnel zone. The Fresnel zone
is, named for physicist Augustin-Jean Fresnel, used to compute the
radio waves propagating between a transmitter and a receiver in
antenna system (Hristov 2000). The Fresnel zone or first Fresnel
zone in geophysics indicates the portion of a reflector from which
the energy of a reflection can reach a detector where the wave prop-
agates within a 1/4 wavelength. The second Fresnel zone is defined
from the energy that arrives delayed one-half to one cycle, adding
destructively to the energy from the first zone. Similarly, there is a
third zone and so on. The adjective ‘first’ is often dropped away be-
cause when the contributions of all zones are added together, only
the first Fresnel zone remains while the effects of all subsequent
zones cancel each other. Borrowed from classical physical optics,
Seismic interpreters often use the Fresnel-zone concept to estimate
the lateral resolution of unmigrated, stacked P-wave data. (Lindsey
1989; Sheriff 1996).

The Fresnel zone can be defined as the region of construc-
tive interference enclosing the ray-theoretical reflection or mode-
conversion point (Sheriff 1980). Fresnel zones and volumes can be
computed very efficiently by forwarding dynamic ray tracing in a
known velocity model (Červený & Soares 1992). Eaton et al. (1991)
extended the Fresnel-zone concept to include mode-converted
(P–SV) reflections for both surface and VSP geometries. The equa-

tion that describes the size of a Fresnel zone in a constant-velocity
medium for a zero offset can be found in (Sheriff 1996). How ac-
tual Fresnel zones are computed for 3-D zero-offset reflections by
forwarding modelling in a known medium is described in Hubral
et al. (1993).

The projected Fresnel zone of a zero-offset reflection onto the
subsurface reflector using a standard 3D CMP traveltime analysis,
without knowing the overburden was developed in (Hubral et al.
1993; Schleicher et al. 1997). The calculation for the Fresnel zone
radius was done in the time domain by Trorey (1970).

Since the Fresnel zone width is a measure of lateral resolution,
usually, seismic waves cannot detect the subsurface features smaller
than the size of Fresnel zone. More attention has been made to the
awareness of three-dimensional effect within the frame of seismic
resolution. Aspects of the seismic resolution which can be achieved
in a seismic survey and the physical factors that limit this resolution
have been treated by Sheriff (1980) and Lindsey (1989). The Fresnel
zone determines the spatial resolving power for unmigrated seismic
data with which important lithological changes along a seismic pro-
file direction may be observed (Sheriff 1980). Additionally, it also
largely contributes to the reflected and transmitted wavefields, and
more specifically to their amplitudes (Spetzler & Snieder 2004;
Favretto-Cristini et al. 2007a,b). Hagedoorn (1954) pointed out that
the reflections area of the interface, and therefore vertical resolution
can also be thought of as a Fresnel-zone problem. While the verti-
cal resolution is mostly linked to the seismic wavelength (see, for
instance, Widess 1982), the lateral resolution depends on Fresnel
zone considerations (Lindsey 1989) and its difference in pre- and
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post-migrated data. Červený (2001) suggests two methods to in-
clude the Fresnel zone parameter calculations into the ray tracing
procedure in complex 2D and 3D structures. Using a derivation
that is based on mostly geometric considerations, Monk (2010) ex-
amined the shape of the Fresnel zone for the nonzero offset for a
model with constant velocity gradient. The implications for seismic
acquisition for adequate imaging were made by Monk (2009) when
the Fresnel zone is properly sampled.

Few papers have been devoted to anisotropic media. For instance,
Okoye & Uren (2000) calculate the Fresnel zone radius for zero-
offset configurations for P- and SH-waves in TI media and isotropic
media and for dipping plane reflectors. They conclude that the Fres-
nel zone radius is predominantly dependent on the curvatures and
wavelength of the wave front as well as the dip angle of the reflector.
The Thomsen anisotropy parameters δ, ε and γ (Thomsen 1986)
also affect the Fresnel zone radius. Moser & Červený (2007) show
how the Fresnel region can be calculated by conventional dynamic
ray tracing in Cartesian coordinates, for isotropic and anisotropic
inhomogeneous layered media. Fresnel volume and interface Fres-
nel zone for reflected and transmitted waves from a curved interface
in anisotropic media were analysed by Ursin et al. (2014).

In this paper, an analytic expression for the Fresnel zone radius
is derived using the traveltime for VTI model by using the pertur-
bation method. In order to do that, the parametric offset-traveltime
equations under the acoustic approximation are used. We apply the
Shanks transform to stabilize the approximation and improve the
accuracy. The similar perturbation strategy is applied for the an-
alytic expression of Fresnel zone radius in orthorhombic (ORT)
model. The accuracy of proposed approximation for Fresnel zone
is illustrated for both VTI and ORT models.

F R E S N E L Z O N E U S I N G
T H E T R AV E LT I M E

The seismic wave sent out from the source propagates in space and
spread out over a larger area. The horizontal resolution is controlled
by the Fresnel zone, the part of a reflector covered by the seismic
signal at a certain depth where the wave propagates within 1/4
wavelength after it first touches the reflector. The Fresnel zone (or
first Fresnel zone) radius for a homogeneous horizontal layer is
defined in Fig. 1 (top). It is convenient to express the Fresnel zone
using the traveltime parameters. The Fresnel zone radius X F can
be treated as the wave propagates in lateral direction with certain
traveltime tF and the Fresnel zone radius using the traveltime is
calculated by using the Pythagorean theorem (Fig. 1, bottom),

X 2
F + Z 2 = (

Vφ tF

)2
, (1)

where tF is the corresponding traveltime when the wave propagates
by 1/4 wavelength after arriving the reflector with tF = t0 + �t ,
where �t = 1

4 f , f is the frequency, t0 is the vertical traveltime with

t0 = Z
V0

, Z is the reflector depth, V0 is the P-wave vertical velocity,
Vϕ is the corresponding group velocity computed for group angle
ϕ defined from the vertical axis.

For a horizontal layer in a homogeneous isotropic (ISO) medium
(Vϕ = V0 = V ), the Fresnel radius using the traveltime is computed
as following

X F = V
√

t2
F − t2

0 . (2)

Figure 1. The first Fresnel zone diagram in represented by the depth (top)
and traveltime (bottom).

By using tF = t0 + 1
4 f , the radius of Fresnel zone X F can be com-

puted from simple geometrical considerations (Fig. 1, top),

X 2
F + Z 2 =

(
t0V + λ

4

)2

, (3)

where λ is the wavelength with λ = V
f , V is the constant velocity.

Solving eq. (3) for X F gives

X F =
√(

Z + V

4 f

)2

− Z 2. (4)

As the wave propagates in three dimensions, the Fresnel zone for
the isotropic model above is a circle with the radius computed from
eq. (4) shown in Fig. 2.

T H E F R E S N E L Z O N E I N A V T I M E D I U M

In an anisotropic medium, the velocity of the seismic wave varies
with the propagation angle. For a homogeneous VTI model, there
are two additional anisotropic parameters δ and ε (Thomsen 1986).
The shape of the P-wave wave front in VTI model is a quasi-ellipse
instead of a circle as it is shown in Fig. 3.

Based on the concept of the Fresnel zone, which indicates the
area in the vicinity of a ray that can be expressed in terms of the
traveltime (tF ) (Fig. 1, bottom) and the change in this traveltime with
one-fourth of the wavelength (�t). Computed from the dynamic ray
tracing, the parametric equations for traveltime and offset are given
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Figure 2. The diagram showing the Fresnel zone in an isotropic medium.

Figure 3. The radius of Fresnel zone for P wave in homogeneous ISO and
VTI media.

by (Alkahlifah 1998)

x(p) = pt0V 2
n(

1 − 2ηp2V 2
n

)3/2√
1 − (1 + 2η) p2V 2

n

,

t(p) =
t0

(
2ηp4V 4

n + (
1 − 2ηp2V 2

n

)2
)

(
1 − 2ηp2V 2

n

)3/2√
1 − (1 + 2η) p2V 2

n

, (5)

where Vn is the normal moveout (NMO) velocity with Vn =
V0

√
1 + 2δ, η = ε−δ

1+2δ
is the anellipticity parameter (Alkhalifah &

Tsvankin 1995), and p is the ray parameter (horizontal slowness).
For the Fresnel zone in VTI model, the radius is computed from
the corresponding offset when the ray travels from the source to the
edge of the Fresnel zone with certain traveltime tF . The geometry
for calculating the radius of Fresnel zone in a homogeneous ISO
and VTI model is shown in Fig. 3.

In order to obtain an analytic expression in VTI model, we define
the perturbation series for Fresnel radius squared up to third order
by

X 2
F = M0 + M1η + M2η

2 + M3η
3. (6)

For the elliptical case (η = 0), the traveltime and offset squared
are shown by

X 2(p)η=0 = p2
F t2

0 V 4
n

1 − p2
F V 2

n

,

T 2(p)η=0 = t2
0

1 − p2
F V 2

n

, (7)

where the slowness for the elliptical assumption is given by

pF =
√

t2
F − t2

0

tF Vn

. (8)

The zeroth-order coefficient M0 is computed by

M0 = X 2(p)η=0 = p2
F t2

0 V 4
n

1 − p2
F V 2

n

= (
t2
F − t2

0

)
V 2

n . (9)

The other coefficients (see Appendix A) in eq. (6) are given by

M1 = 2
(
t2
F − t2

0

)2
V 2

n

t2
F

,

M2 = 4t2
0

(
t2
F − t2

0

)3
V 2

n

t6
F

,

M3 = 24t4
0

(
t2
F − t2

0

)4
V 2

n

t10
F

. (10)

In order to stabilize the approximation and improve the accuracy,
two types of Shanks transform (Bender & Orszag 1978) are defined
on the perturbation series in eq. (6) given by

X 2
S1 = X0 X2 − X 2

1

X0 + X2 − 2X1
,

X 2
S2 = X1 X3 − X 2

2

X1 + X3 − 2X2
, (11)

where X 2
k = ∑k

j=0 M jη
j , k = 0, 1, 2, 3. The perturbation coeffi-

cients M j ( j = 0, 1, 2, 3) are given in eqs (9) and (10).
In order to test the accuracy of the approximations above,

we introduce a VTI model with the parameters: V0 = 2 km s−1,
Vn = 2.2 km s−1 and η = 0.2, and plot the relative error in Fresnel
radius versus corresponding traveltime (tF ), depth and frequency by
using the approximations from second and third perturbation series
and the Shanks transforms in Fig. 4. Note that the Fresnel zone varies
with depth at frequency f = 30 Hz and the Fresnel zone varies with
frequency at depth z = 2 km. One can see that the accuracy from
third order perturbation series is higher than second order and the
Shanks transform improves the accuracy greatly for both second
and third order series. The second order Shanks transform approxi-
mation X S2 results in the most accurate result and even as accurate
as the exact one. We plot the Fresnel zone radius approximation X S2

versus anisotropic parameters δ (with η = 0.2) and η (with δ = 0.1)
in Fig. 5. One can see that the Fresnel radius is increasing both with
δ and η, and it is more sensitive with δ. The radius of Fresnel zone
using the approximation X S2 in ISO and VTI models versus travel-
time tF , depth and frequency are shown in Fig. 6. The tendency for
the Fresnel zone radius with respect to traveltime, depth and fre-
quency for ISO and VTI models is very similar. We plot the shape
of Fresnel zone for ISO (V = 2 km s−1, f = 30 Hz and z = 2 km)
and VTI (V0 = 2 km s−1, Vn = 2.2 km s−1, η = 0.2, f = 30 Hz and
z = 2 km) models in Fig. 7. One can see that, similar to ISO case,
the Fresnel zone in VTI model is also a circle but with a larger radius
as the velocity in VTI model is independent with the azimuth. Note
that the exact numerical results or the reference results are obtained
from performing the dynamic ray tracing on the parametric offset-
traveltime in eq. (5). Similar to the moveout approximation t(x), the
Fresnel zone radius using the traveltime parameters can be treated
as x(t). The exact results can be computed from the parametric
offset-traveltime equation shown in eq. (5).
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Figure 4. The relative error in Fresnel radius versus the corresponding traveltime (left), depth (middle) and frequency (right) using four types of approximation
in VTI model. (Note that the Fresnel zone varies with depth at frequency f = 30 Hz and the Fresnel zone varies with frequency at depth z = 2 km.)

Figure 5. The Fresnel radius using second order Shanks transform approximation XS2 versus anisotropy parameters δ (with η = 0.2) and η (with δ = 0.1).

Figure 6. The radius of Fresnel zone in ISO and VTI models versus traveltime (left), depth (middle) and frequency (right). The Fresnel radius computed from
ISO and VTI models is shown by black and blue colours, respectively. (Note that the Fresnel zone varies with depth at frequency f = 30 Hz; The Fresnel zone
varies with frequency at depth z = 2 km.)

T H E F R E S N E L Z O N E I N A N O RT
M E D I U M

To compute the azimuth-dependent radius of the Fresnel zone for
a homogeneous ORT model, we use exact parametric offset and
traveltime equations (Stovas 2015):

x
(

px , py

) = px F2
2

V 2
n1t0

f 1/2
1 f 3/2

2

,

y
(

px , py

) = py F2
1

V 2
n2t0

f 1/2
1 f 3/2

2

,

t
(

px , py

) = t0

(
F2

1 p2
y V 2

n2 + F2
2 p2

x V 2
n1 + f1 f2

)
f 1/2
1 f 3/2

2

, (12)

where x and y are the corresponding offset projections, and

F1 = 1 − p2
x V 2

n1

(
2η1 − ηxy

)
,
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Figure 7. The Fresnel zone in ISO and VTI models. The Fresnel zone
computed from ISO and VTI models is shown by black and blue colours,
respectively.

F2 = 1 − p2
y V 2

n2

(
2η2 − ηxy

)
,

f1 = 1 − (1 + 2η1) p2
x V 2

n1 − (1 + 2η2) p2
y V 2

n2

+
(

(1 + 2η1) (1 + 2η2) − (
1 + ηxy

)2
)

p2
x p2

y V 2
n1V 2

n2,

f2 = 1 − 2η1 p2
x V 2

n1 − 2η2 p2
y V 2

n2 + (
4η1η2 − η2

xy

)
p2

x p2
y V 2

n1V 2
n2,

(13)

with V0, Vn1, Vn2 being the vertical and NMO velocities. NMO
velocities Vn1 and Vn2 are defined in [X, Z ] and [Y, Z ] planes,
respectively. Anellipticity parameters η1 and η2 are defined in cor-
responding two vertical symmetry [X, Z ] and [Y, Z ] planes. The
cross-term anellipticity parameter ηxy is defined as (Stovas 2015)

ηxy =
√

(1 + 2η1) (1 + 2η2)

1 + 2η3
− 1, (14)

where anellipticity parameter η3 is defined in the [X, Y ] plane
(Vasconcelos & Tsvankin 2006).

Similar to VTI case, by setting the traveltime t equal to tF ,
we relate the Fresnel zone R(X F , YF ) with the depth of re-
flector. We introduce a homogeneous ORT model with parame-
ters: V0 = 2 km s−1, Vn1 = 2.2 km s−1, Vn2 = 2.4 km s−1, η1 = 0.2,
η2 = 0.15, ηxy = 0.2, f = 30 Hz and the depth of the horizontal re-
flector is z = 2 km and show the exact Fresnel zone R(X F , YF ) for
ORT model with a quasi-elliptic shape in Fig. 8. Note that similar to
the VTI case, the exact solution is computed from performing the
dynamic ray tracing in the parametric offsets-traveltime equaiton
through the ray parameters (two horizontal slownesses) shown in
eq. (12).

In order to get the analytic expression of the azimuth-dependent
radius for the Fresnel zone in ORT model, we define the perturbation
series up to the second order by

R2
F = x2

F + y2
F = N0 +

∑
j=1,2,3

N jη j +
∑

i, j=1,2,3

Ni jηiη j , (15)

where 3 ≡ xy, the perturbation coefficients N j and Ni j are given
by the model parameters: V0, Vn1, Vn2, η1, η2, ηxy , the frequency f
and the group azimuth 
. To compute the perturbation coefficients,
we format the parametric offset and traveltime squared from two
projections into the radial offset and the azimuth given by Koren &

Figure 8. The Fresnel zone computed for a homogeneous ORT model. The
model parameters are: V0 = 2 km s−1, Vn1 = 2.2 km s−1, Vn2 = 2.4 km s−1,
η1 = 0.2, η2 = 0.15, ηxy = 0.2 and f = 30 Hz. The depth of the horizontal
reflector is z = 2 km. The Fresnel zone in ORT model has a quasi-elliptical
shape.

Ravve (2014)

R2 (pr , φ) = x2 (pr , φ) + y2 (pr , φ) ,

T 2 (pr , φ) = t2 (pr , φ) , (16)

with the relations

px = pr cos(φ),

py = pr sin(φ). (17)

Angle φ in eq. (16) is the phase azimuth. The group azimuth 


can be computed from the following transform in the ellipsoidal
assumption (Stovas 2015),

tan(
) = V 2
n2

V 2
n1

tan(φ). (18)

Note that this equation is correct not only for the ellipsoidal as-
sumption, but also as zero-order approximation for any non-elliptic
VTI media with arbitrarily large intrinsic anellipticity η, but for
infinitesimal (actually, close to zero) offset or horizontal slowness.
Otherwise, the transform between the acquisition azimuth and the
phase azimuth will include, in addition to this zero-order term, also
other terms with (even) powers of offset or horizontal slowness.

The analytic expression for Fresnel zone in ORT model in eq. (15)
is derived by equating the exact eq. (12) by setting the traveltime
into tF with the perturbation series defined in eq. (15).

The coefficient N0 is computed by setting all anellipticity param-
eters into zero given by

N0 = (
t2
F − t2

0

)
V 2

n (
), (19)

where Vn(
) is the NMO ellipse (Grechka & Tsvankin 1999) with

1

V 2
n (
)

= cos (
)2

V 2
n1

+ sin (
)2

V 2
n2

. (20)

The coefficient N0 provides the radius squared of Fresnel zone in
the ellipsoidal isotropic medium. The other perturbation coefficients
N j and Ni j are computed by equating the exact expressions with
the perturbation series shown in Appendix B.

Using the ORT model above, we show the polar plots of sensitivity
computed from first order (left), quadratic (middle) and cross-term
(right) coefficients in the perturbation series versus the group az-
imuth in Fig. 9, respectively. One can see from the plots that for
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Figure 9. The sensitivity computed from first order (left), quadratic (middle) and cross-term coefficients in eq. (15) in the perturbation series for Fresnel zone
versus the group azimuth. The depth of the horizontal reflector is z = 2 km.

Figure 10. The contour plot of error in RF from two approximations for ORT model plotted versus corresponding traveltime and the group azimuth (top)
and depth and the group azimuth (bottom). The perturbation series approximation and Shanks transform are shown in left and right, respectively. The model
parameters are given in caption for Fig. 8.

first and quadratic order coefficients, the sensitivity in anellipticity
parameters η1 and η2 have the similar shapes and reach the maximal
values for 0 and π/2 azimuth angle, respectively. The sensitivity in
cross-term anellipticity parameter ηxy reaches its maximal value at
π/4 azimuth angle for first order coefficient. For quadratic order
coefficient, the sensitivity to cross-term anellipticity parameter is
very small. For cross-term coefficients, the sensitivity to anellip-
ticity parameters η1η2 reaches the maximal value at π/4 azimuth
angle. For the sensitivity to anellipticity parameters η1ηxy and η2ηxy ,
they obtain their maximal values at around π/6 and π/3 azimuth
angle, respectively.

Similar to the approximations in VTI case, the Shanks transform
can also be applied to the perturbation series in ORT model (eq. 15)
and results in

RS = N0 + R2
1

R1 − R2
, (21)

where N0 is defined in eq. (19), R1 = ∑
i Niηi and R2 =∑

i j Ni jηiη j , (i, j = 1, 2, xy) are the first- and second-order term
coefficients are given in Appendix B (eqs B10, B12 and B14).

N U M E R I C A L E X A M P L E S

In order to test the accuracy of the Fresnel zone approximation
in ORT model, we use the ORT model introduced above with
the parameters:V0 = 2 km s−1, Vn1 = 2.2 km s−1, Vn2 = 2.4 km s−1,
η1 = 0.2, η2 = 0.15 and ηxy = 0.2. Note that for the computa-
tion versus traveltime t0 = 1 rms, the computation versus depth
f = 30 Hz and the computation versus frequency z = 2 km. The
relative error in Fresnel zone with two approximations (perturba-
tion series and the Shanks transform) using the ORT model above
versus corresponding (traveltime, group azimuth) and (depth, group
azimuth) is shown in Fig. 10, respectively. One can see that for the
error plotted with traveltime tF , the maximal error is obtained at
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Fresnel zone in VTI and orthorhombic media 187

Figure 11. The contour plot of error in RF from two approximations for ORT model plotted versus corresponding traveltime and the group azimuth (top) and
depth and the group azimuth (bottom). The perturbation series approximation and Shanks transform are shown in left and right, respectively. The ORT model
parameters are defined with the velocities specified in the caption for Fig. 8 and the higher anellipticity parameters: η1 = 0.4, η2 = 0.3 and ηxy = 0.4.

Figure 12. The contour plot of error in RF from two approximations for ORT model plotted versus corresponding traveltime and the group azimuth (top) and
depth and the group azimuth (bottom). The perturbation series approximation and Shanks transform are shown in left and right, respectively. The ORT model
parameters are defined with the velocities specified in the caption for Fig. 8 and the negative anellipticity parameters: η1 = −0.2, η2 = −0.15 and ηxy = −0.2.
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188 S. Xu and A. Stovas

Figure 13. The Fresnel zone computed for ORT model for different traveltime (left), depth (middle) and frequency (right) using the ORT model with parameters
given in the caption for Fig. 8.

Figure 14. The shape of the Fresnel zone computed for ISO, EI and ORT
models. The depth of the horizontal reflector is z = 2 km.

about 40◦ azimuth for traveltime tF = 1.5 s, for the plots versus
depth, the maximal error is obtained at zero depth around 35◦ az-
imuth for two approximations and the accuracy from these two
approximations is almost the same. The Shanks transform does not
help a lot in improving the accuracy on the perturbation series for
the Fresnel zone radius approximation, the reason for this is that
the sensitivity in perturbation coefficients is very small (shown in
Fig. 9), the effect by using the Shanks transform is not obvious.
We show another numerical example with higher anellipticity pa-
rameters with η1 = 0.4, η2 = 0.3 and ηxy = 0.4, while keeping the
remaining model parameters the same in Fig. 11. Compared with
the plots in Fig. 10, the error for the ORT model with higher anellip-
ticity parameters is larger and the effect from the Shanks transform
is more significant. One more numerical example, with all negative
anellipticity parameters: η1 = −0.2, η2 = −0.15 and ηxy = −0.2,
while keeping the same remaining model parameters, is shown in
Fig. 12. One can tell that comparing with the plots in Fig. 10 the
error from negative anellipticity parameters is larger. Similar to the
plots in Fig. 10, the effect from the Shanks transform is not obvious.

Using the Shanks transform approximation in eq. (21), we show
the radius of the Fresnel zone versus different traveltime, depth

Figure 15. The diagram showing the Fresnel zone in an anisotropic medium.
Angles θ1 and θ2 are phase angles measured in corresponding points at wave
fronts t = t0 and t = t0 + �t , respectively.

and frequency in Fig. 13. One can see from the plots that the radius
increases with traveltime and depth while decreases with frequency.

Selecting a horizontal reflector with the depth z = 2 km, we show
the shape of the Fresnel zone using the Shanks transform approxi-
mation (shown in eq. 21) for ORT, elliptical isotropic (EI), and ISO
model in Fig. 14, respectively. Note that for EI model, all anelliptic-
ity parameters are zero (η1 = η2 = η3 = 0), for ISO model, there
is one velocity with V = V0 = Vn1 = Vn2 = 2 km s−1. One can see
from the plots that the Fresnel zones for ORT and EI model almost
coincide that indicates that less sensitivity of the Fresnel zone in
anellipticity parameters, which is also explained by the polar plots
in Fig. 9. For ISO case, the Fresnel zone is just a circle with the
radius smaller than the ones in ORT and EI model.

Note that the advantage of this paper is an attempt of a direct
offset-traveltime approximation, perturbing the anellipticity of VTI,
or the three anellipticities of ORT medium. The Fresnel zone cal-
culation is a particular case for this method, when the time is the
Fresnel zone traveltime, and the offset is its radius. Similarly, the
moveout approximation can also be derived from the same strategy.

D I S C U S S I O N S

The reason why we derive the approximation for the Fresnel zone
using the traveltime is to avoid the complexity in dealing with the
phase domain velocities. By the definition, the Fresnel zone radius is
defined by the lateral projection when the seismic wave propagates
for 1/4 wavelength after arriving the reflector with λ = Vθ

f , Vθ is

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/213/1/181/4757074 by N

orges Teknisk-N
aturvitenskapelige U

niversitet user on 04 January 2019



Fresnel zone in VTI and orthorhombic media 189

Figure 16. The contour plot of error in RF from two approximations for ORT model plotted versus corresponding traveltime and the group azimuth (top)
and depth and the group azimuth (bottom). The perturbation series approximation and Shanks transform are shown in left and right, respectively. The ORT
model parameters are: top—t0 = 0.6 s, Vn1 = 2.2 km s−1, Vn2 = 2.4 km s−1, η1 = 0.2, η2 = 0.15 and ηxy = 0.2; bottom—V0 = 2 km s−1, Vn1 = 2.2 km s−1,
Vn2 = 2.4 km s−1, η1 = 0.2, η2 = 0.15, ηxy = 0.2 and f = 10 Hz.

Figure 17. The sketch showing the Fresnel zone for a dip reflector in a homogeneous VTI model.

the wave-front velocity (phase velocity) with the phase angle θ .
Shown in Fig. 15, if the model is isotropic, the phase angle θ1

measured at wave front (t = t0) is equal to θ2 measured at wave front
(t = t0 + �t). However, for the anisotropic model, two wave fronts
are not parallel (θ1 �= θ2), to compute the Fresnel zone radius X F ,
the change in the phase angle needs to be taken into consideration,
which makes the computation much more complicated. Using the
traveltime parameters, what we are interested in is the ray traveling
from the source to the reflector with the certain traveltime tF =
t0 + �t (Fig. 1, bottom) that makes the derivation much simpler for
anisotropic media.

In order to singularize the anomaly of error plot in ORT model,
we apply one more numerical example from the perturbation series
(eq. 15) and the Shanks transform approximation (eq. 21) in Fig. 16,
(left and right, respectively) with a smaller t0 (t0 = 0.6 s) and fre-
quency ( f = 10 Hz). One can see that for the error plot versus
traveltime and group azimuth, the shape of the anomaly is more
obvious and maximal error is obtained at the centre of the anomaly.
For the error plot versus depth and group azimuth, the maximal
error is obtained at about 40◦ azimuth when the depth is zero.

This perturbation based method for the Fresnel zone in the
anisotropic model can be extended for the model with a dip
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reflector. Shown in Fig. 17, the Fresnel zone for a dip reflector
with the dip angle α in a homogenous VTI model is consist of
two parts (r1 and r2), which is the corresponding distance in two
directions along the dip reflector when the seismic wave propagates
within 1/4 wavelength after it first touches the dip reflector. We as-
sume the value of the dip angle α and the depth of the first touching
point z′

0 are known. The Fresnel zones (r1 and r2) are calculated
by

r1 = x0
′ − x1

′

cos α
, r2 = x2

′ − x0
′

cos α
, (22)

where x ′
0 is the offset for the first touching point, x ′

1 and x ′
2 are the

corresponding offsets for the Fresnel zone boundary point with the
corresponding depth z′

1 and z′
2. The corresponding offsets x ′

1 and
x ′

2 are computed by the Shanks transform approximation shown in
eq. (10) with the certain traveltime tF = t0 + �t

x1
′ = {

z1
′, tF , V0, Vn, η, α

}
,

x2
′ = {

z2
′, tF , V0, Vn, η, α

}
, (23)

where the two corresponding depth z′
1 and z′

2 are obtained from the
Pythagorean theorem

z0
′

tan α
+ (

x0
′ − x1

′ [z1
′]) = z1

′ tan α ⇒ z1
′,

z0
′

tan α
− (

x2
′ [z2

′] − x0
′) = z2

′ tan α ⇒ z2
′. (24)

Note that on contrary to the horizontal reflector case, the Fresnel
zone is not symmetric for dip reflector case (r1 �= r2).

C O N C LU S I O N S

We derive the form of Fresnel zone radius using the traveltime pa-
rameter and use it to obtain the analytic expressions in an acoustic
VTI and ORT models from the exact offset-traveltime parametric
equation using the perturbation method. The analysis of the Fres-
nel zone radius is applied versus corresponding traveltime, depth
and the frequency. One can tell that the Fresnel zone radius in
anisotropic media (VTI and ORT) increases with traveltime and
depth, while decreases with frequency. The Shanks transform is
applied to stabilize the approximation and improve the accuracy
for both two models. Shown from the numerical examples that for
VTI model, the second order Shanks transform is the most accu-
rate approximation that is almost as accurate as the exact one. For
ORT model, the quasi-elliptical shape is obtained for the Fresnel
zone. The perturbation series and the Shanks transform approxi-
mation are all very accurate and almost the same accuracy for the
Fresnel zone calculation due to the small sensitivity in perturbation
coefficients.
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A P P E N D I X A : T H E A NA LY T I C E X P R E S S I O N F O R F R E S N E L Z O N E
I N A H O M O G E N E O U S V T I M O D E L U S I N G T H E P E RT U R B AT I O N M E T H O D

In order to obtain an analytic expression for Fresnel radius squared in VTI model, we define the perturbation series up to third order by

X 2
F = M0 + M1η + M2η

2 + M3η
3. (A1)

For elliptical case (η = 0), the traveltime and offset squared are obtained from the parametric equation (5) by

X 2(p)η=0 = p2
F t2

0 V 4
n

1 − p2
F V 2

n

,

T 2(p)η=0 = t2
0

1 − p2
F V 2

n

, (A2)

where pF =
√

t2
F −t2

0
tF Vn

for the elliptical assumption. The zeroth-order coefficient M0 is computed by

M0 = X 2(p)η=0 = p2
F t2

0 V 4
n

1 − p2
F V 2

n

= (
t2
F − t2

0

)
V 2

n . (A3)

The first-order coefficient is obtained by

M1 =
[

∂ X 2(p)

∂η
− ∂ M0

(
t2
F → t2

)
∂η

]
= 2

(
t2
F − t2

0

)2
V 2

n

t2
F

. (A4)

Subsequently, we compute the second- and third-order coefficients, given by

M2 =
[

∂2 X 2(p)

∂η2
− ∂ M1

(
t2
F → t2

)
∂η

− ∂2 M0

(
t2
F → t2

)
∂η2

]
= 4t2

0

(
t2
F − t2

0

)3
V 2

n

t6
F

,

M3 =
[

∂3 X 2(p)

∂η3
− ∂ M2

(
t2
F → t2

)
∂η

− ∂2 M1

(
t2
F → t2

)
∂η2

− ∂3 M0

(
t2
F → t2

)
∂η3

]

= 24t4
0

(
t2
F − t2

0

)4
V 2

n

t10
F

. (A5)

Note that these perturbations coefficients Mi , (i = 0, ..., 3) are all η independent since tF is an argument in the approximation. The parameters
for the approximation in VTI model are tF , t0 and Vn . The effect for the anellipticity is hidden in parameter tF . t2

F → t2 means tF here should
use the function form shown in the parametric equation (eq. 5) for derivation after applying the elliptical assumption to get the coefficients
(M1, M2 and M3).

A P P E N D I X B : T H E A NA LY T I C E X P R E S S I O N F O R F R E S N E L Z O N E
I N A H O M O G E N E O U S O RT M O D E L U S I N G T H E P E RT U R B AT I O N M E T H O D

To compute the perturbation coefficients in eq. (15), we format the parametric offset and traveltime squared from two projections into the
radius offset and the phase azimuth given by

R2 (pr , φ) = x2 (pr , φ) + y2 (pr , φ) ,

T 2 (pr , φ) = t2 (pr , φ) , (B1)

with the relations as below

px = pr cos(φ),

py = pr sin(φ). (B2)

We represent the parametric equations in terms of slowness pr and the phase azimuth φ for the elliptical assumption:

R2(pr , φ)η=0 = p2
r t2

0

(
V 4

n1 cos (φ)2 + V 4
n2 sin (φ)2

)
1 − p2

r

(
V 2

n1 cos (φ)2 + V 2
n2 sin (φ)2

) ,

T 2(pr , φ)η=0 = t2
0

1 − p2
r

(
V 2

n1 cos (φ)2 + V 2
n2 sin (φ)2

) , (B3)

which gives

pr =
√

t2
F − t2

0

tF

√
V 2

n1 cos (φ)2 + V 2
n2 sin (φ)2

. (B4)
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First the coefficient N0 for the ellipsoidal case is computed by setting all anellipticity parameters into zero given by

N0 =
(
t2
F − t2

0

) (
V 4

n1 cos (φ)2 + V 4
n2 sin (φ)2

)
V 2

n1 sin (φ)2 + V 2
n2 cos (φ)2

. (B5)

Note that the azimuth φ in equations above is the phase azimuth. We need to convert the azimuth from phase to group domain by the relation
in the elliptic assumption

tan(
) = V 2
n2

V 2
n1

tan(φ). (B6)

The coefficient N0 for the ellipsoidal case is terms of group azimuth is given by

N0 = (
t2
F − t2

0

)
V 2

n (
), (B7)

where Vn(
) is the NMO ellipse (Grechka & Tsvankin 1999) with

1

V 2
n (
)

= cos (
)2

V 2
n1

+ sin (
)2

V 2
n2

. (B8)

Similar to VTI case, using the perturbation method, we compute the first-order coefficients as following

N1 =
[

∂ R2
F

∂η1
− ∂ N0

∂η1

]
η2=ηxy=0

,

N2 =
[

∂ R2
F

∂η2
− ∂ N0

∂η2

]
η1=ηxy=0

,

Nxy =
[

∂ R2
F

∂ηxy
− ∂ N0

∂ηxy

]
η1=η2=0

. (B9)

The first-order coefficients N1, N2 and Nxy in terms of group azimuth are given by

N1 = 2 cos (
)4
(
t2
F − t2

0

)2
V 2

n1V 4
n2

(
V 2

n2 cos (
)2 + (
4V 2

n1 − 3V 2
n2

)
sin (
)2

)
t2
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)3
,

N2 = 2 sin (
)4
(
t2
F − t2

0

)2
V 4

n1V 2
n2

(
V 2

n1 sin (
)2 + (
4V 2

n2 − 3V 2
n1

)
cos (
)2

)
t2
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)3
,

Nxy = 2 sin (
)2 cos (
)2
(
t2
F − t2

0

)2
V 2

n1V 2
n2

(
2V 4

n1 sin (
)2 − V 2
n1V 2

n2 + 2V 4
n2 cos (
)2

)
t2
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)3
. (B10)

Subsequently, the quadratic coefficients N11, N22 and Nxyxy are computed as following

N11 =
[

1

2

(
∂2 R2

F

∂η2
1

)
−

(
∂2 N0

∂η2
1

+ ∂ N1

∂η1

)]
η2=ηxy=0

,

N22 =
[

1

2

(
∂2 R2

F

∂η2
2

)
−

(
∂2 N0

∂η2
2

+ ∂ N2

∂η2

)]
η1=ηxy=0

,

Nxyxy =
[

1

2

(
∂2 R2

F

∂η2
xy

)
−

(
∂2 N0

∂η2
xy

+ ∂ Nxy

∂ηxy

)]
η1=η2=0

, (B11)

and shown in terms of group azimuth by

N11 = − 4 cos (
)6
(
t2
F − t2

0

)3
V 2

n1V 6
n2

t6
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)5

(
t2
0 V 4

n2 cos (
)4 + ((
8t2

0 + t2
F

)
V 2

n1 − ((
7t2

0 + 6t2
F

))
V 2

n2

)
V 2

n2 sin (
)2 cos (
)2

+ 5t2
F V 2

n1 sin (
)4
(
V 2

n2 − 2V 2
n1

))
,

N22 = − 4 sin (
)6
(
t2
F − t2

0

)3
V 6

n1V 2
n2

t6
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)5

(
t2
0 V 4

n1 sin (
)4 + ((
8t2

0 + t2
F

)
V 2

n2 − ((
7t2

0 + 6t2
F

))
V 2

n1

)
V 2

n1 sin (
)2 cos (
)2

+ 5t2
F V 2

n2 cos (
)4
(
V 2

n1 − 2V 2
n2

))
,

Nxyxy = sin (
)2 cos (
)2
(
t2
F − t2

0

)3
V 2

n1V 2
n2

t6
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)5

(
6t2

F V 8
n1 sin (
)6 − V 6

n1V 2
n2

(
t2
F sin (
)2 + (

16t2
0 + 21t2

F

)
cos (
)2

)
sin (
)4 ,

+ 4V 4
n1V 4

n2

(
3t2

0 + 4t2
F

)
sin (
)2 cos (
)2 − (

t2
F cos (
)2 + (

16t2
0 + 21t2

F

))
V 2

n1V 6
n2 cos (
)4 + 6t2

F V 8
n2 cos (
)6

)
. (B12)
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The remaining cross-term coefficients N12, N1xy and N2xy are computed as following

N12 =
[

∂2 R2
F

∂η1∂η2
−

(
∂ N0

∂η1

∂ N0

∂η2
+ ∂ N1

∂η2
+ ∂ N2

∂η1

)]
ηxy=0

,

N1xy =
[

∂2 R2
F

∂η1∂ηxy
−

(
∂ N0

∂η1

∂ N0

∂ηxy
+ ∂ N1

∂ηxy
+ ∂ Nxy

∂η1

)]
η2=0

,

N2xy =
[

∂2 R2
F

∂η2∂ηxy
−

(
∂ N0

∂η2

∂ N0

∂ηxy
+ ∂ N2

∂ηxy
+ ∂ Nxy

∂η2

)]
η1=0

, (B13)

and shown in terms of group azimuth by

N12 = −8 sin (
)4 cos (
)4
(
t2
F − t2

0

)3
V 4

n1V 4
n2

t6
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)5

(
4

(
t2
0 + 2t2

F

)
V 4

n1 sin (
)2 − 3
(
t2
0 + t2

F

)
V 2

n1V 2
n2 + 4

(
t2
0 + 2t2

F

)
V 4

n2 cos (
)2
)
,

N1xy = −4 sin (
)2 cos (
)4
(
t2
F − t2

0

)3
V 2

n1V 4
n2

t6
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)5

(−8t2
F V 6

n1 sin (
)4 + V 4
n1V 2

n2 sin (
)2
(
3t2

F sin (
)2 + (
12t2

0 + 13t2
F

)
cos (
)2

)
− V 2

n1V 4
n2 cos (
)2

((
10t2

0 + 13t2
F

)
sin (
)2 + (

2t2
0 + t2

F

)
cos (
)2

) + 2V 6
n2

(
2t2

0 + 3t2
F

)
cos (
)4

)
,

N2xy = −4 sin (
)4 cos (
)2
(
t2
F − t2

0

)3
V 4

n1V 2
n2

t6
F

(
V 2

n1 sin (
)2 + V 2
n2 cos (
)2

)5

(−8t2
F V 6

n2 cos (
)4 + V 2
n1V 4

n2 cos (
)2
(
3t2

F cos (
)2 + (
12t2

0 + 13t2
F

)
sin (
)2

)
− V 4

n1V 2
n2 sin (
)2

((
10t2

0 + 13t2
F

)
cos (
)2 + (

2t2
0 + t2

F

)
sin (
)2

) + 2V 6
n1

(
2t2

0 + 3t2
F

)
sin (
)4

)
. (B14)

Note that when taking the derivatives for the coefficients N j and Ni j , we need to set the tF in the coefficients into T shown in eq. (B1) for
computation.
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