
Gamifying TDT4100

Syver Bolstad

Master of Science in Informatics

Supervisor: Hallvard Trætteberg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Summary

There have been major advancements in information technology lately, and therefore an
ever growing need for good programmers. This leads to more programming students, and
an increasing pressure on the educators. The course TDT4100 Object-oriented program-
ming at Norwegian University of Science and Technology(NTNU) makes use of teaching
assistants who read the students’ code and provide feedback on code quality, which is time
consuming for both students and teaching assistants. Advances in information technology
have also led to an increased interest in computer games and introduction of the term gami-
fication, which describes the use of elements from games in non-game contexts. This study
addresses the development of a prototype of a learning system that through gamification
attempts to supplement the coursework of Object-oriented programming, and explores the
benefits introduced by the prototype. The learning system has an additional focus on the
wide range of programming skills relevant to the course.

The first part of the study provides a detailed introduction to the term gamification, where
both positive and negative sides are explored. In addition, a small introduction to code
quality is provided, and how code quality information can be retrieved from the code
automatically. These findings are then adapted to Object-oriented programming, and are
used together with the feedback from iterative user test as the basis for the development of
the prototype.

The next part of the study handles simulating the usage of the system using previously
delivered code. The results of the simulation show that the prototype is not adequately
customized and that it has many possible improvements, but also introduces some benefits
to the exercise plan. The results also show that the simulation in itself is useful both for
customizing the award model of the prototype, and providing relevant information about
the coursework to the lecturer.

i

Sammendrag

Det har blitt gjort store fremskritt i informasjonsteknologien den siste tiden, og det er der-
for et stadig voksenede behov for gode programmerere. Dette fører til flere programmerings-
studenter, og et økende press på utdanningspersonellet. Faget objektorientert programmer-
ing ved NTNU benytter seg av studentassistenter som leser gjennom koden til studentene
og gir tilbakemelding på kodekvalitet, noe som er tidkrevende både for studenten og stu-
dentassistentene. Fremskrittene i informasjonsteknologien har også ført til en økt interesse
for dataspill og introduksjonen av begrepet gamification, som beskriver bruken av ele-
menter fra spill i andre sammenhenger. Dette studiet tar for seg utviklingen av en prototype
av et læringssystem. Som ved bruk av gamification forsøker å supplere øvingsopplegget til
objektorientert progammering, og utforsker hvilke fordeler som blir introdusert av proto-
typen. Prototypen har et ekstra fokus på det store spekteret av programmeringsferdigheter
som er relevant for faget.

Den første delen av studiet gir en detaljert utredning av begrepet gamification, hvor både
positive og negative sider blir blir utforsket. I tillegg gis en liten innføring i kodek-
valitet, og hvordan informasjon om kodekvalitet kan hentes ut fra koden automatisk. Disse
funnene blir deretter tilpasset objektorientert programmering, og de blir sammen med
tilbakemeldingene fra en iterativ brukertesting benyttet som grunnlag for utviklingen av
prototypen.

Den neste delen av studiet går ut på å simulere bruken av systemet, ved hjelp av tidligere
innlevert kode. Resultatene fra simuleringen viser at prototypen ikke er tilpasset tilstrekke-
lig og har flere muligheter for forbedring, men også at den introduserer flere fordeler til
øvingsopplegget. Resultanene viser også at simuleringen i seg selv, er til hjelp både for å
tilpasse prototypen, men også for å gi nyttig informasjon om øvingsopplegget til foreleser.

ii

Preface

This thesis was completed throughout the Fall of 2017 and Spring of 2018, with the
deadline set at June 1, 2018. The report was written by Syver Bolstad. Because the appli-
cation is a prototype of a gamification and learning aid in the course TDT4100, the target
audience will mainly be students, student assistants, or teachers involved or participating
in TDT4100. Although the application is rather specified, some topics in the thesis may
also be relevant for people interested in learning technology, gamification, or education in
programming.

iii

iv

Table of Contents

Summary i

Preface iii

Table of Contents vii

List of Tables ix

List of Figures xii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 3
1.3 Goal . 4

1.3.1 Objectives . 4

2 Research methods 5
2.1 Literature Review . 5
2.2 Prototype . 6
2.3 Implementation . 6
2.4 Validating prototype using student data 6

3 Literature Review 9
3.1 Gamification . 9
3.2 Motivation and Rewards . 10

3.2.1 Redeemable points . 10
3.2.2 Where’s Wally . 11
3.2.3 Badges . 11
3.2.4 Team leaderboards . 12

3.3 Code quality . 12
3.3.1 ISO/IEC 25010 . 12

v

3.3.2 SOLID . 13
3.4 Code Metrics . 14

3.4.1 Existing tools . 14
3.4.2 Specific metrics . 15

3.5 Case study - Khan Academy . 17

4 Gamifying TDT4100 19
4.1 TDT4100 - Object oriented programming 19

4.1.1 Coursework . 20
4.1.2 Relevant metrics . 20

4.2 Badges . 21
4.3 Reward model . 22
4.4 Simulation as method . 24
4.5 Validating the use of gamification . 24

4.5.1 Badge award simulation . 24
4.5.2 Overall Metrics Accumulated 26
4.5.3 Metrics sorted by task difficulty 28

4.6 Tailoring metrics for assignments . 30
4.6.1 Method for configuring relevant metrics 30

5 Design 33
5.1 Rapid Prototyping . 33
5.2 Tools . 33
5.3 Iterations . 34
5.4 Testing . 35

5.4.1 Usability testing . 35
5.4.2 Survey . 36
5.4.3 Final changes . 37

5.5 Requirements . 39
5.5.1 Backend . 39
5.5.2 Frontend . 39

5.6 High fidelity prototype . 40
5.6.1 History page . 40
5.6.2 Badge page . 42

6 Evaluation 45
6.1 Research Methodology evaluation . 45
6.2 Use of Gamification . 45
6.3 Choice of Metrics . 46
6.4 Testing . 47
6.5 Evaluating the results . 47
6.6 Validity . 48

6.6.1 Method validity . 48
6.6.2 Validity of the simulation . 48

6.7 Fulfillment of the project goal . 48

vi

7 Conclusion 49

8 Future development 51
8.1 Backend . 51

8.1.1 Supplementing the badges . 51
8.1.2 Improving the method for configuring badge requirements 51
8.1.3 Student task recommendation 52
8.1.4 New applications of the simulation data 52

8.2 Frontend . 52
8.2.1 Imrpovements to the current design 52
8.2.2 Leaderboards . 53
8.2.3 Additional views . 53

Bibliography 55

Appendix 59
8.3 Appendix A - Test: Survey . 60
8.4 Appendix B - Backend printed . 65

8.4.1 Change local path . 65
8.4.2 Code run for the results to be printed 66
8.4.3 Student metrics print . 67
8.4.4 Solution metrics print . 68
8.4.5 Student badge print . 69
8.4.6 Cyclomatic Complexity for the proposed solution 71
8.4.7 Unused Metrics for the proposed solution 72
8.4.8 Relevant Metrics for each task 73

8.5 Appendix C - Backend Implementation 74
8.5.1 Git . 74
8.5.2 Technologies . 74
8.5.3 Overview . 75
8.5.4 Metrics . 77

8.6 Appendix D - Class diagrams . 80
8.6.1 Main.java Class diagram . 80

8.7 Appendix E - Iterations . 81
8.7.1 Iteration 1 . 81
8.7.2 Iteration 2 . 81
8.7.3 Iteration 3 . 82

8.8 Appendix F - Results . 83
8.8.1 Proposed solution metrics extraction 83
8.8.2 Badges with corresponding sub-metrics 84

8.9 Appendix G - Frontend development tools 85
8.9.1 Knockout . 85
8.9.2 SweetAlert . 86

8.10 Appendix H - Suggested information for the alternative views 87
8.10.1 Information for the lecturer view 87
8.10.2 Information for the teaching assistant view 88

vii

viii

List of Tables

3.1 Levels of game elements [43] . 10
3.2 ISO/IEC 25010 Metrics[15] . 13
3.3 CKJM Metrics . 15

4.1 Metric Categories . 21
4.2 Badge requirement levels . 23
4.3 Unused metrics . 28
4.4 Submetrics used to filter relevant use . 31
4.5 Relevant metrics for the sub-tasks of assignment 5 31

5.1 List of backend requirements . 39
5.2 List of frontend requirements . 40

8.1 Programming curriculum handled by which metric 77
8.2 GeneralMetrics’ Sub-Metrics . 78

ix

x

List of Figures

2.1 Different parts of the Master Thesis . 5

3.1 Code snippet and Flow graph . 16

4.1 Badge valor’s . 22
4.2 All badges . 22
4.3 Planned reward model . 23
4.4 Badges awarded each student . 25
4.5 Badges awarded for each metric . 26
4.6 Overall metrics diagram . 27
4.7 Metric results sorted by difficulty . 29
4.8 Average Cyclomatic Complexity . 30
4.9 Tasks where the iteration metric is relevant 32

5.1 Prototyping tools used . 34
5.2 Iterations . 34
5.3 Pie chart of the results of questions eight, nine and ten 36
5.4 Cake diagram of the results from question 11 37
5.5 WebView to Web . 38
5.6 Button visibility . 38
5.7 History page . 41
5.8 Detailed metrics page . 42
5.9 Button visibility . 43
5.10 Detailed badge information and next badge info 43

8.1 Example of a parse tree . 74
8.2 Class Overview . 75
8.3 JDT-model . 76
8.4 Exercise model . 76
8.5 Class Overview . 78
8.6 View of Overall metrics in the frontend 79

xi

8.7 Wireframe iteration one . 81
8.8 Wireframe iteration two . 82
8.9 Wireframe iteration three . 83
8.10 Proposed Solution metrics extraction . 84
8.11 Knockout MVVM[4] . 86
8.12 alert() vs SweetAlert . 86
8.13 Next alert/notify . 87
8.14 Lecturers view . 87
8.15 Lecturers detailed view . 88
8.16 Teaching assistant view . 88
8.17 Teaching assistant detailed view . 88

xii

xiii

xiv

Chapter 1
Introduction

The following chapter describes information relevant before reviewing the rest of the re-
port. It presents the motivation behind the thesis, a detailed problem description as well as
the target audience of the product. Lastly it gives an outline of the rest of the thesis.

1.1 Motivation
Computer Science has a huge impact in modern society[40]. Digitalization is changing
many of the world industries[18], and is therefore an increasing demand of programmers[27].
To keep up with the demand, and make the digitalization process as efficient as possible.
It is important to educate even more computer science students.

In order to educate a larger number of students and teach them good code practices
without bursting the workload of the teachers, new advancements in education may be
used. Gamification is the use of game elements in non-gaming scenarios[5], and in the
learning scenario it introduces many advantages. When using the correct elements from
games, Gamification increases motivation[50], and can also increase the learning outcome
by introducing active learning[49].

Good code practices are also important. Some developers spend 90% of their time
reading code other people have written[32]. Therefore important to write straight forward
code that’s easier for others to understand. To help the student write good and under-
standable code, the student assistants must read the student code and inform the student of
mistakes in the code, or bad code practices. This is time consuming both for the student
and student assistant, and is normally done only once for each assignment.

In this thesis, a combination of both gamification and code information retrieval is used
to aid students in the course TDT4100. The solution aims to help motivate students using a
reward model, giving rewards based on information about code quality retrieved from the

1

Chapter 1. Introduction

code. The solution will be tested on previously delivered student code, and the results will
hopefully help determine whether the solution is a sufficient aid for students and teachers.

2

1.2 Problem Description

1.2 Problem Description
The problem description was suggested by the supervisor Hallvard Trætteberg as part of
the Master program in Interaction Design, Game and Learning Technology at Norway’s
Technical and Natural Science University (NTNU).

Learning analytics are techniques for collecting and analyzing data about the learning
process, so that one can provide better learning support. We are working on taking this
into TDT4100 and other programming subjects. The project is about studying, and how
different code-quality goals can be used to identify the maturity level of students and what
type of learning support they need.

The problem description was later redefined to a project goal, explained in the follow-
ing section.

3

Chapter 1. Introduction

1.3 Goal
This section presents the main goal of the thesis. The goal was formulated with help from
Hallvard Trætteberg.

Create a prototype of a gamified learning system supplementing the coursework in the
course Object Oriented Programming (TDT4100). Focusing on the wide span of program-
ming skills significant for the course curriculum.

The prototype will in this setting be evaluated as a more of a conceptual design. It
should however, be comprehensive enough to validate the design.

1.3.1 Objectives
Because of the extensive and relatively open scope of the goal, the goal has been split into
a group of objectives to try and clarify the different elements needed to complete the goal.

Obj1: Investigate what elements of gamification are relevant for the coursework

Obj2: Use these element to create conceptual prototype

Obj3: Evaluate the prototype

Obj4: Display the gamified coursework for the end user in a understandable manner

Obj5: Help the lecturer maintain and adjust the system over time

4

Chapter 2
Research methods

To complete the objectives of the prototype, several methods were used. Figure 2.1 shows
an overview of the main parts of the project.

Figure 2.1: Different parts of the Master Thesis

Figure 2.1 above shows the different stages of the process of developing the proto-
type. Starting with the literature review and development of the product, followed by the
prototype evaluation and analysis. This chapter will explain the different methods used
throughout the project.

2.1 Literature Review

This stage is comprised of an examination of research literature about Gamification, Mo-
tivation and Rewards, Code quality and coding Metrics. In order to find relevant readings,
both Google scholar and online articles found in the NTNU University Library was used.
To get a overview of the general consensus on the topic, a number of articles were skimmed
before deciding on which to read in more depth. When deciding on which articles to read,
the articles with a high number of citations and low number of discrepancies between ar-
ticles were favored. On some of the topics, the recently published articles were chosen
over older ones because of the recent progress made in some of the topics. The review

5

Chapter 2. Research methods

started in general topics, and gradually became more and more specific. For instance,
the articles about gamification were read first followed by motivation and rewards within
gamification, and eventually gamification in education and case studies of Khan Academy.
These readings were the basis when deciding on both the reward model chosen, and which
software metrics to use in the product.

2.2 Prototype
The prototype was developed iteratively where Hallvard Trætteberg and several students
were used as test subjects to represent the end user. This was useful to get feedback on what
gamification elements were relevant (Obj1) and how to display them in a understandable
manner (Obj4). Throwaway prototyping[44] was used in the development. A low level
prototype was created and iteratively changed based on feedback from Trætteberg and the
students. After the main design was decided upon, a more formal qualitative test was
conducted where the students completed a survey and completed a usability test.

The qualitative method in empirical studies described by Carolyn B. Seaman[42] was
used when conducting a qualitative test of the product. The test participants were observed
while taking the test while they completed tasks on the prototype. After the test a survey
comprised of a mix of open and closed questions, was completed by the test participants as
an alternative to the interview phase described by Seaman[42]. After taking the feedback
from the survey into account, the view from the prototype was rebuilt in HTML. The
prototype development and testing is further described in Chapter chapter 5.

2.3 Implementation
The implementation was split into two parts. The frontend development in HTML and the
backend development in Java, which together constitutes the prototype(Obj2). Both parts
used an agile approach that included frequent meetings with Trætteberg. The method
used in the frontend development part was similar to the MoSCoW method developed by
Dai Clegg[20], where the requirements in the backlog were sorted in groups of must have,
should have, and could have. The method was chosen to make sure only the most important
requirements were completed so there would be enough time for the Java development.

In the backend development phase, planning requirements in detail was difficult
because of the uncertainty in what to make and lack of knowledge of the tools used. The
open requirements were split into smaller tasks, and new tasks that were continuously
discovered as the work was done.

2.4 Validating prototype using student data
In the data gathering phase, a simple version of the discrete event simulation model de-
scribed by Averill M. Law and David Kelton[29] was used. In short, the model uses

6

2.4 Validating prototype using student data

information about the system state and acquires statistical data as the state evolves over
time. A code base consisting of assignments from last year’s students was used in the
simulation.

To retrieve useful information about the prototype, the statistical data from the sim-
ulation model was evaluated to explore how the prototype operated. This data was later
used to evaluate the prototype(Obj3). A more detailed description of the data simulation
process is found in Chapter 4.

7

Chapter 2. Research methods

8

Chapter 3
Literature Review

This chapter addresses some literature that is needed to understand the choices made in
developing the solution. The first part gives an introduction to gamification, motivation,
and rewards, followed by a description of code quality measures, metrics, and existing
tools. Finally, the learning platform Khan Academy and some associated studies are be
presented.

3.1 Gamification

This section gives a detailed description of the term Gamification. Gamification, defined
by Alessandra Antonaci and Specht as,

”The application of game design elements in non-gaming scenarios to solve problems
or to influence a user’s behaviour change”[6]

and by Sebastian Deterding and Nacke as,

”The use of design elements characteristic for games in non-game contexts” [43]

can take many forms and is used in many different areas. In order to grasp a clearer
understanding of the definitions, clarification of what is meant by ”games” and ”game el-
ements” is necessary. James Juul defines games as ”a rule-based formal system with a
variable and quantifiable outcome, the player exerts effort in order to influence the out-
come”[22]. In order to define the game elements to encourage the definition by Juules,
Sebastian Deterding and Nacke[43] treats the game elements as a set of building blocks
based on semi-abstracted elements found in most games. The table below shows the dif-
ferent elements and examples of these elements as described by Sebastian Deterding and
Nacke[43].

9

Chapter 3. Literature Review

Level blocks Example
Game interface design patterns Badges, leaderboards, or levels
Game design patterns and mechanics Time constraint, limited resources, or turns
Game design principles and heuristics Enduring play, clear goals, variety of game styles
Game model Challenge, fantasy, curiosity, game design
Game design methods Playtesting, playcentric design, value conscious game

design

Table 3.1: Levels of game elements [43]

These game elements may be used in full or partly in order to apply gamification on
non-game contexts. A study by TODD[47] found that implementing gamification on a
micro-scale may result in the game being perceived as superficial, which would render the
use of gamification ineffective.

3.2 Motivation and Rewards
Player motivation is important when attempting to successfully build a gamified system.
Motivation is divided into two different categories, intrinsic and extrinsic motivation de-
scribed by Harakiewicz. Intrinsic motivation describes the motivation of performing an
activity for its own sake instead of as a means to an end. Therefore intrinsicly moti-
vated behavior occurs independently of reinforcements or rewards. Extrinsically moti-
vated behaviour describes the opposite, where the source of the motivation is external to
the person[19].

Reinforcement studies has revealed how expected reward motivates player action. It
shows that the use of rewards can increase player motivation[50][28]. However, the in-
crease in rewards may come at a cost. A study by E. L. Deci and Ryan reveales that
extrinsic rewards undermine the intrinsic motivation in an educational context[14].

The article Exploring Engaging Gamification Mechanics in Massive Online Open
Courses[11] investigates which game mechanics are the most engaging when adapted to
MOOCS. According to the study, Virtual goods was the most engaging mechanic. Vir-
tual goods are digital rewards that are rewarded to players who have accomplished certain
feats in the game. In the book Gamification by Design[50], virtual goods is defined as
badges, trophies, points, coupons, discounts, or early access to premium content and fea-
tures. There are many different approaches when handing out digital rewards. the article
by Chang and Wei[11] introduces several possibilities introduced in the following sections.

3.2.1 Redeemable points

Redeemable points introduces a point system where points are awarded to students that
play the game. These points can then be redeemed in either real world rewards or to unlock

10

3.2 Motivation and Rewards

new content in the game[11]. In the study by Chang and Wei[11] redeemable points were
found to be the second most motivating reward.

3.2.2 Where’s Wally

Another reward introduced by Zichermann and Cunningham[50] is ”Where’s Wally”.
Where’s Wally is a reward that takes advantage of the natural problem solving ability
of people. Wordless figures are used in the learning process, feedback is given based on
the student’s level, and different cues are used if the student is stuck[11].

3.2.3 Badges

Badges are powerful rewards that are used to motivate people in many different areas. The
Google translate community, Khan Academy, and the Army, are some of the many exam-
ples where badges are used. Badges can give users enjoyment when they unexpectedly get
a badge, and drive users who enjoy collecting them[50]. Badges are also a good way to
reveal the completion of a goal and the overall progress in the game[50].

Research suggests that boring and pointless badges may render the other badges vapid,
described as Badgenfreude in Gamification by Design[50]. Therefore it is important not
to exaggerate the use of badges and carefully consider which badges to use. This also
concurs with some of the feedback from a educational badge study by Lassi Haaranen and
Korhonen[28]. To successfully implement badges, Jen-Wei Chang and Hung-Yu Wei[11]
suggest that developers implement badge ladders, where one badge can have several levels
(Bronze, Silver, Gold etc) as well as milestone badges that can be achieved when a certain
set of badges have been collected. They also mention that the badges should contain a
description and be shown in the users personal space.

In the article by Hamari and Eranti[17], badge rewards are divided into three differ-
ent categories: in-game, meta-game and out-game. The in-game rewards stays within the
game, like a profile page in a game containing badges. Meta-game rewards abstract the
awards to the game platform. For instance, if multiple courses are all in one gamified sys-
tem, the meta-game reward would be awarded there. The out-game awards are rewards you
get in the real world, such as a free coffee or a contribution to the grades of a course[17].

In a study conducted by Lassi Haaranen and Korhonen[28], a large group of students
were tested in a gamified version of a course. The gamified course awarded badges to
students who submitted the exercises early, and additional badges to the students who
submit a correct assignment on their first attempt. The study revealed that students were
motivated to achieve more badges than their class mates, and recommended the option of
sharing badges. Another recommendation by the article was to introduce funny badges
that didn’t necessarily matter specifically to the course[28].

11

Chapter 3. Literature Review

3.2.4 Team leaderboards

Competitiveness is a good motivator that drives gamers, athletes, services, and brands. Dr.
John Houston found that competitive people compete even if nothing can be gained[50].
Team leaderboards takes advantage of people’s competitiveness. The leaderboards rank
the different teams based on some score or grade, and students can compare their results
with that of other classmates. A study by Chang and Wei[11] has shown that leaderboards
increase the students reliance on team effort rather than their own[11]. The same study
also ranked team leaderboards as the third most motivating reward.

Skill differences and motivational loss

When one team advances on the leaderboard, another team must regress. Balancing win-
ning and losing is difficult. Research suggests that if a motivated piano player starts off
winning competitions and then subsequently loses, this will cause the piano player to stop
playing piano[50]. A game called “Health Month” introduces a possible solution to the is-
sue of loosing motivation after subsequently loosing[50]. The purpose of “Health Month”
is to inspire action outside the game. It therefore uses a structure that is more achiever-
oriented than most games. To make sure that the over-achievers don’t ruin the motivation
of the other players, players are automatically grouped into brackets based on their level.
This will decrease the constant low ranking of some users.

3.3 Code quality

For physical products you can measure quality by the probability of failure. This is how-
ever difficult when it comes to software[46]. Code quality and other non-functional aspects
of the code does not play a big part in the course TDT4100, but it is useful to learn at an
early stage for a programmer. Especially when you consider the 10 to 1 ratio of time
programmers spend reading versus writing code[32]. The possibility to automatically re-
trieve information about code quality means that the prototype could some day make use
of these aspects. This would make it possible to lightly introduce non-functional aspects
the coursework of TDT4100, and even adapt the prototype to followup courses where code
quality and non-functional aspects play a bigger part. This section addresses two different
approaches to determining code quality: the ISO/IEC 25010’s model for data quality and
SOLID, Robert C. Martin’s five principles of software design.

3.3.1 ISO/IEC 25010

The ISO/IEC 25010 is a product quality model that, through different characteristics, tries
to measure and evaluate systems and software product quality [15]. One of these character-
istics is maintainability. Table 3.2 describes the five sub-characteristics of maintainability
that is used to evaluate code quality.

12

3.3 Code quality

Name Description
Modularity Modularity is based on how well the system is divided

into discrete components, where change to one part
will have minimal impact on the others.

Reusability Based on which degree code is reused in more than
one system or used to build other assets.

Analyzability Analyzability is based on the efficiency of determin-
ing what’s wrong with the system, or what a impact a
change will have on the system. The goal is to effec-
tively find the deficiencies or causes of failure, and to
identify which parts should be modified.

Modifiability Modifiability is determined by how effectively the
system can be modified without breaking existing
functionality.

Testability Testability measures the effectiveness of establishing
testing criteria, and how well these tests can be per-
formed.

Table 3.2: ISO/IEC 25010 Metrics[15]

3.3.2 SOLID

SOLID is an abbreviation for the five principles of software design. The five principles
aim to make the code reusable, maintainable, and robust. All five principles are connected,
therefore all of them must be maintained to achieve these advantages.

Single responsibility principle

Classes with more than one responsibility should be broken down into smaller classes us-
ing delegation and abstraction. This way, the big problem is divided into sub-problems
and each of the sub-problems will be dealt with by a separate class[21] This reduces re-
sponsibility confusion, and increases order and clarity[33].

Open/closed principle

The Open/Closed principle (OCP), is a guideline in class and interface design that helps
developers make code that allows for change over time. The OCP states that software
should be “open for extensions but closed for modification”. To uphold OCP requirements,
classes that are likely to change should be factored out behind extension points [33]. This
is done because changing an existing class may cause an otherwise working system to
break.[21]

13

Chapter 3. Literature Review

Liskov substitution principle

Liskov substitition priciple (LSP) is a group of guidelines used when creating inheri-
tance hierarchies. It states that “derived classes should be substitutable for their base
classes”[21]. States of classes/objects must be replaceable with their sub-classes with-
out breaking the program.[33] For instance, if you have a class called ”Rectangle” with
”getters” and ”setters” for height and width, you would think that another class ”Square”
could inherit from Rectangle. A square also has a width and a height, however a square
cannot have the width and height set independently. This polymorphic behaviour through
inheritance breaks the LSP and may cause problems to the system.[21]

Interface segregation principle

The Interface segregation principle, or ISP, states that clients of interfaces or classes should
not be dependant on methods they do not use[21]. Many members of big interfaces only
need a fraction of the properties.

Dependency inversion principle

The DIP is a simple principle. It states that high-level concrete classes should not depend
on low-level concrete classes. Instead, they should both depend on either an abstract class
or an interface [21]. That way, the high level concrete class will not be broken if the low
level class is altered, as long as it continues to use the same interface.

3.4 Code Metrics
Code Metrics is a number of software measures extracted from code. These measures
can give developers greater insight on the ”quality” of the code, and help them decide
what parts of the code should be improved. This section describes some existing software
metrics tools, and a more detailed description of some of the metrics used.

3.4.1 Existing tools

There are currently many different tools used to inspect source code JCSC, CKJM, Under-
stand, and NDepend are some examples. They all gather information from the code, and
use a subset of this information to determine the score for a code aspect. Then together
the different aspects of the code try to give some quality score of the code.

Java Coding Standard Checker

JCSC is a basic tool used to inspect source code and determine if it complies with coding
standards, and the probability of it being bad code. JCSC looks at naming conventions for
fields, parameters, interfaces, and classes as well as the structural layout. When looking
for signs of bad code, the code is searched for switches without defaults, classes throwing
Exception-objects and empty catch/finally blocks.[38]

14

3.4 Code Metrics

CKJM

CKJM is a more advanced tool which calculates the metrics suggested by Chidamber and
Kemerer. The table bellow shows a list of some of the metrics used in CKJM.

Name Description
Depth of inheritance Returns the inheritance level starting

from the object class.
Class children Returns a class’s number of descendants.
Response for a class The total number of class methods

called, including methods that are con-
tained within the class methods.

Lack of cohesion methods Measures the level of information cohe-
sion in the classes, by counting the num-
ber of methods that does not share any
class fields[39].

Table 3.3: CKJM Metrics

The metrics also include Weighted Method per class which will be explained in chapter
3.4.2.

Understand

The tool Understand differs from CKJM by grouping the different metrics together into
three categories, Complexity, Volume, and Object Oriented that are used to analyze dif-
ferent groups of metrics namely Complexity, Volume, and Object oriented. In addition to
most of the metrics from CKJM, Understand introduces two new metrics.[38]

NDepend

NDepend uses 82 metrics that retrieve information to explore mainly three aspects of the
code. Code organization uses metrics to investigate the how the project is organized, us-
ing metrics to find the number of classes and how many methods are declared in each
class. The second aspect is Code quality, which is determined using metrics like com-
plexity, cohesion of classes, and number of parameters. The final aspect is the Structure
of code, which explores how the code is connected to itself using forinstance the depth of
inheritance metric.

3.4.2 Specific metrics
Lines of code

Lines of code is a simple metric. The metric consists of how many lines of code are written
in a program. A high number of lines in a method or class may indicate that too much work
is done in a single class, which can result in the code being difficult to maintain[34][10].

15

Chapter 3. Literature Review

A study made by Khoshgoftaar and Munson, however, revealed that other metrics that
focused on complexity were of higher value[26].

Cyclomatic complexity

Cyclomatic complexity developed by Thomas J. McCabe[31] is a complexity focused met-
ric that counts the number of independent paths through the code. The equation below is
used to find the Cyclomatic Complexity:

CyclomaticComplexity = E −N + 2P (3.1)

Equation (3.1) can be used on a flow graph where ”E” is the number of edges, ”N” is
number of nodes, and ”P” is the number of connected components which for most simple
applications is one. Figure 3.1 shows a code snippet and the appurtenant flow graph of the
code.

Figure 3.1: Code snippet and Flow graph

The flow graph in Figure 3.1 has six nodes and seven edges. Using formula 3.1, we
find the Cyclomatic complexity to be:

7− 6 + 2 ∗ 1 = 3 (3.2)

The result can give an approximation of the software maintenance cost of the code[16].
If the Cyclomatic Complexity is high, the code will be more difficult to read and more
expensive to maintain. In larger projects, Cyclomatic Complexity Density is found to be
more accurate[16]. Cyclomatic Complexity Density takes the system size into account and
divides the Cyclomatic Complexity with the size of the project.

Weighted method per class

Weighted methods per class is a metric that builds on the principles of Cyclomatic Com-
plexity. It calculates the sum of the complexity of each method in a class. The equation

16

3.5 Case study - Khan Academy

below is used to find the method weight of a class[35].

WeightedClassComplexity = N +

s∑
p=1

MC
p

(3.3)

Where MC is the MethodComplexity that is calculated for all the methods in the class, and
N is a constant added to handle the complexity introduced by variables used in more than
one method. The equation can also be extended to get the complexity of all classes in the
code, with the equation below[35]:

TotalWeightedClassComplexity =

y∑
x=1

WCC
x

(3.4)

Where y is the total number of classes, and WCC is the Weighted Class Complexity.
The advantage of Weighted Class Complexity is it’s ability to consider internal architecture
when calculating complexity. Weighted methods per class is regarded as a metric with
good qualities for an evaluation framework[35], whereas a high complexity number is
negative because it might lead to higher maintenance costs[10].

Class Coupling

Class coupling is a metric specific to object’ oriented languages that measure coupling be-
tween classes. The metric measures coupling of parameters, local variables, return types,
and method calls, among other things. Parameter coupling is defined as when the method
of one class invokes methods or passes parameters to methods of another class[9].

According to the Microsoft Developer Network, low class coupling is an indication
of high quality code[34]. High coupling on the other hand, makes code difficult to main-
tain due to the high number of interdependencies. Therefore, class coupling thresholds
are needed, however, where to set these thresholds however is not fully defined[9]. The
AvoidExcessiveClassCopling point in Visual studios analysis policy sets the threshold for
parameter coupling at 30 and class coupling at 80 [30]. This roughly concurs with the
article by Bidve* and Sarasu[9] where the parameter coupling threshold was set at 24 to
34 [9], Therefore, it is a metric that works best in large projects with multiple classes.

3.5 Case study - Khan Academy
Khan Academy is an learning organization founded by Salman Khan. The organization
has created a web platform with different tools to help teach kids and grown ups topics
including math, physics, biology, chemistry, economics, and computer science [36]. When
a participant chooses a topic, a step by step path is presented where the participants work
their way from the basics to the advanced concepts via videos, articles, and quizzes. In
the math topic, the order of these steps are determined by a knowledge map[24]. The
knowledge map is built like a talent tree, where a mapping between each of the sub-topics
are presented.

17

Chapter 3. Literature Review

Another learning aid used by Khan Academy is gamification. To help increase motiva-
tion, Khan Academy uses multiple virtual rewards, one of which is Badges. There are six
different categories of badges: Meteorite, Moon, Earth and Sun badges. These badges are
all rewarded based on the level effort put in to learning different topics. Meteorite badges
are described as ”easy to earn” and sun badges ”require impressive dedication”[23]. The
final two badge categories are the Black Hole badges which are unknown as well as the
rarest Khan Academy award. Challenge Patches that are awarded for completing topic
challenges[23]. Another virtual reward used is Energy points, which are awarded when
participants complete the quizzes involved in the step by step path of their chosen topic.

The article by Morrison and DiSalvo[36] from 2014 criticizes some of the gamifica-
tion elements of the Khan Academy. Today, however, most of these elements have been
changed to match the suggestions by the article. The Challenge Patches works as mile-
stone badges, where a lot of work is required compared to some of the other categories.
The platform also gives the students the option to share badges they have been awarded
in their profile page. The sharing of badges was also recommended by [28]. The final
motivational tools used by Khan Academy is to keep track of the number of days in a row
the user has been active and show the highest number of days as a streak.[25].

18

Chapter 4
Gamifying TDT4100

This chapter will describe the process of making a gamified prototype. First, a quick intro-
duction will be given of TDT4100 and the coursework. Followed by a description of the
metrics found relevant for the course. Then the results of conducting a simulation on the
prototype will be presented. The results are divided into two parts, first the simulated use
of gamification and metrics will be presented, followed by an explanation of the method
used to tailor these metrics specifically to each task. Appendix B shows how the results
are printed by the backend, and appendix C gives a description of how the backend was
implemented. The summarized results can be found in the git-repository of the project.
The link to the repository is provided in C.

4.1 TDT4100 - Object oriented programming

This section will give a basic description of the course Object oriented programming
(TDT4100), and which parts of the code that are relevant to include in the solution. On
NTNU’s webpage the course content is described as the following:

”Basic algorithms and data structures, constructions and control flows in object-
oriented languages. Modularization and reuse. Standard software library. Device test-
ing, malfunction and tools for this. Object-oriented design. Use of class, sequence and
interaction charts in UML. Use of design patterns. Java is used as the implementation
language.”[2]

The course description includes more than just programming. Most of the coursework
however, consists of programming exercises where the students are given some system
requirements, and a set of java tests they must pass. One could argue that these tests in
itself are a way of gamifying the coursework, where the goal is passing the test. Because
the goal of the thesis is to supplement the coursework. The solution will try to introduce
additional gamification features to the programming exercises with a focus on improving

19

Chapter 4. Gamifying TDT4100

the learning of the ”standard software library” and ”construction and control flow”.

4.1.1 Coursework

The students has to gather 750 points from the assignments to be allowed to attend the
exam, where 100 points are awarded for each completed assignment. To attain 100 points
from an assignment, the student have to pass a number of JUnit tests, and present the
assignment to a teaching assistant. There are a total of 10 assignments in the coursework,
each of which contains multiple tasks in three difficulty levels: easy, intermediate and
hard. The student normally has to complete either one or two of the tasks, in order to
complete the assignment.

The assignments are meant to give training in usage of the Java programming language,
and achieve the learning objectives of the course. The JUnit tests, handles the writing of
functional code. The code style is is handled by the teaching assistants.

As mentioned before, both the points system, and JUnit tests work as a kind of gami-
fication. To further introduce gamification, features information about the students code,
must first be attained. This can be done using the Javaparser, explained in appendix C.
The section below gives an overview of which metrics are suitable when determining the
students’ understanding of the programming curriculum of TDT4100.

4.1.2 Relevant metrics

The metrics relevant to the course was determined reading through the wiki page and slides
of the course[48], in addition to dialogue with Trætteberg. The metrics chosen are a mix of
everything from the use of a boolean operator ”&&”, to calculating the weighted method
per class metric, explained in Chapter 3.4.2. A total of 39 sub-metrics were chosen to
collectively enclose most of the programming elements relevant for TDT4100. To avoid
an overly complex frontend, they have been grouped into six categories. The table below
lists, the six categories, how many sub-metrics each of the metric categories are comprised
of, and a short description of the metric category.

20

4.2 Badges

Metric Category Sub-metrics Description
GeneralMetrics 13 Lines of code, public, private field declarations

weighted method per class, and the unary math
expressions

ExceptionMetrics 4 Try and catches as well as throws. Inheritance
handles abstract classes, interfaces and super ex-
pressions

InheritanceMetrics 2 Abstract classes, super expressions and interfaces
IterationMetrics 7 Creating, using and a iterating through lists
ConditionalStatementMetrics 13 If and else sentences in addition to summariz-

ing boolean operators and calculating cyclomatic
complexity

OverallMetrics 34 Summarizes through the java-element usage data
from the other metrics to give a overview of the
coverage of the course curriculum

Table 4.1: Metric Categories

A more detailed explanation of the General Metrics and Overall Metrics, in addition to
an overview of which parts of the curriculum are handled by which metric, can be found in
appendix C. The full list of sub-metrics can be found in appendix F. The metric categories
listed above are mostly made up of java-element metrics, which gives information about
what code is used but little information about the structure of the classes.

Class coupling, described in chapter 3.4. Is an example of a metric which could retrieve
this information. It was however decided not to include it, because advanced knowledge
of class coupling exceeds the scope of the course. The literature also suggested, that small
code sizes could impair the feedback from the metric. The Java Symbol solver, explained
in appendix C, does however support the extraction of these metrics. Therefore it could be
added to the prototype at a later stage.

4.2 Badges

Badges, was one of many virtual rewards introduced as gaming elements in the first game
element building block described by Chang and Wei[11]. Badges were chosen over the
other virtual rewards, because they can represent specific parts of the code, and give a
more detailed feedback of what is awarded.

To give the badges an additional depth, the badge ladders suggested by Jen-Wei Chang
and Hung-Yu Wei [11], were also introduced. Figure 4.2 below shows the three levels of
the badge ladder.

21

Chapter 4. Gamifying TDT4100

Figure 4.1: Badge valor’s

The three levels represents gold, silver, and bronze medals, and were added to the
badges to give the students something to strive towards. Hopefully the students will be
motivated to try and achieve better badge, even if they have completed the tests of the
assignment. Figure 4.2 shows the gold valor of the six badges added to the solution.

Figure 4.2: All badges

The badges were designed to illustrate what the badge represents, the following section
will describe how these badges are awarded.

4.3 Reward model

This section describes the reward model of the prototype. Figure 4.3 shows the planned
reward model for the prototype.

22

4.3 Reward model

Figure 4.3: Planned reward model

After delivering an assignment, the backend extracts information about each of the
Metric Categories in table 8.1. Score ratios are then generated by comparing the metric
information of the student, with the metric information of the proposed solution. Shown
in formula below(4.1).

Let Ps(i) be the value of sub-metric i, for the proposed solution
Let S(i) be the value of sub-metric i, for the student

scoreRatio =
1

n

n∑
i=1

S(i)

Ps(i)
(4.1)

Where n is the total number of sub metrics

The ratio between each of the metrics is summed and averaged. If there for instance is
a metric category that only contains two sub-metrics, code lines, and complexity. Given
that a student code contains 300 code lines, and has a complexity of 6, and that the pro-
posed solution contains 150 code lines, and has a complexity of 4 the score ratio will be:

scoreRatio =
1

2

∑
(
300

150
+

6

4
) =

1

2
(3.5) = 1.75 (4.2)

After the scores are calculated. They are compared to a list of predefined score ratio re-
quirements, that determine which badge should be awarded. If the score is high enough,
the badge is awarded. The table below shows the score ratio requirements used to deter-
mine if a badge should be awarded, or not.

Badge name Bronze Silver Gold
General Metrics Badge 3 2 1
Inheritance Badge 4 3 2
Iteration Badge 5 2.5 1
Conditional Statements Badge 3 2 1
Exception Badge 2 1.5 1
Overall Metrics Badge 0.4 0.6 0.8

Table 4.2: Badge requirement levels

Because short and concise code is an indication of high quality code[10], a low ratio

23

Chapter 4. Gamifying TDT4100

which indicates a short and concise code is preferred. Except for the Overall Metrics
Badge, where the numbers represent the percentage of metrics used. This is because a
high number of different metrics used, indicates that a student has been through a lot of
the programming curriculum, which is rated positively. The score ratio requirements listed

in table 4.2, were decided by qualified guesses, after trying to balance the valor distribution
on a few of the students. A possible method for configuring these score values, is discussed
in chapter 8.1.

4.4 Simulation as method
Simulation is the process of producing an output, through the use of a model composed of
a set of rules. This output may infer what could happen in a real situation if such measures
should occur[13]. There are many different uses of simulation: prediction, performance,
proof, and theory discovery, are some of examples mentioned by Axelrod[7]. The use of
relevant data when performing a simulation gives a higher probability of useful results[13].
Therefore it is important to use actual domain data when possible.

In this setting, the simulation of the system is conducted using the archive of assign-
ments from last years students. This was done using a discrete event simulation model,
where the assignment submission works as the time step data, and the each jump is the
jump from one assignment to the next.

The goal is to use the results from the simulation to adjust the badge requirements,
and configure the metric relevance for each task, which may result in a more just badge
distribution. It is expected that the students from this year, deliver similar code to the stu-
dents attending TDT4100 next year. Therefore the configuration obtained may be applied
directly to nest year’s students.

4.5 Validating the use of gamification
In the solution, the introduction of badges are used to gamify the coursework of TDT4100.
These badges are awarded based on six metric categories, extracted from the code of the
students. The following section presents the results after simulating usage of the backend
with student code, previously delivered by three students in 2017.

4.5.1 Badge award simulation

To simulate badges being awarded by the system, the code delivered by three students
for assignment five, six, eight and nine, was run in the backend. The assignments were
chosen for their availability. Student data for the other assignments, was not available at
the time the simulation was conducted. The results were collected and summarized in

24

4.5 Validating the use of gamification

excel, appendix B shows an example of the results are printed by the backend. Table 4.4
shows the distribution of badge valors, for each of the three students.

Figure 4.4: Badges awarded each student

Note that when a student badge is upgraded to a new valor, the old badge is changed.
Therefore the students will never have more than one badge in each category. The three
students all received roughly the same distribution of badge valors, which could be ex-
pected because their only goal was passing the test. The high number of gold badges
awarded however, was unexpected. To explore this further the results were sorted based
on badge types, to see if some badge categories were too kind when awarding the gold
badge. The table below shows the average number of badges each student was awarded,
organized by badge category.

25

Chapter 4. Gamifying TDT4100

Figure 4.5: Badges awarded for each metric

As seen in figure 4.5, the badge valors are not evenly distributed. It also reveals a
pattern, seen on the valors of the inheritance and iteration badge. All three students were
awarded one Inheritance gold badge, and half a Iteration gold badge, for each of the as-
signments they did. This awarding is very kind, compared to the Conditional- and General
Metrics Badge. This may be a coincidence due to the small number of students, or that
the score levels from chapter 4.3 are unevenly defined. This will be discussed further in
chapter 6.5..

4.5.2 Overall Metrics Accumulated

The overall metrics badge, counts the number of java-element metrics retrieved by all the
other metric categories. Figure 8.10 shows the accumulated number of metrics for each
of the students as well as the proposed solution, after completing assignment five through
nine.

26

4.5 Validating the use of gamification

Figure 4.6: Overall metrics diagram

As explained in chapter 4.3, the overall metrics badge uses 34 different java-element met-
rics as basis for giving the score. The three students ended up between 16 and 19 individual
metrics, compared to the 28 metrics used by the proposed solution. The reason for the big
difference between the students and the proposed solution, could be that all the tasks in
assignment five, six, eight and nine were completed by the proposed solution, while each
of the students only completed the minimum number of tasks.

To get some insight to which metrics were unused, the results were aggregated over
each of the students, for all the assignments. Table 4.3 shows the list of the metrics unused
by the students, as well as the metrics unused by the proposed solution.

27

Chapter 4. Gamifying TDT4100

Unused Metric Student Solution Example
Lambda isNegative = (n) → (n<0);
Addition +
Multiply ∗
Divide /
Remains %
MinusOne - -
ArrayCreation ArrayList<String>list = new Array...
Switches Switch(day){case 1: day = ”Friday”;}
PublicFieldDeclaration public Person person;

Table 4.3: Unused metrics

The green squares illustrate that the metric has been used, and the red squares repre-
sents that it hasn’t. As seen in table 4.3, neither the students or solution made use of the
lambda expressions. This may be because lambda expressions are a relatively new addi-
tion to Java[37], or that it was easier to use a loop. The small number of mathematical
operators that remained, were most likely unnecessary to use in the four four assignments
tested.

The remaining java-elements that were used by either the students or the proposed
solution, can be worked around using if sentences instead of Switches, and List instead
of ArrayLists. Even though the assignments can be completed without the use of these
java-element metrics, they are still relevant for the exam.

4.5.3 Metrics sorted by task difficulty

Because the assignment tasks have three difficulty levels, a simulation was run to deter-
mine if you could see the difference in difficulty, on the code metrics. It was expected that
the difficult assignments would have more code lines, and a higher number of code metrics
than the easy assignments.

All of the tasks involved in assignment five, six, eight and nine, were sorted by diffi-
culty, and the metrics of the proposed solution was extracted, summarized and averaged
for each of the assignments. Figure (a) below, shows the average number of code lines
used to solve the assignments, sorted by difficulty. Figure (b), shows the average number
of usages of some of the java-element metrics.

28

4.5 Validating the use of gamification

(a) Average number of code lines
(b) Average use of java-
element metrics

Figure 4.7: Metric results sorted by difficulty

As seen in figure 4.7, there doesn’t seem to be a correlation between difficulty and
the number of code lines shown in (a), or the use of that selection of java-element met-
rics shown in (b). This shows that these metrics can’t give a good measurement of the a
assignment difficulty, which is troublesome, because it is desirable to award the students
completing the difficult assignments.

These results also made made it evident that the number of uses, shouldn’t be used as
a quality criteria on every metric. The realization also implies that the reward criteria for
some of the metrics is unfounded, which means that some of the values in table 4.2, are
left vapid. This however doesn’t mean that the reward model is rendered useless. Instead
of comparing the metric usages with with the proposed solution, they can be compared to
a static value. Chapter 6.2 will discuss the alternative for the ratio reward model further.

Even though some of the metrics should be awarded using a different method than
the ratio calculation. This does not mean that the method is useless for all the metrics.
The number of code lines, weighted method per class, and cyclomatic complexity metrics
should all have their score calculated based on the number of uses[[16]][10], and can
therefore continue to use the ratio score method.

A way to distinguish the students completing the difficult assignments alternatively
from the one used in figure 4.7, is to look at code complexity instead of just quantitative
use of the java-elements. This was tested by extracting the Cyclomatic Complexity for each
of the tasks. Figure 4.8 shows the average Cyclomatic Complexity sorted by difficulty.

29

Chapter 4. Gamifying TDT4100

Figure 4.8: Average Cyclomatic Complexity

Figure 4.8, shows that the hard tasks on average has a higher complexity than the
easy, and intermediate tasks. This could mean that there is a correlation between code-
complexity and task difficulty, which would be useful when attempting to award the stu-
dents that complete the difficult tasks. If the proposed solution has a high complexity on a
specific task, the student solving it, should receive a greater reward than a student solving
a task where the proposed solution has a lower complexity.

4.6 Tailoring metrics for assignments

Some of the metric categories are hardly used in some tasks, and because it is undesirable
to award a student a gold badge for a single code metric. A config file has been added
to the backend. The config file contains a mapping between each of the tasks, and an
associated list of relevant metrics. The score values that determine the badge valor, can
also be found in the config file. This section describes the method used to configure which
badges are relevant for which task, and some of the results.

4.6.1 Method for configuring relevant metrics

In order to configure which metrics are relevant for which task, the proposed solution of
the task is run through the backend, and the relevant metrics are chosen based on usage
information from each metric. Because the Overall Metrics Badge, and General Metrics
Badge, are relevant independently of task, these two are disregarded in this method. Table
4.4 shows the metrics that are determined relevant, for each of the tasks based on their
frequency of use.

30

4.6 Tailoring metrics for assignments

Exception Inheritance Iteration ConditionalStatement
Catch Statements Abstract class Array Accesses If Statements
Try Statements Interface inheritance Array Creations Else Statements
Throw Statements Super expressions Array Inits Switches
IllegalArgumentExceptions Foreach loops

For loops
While loops

Table 4.4: Submetrics used to filter relevant use

The sub-metrics listed beneath the main metrics in Table 4.4 are the ones that are
counted, when determining if the metrics are relevant or not. This is because the use of
those sub-metrics, implies the use of the other sub-metrics as well. If one or more of
the sub-metrics are used three times or more, the metric is categorized as relevant. The
boundary of three usages was chosen to filter out the metrics that are hardly used, but still
include as many metrics as possible. Most of the proposed solutions are concisely written,
so increasing the metric usage boundary to four, resulted in the iteration metric hardly
being relevant at all. Table 4.5, shows the metrics categorized as relevant for the tasks of
assignment five.

Task Metric
Card part 2 Exception, ConditionalStatements, Inheritance
Partner ConditionalStatements, Iteration
Twitter Exception, ConditionalStatements, Inheritance, Iteration
Stop Watch Exception, ConditionalStatements, Inheritance, Iteration
Person Exception, Conditional Statements

Table 4.5: Relevant metrics for the sub-tasks of assignment 5

The relevant metrics for each task of assignment five, listed in table 4.5. Can be ob-
tained automatically from the backend, as long as the names of the tasks are supplied. This
opens up for the possibility of automating the badge configuration, which can simplify the
badge configuration process.

The relevant metrics for the tasks of the three remaining assignments were categorized,
and some statistics were drawn from the results. Figure 4.9, shows the distribution of
which tasks the Iteration metric, was relevant for, sorted by difficulty.

31

Chapter 4. Gamifying TDT4100

Figure 4.9: Tasks where the iteration metric is relevant

Figure 4.9, shows that six of the intermediate tasks, use three or more of the iteration
metrics. This is 85%, compared to the 28% for the easy tasks, and 16% for the hard tasks.
The high number of relevant Iterataion metrics for the tasks of intermediate difficulty,
suggest that the intermediate tasks are useful for learning iteration. One possible use of
this information, is to recommend the intermediate assignments for the students struggling
with achieving the iteration badges.

32

Chapter 5
Design

This chapter will describe the design of the project. First the prototyping method and tools
used will be introduced, before describing the iterations and testing that were conducted to
help make out the final design. Then the requirements for both the frontend and backend
will be explained before the finally presenting the final design.

5.1 Rapid Prototyping

Rapid prototyping is a very simple type of prototyping. The idea is to spend a minimal
amount of time on requirement analysis, and instead build a simple prototype which is
used to understand and the actual requirements. After the requirements are decided, the
prototype is discarded, and the system is developed[44]. Rapid prototyping was chosen
because of the lack of any clear predefined requirements of the frontend. It also made it
possible to simply communicate the general idea of the design, and get feedback from the
very start of the prototyping process.

5.2 Tools

In order to create the prototypes, mainly two tools was used. Microsoft Paint, and Invis-
tionApp. Paint, is a very simple drawing program which basically offer the same func-
tionality as pen and paper. InvisionApp, is a web-based tool that can use images to build
interactive prototypes, and also offers LiveShare where these prototypes can be tested on-
line.

33

Chapter 5. Design

Figure 5.1: Prototyping tools used

Paint and InvistionApp was chosen because of previous experience with the tools, their
overall ability to produce simple wireframes, and the simplicity of making modifications
to that wireframe. Before deciding to use InvisionApp, Axure, was also considered. Axure,
was however found to be a bit excessive for the simple view required in the solution.

5.3 Iterations
The prototype was developed iteratively, this section gives a short introduction to the iter-
ations the prototype went through before landing on the final design.

Figure 5.2: Iterations

As seen in figure 5.2, the prototype went through three iterations. Between each of

34

5.4 Testing

the iterations the prototype went through a informal tests. The feedback from the test was
used, when deciding on which changes to make to the prototype. A more detailed step by
step explanation is given in Appendix E. After the third prototype was completed, a more
formal testing was completed.

5.4 Testing

In this section a description of the more formal testing will be described, as well as dis-
cussing improvements that can be made for the final design. The testing was done to
investigate the users understanding and friendliness toward the system. The tests were
conducted on three students who has previously completed TDT4100. The reason for
conducting the tests on previous students, was partly because the tests were conducted in
the autumn when the course isn’t taught, and partly because the simplified prototype was
considered easier to understand for the previous students, who are more familiar with both
the coursework, and the meaning of the badge names. First a usability test was conducted
by the test subjects, followed by a survey with questions about their experience with the
system.

5.4.1 Usability testing

The usability test comprised of four tasks the test subjects had to try and complete in the
wireframe. The tasks they were asked to preform are listed below.

1. Navigate to the page that shows information about the second assignment.
2. Find a more detailed description of the clean code metric.
3. Navigate to the page that shows a summary of your achievements so far.
4. Locate the specific information about one of the badges you’ve achieved

The four tasks were chosen because they collectively include all the different views
of the solution. The test was completed using Skype, and LiveShare from InvistionApp.
LiveShare made it possible to see the testers screen while they completed the tasks, and
observe their navigation. The reason for conducting such a remote testing, was to follow
the principle from [42] which states:

”The participant observer must take measures to ensure that those being observed are
not constantly thinking about being observed”[42]

This is due to the Hawthord Effect, which addresses the fact that people change their
answers if they know they are being observed. All the participants managed to complete
the four tasks in decent time without help. Two of the participants did however spend
a significant amount of time solving task two, compared to the remaining three. The
observation revealed, that they had trouble recognizing the button, due to them hovering
the mouse pointer on the right place repeatedly, without clicking.

35

Chapter 5. Design

5.4.2 Survey

As described in Chapter 2, the survey was conducted as an alternative to the interview
phase described by Seaman[42]. The survey was made in Google Forms and consisted of
twelve questions, six open-ended, and six close-ended questions. The questions disclosed
mostly the participants experience with the content of the prototype. They therefore had
access to the prototype when completing the survey. This section presents some of the
feedback attained from the survey, that was relevant for the changes made to the final
solution. First some results from the close-ended questions will be presented, followed by
a selection of the answers from the open-ended questions. The full survey can be found in
Appendix A.

Close-ended questions

In most of the close-ended questions, the participants all gave the same answer. The figure
below shows a pie chart of the answers to question eight, nine, and ten, of the survey.

Figure 5.3: Pie chart of the results of questions eight, nine and ten

Question eight, and nine asked whether the participants understood the detailed de-
scription of the Iterator badge, and the Length badge, given in the prototype. Question ten
asked whether the participants would like to see the progress towards the next badge level.

Because of the assistance provided by the talent tree in Khan Academy, it was found
relevant to investigate whether the students would prefer a talent tree, instead of badges.
Figure 5.4 below illustrated the results from question eleven
”Would you prefer a talent tree over badges?”

36

5.4 Testing

Figure 5.4: Cake diagram of the results from question 11

Figure 5.4, shows that two of the three test subjects would not prefer a talent tree over
badges, and the third participant wasn’t sure.

Open-ended questions

In the open-ended questions, more detailed answers were given. One of the questions
asked for suggestions to other metrics that would be fitting for TDT4100. Here two good
suggestions were suggested by the test participants, ”Error handling and robustness”, and
”Meaningful variable names”. Both ”error handling”, and ”meaningful variable names”,
are considered as good programming practices[41], and are relevant for TDT4100.

The final question, asked whether the participants had any other comments to the so-
lution. Two of the participants answered, that they did not understand what the spider
diagram in the History view, illustrated. There was also some frustration on the design,
one of the test participants wrote, ”Buttons don’t look like buttons”. This matches the ob-
servation from the usability testing, where the participants had problems locating a more
detailed description of the clean code metrics.

5.4.3 Final changes

This section will describe the final changes made, when building the high fidelity prototype
in HTML. The changes were made, based mainly on the feedback from the survey, but also
through dialogue with Trætteberg. The biggest change when designing the page in HTML,
was the decision to move away from just showing the web page as a web-view in Eclipse,
shown in figure 5.5.

37

Chapter 5. Design

Figure 5.5: WebView to Web

Figure 5.5, shows the transition from the originally planned view in Eclipse. To a
responsive web-page, that the student can view both in a browser, and Eclipse. This makes
the solution easier to access, which may lead to elevated use[12]. Figure 5.6, shows the
changes made to the button visibility.

Figure 5.6: Button visibility

The change was made by adding a hover effect to the text that was clickable, and
changing the mouse pointer. A similar alteration was also made on the navigation buttons,
and badges.

As seen in Figure 5.6, the names of the metric-categories were also changed. This was
done to match the front-end names, with the names in the backend, and to introduce the
exception metric which was added as a response to the ”error handling”, suggestion in the
survey. The new metrics are explained in more detail in appendix C.

Two parts of the prototype was removed, the table in the detailed badge view, and the
spider-diagram. The spider-diagram was removed due to the test-participants difficulty in
understanding what it illustrated. Ideas for a replacement of the diagram are discussed in
chapter 8. The table extending the detailed badge view was determined to be to chaotic,
due to the increased number of sub-metrics, used to categorize the badges in the backend.

38

5.5 Requirements

5.5 Requirements

This section will introduce some of the requirements that were made, before the devel-
opment phase was started. The requirements are divided into two separate parts. The
section will first introduce the backend requirements, followed by the requirements for the
frontend.

5.5.1 Backend

As mentioned in chapter 2.3, determining accurate requirements for the backend develop-
ment was difficult, but a few directional requirements was listed. Table 5.1, shows the list
of the directional requirements.

Requirement Description
Parse code Generate a parse tree of both the student code and proposed

solution, in order to extract information
Extract metrics Extract information about the code
Categorize metrics Group relevant metrics together
Get score Compare the student code with the proposed solution to

get a score
Make badge Set score requirements and compare that with the score

from the previous requirement, if the score matches the
requirement make a badge.

Table 5.1: List of backend requirements

After the implementation phase was started, the list evolved, and many additional sub
requirements were discovered. Appendix C, will explain in more detail, some of these sub
requirements, and the overall implementation of the backend.

5.5.2 Frontend

The frontend requirements were defined more straightforwardly. To solve sub goal SG4, a
very simple prototype was made. The prototype displayed information from the backend,
and through iterative testing in the prototyping phase sub goal SG4, was broken down to a
set of requirements. The requirements were put in the backlog, and sorted by the categories
of the MoSCoW method. This was done to help manage the time, and avoid spending too
much time on the frontend, which would hinder the work on the backend. Table 5.2 lists
the requirements for the frontend view.

39

Chapter 5. Design

Category Description Finished Comment
MH Badge view Yes The badges attained, should be shown in

the view
MH Assignment list view Yes An overview of all the assignments de-

livered should be displayed somewhere
in the view.

SH Detailed badge view Yes It should be possible to press a badge,
and get a more detailed view and de-
scription of the badge.

SH Detailed assigment view Yes A more detailed view of the assign-
ments, and what metrics are extracted
from it.

SH Badge progress view Yes In the detailed badge view, it should be
possible to see the progress towards the
next badge

SH Info about metric Yes It should be possible to show a more de-
tailed description of a metric, and what
submetrics define the score.

CH Recommended assignment No It could be possible to recommend as-
signments for the student, and show this
in the view.

Table 5.2: List of frontend requirements

The category-row in table 5.2 describes the MoSCoW categories, where:

MH = must have
SH = should have
CH = could have.

As seen in the ”Finished” row, not all of the requirements were completed. The final
”CH” requirement was not finished, due to the backend development taking more time
than expected.

5.6 High fidelity prototype
This section will give a short description of two screens, of the high fidelity prototype. The
web-development tools used when creating this page, are described in appendix G

5.6.1 History page
The history page, is the first page the student encounters when using the solution. It gives
an overview of the assignments the student has delivered so far, as well as a summary of
those assignments. As seen in Figure5.7, the metric information from the assignment is
also displayed.

40

5.6 High fidelity prototype

Figure 5.7: History page

Figure 5.7, shows a table of the metric names, a score for code quality, and a percentage
revealing the students progress towards the next badge. If the student achieves a badge,
the percentage will change to the progress towards the next badge, except for when the
gold badge is achieved. The score is a number between one and ten where ten is best. The
score is calculated by the formula below.

CodeQuality = 10/Scs (5.1)

Where Scs, is the Student complexity score, calculated by dividing the student code
complexity with the code complexity of the proposed solution. If for instance the code
line metric is to be calculated, and the student has 500 lines of code, compared to 100
lines in the proposed solution. The complexity would be, Scs = 500/100 = 5, and using
equation 5.1 the code quality score would be:

10/Scs = 10/5 = 2 (5.2)

When clicking on one of the metrics in the metrics table of the History page, a notification
window appears showing the metric information seen in Figure 5.8.

41

Chapter 5. Design

Figure 5.8: Detailed metrics page

The pop up window shows a table of the most important sub metrics composing the
metric score. The row marked ”You”, shows the score of the students code, and the row
marked ”Solution”, shows the score of the proposed solution. This was done in order to
give the student a greater insight in what sub-metrics makes up the score.

5.6.2 Badge page

The badge page, is where the student can see obtained badges. As seen in the figure 5.9,
the page contains two lists. One of the badges already achieved, and one of the badges still
remaining.

42

5.6 High fidelity prototype

Figure 5.9: Button visibility

Additional badge information can be seen by clicking on one of the badges. The
remaining badges are greyed out, but can still be clicked, revealing the progress towards
completing the badge. Figure 5.10 shows the detailed badge view, and the ”next badge”
view.

Figure 5.10: Detailed badge information and next badge info

Similar to the detailed description of the remaining badges, the ”next badge” view
shows the progress towards obtaining the next valor.

43

Chapter 5. Design

44

Chapter 6
Evaluation

This chapter will present a discussion and evaluation of the research methods, use of gam-
ification, and a brief evaluation of the design phase. Lastly a evaluation of the results will
be given, including a discussion of the perceived validity of the results.

6.1 Research Methodology evaluation
The throwaway prototype development with help of the empirical studies, were useful
when developing the prototype. It allowed for a exploitative and flexible development,
which helped narrow down the uncertainty of the design in the beginning of the project.
After deciding which results from the backend to present in the frontend, and how to
display these results. The MoSCoW method of prioritization, contributed to making the
development phase more straightforward, and made sure the most important requirements
were completed first. The discrete event simulation model, made it possible to see the
development of a student through the semester, and how the overall metrics badge evolved
over time. The use of simulation played a significant part in project, because it enabled
extraction of results from the prototype, even though the prototype wasn’t fully developed.

6.2 Use of Gamification
The literature suggest that the gamification will have a positive impact on the students
motivation on the coursework, if they are implemented correctly. The project has a modest
approach to the introduction of gamification. Six badge were created, the badges are
awarded based on the ratio between code metrics used by the student, and the proposed
solution. The choice of using the metric ratio between student code, and the proposed
solution, as a quality measurement for awarding badges looked promising. It was however
discovered that it was only applicable to some of the metrics.

Chapter 4.5.3, suggests the use of a static variable for the metrics that works poorly

45

Chapter 6. Evaluation

with the ratio reward model. This could be a good replacement, where the static value
could be a number, that represents the the total number of recommended uses, of a metric
throughout the coursework. Although the students flexibility in solving the assignments
can lead to unjust awarding in some cases, the use of code metrics as criteria to award the
badges, gives a deeper meaning by representing the students understanding of program-
ming, which may lower the risk of badgenfreude.

The badge ladder system was used to introduce gold, silver, and bronze badges, to
give a extra depth to the badges. This can help counteracting the problem of micro-scale
gamification often being perceived as superficial. It did however also introduce some
difficulties, when balancing the badge valors. The gold inheritance and iteration badges
were often awarded, even though the student only used one of the badge category’s sub-
metrics. This was attempted solved, using the method for configuring badge requirements,
which removes the metrics that are hardly used. The absence of irrelevant badges, helps
balancing the distribution of badges, and prevents students from being awarded undeserved
badges.

The badge award system was difficult to configure. The students are free to develop
their individual solutions and could chose to avoid using code that is used by the pro-
posed solution, therefore comparing the student code with the proposed solution might not
always be the best quality measurement when awarding badges.

6.3 Choice of Metrics

As explained in chapter 8.5.4, the six metric categories are comprised of sub-metrics, that
collectively encloses most of the programming elements relevant for the course. These
metrics, provides information of which code elements has been used, but little information
about the interaction between classes, and the structure of the code. As explained in chap-
ter 8.5.4, this wasn’t added due to it exceeding the scope of the course, and how the small
code size could impair the feedback of the metrics. It could however be used to include
badges inspired by the SOLID principles, that can give the students a light introduction to
the principles.

The metrics were also categorized to reduce the complexity of the frontend. There may
however be better ways of categorizing the metrics, which would allow for more separation
and a higher number of badges, as well as a more even distribution of the sub-metrics.
Smaller metric categories increases modularity of the system, that can make it easier for
the lecturer to replace, or make changes to metrics as the course evolves. Because the
current metrics may award a badge in inheritance as long as the student has made good
use of abstract classes, and super expressions, the student could end up forgetting to learn
interfaces. A higher modularity, could also give the students a more accurate picture of
what they have learned.

46

6.4 Testing

6.4 Testing

The testing phase was split into two parts, where the first part was a informal test, used
to get a overview of what was expected of the frontend. And the second part handled
the user testing, and a survey, to get a more detailed feedback. The informal tests, gave
both useful feedback that was used to shape the design of the web page at an early stage,
and positive feedback towards the ideas of the prototype. The positivity towards the ideas
of the prototype, could indicate that the students would make use of the system if it was
available.

In the second part, the user testing provided a more comprehensive feedback from
the students, that was useful when making the high fidelity prototype. Even though the
feedback was useful, some alterations or additions to the questions, could have increased
the surveys’ usefulness. The question involving the use of talent trees, could for instance
have been replaced with a question asking whether the students would’ve wanted a talent
tree, or a point system, in addition to badges. The use of redundant virtual rewards, with
both points, and badges, in Khan Academy. Suggests, that the use of multiple awards
is advantageous. Due to the testing being completed at such an early stage, some of the
changes made to the metric categories, lead to some of the feedback becoming futile.
Therefore, additional tests investigating student understanding of the metrics, should be
performed in future.

6.5 Evaluating the results

The results of the simulation on the student-assignments, revealed both a that the ratio
between the proposed solution and student code couldn’t always be used as reward criteria,
and an uneven distribution of gold badges being awarded by some of the metrics. The
unevenness of the gold distribution was attempted fixed, using a method for categorizing
relevant metrics. The method works by extracting metrics from the proposed solution for
each task in the assignment, and disregarding the metrics that are hardly used. Currently
the method is configured to allow metric categories that are are used three times or more,
because further increase in the number, resulted in the Inheritance metric hardly being
relevant for any of the tasks. The number might however need configuring in the future, if
the metric categories change, or additional categories are added.

The results also revealed, that extracting metrics from the proposed solution, can give
relevant information to the the lecturer. Either by revealing the relationship between met-
rics, and difficulty, shown in Figure 4.9. Or a by giving a full overview of the metrics used
in all the exercises, shown in Figure 8.10. This information can be used, when testing if
the exercises cover all the wanted code aspects relevant for the course. Another possible
usage, is to use the cyclomatic complexity metric, as a measurement when customizing the
difficulty level of the exercises, because of the indications that cyclomatic complexity is
related to task difficulty.

47

Chapter 6. Evaluation

6.6 Validity

6.6.1 Method validity
Because the method uses the proposed solution to extract relevant metrics from each task.
The results drawn from the method will continue to be valid, as long as proposed solutions
continues being made for new tasks, and the metrics extracted are maintained, to include
new additions or changes to the scope of the course.

6.6.2 Validity of the simulation
Due to the simulations being conducted using real student code, and because there is noth-
ing indicating that the code delivered by future students, will result in sudden changes to
the metrics. This gives reason to believe that the results obtained from the simulation are
valid, as long as the assignments stay roughly the same.

There was however two points of concern, regarding the student code used for the
simulation. The first, is that only the code for assignment five, six, eight, and nine was
available to use in the simulation, and that the use of all the exercises might lead to different
results. The second concern, is that only the code from three of the students were used,
due to the time consuming extraction of metrics, and that the small sample size does not
represent the average of the class.

6.7 Fulfillment of the project goal
The goal of the thesis was to create a prototype of a gamified learning system supplement-
ing the coursework in the course Object Oriented Programming. Focusing on the wide
span of programming skills significant for the course curriculum. The prototype created,
consists of a frontend web-view, and a backend java platform, that collectively attempt to
introduce gamification to the coursework. The java platform introduces badges based on
a wide span of code metrics collected from the student code, and the web-view displays
these badges to the student. The evaluations above suggests that the all of the Objectives
were completed, and that the prototype, once finished, will supplement the coursework,
and introduce benefits to both the students, and lecturer. The project will therefore con-
clude the goal as fulfilled.

48

Chapter 7
Conclusion

In this project, a gamified prototype a learning system was developed to supplement the
coursework of Object-oriented programming. Code metrics, use of gamification and dif-
ferent reward models were reviewed and adapted to TDT4100 when developing the proto-
type. The prototype consists of two parts, a Java backend that use code metrics to award
badges, and a frontend web-view to display these badges.

The frontend was designed based on feedback received through iterative low level
testing on previous students, and a more through test that explored the usability and content
of the system. The results revealed a positive attitude towards the use of badges as well as
an overall positive attitude towards the system.

The badges are awarded by the backend based on six metric categories extracted from
the code. First the student metrics are compared to the metrics of the proposed solution,
then a ratio score is calculated based on the difference between them and finally the score
is compared to a list of requirements that determines if a badge should be awarded or not.
The list of requirements contains three values for each metric category, where each value
represents the requirement for either the bronze, silver or gold badge.

After the backend was created a simulation was conducted where the student code from
four assignments was run through the backend. The results revealed a uneven distribution
of which valors were awarded by which metric category, and it was discovered that some
of the badges were awarded based on a single metric usage. This problem was fixed
by introducing a method for configuring relevant metrics, the method ran each task of
the proposed solution through the backend and listed which metrics were relevant for
that specific task. It was also discovered that running the proposed solution through the
backend, could provide information about the assignments that is useful for the educators.

49

Chapter 7. Conclusion

This thesis has shown that the gamified prototype could supplement the coursework by
introducing badges that can help motivate students, and by providing metric information
to both the students and educators that can be used get a overview of, individual progress
or the coursework in general. Whether the prototype will provide a learning benefit for the
students cannot be determined without further testing, it does however provide foundation
that can be further developed.

50

Chapter 8
Future development

This chapter will discuss the future development of the prototype. First the possible ad-
ditions to the backend will be discussed, followed by some ideas that could improve the
frontend.

8.1 Backend

8.1.1 Supplementing the badges
Currently the awards of the the system are limited to six badges awarded in-game. Because
the rewards are limited to the game, they may not exploit the full motivational potential that
meta-game and out-game rewards could introduce. One option could be to have the badges
count for a small percentage of the grade. The number of badges could also be increased,
one option is to introduce milestone badges that are awarded students who for instance
have obtained five gold medals in the same category. Another option is to introduce time-
badges that are awarded based time consumption instead of code metrics. The ex-files
that contains the student code explained in appendix C also contains information of how
much time the students spend on the assignment, which would be a fun contribution to the
badges.

8.1.2 Improving the method for configuring badge requirements
The method explained in chapter 4.6.1 explains how the relevant metrics can be filtered to
only include badges that are used multiple times. This whole process could however be
completely automated by having the java-class that filters metrics automatically insert the
results in the config file.

Currently there is no method for configuring the score value requirements for the
badges. But if the score values are summarized for each of the students that completed
the coursework last year, the score requirement for gold could be set to where the top 10%

51

Chapter 8. Future development

are awarded the badge. As long as there are no major changes to the coursework or the
future students starts programming differently, this would make it possible to somewhat
distribute the badge valors as wanted.

8.1.3 Student task recommendation

The list of used and unused metrics created by the overall metric badge, could be used
to give recommendations of which tasks a student should do. If metrics are extracted
from each of the proposed solutions, and the list of used metrics are mapped to the task
names. This list could be matched with the used metrics list of the students to maximize
the number of metrics exiting in both lists. That way the student would be recommended
the task containing the maximum number of unused metrics.

8.1.4 New applications of the simulation data

If the average code metric results for each of the students are organized in a straightforward
manner over multiple years, this information could be used to see what impacts changes
to teaching, syllabus or assignments have on the students programming. One example
could be to introduce lambda expressions early in the course, and see if it results in more
lambda expressions being used by the students. If this prototype is ever completed and
introduced to the course, the information could even be used to determine if the efficiency
of the prototype.

8.2 Frontend

8.2.1 Imrpovements to the current design

The current web view has a lot of numbers and little graphics due to the removal of the
metric spider diagrams, therefore a new way of illustrating the metrics should be intro-
duced. One option could be to introduce a pie chart where each piece represents a metric
category and the number of pieces could vary depending on the number of relevant met-
rics. The piece could also work as a loading bar, filling up the piece as the score gets
better.

Depending on how frequently the web view is used, a possible improvement would
be to add animations or push notifications to inform the students when they receive a
new badge. This would increase the students attention towards the badges, which could
result in increased interest of the badges. The article by Lassi Haaranen and Korhonen[28]
recommends enabling the sharing of badges to make it possible for the students to compete
against each other, this could be done by introducing the sharing system used by Khan
Academy where the users can choose to share their badges in their profile page.

52

8.2 Frontend

8.2.2 Leaderboards
Even though chapter 3.2.4 discussed some negative implications of leaderboards, that was
mostly due to the motivational loss that could arise for the users with the lowest scores.
The chapter also introduced multiple advantages of leaderboards. Therefore a leaderboard
could be included that only show the top 10% in the class, that way there is no way for the
users with the lowest scores to know that they have the lowest score. Because the award
system currently lacks a point system, a simple one could be introduced that gives points
for every badge received.

8.2.3 Additional views
The statistics extracted from the backend could be relevant for more parties than just the
students, therefore additional views should be added showing information relevant for the
student assistants and lecturer. The information shown to the lecturer could be abstracted
to only display how many students have used which metrics, while the student assistants
views could be more specified and show additional details about each student. Appendix
H shows some suggested to tables that could be used to display the information in the
different views.

53

Chapter 8. Future development

54

Bibliography

[1] Javaparserfor processing java code. https://javaparser.org/about/. Ac-
cessed: 2018-03-20.

[2] Tdt4100 - objektorientert programmering. https://www.ntnu.no/studier/
emner/TDT4100#tab=omEmnet. Accessed: 2018-04-20.

[3] Introduction to knockout. http://knockoutjs.com/documentation/
introduction.html, . Accessed: 2018-03-22.

[4] Knockout.js random notes (1). http://www.programering.com/a/
MTNxgTMwATQ.html, . Accessed: 2018-03-22.

[5] C.M. Stracke A. Antonaci, R. Klemke and M. Specht. Identifying game elements
suitable for mooocs. 2017.

[6] Christian M. Stracke Alessandra Antonaci, Roland Klemke and Marcus Specht. Iden-
tifying game elements suitable for moocs, page 355. 2017.

[7] Robert Axelrod. Advancing the art of simulation in the social sciences. 1997.

[8] Nick Babich. Prototyping 101: The difference between low-fidelity and high-
fidelity prototypes and when to use each. https://theblog.adobe.com/
prototyping-difference-low-fidelity-high-fidelity-prototypes-use/,
2017. Accessed: 2018-04-26.

[9] V. S. Bidve* and P. Sarasu. Coupling measures and its impact on object-oriented
software quality. 2016.

[10] Aaron B. Binkley and Stephen R. Schach. Validation of the coupling dependency
metric as a predictor of run-time failures and maintenance measures. 1998.

[11] Jen-Wei Chang and Hung-Yu Wei. Exploring engaging gamification mechanics in
massive online open courses. 2015.

[12] R. Ryan Nelson Dennis A. Adams and Peter A. Todd. Perceived usefulness, ease of
use, and usage of information technology: A replication. 1992.

55

https://javaparser.org/about/
https://www.ntnu.no/studier/emner/TDT4100#tab=omEmnet
https://www.ntnu.no/studier/emner/TDT4100#tab=omEmnet
http://knockoutjs.com/documentation/introduction.html
http://knockoutjs.com/documentation/introduction.html
http://www.programering.com/a/MTNxgTMwATQ.html
http://www.programering.com/a/MTNxgTMwATQ.html
https://theblog.adobe.com/prototyping-difference-low-fidelity-high-fidelity-prototypes-use/
https://theblog.adobe.com/prototyping-difference-low-fidelity-high-fidelity-prototypes-use/

[13] Kevin Dooley. Simulation research methods. 2002.

[14] R. Koestner E. L. Deci and R. M. Ryan. A meta-analytic review of experiments
examining the effects of extrinsic rewards on intrinsic motivation. 1999.

[15] International Organization for Standardization. Iso/iec 25010:2011. 2017.

[16] G.K. Gill and C.F. Kemerer. Cyclomatic complexity density and software mainte-
nance productivity. 1991.

[17] J. Hamari and V. Eranti. Framework for designing and evaluating game achieve-
ments. 2011.

[18] Burak Yahsi Hans-Christian Pfohl and Tamer Kurnaz. The impact of industry 4.0 on
the supply chain. 2015.

[19] Carol Sansone Judith M. Harakiewicz. Intrinsic and Extrinsic Motivation the search
for optimal motivation and performance. McGraw Hill, 2000.

[20] Duncan Haughey. Moscow method. 2014.

[21] Bipin Joshi. Overview of solid principles and design patterns. 2016.

[22] Jesper Juul. Half-real: video games between real rules and fictional worlds, page
6-7. 2005.

[23] KhanAcademy. Khanacademy. https://www.khanacademy.org/, . Ac-
cessed: 2018-05-16.

[24] KhanAcademy. Knowledgemap. https://www.khanacademy.org/
exercisedashboard, . Accessed: 2018-05-16.

[25] KhanAcademy. Profilepage. https://www.khanacademy.org/profile/
kaid_1074050811436157338819075/, . Accessed: 2018-05-16.

[26] T.M. Khoshgoftaar and J.C Munson. The lines of code metric as a predictor of
program faults: a critical analysis. 1990.

[27] Ah-Fur Lai. A study of constructing k-12 programming competence indicators. 2017.

[28] Lasse Hakulinen Lassi Haaranen, Petri Ihantola and Ari Korhonen. How (not) to
introduce badges to online exercises. 2014.

[29] Averill M. Law and David Kelton. SIMULATION MODELING AND ANALYSIS.
1991.

[30] Code Analysis Team log. Code metrics as check-in policy. https:
//blogs.msdn.microsoft.com/codeanalysis/2007/11/16/
code-metrics-as-check-in-policy/, 2007. Accessed: 2018-04-24.

[31] Thomas J. MacCabe. Structured testing. 1983.

56

 https://www.khanacademy.org/
https://www.khanacademy.org/exercisedashboard
https://www.khanacademy.org/exercisedashboard
https://www.khanacademy.org/profile/kaid_1074050811436157338819075/
https://www.khanacademy.org/profile/kaid_1074050811436157338819075/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/16/code-metrics-as-check-in-policy/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/16/code-metrics-as-check-in-policy/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/16/code-metrics-as-check-in-policy/

[32] Robert C. Martin. Clean code: A handbook of agile software craftsmanship. 2008.

[33] Gary McLean. Adaptive code via c: Agile coding with design patterns and solid
principles. 2014.

[34] microsoftDeveloperNetwork. Code metrics values. https://msdn.
microsoft.com/en-us/library/bb385914.aspx. Accessed: 2018-04-
21.

[35] Sanjay Misra and I. Akman. Weighted class complexity: A measure of complexity
for object oriented system. 2008.

[36] Briana B. Morrison and Betsy DiSalvo. Khan academy gamifies computer science.
2014.

[37] Brian Goetz Oracle. Updates to the original jsr. https://www.jcp.org/en/
jsr/proposalDetails?id=335. Accessed: 2018-05-23.

[38] Satwinder Singh Pavitdeep Singh and Jatinder Kaur. Tool for generating code metrics
for c source code using abstract syntax tree technique. 2013.

[39] Jon Pearce. Measuring cohesion. 2016.

[40] Richard S. Rosenberg. The Social Impact of Computers. Academic Press, 1986.

[41] Stephen R. Schach. Object-oriented and classical software engineering. 2007.

[42] Carolyn B. Seaman. Qualitative methods in empirical studies of software engineer-
ing. 1999.

[43] Rilla Khaled Sebastian Deterding, Dan Dixon and Lennart Nacke. From game design
elements to gamefulness: Defining “gamification”, page 10. 2011.

[44] Barbara Bichelmeyer Steven D. Tripp. Rapid prototyping: An alternative instruc-
tional design strategy. 1990.

[45] C. Synder. Paper prototyping: The fast and easy way to design and refine user inter-
faces. 2003.

[46] the Federal Aviation Administration. Faa system safety handbook. 2000.

[47] AMY TODD. Why gamification is bullshit malarkey. 2017.

[48] Hallvard Trætteberg. Objektorientert programmering. https://www.ntnu.no/
wiki/display/tdt4100/Objektorientert+programmering. Ac-
cessed: 2018-04-21.

[49] Lincoln C. Wood and Torsten Reiners. Gamification in logistics and supply chain
education: Extending active learning. 2012.

[50] Gabe Zichermann and Christopher Cunningham. Gamification by design. 2011.

57

 https://msdn.microsoft.com/en-us/library/bb385914.aspx
 https://msdn.microsoft.com/en-us/library/bb385914.aspx
https://www.jcp.org/en/jsr/proposalDetails?id=335
https://www.jcp.org/en/jsr/proposalDetails?id=335
https://www.ntnu.no/wiki/display/tdt4100/Objektorientert+programmering
https://www.ntnu.no/wiki/display/tdt4100/Objektorientert+programmering

58

Appendix

59

8.3 Appendix A - Test: Survey
Below is the full survey with both questions and answers. Used as part of the testing phase.

60

61

62

63

64

8.4 Appendix B - Backend printed
This section shows the different prints from the backend, that was used for the simulation
in chapter 4.

8.4.1 Change local path
Before the code can be run, the local path must me changed in the top of the Main.java
class.

65

8.4.2 Code run for the results to be printed
The following code is run by the Main.java class in order to see the prints shown below.

66

8.4.3 Student metrics print
Below are the results printed after running the backend solution on student (Hashed ID)
3859682896’s delivery of a assignment 8.

67

8.4.4 Solution metrics print
Below are the metrics extracted from the proposed solution from the tasks student 3859682896
completed from assignment 9.

68

8.4.5 Student badge print
The following shows what the BadgeCollection class prints after calculating the scores
calculated using the student metrics and proposed solution metrics.

69

70

8.4.6 Cyclomatic Complexity for the proposed solution
The picture below shows what part of the Main.java is run in order to see the Cyclomatic
complexity of the proposed solution. The printed results are only for one task, this was
therefore completed on each individual task to get the results for figure 4.8.

71

8.4.7 Unused Metrics for the proposed solution
The figure below shows the metrics unused by assignment five, six, eight and nine. In
addition to which part of the Main.java produces the results.

72

8.4.8 Relevant Metrics for each task
Below are the results produced by the SolutionBadgeSimulation.java class, that prints
which metrics are relevant for which task. The results printed below are the metrics rele-
vant for the tasks in assignment five.

73

8.5 Appendix C - Backend Implementation

This section will give a description of how the backend was implemented. First the dif-
ferent technologies will be introduced, followed by an overall description of the solution
before some parts of the solution are explained in more detail.

8.5.1 Git

All the code for both the frontend and backend as well as the summarized results in excel,
can be found by cloning the git repository:

https://github.com/ssbolsta/masteroppgave.git

8.5.2 Technologies

This section gives a short explanation of the most important tools and technologies used
in the Java part of the solution.

Javaparser

The Javaparser is a library containing a set of tools. Mainly to parse javacode, but it can
also be used to analyze or generate code[1]. In the solution, the Javaparser is used for
analyzing and parsing source code. The parser recognizes the different elements of the
source code, which is used to generate an Abstract Syntax Tree (AST). The figure below
illustrates what a simplified section of this parse tree could look like.

Figure 8.1: Example of a parse tree

To extract information from the code the analyzer uses the parsed code, Each node in
the AST is checked, and information about that node is obtained, in the example above
you could for instance count the operators ”+” and ”*” or the number of expressions ”2”.
To extract more detailed information about the code, another tool is needed.

74

https://github.com/ssbolsta/masteroppgave.git

SymbolSolver

The SymbolSolver is an integration to the JavaParser that also uses the AST as an input,
it can however return a more elaborate report of the code[1]. In figure 8.1 the Javaparsers
analyzer would only be able to see the variable ”X” as a name, where as the Symbol Solver
could determine if it was a parameter, a local variable or a field.

8.5.3 Overview

The solution consists of a collection of classes used to read student assignment files, cal-
culate different metrics from those files and give a badge based on those scores. The figure
below, shows a simplified class diagram of the most important classes in the solution, the
full diagram can be found in Appendix C

Figure 8.2: Class Overview

As seen in Figure 8.2 the solution is built up by five main parts. First the GetStudent-
CodeSource class retrieve the code from a student assignment .ex file, then the metrics
from each of the classes are extracted using the MetricsCollectionList class.

Before the metrics are extracted from the proposed solution, the solution code is fil-
tered in the FilteredSolutionPathGenerator class to only include the tasks completed by
the student. Afterwards each of the metricCollections in the MetricCollectionList are sum-
marized in the MetricsSummary class, this is done both for the proposed solution and the
student code.

Finally the ReadXMLFile class is used to read the badge valor properties from a config
file, before the badges are determined in the BadgeCollection class. To determine what
badges are awarded, the metrics from the student code are compared to the metrics from
the proposed solution and if the ratio is lower than the badge valor the badge is awarded.

75

File handling

Before the backend can compare the metrics of the student with the proposed solution the
student, the proposed solution must first be filtered to only accept the java classes with
the same the package as the tasks of the proposed solution. The student code it extracted

from a .ex file, which contains information about how the assignment was completed. This
includes information of the time spent solving the assignment, when it was solved and a
step by step overview of the work from start to finish. The figure below shows the basic
structure of the .ex file.

Figure 8.3: JDT-model

Figure 8.4: Exercise model

76

The solution currently only retrieves the last element of step by step overview, to obtain
all the code delivered.

8.5.4 Metrics

This section will give a more detailed explanation of the General metrics and Overall
metrics categories were created. The table below shows how the metric categories are
distributed between the three parts of the programming curriculum.

java standard library
General Metrics
Overall Metrics
Code construction
Inheritance Metrics
Exception Metrics
Control flow
Iteration Metrics
Conditional Statements Metrics

Table 8.1: Programming curriculum handled by which metric

General Metrics

The General Metrics category explores aspects of the code similar to the Code organiza-
tion in NDepend tool explained in chapter 3.4.1. This section will give an overview of
what sub metrics are extracted for GeneralMetrics, and how the score is calculated. The
GeneralMetrics class uses three classes shown in the figure below to extract the relevant
metrics.

77

Figure 8.5: Class Overview

The General metrics class uses the UnaryExpression class and FieldDeclaration class,
to extract simple information about the code. This information is later used in the Over-
allMetrics class, explained in the next section. The GeneralSymbolSolver class uses the
Java Symbol solver to distinguish which parts of the code are methods. These methods,
in addition to the number of code lines, which are counted in the GeneralMetrics class are
important when deciding the score of the Metric. The list below shows which sub-metrics
are extracted.

Number of code lines
Weighted methods per Class
Number of unary operators
Field declarations

Table 8.2: GeneralMetrics’ Sub-Metrics

The GeneralMetrics score is determined by the top two metrics in the table, Number
of code lines and Weighted methods per class. The Number of code lines was found to be
a relevant sub-metric, because short and concise code gives an indication of lower code
maintenance costs[10]. It might also be useful for the students to see how many lines of
code they use compared to the proposed solution.

78

Weighted methods per class is used as a sub-metric because it has good qualities when
evaluating code[35]. To calculate the value for Weighted methods per class the methods
found in the GeneralSymbolSolver class are used. The Cyclomatic complexity is calcu-
lated for each method using equation 3.1, before the total weighted class complexity is
calculated with equation 3.4 as explained in Chapter 3.4.2. A high complexity score indi-
cates a higher cost in maintaining the code[10], therefore a low complexity score will give
a high quality score for this metric.

Overall Metrics

The main idea behind the Overall Metrics, is to give the student an overview of which
sub-metrics have been used throughout the assignment. The overall metrics score is not
based on the number of usages of each sub-metric, but rather the number of sub-metric
used at all. The figure below, gives an example of how the detailed description of the
Overall metrics is shown to the student in the web-view.

Figure 8.6: View of Overall metrics in the frontend

Figure 8.6 displays an example of a list of unused sub-metrics. The sub-metrics used
in OverllMetrics are extracted from the other metric categories, such as the unary oper-
ators and field declarations mentioned in the previous section. A total of 34 sub-metrics
comprise the Overall Metrics score, these sub-metrics consist only of specific code proper-
ties and therefore exclude sub-metrics like cyclomatic complexity and the number of code
lines. Only a boolean check of the sub-metric use is preformed, therefore the number of
usages above one has no impact on the score.

79

8.6 Appendix D - Class diagrams
The following diagrams are made using the ObjectAid UML Diagram plugin for Eclipse.

8.6.1 Main.java Class diagram

80

8.7 Appendix E - Iterations

This section contains the different stages the design went through.

8.7.1 Iteration 1

The first iteration started with making a simple mock up of a view showing some of the
information retrieved in the backend, and a view of the badges. The different views were
created in paint before they were conjoined in InvistionApp. The figure below shows the
different views made for the first iteration.

Figure 8.7: Wireframe iteration one

The view on the left shows the Code stats view, where the idea is that the view gives
a overview of the assignment the student currently works on. The spider-diagram shown
in the view was meant to illustrate the students scores in a straightforward manner. The
middle view is the Badge view, that shows both achieved and remaining badges. On the
right is the History view, that shows an overview of the assignments currently delivered as
well as a summary which gives the average score of all the assignments.

A full wireframe was made instead of just a paper prototype. Because the paper proto-
type offers a lower design quality, lacks interactivity[45] and requires a higher imagination
from the tester, which might limit the outcome of the testing[8]. The view was tested casu-
ally on some students in my class by letting them explore the wireframe, and asking them
questions about their understanding of the solution.

8.7.2 Iteration 2

The feedback from the students testing iteartion 1 was taken into account before making
changes to iteration 2. The two main changes from iteration 1 was adding a detailed badge
view and removing the Code stats view. The figure below shows the alterations made from
iteration 1 to iteration 2.

81

Figure 8.8: Wireframe iteration two

The reason for removing the Code stats view, was that the students that tested iteration
1 found it excessive and confusing, due to the same information being shown in the History
view. The Badge description view, was added, this was done because the testers tried
clicking on the badges, and were interested in knowing more about the badges. The same
casual testing from iteration 1, was also conducted on iteration 2.

8.7.3 Iteration 3

After receiving student feedback on iteration 2, three changes was made to iteration 3. The
figure below shows the main views of iteration 3.

82

Figure 8.9: Wireframe iteration three

The first change that was made, was changing the badge design, this was due to ex-
perienced mismatch between badge name, and design. The second change was adding a
more detailed explanation to the metric information listed in the History view, after being
requested by multiple testers. Finally the Badge description view that was added in itera-
tion 2, was extended with a table. Displaying specifically which sub-metrics were used in
what assignment.

8.8 Appendix F - Results
This section shows a small selection of the results discussed in chapter 4. The remaining
results can be found in excel documents located in the git repository

8.8.1 Proposed solution metrics extraction
The table below shows the full list of the metrics extracted from the proposed solution of
assignment 5, 6, 8 and 9, sorted by difficulty. The numbers are the average number of uses

83

of each of the metrics.

Figure 8.10: Proposed Solution metrics extraction

8.8.2 Badges with corresponding sub-metrics

The tables show each of the Badges, with the sub-metrics which are used to constitute the
score.

84

General Metrics Badge
Lines total ratio
Method calls total ratio
Variable declaration ratio
Weighted Method Per Class

Inheritance Badge
Class or Interface inheritance ratio
Super expression ratio

Iteration Badge
Iterators used ratio
Iterables used ratio

Exception Badge
Number of try ratio
Number of catch ratio
Number of throw ratio
Number of IllegalArgumentExceptions

Conditional Badge
Number of Ifs Ratio
Number of Operators used ratio
Cyclomatic Complexity Ratio

Overall Metrics
Total number of metrics used

8.9 Appendix G - Frontend development tools

This Section will explain the technologies used to develop the web view.

8.9.1 Knockout

Knockout is a pure javascript library that enables coupling between front end objects and
an underlying data model[3]. The image below shows how knockout keeps an automatic
coupling between the viewmodel and the view.

85

Figure 8.11: Knockout MVVM[4]

This helps keep a responsive design on the website, and is useful when the items on
the site may change over time.

8.9.2 SweetAlert

SweetAlert is an replacement of the JavaScript alert. The figure below shows the differ-
ence in appearance between the JavaScript ”alert()” on the left and a standard SweetAlert
”alert()” on the right.

Figure 8.12: alert() vs SweetAlert

In addition to being visually better looking, the SweetAlert library comes with many
other advantages. The alerts are responsive and automatically centers itself on both desk-
top and mobile. They also close when you press outside the message, compared to the
javascript alert, where you have to press the ”Ok” button. Another advantage is that they
support customable images and recursion, making it possible for an alert to open another
alert directly. The figure below illustrates how this has been used in the solution.

86

Figure 8.13: Next alert/notify

The alert on the left automatically opens the alert on the right when the button is
pressed.

8.10 Appendix H - Suggested information for the alterna-
tive views

This section shows tables with suggestions of what information could be displayed in the
alternative views for the teaching assistants and lecturer.

8.10.1 Information for the lecturer view

Figure 8.14: Lecturers view

87

Figure 8.15: Lecturers detailed view

8.10.2 Information for the teaching assistant view

Figure 8.16: Teaching assistant view

Figure 8.17: Teaching assistant detailed view

88

	Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Description
	Goal
	Objectives

	Research methods
	Literature Review
	Prototype
	Implementation
	Validating prototype using student data

	Literature Review
	Gamification
	Motivation and Rewards
	Redeemable points
	Where’s Wally
	Badges
	Team leaderboards

	Code quality
	ISO/IEC 25010
	SOLID

	Code Metrics
	Existing tools
	Specific metrics

	Case study - Khan Academy

	Gamifying TDT4100
	TDT4100 - Object oriented programming
	Coursework
	Relevant metrics

	Badges
	Reward model
	Simulation as method
	Validating the use of gamification
	Badge award simulation
	Overall Metrics Accumulated
	Metrics sorted by task difficulty

	Tailoring metrics for assignments
	Method for configuring relevant metrics

	Design
	Rapid Prototyping
	Tools
	Iterations
	Testing
	Usability testing
	Survey
	Final changes

	Requirements
	Backend
	Frontend

	High fidelity prototype
	History page
	Badge page

	Evaluation
	Research Methodology evaluation
	Use of Gamification
	Choice of Metrics
	Testing
	Evaluating the results
	Validity
	Method validity
	Validity of the simulation

	Fulfillment of the project goal

	Conclusion
	Future development
	Backend
	Supplementing the badges
	Improving the method for configuring badge requirements
	Student task recommendation
	New applications of the simulation data

	Frontend
	Imrpovements to the current design
	Leaderboards
	Additional views

	Bibliography
	Appendix
	Appendix A - Test: Survey
	Appendix B - Backend printed
	Change local path
	Code run for the results to be printed
	Student metrics print
	Solution metrics print
	Student badge print
	Cyclomatic Complexity for the proposed solution
	Unused Metrics for the proposed solution
	Relevant Metrics for each task

	Appendix C - Backend Implementation
	Git
	Technologies
	Overview
	Metrics

	Appendix D - Class diagrams
	Main.java Class diagram

	Appendix E - Iterations
	Iteration 1
	Iteration 2
	Iteration 3

	Appendix F - Results
	Proposed solution metrics extraction
	Badges with corresponding sub-metrics

	Appendix G - Frontend development tools
	Knockout
	SweetAlert

	Appendix H - Suggested information for the alternative views
	Information for the lecturer view
	Information for the teaching assistant view

